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Abstract

Using the method of sub-super solutions, we study the existence of positive solutions for a class
of kirchhoff type systems with combined nonlinear effects involving nonlocal operator.

1. introduction

The study of positive solutions of singular partial differential equations or systems has been an extremely active re-
search topic during the past few years. Such singular nonlinear problems arise naturally and they occupy a central role
in the interdisciplinary research between analysis, geometry, biology, elasticity, mathematical physics, etc. The paper
deal with the existence of positive solution for the nonlinear system





−M1

(∫

Ω

|∇u|pdx
)
div
(
|x|−ap|∇u|p−2∇u

)
= |x|−(a+1)p+c1(α1f(v) + β1h(u)), x ∈ Ω,

−M2

(∫

Ω

|∇v|qdx
)
div
(
|x|−bq|∇v|q−2∇v

)
= |x|−(b+1)q+c2(α2g(u) + β2k(v)), x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1)

where Ω is a bounded smooth domain of RN with 0 ∈ Ω, 1 < p, q < N , 0 < a < N−p
p , 0 < b < N−q

q and
c1, c2, α1, α2, β1, β2 are positive parameters. HereM1,M2 satisfy the following condition:
(H1)Mi : R+

0 → R+, i = 1, 2, are two continuous and increasing functions and 0 < mi ≤ Mi(t) ≤ mi,∞ for all
t ∈ R+

0 , where R
+
0 := [0,+∞).

Moreover f, g, h, k : [0,∞) → [0,∞) are nondecreasing continuous. System (1) is related to the stationary problem of
a model introduced by Kirchhoff [14].In recent years, problems involving Kirchhoff type operators have been studied
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in many papers, we refer to [1, 2, 6, 9, 18–20] in which the authors have used variational method and topological
method to get the existence of solutions for (1).These problems are interesting in applications and raise many difficult
mathematical problems.
A crucial milestone in the understanding of the elliptic problems involving the singular quasilinear elliptic operator
−div (|x|−ap|∇u|p−2∇u) is the paper by Caffarelli, Kohn and Nirenberg [7] (see also [11]). The study of this type of
problem is motivated by its various applications,for example, in fluid mechanics, in newtonian fluids, in flow through
porous media and in glaciology (see [4], [8]). The above problem is nonlocal because of the presence of the term
involving the function M, which makes the equation in (1) a pointwise identity no longer.
We are inspired by the ideas in the interesting paper [17], in which the authors considered (1) in the case M1(t) =
M2(t) ≡ 1 . Using the sub-supersolution method combining a comparison principle introduced in [3], the authors
established the existence of a positive solution for (1). We make the following assumptions:
(H2) f, g, h, k : [0,∞) → [0,∞) are C1 nondecreasing functions such that

lim
s→∞

f(s) = lim
s→∞

g(s) = lim
s→∞

h(s) = lim
s→∞

k(s) = ∞.

(H3) For all A > 0,

lim
s→∞

f
(
Ag(s)

1
q−1

)

sp−1
= 0.

(H4)

lim
s→∞

h(s)

sp−1
= lim

s→∞
k(s)

sq−1
= 0.

Now we are ready to state our existence result.

Theorem 1.1. Assume (H1)-(H4) hold. Then there exists a positive large solution of system (1) when α1 + β1 and
α2 + β2 are large.

2. Preliminaries

In this paper, we denoteW 1,p
0 (Ω, ||x||−ap), the completion ofC∞

0 (Ω), with respect to the norm ||u|| =
(∫

Ω
||x||−ap|∇u|pdx

) 1
p .

To precisely state our existence result, we consider the eigenvalue problem
{

−div
(
|x|−sr|∇ϕ|r−2∇ϕ

)
= λ|x|−(s+1)r+t|ϕ|r−2ϕ, x ∈ Ω,

ϕ = 0, x ∈ ∂Ω,
(2)

For r = p, s = a and t = c1, let ϕ1,p be the eigenfunction corresponding to the first eigenvalue λ1,p of (2) such that
ϕ1,p(x) > 0 in Ω, and ||ϕ1,p||∞ = 1 and for r = q, s = b and t = c2, let ϕ1,q be the eigenfunction corresponding
to the first eigenvalue λ1,q of (2) such that ϕ1,q(x) > 0 in Ω, and ||ϕ1,q||∞ = 1 (see [15, 22]). It can be shown that
∂ϕ1,r

∂n < 0 on ∂Ω for r = p, q. Here n is the outward normal. This result is well known and hence, depending on Ω,
there exist positive constantsm, δ, σp, σq such that

λ1,r|x|−(s+1)r+tϕr1,r − |x|−sr|∇ϕ1,r|r ≤ −m, x ∈ Ω̄δ, (3)
ϕ1,r ≥ σr, x ∈ Ω0 = Ω \ Ω̄δ, (4)

with r = p, q; s = a, b; t = c1, c2 and Ω̄δ = {x ∈ Ω|d(x, ∂Ω) ≤ δ} (see [15]). We will also consider the unique
solution (ζp(x), ζq(x)) ∈W 1,p

0 (Ω, ||x||−ap)×W 1,q
0 (Ω, ||x||−bq) for the system





−div
(
|x|−ap|∇ζp|p−2∇ζp

)
= |x|−(a+1)p+c1 , x ∈ Ω,

−div
(
|x|−bq|∇ζq|q−2∇ζq

)
= |x|−(b+1)q+c2 , x ∈ Ω,

u = v = 0, x ∈ ∂Ω,
(5)

to discuss our existence result. It is known that ζr(x) > 0 in Ω and ∂ζr(x)
∂n < 0 on ∂Ω, for r = p, q (see [15]).
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We will prove our results by using the method of sub- and supersolutions, we refer the readers to recent papers [1, 5,
12, 13] on the topic.
A pair of nonnegative functions (ψ1, ψ2), (z1, z2) are called subsolution and supersolution of (1) if they satisfy
(ψ1, ψ2) = (0, 0) = (z1, z2) on ∂Ω and

M1

(∫

Ω

|∇ψ1|p dx
)∫

Ω

|x|−ap|∇ψ1|p−2∇ψ1 · ∇wdx ≤
∫

Ω

|x|−(a+1)p+c1(α1f(ψ2) + β1h(ψ1))wdx,

M2

(∫

Ω

|∇ψ2|q dx
)∫

Ω

|x|−bq|∇ψ2|q−2∇ψ2 · ∇wdx ≤
∫

Ω

|x|−(b+1)q+c2(α2g(ψ1) + β2k(ψ2))wdx,

M1

(∫

Ω

|∇z1|p dx
)∫

Ω

|x|−ap|∇z1|p−2∇z1 · ∇wdx ≥
∫

Ω

|x|−(a+1)p+c1(α1f(z2) + β1h(z1))wdx,

M2

(∫

Ω

|∇z2|q dx
)∫

Ω

|x|−bq|∇z2|q−2∇z2 · ∇wdx ≥
∫

Ω

|x|−(b+1)q+c2(α2g(z1) + β2k(z2))wdx,

(6)

for allw ∈W = {w ∈ C∞
0 (Ω)|w ≥ 0, x ∈ Ω}. A key role in our arguments will be played by the following auxiliary

result. Its proof is similar to those presented in [12], the reader can consult further the papers [1, 13].

Lemma 2.1. Assume thatM : R+
0 → R+ is continuous and increasing, and there existsm0 > 0 such thatM(t) ≥ m0

for all t ∈ R+
0 . If the functions u, v ∈W 1,p

0 (Ω, |x|−ap) satisfy

M

(∫

Ω

|∇u|p dx
)∫

Ω

|x|−ap|∇u|p−2∇u · ∇φdx

≤M

(∫

Ω

|∇v|p dx
)∫

Ω

|x|−ap|∇v|p−2∇v · ∇φdx
(7)

for all φ ∈W 1,p
0 (Ω, |x|−ap), φ ≥ 0, then u ≤ v in Ω.

From Lemma 3.1 we can establish the basic principle of the sub- and supersolutions method for nonlocal systems.
Indeed, we consider the following nonlocal system





−M1

(∫
Ω
|∇u|p dx

)
div(|x|−ap|∇u|p−2∇u) = |x|−(a+1)p+c1h(x, u, v) in Ω,

−M2

(∫
Ω
|∇v|q dx

)
div(|x|−bq|∇v|q−2∇v) = |x|−(b+1)q+c2k(x, u, v) in Ω,

u = v = 0 on x ∈ ∂Ω,
(8)

where Ω is a bounded smooth domain of RN and h, k : Ω× R× R → R satisfy the following conditions

(HK1) h(x, s, t) and k(x, s, t) are Carathéodory functions and they are bounded if s, t belong to bounded sets.

(KH2) There exists a function g : R → R being continuous, nondecreasing, with g(0) = 0, 0 ≤ g(s) ≤ C(1 +
|s|min{p,q}−1) for some C > 0, and applications s 7→ h(x, s, t)+ g(s) and t 7→ k(x, s, t)+ g(t) are nondecreas-
ing, for a.e. x ∈ Ω.

If u, v ∈ L∞(Ω), with u(x) ≤ v(x) for a.e. x ∈ Ω, we denote by [u, v] the set {w ∈ L∞(Ω) : u(x) ≤ w(x) ≤
v(x) for a.e. x ∈ Ω}. Using 2.1 and the method as in the proof of Theorem 2.4 of [15] (see also Section 4 of [10]),
we can establish a version of the abstract lower and upper-solution method for our class of the operators as follows.

Proposition 2.2. LetM1,M2 : R+
0 → R+ be two functions satisfying the condition (H1). Assume that the functions

h, k satisfy the conditions (HK1) and (HK2). Assume that (u, v), (u, v), are respectively, a weak subsolution and a
weak supersolution of system (8) with u(x) ≤ u(x) and v(x) ≤ v(x) for a.e. x ∈ Ω. Then there exists a minimal
(u∗, v∗) (and, respectively, a maximal (u∗, v∗)) weak solution for system (8) in the set [u, u] × [v, v]. In particular,
every weak solution (u, v) ∈ [u, u]× [v, v] of system (8) satisfies u∗(x) ≤ u(x) ≤ u∗(x) and v∗(x) ≤ v(x) ≤ v∗(x)
for a.e. x ∈ Ω.
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3. Proof of the main results

Proof. Sincef, g, h, k are continuous and nondecreasing, we have f(x), g(x), h(x), k(x) ≥ k0 for all x ≥ 0 and for
some k0 > 0. Choose r > 0 such that

r ≤ min{|x|−(a+1)p+c1 , |x|−(b+1)q+c2},

in Ω̄δ . We shall verify that

(ψ1, ψ2) =

([
(α1 + β1)k0r

mm1,∞

] 1
p−1

(
p− 1

p

)
ϕ

p
p−1

1,p ,

[
(α2 + β2)k0r

mm2,∞

] 1
q−1
(
q − 1

q

)
ϕ

q
q−1

1,q

)

is a sub-solution of (1). Let w ∈W , Then a calculation shows that

M1

(∫

Ω

|∇ψ1|p dx
)∫

Ω

|x|−ap|∇ψ1|p−2∇ψ1∇wdx

=M1

(∫

Ω

|∇ψ1|p dx
)(

(α1 + β1)k0r

mm1,∞

)∫

Ω

|x|−apϕ1,p|∇ϕ1,p|p−2∇ϕ1,p∇wdx

≤ m1,∞

(
(α1 + β1)k0r

mm1,∞

)∫

Ω

|x|−ap|∇ϕ1,p|p−2∇ϕ1,p [∇(ϕ1,pw)− |∇ϕ1,p|pw] dx

≤
(
(α1 + β1)k0r

m

)∫

Ω

[λ1,p|x|−(a+1)p+c1ϕp1,p − |x|−ap|∇ϕ1,p|p]wdx.

Similarly

M2

(∫

Ω

|∇ψ2|q dx
)∫

Ω

|x|−bq|∇ψ2|q−2∇ψ2∇wdx

≤
(
(α2 + β2)k0r

m

)∫

Ω

[λ1,q|x|−(b+1)q+c2ϕq1,q − |x|−bq|∇ϕ1,q|q]wdx.

First we consider the case when x ∈ Ω̄δ . We have λ1,p|x|−(a+1)p+c1ϕp1,p − |x|−ap|∇ϕ1,p|p ≤ −m on Ω̄δ . Since
ψ1(x), ψ2(x) ≥ 0 in Ω, it follows that

−k0r ≤ min{|x|−(a+1)p+c1f(ψ2), |x|−(a+1)p+c1h(ψ1)},

in Ω. Hence, we have
(
(α1 + β1)k0r

m

)∫

Ω̄δ

[λ1,p|x|−(a+1)p+c1ϕp1,p − |x|−ap|∇ϕ1,p|p]wdx

≤ −(α1 + β1)k0r

∫

Ωδ

wdx ≤
∫

Ω̄δ

|x|−(a+1)p+c1(α1f(ψ2) + β1h(ψ1))wdx.

A similar argument shows that

M2

(∫

Ω

|∇ψ2|q dx
)(

(α2 + β2)k0r

mm2,∞

)∫

Ω̄δ

[λ1,q|x|−(b+1)q+c2ϕq1,q − |x|−bq|∇ϕ1,q|q]wdx

≤
∫

Ω̄δ

|x|−(b+1)q+c2(α2g(ψ1) + β2k(ψ2))wdx.

On the other hand, on Ω \ Ω̄δ , since ϕ1,p ≥ σp, ϕ1,q ≥ σq for some 0 < σp, σq < 1,
if α1 + β1 and α2 + β2 are enough large, then by (H2) we have

f(ψ2), h(ψ1), g(ψ1), k(ψ2) ≥
k0r

m
max{λ1,p, λ1,q}.
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Hence
(
(α1 + β1)k0r

m

)∫

Ω\Ω̄δ

[λ1,p|x|−(a+1)p+c1ϕ1,p|p − |x|−ap|∇ϕ1,p|p]wdx
(
(α1 + β1)k0r

m

)∫

Ω\Ω̄δ

|x|−(a+1)p+c1λ1,pwdx

≤
∫

Ω\Ω̄δ

|x|−(a+1)p+c1(α1f(ψ2) + β1h(ψ1))wdx.

Similarly,
(
(α2 + β2)k0r

m

)∫

Ω\Ω̄δ

[λ1,q|x|−(b+1)q+c2ϕ1,q|q − |x|−bq|∇ϕ1,q|q]wdx

≤
∫

Ω\Ω̄δ

|x|−(b+1)q+c2(α2g(ψ1) + β2k(ψ2))wdx.

Hence
∫

Ω

|x|−ap|∇ψ1|p−2∇ψ1 · ∇wdx

≤
∫

Ω

|x|−(a+1)p+c1(α1f(ψ2) + β1h(ψ1))wdx,

∫

Ω

|x|−bq|∇ψ2|q−2∇ψ2 · ∇wdx

≤
∫

Ω

|x|−(b+1)q+c2(α2g(ψ1) + β2k(ψ2))wdx,

i.e., (ψ1, ψ2) is a sub-solution of (1).
Now, we will prove there exists a M large enough so that

(z1, z2) =

(
Mζp(x), (

α2 + β2
m2

)
1

q−1 g(M ||ζp||∞)
1

q−1 ζq(x)

)
,

is a super-solution of (1).
A calculation shows that:

M1

(∫

Ω

|∇z1|p dx
)∫

Ω

|x|−ap|∇z1|p−2∇z1∇wdx =Mp−1M1

(∫

Ω

|∇z1|p dx
)∫

Ω

|x|−ap|∇ζp|p−2∇ζp∇wdx

≥ m1M
p−1

∫

Ω

|x|−(a+1)p+c1wdx.

By (H3)-(H4) we can choose M large enough so that

m1M
p−1 ≥ α1f

(
(
α2 + β2
m2

)
1

q−1 ||ζq||∞g(M ||ζp||∞)
1

q−1

)
+ β1h(M ||ζp||∞)

≥ α1f

(
(
α2 + β2
m2

)
1

q−1 ζq(x)g(M ||ζp||∞)
1

q−1

)
+ β1h(Mζp(x))

= α1f(z2) + β1h(z1).

Hence

M1

(∫

Ω

|∇z1|p dx
)∫

Ω

|x|−ap|∇z1|p−2∇z1 · ∇wdx

≥
∫

Ω

|x|−(a+1)p+c1(α1f(z2) + β1h(z1))wdx.



6 S. Shakeri & A.Bolandtalat / The 3rd National Congress on Mathematics and Statistics

Again, by (H4) for M large enough we have

g(M ||ζp||∞) ≥ k

(
(
α2 + β2
m2

)
1

q−1 g(M ||ζp||∞)
1

q−1 ||ζq||∞
)
.

Hence

M2

(∫

Ω

|∇z2|q dx
)∫

Ω

|x|−bq|∇z2|q−2∇wdx

=(
α2 + β2
m2

)

∫

Ω

|x|−(b+1)q+c2g(M ||ζp||∞)wdx

≥
∫

Ω

|x|−(b+1)q+c2 [α2g(z1) + β2g(M ||ζp||∞)]wdx

≥
∫

Ω

|x|−(b+1)q+c2

[
α2g(z1) + β2k

(
(
α2 + β2
m2

)g(M ||ζp||∞)
1

q−1 ||ζq||∞
)]

wdx

≥
∫

Ω

|x|−(b+1)q+c2 [α2g(z1) + β2k (z2)]wdx,

i.e., (z1, z2) is a supersolution of (1) with zi ≥ ψi,λ, i = 1, 2 for a M large enough. Thus, by ([16]) there exists a
positive solution (u, υ) of (1) such that (ψ1, ψ2) ≤ (u, υ) ≤ (z1, z2). This completes the proof of Theorem 1.1.
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Abstract

This paper deals with the stability results for solution of a fractional q–integro-differential prob-
lem with integral conditions. Using the Krasnoselskii’s, Banach fixed point theorems, we proof
the existence and uniqueness results. Based on the results obtained, conditions are provided
that ensure the generalized Ulam stability of the original system on time scale. The results are
illustrated by the examples under numerical technique.

1. Introduction and formulation of the problem

It is interesting to study solution to fractional q-integro-differential problem with integral conditions, which will allow
a generalized stability. The authors in [1], considered the problem for the system (1) and we generalized the system in
the qFDE which it is not explicitly presented, and therefore it makes sense to consider for t ∈ I, σ, ν ∈ I, the problem
for the system

CDσ+ν
q [y](t) = h1(t, y(t)) + Iσq [h2](t, y(t)) +

∫ t

0

Θ(t, ξ, y(ξ)) dξ, (1)

under boundary condition y(0) = η
∫ τ∗

0
y(ξ) dξ, for τ∗ ∈ I, where η is a real constant, CDσ+ν

q is the Caputo frac-
tional q-derivative of order σ + ν, Iσq denotes the left sided Riemann–Liouville fractional q-integral of order σ and
hi : I × H → H (i = 1, 2), Θ : I2 × H → H, are an appropriate functions satisfying some conditions which will be
stated later. H here is a Banach space equipped with the norm ∥.∥.

Here we focused our study on the question of existence and uniqueness in Sec. 3. And Sec. 4 is devoted to show
a generalized stability. Note that this representation also allows us to generalize the results obtained recently in the
literature. The paper is ended by two examples illustrating our results.

∗Talker
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2. Notations and notions preliminaries

We recall some essential preliminaries that are used for the results of the subsequent sections. Let t0 ∈ R and q ∈ I.
The time scale Tt0 is defined by Tt0 = {0}∪{t : t = t0q

n, ∀n ∈ N}. If there is no confusion concerning t0 we shall
denote Tt0 by T. Let s ∈ R. Define [s]q = (1− qs)/(1− q) [7]. The q-factorial function (y − z)

(n)
q is defined by

(y − z)(n)q =

n−1∏

k=0

(y − zqk), n ∈ N0, (2)

and (y − z)
(0)
q = 1, where y, z ∈ R and N0 := {0} ∪ N ([2]). Also, we have

(y − z)(σ)q = yσ
∞∏

k=0

y − zqk

y − zqσ+k
, σ ∈ R, s ̸= 0. (3)

In the paper [4], the authors proved (y−z)
(σ+ν)
q = (y−z)

(σ)
q (y−qσz)

(ν)
q and (sy−sz)

(σ)
q = sσ(y−z)

(σ)
q . If z = 0,

then it is clear that y(σ) = yσ . The q-Gamma function is given by [7]

Γq(y) = (1− q)1−y(1− q)(y−1)
q , (y ∈ R\{· · · ,−2,−1, 0}).

In fact, by using (3), we have

Γq(y) = (1− q)1−y
∞∏

k=0

1− qk+1

1− qy+k−1
. (4)

Algorithm 1 shows the MATLAB lines for calculation of Γq(y) which we tend n to infinity in it.

Algorithm 1: MATLAB lines for calculation Γq(x).
f u n c t i o n p = qGamma( q , x , n )
s =1 ;
f o r k =0: n

s=s*(1−q ^ ( k +1 ) ) / ( 1 − q ^ ( x+k − 1 ) ) ;
end ;
p = s*(1−q )^(1 − x ) ;
end

Note that, Γq(y + 1) = [y]qΓq(y) [4, Lemma 1]. For any positive numbers σ and ν, the q-beta function define by

Bq(σ, ν) =

∫ 1

0

(1− ξ)(σ−1)
q ξν−1 dqξ =

Γq(σ)Γq(ν)

Γq(σ + ν)
. (5)

For a function w : T → R, the q-derivative of w, is

Dq[y](t) =

(
d
dt

)

q

y(t) =
y(qt)− y(t)

t(1− q)
, (6)

for all t ∈ T\{0}, andDq[y](0) = limt→0Dq[y](t) [2]. Also, the higher order q-derivative of the function y is defined
by Dn

q [y](t) = Dq

[
Dn−1

q [y]
]
(t), for all n ≥ 1, where D0

q[y](t) = y(t) [2]. In fact

Dn
q [y](t) =

1

tn(1− q)n

n∑

k=0

(1− q−n)
(k)
q

(1− q)
(k)
q

qky(tqk), (7)

for t ∈ T \ {0} [3].
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Remark 2.1. By using Eq. (2), we can change Eq. (7) as follows:

Dn
q [y](t) =

1

tn(1− q)n

n∑

k=0

k−1∏

i=0

1− qi−n

1− qi+1
qky(tqk). (8)

The q-integral of the function y is defined by

Iq[y](t) =

∫ t

0

y(ξ) dqξ = t(1− q)
∞∑

k=0

qky(tqk), (9)

for 0 ≤ t ≤ b, provided the series is absolutely converges [2]. By using the Algorithm 2, we can obtain the numerical
results of Iq[y](t) when n → ∞.

Algorithm 2: MATLAB lines for calculation Iq [w](t).
f u n c t i o n p = Iq ( q , x , n , fun )
s =1;
f o r k =0: n

s=s+q^k*e v a l ( subs ( fun , x*q^k ) ) ;
end ;
p=x*(1−q)* s ;
end

If s in [0, b], then
∫ b

s

y(ξ) dqξ = Iq[y](b)− Iq[y](s) = (1− q)
∞∑

k=0

qk
[
by(bqk)− sy(sqk)

]
,

whenever the series exists. The operator Inq is given by I0q[y](t) = y(t) and

Inq [y](t) = Iq
[
In−1
q [y]

]
(t),

for n ≥ 1 and y ∈ C([0, b]) [2]. It has been proved that

Dq [Iq[y]] (t) = y(t), Iq [Dq[y]] (t) = y(t)− y(0),

whenever the function y is continuous at t = 0 [2]. The fractional Riemann–Liouville type q-integral of the function
y is defined by

Iσq [y](t) =

∫ t

0

(t− ξ)(σ−1)
q

y(ξ)

Γq(σ)
dqξ, I0q[y](t) = y(t), (10)

for t ∈ [0, 1] and σ > 0 [3, 6].

Remark 2.2. By using Eqs. (3), (4) and (9), we obtain
∫ t

0

(t− ξ)(σ−1)
q

y(ξ)

Γq(σ)
dqξ =

1

Γq(σ)

∫ t

0

tσ−1
∞∏

i=0

t− ξqi

t− ξqσ+i−1
y(ξ) dqξ

= tσ(1− q)σ
∞∏

i=0

1− qσ+i−1

1− qi+1

∞∑

k=0

qk
∞∏

i=0

1− qk+i

1− qσ+k+i−1
y(tqk).

Therefore,

Iσq [y](t) = tσ(1− q)σ lim
n→∞

n∑

k=0

qk
n∏

i=0

(
1− qσ+i−1

) (
1− qk+i

)

(1− qi+1) (1− qσ+k+i−1)
y(tqk), (11)
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The Caputo fractional q-derivative of the function y is defined by

CDσ
q [y](t) = I[σ]−σ

q

[
D[σ]

q [y]
]
(t) =

∫ t

0

(t− ξ)([σ]−σ−1)
q

D
[σ]
q [y](ξ)

Γq ([σ]− σ)
dqξ (12)

for t ∈ {0, 1] and σ > 0 [6, 9]. It has been proved that Iνq
[
Iσq [y]

]
(t) = Iσ+ν

q [y](t), and CDσ
q

[
Iσq [y]

]
(t) = y(t), where

σ, ν ≥ 0 [6]. Also, [6]

Iσq
[
Dn

q [y]
]
(t) = Dn

q

[
Iσq [y]

]
(t)−

n−1∑

k=0

tσ+k−nDk
q [y](0)

Γq(σ + k − n+ 1)
, σ > 0, n ≥ 1.

Remark 2.3. From Eq.(4), Remark 2.1 and Eq. (11) in Remark 2.2, we obtain
∫ t

0

(t− ξ)([σ]−σ−1)
q

D
[σ]
q [y](ξ)

Γq ([σ]− σ)
dqξ

=

∫ t

0

t[σ]−σ−1

Γq ([σ]− σ)

[ ∞∏

i=0

t− ξqi

t− ξq[σ]−σ−1+i

]

×
(

1

t[σ](1− q)[σ]

[σ]∑

k=0

[ k−1∏

i=0

(
1− qi−[σ]

)

(1− qi+1)

]
qky(tqk)

)
dqξ

=
1

tσ(1− q)σ−[σ]

∞∑

k=0

([ ∞∏

i=0

(1− q[σ]−σ+i−1)(1− qk+i)

(1− qi+1)(1− q[σ]−σ−1+k+i)

]

×
( [σ]∑

m=0

[m−1∏

i=0

(
1− qi−[σ]

)

(1− qi+1)

]
qmy

(
tqk+m

)))
.

Thus, we have

cDσ
q [y](t) =

1

tσ(1− q)σ−[σ]
lim

n→∞

n∑

k=0

([ n∏

i=0

(1− q[σ]−σ+i−1)(1− qk+i)

(1− qi+1)(1− q[σ]−σ−1+k+i)

]

×
( [σ]∑

m=0

[m−1∏

i=0

(
1− qi−[σ]

)

(1− qi+1)

]
qmy

(
tqk+m

)))
. (13)

Now, we introduce some basic definitions, lemmas and theorems which are used in the subsequent sections.

Lemma 2.4. [8] Let y ∈ ACn[t1, t2]. Then, one has Iσ[CDσ
q [y]](t) = y(t)+

∑n−1
i=0 ci(t−t1)

i, (c0, c1, . . . , cn−1 ∈ R),
for n− 1 < σ ≤ n, n ∈ N.

Lemma 2.5. [8] Letn−1 < σ ≤ n, n ∈ N and y ∈ C[t1, t1]. Then for all t ∈ [t1, t2], we have CDσ
t1 [I

σ
t1 [y]](t) = y(t).

Lemma 2.6. [8] Let σ ∈ (0, 1). Then for each y ∈ AC[0, 1], Iσ[Dσ[y]](t) = y(t) for a.e. t ∈ [0, 1], where

Dσ[y](t) =
d
dt

∫ t

0

(t− ξ)−σ y(ξ)

Γ(1− σ)
dξ.

Lemma 2.7. (Banach fixed point theorem, [5]) Let B be a non-empty complete metric space and T : B → B is
contraction mapping. Then, there exists a unique point y ∈ B such that T (y) = y.

Lemma2.8. ([5], Krasnoselskii fixed point theorem) LetE be bounded, closed and convex subset in a Banach spaceB.
If T1, T2 : E → E are two applications satisfying the following conditions: (A1) T1(y)+T2(z) ∈ E for every y, z ∈ E;
(A2) T1 is a contraction; (A3) T2 is compact and continuous. Then there exists v∗ ∈ B such that T1(v∗)+T2(v∗) = v∗.
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3. Existence results

Before presenting our main results, we need the following auxiliary lemma.

Lemma 3.1. Let σ + ν ∈ I and ητ∗ ̸= 1. Assume that h1, h2 and Θ are three continuous functions. If y ∈ C(I,H),
then y is solution of (1) iff y satisfies the IE

y(t) =

∫ t

0

(t− ξ)
(σ+ν−1)
q

Γq(σ + ν)

[
h1(ξ, y(ξ)) +

∫ ξ

0

Θ(ξ, s, y(s)) ds

+

∫ ξ

0

(ξ − a)
(σ−1)
q

Γq(σ)
h2(s, y(s)) dqs

]
dqξ

+
η

1− ητ∗

∫ τ∗

0

(τ∗ − s)σ+ν
q

Γq(σ + ν + 1)

[
h1(s, y(s)) +

∫ s

0

Θ(s, r, y(r)) dr

+

∫ s

0

(s− r)
(σ−1)
q

Γq(σ)
h2(r, y(r)) dqr

]
dqs. (14)

Proof. Let y ∈ C(I,H) be a solution of (1). Firstly, we show that y is solution of integral equation (14). By Lemma 2.4,
we obtain

Iσ+ν
q

[
CDσ+ν

q [y](t)
]
= y(t)− y(0). (15)

From equation (1) we have

Iσ+ν
q

[
CDσ+ν

q [y](t)
]
= Iσ+ν

q

[
h1(t, y(t)) + +Iσq [h2](t, y(t))

∫ t

0

Θ(t, ξ, y(ξ)) dξ
]

=

∫ t

0

(t− ξ)
(σ+ν−1)
q

Γq(σ + ν)

[
h1(t, y(t)) +

∫ ξ

0

Θ(ξ, s, y(s)) ds

+

∫ ξ

0

(ξ − s)σ−1
q

Γq(σ)
h2(s, y(s)) dqs

]
dqξ (16)

By substituting 16 in 15 with nonlocal condition in problem 14, we get

y(t) =

∫ t

0

(t− ξ)σ+ν−1
q

Γq(σ + ν)

[
h1(ξ, y(ξ)) +

∫ ξ

0

Θ(ξ, s, y(s)) ds

+

∫ ξ

0

(ξ − s)σ−1
q

Γq(σ)
h2(s, y(s)) dqs

]
dqξ + y(0). (17)
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From integral boundary condition of our problem with using Fubini’s theorem and after some computations, we get

y(0) = η

∫ τ∗

0

y(ξ) dξ

= η

∫ τ∗

0

[ ∫ ξ

0

(ξ − s)σ+ν−1
q

Γq(σ + ν)

(
h1(s, y(s)) +

∫ s

0

Θ(s, r, y(r)) dr

+

∫ s

0

(s− r)σ−1
q

Γq(σ)
h2(r, y(r)) dqr

)
dqs

]
dqξ + ητ∗y(0)

= η

∫ τ∗

0

[ ∫ ξ

0

(ξ − s)σ+ν−1
q

Γq(σ + ν)
h1(s, y(s)) dqs

]
dqξ

+ η

∫ τ∗

0

[ ∫ ξ

0

(ξ − s)σ+ν−1
q

Γq(σ + ν)

∫ s

0

Θ(s, r, y(r)) dr dqs
]
dqξ

+ η

∫ τ∗

0

[ ∫ ξ

0

(ξ − s)σ+ν−1
q

Γq(σ + ν)

∫ s

0

(s− r)σ−1
q

Γq(σ)
h2(r, y(r)) dqr dqs

]
dqξ + ητ∗y(0)

= η

∫ τ∗

0

(∫ τ∗

s

(ξ − s)σ+ν−1
q

Γq(σ + ν)
dqξ

)
h1(s, y(s)) dqs

+ η

∫ τ∗

0

(∫ τ∗

s

(ξ − s)σ+ν−1
q

Γq(σ + ν)
dqξ

)(∫ s

0

Θ(s, r, y(r)) dr
)
dqs

+ η

∫ τ∗

0

(∫ τ∗

s

(ξ − s)σ+ν−1
q

Γq(σ + ν)
dqξ

)

×
(∫ s

0

(s− r)σ−1
q

Γq(σ)
h2(r, y(r)) dqr

)
dqs+ ητ∗y(0),

that is

y(0) =
η

1− ητ∗

∫ τ∗

0

(τ∗ − s)σ+ν
q

Γq(σ + ν)

[
h1(s, y(s)) +

∫ s

0

Θ(s, r, y(r)) dr

+

∫ s

0

(s− r)σ−1
q

Γq(σ)
h2(r, y(r)) dqr

]
dqs. (18)

Finally, by substituting (18) in (17), we find (14). Conversely, from Lemma 14 and by applying the operator CDσ+ν
q

on both sides of (14), we find

CDσ+ν
q [y](t) = CDσ+ν

q

[
Iσ+ν
q

[
h1(t, y(t)) +

∫ t

0

Θ(t, ξ, y(ξ)) ds+ Iσqh2(t, y(t))

]]
+ CDσ+ν

q y(0)

= hq(t, y(t)) + Iσqh2(t, y(t)) +

∫ t

0

Θ(t, ξ, y(ξ)) dξ. (19)

This means that y satisfies the equation in problem (1). Furthermore, by substituting t by 0 in integral equation (14), we
have clearly that the integral boundary condition in (1) holds. Therefore, y is solution of problem (1), which completes
the proof.

In order to prove the existence and uniqueness of solution for the problem (1) in C(I,H), we use two fixed point
theorems. Firstly, we transform the system (1) into fixed point problem as y = Uy, where U : (I,H) → (I,H) is an
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operator defined by following

Uy(t) =

∫ t

0

(t− ξ)σ+ν
q

Γq(σ + ν)

[
h1(ξ, y(ξ)) +

∫ ξ

0

Θ(ξ, s, y(s)) ds+
∫ ξ

0

(ξ − s)σ−1
q

Γq(σ)
h2(s, y(s)) dqs

]
dqξ

+
η

1− ητ∗

∫ τ∗

0

(τ∗ − s)σ+ν
q

Γq(σ + ν + 1)

[
h1(s, y(s)) +

∫ s

0

Θ(s, r, y(r)) dr

+

∫ s

0

(s− r)σ−1
q

Γq(σ)
h2(r, y(r)) dqr

]
dqs. (20)

3.1. Existence result by Krasnoselskii’s fixed point

Theorem 3.2. Consider continuous functions h1, h2 : I × H → H and Θ : I2 × H → H such that satisfying: (H1)
The inequalities ∥hj(t, y(t))− hj(t, z(t))∥ ≤ µj∥y(t)− z(t)∥, j = 1, 2 and

∥Θ(t, s, y(s))−Θ(t, s, z(s))∥ ≤ µ∗∥y(s)− z(s)∥,

where µ∗, µj ≥ 0, (j = 1, 2) with µ = max{µ1, µ2, µ
∗}; (H2) There exist three functions ϱ∗, ϱj ∈ L∞(I,R+),

(j = 1, 2), such that
∥hj(t, y(t))∥ ≤ ϱj(t)∥y(t)∥, j = 1, 2,

and

∥Θ(t, s, y(s))∥ ≤ ϱ∗(t)∥y(s)∥,

∀t ∈ I, y, z ∈ H and
(t, s) ∈ G :=

{
(t, s) : 0 ≤ s ≤ t ≤ 1

}
.

If λ ≤ 1 and µλ∗ ≤ 1, then the problem (1) has at least one solution on I, where

λ =
∥ϱ1∥L∞ + ∥ϱ∗∥L∞

Γq(σ + ν + 1)
+

∥ϱ2∥L∞Bq(σ + 1, σ + ν)

Γq(σ + 1)Γq(σ + ν)

+
|η|∥ϱ1∥L∞τ∗σ+ν+1 + |η|∥ϱ∗∥L∞τ∗σ+ν+1

|1− ητ∗|Γq(σ + ν + 2)

+
|η|∥ϱ2∥L∞τ∗2σ+ν+1Bq(σ + 1, σ + ν + 1)

|1− ντ∗Γq(σ + 1)Γq(σ + ν + 1)
, (21)

and

λ∗ =
|η|

|1− ητ∗|

[
2τ∗σ+ν+1

Γq(σ + ν + 2)
+

τ∗2σ+ν+1Bq(σ + 1, σ + ν + 1)

Γq(σ + 1)Γq(σ + ν + 1)

]
. (22)

Proof. For any function y ∈ C(I,H), we define the norm

∥y∥∗ := max
{
e−t∥y(t)∥ : t ∈ I

}
,

and consider the closed ball Bℓ := {y ∈ C(I,H) : ∥y∥∗ ≤ ℓ}. Next, let us define the operators U1,U2 on Bℓ as
follows

U1y(t) =

∫ t

0

(t− ξ)σ+ν+1
q

Γq(σ + ν)

[
h1(ξ, y(ξ)) +

∫ ξ

0

Θ(ξ, s, y(s)) ds

+

∫ ξ

0

(ξ − s)σ−1
q

Γq(σ)
h2(s, y(s)) dqs

]
dqξ. (23)
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and

U2y(t) =
η

1− ητ∗

∫ τ

0

(τ − s)σ+ν
q

Γq(σ + ν + 1)

[
h1(s, y(s))

+

∫ s

0

Θ(s, r, y(r)) dr +
∫ s

0

(s− r)σ−1
q

Γq(σ)
h2(r, y(r)) dqr

]
dqs. (24)

For y, z ∈ Bℓ, t ∈ I and by the assumption (H2), we find

∥U1y(t) + U2z(t)∥ ≤
∫ t

0

(t− ξ)σ+ν−1
q

Γq(σ + ν)

[
∥h1(ξ, y(ξ))∥+

∫ ξ

0

∥Θ(ξ, s, y(s))∥ ds

+

∫ ξ

0

(ξ − s)σ−1
q

Γq(σ)
∥h2(ξ, y(ξ))∥ dqs

]
dqξ

+
|η|

|1− ητ∗|

∫ τ∗

0

(τ∗ − s)σ+ν
q

Γq(σ + ν + 1)

[
∥h1(s, z(s))∥+

∫ s

0

∥Θ(s, r, z(r))∥ dr

+

∫ s

0

(s− r)σ−1
q

Γq(σ)
∥h2(r, z(r))∥ dqr

]
dqs

≤
∫ t

0

(t− ξ)σ+ν+1
q

Γq(σ + ν)

[
ϱ1(ξ)∥y(ξ)∥+

∫ ξ

0

ϱ∗(ξ)∥y(s)∥ ds

+

∫ ξ

0

(ξ − s)σ−1
q

Γq(σ)
ϱ∗(s)∥y(s)∥ dqs

]
dqξ

+
|η|

|1− ητ∗|

∫ τ∗

0

(τ∗ − s)σ+ν

Γq(σ + ν + 1)

[
ϱ1(s)∥z(s)∥+

∫ s

0

ϱ∗(s)∥z(r)∥ dr

+

∫ s

0

(s− r)σ−1
q

Γq(σ)
ϱ2(r)∥z(r)∥ dqr

]
dqs

≤
∫ t

0

(t− ξ)σ+ν−1
q

Γq(σ + ν)

[
∥ϱ1∥µ∞∥y∥∗eξ + ∥ϱ∗∥L∞∥y∥∗(eξ − 1)

+ ∥ϱ2∥L∞∥y∥∗
∫ ξ

0

(ξ − s)σ−1
q

Γq(σ)
es dqs

]
dqξ

+
|η|

|1− ητ∗|

∫ τ∗

0

(τ∗ − s)σ+ν

Γq(σ + ν + 1)

[
∥ϱ1∥L∞∥z∥∗es + ∥ϱ∗∥L∞∥z∥∗(es−1)

+ ∥ϱ2∥L∞∥z∥∗
∫ s

0

(s− r)σ−1
q

Γq(σ)
er dr

]
dqs.
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Therefore,

∥U1y + U2z∥∗ ≤
∫ t

0

(t− ξ)σ+ν−1

Γq(σ + ν)

[
∥ϱ1∥L∞∥y∥∗

eξ

et
+ ∥ϱ∗∥L∞∥y∥∗

(eξ − 1)

et

+ ∥ϱ2∥L∞∥y∥∗
∫ ξ

0

(ξ − s)σσ−1
q

Γq(σ)

es

et
dqs

]
dqξ

+
|η|

|1− ητ∗|

∫ τ∗

0

(τ∗ − s)σ+ν

Γq(σ + ν + 1)

[
∥ϱ1∥L∞∥z∥∗

es

et
+ ∥ϱ∗∥L∞∥z∥∗

(es − 1)

et

+ ∥ϱ2∥L∞∥z∥∗
∫ s

0

(s− r)σ−1
q

Γq(σ)

er

et
dqr

]
dqs

≤ ℓ

[∥ϱ1∥L∞ + ∥ϱ∗∥L∞

Γq(σ + ν + 1)
+

∥ϱ2∥L∞

Γq(σ + 1)Γq(ν + 1)

∫ 1

0

(1− ξ)σ+ν+1
q ξσ dqξ

+
|η|∥ϱ1∥L∞τ∗σ+ν+1 + |η|∥ϱ∗∥L∞τ∗σ+ν+1

|1− ητ∗|Γq(σ + ν + 1)

+
|η|∥ϱ2∥L∞

|1− ητ∗|Γq(σσ + 1)Γq(σ + ν + 1)

∫ τ∗

0

(τ∗ − s)σ+νsσ dqs
]

= ℓ

[∥ϱ1∥L∞ + ∥ϱ∗∥L∞

Γq(σ + ν + 1)
+

∥ϱ2∥L∞ν(σ + 1, σ + ν)

Γq(σ + 1)Γq(ν + 1)

+
|η|

|1− ητ∗|

(∥ϱ1∥L∞τ∗σ+ν+1 + ∥ϱ∗∥L∞τ∗σ+ν+1

Γq(σ + ν + 2)

+
∥ϱ2∥L∞τ∗2σ+ν+1ν(σ + 1, σ + ν + 1)

Γq(σ + 1)Γq(σ + ν + 1)

)]
= ℓλ ≤ ℓ. (25)

This implies that (U1y + U2z) ∈ Bℓ. Here we used the computations
∫ 1

0

(1− ξ)σ+ν
q ξσ dqξ = βq(σ + 1, σ + ν),

∫ τ∗

0

(τ∗ − s)σ+ν
q sσ dqξ = τ∗2σ+ν+1ν(σ + 1, σ + ν + 1),

and the estimations:
eξ

et
≤ 1,

es

et
≤ 1,

er

et
≤ 1.
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In this step, we show that U2 is a contraction mapping. Let y, z ∈ H, t ∈ I. We have

∥U2y(t)− U2z(t)∥ ≤ |η|
|1− ητ∗|

∫ τ∗

0

(τ∗ − s)σ+ν
q

Γq(σ + ν + 1)

[
∥h1(s, y(s))− h1(s, ν(s))∥

+

∫ s

0

∥Θ(s, r, y(r))−Θ(s, r, z(r))∥ dr

+

∫ s

0

(s− r)σ−1
q

Γq(σ)
∥h2(r, y(r))− h2(r, z(r))∥ dqr

]
dqs

≤ |η|
|1− ητ∗|

∫ τ∗

0

(τ∗ − s)σ+ν
q

Γq(σ + ν + 1)

[
µ1∥y − z∥∗es +

∫ s

0

µ∗∥y − z∥∗er dr

+

∫ s

0

(s− r)σ−1
q

Γq(σ)
µ2∥y − z∥∗er dr

]
dqs

≤ |η|
|1− ητ∗|

∫ τ∗

0

(τ∗ − s)σ+ν
q

Γq(σ + ν + 1)

[
µ∥y − z∥∗es + µ∥y − z∥∗(es−1)

+

∫ s

0

(s− r)σ−1
q

Γq(σ)
µ∥y − z∥∗er dqr

]
dqs

Thus,

∥U2y − U2z∥∗ ≤ |η|
|1− ητ∗|

∫ τ∗

0

(τ∗ − s)σ+ν
q

Γq(σ + ν + 1)

[
µ∥y − z∥∗

es

et
− µ∥y − z∥∗

(es − 1)

et

+

∫ s

0

(s− r)σ−1
q

Γq(σ)
µ∥y − z∥∗

er

et
dqr

]
dqs

≤ |η|µ
|1− ητ∗|

[
2τ∗σ+ν+1

Γq(σ + ν + 2)
+

τ∗2σ+ν+1ν(σ + 1, σ + ν + 1)

Γq(σ + 1)Γq(σ + ν + 1)

]
∥y − z∥∗.

Then since µλ∗ ≤ 1, U2 is a contraction mapping. The continuity of the functions h1, h2 and Θ implies that U1 is
continuous and U1Bℓ ⊂ Bℓ, for each y ∈ Bℓ, i.e., U1 is uniformly bounded on Bℓ as

∥(U1y)(t)∥ ≤
∫ t

0

(t− ξ)σ+ν−1
q

Γq(σ + ν)

[
∥h1(ξ, y(ξ))∥+

∫ ξ

0

∥Θ(ξ, s, y(s))∥ ds

+

∫ ξ

0

(ξ − s)σ−1
q

Γq(σ)
∥h2(s, y(s))∥ dqs

]
dqξ,

which implies that

∥U1y∥∗ ≤
∫ t

0

(t− ξ)σ+ν−1
q

Γq(σ + ν)

[
∥ϱ1∥L∞∥y∥∗

eξ

et
+ ϱ∗∥L∞∥y∥∗

(eξ − 1)

et

+ ϱ2∥L∞∥y∥∗
∫ ξ

0

(ξ − s)σ−1
q

Γq(σ)

es

et
dqs

]
dqξ

≤ ℓ

[∥ϱ∗∥L∞ + ∥ϱ∗∥L∞

Γq(σ + ν + 1)
+

∥ϱ2∥L∞ν(σ + 1, σ + ν)

Γq(σ + 1)Γq(ν + 1)

]
≤ ℓλ ≤ ℓ. (26)

Finally, we will show that (U1Bℓ) is equi-continuous. For this end, we put

hj = sup
(t,y(t))∈I×Bℓ

∥hj(t, y(t))∥, j = 1, 2

Θ = sup
(t,s,y(s))∈G×Bℓ

∫ ξ

0

∥Θ(t, ξ, y(ξ))∥ dξ.
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Let for any y ∈ Bℓ and for each t1, t2 ∈ I with t1 ≤ t2, we have

∥(U1y)(t2)− (U1y)(t1)∥ ≤
∫ t2

t1

(t2 − ξ)σ+ν−1

Γq(σ + ν)

[
∥h1(ξ, y(ξ))∥

+

∫ ξ

0

∥Θ(ξ, s, y(s))∥ dqs

+

∫ ξ

0

(ξ − s)σ−1
q

Γq(σ)
∥h2(s, y(s))∥ ds

]
dqξ

+
1

Γq(σ)

∫ t1

0

[
(t1 − ξ)σ+ν−1

q − (t2 − ξ)σ+ν−1
q

]

×
[
∥h1(ξ, y(ξ))∥+

∫ ξ

0

∥Θ(ξ, s, y(s))∥ ds

+

∫ ξ

0

(ξ − s)σ−1
q

Γq(σ)
∥h2(s, y(s))∥ ds

]
dqξ

≤
∫ t2

t1

(t2 − ξ)σ+ν−1
q

Γ(σ + ν)

[
h1 +Θ +

∫ ξ

0

h2(ξ − s)σ−1
q

Γq(σ)
ds
]
dqξ

+
1

Γq(σ + ν)

∫ t1

0

[
(t1 − ξ)σ+ν−1

q − (t2 − ξ)σ+ν−1
q

]

×
[
h1 +Θ +

∫ ξ

0

h2(ξ − s)σ−1
q

Γq(σ)
dqs

]
dqξ

≤
∫ t2

t1

(t2 − ξ)σ+ν−1

Γq(σ + ν)

[
h1 +Θ +

h2

Γq(σ + 1)

]
dqξ

+
1

Γq(σ + ν)

∫ t1

0

[
(t1 − ξ)σ+ν−1

q − (t2 − ξ)σ+ν−1
q

]

×
[
h1 +Θ +

h1

Γq(σ + 1)

]
dqξ +

1

Γq(σ + ν + 1)

[
h1 +Θ

+
h2

Γq(σ + 1)

][
2(t2 − t1)

σ+ν
q + tσ+ν

1 − tσ+ν
2

]
.

The RHS of the last inequality is independent of y and tends to zero when |t2 − t1| → 0, this means that

|U1y(t2)− U1y,

which implies that U1Bℓ is equi-continuous, then U1 is relatively compact on Bℓ. Hence by Arzelá-Ascoli theorem,
U1 is compact on Bℓ. Now, all hypothesis of Theorem 3.2 hold, therefore the operator U1 + U2 has a fixed point on
Bℓ. So the problem (1) has at least one solution on I. This proves the theorem.

3.2. Existence and uniqueness result
Theorem 3.3. Assume that (H1) holds. If µλ < 1, then the BVP (1) has a unique solution on I.

Proof. Definem = max{m1,m2,m
∗}, wheremj andm∗ are positive numbers such that

mj = sup
t∈I

∥hj(t, 0)∥, (j = 1, 2), m∗ = sup
(t,s)∈G

∥Θ(t, s, 0)∥.
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We fix ℓ ≥ m∗λ
1−µλ and we consider Nℓ = {y ∈ C(I,H) : ∥y∥∗ ≤ ℓ}. Then, in view of the assumption (H1), we have

∥hq(t, y(t))∥ = ∥h1(t, y(t))− h1(t, 0) + h1(t, 0)∥
≤ ∥hq(t, y(t))− hq(t, 0)∥+ ∥h1(t, 0)∥
≤ µ1∥y∥∗ +m1,

∥h2(t, y(t))∥ ≤ µ2∥y∥∗ +m2,

and ∥Θ(t, s, y(s))∥ ≤ µ∗∥y∥∗ +m∗. In the first step, we show that UNℓ ⊂ Nℓ. For each t ∈ I and for any y ∈ Nℓ,

∥Uy(t)∥ ≤
∫ t

0

(t− ξ)σ+ν−1
q

Γq(σ + ν)

[
∥h1(ξ, y(ξ))∥+

∫ ξ

0

∥Θ(ξ, s, y(s))∥ ds

+

∫ ξ

0

(ξ − s)σ−1
q

Γq(σ)
∥h2(s, y(s))∥ dqs

]
dqξ

+
|η|

|1− ητ∗|

∫ τ∗

0

(τ∗ − s)σ+ν
q

Γq(σ + ν + 1)

[
∥h1(s, z(s))∥

+

∫ ξ

0

∥Θ(s, r, z(r))∥ dr +
∫ ξ

0

(s− r)σ−1
q

Γq(σ)
∥h2(r, z(r))∥ dr

]
dqs

≤ (µℓ+m)λ ≤ ℓ.

Hence, UNℓ ⊂ Nℓ. Now, in the second step, we shall show that U : Nℓ → Nℓ is a contraction. From the assumption
(H1) we have for any y, z ∈ Nℓ and for each t ∈ I

∥Uy(t)− Uz(t)∥ ≤
∫ t

0

(t− ξ)σ+ν−1
q

Γq(σ + ν)

[
∥h1(ξ, y(ξ))− h1(ξ, z(ξ))∥

+

∫ ξ

0

∥Θ(ξ, s, y(s))−Θ(ξ, s, z(s))∥ ds

+

∫ ξ

0

(ξ − s)σ−1
q

Γq(σ)
∥h2(s, y(s))− h2(s, z(s))∥ dqs

]
dqξ

+
|η|

|1− ητ∗|

∫ τ∗

0

(τ∗ − s)σ+ν
q

Γ− q(σ + ν + 1)

[
∥h1(s, y(s))− h1(s, z(s))∥

+

∫ s

0

∥Θ(s, r, y(r))−Θ(s, r, z(r))∥ dr

+

∫ s

0

(s− r)σ−1
q

Γq(σ)
∥h2(r, y(r))− h2(r, z(r))∥ dqr

]
dqs

≤ µλ∥y − z∥∗. (27)

Since µλ < 1, it follows that U is a contraction. All assumptions of Lemma 2.2 are satisfied, then there exists
y ∈ C(I,H) such that Uy = y, which is the unique solution of the problem (1.1) in C(I,H).
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4. Generalized Ulam stabilitiestle

The aim is to discuss the Ulam stability for problem (1), by using the integration

z(t) =

∫ t

0

(t− ξ)σ+ν−1
q

Γq(σ + ν)

[
∥h1(ξ, z(ξ))∥+

∫ ξ

0

∥Θ(ξ, s, z(s))∥ ds

+

∫ ξ

0

(ξ − s)σ−1
q

Γq(σ)
∥h2(s, z(s))∥ dqs

]
dqξ

+
η

1− ητ∗

∫ τ∗

0

(τ∗ − s)σ+ν
q

Γq(σ + ν + 1)

[
h1(s, z(s)) +

∫ s

0

Θ(s, r, z(r)) dr

+

∫ s

0

(s− r)σ−1
q

Γq(σ)
h2(r, z(r)) dqr

]
dqs.

Here z ∈ C(I,H) possess a fractional derivative of order σ + ν, where 0 < σ + ν < 1 and hj : I × H → H and
Θ : I2×H → H, are continuous functions. Then we define the nonlinear continuous operatorP : C(I,H) → C(I,H),
as follows

Pz(t) = CDσ+ν
q z(t)− h1(t, v(t))− Iσqh2(t, v(t))−

∫ t

0

Θ(t, ξ, z(ξ)) dξ.

For each ϵ > 0 and for each solution z of problem (1), such that

∥Pz∥∗ ≤ ϵ, (28)

the problem (1), is said to be Ulam–Hyers stable if we can find a solution y ∈ C(I,HU) of problem (1) and γ ∈
R≥0, satisfying the inequality ∥y − z∥∗ ≤ γϵ∗, is a positive real number depending on ϵ. Consider function ℘ in
C(R+,R+) such that for each solution z of problem (1), we can find a solution u ∈ C(I,H) of the problem (1) such
that ∥y(t) − z(t)∥∗ ≤ ℘(ϵ), t ∈ I. Then the problem (1), is said to be generalized Ulam–Hyers stable. For each
ϵ > 0 and for each solution z of problem (1), the problem (1) is called Ulam-Hyers-Rassias stable with respect to
ϱ ∈ C(I,R+) if

∥Pz(t)∥∗ ≤ ϵϱ(t), t ∈ I, (29)
and there exist a real number γ > 0 and a solution z ∈ C(I,H) of problem (1) such that

∥y(t)− z(t)∥ ≤ γϵ∗ϱ(t), ∀t ∈ I,

where ϵ∗ is a positive real number depending on ϵ.

Theorem 4.1. Under assumption (H1) in Theorem 3.1, with µλ < 1. The problem (1.1) is both Ulam–Hyers and
generalized Ulam–Hyers stable.

Proof. Let y ∈ C(I,H) be a solution of problem (1), satisfying (14) in the sense of Theorem 3.2. Let z be any solution
satisfying (28). Lemma 2.4 implies the equivalence between the operators P and T − Id (where Id is the identity
operator) for every solution z ∈ C(I,H) of problem (1) satisfying µλ < 1. Therefore, we deduce by the fixed-point
property of the operator T that

∥z(t)−y(t)∥∗ = ∥z(t)−T z(t) + T z(t)−y(t)∥∗
= ∥z(t)−T z(t) + T z(t)−T y(t)∥∗
≤ ∥T z(t)−T y(t)∥+ ∥T z(t)−z(t)∥∗
≤ µλ∥y−z∥∗ + ϵ,

because µλ < 1 and ϵ > 0, we find
∥u− v∥∗ ≤ ϵ

1− µλ
.

Fixing ϵ∗ = ϵ
1−µλ and γ = 1, we obtain the Ulam–Hyers stability condition. In addition, the generalized Ulam-Hyers

stability follows by taking ℘(ϵ) = ϵ
1−µλ .
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Theorem 4.2. Assume that (H1) holds with µ < λ−1, and there exists a function ϱ ∈ C(I,R+) satisfying the
condition 29. Then the problem (1) is Ulam-Hyers-Rassias stable with respect to ϱ.

Proof. We have from the proof of Theorem 4.1, ∥y(t)− z(t)∥∗ ≤ ϵ∗ϱ(t), ∀t ∈ I, where ϵ∗ = ϵ
1−µλ , and so the proof

is cimpleted.

5. Illustrative of our outcome

First we present Example 5.1, for illustrative our main result.

Example 5.1. Consider the following fractional integro-differential problem

CD
68
77
q [y](t) =

(15− 2t)y(t)

25
+ I

5
11
q

[
(5− t) sin(y(t))

43

]
+

∫ t

0

y(ξ) exp(−(t+ ξ))

20
dξ, (30)

with boundary condition

y(0) = −15

2

∫ 0.6

0

y(ξ) dξ, ∀t ∈ I.

Clearly σ + ν = 68
77 , σ = 5

11 , τ
∗ = 0.6 and η = − 15

2 . To illustrate our results in Theorem 3.2 and Theorem 4.1, we
take for y, z ∈ H = R+ and t ∈ [0, 1] the following continuous functions:

h1(t, y(t)) =
(15− 2t)y(t)

25
, h2(t, y(t)) =

(5− t) sin(y(t))
43

,

Θ(t, s, y(s)) = y(s) exp(−(t+s))
20 . Now, for y, z ∈ H, we have

∥h1(t, y(t))− h1(t, z(t))∥ ≤ 3

5
∥y(t)− z(t)∥ ,

∥h2(t, y(t))− h2(t, z(t))∥ ≤ 5

43
∥y(t)− z(t)∥ ,

and

∥Θ(t, s, y(s))−Θ(t, s, z(s))∥ =

∥∥∥∥
y(s) exp(−(t+ s))

20
− y(s) exp(−(t+ s))

20

∥∥∥∥

≤ 1

20
∥y(s)− z(s)∥ ,

for each t, s ∈ I and (t, s) ∈ G. Hence, µ1 = 17
25 , µ2 = 7

43 , µ
∗ = 1

20 and so

µ = max
{
µ1, µ2, µ

∗
}
=

17

25
.

Also, we obtain

∥h1(t, y(t))∥ =

∥∥∥∥
(15− 2t)y(t)

25

∥∥∥∥ ≤
∣∣∣∣
15− 2t

25

∣∣∣∣∥y(t)∥,

∥h2(t, y(t))∥ =

∥∥∥∥
(5− 2t) sin(y(t))

43

∥∥∥∥ ≤
∣∣∣∣
5− 2t

43

∣∣∣∣∥y(t)∥,

∥Θ(t, s, y(s))∥ ≤
∥∥∥∥
y(s) exp(−(t+ s))

20

∥∥∥∥ ≤
∥∥∥∥
exp(−(t+ s))

20

∥∥∥∥∥y(s)∥,

for each t, s ∈ I. Hence,

ϱ1(t) =
15− 2t

25
, ϱ2(t) =

5− 2t

43
, ϱ∗(t) =

exp(−t)

20
,
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Table 1: Numerical results of λ and λ∗ for q = 3
8
, 1
2
, 8
9
in Example 5.1.

n q = 3
8 q = 1

2 q = 8
9

λ λ∗ λ λ∗ λ λ∗

1 0.93177 1.34571 0.71630 0.99360 0.11402 0.07701
2 0.94654 1.39205 0.73885 1.06376 0.11895 0.09638
3 0.95212 1.40943 0.75025 1.09885 0.12377 0.11354
4 0.95422 1.41595 0.75598 1.11640 0.12828 0.12878
5 0.95500 1.41840 0.75885 1.12518 0.13242 0.14232
6 0.95530 1.41931 0.76029 1.12957 0.13618 0.15436
7 0.95541 1.41966 0.76101 1.13176 0.13957 0.16506
8 0.95545 1.41978 0.76137 1.13286 0.14262 0.17458
9 0.95546 1.41983 0.76155 1.13341 0.14536 0.18304
10 0.95547 1.41985 0.76164 1.13368 0.14781 0.19057
11 0.95547 1.41986 0.76168 1.13382 0.15001 0.19727
12 0.95547 1.41986 0.76170 1.13389 0.15197 0.20322
13 0.95547 1.41986 0.76172 1.13392 0.15372 0.20852
14 0.95547 1.41986 0.76172 1.13394 0.15528 0.21323
15 0.95547 1.41986 0.76172 1.13395 0.15667 0.21741
16 0.95547 1.41986 0.76173 1.13395 0.15791 0.22114
17 0.95547 1.41986 0.76173 1.13396 0.15901 0.22445
18 0.95547 1.41986 0.76173 1.13396 0.16000 0.22739

...
...

...
...

...
...

...
76 0.95547 1.41986 0.76173 1.13396 0.16792 0.25095
77 0.95547 1.41986 0.76173 1.13396 0.16792 0.25096
78 0.95547 1.41986 0.76173 1.13396 0.16793 0.25096
79 0.95547 1.41986 0.76173 1.13396 0.16793 0.25096
80 0.95547 1.41986 0.76173 1.13396 0.16793 0.25096

for all t ∈ I, y, z ∈ H and (t, s) ∈ G. By the above, we find that

λ =
3
5 + 1

20

Γq

(
5
11 + 3

7 + 1
) +

5
43Bq

(
5
11 + 1, 5

11 + 3
7

)

Γq

(
5
11 + 1

)
Γq

(
5
11 + 3

7

)

+

∣∣− 15
2

∣∣× 3
5 × 0.6

5
11+

3
7+1 +

∣∣− 15
2

∣∣× 1
20 × 0.6

5
11+

3
7+1

∣∣1− 0.6
(
− 15

2

)∣∣Γq

(
5
11 + 3

7 + 2
)

+

∣∣− 15
2

∣∣× 5
43 × 0.6

10
11+

3
7+1Bq

(
5
11 + 1, 5

11 + 3
7 + 1

)
∣∣1− 5

11 × 0.6
∣∣Γq

(
5
11 + 1

)
Γq

(
5
11 + 3

7 + 1
) , (31)

and

λ∗ =

∣∣− 15
2

∣∣
∣∣1− 0.6

(
− 15

2

)∣∣

[
2× 0.6

5
11+

3
7+1

Γq

(
5
11 + 3

7 + 2
) +

0.62
5
11+

3
7+1Bq

(
5
11 + 1, 5

11 + 3
7 + 1

)

Γq

(
5
11 + 1

)
Γq

(
5
11 + 3

7 + 1
)

]
. (32)

With consider q = 3
8 ,

1
2 ,

8
9 , we can see the results of λ and λ∗ in Table 1. These results are plotted in Fig. 1. Then, we

get

λj = 0.95547 < 1, 0.76172 < 1, 0.16793 < 1,

λ∗
j = 1.41986, 1.13395, 0.25096,

µλ∗
j = 0.9655 < 1, 0.7711 < 1, 0.1707 < 1,

for qj = 3
8 ,

1
2 ,

8
9 respectively. All assumptions of Theorem 3.2 are satisfied. Hence, there exists at least one solution

for the problem (30) on I. By take the same functions, we result the assumption

µλj = 0.6497 < 1, 0.5180 < 1, 0.1142 < 1,

then the system (30) is Ulam–Hyers stable, then it is generalized Ulam–Hyers stable. It is Ulam-Hyers-Rassias stable
if there exists a continuous and positive function ϱj ∈ C(I,R+) such that

∥y(t)− z(t)∥ ≤ ϵj∗ϱ(t) =
ϵjϱ(t)

1− µλj
,
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Fig. 1: Graphical representation of λ, λ∗ and µλ, µλ∗ for q = 3
8
, 1
2
, 8
9
in Example 5.1.

which it satisfies in assumption of the Theorem 4.2.

In the next example, we review and check Theorem 3.3 numerically.

Example 5.2. Consider the following fractional integro-differential problem

CD
29
45
q [y](t) =

(16−
√
t) tan−1(y(t))

75
+ I

4
9
q

[
2t sin−1(y(t))

21

]

+

∫ t

0

y(ξ) exp(−(3t+ ξ))

10
dξ, (33)

with boundary condition

y(0) = −5

2

∫ 0.95

0

y(ξ) dξ, t ∈ I.

Clearly σ+ν = 29
45 , σ = 4

9 , τ
∗ = 0.95 and η = 5

2 . To illustrate our results in Theorem 3.3, we take for y, z ∈ H = R+

and t ∈ I the following continuous functions:

h1(t, y(t)) =
(16−

√
t) tan−1(y(t))

75
, h2(t, y(t)) =

2t sin−1(y(t))

21
,
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Θ(t, s, y(s)) = y(s) exp(−(3t+s))
10 . Now, for y, z ∈ H, we have

∥h1(t, y(t))− h1(t, z(t))∥ =

∥∥∥∥
(16−

√
t) tan−1(y(t))

75
− (16−

√
t) tan−1(z(t))

75

∥∥∥∥

≤ 17

75
∥y(t)− z(t)∥ ,

∥h2(t, y(t))− h2(t, z(t))∥ =

∥∥∥∥
2t sin−1(y(t))

21
− 2t sin−1(z(t))

43

∥∥∥∥

≤ 2

21
∥y(t)− z(t)∥ ,

and

∥Θ(t, s, y(s))−Θ(t, s, z(s))∥ =

∥∥∥∥
y(s) exp(−(3t+ s))

10
− y(s) exp(−(3t+ s))

10

∥∥∥∥

≤ 1

10
∥y(s)− z(s)∥ ,

for each t, s ∈ I and (t, s) ∈ G. Hence, µ1 = 17
75 , µ2 = 2

21 , µ
∗ = 1

10 and so µ = max{µ1, µ2, µ
∗} = 17

25 . Also, we
obtain

∥h1(t, y(t))∥ =

∥∥∥∥
(16−

√
t) tan−1(y(t))

75

∥∥∥∥ ≤
∣∣∣∣
16−

√
t

75

∣∣∣∣∥y(t)∥,

∥h2(t, y(t))∥ =

∥∥∥∥
2t sin−1(y(t))

21

∥∥∥∥ ≤
∣∣∣∣
2t

21

∣∣∣∣∥y(t)∥,

∥Θ(t, s, y(s))∥ ≤
∥∥∥∥
y(s) exp(−(3t+ s))

10

∥∥∥∥ ≤
∥∥∥∥
exp(−(3t+ s))

10

∥∥∥∥∥y(s)∥,

for each t, s ∈ I. Hence, ϱ1(t) = 16−
√
t

75 , ϱ2(t) = 2t
21 and ϱ∗(t) = exp(−3t)

10 for all t ∈ I, y, z ∈ H and (t, s) ∈ G. By
the above, we find that

λ =
∥ϱ1∥L∞ + ∥ϱ∗∥L∞

Γq(σ + ν + 1)
+

∥ϱ2∥L∞Bq(σ + 1, σ + ν)

Γq(σ + 1)Γq(σ + ν)

+
|η|∥ϱ1∥L∞τ∗σ+ν+1 + |η|∥ϱ∗∥L∞τ∗σ+ν+1

|1− ητ∗|Γq(σ + ν + 2)

+
|η|∥ϱ2∥L∞τ∗2σ+ν+1Bq(σ + 1, σ + ν + 1)

|1− ητ∗|Γq(σ + 1)Γq(σ + ν + 1)

=
16
75 + 1

10

Γq(
4
9 + 1

5 + 1)
+

2
21Bq(

4
9 + 1, 4

9 + 1
5 )

Γq(
4
9 + 1)Γq(

4
9 + 1

5 )

+
|2.5| × 16

750.95
4
9+

1
5+1 + |2.5| 1

100.95
4
9+

1
5+1

|1− 2.5× 0.95|Γq(
4
9 + 1

5 + 2)

+
|2.5| 49 × 2

21 × 0.95
8
9+

1
5+1Bq(

4
9 + 1, 4

9 + 1
5 + 1)

|1− 2.5× 0.95|Γq(
4
9 + 1)Γq(

4
9 + 1

5 + 1)
. (34)

With consider q = 2
7 ,

1
2 ,

9
11 , we can see the results of λ and λ∗ in Table 2. These results are plotted in Fig. 2.

Then, we get

λj = 0.81987, 0.57290, 0.20831,

µλj = 0.55751 < 1, 0.38957 < 1, 0.14165,

for qj = 2
7 ,

1
2 ,

9
11 respectively. All assumptions of Theorem 3.3 are satisfied. Hence, there exists at least one solution

for the problem (33) on I.
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Table 2: Numerical results of λ and µλ for q = 2
7
, 1
2
, 9
11

in Example 5.2.

n q = 2
7 q = 1

2 q = 9
11

λ µλ λ µλ λ µλ

1 0.81214 0.55225 0.54150 0.36822 0.15811 0.10752
2 0.81764 0.55600 0.55700 0.37876 0.16610 0.11295
3 0.81923 0.55708 0.56491 0.38414 0.17332 0.11785
4 0.81969 0.55739 0.56890 0.38685 0.17947 0.12204
5 0.81982 0.55748 0.57090 0.38821 0.18462 0.12554
6 0.81986 0.55750 0.57190 0.38889 0.18887 0.12843
7 0.81987 0.55751 0.57240 0.38923 0.19238 0.13082
8 0.81987 0.55751 0.57265 0.38940 0.19526 0.13278
9 0.81987 0.55751 0.57278 0.38949 0.19763 0.13439
10 0.81987 0.55751 0.57284 0.38953 0.19956 0.13570
11 0.81987 0.55751 0.57287 0.38955 0.20115 0.13678
12 0.81987 0.55751 0.57289 0.38956 0.20245 0.13767
13 0.81987 0.55751 0.57290 0.38957 0.20352 0.13839
14 0.81987 0.55751 0.57290 0.38957 0.20439 0.13898
15 0.81987 0.55751 0.57290 0.38957 0.20510 0.13947

...
...

...
...

...
...

...
43 0.81987 0.55751 0.57290 0.38957 0.20830 0.14164
44 0.81987 0.55751 0.57290 0.38957 0.20830 0.14165
45 0.81987 0.55751 0.57290 0.38957 0.20830 0.14165
46 0.81987 0.55751 0.57290 0.38957 0.20831 0.14165
47 0.81987 0.55751 0.57290 0.38957 0.20831 0.14165
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(a) λ, Eq.(21)
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(b) µλ

Fig. 2: Graphical representation of λ and µλ for q = 2
7
, 1
2
, 9
11

in Example 5.2.

6. Conclusion

The q-integro-differential boundary equations and their applications represent a matter of high interest in the area of
fractional q-calculus and its applications in various areas of science and technology. q-integro-differential boundary
value problems occur in the mathematical modeling of a variety of physical operations. Using the Krasnoselskii’s,
Banach fixed point theorems, we proof the existence and uniqueness results. Based on the results obtained, conditions
are provided that ensure the generalized Ulam stability of the original system. The results for investigating Eq. (1) on
a time scale, are illustrated by two examples.
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Abstract

Here, the existence of at least one nontrivial solution for the (p, q)-Laplacian problem




div(|∇u|p−2∇u) + div(|∇u|q−2∇u) = f(x, u) x ∈ Ω,

|∇u|p−2 ∂u
∂n

+ |∇u|q−2 ∂u
∂n

= g(x, u) x ∈ ∂Ω

is done, where Ω is a bounded domain in RN , N ≥ 3 and q, p ≥ 2, via variational methods.

1. Introduction

Usually solutions to (p,q)-Laplacian problems are the steady state solutions of the reaction diffusion systems. Reaction–
diffusion systems are mathematical models which correspond to several physical phenomena. This system has a wide
range of applications in physics and related sciences like chemical reaction design, biophysics, plasma physics, geol-
ogy, and ecology. This equations also arise in the study of soliton-like solutions of the nonlinear Schrödinger equation
as a model for elementary particles for example waves in a discrete electrical lattice. These problems have been in-
tensively studied in the last decates.
In this note, we investigate the existence of at least one weak solutions for a (p, q)-Laplacian problem with Steklov
boundary conditions and our starting point is introducing some notations and recalling a basic result which compose
the tools that are needed for proving our claim.

Notations and Preliminaries:
Throught this note Ω is a bounded domain in RN , N ≥ 3, for p > 1, by |.|p we denote the norm on the Lebesgue
space Lp(Ω), and ∥.∥p denotes the norm of the Sobolev spaceW 1,p

0 (Ω), i.e. ∥u∥p = |∇u|p.

f, g : Ω× R → R are Carathéodory functions that hold in the following coditions
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(f1) The constants a1, a2 ≥ 0 exist such that

|f(x, t)| ≤ a1 + a2|t|θ−1, (x, t) ∈ Ω× R

with 1 < θ < p∗, where

p∗(N) =

{ Np
N−p p < N,

∞ p ≥ N ;

(f2) f(x, t)t ≥ 0 for all (x, t) ∈ Ω× R;

(f3) f(x, 0) ̸= 0 for all x ∈ Ω;

(g1) The constant b ≥ 0 exists such that

|g(x, t)| ≤ b|t|γ−1, (x, t) ∈ ∂Ω× R

with 1 < γ < p∂∗(N), where

p∂∗(n) =

{
(N−1)p
N−p p < N,

∞ p ≥ N ;

(g2) There exists constant µ > 0 such that

µG(x, t) ≤ tg(x, t), (x, t) ∈ ∂Ω× R

where G(x, t) =
∫ t

0
g(x, s)ds and p, q, µ, γ, θ satisfy the following relations

2 ≤ p < γ < q < µ & θ < µ. (1)

Definition 1.1. ((PS) compactness condition) Let X be a reflexive Banach space. We say that I ∈ C(X,R) satisfies
the Palais-Smale (PS) compactness condition if any sequence {uk} ⊂ X such that

• {I(uk)} is bounded, and

• I ′(uk) → 0 in X ,

has a convergent subsequence in X .

The Mountain Pass Theorem (MPT) is an existence theorem from the calculus of variations and is as follows.

Theorem 1.2. Let (X, ∥.∥X) be a reflexive Banach space. Suppose that the functional I : X → (−∞,+∞] satisfies
(PS) compactness condition and also the following assertions

(i) I(0) = 0;

(ii) There exists e ∈ V such that I(e) ≤ 0;

(iii) There exists positive constant ρ such that I(u) > 0, if ∥u∥X = ρ;

Then I has a critical value c ≤ ρ which is characterized by

c = inf
h∈Γ

sup
t∈[0,1]

I(h(t)),

where Γ = {h ∈ C([0, 1], V ) : h(0) = 0 , h(1) = e}.
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2. Main result

We state now the main result of the paper:

Theorem 2.1. LetΩ be a bounded domain inRn, n ≥ 3, constants p, q, γ, µ, θ hold the relations (1) and the functions
f, g satisfy the assumptions (f1), (f2) and (g1), (g2), respectively. Then the Steklov problem





div(|∇u|p−2∇u) + div(|∇u|q−2∇u) = f(x, u) x ∈ Ω,

|∇u|p−2 ∂u
∂n + |∇u|q−2 ∂u

∂n = g(x, u) x ∈ ∂Ω,
(P)

admits at least one nontrivial (weak) solution.

We point out in [2–8] authors have probed some elliptic equations with different boundary conditions usually on the
Heisenberg groups.

We continue by the definition of weak solution for the problem (P).

Definition 2.2. (Weak solution) We say that u ∈ W 1,p
0 (Ω) is a weak solution of (P) if the following integral equality

is true ∫

Ω

|∇u|p−2∇u∇vdx+

∫

Ω

|∇u|q−2∇u∇vdx+

∫

Ω

f(x, u)vdx =

∫

∂Ω

g(x, u)vdσ,

for any v ∈ W 1,p
0 (Ω).

We consider the Euler-Lagrange energy functional corresponding to the problem (P); i.e.,

I(u) :=
1

p

∫

Ω

|∇u|pdx+
1

q

∫

Ω

|∇u|qdx+

∫

Ω

F (x, u)dx−
∫

∂Ω

G(x, u)dσ,

that in which
F (x, t) =

∫ t

0

f(x, s)ds & G(x, t) =

∫ t

0

g(x, s)ds.

Clearly, every critical point of I is a weak solution of the problem (P). To prove that I has a critical point we apply
MPT (Theorem 1.2):

Firstly, we verify that I satisfies MPT conditions:

Proof. It is clear that I(0) = 0. Since p < q, soW 1,q(Ω) ↪→ W 1,p(Ω) and from (g2), one has

C|t|µ ≤ G(x, t), (x, t) ∈ ∂Ω× R.

for some suitable C > 0. Take e ∈ W 1,q(Ω) ⊂ W 1,p(Ω), then for appropriate a′1, a′2 > 0, we have

I(te) = tp

p ∥e∥pp + tq

q ∥e∥qq +
∫
Ω
F (x, te)dx−

∫
∂Ω

G(x, te)dσ

≤ tp

p ∥e∥pq + tq

q ∥e∥qq + a′1∥u∥q + a′2|t|θ∥u∥θq − C|t|µ
∫
∂Ω

|e|µdσ.

Now, since µ > q > γ > p > 1 and µ > θ for t large enough I(te) is negative. We now prove condition (iii) of
MPT. From (f2) one gains that F (x, t) ≥ 0 for t ∈ R. Take u with ∥u∥p = ρ > 0. Using standard embedding it
follows that

I(u) ≥ 1

p
ρp +

1

q
ρq − b′ργ > 0,

provided ρ > 0 is small enough. Therefore, MPT conditions are held for the functional I .
Now, we verify Palais-Smale compactness condition. In fact we show that any (PS)-sequence is bounded. To this end,
suppose that {uk} is a sequence inW 1,p

0 (Ω) such that

{I(uk)} is bounded & I ′(uk) → 0 in W 1,p
0 (Ω).
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Using the standard embedding, there exists b′ > 0 such that

I ′(uk)uk = ∥uk∥pp + ∥uk∥qq +
∫
Ω
f(x, uk)ukdx−

∫
∂Ω

g(x, uk)ukdσ,
≥ ∥uk∥pp + ∥uk∥qp − b′∥uk∥γp

Thus, for large enough k we have
∥uk∥qp ≤ ∥uk∥pp + ∥uk∥qp ≤ b′∥uk∥γp .

Since γ < q, {uk} is a bounded sequence inW 1,p
0 (Ω) as desired.

Remark 2.3. Mountain pass theorem (MPT) ensures that problem (P) has at least one weak solution and by (f3), it
is a nontrivial solution.
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Abstract

Here we extended theWendel’s theorem by a general result related to homogeneous space. Also,
some results are given forA1(G/H) that is not true for L1(G/H) in general, such as existence
of bounded approximate identity.

1. First Section

In this section, we provide a summary of the mathematical notion and definitions which will be used in the sequel. Let
G be a locally compact group andH be a compact subgroup ofG and λG, λH be Haar measures onG,H respectively.
Let∆G,∆H be modular functions onG,H respectively and q : G −→ G/H given by x −→ q(x) := xH is canonical
map. The quotient space G/H is considered as a homogeneous space that G acts on it by x(yH) = (xy)H . A rho-
function for the pair (G,H) is a continuous function ρ : G −→ (0,∞) such that ρ(xξ) = ρ(x)∆H(ξ)

∆G(ξ) (x ∈ G, ξ ∈ H).

By [2, Proposition 2.54] the pair (G,H) always admits a rho-function, and each rho-function ρ induces a strongly
quasi-invariant measure µ on G/H such that dµx

dµ (yH) = ρ(xy)
ρ(y) (x, y ∈ G, ξ ∈ H). The map Tρ : L1(G) −→

L1((G/H), µ) is defined by

Tρf(xH) =
∫
H

f(xξ)
ρ(xξ)dλH(ξ) (xH ∈ G/H).

The map Tρ is a surjective bounded linear map with ∥Tρ∥ ≤ 1 and the Weil’s formula holds:
∫
G/H

Tρf(xH)dµ(xH) =
∫
G
f(x)dλG(x) (f ∈ L1(G)).

It has been shown that L1(G/H,µ) = L1(G/H) becomes a Banach algebra by multiplication φ ⋆ ψ = Tρ(ρ(φ ◦ q) ⋆
ρ(ψ ◦ q)) (φ,ψ ∈ L1(G/H)) and L1(G/H) is isomerically isomorphic to the closed subalgebra L1(G : H)={f ∈
L1(G); f(xξ) = f(x) , x ∈ G, ξ ∈ H} of L1(G) via Tρ. The left translation of φ ∈ L1(G/H) by x ∈ G is defined
by
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Lxφ(yH) = Tρ(Lx(φ ◦ q))(yH) = ρ(x−1y)
ρ(y) φ(x−1yH) (yH ∈ G/H).

Also, there is a bounded surjective linear map T∞ : L∞(G) −→ L∞(G/H) defined by

T∞(f)(xH) =
∫
H
f(xξ)dλH(ξ) (x ∈ G, f ∈ L∞(G)),

and T∞(C0(G)) = C0(G/H). Form ∈ M(G), T̃ : M(G) −→ M(G/H) by T̃ (m)(E) = m(q−1(E)) (E ⊆ G/H
is a Borel set) were introduced by Reiter and Stegeman in [5]. For ν ∈ M(G/H) there existsmν ∈ M(G) such that∫
G
fdmν =

∫
G/H

T∞(f)dν (f ∈ C0(G)). Form ∈ M(G), and ν, ω ∈ M(G/H), φ ∈ C0(G/H),m ⋆ ν and ν ⋆ ω
are defined by

m ⋆ ν(φ) = T̃ (m ⋆mν)(φ) =

∫

G/H

∫

G

φ(xyH)dm(x)dν(yH),

(ν ⋆ ω)(φ) = T̃ (mν ⋆ mω)(φ) =

∫

G/H

∫

G/H

∫

H

φ(xξyH)dλH(ξ)dυ(xH)dω(yH).

In other words L1(G/H) is an ideal ofM(G/H) and for φ ∈ L1(G/H), ν ∈M(G/H) and x ∈ G, we have

(φ ⋆ ν)(xH) =

∫

G
H

∆G(y
−1)

∫

H

φ(xξy−1H)
ρ(xξy−1)

ρ(x)
dλH(ξ)dν(yH),

(ν ⋆ φ)(xH) =

∫

G
H

∫

H

φ(ξy−1xH))
ρ(ξy−1x)

ρ(x)
dλH(ξ)dν(yH).

For more details see [1, 6]. In [4] we showed that an analogue of wendel’s result holds for L1(G/H) only when H
is normal. In this paper we show that if H is closed subgroup of G the wendel’s theorem holds for A1(G/H), as an
ideal of L1(G/H).

2. Second Section

Let G be a compact group and H be a closed subgroup of G. Define A1(G/H), as follow

A1(G/H) = {φ ∈ L1(G/H) : φ(hxH) = φ(xH), x ∈ G,h ∈ H}.

For φ,ψ ∈ A1(G/H), the involution and convolution on A1(G/H) are defined by the relations

φ ⋆ ψ(xH) =

∫

G

φ(yH)ψ(y−1xH)dλG(y),

and

φ∗(xH) = Tρ((φ ◦ q)∗)(xH)

= (φ ◦ q)(x−1)∆G(x
−1).

SoA1(G/H) is subalgebra ofL1(G/H) andA1(G/H)with this involution is a Banach ∗- algebra. Forφ ∈ L1(G/H)
the map J1 : L1(G/H) −→ L1(G/H) is defined via

J1(φ)(xH) =
∫
H
φ(hxH)dλH(h).

J1 is a linear operator, J1(Cc(G/H)) ⊆ Cc(G/H), J1(L1(G/H)) = A1(G/H) and ∥J1(φ)∥L1(G/H) ≤ ∥φ∥L1(G/H).
For more details see [3].

Theorem 2.1. Let G be a compact group and H be a closed subgroup of G. The Banach algebra A1(G/H) has a
right approximate identity.
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Proof. Let (γα)α∈I be a right approximate identity for L1(G/H), for all α ∈ I let J1(γα) = ηα, then (ηα)α∈I is
a right approximate identity for A1(G/H). Since A1(G/H) is an involution Banach algebra, it has a bounded left
approximate identity. So A1(G/H) has a bounded approximate identity.

Remark 2.2. Let G be a compact group and H be a closed subgroup of G. Let

L1(G : H) := {f ∈ L1(G) : f(xξ) = f(x)},

and
A1(G : H) := {f ∈ L1(G) : f(ξx) = f(x)}.

Then A1(G : H), L1(G : H) are Banach subalgebra of L1(G). For φ ∈ A1(G/H) take ˇ(φ ◦ q)(x) = (φ ◦ q)(x−1),
then ˇ(φ ◦ q) ∈ L1(G : H) ∩A1(G : H) and so φ̌ ∈ A1(G/H), ∥φ∥L1(G/H) = ∥φ̌∥L1(G/H).

Definition 2.3. Let G be a compact group and H be a closed subgroup of G. M1(G/H) is subalgebra ofM(G/H)
given by

M1(G/H) = {ν ∈M(G/H) : ν(hE) = ν(E), ∀h ∈ H,E ∈ BG/H},
where BG/H is the σ-algebra of Borel sets.

Theorem 2.4. Let G be a compact group and H be a closed subgroup of G. ThenM1(G/H) has an identity.

Theorem 2.5. Let G be a compact group and H be a closed subgroup of G. If G/H has been attached a strongly
G-invariant measure µ, then A1(G/H) is an ideal ofM1(G/H).

Proof. For ν ∈M1(G/H), φ ∈ A1(G/H) and ψ ∈ C0(G/H) we can write,

ν ⋆ φ(ψ) = (ν ⋆ µφ)(ψ)

=

∫

G/H

∫

G/H

∫

H

ψ(xhyH)φ(yH)dν(xH)dµ(yH)

=

∫

G/H

∫

G/H

∫

H

ψ(xyH)φ(h−1yH)dν(xH)dµ(yH)

=

∫

G/H

∫

G/H

∫

H

ψ(yH)φ(h−1x−1yH)dν(xH)dµ(yH).

Thus

ν ⋆ φ(yH) =

∫

G/H

∫

H

φ(h−1x−1yH)dν(xH)dλH(h)

=

∫

G/H

φ(x−1yH)dν(xH).

For ξ ∈ H we have

ν ⋆ φ(ξyH) =

∫

G/H

φ(x−1ξyH)dν(xH)

=

∫

G/H

φ(x−1ξ−1ξyH)dν(ξxH)

=

∫

G/H

φ(x−1yH)dν(xH)

= ν ⋆ φ(yH).
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Also

φ ⋆ ν(yH) =

∫

G/H

∫

H

φ(yhx−1H)dλH(h)dν(xH),

and

φ ⋆ ν(ξyH) =

∫

G/H

∫

H

φ(ξyhx−1H)dλH(h)dν(xH)

= φ ⋆ ν(yH).

Definition 2.6. Let G be a compact group and H be a closed subgroup of G. Let A(G/H), be the closed linear
subspace of C(G/H) given by

A(G/H) = {f ∈ C(G/H) : f(ξxH) = f(xH), ∀ξ ∈ H,xH ∈ G/H}.

Theorem 2.7. Let G be a compact group and H be a closed subgroup of G. If T : A1(G/H) −→ A1(G/H) is a
bounded linear operator such that T (φ⋆ψ) = φ⋆T (ψ) (or T (φ⋆ψ) = T (φ) ⋆ψ)), then there exists µ ∈ M1(G/H)
such that T (φ) = φ ⋆ µ (T (φ) = µ ⋆ φ).

Proof. For φ1 ∈ A(G/H), φ2 ∈ A1(G/H), ν ∈M1(G/H), we have

< φ1, ν ⋆ φ2 >=< φ1 ⋆ φ⋆
2, ν >,

< φ1, φ2 ⋆ ν >=< φ⋆
2 ⋆ φ1, ν >,

and it is easy to sea that φ1 ⋆ φ⋆
2, φ

⋆
2 ⋆ φ1 ∈ A(G/H). Let (ηα)α be a bounded approximate identity for A1(G/H)

and η0 ∈M1(G/H) be a ω⋆- accumulation point of (T (ηα))α .Then we have

T (φ) = lim
α
T (φ ⋆ ηα) = lim

α
φ ⋆ T (ηα) = φ ⋆ η0.
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Abstract

In this paper we consider the multiples of composition operator λCφ on some Banach spaces
with special properties, such as Bergman and Hardy spaces and discuss about mean ergodicity
and uniform mean ergodicity of λCφ onX . In the case λ ∈ C, |λ| = 1 and φ is an elliptic auto-
morphism, mean ergodicity and uniform mean ergodicity of λCφ are completely characterized.

1. Introduction

1.1. Ergodic Operators
Suppose T is a bounded linear operator on a locally convex Hausdorff spaceX , the Cesáro means of T is defined by

T[n] :=
1

n

n∑

m=1

Tm, (n ∈ N).

An operator T is uniformly mean ergodic if the sequence of Cesáro means of T converges in operator norm topol-
ogy and it is mean ergodic if {T[n]}n converges in the strong operator topology. Also it is called power bounded if
supn∈N ||Tn|| <∞.

An easy calculation shows that T
n

n = T[n] − n−1
n T[n−1]. So if T is uniformly mean ergodic or mean ergodic then for

all x ∈ X , limn→∞
||Tnx||
n = 0.

The study of mean ergodicity of linear operators on Banach spaces goes back to 1931, when Von Numann proved that
for a unitary operator T on a Hilbert spaceH , there is a projection P onH , such that T[n] converges to P in the strong
operator topology. In 1939 Lorch demonstrated that for reflexive Banach spaces, power bounded operators are mean
ergodic. Dunford in 1943 stated the connection between the spectral properties of an operator and its uniform mean
ergodicity. [5] is a perfect survey on ergodic theory.

∗Talker
Email address: zkamali@shirazu.ac.ir (Zahra Kamali)

https://conf.gonbad.ac.ir/msc1400


Z. Kamali / The 3rd National Congress on Mathematics and Statistics 35

Recall that by σ(T ) (spectrum of T ) we mean the set of all λ ∈ C such that T − λI is not invertible. The ap-
proximate point spectrum σap(T ), is the set of all λ ∈ C for which there is {xn} ⊆ X with ||xn|| = 1 such that
limn→∞ ||T (xn)− λxn|| = 0. It is well known that σap(T ) ⊆ σ(T ).
The following theorem is due to Dunford and Lin, see [1].

Theorem 1.1. If an operator T on a Banach space X is uniformly mean ergodic then both (||Tn||/n)n converges to
0 and either 1 ∈ C \ σ(T ) or 1 is a pole of order 1 of the resolvent RT : C \ σ(T ) → L(X), RT (λ) = (T − λI)−1.
Consequently if 1 is an accumulation point of σ(T ), then T is not uniformly mean ergodic.

Proof. [1].

1.2. Self Maps of the Unit Disk
Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C and H(D) be the space of all holomorphic
functions onD. The analytic self map of the unit disk are divided in two classes of elliptic and non-elliptic. The elliptic
type is an automorphism and has a fixed point in D. The non-elliptic one has a unique fixed point p ∈ D, such that
{φn}n converges to p uniformly on compact subset of D. This point is called Denjoy-Wolff point.
An elliptic automorphism φ, has an interior fixed point p with |φ′(p)| = 1. The holomorphic automorphism of D
which is defined by Φp(z) = p−z

1−p̄z , interchanges 0 and p and Φ
−1
p = Φp. Let ϕ = Φp o φ o Φp. ϕ(0) = 0 and since φ

is an elliptic automorphism, ϕ(z) = αz for some α ∈ ∂D. If αn = 1 for some n ∈ N, ϕ is called rational rotation and
otherwise it is called irrational rotation. Also Cϕ = Cφp

o Cφ o Cφp
, Cφ and Cϕ are similar so they have the same

ergodic properties. Afterwards without loss of generality, we may assume that φ(z) = αz, where |α| = 1.
For further study on holomorphic self maps of the unit disk, see [3].
Each φ ∈ H(D) induces a linear composition operator Cφ : H(D) → H(D) by Cφ(f)(z) = f(φ(z)) for every
f ∈ H(D) and z ∈ D.
LetX be a Banach space that continuously embedded inH(D). φ ∈ H(D) is called a symbol forX , if Cφ(X) ⊆ X .
ByCloseGraph Theoremφ is symbol forX if and only ifCφ is bounded linear operator fromX in to itself. Throughout
this paper, suppose the space X satisfies the following conditions:

1. automorphisms are symbols for X .
2. Polynomials are dense in it.
3. For each symbol ψ of X with ψ(0) = 0, Cψ is power bounded on X .
4. For α ∈ ∂D there is f ∈ X such that limz→αRef(z) = +∞.
5. B(0, re(Cφ)) ⊆ σ(Cφ) for each univalent symbol φ with Denjoy-Wolff point 0 ∈ D.

Bergman spacesAp(D) and the classical Hardy spacesHp(D) for all p ≥ 1 are the examples of such spaces, for details
see [4]. We recall that For 0 < p <∞, the Hardy space Hp(D) is defined by

Hp(D) = {f ∈ H(D) : ||f ||pp = sup
0<r<1

1

2π

∫ 2π

0

|f(reiθ)|p <∞}.

When p ≥ 1,Hp(D) is a Banach space with norm ||.||p. Also the Bergman space is the space of all analytic functions
that

||f ||p =
∫

D
|f(z)|pdA(z) <∞.

The study of ergodic properties of composition operators has received a special attention from many authors and this
topic was investigated on various spaces of holomorphic functions. In [2] and [4] the authors completely characterized
power bounded, mean ergodic and uniformlymean ergodic composition operators on various Banach spaces of analytic
functions. In this paper, we discuss about the following questions: when λCφ : X → X , is mean ergodic or uniformly
mean ergodic?
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2. Main Results

For a positive integer n, the nth iterates of φ is denoted by φn.

Proposition 2.1. Let φ ∈ D be a symbol for X and λ ∈ C. If λCφ is power bounded, mean ergodic or uniformly
mean ergodic on X , then |λ| ≤ 1.

Proof. Since ||λnCφn1|| = |λ|n ≤ ||λnCφn || and if λCφ is mean ergodic or uniformly mean ergodic, ||λnCφn1||
n =

|λn|
n → 0 as n→ ∞, in three cases {|λ|n}n must be a bounded sequence.

Proposition 2.2. Let φ ∈ D be a symbol for X and λ ∈ C. If |λ| = 1, then λCφ is power bounded if and only if Cφ
is power bounded if and only if φ has an interior fixed point.

Proof. The Proposition follows from the fact that ||(λCφ)n|| = ||(Cφ)n|| and the Proposition 2.2 of [4].

Let K(X) be the space of all bounded and compact operators on X . The essential norm of operator T is defined
by ||T ||e = inf{||T − K|| : K ∈ K(X)}. Also the essential spectral radios of T is re(T ) = limn→∞ ||Tn|| 1

n .
T ∈ L(X) is quasicompact if re(T ) < 1.

Theorem 2.3. Let φ ∈ D be a univalent symbol for X with z0 ∈ D as its Denjoy-Wolff point. If |λ| = 1, then λCφ is
uniformly mean ergodic if and only if λCφ is quasicompact.

Proof. By the hypothesis λCφ is power bounded, so if it is quasicompact, the uniform mean ergodicity follows from
Yosida-Kakutani mean ergodic Theorem, see [1]. Conversely, suppose λCφ is uniformly mean ergodic. We show
re(λCφ) < 1. Without loss of generality we may assume that z0 = 0. Since λCφ is power bounded, there existsM >

0 such that ||λnCφn
||e ≤ ||λnCφn

|| ≤ M . So re(λCφ) = limn→∞ ||λnCφn
|| 1

n ≤ 1. Moreover, B(0, re(Cφ)) ⊆
σ(Cφ), so B(0, re(λCφ)) ⊆ σ(λCφ). If re(λCφ) = 1, clearly, B(0, 1) ⊆ σ(λCφ). By Dunford-Lin Theorem λCφ
can not be uniformly mean ergodic, so we must have re(λCφ) < 1 and λCφ is quasicompact.

Theorem 2.4. Suppose φ is an elliptic automorphism which is similar to an irrational rotation and |λ| = 1. Then
λCφ is mean ergodic operator on X .

Proof. As we said in the introduction, we may assume φ(z) = αz, where |α| = 1. Let m ∈ N. If for all k ∈ N,
λαk ̸= 1, then:

||(λCφ)[n]zm|| = 1

n
||

n∑

j=1

λjαmjzm|| = 1

n
||zm|||

n∑

j=1

λjαmj |

≤ 2

n|1− λαm| ||z
m|| → 0, as n→ ∞.

If λαk = 1 for some k ∈ N,

||(λCφ)[n]zm|| = 1

n
||

n∑

j=1

(λαk)jαjm−kjzm|| = 1

n
||zm|||

n∑

j=1

αj(m−k)zm|

≤ 2

n|1− αm−k| ||z
m|| → 0, as n→ ∞.

By linearity, for all polynomials P , ||(λCφ)[n]P || → 0, as n → ∞. Since polynomials are dense in X and λCφ is
power bounded, the result follows.

Theorem 2.5. Suppose φ is an elliptic automorphism which is similar to an irrational rotation and |λ| = 1. Then
λCφ is not uniformly mean ergodic on X .
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Proof. As before, let φ(z) = αz, where |α| = 1. Since αk ̸= 1 for all k ∈ N, {αk : k ∈ N} = ∂D and one easily
can show that {λαk : k ∈ N} = ∂D. Let z0 ∈ ∂D. There exists subsequence {nk} ⊆ N such that λαnk → z0. Put
gnk

= znk

||znk || . Clearly, gnk
∈ X and

||λCφgnk
− z0gnk

|| = |λαnk − z0| → 0, as n→ ∞.

So ∂D ⊆ σap(λCφ) ⊆ σ(λCφ), by Dunford theorem λCφ is not uniformly mean ergodic.

Theorem 2.6. Suppose φ is an elliptic automorphism which is similar to a rational rotation and |λ| = 1. Then λCφ
is uniformly mean ergodic and consequently, mean ergodic on X .

Proof. Let φ(z) = αz, where |α| = 1 and αk1 = 1, for some k1 ∈ N. First suppose that for some k2 ∈ N, λk2 = 1.
Let k be the smallest common multiple of k1, k2. Fix 0 ≤ r < k. So for all n = lk + r with l ≥ 0,

(λCφ)[n] =
l

lk + r

k∑

m=1

λmCφm +
1

lk + r

r∑

m=1

λmCφm ,

when n→ ∞, l
lk+r → 1

k and 1
lk+r → 0, so (Cφ)[n] → l

k

∑k
m=1 λ

mCφm
and λCφ is uniformly mean ergodic.

Now, suppose for all k ∈ N, λk ̸= 1. In this case for each r, that 0 ≤ r < k1 and n = lk + r with l ≥ 0, we have:

(λCφ)[n] =
1

n

l−1∑

m=0

λmk1
k1∑

m=1

λmCφm
+

1

n
λlk1

r∑

m=1

λmCφm
.

LetM =
∑k1
m=1 ||Cφm ||, then

||(λCφ)[n]|| ≤
2M

n|1− λk1 | +
M

n
→ 0, as n→ ∞,

and λCφ is uniformly mean ergodic.
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Abstract

In this paper, we generalize and improve the results given in [V. Pata, A fixed point theorem in
metric spaces, J. Fixed Point Theory Appl. 10 (2011) 299-305], for tripled fixed points in two
cases for monotone and mixed-monotone mappings with three variables in ordered modular
metric spaces.

1. Introduction

Modular metric spaces were introduced in [4, 5]. Behind this new notion, there exists a physical interpretation of the
modular. A modular on a set bases on a nonnegative (possibly infinite valued) “field of (generalized) velocities”: to
each time λ > 0 (the absoulute value of) an averge velocity ωλ(x, y) is associated in such that in order to cover the
distance between points x, y ∈ X , it takes time λ to move from x to y with velocity ωλ(x, y), while a metric on a
set stands for non-negative finite distances between any two points of the set. The process of access to this notion of
modular metric spaces is different. Actually we deal with these spaces as the nonlinear version of the classical modular
spaces as introduced by Nakano [9] on vector spaces and modular function spaces introduced by Musielack [7].
Recently some authors have introduced and have established some notions and fixed point results in modular metric
spaces [6]. Many authors investigated on the existence of the fixed points for contraction type mapping in partially
ordered metric spaces [1].
In this paper, we generalize and improve the results of Pata [10] for tripled fixed points in two cases for monotone and
mixed-monotone mappings with three variables in ordered modular metric spaces.

Definition 1.1. Let X be an arbitrary set. A function ω : (0,∞) × X × X −→ [0,∞] that will be written as
ωλ(x, y) = ω(λ, x, y) for all x, y ∈ X and for all λ > 0, is said to be a modular metric on X (or simply a modular if
no ambiguity arises) if it satisfies the following three conditions:
(i) given x, y ∈ X , ωλ(x, y) = 0 for all λ > 0 iff x = y;
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(ii) ωλ(x, y) = ωλ(y, x), for all λ > 0 and x, y ∈ X;
(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ, µ > 0 and x, y, z ∈ X.
If instead of (i), we have only the condition:
(i1) ωλ(x, x) = 0 for all λ > 0 and x ∈ X , then ω is said to be a (metric) pseudomodular onX and if ω satisfies (i1)
and
(i2) given x, y ∈ X , if there exists λ > 0, possibly depending on x and y, such that ωλ(x, y) = 0 implies that x = y,
then ω is called a strict modular on X .

Definition 1.2. [4] Given a modular ω on X , the sets

Xω ≡ Xω(x◦) = {x ∈ X : ωλ(x, x◦) → 0 as λ→ ∞}

and

X∗
ω ≡ X∗

ω(x◦) = {x ∈ X : ωλ(x, x◦) <∞ for some λ > 0}

are said to be modular spaces (around x◦). Also the modular spacesXω andX∗
ω can be equipped with metrics dω and

d∗ω , generated by ω and given by

dω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ λ}, x, y ∈ Xω

and

d∗ω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ 1}, x, y ∈ X∗
ω

If ω is a convex modular on X , then according to [4, Theorem 3.6] the two modular spaces coincide,Xω = X∗
ω .

Definition 1.3. Given a modular metric space Xω , a sequence of elements {xn}∞n=1 from Xω is said to be modular
convergent (ω−convergent) to an element x ∈ X if there exists a number λ > 0, possibly depending on {xn} and x
such that limn→∞ ωλ(xn, x) = 0. This will be written briefly as xn

ω→ x, as n→ ∞.

Definition 1.4. [6] A sequence {xn} ⊂ Xω is said to be ω-Cauchy if there exists a number λ = λ ({xn}) > 0 such
that limm,n→∞ ωλ(xn, xm) = 0, i.e.,

∀ε > 0 ∃ n◦(ε) ∈ N such that ∀n,m ≥ n◦(ε) : ωλ(xn, xm) ≤ ε.

Modular metric space Xω is said to be ω-complete if each ω-Cauchy sequence from Xω is modular convergent to an
x ∈ Xω .

Remark 1.5. A modular ω = ωλ on a set X , for given x, y ∈ X , is non-increasing on λ. Indeed if 0 < λ < µ, then
we have

ωµ(x, y) ≤ ωµ−λ(x, x) + ωλ(x, y) = ωλ(x, y)

for all x, y ∈ X .

Lemma 1.6. Suppose that {xn}, {yn} and {zn} are three sequences in modular metric spaceXω . Then {xn}, {yn}
and {zn} are ω-convergent to x, y and z (respectively) iff the sequence {(xn, yn, zn)} is ω-convergent to (x, y, z).

Throughout the paper, (X;ω;⪯) always denotes a partially ordered metric space, i.e., a triple where (X;⪯) is a
partially ordered set and (X;ω) is a metric space.
For x; y ∈ X , x ≍ y will denote that x and y are comparable, i.e., either x ⪯ y or y ⪯ x holds.
Recall that the space (X;ω;⪯)) is said to be regular if it has the following properties:
(i) if for a non-decreasing sequence {xn}, xn −→ x as n −→ ∞, then xn ⪯ x for all n;
(ii) if for a non-increasing sequence {xn}, xn −→ x as n −→ ∞, then xn ⪰ x for all n.
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2. Main results

Throughout the paper, ψ : [0; 1] −→ [0; 1)will be a fixed increasing function, continuous at zero, satisfying ψ(0) = 0.
We will use the following terminology.

Definition 2.1. Let F : X3
ω −→ Xω be a mapping.

(1) F is called non-decreasing if it is non-decreasing in all three variables.
(2) F is called mixed-monotone if it is non-decreasing in the first and third variables, and non-increasing in the second
variable.
(3) A point Y = (x, y, z) ∈ X3

ω is called a tripled fixed point of the first kind (or Borcut kind [2]) if

F (x, y, z) = z, F (y, x, z) = y, F (z, y, x) = z. (1)

(4) A point Y = (x, y, z) ∈ X3
ω is called a tripled fixed point of the second kind (or Berinde-Borcut kind [3]) if

F (x, y, z) = z, F (y, x, y) = y, F (z, y, x) = z. (2)

Remark 2.2. In what follows, tripled fixed point results of the first kind will be proved for monotone mappings, while
those of the second type will be connected with mixed-monotone mappings. It will be clear in the sequel that part (3)
of the previous definition can be modified in several ways. In fact, any three combinations of elements x, y, z can be
taken instead of (x, y, z), (y, x, z) and (z, y, x) in (1), with the only condition that the first entry of each triple matches
the right-hand side. In particular, the ”cyclic” case, i.e., the condition

F (x, y, z) = x, F (y, z, x) = andF (z, x, y) = z (3)

can be considered. It will also be clear which modifications should be made to the results that follows, so we will not
state them explicitly. Moreover, the same treatment can be applied in the case of arbitrary number of variables. It is
important to notice that this considerably differs from the case of ”mixed-monotone situation”. Namely, as was shown
in [7], in this case only some particular combinations are possible (in particular, the cyclic case cannot be treated in
this way).

Lemma 2.3. (i) If relations ⊑1 and ⊑2 are defined on X3
ω by

Y ⊑1 V ⇐⇒ x ⪯ u ∧ y ⪯ v ∧ z ⪯ w, Y = (x, y, z), V = (u, v, w) ∈ X3
ω

and
Y ⊑2 V ⇐⇒ x ⪯ u ∧ y ⪰ v ∧ z ⪯ w, Y = (x, y, z), V = (u, v, w) ∈ X3

ω

and Ω : X3
ω ×X3

ω → R+ is given by

Ωλ(Y, V ) = ωλ(x, u) + ωλ(y, v) + ωλ(z, w), Y = (x, y, z), V = (u, v, w) ∈ X3
ω

then (X3
ω,Ω,⊑1), i = 1, 2 are ordered modular metric space. The space (X3

ω,Ω) is ω-complete if and only if (Xω, ω)
is ω-complete. Moreover, the spaces (X3

ω,Ω,⊑1) are regular if and only if (Xω,Ω,⊑1) is such.
(ii) If F : X3

ω → Xω is non-decreasing (w.r.t. ⪯), then the mapping T 1
F : X3

ω → X3
ω given by

T 1
FY = (F (x, y, z), F (y, x, z), F (z, y, x)) Y = (x, y, z) ∈ X3

ω

is non-decreasing w.r.t. ⊑1. (iii) If F : X3
ω → Xω is mixed-monotone, then the mapping T 2

F : X3
ω → X3

ω given by

T 2
FY = (F (x, y, z), F (y, x, y), F (z, y, x)) Y = (x, y, z) ∈ X3

ω

is non-decreasing w.r.t. ⊑2.
(iv) The mappings T i

F , i = 1, 2 are ω-continuous if and only if F is ω-continuous.
(v) The mapping F has a tripled fixed point of the first (resp. of the second) kind if and only if the mapping T 1

F (resp.
T 2
F ) has a fixed point in X3

ω .
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If what follows, Y0 = (x0, y0, z0) will be a fixed element in X3
ω and for Y = (x, y, z) ∈ X3

ω , we will denote
Ωλ(Y, Y0) = ωλ(x, x0) + ωλ(y, y0) + ωλ(z, z0). It will be clear that the obtained results do not depend on the
particular choice of the point Y0. We will prove first some results for monotone mappings and tripled fixed points of
the first (Borcut) kind.

Theorem 2.4. Let F : X3
ω → Xω be a non-decreasing mapping, and suppose that there exist x0, y0, z0 ∈ Xω such

that x0 ⪯ F (x0, y0, z0), y0 ⪯ F (y0, x0, z0), z0 ⪯ F (z0, y0, x0). Let, for some fixed constants Λ ≥ 0, α ≥ 1 and
β ∈ [0, α], the inequality

ωλ(F (x, y, z), F (u, v, w)) + ωλ(F (y, x, z), F (v, u, w)) + ωλ(F (z, y, x), F (w, v, u))

≤ (1− ϵ) (ωλ(x, u) + ωλ(y, v) + ωλ(z, w)) + Λϵαψ(ϵ) [1 + Ωλ(Y, Y0) + Ωλ(V, V0)]
β

holds for all ϵ ∈ [0, 1] and all x, y, z, u, v, w ∈ Xω with (x ⪯ u, y ⪯ v and z ⪯ w) or (x ⪰ u, y ⪰ v and z ⪰ w).
Finally, suppose thatF isω-continuous or that the space is regular. ThenF has a tripled fixed pointY ∗ = (x∗, y∗, z∗) ∈
X3

ω of the first kind.

Corollary 2.5. Let F : X3
ω → Xω be a non-decreasing mapping, and suppose that there exist x0, y0, z0 ∈ Xω such

that x0 ⪯ F (x0, y0, z0), y0 ⪯ F (y0, x0, z0), z0 ⪯ F (z0, y0, x0). Let, for some fixed constants Λ ≥ 0, α ≥ 1 and
β ∈ [0, α], the inequality

ωλ(F (x, y, z) + F (u, v, w))

≤ 1− ϵ

3
(ωλ(x, u) + ωλ(y, v) + ωλ(z, w)) + Λϵαψ(ϵ) [1 + Ωλ(Y, Y0) + Ωλ(V, V0)]

β

holds for all ϵ ∈ [0, 1] and all x, y, z, u, v, w ∈ Xω with (x ⪯ u, y ⪯ v and z ⪯ w) or (x ⪰ u, y ⪰ v and z ⪰ w).
Finally, suppose thatF isω-continuous or that the space is regular. ThenF has a tripled fixed pointY ∗ = (x∗, y∗, z∗) ∈
X3

ω of the first kind.

Consider now mixed-monotone mappings and tripled fixed points of the second (Berinde-Borcut) kind.

Theorem 2.6. Let F : X3
ω → Xω be a mixed-monotone mapping, and suppose that there exist x0, y0, z0 ∈ Xω such

that x0 ⪯ F (x0, y0, z0), y0 ⪰ F (y0, x0, z0), z0 ⪯ F (z0, y0, x0). Let, for some fixed constants Λ ≥ 0, α ≥ 1 and
β ∈ [0, α], the inequality

ωλ(F (x, y, z), F (u, v, w)) + ωλ(F (y, x, z), F (v, u, w)) + ωλ(F (z, y, x), F (w, v, u))

≤ (1− ϵ) (ωλ(x, u) + ωλ(y, v) + ωλ(z, w)) + Λϵαψ(ϵ) [1 + Ωλ(Y, Y0) + Ωλ(V, V0)]
β

holds for all ϵ ∈ [0, 1] and all x, y, z, u, v, w ∈ Xω with (x ⪯ u, y ⪰ v and z ⪯ w) or (x ⪰ u, y ⪯ v and z ⪰ w).
Finally, suppose thatF isω-continuous or that the space is regular. ThenF has a tripled fixed pointY ∗ = (x∗, y∗, z∗) ∈
X3

ω of the second kind.

Corollary 2.7. Let F : X3
ω → Xω be a mixed-monotone mapping, and suppose that there exist x0, y0, z0 ∈ Xω such

that x0 ⪯ F (x0, y0, z0), y0 ⪰ F (y0, x0, z0), z0 ⪯ F (z0, y0, x0). Let, for some fixed constants Λ ≥ 0, α ≥ 1 and
β ∈ [0, α], the inequality

ωλ(F (x, y, z), F (u, v, w))

≤ 1− ϵ

3
(ωλ(x, u) + ωλ(y, v) + ωλ(z, w)) + Λϵαψ(ϵ) [1 + Ωλ(Y, Y0) + Ωλ(V, V0)]

β

holds for all ϵ ∈ [0, 1] and all x, y, z, u, v, w ∈ Xω with (x ⪯ u, y ⪰ v and z ⪯ w) or (x ⪰ u, y ⪯ v and z ⪰ w).
Finally, suppose thatF isω-continuous or that the space is regular. ThenF has a tripled fixed pointY ∗ = (x∗, y∗, z∗) ∈
X3

ω of the first kind.
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Abstract

In this paper we prove a metrization theorem on modular spaces. Then we get a sufficient and
necessary condition for a modular space to be metrizable.

1. Introduction and Preliminaries

A modular space is a pair (X, ρ) whereX is a real linear space and ρ is a real valued functional onX which satisfies
the conditions:

1. ρ(x) = 0 if and only if x = 0,
2. ρ(−x) = ρ(x),
3. ρ(αx+ βy) ≤ ρ(x) + ρ(y), for any nonnegative real numbers α, β with α+ β = 1.

The functional ρ is called a modular onX . There are many arguably important special instances of well known spaces
in which these properties are fulfilled. Interestingly, it is shown that a modular induces a vector spaceXρ = {x ∈ X :
ρ(αx) → 0 as α → 0} which is called a modular linear space. Furthermore, Musielak and Orlicz in [1] naturally
provide the first definitions of the following key concepts in a modular space (X, ρ):

D1. A sequence {xn} in B ⊆ X is said to be ρ-convergent to a point x ∈ B if ρ(xn − x) → 0 as n → ∞.

D2. A ρ-closed subset B ⊆ X is meant that it contains the limit of all its ρ-convergent sequences.

D3. A sequence {xn} in B ⊆ X is said to be ρ-Cauchy if ρ(xm − xn) → 0 asm,n → ∞.

D4. A subset B of X is said to be ρ-complete if each ρ-Cauchy sequence in B is ρ-convergent to a point of B.

D5. ρ-bounded subsets: A subset B ⊆ Xρ is called ρ-bounded if sup
x,y∈B

ρ(x− y) < ∞.
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D6. ρ-compact subsets: A ρ-closed subsetB ⊆ X is called ρ-compact if any sequence {xn} ⊂ B has a ρ-convergent
subsequence.

For a modular space (X, ρ), the function ωρ which is said growth function is defined on [0,∞) as follows:

ωρ(t) = inf{ω : ρ(tx) ≤ ωρ(x) : x ∈ X, 0 < ρ(x)}.
It is easy to show that when (X, ρ) satisfies ωρ(2) < ∞, then every ρ-convergent sequence in (X, ρ) is ρ-Cauchy.
Also, we note that in such cases every ρ-compact set is ρ-bounded and ρ-complete.
In 2000 Branciari [2] introduced the notion of a ν-generalized metric space. A 2-generalized metric space was also
called a generalized metric space, or for short, g.m.s, or rectangular metric space. ν-generalized metric spaces were
investigated by many authors and various fixed point theorems in such spaces were stated and references therein.
There were also examples for ν-generalized metrics that are not metrics.

Definition 1.1. Let X be a nonempty set, ν ∈ N and d : X ×X → [0,∞) be a function such that for all x, y ∈ X ,
1. d(x, y) = 0 if and only if x = y.
2. d(x, y) = d(y, x).
3. d(x, y) ≤ d(x, u1) + d(u1, u2) + ...+ d(uν , y) for all distinct points u1, ..., uν are not belong to {x, y}. Then d is
called a ν-generalized metric and (X, d) is called a ν-generalized metric space, or for short, ν- g.m.s.

As in a generalization of a rectangular metric space, George et al. [5] introduced the notion of a rectangular b-metric
space. This notion was also introduced independently by Roshan et al. [7].

Definition 1.2. LetX be a nonempty set and d : X ×X → [0,∞) be a function such that for some s ≥ 1 and for all
x, y ∈ X , all distinct points u, v do not belong to {x, y},
1. d(x, y) = 0 if and only if x = y.
2. d(x, y) = d(y, x).
3. d(x, y) ≤ s[d(x, u) + d(u, v) + d(v, y)].
Then d is called a rectangular b-metriconX and (X, d, s) is called a rectangular b-metric space with coefficient s.

The convergence, Cauchy sequence and the completeness in rectangular b-metric spaces were defined similar as in
metric spaces. Note that the topology on a rectangular b-metric space is explicitly understood the topology induced
by its convergence.

Definition 1.3. Let (X, d, s) be a rectangular b-metric space.
1.A sequence {xn} is called convergent to x, written as lim

n→∞
xn = x, if lim

n→∞
d(xn, x) = 0.

2.A sequence {xn} is called Cauchy if lim
n,m→∞

d(xn, xm) = 0.

3.(X, d, s) is called complete if each Cauchy sequence is a convergent sequence.

The metrizability of generalized metric spaces was also attracted by many authors. One of the most interesting quan-
titative metrization theorem of generalized metric spaces is Frink’ s result. Note that Frink’ s metrization technique
has impacted many results. In 1998 Aimar et al.[1] improved Frink’ s metrization technique to give a direct proof of
Macías-Segovia theorem on the metrization of a b-metric space (X, d, s). In 2006 Schroeder showed the limit of Frink’
s construction by constructing a counterexample that for a given b-metric space (X, d, s), the function defined by 1.2
is not a metric [[8], Example2]. In 2009 Paluszynski and Stempak [6] also improved Frink’ s metrization technique to
produce a metric d from a given b-metric space (X,D,K). Recently Dung et al. [3] constructed a simple.

2. Main Results

The following result is a metrization theorem of rectangular b-metric spaces.

Theorem 2.1. Let (X, d, s) be a rectangular b-metric space such that the limit of a convergent sequence is unique.Then
1. There exists a metric d onX such that lim

n→∞
xn = x in (X, d, s) if and only if lim

n→∞
xn = x in (X, d). In particular,

(X, d, s) is metrizable by the metric d.
2. A sequence {xn} is Cauchy in (X, d, s) if and only if it is Cauchy in (X, d). In particular, (X, d, s) is complete if
and only if (X, d) is complete.
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From Theorem 2.1, we get the following results. For other results on metrization of ν-generalized metric spaces, see
[4] for example.

Corollary 2.2. ([3], Theorem 5.3). Let (X,D) be a rectangular metric space such that the limit of a convergent
sequence is unique.Then
1.There exists a metric d on X such that lim

n→∞
xn = x in (X,D) if and only if lim

n→∞
xn = x in (X, d). In particular,

(X,D) is metrizable by the metric d.
2.A sequence {xn} is Cauchy in (X,D) if and only if it is Cauchy in (X, d). In particular, (X,D) is complete if and
only if (X, d) is complete.

Corollary 2.3. Let (X, d, s) be a rectangular b-metric space. Then (X, d, s) is metrizable if and only if the limit of a
convergent sequence in (X, d, s) is unique.
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Abstract

In this paper, we introduce a new subclass Ba,b,p,q(λ, µ, x) of bi-univalent functions by us-
ing Horadam polynomials. Furthermore, we obtain upper bounds for the general coefficients
for functions in this subclass. Moreover, we obtain the upper bounds for the initial Taylor-
Maclaurin coefficients and also, Fekete-Szegö inequalities for functions in this subclass. The
results presented in this paper would generalize and improve some recent works of several earlier
authors.

1. Introduction

Let A be a class of functions of the form

f(z) = z +
∞∑

n=2

anz
n, (1)

which are analytic in the unit disk
U = {z : c ∈ C and |z| < 1}.

Denote by S the class of all functions in the normalized analytic function class A which are univalent in U.
Since univalent functions are one-to-one, they are invertible and the inverse functions need not be defined on the
entire unit disk U. In fact, the Koebe one-quarter theorem ensures that the image of U under every univalent function
f ∈ S contains a disk of radius 1/4 (for more details see [2]). So every function f ∈ S has an inverse f−1 satisfying
f−1(f(z)) = z, (z ∈ U) and

f(f−1(w)) = w

(
|w| < r0(f), r0(f) ≧

1

4

)
.
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In fact, the inverse function f−1 has a series expansion of the form:

g(w) = f−1(w) = w +

∞∑

n=2

Anw
n = w − a2w

2 + (2a22 − a3)w3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (2)

A function f ∈ A is said to be bi-univalent in U, if both f and f−1 are univalent in U. For an interesting examples
of subclasses of bi-univalent functions see [6, 8]. Horzum and Kocer [4] studied Horadam polynomials sequence
hn(x, a, b; p, q), or briefly hn(x), which are given by the following recurrence relation

hn(x) = pxhn−1(x) + qhn−2(x) (n ≥ 2), (3)

with h1 = a, h2 = bx and h3 = pbx2 + aq where (a, b, p, q are some real constants). The mentioned polynomials,
the families of orthogonal polynomials and other special polynomials as well as their generalizations are potentially
important in a variety of disciplines in many of sciences, specially in the mathematics, statistics and physics (For more
information see [3, 5]).

Remark 1.1. (see [3]) Let Ω(x, z) be the generating function of the Horadam polynomials hn(x). Then

Ω(x, z) =
a+ (b− ap)xz

1− pxz − qz2
=

∞∑

n=1

hn(x)z
n−1. (4)

In this paper, we introduce a new subclass Ba,b,p,q(λ, µ, x) of bi-univalent functions by applying Horadam polynomi-
als. We use the Faber polynomial expansion to find not only the estimates of the coefficients |a2| and |a3|, but also the
estimates of the coefficients |an| for functions in this subclass. Consequently, we generalize and improve the works
of Alamoush [1] and Bulut [7].

2. Subclass Ba,b,p,q(λ, µ, x)

Definition 2.1. A function f ∈ Σ, given by (1), is said to be in the subclass

Ba,b,p,q(λ, µ, x) (λ ≧ 1;µ ≧ 0)

of bi-univalent functions, if the following conditions are satisfied:

(1− λ)

(
f(z)

z

)µ

+ λf ′(z)

(
f(z)

z

)µ−1

≺ 1− a+Ω(x, z)

and

(1− λ)

(
g(w)

w

)µ

+ λg′(w)

(
g(w)

w

)µ−1

≺ 1− a+Ω(x,w),

where the function g is the inverse of the function f , given by (2), the function Ω(x, z) is given by (4), and z, w ∈ U.

Remark 2.2. There are several choices of the parameters µ, λ and parameters a, b, p, q of the function Ω(x, z) =
a+(b−ap)xz
1−pxz−qz2 which would provide interesting subclasses of bi-univalent functions. For example, we have the following
special cases

(A) By putting λ = µ = 1, the subclass Ba,b,p,q(λ, µ, x) reduces to the subclass Σ
′
(x) which was defined by

Alamoush [1].

(B) By putting µ = a = 1, b = p = 2 and q = −1, the subclass Ba,b,p,q(λ, µ, x) reduces to the subclass BΣ(λ, x)
which was introduced by Bulut et al. [7].

(C) By putting µ = λ = a = 1, b = p = 2 and q = −1, the subclass Ba,b,p,q(λ, µ, x) reduces to the subclass BΣ(x)
which was introduced by Bulut et al. [7].
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(D) By putting λ = 1, µ = 0, b = p = 2 and q = −1; the subclass Ba,b,p,q(λ, µ, x) reduces to the subclass S∗
Σ(x)

which was introduced by Bulut et al. [7].

Now, we begin by obtaining the estimates on the general coefficients |an| for functions in the subclassBa,b,p,q(λ, µ, x).

Theorem 2.3. Let the function f ∈ Σ, given by (1), be in the subclass Ba,b,p,q(λ, µ, x). If a2 = · · · = an−1 = 0, then

|an| ≦
|bx|

µ+ (n− 1)λ
, (n ≧ 3).

Now, we find the initial coefficient bounds and Fekete-Szegö inequalities for functions in the subclassBa,b,p,q(λ, µ, x).

Theorem 2.4. Let the function f ∈ Σ, given by (1), be in the subclass Ba,b,p,q(λ, µ, x). Then

|a2| ≦ min

{
|bx|
µ+ λ

, |bx|
√

2|bx|
|(µ+ 2λ)(µ+ 1)b2x2 − 2(µ+ λ)2(pbx2 + aq)|

}
,

|a3| ≦ min

{
b2x2

(µ+ λ)2
+

|bx|
µ+ 2λ

,
2|bx|3

|(µ+ 2λ)(µ+ 1)b2x2 − 2(µ+ λ)2(pbx2 + aq)| +
|bx|

µ+ 2λ

}

and

|a3 − δa22| ≦ |bx|





1
µ+2λ ; |T (δ)| ≦ 1

2(µ+2λ)

2|T (δ)|; |T (δ)| ≥ 1
2(µ+2λ) ,

where
T (δ) =

b2x2(1− δ)

(µ+ 2λ)(µ+ 1)b2x2 − 2(µ+ λ)2(pbx2 + aq)
.

3. Corollaries and Consequences

If we put λ = µ = 1 in Theorem 2.3, we conclude the following result.

Corollary 3.1. Let the function f ∈ Σ, given by (1), be in the subclass Σ′
(x). If a2 = · · · = an−1 = 0, then

|an| ≦
|bx|
n

(n ≧ 3).

If we put µ = a = 1, b = p = 2 and q = −1 in Theorem 2.3, we conclude the following result.

Corollary 3.2. Let the function f ∈ Σ, given by (1), be in the subclass BΣ(λ, x). If a2 = · · · = an−1 = 0, then

|an| ≦
2x

1 + (n− 1)λ
(n ≧ 3).

If we put µ = λ = a = 1, b = p = 2 and q = −1 in Theorem 2.3, we conclude the following result.

Corollary 3.3. Let the function f ∈ Σ, given by (1), be in the subclass BΣ(x). If a2 = · · · = an−1 = 0, then

|an| ≦
2x

n
(n ≧ 3).

If we put µ = 0, λ = 1, b = p = 2 and q = −1 in Theorem 2.3, we conclude the following result.

Corollary 3.4. Let the function f ∈ Σ, given by (1), be in the subclass S∗
Σ(x). If a2 = · · · = an−1 = 0, then

|an| ≦
2x

n− 1
(n ≧ 3).
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If we put λ = µ = 1 in Theorem 2.3, we conclude the following result.

Corollary 3.5. Let the function f ∈ Σ, given by (1), be in the subclass Σ′
(x). then

|a2| ≦ min

{
|bx|
2

, |bx|
√

|bx|
|3b2x2 − 4(pbx2 + aq)|

}
,

|a3| ≦ min

{
b2x2

4
+

|bx|
3

,
|bx|3

|3b2x2 − 4(pbx2 + aq)| +
|bx|
3

}

and

|a3 − δa22| ≦ |bx|





1
3 ;

∣∣∣ b2x2(1−δ)
6b2x2−8(pbx2+aq)

∣∣∣ ≦ 1
6

2|T (δ)|;
∣∣∣ b2x2(1−δ)
6b2x2−8(pbx2+aq)

∣∣∣ ≥ 1
6 .

Remark 3.6. Corollary 3.5 is an improvement of result obtained by Alamoush [1].

If we put µ = a = 1, b = p = 2 and q = −1 in Theorem 2.4, we conclude the following result.

Corollary 3.7. Let the function f ∈ Σ, given by (1), be in the subclass BΣ(λ, x). Then

|a2| ≦ min

{
2x

1 + λ
, 2x

√
2x

|(1 + λ)2 − 4λ2x2|

}
,

|a3| ≦ min

{
4x2

(1 + λ)2
+

2x

1 + 2λ
,

8x3

|(1 + λ)2 − 4λ2x2| +
2x

1 + 2λ

}

and

|a3 − δa22| ≦ 2x





1
1+2λ ;

∣∣∣ 2x2(1−δ)
(1+λ)2−4λ2x2

∣∣∣ ≦ 1
2(1+2λ)

2|T (δ)|;
∣∣∣ 2x2(1−δ)
(1+λ)2−4λ2x2

∣∣∣ ≥ 1
2(1+2λ) .

Remark 3.8. Corollary 3.7 is an improvement of result obtained by Bulut et al. [7, Corollary 1].

If we put µ = λ = a = 1, b = p = 2 and q = −1 in Theorem 2.4, we conclude the following result.

Corollary 3.9. Let the function f ∈ Σ, given by (1), be in the subclass BΣ(x). Then

|a2| ≦ x , |a3| ≦ x2 +
2x

3

and

|a3 − δa22| ≦





2x
3 ; |δ − 1| ≦ 1−x2

3x2

2|δ−1|x3

1−x2 ; |δ − 1| ≥ 1−x2

3x2 .

Remark 3.10. Corollary 3.9 is a refinement for estimate of |a2| obtained by Bulut et al. [7, Corollary 3].

If we put λ = 1, µ = 0, b = p = 2 and q = −1 in Theorem 2.4, we conclude the following result.

Corollary 3.11. Let the function f ∈ Σ, given by (1), be in the subclass S∗
Σ(x). Then

|a2| ≦ 2x and |a3| ≦ 4x2 + x

and

|a3 − δa22| ≦





x; |δ − 1| ≦ 1
8x2

8|δ − 1|x3; |δ − 1| ≥ 1
8x2 .

Remark 3.12. Corollary 3.11 is a refinement for estimate of |a2| obtained by Bulut et al. [7, Corollary 4].
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Abstract

In the present paper, we investigate new connections between the Poisson distribution series
and some subclasses of normalized analytic functions. Further, we consider an integral operator
related to Poisson distribution series. Some interesting special cases of our main results are also
considered.

1. Introduction

Let A denote the class of functions f of the form

f(z) = z +
∞∑

j=2

ajz
j , (1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} and satisfy the normalization condition f(0) =
f ′(0) − 1 = 0. Further, we denote by S the subclass of A consisting of functions of the form (1) which are also
univalent in U(see [2]).
The class S∗(α) of starlike functions of order α, with 0 ≤ α < 1 , defined by

S∗(α) =

{
f ∈ A : ℜ

(
zf ′(z)
f(z)

)
> α, z ∈ U

}
,

and the class C(α) of convex functions of order α, with 0 ≤ α < 1 , defined by

C(α) =

{
f ∈ A : ℜ

(
1 +

zf ′′(z)
f ′(z)

)
> α, z ∈ U

}
= {f ∈ A : zf ′(z) ∈ S∗(α)} ,
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were introduced by Robertson in [7]. We also write S∗(α) = S∗, where S∗ denotes the class of functions f ∈ A that
f(U) is starlike with respect to the origin. Further, C(0) = C is the well-known standard class of convex functions.
A function f ∈ A of the form (1) is said to be in the class Sp(α, β), if it satisfies the following condition

ℜ
(
zf ′(z)
f(z)

)
≥ α

∣∣∣∣
zf ′(z)
f(z)

− 1

∣∣∣∣+ β (α ≥ 0, 0 ≤ β < 1, z ∈ U).

A function f ∈ A of the form (1) is said to be in the class UCV (α, β), if it satisfies the following condition

ℜ
(
1 +

zf ′′(z)
f ′(z)

)
≥ α

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣+ β (α ≥ 0, 0 ≤ β < 1, z ∈ U).

The classes Sp(α, β) andUCV (α, β)were introduced by Bharati et al. [6]. It is easy to verify that f ∈ UCV (α, β) ⇔
zf ′ ∈ Sp(α, β).
Recently, many researchers investigated connections between various subclasses of univalent funcions and some power
series that their coefficients were probabilities of the elementary distributions such as Poisson, Pascal, etc. Also, they
obtained necessary and sufficient conditions for these distribution series on certain subclasses of univalent functions
(see for example [1, 3]).
A variable x is said to have Poisson distribution, if it takes the values 0, 1, 2, 3, · · · with probabilities e−m, me−m

1! ,
m2e−m

2! , m3e−m

3! , · · · , respectively, wherem is called the parameter. Thus

P (x = k) =
e−mmk

k!
, k = 0, 1, 2, 3, · · · , m > 0.

Recently, Porwal [4] introduce a power series whose coefficients are probabilities of Poisson distribution

φm(z) = z +
∞∑

n=2

mn−1

(n− 1)!
e−mzn, (2)

where m > 0. It is easy to see that the radius of convergence of φm(z) is infinite.
Porwal and Kumar [5] introduced a new linear operator

Im : A −→ A

by using the convolution or Hadamard product, as below

Im(f) = φm(z) ∗ f(z) = z +

∞∑

n=2

mn−1

(n− 1)!
e−manz

n, (z ∈ U). (3)

For convenience throughout in the sequel, we use the following notations.

∞∑

n=2

mn−1

(n− 1)!
= em − 1,

∞∑

n=2

mn−1

(n− 2)!
= mem,

∞∑

n=3

mn−1

(n− 3)!
= m2em,

∞∑

n=2

mn−1

n!
=

1

m
(em − 1−m).
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Lemma 1.1. [6] A function f ∈ A belongs to the class Sp(α, β), if

∞∑

k=2

(
k(1 + α)− (α+ β)

)
|ak| ≤ 1− β.

Lemma 1.2. [6] A function f ∈ A belongs to the class UCV (α, β), if

∞∑

k=2

k
(
k(1 + α)− (α+ β)

)
|ak| ≤ 1− β.

In this paper, we determine some sufficient conditions for power series that coefficients are probabilities of the Poisson
distribution and other related series to be in the subclasses of analytic functions Sp(α, β) and UCV (α, β). Finally,
we give conditions for the integral operator Tm(z) =

∫ z

0
φm(t)

t dt belonging to the these classes.

2. Main results

Theorem 2.1. A sufficient condition for the function φm given by (2) to be in the class Sp(α, β) is

em(1 + α)m ≤ 1− β. (4)

Theorem 2.2. A sufficient condition for the function φm given by (2) to be in the class UCV (α, β) is

em
(
(1 + α)m2 + (3 + 2α− β)m

)
≤ 1− β. (5)

Theorem 2.3. (i) If the condition

em
(
(1 + α)m2 + (3 + 2α− β)m

)
≤ 1− β (6)

holds, then the operator Im defined by (3) maps the class S∗ to the class Sp(α, β), that is Im(S∗) ⊂ Sp(α, β).

(ii) If the condition
em(1 + α)m ≤ 1− β (7)

defined by (3) maps the class C to the class Sp(α, β), that is Im(C) ⊂ Sp(α, β).

3. An integral operator

In this section, we will examine some inclusion properties of integral operator associated with the function φm(z) as
follow

Tm(z) =

∫ z

0

φm(t)

t
dt, (8)

where φm(z) is given by (2).

Theorem 3.1. A sufficient condition for the function Tm given by (8) to be in the class Sp(α, β) is

(α+ β)
(
(m− 1)em + 1

)
≤ m(1− β). (9)

Theorem 3.2. A sufficient condition for the function Tm given by (8) to be in the class UCV (α, β) is

em(1 + α)m ≤ 1− β. (10)
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Abstract

By applying the q-derivative, we introduce a new subclass of univalent function, so called q-
strongly starlike functions and The class of functions defined bySLq . In the present paper, using
the definition of subordination, we investigation necessary and sufficient condition for function
in this class. Furthermore, we obtain some some upper bounds on the coefficients.

1. Introduction

Let H be the class of all analytic functions in the unite disc D = {z : |z| < 1} on the complex plan C. Let A denote
the subclass of H consisting of functions normalized by f(0) = 0, f ′

(0) = 1. Therefor, a function f ∈ A having the
expansion of the form

f(z) = z +
∞∑

n=2

anz
n (1)

The class of univalent functions in A denoted by S. We say that a function f is subordinate to a function g inD (and
write f ≺ g or f(z) ≺ g(z)) if there exist a Schwarz function w such that f(z) = g(w(z)), z ∈ D. If the function g
is univalent in D, then f ≺ g if and only if f(0) = g(0) and f(D) ⊂ g(D) (See [? ]).
Jacson’s q-derivative of function f(z), introduced by:

Dq,zf(z) =
f(z)− f(qz)

z(1− q)
, z ∈ D, z ̸= 0, |q| < 1.
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We note that Dqf(z) → f ′(z) as q → 1− and Dqf(0) = f ′(0), where f ′ is the ordinary derivative of f .
In the theory of q-calculus, we introduced q-real number [n]q by

[n]q :=
1− qn

1− q
, n ∈ N.

The q-derivative of function f , defined by eqnarray (1) is as follows:

Dqf(z) = 1 +

∞∑

n=2

[n]q anz
n−1, (z ∈ D, 0 < q < 1).

For more details see [? ].
In this paper, we introduced the class SL∗

q of strongly functions as follow

SL∗
q =

{
f ∈ A :

∣∣∣∣∣

(
z
Dqf(z)

f(z)

)2

− 1

1− q

∣∣∣∣∣ ≤
1

1− q

}
.

For f ∈ SL∗
q the image of D under zDqf(z)

f(z) lies in the angular sector

Ω =

{
w ∈ C :

∣∣∣∣w2 − 1

1− q

∣∣∣∣ =
1

1− q

}
.

Remark 1.1. Notice that for fixed q ∈ (0, 1), the set Ω is the interior of the right half plan of the lemniscate
∣∣∣∣w2 − 1

1− q

∣∣∣∣ =
1

1− q
.

2. Subordination Result

Theorem 2.1. Let f(z) ∈ A. Then f(z) ∈ SL∗
q if and only if

z
Dqf(z)

f(z)
≺

(
1 + z

1− z

) 1
2

.
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Proof. Let f(z) ∈ A, we have
∣∣∣∣z
Dqf(z)

f(z)
− 1

1− q

∣∣∣∣ ≤
1

1− q
,

the above inequality is equivalent to
∣∣∣∣∣

(
z
Dqf(z)

f(z)

)2

−M

∣∣∣∣∣ ≤M,M =
1

1− q
> 1.

Therefore, we define the function ψ(z) = 1
M z

Dqf(z)
f(z) − 1 in the unite disc D and so

ϕ(z) =
ψ(z)− ϕ(0)

1− ψ(0)ψ(z)
=

1
M z

Dqf(z)
f(z) − ( 1

M − 1)

1− ( 1
M − 1)( 1

M z
Dqf(z)
f(z) − 1)

. (2)

and then ϕ(0) = 0, |ϕ(z)| < 1. Therefore by the Schwarz Lemma

|ϕ(z)| ≤ |z| . (3)

From (2) and (3), we obtain
(
z
Dqf(z)

f(z)

)2

=
1 + ϕ(z)

1− (1− 1
M )ϕ(z)

=
1 + ϕ(z)

1− qϕ(z)

Since zDqf(z)
f(z) having positive real part in the unite discD, by applying Remark 1.1, we have

z
Dqf(z)

f(z)
=

(
1 + ϕ(z)

1− qϕ(z)

) 1
2

(4)

The equality (2) shows that

z
Dqf(z)

f(z)
≺

(
1 + z

1− qz

) 1
2

..

Conversely, if

z
Dqf(z)

f(z)
≺

(
1 + z

1− qz

) 1
2

.

then, we have

z
Dqf(z)

f(z)
=

(
1 + ϕ(z)

1− qϕ(z)

) 1
2

.

Therefore, we obtain
(
z
Dqf(z)

f(z)

)2

−M =M
1−M
M + ϕ(z)

1 + 1−M
M ϕ(z)

,

on the other hand, the function
(
1−M
M + ϕ(z)

)
/
(
1 + 1−M

M ϕ(z)
)
maps the unit circle onto itself, then we have

∣∣∣∣∣

(
z
Dqf(z)

f(z)

)2

−M

∣∣∣∣∣ =
∣∣∣∣∣M

1−M
M + ϕ(z)

1 + 1−M
M ϕ(z)

∣∣∣∣∣ ≤M.

After this step we can see the desired result.
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3. Coefficient bounds

Theorem 3.1. If the function f(z) ∈ A belongs to the class SL∗
q then

∞∑

k=2

|ak|2
(
(1− q) [k]

2
q − 2

)
≤ 1 + q. (5)

Proof. If SL∗
q , ??? then zDqf(z)

f(z) ≺
(

1+z
1−qz

) 1
2 . Hence

z
Dqf(z)

f(z)
=

(
1 + ϕ(z)

1− qϕ(z)

) 1
2

,

z
Dqf(z)

f(z)
=

(
1 + ϕ(z)

1− qϕ(z)

) 1
2

,

where ϕ(z) satisfies ϕ(0) = 0 and |ϕ(z)| < 1 for |z| < 1.Therefore
(
f2(z) + q (zDf(z))

2
)
ϕ(z) = (zDqf(z))

2 − f2(z) (6)

and using this, we can obtain

2π

∞∑

k=1

|ak|2 r2k + 2πq

∞∑

k=1

|ak|2 [k]2q r2k =

∫ 2π

0

∣∣f(reiθ)
∣∣ dθ + q

∫ 2π

0

∣∣reiθDqf(re
iθ)

∣∣2 dθ

⩾
∫ 2π

0

∣∣∣f2(reiθ) + q
(
reiθDqf(re

iθ)
)2∣∣∣ dθ

⩾
∫ 2π

0

∣∣∣f2(reiθ) + q
(
reiθDqf(re

iθ)
)2∣∣∣

∣∣ϕ(reiθ)
∣∣ dθ

=

∫ 2π

0

∣∣∣
(
reiθDqf(re

iθ)
)2 − f2(reiθ)

∣∣∣ dθ

⩾
∫ 2π

0

∣∣reiθDqf(re
iθ)

∣∣2 dθ −
∫ 2π

0

∣∣f2(reiθ)
∣∣2 dθ

= 2π

∞∑

k=1

|ak|2 [k]2q r2k − 2π

∞∑

k=1

|ak|2 r2k

For 0 ⩽ r < 1 . The extremes in this sequence of inequalities gives

2
∞∑

k=1

|ak|2 r2k ⩾
∞∑

k=1

(1− q) |ak|2 [k]2q r2k, 0 ⩽ r < 1.

Eventually, if we let r → 1−, then we obtain (5).

Corollary 3.2. If the function f(z) ∈ A belongs to the class SL∗
q then

|ak| ⩽
√

1 + q

(1− q) [k]
2
q

,

for k ≥ 2.
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Abstract

In this paper we consider generalized composition operators on wieghted Hilbert spaces of ana-
lytic functions and determine their spectra. Moreover we investigate some classic properties of
these operators.

1. Introduction

In recent years, considerable attention has been given to the delineation of weighted composition operators and gener-
alized composition operator with regard to basic properties like boundedness, compactness, essential norm and some
others. There are many great papers on the investigation of generalized composition operator acting on the spaces of
analytic functions. For instance, one can see [12]. Let D be the unit disk {z ∈ D : |z| < 1} in the complex plane.
Let H(D) be the space of all analytic functions on D. Given a positive integrable function ω ∈ C2[0 , 1], we extend
ω on D by setting ω(z) = ω(|z|) for each z ∈ D. Let ω be the weighted function such that ω(z)dm(z) defines a
finite measure on D, that is ω ∈ L1(D , dm). For such a weighted ω, the weighted space Hω consists of all analytic
functions f on D such that

∥f∥2Hω
= |f(0)|2 + ∥f ′∥2ω

where
∥f ′∥2ω =

∫

D
|f ′

(z)|2ω(z)dm(z) <∞

Let φ be an analytic function maps D into itself and g be an analytic function on D. The generalized composition
operator induced by the map g and φ is defined by the integral operator

I(g,φ)f(z) =

∫ z

0

f ′(φ(ζ))g(ζ)dζ
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We refer the reader to the monographs ([1], [2], [3], [9], [10], [11]). Composition operators on weighted Hilbert space
Hω have been studied by many authors, see for example [4], [8] and the related references therein.

2. Preliminaries
In the this section we gave some useful definitions and auxiliary that are crucial for the paper’s main results. For
a, z ∈ D let σa(z) be the Mobius transformation of D which interchanges 0 and a, that is σa(z) = a−z

1−az . Obviously
σ

′
a(z) = − 1−|a|2

(1−az)2 for every z ∈ D.

For a ∈ D set fa(z) = 1√
ω(a)

(1−|a|2)1+δ

(1−az)1+δ . Then by Lemma3,[12], ∥fa∥Hω
≈ 1.

Lemma 2.1. t1 If ω be a non-increasing and ω(r)(1 − r)−(1+δ) is non-decreasing for some δ > 0, (We say ωis
admissible weight) then there exists C > 0 such that 1

Cω(z) ≤ ω(σa(z)) ≤ Cω(z).

Proof. See lemma 2.1[12]

Definition 2.2. Let φ ∈ Hol(D) such that φ(D) ⊆ D. The generalized counting Nevanlinna function associated to ω
and g is defined for every z ∈ D\φ(0) by

Nφ,ω,g(z) =
∑

φ(a)=z a∈D

∣∣∣∣
g(a)

φ′(a)

∣∣∣∣
2

ω(a)

With definition above consider the function

τφ,ω,g(z) =
Nφ,ω,g(z)

ω(z)

Definition 2.3. [12] Let µ be a positive Borel measure. We say µ is a ω- Carleson measure if there exists cinstant
C > 0 such that for all f ∈ Hω ,

∫
D |f ′(z)|2dµ(z0 ≤ C∥f∥2Hω

3. Main Results
In this section, we determine the spectrum of the generalized composition operators on the space Hω using the ω-
Carleson measures.

Theorem 3.1. Suppose I(g,φ) is a compact operator on the weighted Hilbert space of analytic functions.

(a) If the composition map φ has only one fixed point a in the unit disk then

σ(I(g,φ)) ⊆ {0 , g(a)(φ′
(a))m−1 ; m ∈ N}

(b) If there exists a positive integer n such that φn(z) = z for z ∈ D then

σ(I(g,φ)) ⊆ {λ ∈ C ; λn =
∏n−1

i=0 g ◦ φi(z)}
(c) If φn ̸= Id for every n then σ(I(g,φ)) = {0}.

Proof. (a) For any λ ∈ σ(I(g,φ)) since I(g,φ) is a compact operator then λ is an eigenvalue and for the eigenvector f
of λ, λf(z) = I(g,φ)f(z). So we have that λf

′
(z) = f

′
(φ(z))g(z).

If f ′
(a) ̸= 0 then λf ′

(a) = f
′
(a)g(a) and so λ = g(a).

If f ′
(a) = g(a) = 0 then for f ′

(z) =
∑∞

n=1An(z − a)n, f ′
(φ(z)) =

∑∞
n=1Bn(z − a)n and λ = g(a) g(z) =∑∞

n=1 Cn(z − a)n can to shows that λ = 0.
If f ′

(a) = 0 and g(a) ̸= 0 then by differentiating we have λf ′′
(z) = φ

′
(z)f

′′
(φ(z))g(z) + f

′
(φ(z))g

′
(z) and so
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λ = g(a)φ
′
(a).

Let f ′ have a zero of orderm at a. Form > 1 we have that

λf (m)(z) =

m−1∑

j=1

αjf
(j)(φ(z)) + g(z)(φ

′
(z))m−1f (m)(φ(z))

where f (k) stand for kth derivative of f and α,
js are functions which consists of various products of derivatives of g

and φ(z). The exact values of these are not important to us. Now let z = a. Since f has a zero of order m at a all
the terms in the sum

∑m−1
j=1 αjf

(j)(φ(z)) vanish, and this yield λ = g(a)(φ
′
(a))m−1. The above computation shows

that only possible eigenvalues are of the form g(a)(φ
′
(a))m−1.

(b) It is clear that λnf(z) =
∫ z

0
f

′
(φn(ζ))g(φn−1(ζ)) . . . g(φ(ζ))g(ζ)dζ then we have

λnf
′
(z) = f

′
(z)g(φn−1(z)) . . . g(φ(z))g(z) so λn = g(φn−1(z)) . . . g(φ(z))g(z).

(c) we know that In(g,φ)f(z) = I(
∏n−1

i=0 g◦φi,φn)f(z) =
∫ z

0
f

′
(φn(ζ))g(φn−1(ζ)) . . . g(φ(ζ))g(ζ)dζ. So by lemma

4[12] , change of variable and Fubinis theorem we get

∥In(g,φ)f∥2Hω
=

∫

D
|(f ′ ◦ φng ◦ φn−1 . . . g ◦ φg)(z)|2ω(z)dm(z)

=

∫

D
|(f ′ ◦ φn−1g ◦ φn−2 . . . g ◦ φg)(φ(z))|2|g(z)|2ω(z)dm(z)

=

∫

D
|(f ′ ◦ φn−1g ◦ φn−2 . . . g ◦ φg)(z)|2dµω,g,φ(z)

≤
∫

D
|(f ′ ◦ φn−1g ◦ φn−2 . . . g ◦ φg)(λ)|2ω(λ)(

∫

E(z,r)

dµω,g,φ(z)

ω(z)(1− |z|2)2 )dm(λ)

Since χE(z,r) = χE(λ,r) and 1− |λ|2 ≈ 1− |z|2 for all z ∈ D, we get

∥I(g,φ)f∥2Hω
=

∫

D
|(f ′ ◦ φn−1g ◦ φn−2 . . . g ◦ φg)(λ)|2ω(λ)µω,g,φ(E(λ, r))

ω(λ)(1− |λ|2)2 )dm(λ)

Now consider the right hand side of the last inequality. Since I(g,φ) is compact then µω,g,φ is vanishing ω- Carleson
measure. Then for a given ϵ > 0 there exists r ∈ (0 , 1) such that

∫
|z|>r

|(f ′ ◦ φn−1g ◦ φn−2 . . . g ◦ φg)(z)|2ω(z)µω,g,φ(E(z, r))

ω(z)(1− |z|2)2 )dm(z)

≤ C1ϵ

∫

|z|>r

|(f ′ ◦ φn−1g ◦ φn−2 . . . g ◦ φg)(z)|2ω(z)dm(z)

= C1ϵ

∫

|z|>r

|(f ′ ◦ φn−2g ◦ φn−3 . . . g ◦ φg)(φ(z))|2|g(z)|2ω(z)dm(z)

= C1ϵ

∫

|z|>r

|(f ′ ◦ φn−2g ◦ φn−3 . . . g ◦ φg)(z)|2dµω,g,φ(z)

≤
∫

D
|(f ′ ◦ φn−2g ◦ φn−3 . . . g ◦ φg)(λ)|2ω(λ)(

∫

E(z,r)

dµω,g,φ(z)

ω(z)(1− |z|2)2 )dm(λ)

≤ C1C2ϵ
2

∫

|z|>r

|(f ′ ◦ φn−3g ◦ φn−4 . . . g ◦ φg)(z)|2dµω,g,φ(z)
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By induction we have that

∥In(g,φ)f∥2Hω
≤ C1C2 . . . Cnϵ

n

∫

D
|f ′

(z)|ω(z)dm(z)

≤ ϵ2nM

Choose ϵ > 0 so that |g(ζ)| < ϵ, and let U ⊆ D be an open neighborhood of ζ such that |g(z)| < ϵ. Now choose
r > 0 so that {ζ ; | ζ−r

1−ζr
|} ⊆ U . Therefor, for m ≥ 0 and z ∈ {ζ ; | ζ−r

1−ζr
|}, |g(φm(z))| < ϵ. Thus, since g and f

continues and for constant C we get

∫
|z|≤r

|f ′
(φn−1(z))g(φn−2(z)) . . . g(φ(z))g(z)|2ω(z)µω,g,φ(E(z, r))

ω(z)(1− |z|2)2 )dm(z)

≤ ϵ2(n−m−1)M
2(m+1)
1

∫

D
µω,g,φ(E(z, r))dm(z)

≤ ϵ2(n−m−1)M
2(m+1)
1 C

≤ ϵ2nN

Hence we have

∥In(g,φ)f∥
2
n

Hω
≤ ϵ2(M +N)

1
n

Since ϵ is arbitrary, we get limn→∞(∥In(g,φ)f∥2Hω
)

1
n = 0.

Theorem 3.2. Let I(g,φ) ∈ B(Hω). Then σp(I(g,φ)) ⊆ {λ ∈ C ; |λ|2 = 2|λ|∥I(g,φ)∥+ ∥I(g,φ)∥2} ∪ {0}.

Proof. Let 0 ̸= λ ∈ C be such that λ ∈ σp(I(g,φ)), then there exists a function 0 ̸= f ∈ Hω such that (λI−I(g,φ))f =
0. Since I(g,φ)f(0) = 0 then we have

0 = ∥λf − I(g,φ)f∥2Hω

= |λf(0)− I(g,φ)f(0)|2 +
∫

D
|λf ′

(z)− I
′
(g,φ)f(z)|2ω(z)dm(z)

≥ |λf(0)|2 +
∫

D
(|λf ′

(z)| − |I ′
(g,φ)f(z)|)2ω(z)dm(z)

≥ |λf(0)|2 +
∫

D
(|λf ′

(z)|2 − |I ′
(g,φ)f(z)|2 − 2|λf ′

(z)||I ′
(g,φ)f(z)|)ω(z)dm(z)

= |λf(0)|2 +
∫

D
|λf ′

(z)|2ω(z)dm(z)−
∫

D
|I ′

(g,φ)f(z)|2ω(z)dm(z)

− 2

∫

D
|λf ′

(z)||I ′
(g,φ)f(z)|ω(z)dm(z)

≥ |λ|2(|f(0)|2 + ∥f ′∥2ω)− (|I(g,φ)f(0)|2 + ∥I ′
(g,φ)f(z)∥2ω)− 2|λ|∥f ′∥2ω(|I(g,φ)f(0)|2 + ∥I ′

(g,φ)f(z)∥2ω)
1
2

= |λ|2∥f∥2Hω
− ∥I(g,φ)f∥2Hω

− 2|λ|∥f ′∥ω∥I(g,φ)∥∥f∥Hω

≥ |λ|2∥f∥2Hω
− ∥I(g,φ)∥2∥f∥2Hω

− 2|λ|∥f∥Hω
∥I(g,φ)∥∥f∥Hω

= (|λ|2 − 2|λ|∥I(g,φ)∥ − ∥I(g,φ)∥2)∥f∥2Hω

and hence λ ∈ {λ ∈ C ; |λ|2 = 2|λ|∥I(g,φ)∥+ ∥I(g,φ)∥2}.
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Theorem 3.3. Let ω be an admissible weight and I(g,φ) be abounded operator onHω . Then the following are equiv-
alent.

1. The operator I(g,φ) : Hω → Hω has closed range.
2. There exists a constant C > 0 such that for all f ∈ Hω

∫

D
|f ′

(z)|2dµω,g,φ(z) ≥ C

∫

D
|f ′

(z)|2ω(z)dm(z)

Proof. If φ(0) = 0 then we can consider I(g,φ) acting onHω , the closed subspaces ofHω consisting all function with
f(0) = 0. Not that I(g,φ) has closed range if and only if be an bounded bellow. Using change of variable formula, we
get

∥I(g,φ)f∥2Hω
=

∫

D
|f ′

(φ(z))|2|g(z)|2ω(z)dm(z)

=

∫

D
|f ′

(z)|2dµω,g,φ(z)

Thus in this case the proof is complete. If φ(0) = a ̸= 0, define the function ψ = σa ◦ φ. Then
∫

D
|f ′

(ψ(z))|2|g(z)|2ω(z)dm(z) =

∫

D
|f ′ ◦ σa(φ(z))|2|g(z)|2ω(z)dm(z)

=

∫

D
|f ′ ◦ σa(z)|2dµω,g,φ(z)

≥ C

∫

D
|f ′

(σa(z))|2ω(z)dm(z)

By Lemma ??and change of variable formula we get
∫

D
|f ′

(σa(z))|2ω(z)dm(z) ≥ (
1− |a|2

4
)2

∫

D
|f ′

(z)|2ω(z)dm(z)

Since φ = σa ◦ ψ the proof of converse part is similar.

Example 3.4. Suppose that I(g,φ) : Hω → Hω be abounded operator and φ is an authomorphism of D. Then put

g(z) = φ
′
(z)

1−|φ(z)|2 . If φ(0) = 0 schwarz Lemma implies that |φ−1(z)| ≤ |z|. Since ω is non-increasing, ω(φ−1(z)) =

ω(|φ−1(z)|) ≥ ω(|z|) = ω(z). now,
∫

D
|f ′

(z)|2dµω,g,φ(z) =

∫

D
|f ′

(φ(z))|2|g(z)|2ω(z)dm(z)

=

∫

D
|f ′

(φ(z))|2| φ
′
(z)

1− |φ(z)|2 |
2ω(z)dm(z)

≥ 1

4
C

∫

D
|f ′

(z)|2ω(z)dm(z)

If φ(0) ̸= 0 then the same argument be applied.

In this section we charactterize the boundedness, compactness and investigated closed range of the generalized com-
position operators on the space Hω using the generalized counting Nevanlinna function. Also we give a Hiklbert -
Schmidtcharacterization for this operators
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Theorem 3.5. Let ω be an admissible weight and φ ∈ Hω . If

sup
|z|<1

Nω,g,φ(z)

ω(z)
< ∞ (1)

Then I(g,φ) is bounded operator on Hω .

Proof. Suppose that (2.1) is satisfied. The bounded ness of Ig,φ follows from the change of variable formula:

||Ig,φf ||2Hω
= |Ig,φf(0)|

+

∫

D
|f ′(φ(z))|2|g(z)|2ω(z)dm(z)

=

∫

φ(D)
|f ′(z)|2Nφ,ω,g(z)dm(z)

≤ c

∫

D
|f ′(z)|2ω(z)dm(z)

≤ c||f ||2Hω

Theorem 3.6. Let ω be an admissible weight and φ ∈ Hω . If

lim
|z|→1−

Nω,g,φ(z)

ω(z)
= 0 (2)

Then Ig,φ is compact operator on Hω .

Proof. Assume that (2.2) is satisfied. Let (fn)n be a sequence in the unit ball ofHω converging to 0weakly. It suffices
to show that ||Ig,φfn||Hω → 0 as n → ∞. The weak convergence of fn implies that fn(z) → 0 and f ′n(z) → 0
uniformly on compact subsets of D. Let ϵ > 0 there exists ρϵ ∈ ( 12 , 1) such that

Nφ,ω,g ≤ ϵω(z) for ρϵ < |z| < 1

By the change of variable formula

||Ig,φfn||2Hω
= |Ig,φfn(0)|

+

∫

D
|f ′n(φ(z))|2|g(z)|2ω(z)dm(z)

=

∫

φ(D)
|f ′n(z)|2Nφ,ω,g(z)dm(z)

≤
∫

ρϵ(D)
|f ′n(z)|2Nφ,ω,g(z)dm(z)

+ ϵ

∫

φ(D)\ρϵ(D)
|f ′n(z)|2ω(z)dm(z)

≤ ϵ

The conclusion easy follows since f ′n uniformly converges to 0 on the closed disk ρϵ(D).
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Theorem 3.7. Let ω be an admissible weight and Ig,φ be abounded operator on Hω . Then the operator Ig,φ has
closed range if and only if there exists a constant C > 0 such that for all f ∈ Hω

∫

D
|f ′

(z)|2τφ,ω,g(z)ω(z)dm(z) ≥

C

∫

D
|f ′

(z)|2ω(z)dm(z)

Proof. If φ(0) = 0 then we can consider Ig,φ acting on Hω , the closed subspaces of Hω consisting all function with
f(0) = 0. Not that Ig,φ has closed range if and only if be an bounded bellow. Using change of variable formula, we
get

∥Ig,φf∥2Hω
=

∫

D
|f ′

(φ(z))|2|g(z)|2ω(z)dm(z)

=

∫

D
|f ′

(z)|2Nφ,ω,g(z)dm(z)

=

∫

D
|f ′

(z)|2τφ,ω,g(z)ω(z)dm(z)

Thus in this case the proof is complete. If φ(0) = a ̸= 0, define the function ψ = σa ◦ φ. Then
∫

D
|f ′

(ψ(z))|2|g(z)|2ω(z)dm(z) =

∫

D
|f ′ ◦ σa(φ(z))|2|g(z)|2ω(z)dm(z)

=

∫

D
|f ′ ◦ σa(z)|2τφ,ω,g(z)ω(z)dm(z)

≥ C

∫

D
|f ′

(σa(z))|2ω(z)dm(z)

By change of variable formula we get
∫

D
|f ′

(σa(z))|2ω(z)dm(z) ≥ (
1− |a|2

4
)2

∫

D
|f ′

(z)|2ω(z)dm(z)

Since φ = σa ◦ ψ the proof of converse part is similar.

Example 3.8. Suppose that Ig,φ : Hω → Hω be abounded operator and φ is an authomorphism of D. Then put
g(z) = φ

′
(z). If φ(0) = 0 schwarz Lemma implies that |φ−1(z)| ≤ |z|. Since ω is non-increasing, ω(φ−1(z)) =

ω(|φ−1(z)|) ≥ ω(|z|) = ω(z). now,
∫

D
|f ′

(z)|2τφ,ω,g(z)ω(z)dm(z) =

∫

D
|f ′

(φ(z))|2|g(z)|2ω(z)dm(z)

=

∫

D
|f ′

(φ(z))|2|φ′
(z)|2ω(z)dm(z)

≥
∫

D
|f ′

(z)|2ω(z)dm(z)

If φ(0) ̸= 0 then the same argument be applied.



66 A. Alishahi / The 3rd National Congress on Mathematics and Statistics

Theorem 3.9. Let ω be a wight. Then Ig,φ : Hω → Hω is Hilbert - Schmidt if and only if
∫

D
∥Rz∥Nφ,ω,g(z)ω(z)dm(z) <∞

, where Rz is the reproducing kernel of the wieghted Bergman space A2
ω .

Proof. Note that { zn

∥zn∥Hω
} is an orthonormal basis forHω . This implies that

∞∑

n=1

∥Ig,φ(
zn

∥zn∥Hω

)∥ =

∞∑

n=1

∫

D

n2|φ(z)|2(n−1)

∥zn∥2ω
|g(z)|2ω(z)dm(z)

=

∞∑

n=1

∫

D

n2|z|2(n−1)

∥zn∥2ω
Nφ,ω,g(z)ω(z)dm(z)

=
∞∑

n=1

∫

D

|z|2n
pn

Nφ,ω,g(z)ω(z)dm(z)

=

∫

D
∥Rz∥Nφ,ω,g(z)ω(z)dm(z)

This completes the proof.

Theorem 3.10. Let ω1 and ω2 are the admissible weights and φ : D → D analytic. If

sup
|z|<1

Nφ,ω2,g(z)

ω1(z)
< ∞ (3)

Then Ig,φ : Hω1 → Hω2 is bounded operator.

Proof. Suppose that (2.3) is satisfied. The bounded ness of Ig,φ follows from the change of variable formula:

||Ig,φf ||2Hω2
= |Ig,φf(0)|
+ intD|f ′(φ(z))|2|g(z)|2ω2(z)dm(z)

=

∫

φ(D)
|f ′(z)|2Nφ,ω2,g(z)dm(z)

≤ c

∫

D
|f ′(z)|2ω1(z)dm(z)

≤ c||f ||2Hω1

Theorem 3.11. Let ω1 and ω2 are the admissible weights and φ ∈ Hω . If

lim
|z|→1−

Nφ,ω2,g(z)

ω1(z)
= 0 (4)

Then Ig,φ : Hω1 → Hω2 is compact operator.
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Proof. Assume that (2.4) is satisfied. Let (fn)n be a sequence in the unit ball of Hω1
converging to 0 weakly. It

suffices to show that ||Ig,φfn||Hω2
→ 0 as n → ∞. The weak convergence of fn implies that fn(z) → 0 and

f ′n(z) → 0 uniformly on compact subsets of D. Let ϵ > 0 there exists ρϵ ∈ ( 12 , 1) such that

Nφ,ω2,g ≤ ϵω1(z) for ρϵ < |z| < 1

By the change of variable formula

||Ig,φfn||2Hω2
= |Ig,φfn(0)|

+

∫

D
|f ′n(φ(z))|2|g(z)|2ω2(z)dm(z)

=

∫

φ(D)
|f ′n(z)|2Nφ,ω2,g(z)dm(z)

≤
∫

ρϵ(D)
|f ′n(z)|2Nφ,ω2,g(z)dm(z)

+ ϵ

∫

φ(D)\ρϵ(D)
|f ′n(z)|2ω1(z)dm(z)

≤ ϵ

The conclusion easy follows sine f ′n uniformly converges to 0 on the closed disk ρϵ(D).
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Abstract

In this paper, we investigate the notion of g-fusion frames in Hilbert spaces.We study perturba-
tions of g-fusion frames.

1. Introduction

Frames for Hilbert space were first introduced byDuffin and Schaeffer [8] in 1952. Daubechies, Grossmann andMeyer
[7] reintroduced frames, in 1986 [7] and considered from then. Frame theory has applications in signal processing,
image processing, data compression and sampling theory.
Orthonormal bases are special case of frames in Hilbert space. Any element in Hilbert can be present as an infinite
linear combination, not necessary unique, of the frame element. For more information, readers can refer to [3] and [9].
Some new type and generalization of frame were introduced by researcher such as fusion frames, g-frames, woven
frames, etc. Frame of subspaces or fusion frames are a generalization of frames which were introduced by Cassaza
and Kutyniok [4] in 2003 and were investigated in [1, 2, 5, 6, 10–12]. Generalized frames or in abbreviation g-frames
were introduced by Sun [14] in 2006. Most recently, g-fusion frames in Hilbert space were introduced by Sadri et.al.
[13].
In this paper, motivated and inspired by the above-mentioned works we introduce the concept of g-fusion frame. This
frame includes g-frames and fusion frames. We study perturbations of g-fusion frames.

2. Basic definitions and Preliminaries

As a preliminary of frames, at the first, we mention fusion frames. Also we review g-frames, g-fusion frames and
woven frames . Through of this paper, I is the indexing set where it can be finite or infinity countable set. Also, H
and Hi are separable Hilbert spaces and B(H,Hi) is the collection of all the bounded linear operators of H into Hi.
IfH = Hi, then B(H,H) will be denoted by B(H) and P is the orthogonal projection.
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Definition 2.1. Let {vi}i∈I be a family of real weights such that vi > 0 for all i ∈ I . A family of closed subspaces
{Wi}i∈I of a Hilbert spaceH is called a fusion frame (or frame of subspaces) forH with respect to weights {vi}i∈I ,
if there exist constants C,D > 0 such that

C||f ||2 ≤
∑

i∈I
v2i ||PWi

(f)||2 ≤ D||f ||2, ∀f ∈ H, (1)

where PWi
is the orthogonal projection of H to Wi. The constants C and D are called the lower and upper fusion

frame bounds, respectively. If the right inequality in (1) holds, the family of subspace {Wi}i∈I is called a Bessel
sequence of subspaces with respect to {vi}i∈I with Bessel boundD. Also is called tight fusion frame with respect to
{vi}i∈I , if C = D and is called Parseval fusion frame, if C = D = 1. We say {Wi}i∈I an orthogonal fusion basis
forH, ifH =

⊕
i∈I Wi.

Definition 2.2. The fusion frame {Wi}i∈I with respect to some family of weights is called a Riesz decomposition of
H, if for every f ∈ H, there is a unique choice of fi ∈ Wi so that f =

∑
i∈I fi.

For each family of subspaces {Wi}i∈I ofH, the representation space:
(∑

i∈I
⊕Wi

)

ℓ2

=

{
{fi}i∈I |fi ∈ Wi and

∑

i∈I
||fi||2 < ∞

}
,

with inner product ⟨
{fi}i∈I , {gi}i∈I

⟩
=
∑

i∈I

⟨
fi, gi

⟩
,

is a Hilbert space. This space is needed in the studying of fusion systems.

Definition 2.3. Let {Wi}i∈I be a fusion frame family for H with respect to {vi}i∈I . Then the analysis operator for
{Wi}i∈I with weights {vi}i∈I is defined by:

UW,v : H →
(∑

i∈I
⊕Wi

)

ℓ2

, UW,v(f) = {viPWi(f)}i∈I .

The adjoint of UW,v is called the synthesis operator, we denote TW,v = U∗
W,v .

By elementary calculation, we have

TW,v :

(∑

i∈I
⊕Wi

)

ℓ2

→ H, TW,v({fi}i∈I) =
∑

i∈I
viPWifi.

Like discrete frames, the fusion frame operator for {Wi}i∈I with respect to {vi}i∈I is the composition of analysis
and synthesis operators,

SW,v : H → H, SW,v(f) = TW,vUW,v(f) =
∑

i∈I

v2i PWi(f), ∀f ∈ H.

Definition 2.4. Let {Hi}i∈I be a family of Hilbert spaces. We call Λ = {Λi ∈ B(H,Hi), i ∈ I} a g-frame for H
with respect to {Hi}i∈I , or simply, a g-frame for H , if there exist two positive constants C,D such that

C||f ||2 ≤
∑

i∈I
||Λif ||2 ≤ D||f ||2, ∀f ∈ H. (2)

The positive numbersC andD are called the lower and upper g-frame bounds, respectively. We callΛ a tight g-frame,
if C = D and we call it a Parseval g-frame, if C = D = 1. If only the second inequality holds, we call it g-Bessel
sequence. If Λ is a g-frame, then the g-frame operator SΛ is defined by

SΛf =
∑

i∈I
Λ∗
iΛif, f ∈ H,
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which is a bounded, positive and invertible operator such that

CI ≤ SΛ ≤ DI,

and for each f ∈ H, we have

f = SΛS
−1
Λ f = S−1

Λ SΛf =
∑

i∈I
S−1
Λ Λ∗

iΛif =
∑

i∈I
Λ∗
iΛiS

−1
Λ f.

The canonical dual g-frame for Λ is defined by {ΛiS
−1
Λ }i∈I with bounds 1

D , 1
C . In other words, {ΛiS

−1
Λ }i∈I and

{Λi}i∈I are dual g-frames with respect to each other.

It is easy to show that by lettingHi = Wi, Λi = PWi and vi = 1, a fusion frame is a g-frame.
Let (∑

i∈I
⊕Hi

)

ℓ2

=

{
{fi}i∈I |fi ∈ Hi and

∑

i∈I
||fi||2 < ∞

}
,

with the inner product defined by ⟨
{fi}i∈I , {gi}i∈I

⟩
=
∑

i∈I

⟨
fi, gi

⟩
,

is a Hilbert space.

Definition 2.5. LetW = {Wi}i∈I be a family of closed subspaces ofH, {vi}i∈I be a family of weights, i.e. vi > 0
and Λi ∈ B(H,Hi) for all i ∈ I . We say Λ := (Λi,Wi, vi) is a generalized fusion frame (or g-fusion frame) for H,
if there exists 0 < A ≤ B < ∞ such that for each f ∈ H

A||f ||2 ≤
∑

i∈I
v2i ||ΛiPWi

f ||2 ≤ B||f ||2. (3)

We call Λ a Parseval g-fusion frame, if A = B = 1. When the right hand of (3) holds, Λ is called a g-fusion Bessel
sequence for H with bound B. If Hi = H for all i ∈ I and Λi = IH, then we get the fusion frame (Wi, vi) for H.
Throughout this paper, Λ will be a triple (Λi,Wi, vi) with i ∈ I unless otherwise stated.

Definition 2.6. Let Λ be a g-fusion frame forH. Then, the analysis operator for Λ is defined by

UΛ : H →
(∑

i∈I
⊕Hi

)

ℓ2

, UΛ(f) = {viΛiPWi
(f)}i∈I .

The adjoint of UΛ is called the synthesis operator, we denote TΛ = U∗
Λ.

By the elementary calculation, we have

TΛ :

(∑

i∈I
⊕Hi

)

ℓ2

→ H, TΛ({fi}i∈I) =
∑

i∈I
viPWi

Λ∗
i fi.

The g-fusion frame operator Λ is the composition of analysis and synthesis operators,

SΛ : H → H, SΛf = TΛUΛ(f) =
∑

i∈I
v2i PWi

Λ∗
iΛiPWi

f.

We have ⟨
SΛf, f

⟩
=
∑

i∈I
v2i ||ΛiPWi

f ||2.

Therefore
AI ≤ SΛ ≤ BI.

This means that SΛ is bounded, positive and invertible operator (with adjoint inverse). So, we have the reconstruction
formula for any f ∈ H

f =
∑

i∈I
v2i PWiΛ

∗
iΛiPWiS

−1
Λ f =

∑

i∈I
v2i S

−1
Λ PWiΛ

∗
iΛiPWif.
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3. Main results

In this section we obtain important results about g-fusion frames.

Definition 3.1. Let Λ = (Λi,Wi, vi) be a g-fusion frame. Let V = {Vi}i∈I be a family of closed subspaces of
H, and Γi ∈ B(H,Hi) for all i ∈ I, also let 0 ≤ λ1, λ2 < 1. Let {ci}i∈I be an arbitrary sequence of positive
numbers such that

∑
i∈I(vici)

2 < ∞. We say that the family Γ = (Γi, Vi, vi) is a (λ1, λ2, {ci}i∈I)−perturbation of
Λ = (Λi,Wi, vi) if we have

∥ΛiPWi
(f)− ΓiPVi

(f)∥ ≤ λ1∥ΛiPWi
(f)∥+ λ2∥ΓiPVi

(f)∥+ ci∥f∥, (f ∈ H).

Now we obtain the following theorem under this definition.

Theorem3.2. LetΛ = (Λi,Wi, vi) be a g-fusion framewith g-fusion frame boundsA,B andV = {Vi}i∈I be a family
of closed subspaces of H, and Γi ∈ B(H,Hi) for all i ∈ I . let Γ = (Γi, Vi, vi) be a (λ1, λ2, {ci}i∈I)−perturbation
of Λ = (Λi,Wi, vi). Suppose that
(1− λ1)

√
A > (

∑
i∈I(vici)

2)
1
2 . Then (Γi, Vi, vi) is a g-fusion frame with g-fusion frame bounds

(
(1− λ1)

√
A− (

∑
i∈I(vici)

2)
1
2

1 + λ2
)2 and (

(1 + λ1)
√
B + (

∑
i∈I(vici)

2)
1
2

1− λ2
)2

.

Theorem 3.3. Let Λ = (Λi,Wi, vi) be a g-fusion frame with g-fusion frame bounds A,B and V = {Vi}i∈I be a
family of closed subspaces of H, and Γi ∈ B(H,Hi) for all i ∈ I . If there exists an 0 < R < A such that

∑

i∈I
v2i ∥AiΛiPWi(f)−BiΓiPVi(f)∥2 ≤ R∥f∥2

for all f ∈ H.Suppose that
0 < A′ = inf

i∈I
Ai ≤ sup

i∈I
Ai = A′′ < ∞,

and
0 < B′ = inf

i∈I
Bi ≤ sup

i∈I
Bi = B′′ < ∞,

then (Γi, Vi, vi) is a g-fusion frame with g-fusion frame bounds

A(
A′−

√
R
A

B′′ )2 and B(
A′′+

√
R
B

B′ )2.

Proposition 3.4. Let (Λi,Wi, vi) and (Γi, Vi, ui) be g-fusion Bessel sequences with g-fusion Bessel boundsA and C,
respectively, and T ∗

ΓTΛ = idH. Then (Λi,Wi, vi) and (Γi, Vi, ui) are g-fusion frame.

Proof. For any f ∈ H we have

∥f∥4 = (⟨TΛ(f), TΓ(f)⟩)2 ≤ ∥TΛ∥2∥TΓ∥2

= (
∑

i∈I
v2i ∥ΛiPWi(f)∥2)(

∑

i∈I
u2
i ∥ΓiPVi(f)∥2) ≤ C∥f∥2(

∑

i∈I
v2i ∥ΛiPWi(f)∥2).

Therefore 1
C ∥f∥2 ≤∑i∈I v2i ∥ΛiPWi

(f)∥2. Similarly we obtain a lower bound for (Γi, Vi, ui).

Theorem 3.5. Let Λ = (Λi,Wi, vi) be a g-fusion frame with g-fusion frame bounds A,B and V = {Vi}i∈I be a
family of closed subspaces of H, and Γi ∈ B(H,Hi) for all i ∈ I . Then the following are equivalent:

(i) (Γi, Vi, vi) is a g-fusion frame.

(ii) There exists a constant M > 0, such that for all f ∈ H, we have

∥
∑

i∈I
vi⟨(ΛiPWi − ΓiPVi)(f), (ΛiPWi − ΓiPVi)(f)⟩∥

≤ M min
(
∥
∑

i∈I
v2i ⟨ΛiPWi

(f),ΛiPWi
(f)⟩∥, ∥

∑

i∈I
v2i ⟨ΓiPVi

(f),ΓiPVi
(f)⟩∥

)
. (4)
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Abstract

This paper is concernedwith the existence of two non-trivial weak solutions for a p(x)-biharmonic
problem of the following form

{
∆(|∆u|p(x)−2∆u) + |u|p(x)−2u = λ(x)|u|q(x)−2u+ µ(x)|u|γ(x)−2u in Ω,
u = ∆u = 0 on ∂Ω,

by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland’s variational
principle.

1. Introduction

In this paper, we study the following problem
{

∆(|∆u|p(x)−2∆u) + |u|p(x)−2u = λ(x)|u|q(x)−2u+ µ(x)|u|γ(x)−2u in Ω,
u = ∆u = 0 on ∂Ω, (1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω, p(x), q(x),γ(x) ∈ C(Ω), infΩ p(x) > 1,
infΩ q(x) > 1 and infΩ γ(x) > 1.
In recent years, the study of differential equations and variational problems with p(x)-growth conditions has been an
interesting topic, which arises from nonlinear electrorheological fluids and elastic mechanics. In that context we refer
the reader to Ruzicka [15], Zhikov [19] and the reference therein and also see [5, 6, 9, 10].
Fourth order equations appear in many contexts. Some of these problems come from different areas of applied mathe-
matics and physics such as Micro Electro-Mechanical systems, thin film theory, surface diffusion on solids, interface
dynamics, flow in Hele-Shaw cells, and phase field models of multiphase systems (see [11]) and the references therein.
In addition, this type of equation can describe the static from change of the beam, sport of rigid body. The study of
fourth order equations with variable exponents is a new and interesting topic. We refer the readers to some recent
works [2, 3, 12]. In [2], A. Ayoujil et al. firstly studied the spectrum of a fourth order elliptic equation with variable
exponent.

Email address: m.mirzapour@cfu.ac.ir ( Maryam Mirzapour )

https://conf.gonbad.ac.ir/msc1400
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In [3], El Amrouss et al. studied a class of p(x)-biharmonic of the form
{

∆(|∆u|p(x)−2∆u) = λ|u|p(x)−2u+ f(x, u) in Ω,
u = ∆u = 0 on ∂Ω, (2)

where Ω is a bounded domains in RN , with smooth boundary ∂Ω, N ≥ 1, λ ≤ 0 and some assumptions on the
Carathéodory function f : Ω× R → R. They obtained the existence and multiplicity of solutions.
L. Li et al. [12] have considered the above problem and using variational methods, under suitable assumptions on the
Carathéodory function f , they established the existence of at least one solution and infinitely many solutions of the
problem.
Inspired by the above references and the work of M. Mihăilescu et al. [14], the aim of the present paper is to study the
existence of two non-trivial weak solutions for problem (1).

2. Notations and Preliminaries

For the reader’s convenience, we recall some necessary background knowledge and propositions concerning the gen-
eralized Lebesgue-Sobolev spaces.
Let Ω be a bounded domain of RN , denote

C+(Ω) = {h(x); h(x) ∈ C(Ω), h(x) > 1, ∀x ∈ Ω}.

For any h ∈ C+(Ω), we define h+ = max{h(x) : x ∈ Ω}, h− = min{h(x) : x ∈ Ω}. For any p ∈ C+(Ω), we
define the variable exponent Lebesgue space

Lp(x)(Ω) =
{
u : u is a measurable real-valued function such that

∫

Ω

|u(x)|p(x) dx <∞
}
,

endowed with the so-called Luxemburg norm

|u|p(x) = inf

{
µ > 0;

∫

Ω

∣∣∣∣
u(x)

µ

∣∣∣∣
p(x)

dx ≤ 1

}

and (Lp(x)(Ω), | · |p(x)) becomes a Banach space.

Proposition 2.1 (See [10]). The space (Lp(x)(Ω), | · |p(x)) is separable, uniformly convex, reflexive and its conjugate
space is Lq(x)(Ω) where q(x) is the conjugate function of p(x), i.e.,

1

p(x)
+

1

q(x)
= 1,

for all x ∈ Ω. For u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have
∣∣∣∣
∫

Ω

uv dx

∣∣∣∣ ≤
(

1

p−
+

1

q−

)
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

The Sobolev space with variable exponentW k,p(x)(Ω) is defined as

W k,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k

}
,

whereDαu = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂x

αN
N

u, withα = (α1, . . . , αN ) is a multi-index and |α| = ∑N
i=1 αi. The spaceW k,p(x)(Ω)

equipped with the norm
∥u∥k,p(x) =

∑

|α|≤k

|Dαu|p(x),
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also becomes a separable and reflexive Banach space. For more details, we refer the reader to [7, 10, 13, 17]. Denote

p∗k(x) =

{
Np(x)

N−kp(x) if kp(x) < N,

+∞ if kp(x) ≥ N

for any x ∈ Ω, k ≥ 1.

Proposition 2.2 (See [10]). For p, r ∈ C+(Ω) such that r(x) ≤ p∗k(x) for all x ∈ Ω, there is a continuous embedding

W k,p(x)(Ω) ↪→ Lr(x)(Ω).

If we replace ≤ with <, the embedding is compact.

We denote by W k,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W k,p(x)(Ω). Note that the weak solutions of problem (1) are
considered in the generalized Sobolev space

X =W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω)

equipped with the norm

∥u∥ = inf
{
µ > 0 :

∫

Ω

(∣∣∣∆u(x)
µ

∣∣∣
p(x)

+ λ
∣∣∣u(x)
µ

∣∣∣
p(x))

dx ≤ 1

}
.

Remark 2.3. According to [18], the norm ∥ · ∥2,p(x) is equivalent to the norm |∆.|p(x) in the spaceX . Consequently,
the norms ∥ · ∥2,p(x), ∥ · ∥ and |∆ · |p(x) are equivalent.

Proposition 2.4 (See El Amrouss et al. [3]). If we denote ρ(u) =
∫
Ω
(|∆u|p(x) + |u|p(x)) dx, then for u, un ∈ X , we

have

(a)∥u∥ < 1(respectively = 1;> 1) ⇐⇒ ρ(u) < 1(respectively = 1;> 1);

(b)∥u∥ ≤ 1 ⇒ ∥u∥p+ ≤ ρ(u) ≤ ∥u∥p−
;

(c)∥u∥ ≥ 1 ⇒ ∥u∥p− ≤ ρ(u) ≤ ∥u∥p+

;

(d)∥un∥ → 0 (respectively → ∞) ⇐⇒ ρ(un) → 0 (respectively → ∞).

The Euler-Lagrange functional associated to (1) is given by

I(u) =

∫

Ω

(
1

p(x)
|∆u|p(x) + |u|p(x)

)
dx−

∫

Ω

λ(x)

q(x)
|u|q(x) dx−

∫

Ω

µ(x)

γ(x)
|u|γ(x) dx.

It is easy to verify that I ∈ C1(X,R) is weakly lower semi-continuous with the derivative given by

⟨I ′(u), v⟩ =
∫

Ω

(|∆u|p(x)−2∆u∆v + |u|p(x)−2uv) dx−
∫

Ω

λ(x)|u|q(x)−1uv dx

−
∫

Ω

µ(x)|u|γ(x)−1uv dx,

for all u, v ∈ X . Thus, we notice that we can seek weak solutions of (1) as critical point of the energetic functional
I . Let us define the functional

J(u) =

∫

Ω

1

p(x)
(|∆u|p(x) + |u|p(x)) dx.

It is well known that J is well defined, even and C1 in X . Moreover, the operator L = J ′ : X → X∗ defined as

⟨L(u), v⟩ =
∫

Ω

(|∆u|p(x)−2∆u∆v + |u|p(x)−2uv) dx

for all u, v ∈ X satisfies the following assertions.
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Proposition 2.5 (See El Amrouss et al. [3]).

(a′) L is continuous, bounded and strictly monotone.
(b′)L is a mapping of (S+) type, namely

un ⇀ u and lim sup
n→+∞

L(un)(un − u) ≤ 0, implies un → u.

(c′) L is a homeomorphism.

3. Main results

In this section, we discuss the existence of two non-trivial weak solutions of (1) by using the mountain pass theorem
of Ambrosetti and Rabinowitz and Ekland’s variational principle. For simplicity, we use C, C ′, ci, αi, i = 1, 2, . . .
to denote the general positive constant (the exact value may change from line to line). Hereafter, λ(x), µ(x), q(x)
and γ(x) are always supposed to verify

(�M)1 λ, µ ∈ L∞(Ω),

(�M)2 there exists an x0 ∈ Ω and two positive constants r and R with 0 < r < R such that BR(x0) ⊂ Ω and
λ(x) = 0 = µ(x) for x ∈ BR(x0)\Br(x0) while λ(x) > 0 and µ(x) > 0 for x ∈ Ω\BR(x0) \Br(x0),

(Q�)1 q, γ ∈ C+(Ω) and 1 ≤ q(x), γ(x) < p∗2(x) for any x ∈ Ω,

(Q�)2 eithermax
Br(x0)

{q, γ} < p− ≤ p+ < min
Ω\BR(x0)

{q, γ}, ormax
Ω\BR(x0)

{q, , γ} < p− ≤ p+ < min
Br(x0)

{q, γ}.

Theorem 3.1. Assume that the conditions (�M)1−(�M)2 and (Q�)1−(Q�)2 are fulfilled. Then there exists η∗ > 0
such that problem (1) has at least two positive non-trivial weak solutions, provided that max{|λ|L∞(Ω), |µ|L∞(Ω)} <
η∗.

We confine ourselves to the case where the former condition of (Q�)2 holds true. A similar proof can be made if the
later condition holds true.

Lemma 3.2. Let q(x), γ(x), λ(x), and µ(x) be as in Theorem 3.1, then there exist ρ > 0 and δ > 0 such that
I(u) ≥ δ > 0 for any u ∈ X with ∥u∥ = ρ.

Proof. Let us define q1, γ1 : Br(x0) → [1,∞), q1(x) = q(x) and γ1(x) = γ(x) for any x ∈ Br(x0) and q2, γ2 :
Ω\BR(x0) → [1,∞), q2(x) = q(x) and γ2(x) = γ(x) for any x ∈ Ω\BR(x0). We also introduce the notations

q−1 = min
x∈Br(x0)

q1(x), q+1 = max
x∈Br(x0)

q1(x), γ
−
1 = min

x∈Br(x0)
γ1(x)

γ+1 = max
x∈Br(x0)

γ1(x), q−2 = min
x∈Ω\BR(x0)

q2(x), q+2 = max
x∈Ω\BR(x0)

q2(x)

γ−2 = min
x∈Ω\BR(x0)

γ2(x), γ+2 = max
x∈Ω\BR(x0)

γ2(x).

Then by relations (Q�)1 and (Q�)2 we have these following four cases

(i) 1 ≤ q−1 ≤ q+1 < γ−1 ≤ γ+1 < p− ≤ p+ < q−2 ≤ q+2 < γ−2 ≤ γ+2 < p∗2(x),

(ii) 1 ≤ q−1 ≤ q+1 < γ−1 ≤ γ+1 < p− ≤ p+ < γ−2 ≤ γ+2 < q−2 ≤ q+2 < p∗2(x),

(iii) 1 ≤ γ−1 ≤ γ+1 < q−1 ≤ q+1 < p− < p+ < q−2 ≤ q+2 < γ−2 ≤ γ+2 < p∗2(x),

(iv) 1 ≤ γ−1 ≤ γ+1 < q−1 ≤ q+1 < p− ≤ p+ < γ−2 ≤ γ+2 < q−2 ≤ q+2 < p∗2(x),
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for any x ∈ X . Thus, we have

X ↪→ Lq±i (Ω), i ∈ {1, 2},
X ↪→ Lγ±

i (Ω), i ∈ {1, 2}.

So, there exist positive constants C,C ′ such that
∫

Ω

|u|q±i dx ≤ C∥u∥q±i ,
∫

Ω

|u|γ±
i dx ≤ C ′∥u∥q±i , ∀u ∈ X, i ∈ {1, 2}.

It follows that there exist two positive constants c1 and c2 such that
∫

Br(x0)

|u|q1(x)dx ≤
∫

Br(x0)

|u|q−1 dx+

∫

Br(x0)

|u|q+1 dx

≤
∫

Ω

|u|q−1 dx+

∫

Ω

|u|q+1 dx

≤ c1

(
∥u∥q−1 + ||u||q

+
1
)
, (3)

and
∫

Ω\BR(x0)

|u|q2(x) dx ≤
∫

Ω\BR(x0)

|u|q−2 dx+

∫

Ω\BR(x0)

|u|q+2 dx

≤
∫

Ω

|u|q−2 dx+

∫

Ω

|u|q+2 dx

≤ c2

(
∥u∥q−2 + ∥u∥q

+
2
)
. (4)

Similarly, we have
∫

Br(x0)

|u|γ1(x) dx ≤ c3

(
∥u∥γ−

1 + ∥u∥γ
+
1
)
, (5)

and
∫

Ω\BR(x0)

|u|γ2(x)dx ≤ c4

(
∥u∥γ−

2 + ∥u∥γ
+
2
)
. (6)

Let c5 = max{c1, c2} and c6 = max{c3, c4}. By relations (3)-(6), for ∥u∥ sufficiently small, noting Proposition 2.4,
we have

I(u) ≥ 1

p+

∫

Ω

(|∆u|p(x) + |u|p(x))dx−
∫

Br(x0)

λ(x)

q(x)
|u|q(x)dx−

∫

Ω\BR(x0)

λ(x)

q(x)
|u|q(x)

−
∫

Br(x0)

µ(x)

γ(x)
|u|γ(x)dx−

∫

Ω\BR(x0)

µ(x)

γ(x)
|u|γ(x)dx

≥ 1

p+
∥u∥p+ − |λ|L∞(Ω)c5

q−

(
∥u∥q−1 + ∥u∥q+1 + ∥u∥q−2 + ∥u∥q+2

)

− |µ|L∞(Ω)c6

γ−

(
∥u∥γ−

1 + ∥u∥γ+
1 + ∥u∥γ−

2 + ∥u∥γ+
2

)

≥
[
α1∥u∥p

+ − α2|λ|L∞(Ω)(∥u∥q
−
1 + ∥u∥q+1 )

]
+

[
α1∥u∥p

+ − α2|λ|L∞(Ω)(∥u∥q
−
2

+ ∥u∥q+2 )
]
+

[
α1∥u∥p

+ − α3|µ|L∞(Ω)(∥u∥γ
−
1 + ||u||γ+

1 )
]

+
[
α1∥u∥p

+ − α3|µ|L∞(Ω)(∥u∥γ
−
2 + ∥u∥γ+

2 )
]
,

(7)
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where α1, α2 and α3 are positive constants. Since the functions g1 : [0, 1] → R and g2 : [0, 1] → R defined by

g1(t) = α1 − α2t
q−2 −p+ − α2t

q+2 −p+

,

g2(t) = α1 − α3t
γ−
2 −p+ − α3t

γ+
2 −p+

,

are positive in a neighborhood of the origin, it follows that there exist 0 < ρ1 < 1 and 0 < ρ2 < 1 such that g1(ρ1) > 0
and g2(ρ2) > 0.
Set ρ = min{ρ1, ρ2} and

λ∗ = min
{
1,

α1

2α2
min{ρp+−q−1 , ρp

+−q+1 }
}
,

µ∗ = min
{
1,

α1

2α3
min{ρp+−γ−

1 , ρp
+−γ+

1 }
}
.

Defining η∗ = min{λ∗, µ∗}, we deduce for the cases (i) − (iv), there exists δ > 0 such that for any u ∈ X with
∥u∥ = ρ we have I(u) ≥ δ > 0 provided thatmax{|λ|L∞(Ω), |µ|L∞(Ω)} < η∗.

Lemma 3.3. Let q(x), γ(x), λ(x), and µ(x) be as in Theorem 3.1, then there exists ψ ∈ X, ψ ̸= 0 such that
limt→+∞ I(tψ) → −∞.
Proof. Let ψ ∈ C∞

0 (Ω), ψ ≥ 0 and there exist x1 ∈ Ω\BR(x0) and ε > 0 such that for any x ∈ Bϵ(x1) ⊂
(Ω\BR(x0)) we have ψ(x) > 0. Thus, for t > 1 we have

I(tψ) =

∫

Ω

1

p(x)
(|∆tψ|p(x) + |tψ|p(x)) dx−

∫

Ω

λ(x)

q(x)
|tψ|q(x) dx−

∫

Ω

µ(x)

γ(x)
|tψ|γ(x) dx

≤ tp
+

p−

∫

Ω

(|∆ψ|p(x) + |ψ|p(x)) dx−
∫

Ω\BR(x0)

λ(x)

q(x)
|tψ|q(x) dx

−
∫

Ω\BR(x0)

µ(x)

γ(x)
|tψ|γ(x) dx

≤ tp
+

p−

∫

Ω

(|∆ψ|p(x) + |ψ|p(x)) dx− tq
−
2

∫

Ω\BR(x0)

λ(x)

q(x)
|ψ|q(x) dx

− tγ
−
2

∫

Ω\BR(x0)

µ(x)

γ(x)
|ψ|γ(x) dx

→ −∞ as t→ ∞,

due to p+ < q−2 , γ
−
2 in the cases (i)− (iv).

Lemma 3.4. Let all conditions in Theorem 3.1 hold. Then there exists ϕ ∈ X , ϕ ̸= 0 such that I(tϕ) < 0 for t > 0
small enough.
Proof. Let ϕ ∈ C∞

0 (Ω), ϕ ≥ 0 and there exist x2 ∈ Br(x0) and ε > 0 such that for any x ∈ Bε(x2) ⊂ Br(x0) we
have ϕ(x) > 0. For any 0 < t < 1, we have

I(tϕ) =

∫

Ω

1

p(x)
(|∆tϕ|p(x) + |tϕ|p(x)) dx−

∫

Ω

λ(x)

q(x)
|tϕ|q(x) dx−

∫

Ω

µ(x)

γ(x)
|tϕ|γ(x) dx

≤ 1

p−

∫

Ω

tp(x)(|∆ϕ|p(x) + |ϕ|p(x)) dx−
∫

Br(x0)

λ(x)

q1(x)
|tϕ|q1(x) dx

−
∫

Br(x0)

µ(x)

γ1(x)
|tϕ|γ1(x) dx

≤ tp
−

p−

∫

Ω

(|∆ϕ|p(x) + |ϕ|p(x)) dx− tq
+
1

∫

Br(x0)

λ(x)

q1(x)
|ϕ|q1(x) dx

− tγ
+
1

∫

Br(x0)

µ(x)

γ1(x)
|ϕ|γ1(x) dx.
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So in the cases (i)− (iv), I(tϕ) < 0, since q+1 , γ
+
1 < p−

Proof of Theorem 3.1. By Lemmas 3.2 and 3.3 and the mountain pass theorem of Ambrosetti and Rabinowitz [1],
we deduce the existence of a sequence (un) such that

I(un) → c7 > 0 and I ′(un) → 0 in X∗ as n→ ∞. (8)

We prove that (un) is bounded inX . Assume for the sake of contradiction, if necessary to a subsequence, still denote
by (un), ∥un∥ → ∞ and ∥un∥ > 1 for all n.
In the cases (i) and (iii), by Proposition 2.4, we may infer that for n large enough

1 + c8 + ∥un∥ ≥ I(un)−
1

q−2
⟨I ′(un), un⟩

=
[ ∫

Ω

1

p(x)
(|∆un|p(x) + |un|p(x)) dx−

∫

Ω

λ(x)

q(x)
|un|q(x) dx

−
∫

Ω

µ(x)

γ(x)
|un|γ(x) dx

]

− 1

q−2

[ ∫

Ω

(|∆un|p(x) + |un|p(x)) dx−
∫

Ω

λ(x)|un|q(x) dx

−
∫

Ω

µ(x)|un|γ(x) dx
]

≥
( 1

p+
− 1

q−2

)∫

Ω

(|∆un|p(x) + |un|p(x)) dx

+

∫

Br(x0)

λ(x)(
1

q−2
− 1

q1(x)
)|un|q1(x) dx

+

∫

Br(x0)

µ(x)(
1

q−2
− 1

γ1(x)
)|un|γ1(x) dx

≥
( 1

p+
− 1

q−2

)
∥un∥p

− − η∗
( 1

q−1
− 1

q−2

)∫

Br(x0)

|un|q1(x) dx

− η∗
( 1

γ−1
− 1

q−2

)∫

Br(x0)

|un|γ1(x) dx

≥
( 1

p+
− 1

q−2

)
∥un∥p

− − c9η
∗
( 1

q−1
− 1

q−2

)(
∥un∥q

−
1 + ∥un∥q

+
1

)

− c10η
∗
( 1

γ−1
− 1

q−2

)(
∥un∥γ

−
1 + ∥un∥γ

+
1

)

≥
( 1

p+
− 1

q−2

)
∥un∥p

− − c11

(
∥un∥q

−
1 + ∥un∥q

+
1

)

− c12

(
∥un∥γ

−
1 + ∥un∥γ

+
1

)
.

(9)
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Similarly if the cases (ii) and (iv), we can write

1 + c13 + ∥un∥ ≥ I(un)−
1

γ−2
⟨I ′(un), un⟩

≥
( 1

p+
− 1

γ−2

)∫

Ω

(|∆un|p(x) + |un|p(x)) dx

+

∫

Br(x0)

λ(x)(
1

γ−2
− 1

q1(x)
)|un|q1(x) dx

+

∫

Br(x0)

µ(x)(
1

γ−2
− 1

γ1(x)
)|un|γ1(x) dx

≥
( 1

p+
− 1

γ−2

)
∥un∥p

− − η∗
( 1

q−1
− 1

γ−2

)∫

Br(x0)

|un|q1(x) dx

− η∗
( 1

γ−1
− 1

γ−2

)∫

Br(x0)

|un|γ1(x) dx

≥
( 1

p+
− 1

γ−2

)
∥un∥p

− − c14η
∗
( 1

q−1
− 1

γ−2

)(
∥un∥q

−
1 + ∥un∥q

+
1

)

− c15η
∗
( 1

γ−1
− 1

γ−2

)(
∥un∥γ

−
1 + ∥un∥γ

+
1

)

≥
( 1

p+
− 1

γ−2

)
∥un∥p

− − c16

(
∥un∥q

−
1 + ∥un∥q

+
1

)
− c17

(
∥un∥γ

−
1

+ ∥un∥γ
+
1

)
.

(10)

But, (9) and (10) can not hold true since p− > 1. Hence (un) is bounded in X . This information combined with the
fact X is reflexive implies that there exists a subsequence, still denote by (un), and u1 ∈ X such that un ⇀ u1 in
X . Since X is compactly embedded in Lq(x)(Ω) and Lγ(x)(Ω), it follows that un → u1 in Lq(x)(Ω) and Lγ(x)(Ω).
Using Proposition 2.1 we deduce

lim
n→∞

∫

Ω

λ(x)|un|q(x)−2un(un − u1)dx = 0,

lim
n→∞

∫

Ω

µ(x)|un|γ(x)−2un(un − u1)dx = 0.

This fact and relation (8) yield

lim
n→∞

∫

Ω

(
|∆un|p(x)−2∆un(∆un −∆u1) + |un|p(x)−2un(un − u1)

)
, dx = 0.

Using Proposition 2.5, we find that un → u1 in X . Then by relation (7) we have

I(u1) = c7 > 0 and I ′(u1) = 0,

that is, u1 is a non-trivial weak solution of (1).
We hope to apply Ekeland’s variational principle [4] in order to get another nontrivial weak solution of problem (1).
Indeed, let η∗ > 0 be defined as in Lemma 3.2 and assume that max{|λ|L∞(Ω), |µ|L∞(Ω)} < η∗. By Lemma 3.2
it follows that on the boundary of the ball centered at the origin and of radius ρ in X , denoted by Bρ(0) = {ω ∈
X : ∥ω∥ < ρ}, we have

inf
∂Bρ(0)

I > 0.

By Lemma 3.4, there exists ϕ ∈ X such that

I(tϕ) < 0 for t > 0 small enough.
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Moreover, by (7) for u ∈ Bρ(0) we have

−∞ < c18 = inf
Bρ(0)

I < 0.

We let now 0 < ε < inf∂Bρ(0) I − infBρ(0) I . Applying Ekeland’s variational principle [4] to the functional I :

Bρ(0) → R, we find uε ∈ Bρ(0) such that

I(uε) < inf
Bρ(0)

I + ε

I(uε) < I(u) + ε∥u− uε∥, u ̸= uε.

Since
I(uε) ≤ inf

Bρ(0)
I + ε ≤ inf

Bρ(0)
I + ε < inf

∂Bρ(0)
I,

we deduce that uε ∈ Bρ(0). Now, we define K : Bρ(0) → R by K(u) = I(u) + ε∥u − uε∥. It is clear that uε is a
minimum point ofK and thus

K(uε + tv)−K(uε)

t
≥ 0,

for small t > 0 and v ∈ B1(0). The above relation yields

I(uε + tv)− I(uε)

t
+ ε∥v∥ ≥ 0.

Letting t → 0 it follows that ⟨I ′(uε), v⟩ + ε∥v∥ > 0 and we infer that ∥I ′(uε)∥ ≤ ε. We deduce that there exists a
sequence (vn) ⊂ Bρ(0) such that

I(vn) → c18 and I ′(vn) → 0. (11)

It is clear that (vn) is bounded inX . Thus, there exists u2 ∈ X such that, up to a subsequence, (vn) converges weakly
to u2 inX . Actually, with similar arguments as those used in the proof that the sequence un → u1 inX we can show
that vn → u2 in X . Thus, by relation (11),

I(u2) = c18 < 0 and I ′(u2) = 0,

i.e., u2 is a non-trivial weak solution for problem (1).
Finally, since

I(u1) = c7 > 0 > c18 = I(u2),

we see that u1 ̸= u2. Thus, problem (1) has two non-trivial weak solutions.
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Abstract

In this paper, we extended the Jensen’s inequality form-convex functions and we present some
other results with respect to these functions.

1. Introduction and Preliminaries

As one of the important applications, the inequalities theory uses as the theoretical foundation of approximate methods
(see[7]). This theory has been developed by C. F. Gacss, A. L. Cathy and P. L. Cebysey. We can see some of the
properties of them-convex functions, uniformly functions and etc, in the references ([1],[2],[8],[9],[10]). Some authors
applied the extended Jensen inequality to obtain the lower bounds for the various entropy measures of discrete random
variables [6]. We can see two converses of Jensen integral inequality for convex function in [5]. Here, we extend the
Jensen’s inequality for m-convex functions to obtain the new lower and upper bounds for Jensen’s discrete inequality.

Definition 1.1. Let I ⊆ R be an interval. A function f : I −→ R is said to be convex if the inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

holds for any x, y ∈ I and λ ∈ [0, 1].
In the geometric sense, this means that for three distinct points P,Q and R on the graph of f with Q between P and
R, then Q is on or below the chord PR.
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Definition 1.2. ([3], [4])Let [0, c] ⊂ R be a bounded closed interval with c > 0, and let m ∈ [0, 1]. A function
f : [0, c] −→ R is said to bem-convex if the inequality

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y),

holds for any x, y ∈ [0, c] and t ∈ [0, 1].

Definition 1.3. Let x1, ..., xn ∈ I and p1, ..., pn ∈ [0, 1] be such that
∑n

i=1 pi = 1. The sum

n∑

i=1

pixi

is called the convex combination of points xi.

Theorem 1.4. (Jensen’s Inequality) Let f : I −→ R be a convex function. Then the inequality

f(
n∑

i=1

pixi) ≤
n∑

i=1

pif(xi)

holds for every convex combination
∑n

i=1 pixi of points xi ∈ I .

Theorem 1.5. [11] Assume that f is a convex function on I , then

0 ≤ max
0≤µ≤ν≤n

{pµf(xµ) + pνf(xν)− (pµ + pν)f(
pµxµ + pνxν

pµ + pν
)}

≤
n∑

i=1

pif(xi)− f(
n∑

i=1

pixi).

Lemma 1.6. [3] Let f : [0, c] −→ R be a m-convex function and f(0) ≤ 0. Then f(tx) ≤ tf(x), for all x ∈ [0, c]
and t ∈ [0, 1].

2. main results

In this section, we use numbers c > 0,m ∈ (0, 1] and n ∈ N.
In the sequel, we shall prove some properties of m-convex functions.

Lemma 2.1. Assume that f : [0, c] −→ R is a m-convex function. If r, s, n ∈ N and r < s < n and y ∈ [0,mnc]
then

mrf(
y

mr
) ≤ msf(

y

ms
) ≤ mnf(

y

mn
).

Proof. By the use of Lemma 1.6 it is obvious.

Lemma 2.2. Let f be a m-convex function and x ∈ [0, c] 0 ≤ p, q and p+ q = 1, then for every x ∈ [0, c]

1. f(px) ≤ pf(x) + qmf(0) and f(qx) ≤ qf(x) + pmf(0),
2. f(px) + f(qx) ≤ f(x) +mf(0).

Proof. 1. f(px) = f(px+q×0) ≤ pf(x)+mqf(
0

m
) = pf(x)+mqf(0), and similarly f(qx) ≤ qf(x)+pmf(0).

2. Suppose that p+ q = 1. By using (1), we have

f(px) + f(qx) ≤ pf(x) + qmf(0) + qf(x) + pmf(0) = f(x) +mf(0).
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Lemma 2.3. If f is am-convex function such that f(0) ≤ 0 and n is a natural number then f is amn-convex function.

Proof. It is obvious.

In the following we give the Jensen inequality for m-convex function.

Theorem 2.4. Let f : [0, c] −→ R be a m-convex function. Then the inequality

f(
n∑

i=0

pixi) ≤
n∑

i=0

mipif(
xi

mi
) (1)

holds for any convex combination
∑n

i=0 pixi of points xi ∈ [0,mnc].

Proof. The proof can be done by applying mathematical induction.

Theorem 2.5. Let f be a m-convex function and r, s, n be natural numbers such that 0 ≤ r < s ≤ n, then

0 ≤ max
0≤r<s≤n

{mrprf(
xr

mr
) +mspsf(

xs

ms
)−mr(pr + ps)f(

prxr + psxs

mr(pr + ps)
)}

≤
n∑

i=0

mipif(
xi

mi
)− f(

n∑

i=0

pixi).

Proof. Suppose that,




qi = pi, i ̸= r, s
qr = pr + ps
qs = 0

and
{

yi = xi, i ̸= r
yr = prxr+psxs

pr+ps

then
∑n

i=0 qi = 1 and Theorem 2.4 follows that

f(

n∑

i=0

pixi) = f(

n∑

i=0

qiyi)

≤
n∑

i=0

miqif(
yi
mi

)

=
n∑

i ̸=r,s

miqif(
yi
mi

) +mrqrf(
yr
mr

) +msqsf(
ys
ms

)

=
n∑

i ̸=r,s

mipif(
xi

mi
) +mr(pr + ps)f(

prxr + psxs

mr(pr + xr)
).

Hence,

mrprf(
xr

mr
) +mspsf(

xs

ms
)−mr(pr + ps)f(

prxr + psxs

mr(pr + ps)
)

≤
n∑

i=0

mipif(
xi

mi
)− f(

n∑

i=0

pixi).

Thus the theorem is proved.



86 H. Barsam / The 3rd National Congress on Mathematics and Statistics

Corollary 2.6. Let f be a m-convex function and 0 ≤ r < s ≤ n are arbitrary, then

f(

n∑

i=0

pixi) ≤
∑

i ̸=r,s

mipif(
xi

mi
) +mr(pr + ps)f(

prxr + psxs

mr(pr + ps)
)

≤
∑

i ̸=r,s

mipif(
xi

mi
) +ms(pr + ps)f(

prxr + psxs

ms(pr + ps)
)

≤
∑

i ̸=r,s

mipif(
xi

mi
) +mn(pr + ps)f(

prxr + psxs

mn(pr + ps)
)

≤ mn{
∑

i ̸=r,s

pif(
xi

mn
) + (pr + ps)f(

prxr + psxs

mn(pr + ps)
)}.
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Abstract

In this article, we study the nonlocal p(x)-Laplacian problem of the following form




M
( ∫

Ω
1

p(x)
(|∇u|p(x) + |u|p(x))dx

)(
− div(|∇u|p(x)−2∇u+ |u|p(x)−2u

)
= λf(x, u) in Ω,

M
( ∫

Ω
1

p(x)
(|∇u|p(x) + |u|p(x))dx

)
|∇u|p(x)−2∇ ∂u

∂ν
= µg(x, u) on ∂Ω,

By means of a direct variational approach and the theory of the variable exponent Sobolev
spaces, we establish conditions ensuring the existence and multiplicity of solutions for the prob-
lem.

1. Introduction

In this paper, we are concerned with the following problem




M
( ∫

Ω
1

p(x) (|∇u|p(x) + |u|p(x))dx
)(

− div(|∇u|p(x)−2∇u+ |u|p(x)−2u
)
= λf(x, u) in Ω,

M
( ∫

Ω
1

p(x) (|∇u|p(x) + |u|p(x))dx
)
|∇u|p(x)−2∇∂u

∂ν = µg(x, u) on ∂Ω,
(1)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, ∂
∂Ω is the outer unit normal derivative, p(x) ∈

C(Ω), p(x) > 1, ∀x ∈ Ω and λ, µ ∈ R. Throughout the paper, we assume that λ2 + µ2 ̸= 0. The opera-
tor −∆p(x)u = div(|∇u|p(x)−2∇u) is said to be the p(x)-Laplacian, and becomes p-Laplacian when p(x) ≡ p (a
constant). An essential difference between them is that the p-Laplacian operator is (p − 1)-homogeneous, that is,
△p(λu) = λp−1△pu for every λ > 0, but the p(x)-Laplacian operator, when p(x) is not a constant, is not homoge-
neous. The study of problems involving variable exponent growth conditions has a strong motivation due to the fact
that they can model various phenomena which arise in the study of elastic mechanics [25], electrorheological fluids
[26] or image restoration [27].
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Problem (1) is called nonlocal because of the presence of the term M , which implies that the equation in (1) is no
longer pointwise identities. This provokes some mathematical difficulties which make the study of such a problem
particulary interesting. For the physical and biological meaning of the nonlocal coefficients we refer the reader to
[1, 2, 5, 7] and the references therein.

2. Notations and preliminaries

For the reader’s convenience, we recall some necessary background knowledge and propositions concerning the gen-
eralized Lebesgue-Sobolev spaces. We refer the reader to [4, 6, 9, 10].
Let Ω be a bounded domain of RN , denote

C+(Ω) = {p(x); p(x) ∈ C(Ω), p(x) > 1, ∀x ∈ Ω};
p+ = max{p(x); x ∈ Ω}, p− = min{p(x); x ∈ Ω};

Lp(x)(Ω) =
{
u; u is a measurable real-valued function such that

∫

Ω

|u(x)|p(x)dx <∞
}
,

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf
{
λ > 0;

∫

Ω

|u(x)
λ

|p(x)dx ≤ 1
}
,

with

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω); |∇u| ∈ Lp(x)(Ω)},
endowed with the natural norm

||u||W 1,p(x)(Ω) = |u(x)|Lp(x)(Ω) + |∇u(x)|Lp(x)(Ω).

We remember that (W 1,p(x)(Ω), ||.||) is a reflexive and separable Banach space. In this paper we will use the following
equivalent norm onW 1,p(x)(Ω):

||u|| = inf
{
λ > 0;

∫

Ω

|∇u(x)|p(x) + |u|p(x)
λp(x)

dx ≤ 1
}

.

Proposition 2.1 (See [4, 10]). (i)The conjugate space of Lp(x)(Ω) is Lp′(x)(Ω), where 1
p(x) +

1
p′(x) = 1. For any

u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have
∫

Ω

|uv|dx ≤
( 1

p−
+

1

p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x)

(ii)If p1(x), p2(x) ∈ C+Ω, p1(x) ≤ p2(x), ∀x ∈ Ω, thenLp2(x)(Ω) ↪→ Lp1(x)(Ω) and the embedding is continuous.

Proposition 2.2 (See [10, 11]). If f : Ω× R → R is a Caratheodory function and satisfies

|f(x, s) ≤ a(x) + b|s|
p1(x)

p2(x) , ∀x ∈ Ω, s ∈ R,

where p1(x), p2(x) ∈ C+(Ω), a(x) ∈ Lp2(x)(Ω), a(x) ≥ 0 and b ≥ 0 is a constant, then the Nemytsky operator
from Lp1(x)(Ω) to Lp2(x)(Ω) defined by (Nf (u))(x) = f(x, u(x)) is a continuous and bounded operator.

Proposition 2.3 (See [12]). Set ρ(u) =
∫
Ω
|∇u(x)|p(x) + |u|p(x)dx, then for u, uk ∈W 1,p(x)(Ω); we have

(1)||u|| < 1(respectively = 1;> 1) ⇐⇒ ρ(u) < 1(respectively = 1;> 1);

(2)for u ̸= o, ||u|| = λ⇐⇒ ρ(
u

λ
) = 1;

(3)if ||u|| > 1, then||u||p− ≤ ρ(u) ≤ ||u||p+

;

(4)if ||u|| < 1, then||u||p+ ≤ ρ(u) ≤ ||u||p−
;

(5)||u|| → 0(respectively → ∞) ⇐⇒ ρ(u) → 0(respectively → ∞).
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Let us define, for every x ∈ Ω,

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N,

∞ if p(x) ≥ N.

Proposition 2.4 (See [10]). If q ∈ C+(Ω) and q(x) ≤ p∗(x) (q(x) < p∗(x)) for x ∈ Ω, then there is a continuous
(compact) embeddingW 1,p(x)(Ω) ↪→ Lq(x)(Ω).

Proposition 2.5 (See [8]). If we denote

p∗(x) =

{
(N−1)p(x)
N−p(x) if p(x) < N,

∞ if p(x) ≥ N,

then the embedding fromW 1,p(x)(Ω) ↪→ Lq(x)(∂Ω) is compact and continuous, where q(x) ∈ C+(∂Ω) and q(x) <
p∗(x) for x ∈ ∂Ω.

3. Existence of solutions

In this paper, we denote by X =W 1,p(x)(Ω); X∗ = (W 1,p(x)(Ω))∗, the dual space and ⟨., .⟩, the dual pair.
Lemma 3.1 (See [13]). Denote

I(u) =

∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx, ∀u ∈ X,

then I(u) ∈ C1(X,R) and the derivative operator I ′ of I is

⟨I ′(u), v⟩ =
∫

Ω

(|∇u|p(x)−2∇u∇v + |u|p(x)−2uv)dx, ∀u, v ∈ X,

and we have

(1) I is a convex functional .
(2) I ′ : X → X∗ is a bounded homeomorphism and strictly monotone operator,
(3)I ′ is a mapping of type (S+), namely

un ⇀ u and lim sup
n→+∞

I ′(un)(un − u) ≤ 0, implies un → u.

The Euler-Lagrange functional associated to (1) is given by

J(u) = M̂
(∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

)
− λ

∫

Ω

F (x, u)dx− µ

∫

∂Ω

G(x, u)dσ,

where M̂(t) =
∫ t

0
M(τ)dτ. Under proper assumptions on f and g, then

⟨J ′(u), v⟩ =M
(∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

)∫

Ω

(|∇u|p(x)−2∇u∇v + |u|p(x)−2uv)dx

−λ
∫

Ω

f(x, u)vdx− µ

∫

∂Ω

g(x, u)vdσ,

for all u, v ∈ X , then we know that the weak solution of (1) corresponds to the critical point of the functional J ,
where F and G are denoted by

F (x, t) =

∫ t

0

f(x, s)ds, G(x, t) =

∫ t

0

g(x, s)ds.

Hereafter, f(x, t), g(x, t) andM(t) are always supposed to verify the following assumption:
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(f0) f : Ω× R → R satisfies the Caratheodory condition and there exist two constants C1 ≥ 0, C2 ≥ 0 such that

|f(x, t)| ≤ C1 + C2|t|α(x)−1, ∀(x, t) ∈ Ω× R

where α(x) ∈ C+(Ω) and α(x) < p∗(x) for all x ∈ Ω,

(f1) There existM1 > 0, θ1 >
p+

1−µ such that for all x ∈ Ω and all t ∈ R with |t| ≥M1,

0 < θ1F (x, t) ≤ tf(x, t),

where µ comes from (m1) below.
(f2) f(x, t) = o(|t|p+−1) as t→ 0 uniformly with respect to x ∈ Ω.
(f3) f(x,−t) = −f(x, t), for all x ∈ Ω and t ∈ R.
(g0) g : ∂Ω× R → R satisfies the Caratheodory condition and there exist two constants C ′

1 ≥ 0, C ′
2 ≥ 0 such that

|g(x, t)| ≤ C ′
1 + C ′

2|t|β(x)−1, ∀(x, t) ∈ ∂Ω× R

where β(x) ∈ C+(Ω) and β(x) < p∗(x) for all x ∈ ∂Ω,

(g1) There existM2 > 0, θ2 >
p+

1−µ such that for all x ∈ ∂Ω and all t ∈ R with |t| ≥M2,

0 < θ2G(x, t) ≤ tg(x, t),

where µ comes from (m1) below.
(g2) g(x, t) = o(|t|p+−1) as t→ 0 uniformly with respect to x ∈ ∂Ω.
(g3) g(x,−t) = −g(x, t), for all x ∈ ∂Ω and t ∈ R.
(m0) There existsm0 > 0, such thatM(t) ≥ m0.

(m1) There exists 0 < µ < 1 such that M̂(t) ≥ (1− µ)M(t)t.

Remark 3.2. Under the conditions f0 and g0, the functional J is of class C1(X,R).

Remark 3.3. For simplicity, we use C, M, K, Ki, to denote the general nonnegative or positive constant ( the exact
value may change from line to line).

Theorem 3.4. IfM satisfies (m0) and (f0), (g0) hold and α+, β+ < p−, then (1) has a weak solution.

Proof. From (m0) we have M̂(t) ≥ m0t. For (un) ∈ X such that ||un|| → +∞, we have

J(un) = M̂
(∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

)
− λ

∫

Ω

F (x, u)dx− µ

∫

∂Ω

G(x, u)dσ

≥ m0

∫

Ω

1

p(x)
(|∇un|p(x) + |un|p(x))dx− |λ|

∫

Ω

C(1 + |un|α(x))dx

− |µ|
∫

∂Ω

C(1 + |un|β(x))dσ

≥ m0

p+
||un||p

− − |λ|C||un||α
+ − |µ|C||un||β

+ −M → ∞ as ||un|| → ∞,

so J is coercive since α+, β+ < p−.
By Propositions 2.4 and 2.5, it is easy to verify that J is weakly lower semicontinuous. So J has a minimum point u
in X and u is a weak solution of (1).
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Corollary 3.5. Under the assumptions in Theorem 3.4 and (m1), if one of the following conditions hold, (1) has a
nontrivial weak solution.

(1) If λ, µ ̸= 0, there exist two positive constants d1, d2 <
p−

1− µ
such that

lim inf
t→0

sgn(λ)F (x, t)

|t|d1
> 0, for x ∈ Ω uniformly,

lim inf
t→0

sgn(µ)G(x, t)

|t|d2
> 0, for x ∈ Ω uniformly,

(2) If λ = 0, µ ̸= 0, there exists a positive constant d2 <
p−

1− µ
such that

lim inf
t→0

sgn(µ)G(x, t)

|t|d2
> 0, for x ∈ Ω uniformly,

(3) If λ ̸= 0, µ = 0, there exists a positive constant d1 <
p−

1− µ
such that

lim inf
t→0

sgn(λ)F (x, t)

|t|d1
> 0, for x ∈ Ω uniformly,

Proof. From Theorem 3.4, we know J has a global minimum point u. We just need to show u is nontrivial. We only
consider the case λ, µ ̸= 0 here. From (1), we know that for 0 < t < 1 small enough, there exists a positive constant
C such that

sgn(λ)F (x, t) ≥ C|t|d1 , sgn(µ)G(x, t) ≥ C|t|d2 .

When t > t0 from (m1) we can easily obtain that

M̂(t) ≤ M̂(t0)

t
1

(1−µ)

0

:= Ct
1

(1−µ) ,

where t0 is an arbitrary positive constant. Choose u0 > 0. For 0 < t < 1 small enough, we have

J(tu0) ≤ C
(∫

Ω

1

p(x)
(|t∇u0|p(x) + |tu0|p(x))dx

) 1
(1−µ) − |λ|

∫

Ω

sgn(λ)F (x, tu0)dx

− |µ|
∫

∂Ω

sgn(µ)G(x, tu0)dσ

≤ C
( tp−

p−

∫

Ω

|u0|p(x)dx
) 1

(1−µ) − |λ|
∫

Ω

C|tu0|d1dx

− |µ|
∫

∂Ω

C|tu0|d2dσ

= K1t
p−
1−µ − |λ|K2t

d1 − |µ|K3t
d2 .

Since d1, d2 < p−

1−µ , there exists 0 < t0 < 1 small enough such that J(t0u0) < 0. So the global minimum point u of
J is nontrivial.

Definition 3.6. We say that J satisfies (PS) condition in X , if any sequence (un) such that J(un) is bounded and
J ′(un) → 0 as n→ ∞, has a convergent subsequence, where (PS) means Palais-Smale.

Remark 3.7. We know that if we denote

φ(u) = −λ
∫

Ω

F (x, u)dx, ψ(u) = −µ
∫

∂Ω

G(x, u)dσ,



92 M. Mirzapour / The 3rd National Congress on Mathematics and Statistics

then by Propositions 2.2, 2.4 and 2.5, they are both weakly continuous and their derivative operators are compact. By
Lemma 3.1, we deduce that J ′ = I ′+φ′+ψ′ is also of type (S+). By [13], to verify that J satisfies the (PS) condition
on X , it is enough to verify that any (PS) sequence is bounded.
Lemma 3.8. If (f0), (f1), (g0), (g1), (m0), (m1) hold and λ, µ ≥ 0, then J satisfies the (PS) condition.
Proof. Suppose that (un) ⊂ X, |J(un)| ≤ C and J ′(un) → o. Then

C + 1 ≥ J(un)−
1

θ
⟨J ′(un), un⟩+

1

θ
⟨J ′(un), un⟩

= M̂
(∫

Ω

1

p(x)
(|∇un|p(x) + |un|p(x))dx

)
− λ

∫

Ω

F (x, un)dx− µ

∫

∂Ω

G(x, un)dσ

− 1

θ

[
M

(∫

Ω

1

p(x)
(|∇un|p(x) + |un|p(x))dx

)∫

Ω

(|∇un|p(x) + |un|p(x))dx

− λ

∫

Ω

f(x, un)undx− µ

∫

∂Ω

g(x, un)undσ
]
+

1

θ
⟨J ′(un), un⟩

≥ (1− µ)M
(∫

Ω

1

p(x)
(|∇un|p(x) + |un|p(x))dx

)∫

Ω

1

p(x)
(|∇un|p(x) + |un|p(x))dx

− λ

∫

Ω

F (x, un)dx− µ

∫

∂Ω

G(x, un)dσ − 1

θ

[
M

(∫

Ω

1

p(x)
(|∇un|p(x) + |un|p(x))dx

)

− λ

∫

Ω

f(x, un)undx− µ

∫

∂Ω

g(x, un)undσ
]
+

1

θ
⟨J ′(un), un⟩

≥ m0

(1− µ

p+
− 1

θ

)
||un||p

− − 1

θ
||J ′(un)||X∗ ||un|| − C

≥ m0

(1− µ

p+
− 1

θ

)
||un||p

− − 1

θ
||un|| − C,

where θ = min{θ1, θ2} and we have supposed that ||un|| > 1 for convenience. Since θ > p+

1−µ , we know that (un) is
bounded in X .

Theorem 3.9. IfM satisfies (m0), (m1) and (f0), (f1), (f2), (g0), (g1), (g2) hold and α−, β− > p+; λ, µ ≥ 0, then
(1) has a nontrivial weak solution.
Proof. Let us show that J satisfies the conditions of Mountain Pass Theorem (see Theorem 2.10 of [15]). By Lemma
3.8, J satisfies (PS) condition in X . Since

p+ < α− ≤ α(x) < p∗(x), ∀x ∈ Ω; p+ < β− ≤ β(x) < p∗(x), ∀x ∈ ∂Ω,

we have X ↪→ Lp+

(Ω), X ↪→ Lp+

(∂Ω). Then there exists a constant C > 0 such that

|u|Lp+ (Ω) ≤ C||u||, |u|Lp+ (∂Ω) ≤ C||u||, ∀u ∈ X.

From (f0), (f2) and (g0), (g2), we have there exist an arbitrary constant 0 < t < 1 and two positive constants (both
denoted by C(ε)) such that

|F (x, t)| ≤ ε|t|p+

+ C(ε)|t|α(x), for all (x, t) ∈ Ω× R,

|G(x, t)| ≤ ε|t|p+

+ C(ε)|t|β(x), for all (x, t) ∈ ∂Ω× R.

In view of (m0) and above inequalities, for ||u|| sufficiently small, noting Proposition 2.3, we have

J(u) ≥ m0

p+
||u||p+ − λ

∫

Ω

F (x, u)dx− µ

∫

∂Ω

G(x, u)dσ

≥ m0

p+
||u||p+ − λ

∫

Ω

(ε|u|p+

+ C(ε)|u|α(x))dx− µ

∫

∂Ω

(ε|u|p+

+ C(ε)|u|β(x))dσ

≥ m0

p+
||u||p+ − (λεC + µεC)||u||p+ − λC(ε)||u||α− − µC(ε)||u||β−

.
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Choose ε > 0 so small that 0 < λεC + µεC < m0

2p+ , we obtain

J(u) ≥ m0

2p+
||u||p+ − C(λ, µ, ε)C(||u||α−

+ ||u||β−
).

Since α−, β− > p+, there exist r > 0 small enough and δ > 0 such that J(u) ≥ δ > 0 as ||u|| = r.
On the other hand, we have known that the assumption (f1), (g1) implies the following assertion:

F (x, t) ≥ C|t|θ1 −M, ∀(x, t) ∈ Ω× R,
G(x, t) ≥ C|t|θ2 −M, ∀(x, t) ∈ ∂Ω× R.

For t > 1 large enough, we have

J(tũ) = M̂
(∫

Ω

tp(x)

p(x)
(|∇ũ|p(x) + |ũ|p(x))dx

)
− λ

∫

Ω

F (x, ũ)dx− µ

∫

∂Ω

G(x, ũ)dσ,

≤
( tp+

p−

) 1
1−µ

(∫

Ω

(|∇ũ|p(x) + |ũ|p(x))dx
) 1

1−µ − λCtθ
∫

Ω

|ũ|θdx− µCtθ
∫

∂Ω

|û|θdσ + C

→ −∞ as t→ +∞,

due to θ = min{θ1, θ2} > p+

1−µ .

Since X is a reflexive and separable Banach space, then X∗ is too. There exist (see [28]) {ej} ⊂ X and {e∗j} ⊂ X∗

such that

X = span {ej : j = 1, 2, ...}, X∗ = span {e∗j : j = 1, 2, ...},

and
⟨ei, e∗j ⟩ =

{
1 if i = j,
0 if i ̸= j,

where ⟨., .⟩ denote the duality product betweenX and X∗. We define

Xj = span {ej}, Yk =
k⊕

j=1

Xj , Zk =
∞⊕

j=k

Xj .

Lemma 3.10. (Fountain Theorem, see [15]). Let J ∈ C1(X,R) be an even functional, where (X, ||.||) is a separable
and reflexive Banach space. Suppose that for every k ∈ N, there exist ρk > rk > 0 such that

(A1) inf{J(u) : u ∈ Zk, ||u|| = rk} → +∞ as k → +∞.
(A2) max{J(u) : u ∈ Yk, ||u|| = ρk} ≤ 0.
(A3) J satisfies the (PS) condition for every c > 0.

Then J has an unbounded sequence of critical points.

Lemma 3.11 (See [14]). If α(x) ∈ C+(Ω), α(x) < p∗(x), ∀x ∈ Ω and β(x) ∈ C+(∂Ω), β(x) < p∗(x), ∀x ∈ ∂Ω,
denote

αk = sup{|u|Lα(x)(Ω); ||u|| = 1, u ∈ Zk}
βk = sup{|u|Lβ(x)(∂Ω); ||u|| = 1, u ∈ Zk},

then limk→∞ αk = 0, limk→∞ βk = 0.

Theorem 3.12. If (m0), (m1), (f0), (f1), (f3), (g0), (g1), (g3) hold and α−, β− > p+, λ, µ > 0, then (1) has a
sequence of solutions (±uk,±vk) such that J(±uk,±vk) → +∞ as k → +∞.
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Proof. According to the assumptions on f and g, Remark 3.7, Lemma 3.8, J is an even functional and satisfies Palais-
Smale condition. We will prove that if k is large enough, then there exist ρk > rk > 0 such that (A1) and (A2)
holding. Thus, the conclusion can be obtained from Fountain theorem.
(A1) For any (u) ∈ Zk, ||u|| > 1, we have

J(u) = M̂
(∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

)
− λ

∫

Ω

F (x, u)dx− µ

∫

∂Ω

G(x, u)dσ

≥ m0

p+
||u||p− − λ

∫

Ω

C(1 + |u|α(x))dx− µ

∫

∂Ω

C(1 + |u|β(x))dσ

≥ m0

p+
||u||p− − λC max{|u|α+

Lα(x)(Ω), |u|α
−

Lα(x)(Ω)} − µC max{|u|β
+

Lβ(x)(Ω)
, |u|β

−

Lβ(x)(Ω)
} − C

≥ m0

p+
||u||p− − C(λ, µ)max{|u|α+

Lα(x)(Ω), |u|α
−

Lα(x)(Ω), |u|
β+

Lβ(x)(Ω)
, |u|β

−

Lβ(Ω)
} − C.

If max{|u|α+

Lα(x)(Ω)
, |u|α−

Lα(x)(Ω)
, |u|β

+

Lβ(x)(Ω)
, |u|β

−

Lβ(Ω)
} = |u|α+

Lα(x)(Ω)
, we have

J(u) ≥ m0

p+
||u||p− − C(λ, µ)αα+

k ||u||α+ − C.

At this stage, we fix rk as follows:

rk =
(α+C(λ, µ)αα+

k

m0

) 1

p−−α+ → +∞ as k → +∞.

Consequently, if ||u|| = rk then

J(u) ≥ m0

( 1

p+
− 1

α+

)
rp

−

k − C → +∞ as k → +∞,

due to α+ > α− > p+.
(A2) From (m1), (f1) and (g1), we have

M̂(t) ≤ Ct
1

1−µ ,

F (x, t) ≥ C|t|θ1 −M, ∀(x, t) ∈ Ω× R,
G(x, t) ≥ C|t|θ2 −M, ∀(x, t) ∈ ∂Ω× R.

Therefore, for any u ∈ Yk we have

J(u) = M̂
(∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

)
− λ

∫

Ω

F (x, u)dx− µ

∫

∂Ω

G(x, u)dσ

≤
( 1

p−

) 1
1−µ ||u|| p+

1−µ − λ

∫

Ω

(C|u|θ1 −M)− µ

∫

∂Ω

(C|u|θ2 −M)dσ

≤
( 1

p−

) 1
1−µ ||u|| p+

1−µ − λC

∫

Ω

|u|θ1dx− µC

∫

∂Ω

|u|θ2dσ +K → −∞ as ||u|| → ∞,

since θ1, θ2 > p+

1−µ and dimYk <∞. So (A2) holds. From the proofs of (A1) and (A2), we can choose ρk > rk > 0.
The proof is completed.

4. The case of concave-convex nonlinearity

In this section, we will obtain much better results with f and g in a special form. We have the following theorem:
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Theorem4.1. Assume the conditions (m0) and (m1) hold. And letα(x) ∈ C+(Ω), β(x) ∈ C+(∂Ω),α(x) < p∗(x) for
any x ∈ Ω, β(x) < p∗(x) for any x ∈ ∂Ω with α− > p+

1−µ , β
+ < p− and f(x, t) = |t|α(x)−2t, g(x, t) = |t|β(x)−2t,

then we have
(i) For every λ > 0, µ ∈ R, (1) has a sequence of weak solutions (±uk) such that J(±uk) → +∞ as k → +∞.
(ii) For every µ > 0, λ ∈ R, (1) has a sequence of weak solutions (±vk) such that J(±vk) → 0 as k → +∞.

We will use Lemma 3.10 to prove Theorem 4.1 (i) and the following ”Dual fountain theorem” to prove Theorem 4.1
(ii), respectively.
Lemma 4.2. (Dual Fountain Theorem, see [15]). Assume (A1) is satisfied and there is k0 > 0 so that, for each
k ≥ k0, there exist ρk > rk > 0 such that
(B1) ak = inf{J(u) : u ∈ Zk, ||u|| = ρk} ≥ 0.
(B2) bk = max{J(u) : u ∈ Yk, ||u|| = rk} < 0.
(B3) dk = inf{J(u) : u ∈ Zk, ||u|| ≤ ρk} → 0 as k → +∞.
(B4) J satisfies the (PS)∗c condition for every c ∈ [dk0

, 0).

Then J has a sequence of negative critical values converging to 0.

Definition 4.3. We say that J satisfies the (PS)∗c condition (with respect to (Yn)), if any sequence {unj
} ⊂ X such

that nj → +∞, unj ∈ Ynj , J(unj ) → c and (J |Ynj
)′(unj ) → 0, contain a subsequence converging to a critical point

of J .
Lemma 4.4. Assume that the conditions in Theorem 4.1 hold, then J satisfies the (PS)∗c condition.

Proof. Suppose (unj
) ⊂ X such that nj → +∞, unj

∈ Ynj
and (J |Ynj

)′(unj
) → 0. Assume ||unj

|| > 1 for
convenience. If λ ≥ 0, for n large enough, we have

C + 1 ≥ J(unj )−
1

α− ⟨J ′(unj ), (unj )⟩+
1

α− ⟨J ′(unj ), (unj )⟩

= M̂
(∫

Ω

1

p(x)
(|∇unj

|p(x) + |unj
|p(x))dx

)
− λ

∫

Ω

F (x, unj
)dx− µ

∫

∂Ω

G(x, unj
)dσ

− 1

α−

[
M

(∫

Ω

1

p(x)
(|∇unj

|p(x) + |unj
|p(x))dx

)
− λ

∫

Ω

f(x, unj
)unj

dx

− µ

∫

∂Ω

g(x,nj
)unj

dσ
]
+

1

α− ⟨J ′(unj
), unj

⟩

≥
(1− µ

p+
− 1

α−

)
M

(∫

Ω

1

p(x)
(|∇unj |p(x) + |unj |p(x))dx

)∫

Ω

(|∇unj |p(x) + |unj |p(x))dx

+ µ

∫

∂Ω

( 1

α− − 1

β(x)

)
|unj |β(x)dσ

≥ m0

(1− µ

p+
− 1

α−

)
||unj

||p− −K||unj
||β+

.

Since p− > β+ and α− > p+

1−µ , we deduce that (unj ) is bounded in X .
If λ < 0, for n large enough, we can consider the inequality below to get the boundedness of (unj

).

C + 1 ≥ J(unj
)− 1

α+
⟨J ′(unj

), unj
⟩+ 1

α+
⟨J ′(unj

), unj
⟩.

Going if necessary to a subsequence, we can assume unj ⇀ u inX . AsX = ∪njYnj , we can choose vnj ∈ Ynj such
that vnj

→ u. Hence

lim
nj→+∞

⟨J ′(unj
), unj

− u⟩ = lim
nj→+∞

⟨J ′(unj
), unj

− vnj
⟩+ lim

nj→+∞
⟨J ′(unj

), vnj
− u⟩

= lim
nj→+∞

〈
(J |Ynj

)′(unj
), unj

− vnj

〉

= 0.
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As J ′ is of type (S+), we can conclude unj
→ u, furthermore we have J ′(unj

) → J ′(u).
Let us prove J ′(u) = 0 below. Taking ωk ∈ Yk, notice that when nj ≥ k we have

⟨J ′(u), ωk⟩ = ⟨J ′(u)− J ′(unj
), ωk⟩+ ⟨J ′(unj

), ωk⟩
= ⟨J ′(u)− J ′(unj ), ωk⟩+

〈
(J |Ynj

)′(unj ), ωk

〉
.

Going to the limit on the right side of the above equation reaches

⟨J ′(u), ωk⟩ = 0, ∀ωk ∈ Yk,

so J ′(u) = 0, this show that J satisfies the (PS)∗c condition for every c ∈ R.

Proof of Theorem 4.1
(i) The proof is similar to that of Theorem 3.12 if we use the Fountain theorem, and the proof of the boundedness of
(PS) sequence is same as in Lemma 4.4, we know that J satisfies (A1) and (B4), the assertion of conclusion can be
obtained from Dual fountain theorem. Now, it remains to prove that there exist ρk > rk > 0 such that if k is large
enough (B1), (B2) and (B3) are satisfied.
(B1) Let u ∈ Zk, then

J(u) ≥ m0

p+
||u||p+ − |λ|

α−

∫

Ω

|u|α(x)dx− µ

β−

∫

∂Ω

|u|β(x)dσ

≥ m0

p+
||u||p+ − C|λ|

α− ||u||α− − µ

β− max
{
|u|β

+

Lβ(x)(∂Ω)
, |u|β

−

Lβ(x)(∂Ω)

}
.

There exist 0 < ρ1 < 1 small enough such that C|λ|
α− ||u||α− ≤ m0

p+ ||u||p+ as 0 < ρ = ||u|| ≤ ρ1. Then we have

J(u) ≥ m0

p+
||u||p+ − µ

β− max
{
|u|β

+

Lβ(x)(∂Ω)
, |u|β

−

Lβ(x)(∂Ω)

}
.

If max
{
|u|β

+

Lβ(x)(∂Ω)
, |u|β

−

Lβ(x)(∂Ω)

}
= |u|β

+

Lβ(x)(∂Ω)
, then

J(u) ≥ m0

p+
||u||p+ − µ

β− β
β+

k ||u||β+

.

Choose ρk =
(

2p+µββ+

k

m0β−

) 1

p+−β+

, then

J(u) ≥ m0

2p+
(ρk)

p+ − m0

2p+
(ρk)

p+

= 0.

Since p− > β+, βk → 0, we know ρk → 0 as k → +∞.
If max

{
|u|β

+

Lβ(x)(∂Ω)
, |u|β

−

Lβ(x)(∂Ω)

}
= |u|β

−

Lβ(x)(∂Ω)
, we can do the same work as the case above. So (B1) is satisfied.

(B2) For u ∈ Yk with ||u|| ≤ 1, we have

J(u) = M̂
(∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

)
− λ

∫

Ω

F (x, u)dx− µ

∫

∂Ω

G(x, u)dσ

≤M
(∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

)∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx− λ

∫

Ω

1

α(x)
|u|α(x)dx

− µ

∫

∂Ω

1

β(x)
|u|β(x)dσ

≤ C||u||p−
+

|λ|
α−

∫

Ω

|u|α(x)dx− µ

β+

∫

∂Ω

|u|β(x)dσ.
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Since dimYk = k, conditions β+ < p− and p+ < p+

1−µ < α− imply that there exists a rk ∈ (0, ρk) such that J(u) < 0

when ||u|| = rk. Hence bk = max{J(u) : u ∈ Yk, ||u|| = rk} < 0, so (B2) is satisfied.
(B3) Because Yk ∩ Zk ̸= ∅ and rk < ρk, we have

dk = inf{J(u) : u ∈ Zk, ||u|| ≤ ρk} ≤ bk = max{J(u) : u ∈ Yk, ||u|| = rk} < 0.

In view of the proof of (B1), we have

J(u) ≥ − µ

β− β
β+

k ||u||β+

or − µ

β− β
β−

k ||u||β−

Since βk → 0 and ρk → 0 as k → +∞, (B3) is satisfied.
The conclusion of Theorem 4.1 (ii) is reached by the Dual fountain theorem.
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Abstract

Due to its possible applications, Fixed Point Theory has become one of the most useful branches
of Nonlinear Analysis. In a very recent paper, Khojasteh et al. introduced the notion of simu-
lation function to express different contractivity conditions in a unified way, and they obtained
some fixed point results. In this paper, we consider a pair of compatible, continuous and nonlin-
ear operators satisfying in generalized Z-contractions in a metric space endowed with a partial
order. For this pair of operators, we establish coincidence and unique common fixed point re-
sults. Some applications of our obtained results are given. In addition, we provide an example
to support our main result.

1. introduction

Fixed point theory is a very useful tool for several areas of mathematical analysis and its applications. Loosely speak-
ing, there are three principal categories in this theory: the metric, the topological and the order-theoretic approach,
where fundamental examples of these are: Banach’s, Brouwer’s and Tarski’s theorems respectively.
In recent years, many results appeared related to metric fixed point theory in partially ordered sets. The first work in
this direction was the 2004 paper of Ran and Reurings [7], where they established a fixed point result, which can be
considered as a combination of two fixed point theoerms: Banach contraction principle and Knaster-Tarski fixed point
theorem. Further, several results appeared in this direction, we mention [2, 3, 5, 6] and the references therein.
On the other hand, very recently Khojasteh et al. [4] introduced the concept of Z-contraction, by using a notion of
simulation function. Consequently, fixed point results involving a Z-contraction are established in [4]. This approach
has been of great importance to discuss various fixed point problems from an unifying point of view; see for instance
[1, 8] and the references therein.
In this paper, we consider a pair of compatible, continuous and nonlinear operators satisfying in a generalized Z-
contraction in a metric space endowed with partial order. For this kind of contraction , we establish coincidence and
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unique common fixed point results. Some applications of our obtained results are given. In addition, we provide an
example to support our main result.
The class of simulation functions was introduced by Khojasteh et al. in [4] as follows.

Definition 1.1. Let (X, d) be a metric space. A simulation function is a function ζ : [0,∞)× [0,∞) → R satisfying
the folloing conditions

ζ1) ζ(0, 0) = 0

ζ1) ζ(p, q) < q − p, ∀p, q > 0;

ζ2) if {pn} and {qn} are sequences in (0,∞) such that lim
n→∞

pn = lim
n→∞

qn = l > 0, then

lim sup
n→∞

ζ(pn, qn) < 0.

The main result in [4] is the following.

Theorem 1.2. Let (X, d) be a complete metric space and f : X → X be a Z-contraction with respect to ζ, that is,

ζ(d(fx, fy), d(x, y)) ≥ 0, ∀x, y ∈ X.

Then f has a unique fixed point. Moreover, for every x0 ∈ X , the Picard sequence {fnx0} converges to this fixed
point.

Successively, Argoubi et all.[1] point out the fact that condition (ζ1) is not mentioned in the proof of theorem 1.2.
Then, they provided the following definition that we use in this article.

Definition 1.3. A simulation function is a mapping ζ : [0,∞)× [0,∞) → R satisfying the conditions (ζ2) and (ζ3).

Before presenting our main fixed point results using simulation functions, we show a wide range of examples to
highlight their potential applicability to the field of Fixed Point Theory. These examples can also be found in [4], but
we include here to obtain some consequences of our main results.

Example 1.4. Let ζi : [0,∞)× [0,∞) → R, i = 1, 2 be defined by

1) ζ1(p, q) = ψ(q)− ϕ(p) for all p, q ∈ [0,∞), where ψ, ϕ : [0,∞) → [0,∞) are two continuous functions such
that ψ(t) = ϕ(t) = 0 if only if t = 0 and ψ(t) < t ≤ ϕ(t) for all t > 0.

2) ζ2(p, q) = αq − p for all p, q ∈ [0,∞) is a particular case of ζ1 with ϕ(t) = t and ψ(t) = αt for all t ≥ 0 and
α ∈ [0, 1).

2. Main result

Definition 2.1. Let (X, d) be a metric space and S, T : X → X . If v = Su = Tu, for some u in X , then u is called
a coincidence point of S and T .

Definition 2.2. ([11]). Let (X, d) be a metric space. The mappings S, T : X → X are compatible if and only if for
any sequence {un} in X such that lim

n→∞
Sun = lim

n→∞
Tun then lim

n→∞
d(STun, TSun) = 0

Definition 2.3. ([10]). Let (X, d) be a metric space. The mappings S, T : X → X are weakly compatible if and only
if for Su = Tu for some that u ∈ X implies that STu = TSu or S and T commute at their coincidence points.

If S and T are compatible, then S and T are weakly compatible.

Definition 2.4. ([2]). Let (X,⪯) is a partially ordered set and S, T : X → X . S is said to be T -non-decreasing if for
u, v ∈ X ,

Tu ⪯ Tv =⇒ Su ⪯ Sv.
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Theorem 2.5. Let (X,⪯) be a partially ordered set and suppose that there exists a metric d onX such that (X, d) is
complete metric space. Suppose that there exists a simulation function ζ and S, T : X → X such that

ζ(d(Sx, Sy), d(Tx, Ty)) ≥ 0 for all x, y ∈ X such that Tx ⪯ Ty. (1)

We suppose the following hypotheses:

i) SX ⊆ TX ,

ii) S is T -nondecreasing,

iii) S and T are continuous,

iv) the pair {S, T} compatible.

If there exists x0 ∈ X such that Tx0 ⪯ Sx0, then S and T have a coincidence point, that is, there exists u ∈ X such
that Su = Tu. Further, if Tu ⪯ TTu and the set of fixed points of T is totally ordered, then S and T have a unique
common fixed point.

Proof. Using the theorem condition, we have x0 ∈ X such that Tx0 ⪯ Sx0. Since SX ⊆ TX , then there exists
x1 ∈ X such that Tx1 = Sx0 and Tx0 ⪯ Sx0 = Tx1. Since S is T -non-decreasing, we have Sx0 ⪯ Sx1.
Continuing this process, we construct the sequence {xn} with the following conditions

Sxn = Txn+1 ∀ n ≥ 0, (2)

and
Tx0 ⪯ Sx0 = Tx1 ⪯ Sx1 = Tx2 ⪯ Sx2... ⪯ Sxn−1 = Txn ⪯ Sxn = Txn+1 ⪯ ... (3)

If two consecutive members of the sequences {Sxn} or {Txn} are equal, then the conclusion of the theorem follows.
So we have

d(Sxn, Sxn+1) ̸= 0, d(Txn, Txn+1) ̸= 0, ∀n ≥ 0. (4)

If for some n ∈ N, we assume that d(Txn−1, Txn) < d(Txn, Txn+1), then by property (ζ1) of simulation function,
(2), (3) and (4) we have

0 ≤ ζ(d(Sxn−1, Sxn), d(Txn−1, Txn)) (5)
= ζ(d(Txn, Txn+1), d(Txn−1, Txn))

< d(Txn−1, Txn)− d(Txn, Txn+1) < 0.

This contradiction shows that
d(Txn, Txn+1) ≤ d(Txn−1, Txn).

This implies that the sequence {d(Txn−1, Txn)} is a monotone decreasing sequence of non-negetive real numbers
and consequently there exists r ≥ 0 such that {d(Txn−1, Txn)} → r.
Suppose r > 0. By (3), we know that the elements Txn and Txn+1 are comparable, so using the property (ζ2) of a
simulation function, with pn = d(Sxn, Sxn+1) and qn = d(Sxn−1, Sxn) we have

0 ≤ lim sup
n→∞

ζ(d(Sxn−1, Sxn), d(Txn−1, Txn))

= lim sup
n→∞

ζ(d(Txn, Txn+1), d(Txn−1, Txn)) < 0,

which is a contradiction and hence
lim

n→∞
d(Txn−1, Txn) = 0 (6)
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The next step is to show that the sequence {Txn} is cauchy. By contradiction and by lemma 2.1 of [3], then there
exists an ϵ > 0 and {Txm(k)}, {Txn(k)} ⊂ {Txn} with n(k) > m(k) ≥ k, ∀k ∈ N, such that

lim
n→∞

d(Txm(k), Txn(k)) = lim
n→∞

d(Txm(k)+1, Txn(k)+1) = ϵ, d(Txm(k), Txn(k)) ≥ ϵ. (7)

Then we can assume that
d(Txm(k)+1, Txn(k)+1) > 0 ∀k ∈ N (8)

Again by (3), we know that the elements Txm(k) and Txn(k) are comparable, so using (7), (8) and the property (ζ2)
of a simulation function, with pn = d(Txm(k)+1, Txn(k)+1) and qn = d(Txm(k), Txn(k)), we have

0 ≤ lim sup
n→∞

ζ(d(Sxm(k), Sxn(k)), d(Txm(k), Txn(k)))

= lim sup
n→∞

d(Txm(k)+1, Txn(k)+1), d(Txm(k), Txn(k))) < 0,

which is a contradiction. We conclude that the sequence {Txn} is Cauchy sequence and hence {Txn} is convergent
in the complete metric space (X, d). Then, there exists u ∈ X such that

lim
n→∞

Sxn = lim
n→∞

Txn = u. (9)

Since S and T are compatible, this implies that

lim
n→∞

(S(Txn), T (Sxn)) = 0. (10)

From 9 and the continuity of S and T , we have

lim
n→∞

T (Txn) = Tu, lim
n→∞

S(Txn) = Su. (11)

By the triangular inequality, we have:

d(Su, Tu) ≤ (Su, S(Txn)) + d(S(Txn), T (Sxn)) + d(T (Txn+1), Tu). (12)

By 10 and 11, and letting n→ ∞, we obtain:
d(Su, Tu) ≤ 0,

therefore
v = Su = Tu, (13)

that is, u is coincidence point of S and T .
Since S and T compatible and therefore are weakly compatible, we have, STu = TSu. Then

Tv = TTu = TSu = STu = SSu = Sv. (14)

If Tv = v or Sv = v, then v is a common fixed point. Otherwise, i.e Tv ̸= v and Sv ̸= v, by property (ζ1) of a
simulation function with Tu ⪯ TTu

0 ≤ ζ(d(v, Sv), d(v, Tv))

= ζ(d(Su, SSu), d(Tu, TTu)) < d(Tu, TTu)− d(Su, SSu).

Using (13) and (14) in above inequality we have

d(Su, SSu) < d(Tu, TTu) = d(Su, SSu),

which is a contradiction.Therefore Tv = v or Sv = v and we conclude that v = Sv = Tv
Now, suppose that the set of fixed points of T is totally ordered. Assume on the contrary that v = Sv = Tv and
v′ = Sv′ = Tv′ but v ̸= v′. Since v and v′ contain a set of fixed points of T , without loss of generality we assume
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that Tv ⪯ Tv′. If Sv = Sv′ or Tv = Tv′, then v = v′ , wich is a contraction. Otherwise, i.e Sv ̸= Sv′ and Tv ̸= Tv′,
by property (ζ1) of a simulation function, we have

0 ≤ ζ(d(Sv, Sv′), d(Tv, Tv′))

= ζ(d(v, v′), d(v, v′)) < d(v, v′)− d(v, v′) = 0,

wich is a contraction. Therefore S and T have a unique common fixed point.

Example 2.6. We suppose that ζ(p, q) : [0,∞) × [0,∞) → R with ζ(p, q) = q − p+2
p+1p. Clearly ζ is a simulation

function. Let X = [0,∞) be endowed with the metric d : X ×X → R given by

d(x, y) =

{
0 ifx = y,

max{x, y} ifx ̸= y.
(15)

Now, consider the usual order of real numbers and define the mappings S, T : X → X by Sx = x and Tx = 2x, for
all x ∈ X . Then, we have

ζ(d(Sx, Sy), d(Tx, Ty)) = 2y − y + 2

y + 1
y =

2y(y + 1)− y(y + 2)

y + 1
=

y2

y + 1
≥ 0,

for all x, y ∈ X , with x ≤ y. Therefore, the inequality (1) is satisfied.Thus, S and T satisfy all the hypotheses of
Theorem 2.5. Here, v = 0 is a coincidence point as well as unique common fixed point of S and T .

If T : X → X is the identity mapping, we can deduce easily the following fixed point result.
The following result is an immediate consequence of Theorem 2.5.

Theorem 2.7. Let (X,⪯) be a partially ordered set and suppose that there exists a metric d onX such that (X, d) is
complete metric space. Suppose that there exists a simulation function ζ and S : X → X such that

ζ(d(Sx, Sy), d(x, y)) ≥ 0 for all x, y ∈ X such that x ⪯ y.

We suppose the following hypotheses:

i) S is a non-decreasing function,

ii) S is continuous,

If there exists x0 ∈ X such that x0 ⪯ Sx0, then S has a unique fixed point.

Corollary 2.8. LetS, T : X → X be mappings such that there exists two continuous functions ϕ, ψ : [0,∞) → [0,∞)
verifying ψ(t) = ϕ(t) = 0 if and only if t = 0, ψ < t ≤ ϕ(t) for all t > 0 and

ϕ(d(Sx, Sy)) ≤ ψ(d(Tx, Ty)) for all x, y ∈ X, such that Tx ⪯ Ty.

We suppose the following hypotheses:

i) SX ⊆ TX ,

ii) S is T -nondecreasing,

iii) S and T are continuous,

iv) the pair {S, T} compatible.

If there exists x0 ∈ X such that Tx0 ⪯ Sx0, then S and T have a coincidence point, that is, there exists u ∈ X such
that Su = Tu. Further, if Tu ⪯ TTu and the set of fixed points of T is totally ordered, then S and T have a unique
common fixed point.
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The result follows from Theorems 2.5 by taking as simulation function

ζ1(p, q) = ψ(q)− ϕ(p)

for all p, q ≥ 0, which was introdued in Example 1.4.

Corollary 2.9. Let S, T : X → X be mappings such that there exists α ∈ (0, 1) verifying

d(Sx, Sy) ≤ αd(Tx, Ty) for all x, y ∈ X, such that Tx ⪯ Ty.

We suppose the following hypotheses:

i) SX ⊆ TX ,

ii) S is T -nondecreasing,

iii) S and T are continuous,

iv) the pair {S, T} compatible.

If there exists x0 ∈ X such that Tx0 ⪯ Sx0, then S and T have a coincidence point, that is, there exists u ∈ X such
that Su = Tu. Further, if Tu ⪯ TTu and the set of fixed points of T is totally ordered, then S and T have a unique
common fixed point.

The result follows from Theorems 2.5 by taking as simulation function

ζ2(p, q) = αq − p

for all p, q ≥ 0, which was introdued in Example 1.4.
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Abstract

An operator T on Banach spaceX is called transitive, if for every nonempty open subsets U ,V
ofX , there is a positive integern, such thatTn(U)∩V ̸= ϕ. In the present paper, local subspace
transitivite operators are introduced. Moreover the local subspace transitivity criterion is stated.
Also, we show an operator may satisfies in the local subspace transitivity criterion without being
topological transitive.

1. Introduction

An operator T for subspace M of a Banach space X over the field C of complex numbers is called subspace-
hypercyclic or M -hypercyclic if there is a vector x ∈ X , so that the intersection Orb(T, x) ∩ M = {Tnx : n ∈
N ∪ {0}} ∩M is dense in M . If X = M , then the operator T is called hypercyclic and the vector x is a hypercyclic
vector for T . Observe that in this case, the underlying Banach space X should be separable. Then it is well known
and easy to show that an operator T is hypercyclic if and only if T is topologically transitive, to be precise, for every
pair of nonempty open subsets U, V of X , there exists an integer n ≥ 0 such that Tn(U) ∩ V ̸= ∅. Again let M be
a pure subspace of X , then the operator T is called M -transitivity if for any pair U, V of nonempty relatively open
subsets of M , there exists some integers n ≥ 0, such that Tn(U) ∩ V ̸= ∅ and Tn(M) ⊆ M . it was confirmed
that M -hypercyclicity is derived from M -transitivity, [5]. Le [4] showed that M -transitivity is not equivalent to M -
hypercyclicity whenM is a pure subspace of X .

It is worthwhile to mention that, with following remark we can ensure that there is an infinite subset P of N, that T
satisfies inM -transitive condition for every member of it.

Remark 1.1. If T ∈ B(X) is an M -transitive operator and U , V are nonempty relatively open subsets of M and if
n0 ≥ 0, so that T−n0(U) ∩ V ̸= ∅ and Tn0(M) ⊆ M , then two distinct vectors x, y ∈ T−n0(U) ∩ V and relatively
open subsets Ox and Oy of M are assumed, so that Ox, Oy ⊂ T−n0(U) ∩ V and Ox ∩ Oy = ∅. According to the
assumptions, there is an integer k ≥ 1, such that we have T k(M) ⊆ M and T−k(Ox) ∩ Oy ̸= ∅. Thus, the set
V ∩ T−(k+n0)(U) is nonempty and, clearly, T (n0+k)(M) ⊆ M . By repeating the above method, it can be ensured
that there is an infinite subset P of N, such that for every n ∈ P , V ∩ T−n(U) ̸= ∅ and Tn(M) ⊆ M .
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The concept of hypercyclicity was localized by introducing certain sets ,which is called J-sets, [2]. To be precise for
a given vector x ∈ X and an operator T ;

J(x) = {z ∈ X; there exist a sequence {zn} ⊂ X and a strictly increasing

sequence of positive integers {mn}, such that zn −→ x and Tmnzn −→ z}.

An operator T ∈ B(X) is called a J-class operator if there exists a non-zero x ∈ X such that J(x) = X . In this case,
the vector x is called a J-class vector for T .
Similarly, we provide the following definition;

Definition 1.2. The M -extended limit set of vector x under an operator T ∈ B(X) is the set of all y ∈ M such
that there is a sequence {zn} in subspace M and a strictly increasing sequence {kn} ⊂ N such that zn −→ x and
T knzn −→ y, and for all n, T kn(M) ⊆ M .
TheM -extended limit set of vector x under an operator T is denoted by JM (x).

See the paper [1] and the good book [3] for some details on hypercyclicity and J-class and related properties.

In this paper, we give an equivalent definition of JM (x) and moreover, a sufficient condition is expressed as subspace
JM -class criterion for an operator T ∈ B(X) to be the subspace JM -class operator.
In all the following discussions,M is a nontrivial subspace of X .

2. Main Result

At the beginning of this section, we state an equivalent definition of JM (x).

Theorem 2.1. Assume that T ∈ B(X) and x ∈ M . Then we have JtraM (x) = JM (x) where JtraM (x) is the set of all
y ∈ M such that for every relatively open neighborhoods Ux, Vy of vectors x, y in M respectively, and every positive
integer n0, there exists an integer n > n0 such that Tn(Ux) ∩ Vy ̸= ∅ and Tn(M) ⊆ M .

Proof. Assume that y ∈ JtraM (x), k0 = 1, N = kn−1 and set for every n ∈ N:

U(x,n) = B(x,
1

n
) ∩M, V(y,n) = B(y,

1

n
) ∩M.

By the assumption, integer kn > N and vector xn ∈ U(x,n) exist, so that T kn(M) ⊆ M and T knxn ∈ V(y,n). Thus
the sequences {kn} and {xn} are proposed by induction, so that we have xn −→ x and T knxn −→ y. This completes
the proof of nontrivial side.

For an operator T ∈ B(X), if equality JM (x) = M is established for a vector x ∈ M , then x is a subspace J-class
vector for subspaceM under operator T . We then call T a JM -class operator.
According to the earlier theoremwhich in fact defines a localizedM -transitive operator, it is concluded that T ∈ B(X)
is anM -transitive operator if and only if for all x ∈ M , the set JM (x) is equal to the subspaceM .
As hypercyclicity criterion is a useful tool for identifying hypercyclic operators and provides a sufficient condition to
ensure that an operator is hypercyclic, we also intend to introduce the local subspace transitivity criterion. Also, we
will provide an example that satisfies this criterion. For useful reference of example and properties of hypercyclic,
subspace hypercyclic and transitive criterions one can see [6].

Theorem 2.2 (Local Subspace Transitivity Criterion). Assume that T is an operator on Banach spaceX and Y is
a dense subset of M . If for vector x ∈ M , there exists a strictly increasing sequence {kn} ⊂ N, which satisfies the
following conditions;

1. There is a sequence {zn} ⊂ M , such that zn −→ x and T knzn −→ 0,
2. For every y ∈ Y , there is a sequence {wn} ⊂ M , such that wn −→ 0 and T knwn −→ y,
3. M is an invariant subspace under T kn , for every n ∈ N,
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then JM (x) = M .

Proof. Assume that y ∈ M and integer N ≥ 1; also, for sufficiently small ε > 0, W ′
1 := B(0,

ε

2
) is the relatively

open ball inM . Now, we set
Ux := W ′

1 + x, Uy := W ′
1 + y.

By the assumptions, there is an integer k1 ≥ N , such that

T k1(Ux) ∩W ′
1 ̸= ∅ and T k1(W ′

1) ∩ Uy ̸= ∅.

There are vectors w1, w2, w3, w4 ∈ W ′
1, such that

T k1(w1 + x) = w2, T k1(w3) = w4 + y.

Consequently,
T k1(x+ w1 + w3) = w2 + w4 + y

and
x1 := x+ w1 + w3 ∈ B(x, ε), y1 := y + w2 + w4 ∈ B(y, ε).

Similarly, we can construct the sequences {xn}, {yn} ⊂ M and {kn} ⊂ N, kn−1 > kn−1, such that for each n ≥ 2;

xn ∈ B(x,
ε

n
), yn ∈ B(y,

ε

n
)

and T knxn −→ y as n −→ ∞. The above contents along with (3) show y ∈ JM (x) and, since the choice of vector
y ∈ M is arbitrary, equality JM (x) = M is obtained, so x is a subspace J-class vector for subspaceM under T .

In the following, an operator will be raised such that it satisfies the local subspace transitivity criterion however it
is not a topological transitive operator. In fact, the unilateral weighted backward shift T on ℓ2(N) with the bounded

weight sequence {wn ≥ 0}n∈N is topological transitive if and only if lim sup
n

(
n∏

i=1

wi) = +∞, [3].

Example 2.3. Consider weighted backward shift operator T on ℓ2(N) given by:

T (x1, x2, · · · ) = (2x2,
3

2
x3,

4

3
x4, · · · ).

Also let Y ′ be the set of finite sequences with entries z ∈ C that Re(z) ∈ Q, Im(z) ∈ Q and subspace M of ℓ2(N)
is considered as:

M = {{xn} ∈ ℓ2(N) ; x2k = 0, for all k ∈ N}.
Since Y := Y

′ ∩M is dense in M , so there are strictly increasing sequence {2k}k, sequence {xk} ⊂ Y that

xk = (x1, 0, x3, 0, · · · , x2k−1, 0, 0, · · · ),

xk −→ 0 as k −→ ∞ and T 2kxk = 0.
Now, for the random member y = (y1, 0, y3, 0, · · · , y2m+1, 0, 0, · · · ) ∈ Y and k ≥ 1, we set;

w2k(y) = (0, · · · , 0︸ ︷︷ ︸
2k−times

,
y1

2k + 1
, 0 ,

3y3

2k + 3
, 0, · · · , (2m+ 1)y2m+1

2(k +m) + 1
, 0, 0, · · · ).

Clearly, for every k ∈ N ∪ {0}, w2k(y) belongs to Y and the sequence {w2k(y)} is a sequence in ℓ2(N). Since

||w2k(y)||2 =
2m∑

j=1

| j

2k + j
yj |2 ≤ 4m2

(2k + 1)
2 ||y||2,
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so w2k(y) −→ 0, as k −→ ∞. Note that for n ≥ 1:

Tn(x1, x2, x3, · · · ) =
(
(n+ 1)xn+1,

1

2
(n+ 2)xn+2,

1

3
(n+ 3)xn+3, · · ·

)
,

thus

T 2kw2k(y) =

(
(2k + 1)

1

2k + 1
y1, 0, (

2k + 3

3
)(

3

2k + 3
)y3, 0, · · · ,

(
2(k +m) + 1

(2m+ 1)
)(

2m+ 1

2(k +m) + 1
)y2m+1, 0, 0, · · ·

)
= y.

Hence the condition (2) holds. For each k ≥ 1, condition (3) clearly holds; therefore, the operator T satisfies the
local subspace transitivity criterion with respect to subspace M and JM (0) = M .
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Abstract

In this paper, we introduce the concept of some operators Tλ,φ and Tλ,ω on weighted Hardy
spaces H2

β . And in the following, we investigate the boundedness of those operators on H2
β .

Then we prove that the stability for some operators Tλ,φ and Tλ,ω onH2
β .

1. Introduction and Preliminaries

The stability problem of functional equations had been first raised by Ulam. In 1941, Hyers gave a first affirmative
answer to the question of Ulam for Banach spaces. Several stability problems for various functional equations on C∗-
algebras have been investigated in ( see [2–4]). In recent years, the stability of many differential, integral, operatorial,
functional equations have been extensively investigated (see[1, 6]).
M. Obloza seems to be the first author to investigate Ulam stability of differential equations. Later C. Alsina and R.
Ger proved that for every differentiable mapping f : I → R satisfying

|f ′(x)− f(x)| ≤ ε x ∈ I.

where ε > 0, is a given number and I is an open interval of R, there exists a differentiable function g : I → R with
the property

g′(x) = g(x) |f(x)− g(x)| ≤ 3ε, x ∈ I.

Let A,B be normed spaces and consider a mapping T : A → B. The operator T is Ulam stable if there existsK ≥ 0
such that for every ε > 0 , f ∈ A and g ∈ B such that

∥Tf − g∥ ≤ ε
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there exists f0 ∈ A with the properties Tf0 = g and

∥f − f0∥ ≤ K · ε.

We call suchK an Ulam constant for T .

Definition 1.1. [5] Given a set X, we will say that H is a reproducing kernel Hilbert space(RKHS) on X over F,
provided that:

1. H is a vector subspace of F(X,F ),
2. H is endowed with an inner product, < , > making it into a Hilbert space,
3. for every y ∈ X , the linear evaluation functional, Ey : H → F, defined by Ey(f) = f(y), is bounded.

Definition 1.2. [5] The function ky is called the reproducing kernel for the point y. The 2−variable function defined
by

K(x, y) = ky(x)

is called the reproducing kernel for H.

2. The boundedness of the operators Tλ,φ and Tλ,ω on weighted Hardy spaces

Throughout this section, let φ : D → C be an analytic maps, Mφ be the multiplication operator on weighted Hardy
spaces.

Definition 2.1. Γ is called a weighted backward shift, such that

Γen =





ωnen−1, for n > 0;

0, for n=0.

with
ωn =

nβn−1

βn
.

Define the operators Tλ,φ and Tλ,ω on H2
β by

Tλ,φf(z) = (Mφf)(z) + λf(z) (f ∈ H2
β , z ∈ D and λ ∈ C);

Tλ,ω(f)(z) = Γ(f)(z) + λ(Mφf)(z) (f ∈ H2
β , z ∈ D and λ ∈ C).

Proposition 2.2. Let Tλ,φ be the operator on weighted hardy spaceH2
β . Then Tλ,φ is a bounded onH2

β if and only if
φ ∈ L∞

Proof. Necessity. Suppose that Tλ,φ is bounded on H2
β . For each n ∈ Z+, we have

∥Tλ,φen∥β = ∥Mφen + λen∥β

= ∥φ(z) z
n

βn
+ λ

zn

βn
∥β

= ∥(φ(z) + λ)
zn

βn
∥β

= |φ(z) + λ|∥ z
n

βn
∥

> |φ(z)| − |λ|
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Hence |φ(z)| − |λ| ≤ ∥Tλ,φen∥β < ∞, then we have |φ(z)| ≤ M + |λ| ∀z.
Hence φ ∈ L∞

Sufficiency. We suppose φ ∈ L∞.We have

∥Tλ,φen∥β = ∥Mφen + λen∥β

= ∥φ(z) z
n

βn
+ λ

zn

βn
∥β

= ∥(φ(z) + λ)
zn

βn
∥β

= |φ(z) + λ|∥
≤ ∥φ∥∞ + |λ|

So, Tλ,φ is bounded on H2
β . The proof is complete.

Proposition 2.3. Let Tλ,ω be the operator on weighted hardy space H2
β . Then following statements are equivalent:

1. Tλ,ω is a bounded on H2
β

2. The sequence
{

nβn−1

βn

}∞

n=1
is bounded, where the weight β = {βn} and φ ∈ L∞

Proof. 1 ⇒ 2 Suppose that Tλ,ω is bounded on H2
β . For n ∈ Z+ and λ ∈ C, we have

∥Tλ,ωen∥β = ∥Γen + λMφen∥β
= ∥ωen−1 + λMφen∥β

= ∥nβn−1

β
en−1 + λφ(z)en∥β

=

√(nβn−1

β

)2

+ |λ|2(φ(z))2.

Hence Tλ,ω is bounded. So, we have {nβn−1

βn

}∞

n=1
≤ Tλ,ω < ∞,

and
φ(z) ≤ Tλ,ω < ∞ ∀z ∈ D ⇒ φ ∈ L∞.

2 ⇒ 1 We suppose that the sequence
{

nβn−1

βn

}∞

n=1
is bounded. Let S = sup

{
nβn−1

βn
: n ≥ 1

}
, then S < +∞. For

every holomorphic polynomial f = Σl
n=0 < f, en > en ∈ H2

β , we get

Γf =
l∑

n=1

ωn+1 < f, en+1 > en+1

=
l∑

n=1

nβn

βn+1
< f, en >

zn+1

βn+1

=
l∑

n=1

nβn

βn+1
< f, en > en+1

=
l−1∑

n=0

nβn−1

βn
< f, en > en
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It follows above equation, that

∥Γf∥β = ∥
l−1∑

n=0

(nβn−1

βn

)2

| < f, en > |2∥β ≤ S2∥f∥2β

Given the above equation

∥Tλ,ωf∥β = ∥Γf + λMφf∥β ≤ ∥Γnf∥β + ∥λMφf∥β
≤ S∥f∥β + |φ(z)|∥f∥β ≤ (S + ∥φ∥∞)∥f∥β

Since the polynomials are dense inH2
β , it follows that Tλ,ω is bounded on H2

β . The proof is complete.

3. The Hyers- Ulam Stability of weighted backward shift operator

Theorem 3.1. Let Γen be a weighted backward shift operator. Then following statements are equivalent:

1. Γen is Hyers-Ulam stable
2. The sequence ωn is bounded.

Now, we investigate the Ulam-Hyers stability for operator weighted m-backward shift.

Corollary 3.2. Consider the operator Γen for m (briefly m-backward operator). In this case, m-backward operator
is Hyers-Ulam stable iff ωn−m =

{
(n−m)!βn

n!βn−m

}∞

n=1
is bounded.

Example 3.3. Let β0 = β1 = 1 in H2
β . If βi−1 has been defined and i satisfies 22k ≤ i ≤ 22k+1 for some integer K

and let βi =
βi−1

2 and since β1 ≤ 1 for all i ≥ 0. Therefore for 22k, m-backward shift operator the best Hyers-Ulam
stability constant 1.
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Abstract

In this work, we introduce a new generalized class of contractive multi valued mappings which
is a generalization of many known results such as Banach (1922). Nadlcr (1969). C’iric( 1974).
Reich (1983). Mizoguclii and Takahashi (1989). Daffer-Kaneko (1995), Rhoades (21)01),
Rouhani and Moradi (2010). Amini-Harandi (2010) and Moradi and Khojasteh (2011). Finally,
a partial answer to the con-jecture which is introduced by Rouhani and Moradi is given.

1. Introduction

In 1922, Banach established the most famous fundamental fixed point theorem (so- called the Banach contraction
principle ) which has played an important role in various fields of applied mathematical analysis. It is known that
the Ba-nach contraction principle has been extended and generalized in many various different directions by several
authors(see [3]-[5]). An interesting direction of research is the extension of the Banach contraction principle to multi
valued maps, known as Nadlcr‘s fixed point theorem [8], Mizoguchi-Takahashi’s fixed point theorem [6]. M. Berinde
and V. Berinde [1], ciric, Reich [2], Daffer and Kaneko [3]. Rhoades [9], Rouhani and Moradi [10]. Amini-Harandi.
[5], Moradi and Khojasteh [7], Du [4] and references therein.

Theorem 1.1. ([6], Mizoguchi and Takahashi) Let {X. d) be a complete metric space, ϕ : [0,∞) → [0, 1)be a MT-
function and T : X → CB(X) be a multi valued map.

H(Tx, Ty) ≤ ϕ(d(x, y)).d(x, y),

For all x, y ∈ X.Then F (T ) ̸= φ.

A mapping T : X → Xis said to be a weak contraction if there exists 0 ≤ α < 1such that

d(Tx, Ty) ≤ αM(x, y),

for all x, y ∈ X,where

M (x, y) : = max
{
d (x, y) .d (x, Tx) , d (y, Ty) ,

d(x, Ty) + d(y, Tx)

2

}
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Two multi valued mapping T : X → CB(X)are called generalized weak contraction if there exists 0 ≤ α < 1 such
that

M (x, y) : = max
{
d (x, y) .d (x, Tx) , d (y, Ty) ,

d(x, Ty) + d(y, Tx)

2

}

Two multi valued mapping T : X → CB(X)are called generalized weak contraction if there exists 0 ≤ α < 1 such
that
Also two mapping T, S : X → CB(X)are called generalized weak contractive if there exists a map ϕ: [0,+∞) →
[0,+∞) with ϕ(0) = 0 and ϕ(t) > 0 for all t > 0 such that

H(Tx, Sy) ≤ MT,S(x, y)− ϕ(MT,S(x, y)), ∀x, y ∈ X

2. Main results

Definition 2.1. A function ϑ : IR× IR → IRis called GMT function if the following conditions hold:

1) ◦ < ϑ(t, s) < 1∀S, t > ◦

2) For any bounded sequence {tn} ⊂ (◦,+∞)and any no increasing sequence {Sn} ⊂ (◦,+∞), it holds limn→∞ sup ϑ (tn, Sn) <
1.

We denote the set of all GMT function by GMT (R).

Example 2.2. Let ϑ : [◦, 1) be an MT-function then ϑ(t, s) = ϑ(s) is a GMT- function.

Theorem 2.3. Let (X, d) be a complete metric space and. let T, S : X → CB(X) and there exists ϑ ∈ GMT (R)such
that

H(Tx, Sy) ≤ ϑ(H(Tx, Sy),MT,S(x, y)MT,S(x, y) (2.1)

for each x, y ∈ X.Then T, S has a common fixed point.

Example 2.4. Suppose that X = [0, 1] ∪ {4}and let T, S : X → CB(X) be defined as follows:
Tx =

[
0, x

4

]
and Sy =

{
y
4

}

Assume

ϕ (t) =

{
t/2t ∈ [0, 1],

3t/4t > 1,

and ϑ (t, s) = 1− ϕ(s)
s for all t, s > 0. For any bounded sequence {tn} ⊂ (0,+∞) and any non-increasing sequence

{sn} ⊂ (0,+∞), it holds

lim sup
n→∞

ϑ (tn, sn) = lim sup
n→∞

(
1− ϕ(sn)

sn

)
< 1

First suppose 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1then

H (Tx, Sy) = max
{
|y
4
− x

4
|, y
4

}

≤ 1

2
max

{
|y − x|, |y − y

4
|
}

≤ 1

2
MT,S (x, y)

= ϑ (H (Tx, Sy) ,MT,S (x, y))MT,S (x, y) .

In the other case, suppose x = 4 and 0 ≤ y ≤ 1, then
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H (Tx, Sy) = max
{
|y
4
− 1|, y

4

}

≤ 1

4
max {|4− y, y}

≤ 1

2
MT,S (x, y)

= ϑ (H (Tx, Sy) ,MT,S (x, y))MT,S (x, y) .

Other cases are easily verified as the above arguments. Henceforth, T is WGMT- contraction and enjoys all conditions
of Theorem 2.1. Also, T.S has a common fixed point {0}.

Problem (A):
Let (X. d) be a complete metric space and let T, S : X → CB(X)be two mappings such that for all x, y ∈ X,

H(Tx, Sy) ≤ MT,S(x, y)− (MT,S(x, y)), ∀x, y ∈ X

(i.e. generalize ϕ-weak contraction) where ϕ : [0,+∞) → [0,+∞) is l.s.c. with ϕ(0) = 0, ϕ(t) < tand ϕ(t) > 0, for
all t > 0. Then does T and S have a common fixed point?
In the following theorem a partial solution to Problem (A) is given as an application of ’Theorem 2.1.

Corollary 2.5. Let (X, d) be a complete metric space and let T, S : X → CB(X) be two mappings such that for all
x; y ∈ X,

H(Tx, Sy) ≤ MT,S(x, y)− ϕ(MT,S(x, y)), ∀x, y ∈ X

(i.e. generalize ϕ-weak contraction) where ϕ : [0,+∞) → [0,+∞), with ϕ(0) = 0, ϕ(t) < t and ϕ ∈ Wlsc(R). Then
there exists a unique point x ∈ X such that Fix (T, S) ̸= ∅.
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Abstract

In this paper, we introduce the concept of Jensen s-functional equation on Banach algebras.
Then we prove Hyers-Ulam stability and hyperstability of Jensen s-functional by using fixed
point theorem on Banach algebras.

1. Introduction and Preliminaries

A classical question in the sense of functional equation says that ”when is it true that a function which approximately
satisfies a functional equation must be close to an exact solution of the equation? ” Ulam raised the stability of
functional equations and Hyers [3] in 1941was the first one which gave an affirmative answer to the question of Ulam
for additive mapping between Banach spaces. In 1978, Th. M. Rassias [8] by replacing control function Hyers theorem
from ε to θ(∥a∥r+∥b∥r), introduced new concept of stability. A generalization of the theorem of Rassias was obtained
by Gǎvruta [2] by replacing a general control function φ : X × X −→ [0,∞). In 1996, Isac and Rassias were the
first to provide applications of stability theory of functional equations for the proof of new fixed point theorems with
applications. The stability problems of various functional equations and functional inequalities have been extensively
investigated by a number of authors (for example see [1, 4, 5]).
Park in 2015, [6, 7] defined additive ρ-functional inequalities and proved the Hyers-Ulam stability of the additive
ρ-functional inequalities in Banach spaces and non-Archimedean Banach spaces. And in the following we defined
general Jensen s-functional equation on Banach algebras.
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Throughout this paper , Let A be a Banach algebra.
Consider the generalized Jensen s-functional equation

3f
(a+ b+ c

3

)
− f(a)− f(b)− f(c) = s

(
f(a+ b+ c) + f(a)− f(a+ b)− f(a+ c)

)
(1)

where s ̸= 0,±1 is a real number.
In this paper, we solve above equation and show that a function which satisfies its is additive. We also prove its
Hyers-Ulam stability by using B. Margolis and J. B. Diaz theorem on Banach algebras.

Theorem 1.1. Let (A, d) be a complete generalized metric space and let F : A → A be a strictly contractive mapping
with Lipschitz constant β < 1. Then for each given element a ∈ A, either

d(F ia, F i+1a) = ∞

for all nonnegative integers i or there exists a positive integer i0 such that
(1) d(F ia, F i+1a) < ∞, ∀i ≥ i0;
(2) the sequence {F ia} converges to a fixed point b∗ of F ;
(3) b∗ is the unique fixed point of F in the set B = {b ∈ A | d(F i0a, b) < ∞};
(4) d(b, b∗) ≤ 1

1−β d(b, Fb) for all b ∈ B.

2. General Jensen s-Functional

Throughout the section, let s is real number and s ̸= 0,±1.
To prove the main theorems, we need the following proposition. Firstly, in the next proposition, we prove that f is a
additive mapping.

Proposition 2.1. If a mapping f : A → A satisfies

3f
(a+ b+ c

3

)
− f(a)− f(b)− f(c) = s

(
f(a+ b+ c) + f(a)− f(a+ b)− f(a+ c)

)
(2)

for all a, b, c ∈ A. Then the mapping f : A → A is additive.

Proof. Assume that f : A → A satisfies in (2).
Let a = b = c = 0 in (2), we have f(0) = 0.
Now, by putting b = c = 0 in (2), we have

3f(a) = f(3a). (3)

By using (3) and putting a = b = c in (2), we have

2f(a) = f(2a). (4)

Again putting b = −a and c = 0, we get
f(−a) = −f(a).

Finally, replace c = 0 in (2) and using (3), we have

f(a+ b) = f(a) + f(b).

Thus f : A → A is additive.

Suppose that δ be mapping from A3 into [0,∞), for all a, b, c ∈ A such that

δ(
a

3
,
b

3
,
c

3
) ≤ β

3
δ(a, b, c) (5)
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for some constant 0 < β < 1, and if we take a = b = c = 0, then δ(0, 0, 0) = 0.
It follows (5) that

lim
i→∞

3iδ(
a

3i
,
b

3i
,
c

3i
) = 0 (6)

for all a, b, c ∈ A.
In the following, we prove Hyers-Ulam stability of generalized Jensen s-functional equation on Banach algebras.

Theorem 2.2. Let f : A → A be a mapping for which there exist functions δ : A3 → [0,∞) satisfying (5) and
∥∥∥3f

(a+ b+ c

3

)
− f(a)− f(b)− f(c)− s

(
f(a+ b+ c) + f(a)− f(a+ b)− f(a+ c)

)∥∥∥ ≤ δ(a, b, c), (7)

for all a, b, c ∈ A. Then there exist a unique additive mapping J : A → A such that

∥f(a)− J(a)∥ ≤ β

(1− β)
δ(a, 0, 0), (8)

for all a ∈ A.

Theorem 2.2 generalized the result of Rassias, whenever we define

δ(a, b, c) := θ
(
∥a∥r + ∥b∥r + ∥c∥r

)
,

for all θ ∈ R+ and r ̸= 1.

Corollary 2.3. Let r ̸= 1 and θ be nonegative real numbers and f : A → A be a mapping satisfying f(0) = 0 and
∥∥∥3f

(a+ b+ c

3

)
− f(a)− f(b)− f(c)− s

(
f(a+ b+ c) + f(a)− f(a+ b)− f(b+ c)

)∥∥∥ ≤ θ(∥a∥r + ∥b∥r + ∥c∥r)

for all a, b, c ∈ A. Then there exists a unique additive mapping J : A → A such that

∥f(a)− J(a)∥ ≤ 2θ

2r − 2
∥a∥r, for r > 1

∥f(a)− J(a)∥ ≤ 2θ

2− 2r
∥a∥r, for r < 1

for all a ∈ A.

In next Theorem, we investigate hyperstability of functional equation (1), by Gǎvruta’s control function.

Theorem 2.4. Suppose there exist function δ : A3 → [0,∞) such that

lim
n→∞

1

3i
δ(0, 3ib, 3ic) = 0, (9)

for all b, c ∈ A. Moreover, suppose that f : A → A is mapping such that
∥∥∥3f

(a+ b+ c

3

)
− f(a)− f(b)− f(c)− s

(
f(a+ b+ c) + f(a)− f(a+ b)− f(a+ c)

)∥∥∥ ≤ δ(0, b, c), (10)

for all a, b, c ∈ A, then f is an additive equation.

Now, in the following corollary we prove hyperstability of (1), by Rassias’s control function.

Corollary 2.5. Let θ, r ∈ R+ with r > 1 and f : A → A is mapping such that
∥∥∥3f

(a+ b+ c

3

)
− f(a)− f(b)− f(c)− s

(
f(a+ b+ c) + f(a)− f(a+ b)− f(a+ c)

)∥∥∥ ≤ θ(∥b∥r + ∥c∥r)

for all b, c ∈ A, then f is an additive equation.
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Conclusions

In this paper, the authors introduced generalized Jensen s-functional equation. And by Using a fixed point theorem
with Gǎvruta’s control function it is proved that generalized Jensen s-functional equation on Banach algebras can be
stable and hyperstable.
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Abstract

In this paper, we obtain fixed point results under some rational contractive conditions for ex-
tended b-metric spaces and some examples are provided here to illustrate the usability of the
obtained results.

1. Introduction

Recall (see [3]) that a b-metric b on a set X is a generalization of standard metric, where the triangular inequality is
replaced by

b(x, z) ≤ s[b(x, y) + b(y, z)], x, y, z ∈ X, (1)

for some fixed s ≥ 1. Motivated by this, the following further generlization has been recently presented by Parvaneh
and Ghoncheh.

Definition 1.1. [6] Let X be a (nonempty) set. A function d : X ×X → [0,∞) is an extended b-metric (p-metric,
for short) if there exists a strictly increasing continuous function Ω : [0,∞) → [0,∞) with Ω−1(t) ≤ t ≤ Ω(t) for all
t ≥ 0 and Ω−1(0) = 0 = Ω(0) such that for all x, y, z ∈ X , the following conditions hold:

(p1) d(x, y) = 0 iff x = y,

(p2) d(x, y) = d(y, x),

(p3) d(x, z) ≤ Ω(d(x, y) + d(y, z)).

In this case, the pair (X, d) is called a p-metric space, or an extended b-metric space.
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It should be noted that each b-metric is a p-metric, with Ω(t) = st for some s ≥ 1, while each metric is a p-metric,
with Ω(t) = t. More general examples of p-metrics can be constructed using the following easy proposition.

Proposition 1.2. Let (X, b) be a b-metric space with coefficient s ≥ 1 and let d(x, y) = ξ(b(x, y))where ξ : [0,∞) →
[0,∞) is a strictly increasing continuous function with t ≤ ξ(t) for t ≥ 0 and ξ(0) = 0. Then, d is a p-metric with
Ω(t) = ξ(st).

Taking various functions ξ in the previous proposition, we can obtain a lot of examples of p-metrics. We state just a
few of them which will be used later in the text.
Example 1.3. 1. If ξ(t) = et−1, we get d(x, y) = eb(x,y)−1 andΩ(t) = est−1. Note thatΩ−1(t) = 1

s ln(1+t).
2. If ξ(t) = sinh t, we get d(x, y) = sinh b(x, y) and Ω(t) = sinh(st). Note that

Ω−1(t) = 1
s sinh

−1 t.
3. If ξ(t) = tet, then d(x, y) = b(x, y)eb(x,y) and Ω(t) = stest. Note that in this case

Ω−1(t) = 1
sW (t), for t ≥ 0, whereW is the LambertW -function (see, e.g., [1]).

4. If ξ(t) = t cosh t, then d(x, y) = b(x, y) cosh b(x, y) and Ω(t) = st cosh(st), for t ≥ 0.

Note that such functions ξ and Ω generate p-metric spaces which are usually not b-metric spaces. For instance, in the
case (2) of the previous example (if b(x, y) = (x− y)2), it was shown in [1] that there is no s such that d is a b-metric
with parameter s.

Definition 1.4. [6] Let (X, d) be a p-metric space. Then a sequence {xn} in X is called:
(a) p-convergent if there exists x ∈ X such that d(xn, x) → 0, as n → ∞. In this case, we write lim

n→∞
xn = x;

(b) p-Cauchy if d(xn, xm) → 0 as n,m → ∞.
(c) The p-metric space (X, d) is p-complete if every p-Cauchy sequence in X p-converges.

We will need the following simple lemma about the p-convergent sequences.

Lemma 1.5. [6] Let (X, d) be a p-metric space with the function Ω, and suppose that {xn} and {yn} p-converge to
x, y, respectively. Then, we have

(Ω2)−1(d(x, y)) ≤ lim inf
n−→∞

d(xn, yn) ≤ lim sup
n−→∞

d(xn, yn) ≤ Ω2(d(x, y)).

In particular, if x = y, then limn→∞ d(xn, yn) = 0. Moreover, for each z ∈ X we have

Ω−1(d(x, z)) ≤ lim inf
n−→∞

d(xn, z) ≤ lim sup
n−→∞

d(xn, z) ≤ Ω(d(x, z)).

2. Main results

In the rest of the paper, (X, d) will always be a p-metric space with function Ω.

2.1. Fixed point results via generalized Geraghty functions
In the rest of the paper, (X, d) will always be a p-metric space with function Ω.

2.2. Fixed point results via generalized Geraghty functions
Let BΩ denote the class of all functions β : [0,∞) → [0,Ω−1(1)) satisfying the following condition:

lim sup
n→∞

β(tn) = Ω−1(1) implies that tn → 0, as n → ∞.

Definition 2.1. Let (X, d,⪯) be a partially ordered p-metric space. A mapping f : X → X is called a rational
Geraghty contraction of type I if there exists β ∈ BΩ such that

Ω(d(fx, fy)) ≤ β(M(x, y))M(x, y) (2)

holds for all x, y ∈ X with x ⪯ y, where

M(x, y) = max
{
d(x, y),

d(x, fx)d(y, fy)

1 + d(x, y)
,
d(x, fx)d(y, fy)

1 + d(fx, fy)

}
.
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A partially ordered p-metric space (X, d,⪯) is said to have the sequential limit comparison property (s.l.c. property)
if for every nondecreasing sequence {xn} in X , the convergence of {xn} to some x ∈ X yields that xn ⪯ x for
all n ∈ N.

Theorem 2.2. Let (X, d,⪯) be a partially ordered p-complete p-metric space. Let f : X → X be a nondecreasing
mapping with respect to ⪯ such that there exists an element x0 ∈ X with x0 ⪯ f(x0). Suppose that f is a rational
Geraghty contraction of type I . If
(I) f is continuous, or
(II) (X, d,⪯) has the s.l.c. property,
then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f has a unique fixed point.

Definition 2.3. Let (X, d,⪯) be a partially ordered p-metric space. A mapping f : X → X is called a rational
Geraghty contraction of type II if there exists β ∈ BΩ such that

Ω(d(fx, fy)) ≤ β(M(x, y))M(x, y)

for all x, y ∈ X with x ⪯ y, where

M(x, y)

= max
{
d(x, y),

d(x, fx)d(x, fy) + d(y, fy)d(y, fx)

1 + Ω[d(x, fx) + d(y, fy)]
,
d(x, fx)d(x, fy) + d(y, fy)d(y, fx)

1 + d(x, fy) + d(y, fx)

}
.

Theorem 2.4. Let (X, d,⪯) be a partially ordered p-complete p-metric space. Let f : X → X be a nondecreasing
mapping with respect to ⪯ such that there exists an element x0 ∈ X with x0 ⪯ f(x0). Suppose that f is a rational
Geraghty contractive mapping of type II . If
(I) f is continuous, or
(II) (X, d,⪯) has the s.l.c. property.
Then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f has a unique fixed point.

Definition 2.5. Let (X, d,⪯) be a partially ordered p-metric space. A mapping f : X → X is called a rational
Geraghty contraction of type III if there exists β ∈ BΩ such that

Ω(d(fx, fy)) ≤ β(M(x, y))M(x, y) (3)

for all x, y ∈ X with x ⪯ y, where

M(x, y) = max
{
d(x, y),

d(x, fx)d(y, fy)

1 + Ω[d(x, y) + d(x, fy) + d(y, fx)]
,

d(x, fy)d(x, y)

1 + Ω(d(x, fx)) + Ω3[d(y, fx) + d(y, fy)]

}
.

Theorem 2.6. Let (X, d,⪯) be a partially ordered p-complete p-metric space. Let f : X → X be a nondecreasing
mapping with respect to ⪯ such that there exists an element x0 ∈ X with x0 ⪯ f(x0). Suppose that f is a rational
Geraghty contractive mapping of type III . If
(I) f is continuous, or
(II) (X, d,⪯) has the s.l.c. property,
then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f has a unique fixed point.

Corollary 2.7. Let (X, b,⪯) be a partially ordered b-complete b-metric space with parameter s ≥ 1, and let f : X →
X be an increasing mapping with respect to ⪯ such that there exists an element x0 ∈ X with x0 ⪯ f(x0). Suppose
that

sb(fx, fy)eb(fx,fy)esb(fx,fy)e
b(fx,fy) ≤ rM(x, y)



4 R. J. Shahkoohi & Z. Bagheri / The 3rd National Congress on Mathematics and Statistics

for all x, y ∈ X with x ⪯ y, where 0 ≤ r < Ω−1(1) = 1
sW (1), Ω(t) = stest, and

M(x, y) = max
{
b(x, y)eb(x,y),

b(x, fx)eb(x,fx)b(y, fy)eb(y,fy)

1 + b(x, y)eb(x,y)
,
b(x, fx)eb(x,fx)b(y, fy)eb(y,fy)

1 + b(fx, fy)eb(fx,fy)

}
,

or

M(x, y) = max
{
b(x, y)eb(x,y),

b(x, fx)eb(x,fx)b(x, fy)eb(x,fy) + b(y, fy)eb(y,fy)b(y, fx)eb(y,fx)

1 + s[b(x, fx)eb(x,fx) + b(y, fy)eb(y,fy)]es[b(x,fx)eb(x,fx)+b(y,fy)eb(y,fy)]
,

b(x, fx)eb(x,fx)b(x, fy)eb(x,fy) + b(y, fy)eb(y,fy)b(y, fx)eb(y,fx)

1 + b(x, fy)eb(x,fy) + b(y, fx)eb(y,fx)

}
.

If f is continuous, or (X, b,⪯) has the s.l.c. property, then f has a fixed point.

Example 2.8. LetX = [0, 1.2) be equipped with the p-metric d(x, y) = |x−y|2 for all x, y ∈ X , whereΩ(t) = et−1,
with Ω−1(t) = ln(1 + t) (Example 1.3.(1)).
Define a relation ⪯ on X by x ⪯ y iff y ≤ x, a mapping f : X → X by

f(x) = (
1

4
)ln(x2 + 1)

and a function β ∈ BΩ by β(t) = 1
2 < 0.69 ≈ Ω−1(1). For all x, y ∈ X with x ⪯ y, we have:

d(fx, fy) = |1
4
ln(x2 + 1)− 1

4
ln(y2 + 1)|2

≤ 1

4
|x− y|2

=
1

4
d(x, y),

therfor

Ωd(fx, fy) = (e|
1
4 ln(x

2+1)− 1
4 ln(y

2+1)|2 − 1)

≤ 1

4
(e|x−y|2 − 1)

=
1

4
(ed(x,y) − 1) ≤ 1

2
d(x, y) = β(d(x, y))d(x, y),

So, from Theorem 2.2, f has a fixed point.

Example 2.9. LetX = {0, 1, 2, 3} be equippedwith the p-metric generated from the standardmetricm(x, y) = |x−y|
as in Corollary 2.7, i.e. take Ω(t) = et − 1. Define a partial order on X by

⪯= {(0, 0), (1, 1), (2, 2), (3, 3), (1, 0), (3, 1), (3, 0), (2, 0)},

and consider the mapping f : X → X given by

f :

(
0 1 2 3
0 0 1 1

)
.

Then,X is a partially ordered p-complete p-metric space and f is a nondecreasing mapping. Take the function β ∈ BΩ

given by

β(t) =

{
ln 2 · e−0.04 t, t > 0,

δ, t = 0,
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where 0 < δ < ln 2 (i.e., take γ = 0.04 in Corollary 2.7). We will check the condition (??) of this corollary.
Considering elements x, y ∈ X with x ⪯ y, the following cases are nontrivial.
(1) x = 3, y = 1. Then we have d(fx, fy) = e− 1,M(x, y) ≥ d(x, y) = e2 − 1 = 6.35 and

Ω(d(fx, fy)) = ed(fx,fy) − 1 = ee−1 − 1 = 3.35 < 3.41 = ln 2 · 6.35 e−0.04·6.35

= β(d(x, y)) · d(x, y) ≤ β(M(x, y)) ·M(x, y)

(note that tβ(t) is an increasing function for 0 < t < 25 = γ−1).
(2) x = 3, y = 0. Then we have d(fx, fy) = e− 1,M(x, y) ≥ d(x, y) = e3 − 1 ≈ 20 and

Ω(d(fx, fy)) = ee−1 − 1 = 3.35 < 6.2 = ln 2 · 20 e−0.04·20

= β(d(x, y)) · d(x, y) ≤ β(M(x, y)) ·M(x, y).

(3) x = 2, y = 0. Then we have d(fx, fy) = e− 1,M(x, y) ≥ d(x, y) = e2 − 1 = 6.35 and

Ω(d(fx, fy)) = ee−1 − 1 = 3.35 < 3.41 = ln 2 · 6.35 e−0.04·6.35

= β(d(x, y)) · d(x, y) ≤ β(M(x, y)) ·M(x, y).

Hence, all the conditions of Corollary 2.7 are fulfilled and the mapping f has a (unique) fixed point (which is u = 0).
Note that the same conclusion could not be obtained if the space without partial order were used. Indeed, in this case
we should have also the following case to consider.
(4) x = 2, y = 1. Then d(fx, fy) = d(x, y) = e− 1 and

M(x, y) = max
{
e− 1,

(e− 1)2

e
,
(e− 1)2

e

}
= e− 1,

and it is trivial to check that the condition (??) does not hold. In fact, none of the known fixed point results can be
used to obtain the conclusion in this case.
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Abstract

In this paper, we obtain fixed point theorems under some comparison function and application.

1. Introduction

Recall (see [1]) that a b-metric b on a set X is a generalization of standard metric, where the triangular inequality is
replaced by

b(x, z) ≤ s[b(x, y) + b(y, z)], x, y, z ∈ X, (1)

for some fixed s ≥ 1. Motivated by this, the following further generlization has been recently presented by Parvaneh
and Ghoncheh.

Definition 1.1. [7] Let X be a (nonempty) set. A function d : X ×X → [0,∞) is an extended b-metric (p-metric,
for short) if there exists a strictly increasing continuous function Ω : [0,∞) → [0,∞) with Ω−1(t) ≤ t ≤ Ω(t) for all
t ≥ 0 and Ω−1(0) = 0 = Ω(0) such that for all x, y, z ∈ X , the following conditions hold:

(p1) d(x, y) = 0 iff x = y,

(p2) d(x, y) = d(y, x),

(p3) d(x, z) ≤ Ω(d(x, y) + d(y, z)).

In this case, the pair (X, d) is called a p-metric space, or an extended b-metric space.
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It should be noted that each b-metric is a p-metric, with Ω(t) = st for some s ≥ 1, while each metric is a p-metric,
with Ω(t) = t. More general examples of p-metrics can be constructed using the following easy proposition.

Proposition 1.2. Let (X, b) be a b-metric space with coefficient s ≥ 1 and let d(x, y) = ξ(b(x, y))where ξ : [0,∞) →
[0,∞) is a strictly increasing continuous function with t ≤ ξ(t) for t ≥ 0 and ξ(0) = 0. Then, d is a p-metric with
Ω(t) = ξ(st).

Taking various functions ξ in the previous proposition, we can obtain a lot of examples of p-metrics. We state just a
few of them which will be used later in the text

Example 1.3. 1. If ξ(t) = et−1, we get d(x, y) = eb(x,y)−1 andΩ(t) = est−1. Note thatΩ−1(t) = 1
s ln(1+t).

2. If ξ(t) = sinh t, we get d(x, y) = sinh b(x, y) and Ω(t) = sinh(st). Note that
Ω−1(t) = 1

s sinh
−1 t.

3. If ξ(t) = tet, then d(x, y) = b(x, y)eb(x,y) and Ω(t) = stest. Note that in this case
Ω−1(t) = 1

sW (t), for t ≥ 0, whereW is the LambertW -function (see, e.g., [? ]).
4. If ξ(t) = t cosh t, then d(x, y) = b(x, y) cosh b(x, y) and Ω(t) = st cosh(st), for t ≥ 0.

Note that such functions ξ and Ω generate p-metric spaces which are usually not b-metric spaces. For instance, in the
case (2) of the previous example (if b(x, y) = (x−y)2), it was shown in [? ] that there is no s such that d is a b-metric
with parameter s.

Definition 1.4. [7] Let (X, d) be a p-metric space. Then a sequence {xn} in X is called:
(a) p-convergent if there exists x ∈ X such that d(xn, x) → 0, as n→ ∞. In this case, we write lim

n→∞
xn = x;

(b) p-Cauchy if d(xn, xm) → 0 as n,m→ ∞.
(c) The p-metric space (X, d) is p-complete if every p-Cauchy sequence in X p-converges.

We will need the following simple lemma about the p-convergent sequences.

Lemma 1.5. [7] Let (X, d) be a p-metric space with the function Ω, and suppose that {xn} and {yn} p-converge to
x, y, respectively. Then, we have

(Ω2)−1(d(x, y)) ≤ lim inf
n−→∞

d(xn, yn) ≤ lim sup
n−→∞

d(xn, yn) ≤ Ω2(d(x, y)).

In particular, if x = y, then limn→∞ d(xn, yn) = 0. Moreover, for each z ∈ X we have

Ω−1(d(x, z)) ≤ lim inf
n−→∞

d(xn, z) ≤ lim sup
n−→∞

d(xn, z) ≤ Ω(d(x, z)).

2. Main results

Theorem 2.1. Let (X, d,⪯) be a partially ordered p-complete p-metric space. Let f : X → X be a nondecreasing
mapping with respect to ⪯ such that there exists an element x0 ∈ X with x0 ⪯ f(x0). Suppose that f is a rational
Geraghty contraction of type I . If
(I) f is continuous, or
(II) (X, d,⪯) has the s.l.c. property,
then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f has a unique fixed point.

Lemma 2.2. If ψ ∈ Ψ, then the following are satisfied:
(a) ψ(t) < t for all t > 0;
(b) ψ(0) = 0.

Theorem 2.3. Let (X, d,⪯) be a partially ordered p-complete p-metric space, and let f : X → X be an increasing
mapping with respect to ⪯ such that there exists an element x0 ∈ X with x0 ⪯ f(x0). Suppose that

Ω[d(fx, fy)] ≤ ψ(M(x, y)) (2)
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for some ψ ∈ Ψ and for all x, y ∈ X with x ⪯ y, where

M(x, y) = max
{
d(x, y),

d(x, fx)d(y, fy)

1 + d(x, y)
,
d(x, fx)d(y, fy)

1 + d(fx, fy)

}
.

If f is continuous, or (X, d,⪯) has the s.l.c. property, then f has a fixed point. Moreover, the set of fixed points of f
is well ordered if and only if f has one and only one fixed point.

Corollary 2.4. Let (X, b,⪯) be a partially ordered b-complete b-metric space with parameter s, and let f : X → X
be an increasing mapping with respect to ⪯ such that there exists an element x0 ∈ X with x0 ⪯ f(x0). Suppose that

s · b(fx, fy) cosh(b(fx, fy)) cosh(s · b(fx, fy) cosh(b(fx, fy))) ≤ ψ(M(x, y)),

where

M(x, y) = max
{
b(x, y) cosh(b(x, y)),

b(x, fx) cosh(b(x, fx))b(y, fy) cosh(b(y, fy))
1 + b(x, y) cosh(b(x, y))

,

b(x, fx) cosh(b(x, fx))b(y, fy) cosh(b(y, fy))
1 + b(fx, fy) cosh(b(fx, fy))

}

for some ψ ∈ Ψ and all x, y ∈ X with x ⪯ y. If f is continuous, or (X, b,⪯) has the s.l.c. property, then f has a
fixed point. Moreover, the set of fixed points of f is well ordered if and only if f has one and only one fixed point.

Remark 2.5. As any b-metric is a p-metric withΩ(t) = st for all t ∈ [0,∞), so our results modify the obtained results
in [? ] and several other articles.

3. Examples

Example 3.1. Let X = [0, 2.5] be also equipped with the p-metric d(x, y) = e|x−y| − 1 for all x, y ∈ X , where
Ω(t) = et − 1. Define a relation ⪯ on X by x ⪯ y iff y ≤ x, a mapping f : X → X by

fx =
x

2
e−x

and a function ψ ∈ Ψ by ψ(t) = e
1
2 t − 1. It is easy to see that f(X) = [0, 0.358] ⊆ X and ψ(t) < t for all t ∈ X .

For all x, y ∈ X with x ⪯ y, by Mean Value Theorem, we have

Ω[d(fx, fy)] = ee
1
2
|xe−x−ye−y|−1 − 1 ≤ ee

1
2
(|x−y|)−1 − 1

≤ e
1
2 (e

|x−y|−1) − 1 = e
1
2d(x,y) − 1 = ψ(d(x, y)),

So, from Theorem 2.3, f has a fixed point.

4. Application to existence of local solutions for first-order periodic problems

In this section we present an application to existence of a solution for a periodic problem which is a consequence of
Theorem 2.3. This kind of application first appeared in [? ].
LetX = C(I) be the set of all real continuous functions on I = [0, T ] where T < 2.5. Obviously, this space with the
p-metric given by

d(x, y) = e
max
t∈I

|x(t)−y(t)| − 1

for all x, y ∈ X is a p-complete p-metric space with Ω(t) = et − 1. Secondly, X can also be equipped with a partial
order given by

x ⪯ y iff x(t) ≤ y(t) for all t ∈ I.

Moreover, as in [? ], it can be proved that (X,⪯) enjoys the s.l.c. property.
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Consider the following first-order periodic boundary value problem
{
x′(t) = f(t, x(t))

x(0) = x(T ),
(3)

where t ∈ I and f : I ×R → R is a given continuous function. A lower solution for (3) is a function α ∈ C1(I) such
that {

α′(t) ≤ f(t, α(t))

α(0) ≤ α(T ),

where t ∈ I .
Assume that there exists λ > 0 such that, for all x, y ∈ X and t ∈ I , we have

|f(t, x(t)) + λx(t)− f(t, y(t))− λy(t)| ≤ λ

2
(|x(t)− y(t)|).

Problem (3) can be rewritten as
{
x′(t) + λx(t) = f(t, x(t)) + λx(t) ≡ F (t, x(t))

x(0) = x(T ),

where t ∈ I . It is well known that this problem is equivalent to the integral equation

x(t) =

∫ T

0

G(t, s)F (s, x(s)) ds,

where G is the Green’s function given as

G(t, s) =

{
eλ(T+s−t)

eλT−1
, 0 ≤ s ≤ t ≤ T,

eλ(s−t)

eλT−1
, 0 ≤ t ≤ s ≤ T.

Now define an operator S : X → X by

Sx(t) =

∫ T

0

G(t, s)F (s, x(s)) ds.

The mapping S is nondecreasing [1]. Note that if u ∈ C1(I) is a fixed point of S then u is a solution of (3).
Let x, y ∈ X . Then we have

Ω
(
d(Sx, Sy)

)
= ee

maxt∈I |S(x(t))−S(y(t))|−1 − 1

= ee
maxt∈I |

∫T
0 G(t,s)F (s,x(s)) ds−

∫T
0 G(t,s)F (s,y(s)) ds|−1 − 1

≤ ee
maxt∈I

∫T
0 |G(t,s)| |F (s,x(s))−F (s,y(s))| ds−1 − 1

≤ ee
maxt∈I

∫T
0 |G(t,s)|λ

2
|x(t)−y(t)| ds−1 − 1

≤ ee
λ
2

maxt∈I |x(t)−y(t)|
(

∫ t
0

eλ(T+s−t)

eλT −1
ds+

∫T
t

eλ(s−t)

eλT −1
ds

)
−1 − 1

= ee
λ
2

maxt∈I |x(t)−y(t)| 1
λ(eλT −1)

(
eλT −eλ(T−t)+eλ(T−t)−1

)
−1 − 1

= e
1
2d(x,y) − 1 = ψ

(
d(x, y)

)
,

wherefrom Ω(d(Sx, Sy)) ≤ ψ(M(x, y)), where

M(x, y) = max
{
d(x, y),

d(x, Sx)d(y, Sy)

1 + d(x, y)
,
d(x, Sx)d(y, Sy)

1 + d(Sx, Sy)

}
.

Finally, let α be a lower solution for (3). In [? ], it was shown that α ⪯ S(α).
Hence, the hypotheses of Theorem 2.3 are satisfied withψ(t) = e

1
2 t−1. Therefore, there exists a fixed point x̂ ∈ C(I)

such that Sx̂ = x̂. This x̂ is then a solution of problem (3).
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Abstract

We investigate on some subclasses of analytic fuctions defined by subordination. Also, we give

estimates of sup|z|<1

(
1 − |z|2

)∣∣f
′′
(z)

f ′(z)

∣∣, for functions belonging to extended class of starlike

functions. For a locally univalent analytic function f defined on ∆ = {z ∈ C : |Z| < 1}, we

consider the pre-Schwarzian norm by ∥Tf∥ = sup|z|<1

(
1 − |z|2

)∣∣f
′′
(z)

f ′(z)

∣∣ . In this paper, we
find the sharp norm estimate for the functions f in the extended classes of starlike functions.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

n=2

anz
n, (1)

which are analytic in the open unit disc ∆ = {z : z ∈ C : |z| < 1}. Further, by S we shall denote the class of all
functions in A that are univalent in∆.
Also, let S∗ denote the class of starlike functions that is defined as

S∗ =

{
f ∈ S; Re

(
zf

′
(z)

f(z)

)
> 0, z ∈ ∆

}
.

Let f and g be analytic in ∆. The function f is said to be subordinate to g, written as f ≺ g or f(z) ≺ g(z), if there
exists an analytic function w in∆ satisfying w(0) = 0 and |w(z)| < 1, such that f(z) = g(w(z))[4].
If g is univalent, then f ≺ g if and only if f(0) = 0 and f(∆) ⊂ g(∆).
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For the first time, Ma and Minda [5] extended the class of starlike functions by using of subordination method.
In fact, they introduced S∗(ϕ) as follow:

S∗(ϕ) =
{
f ∈ S; zf

′
(z)

f(z)
≺ ϕ(z)

}
,

where, ϕ is analytic and Re
{
ϕ
}
> 0, ϕ(0) = 1, ϕ

′
(0) > 0.

For a locally univalent analytic function f , the pre-Schwarzian derivative of f is defined by

Tf =
f

′′
(z)

f ′(z)

and its norm is defined by

∥Tf∥ = sup
|z|<1

(
1− |z|2

)∣∣∣f
′′
(z)

f ′(z)

∣∣∣

It is essential to note that ∥Tf∥ < ∞ if and only if f is uniformly locally univalent in ∆. It is also to be noted that
if f ∈ S , then ∥Tf∥ ≤ 6. Conversely, it follows from Becker’s theorem, is if f ∈ A and if ∥Tf∥ ≤ 1 then f ∈ S .
The results are sharp [1, 2]. For functions belonging to the class of convex functions, ∥Tf∥ ≤ 4. According to Ya-
mashita [9], if f ∈ S∗(α), then ∥Tf∥ ≤ 6 − 4α. Bhowmik et al. [3] have obtained the estimate of the norm as
4 < ∥Tf∥ < 2α+ 2 for functions in the class of concave univalent functions of order α.
The pre-Schwarzian derivative Tf and its norm, ∥Tf∥, have important meanings in the theory of the Teichmuller space
.
Recently, many researchers motivated by the work of Ma and Minda[5], introduced and studied some interesting ex-
tended class of starlike functions by choosing suitable ϕ.

For our main purpose in this paper, we need definitions of some extended classes of starlike functions. S∗
l , S∗

e , and
S∗
c denote the classes of extended starlike functions, respectively, Following [6–8] these are defined as:

S∗
l =

{
f ∈ S; zf ′(z)

f(z)
≺ z +

√
1 + z2 z ∈ ∆

}
, (2)

S∗
e =

{
f ∈ S; zf ′(z)

f(z)
≺ ez z ∈ ∆

}
, (3)

S∗
c =

{
f ∈ S; zf ′(z)

f(z)
≺ 1 +

4

3
z +

2

3
z2 z ∈ ∆

}
, (4)

.

2. Main Results

In this section, we obtain upper bound of ∥Tf∥ for functions belonging to some extended class of starlike functions.

Theorem 2.1. Let the function f(z) given by (1) be in the class S∗
l . Then ∥Tf∥ ≤ 2 .

Proof. By (2), we have,

zf ′(z)
f(z)

≺ z +
√

1 + z2, z ∈ ∆,

now, by the definition of subordination, yields that

zf ′(z)
f(z)

= w(z) +
√
1 + w(z)2 (5)
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where, w(z) is Schwartz function. Applying the Schwarz-Pick lemma, we get
∣∣∣w′

(z)
∣∣∣ ≤ 1− |w(z)|2

1− |z|2 , z ∈ ∆.

Logarithmic differentiation of (5) gives

1

z
+

f
′′
(z)

f ′(z)
− f

′
(z)

f(z)
=

w
′
(z)√

1 + w2(z)
. (6)

From (5) and (6), we obtain the pre-Schwarzian derivative of f as follows:

Tf (z) =
f

′′
(z)

f ′(z)
=

1

z

(
w(z) +

√
1 + w2(z)

)
− 1

z
+

w
′
(z)√

1 + w2(z)
.

By using the Schwarz-pick lemma and triangle inequality we conclude that,
∣∣∣∣∣
f

′′
(z)

f ′(z)

∣∣∣∣∣ ≤
1

|z|

(
|w(z)|+

√
1 + w2(z) + 1

)
+

1− |w(z)|2
(1− |z|2)

√
1 + w2(z)

, (7)

Multiplying the inequality (7) by (1− |z|2), we get

(1− |z|2)
∣∣∣∣∣
f

′′
(z)

f ′(z)

∣∣∣∣∣ ≤
1− |z|2

|z|

(
|w(z)|+

√
1 + w2(z) + 1

)
+

1− |w(z)|2√
1 + w2(z)

. (8)

Therefore, by using the inequality |w(z)| ≤ |z| for all z ∈ ∆, we see that

(1− |z|2)
∣∣∣∣∣
f

′′
(z)

f ′(z)

∣∣∣∣∣ ≤
1− |z|2

|z|

(
|z|+

√
1 + |z|2 + 1

)
+ 1 + |z|. (9)

Taking the supremum value from both sides in the unit disc, the inequality (9) becomes

sup
z∈∆

(1− |z|2)
∣∣∣∣∣
f

′′
(z)

f ′(z)

∣∣∣∣∣ ≤ sup
z∈∆

(1 + |z|).

This completes the proof.

Theorem 2.2. Let the function f(z) given by (1) be in the class S∗
e . Then ∥Tf∥ ≤ 2 .

Proof. Since f ∈ S∗
e , we have

zf
′
(z)

f(z)
≺ ez.

Using the definition of subordination, there exists a Schwarz function w(z) with w(0) = 0 and |w(z)| < 1 such that

zf
′
(z)

f(z)
= ew(z). (10)

By logarithmic differentiation of (10), we ge

1

z
+

f
′′
(z)

f ′(z)
− f

′
(z)

f(z)
= w

′
(z). (11)
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Also, equation (10) gives us,

f
′
(z)

f(z)
=

1

z
ew(z). (12)

Equations (11) and (12) give us the pre-Schwarzian derivative of f as follows

Tf (z) =
f

′′
(z)

f ′(z)
=

1

z

(
ew(z) − 1

)
+ w

′
(z).

By applying triangle inequality and the Schwarz-Pick lemma, we obtain
∣∣∣∣∣
f

′′
(z)

f ′(z)

∣∣∣∣∣ ≤
1

|z|

(
e|w(z)| − 1

)
+

1− |w(z)|2
1− |z|2 , z ∈ ∆,

For all z ∈ ∆, we have

(1− |z|2)
∣∣∣∣∣
f

′′
(z)

f ′(z)

∣∣∣∣∣ ≤
1− |z|2

|z|

(
e|w(z)| − 1

)
+ 1− |w(z)|2.

Since, w(z) is Schwarz function and |w(z)| ≤ |z|, hence,

(1− |z|2)
∣∣∣∣∣
f

′′
(z)

f ′(z)

∣∣∣∣∣ ≤
1− |z|2

|z|

(
e|z| − 1

)
+ 1 + |z|.

We take the lower limit as z → 1−1 to obtain the following inequality

sup
z∈∆

(1− |z|2)
∣∣∣∣∣
f

′′
(z)

f ′(z)

∣∣∣∣∣ ≤ sup
z∈∆

{
1− |z|2

|z|

(
e|z| − 1

)
+ 1 + |z|

}
.

This completes the proof.

Theorem 2.3. Let the function f(z) given by (1) be in the class S∗
c . Then ∥Tf∥ ≤ 8

3 .

Proof. In order to prove this theorem, we use a similar procedure. Since f ∈ S∗
c , we have

zf
′
(z)

f(z)
≺ 1 +

4

3
z +

2

3
z2.

By using subordination method we see that,

zf
′
(z)

f(z)
= 1 +

4

3
w(z) +

2

3
w(z)2, (13)

where w(z) is Schwarz function. By logarithmic differentiation of (13), we get

1

z
+

f
′′
(z)

f ′(z)
− f

′
(z)

f(z)
=

4
3w

′
(z)
(
1 + w(z)

)

1 + 4
3w(z) +

2
3w(z)

2
. (14)

From (13), we have

f
′
(z)

f(z)
=

1

z

(
1 +

4

3
w(z) +

2

3
w(z)2

)
. (15)
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By the help of the Schwarz-Pick lemma and triangle inequality, from (14) and (15), we obtain
∣∣∣∣∣
f

′′
(z)

f ′(z)

∣∣∣∣∣ ≤
1

|z|

(
4

3
|w(z)|+ 2

3
|w(z)|2

)
+

4

3

(
1− |w(z)|2
1− |z|2

)∣∣∣∣∣
1 + w(z)

1 + 4
3w(z) +

2
3w(z)

2

∣∣∣∣∣. (16)

Consequently, for all z ∈ ∆, we conclude that,

(1− |z|2)
∣∣∣∣∣
f

′′
(z)

f ′(z)

∣∣∣∣∣ ≤
1− |z|2

|z|

(
4

3
|w(z)|+ 2

3
|w(z)|2

)
+

4

3

(
1− |w(z)|2

)∣∣∣∣∣
1 + w(z)

1 + 4
3w(z) +

2
3w(z)

2

∣∣∣∣∣. (17)

By the inequality |w(z)| ≤ |z| for all z ∈ ∆, we obtain

(1− |z|2)
∣∣∣∣∣
f

′′
(z)

f ′(z)

∣∣∣∣∣ ≤
1− |z|2

|z|

(
4

3
|z|+ 2

3
|z|2
)

+
4

3

(
1 + |z|

)
. (18)

Hence, the limit of (1− |z|2)
∣∣∣∣∣
f

′′
(z)

f ′(z)

∣∣∣∣∣ and
1−|z|2

|z|

(
4
3 |z|+ 2

3 |z|2
)
+

4

3

(
1+ |z|

)
exist when z tends to 1 from the left

and it equals the supremum of (1− |z|2)
∣∣∣∣∣
f

′′
(z)

f ′(z)

∣∣∣∣∣ and
1−|z|2

|z|

(
4
3 |z|+ 2

3 |z|2
)

+
4

3

(
1 + |z|

)
. Therefore

sup
z∈∆

(1− |z|2)
∣∣∣∣∣
f

′′
(z)

f ′(z)

∣∣∣∣∣ ≤ sup
z∈∆

{
1− |z|2

|z|

(
4

3
|z|+ 2

3
|z|2
)

+
4

3

(
1 + |z|

)}
.

This completes the proof.
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Abstract

In this paper, we prove that an operatorK satisfying certain rational contration condition has a
fixed point in a partially ordered metric space. Also, we establish some coincidence, common
fixed point fixed point theorem for monotone f-non decreasing self mapping satisfying certain
rational type contraction in the context of metric spaces endowed with partial order.

1. Introduction

The Banach contraction principle is one of the most versatile result in fixed point theory and approximation theory. It
plays an important role in solving many existing problems in pure and applied mathematics. There is a vast literature
dealing with technical extensions and generalizations of Banach contraction principle, some instance of these works
are in [1, 2]. Besides, this famous classical theorem gives an iteration process through which we can obtain better
approximation to the fixed point. It renders a key role in solving system of linear algebra equation involving iteration
process. Iteration procedures are using in nearly every banach of applied mathematics covergence proof and also in
estimating the process of errors, very often by an application of banach,s fixed point theorem.
In recent time, fixed points of mapping in ordered metric spaces are of great use in many branches of mathematical
analysis for solving nonlinear equations. The first result in this direction was initiated by work [9]. Ran and Reurings
[8] studied the existence of fixed points for certain mapping in partially ordered metric spaces and applied their results
to matrix equations. The results of Ran and Reurigs [8] were extended by Nieto et al.[6, 7] for non decreasing mapping
and obtained the solutions of certain partial differential equations with periodic boundary conditions. While Agarwal
et al. [3] have discussed some new results for generalized contractions in partially ordered metric spaces. There have
been a lot of generalizations and improvements of the results to obtain fixed point, common fixed point results for
single valued and multivalued operators in various ordered spaces with topological properties, some of which are
[4, 5].

∗Talker
Email address: parastoo.heiatian@pnu.ac.ir (Parastoo Heiatian Naeini)

https://conf.gonbad.ac.ir/msc1400


P. Heiatian Naeini / The 3rd National Congress on Mathematics and Statistics 135

The purpose of this paper is to establish some fixed point results of a mapping satisfying cerrtain rational condition in
partially ordered metric space.
The following definitions are frequently used in results given in upcoming sections.

Definition 1.1. The triple (X, d,⪯) is called partialy ordered metric space, if (X,⪯) is a partially ordered set together
with (X, d) is a metric space.

Definition 1.2. If (X, d) is a complete metric space, then triple (X, d,⪯) is called complete partialy ordered metric
space.

Definition 1.3. Let (X,⪯) be a partially ordered set. A self-mapping f : X → X is said to be stricttly increasing if
f(x) ≺ f(y), for all x, y ∈ X with x ≺ y and is also said to be strictly decreasing if f(x) ≻ f(y) , for all x, y ∈ X
with x ≺ y.

Definition 1.4. A point x ∈ A, where A is a non-empty subset of a metric space (X, d) is called common fixed
(coincidence) point of two self-mapping f andK if fx = Kx = x(fx = Kx).

Definition 1.5. The two self-mapping f andK defined over a subsetA of a metric space (X, d) are called commuting
if fKx = Kfx for all x ∈ A.

Definition 1.6. Two self-mappings f and K defined over a subset A ⊂ X are compatible, if for any sequence {xn}
with limn→+∞fxn = limn→+∞Kxn = µ, for some µ ∈ A then limn→+∞(Kfxn, fKxn) = 0

Definition 1.7. Two self-mappings f and K defined over a subset A ⊂ X are said to be weakly compatible, if they
commute at their coincidence points. i. e., if fx = Kx then fKx = Kfx.

Definition 1.8. Let f andK be two self-mapping defined over a partially ordered set (X,⪯). A mappingK is called
a monotone f non-decreasing if

fx ⪯ fy impliesKx ⪯ Ky, for all x, y ∈ X.

Definition 1.9. LetA be a non-empty subset of a partially ordered set (X,⪯). If very two elements ofA are comparable
then it is called well ordered set.

Definition 1.10. A partially ordered metric space (X, d,⪯) is called on ordered complete, if for each convergent
sequence {xn}+∞

n=0 ⊂ X , one of the following condition holds

• if {xn} is a nondecreasing sequence inX such that xn → x implies xn ⪯ x, for all n ∈ N that is, x = sup{xn}
or

• if {xn} is a nonincreasing sequence inX such that xn → x implies x ⪯ xn, for all n ∈ N that is, x = inf{xn}.

2. Main results

We start this section with the following theorem.

Theorem 2.1. Let (X, d,⪯) be a complete partially ordered metric space and letK be a non-decreasing, continuous
self-mapping defined on X . Suppose that a self-mappingK satisfies the following condition:

d(Kx,Ky) =




λd(x, y) + µ

d(x,Kx)d(x,Ky) + d(y,Kx)d(y,Ky)

d(y,Kx) + d(x,Ky)
if A ̸= 0,

0 if A = 0,

for all x, y ∈ X with y ⪯ x, where A = d(y,Kx) + d(x,Ky) and λ, µ are non-negative reals such that λ+ µ < 1.
If there exists x0 ∈ X with x0 ⪯ Kx0, thenK has a fixed point.
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Example 2.2. LetX = [0, 1] with the usual metric and usual order≤. We define an operatorKx =
2x+ 3

4(x2 + x+
5

4
)
.

It is clear that K is continuous on [0, 1]. Now, λ =
16

25
and any µ ∈ [0, 1) such that λ + µ < 1. Without loss of

generality, we assume that x ≤ y. So, we have

d(Kx,Ky) =
1

4
| 2x+ 3

x2 + x+
5

4

− 2y + 3

y2 + y +
5

4

|

= |
2xy(y − x) + 3(y − x)(x+ y) + 3(y − x)− 5

2
(y − x)

4(x2 + x+
5

4
)(y2 + y +

5

4
)

|

= |
2xy + 3(x+ y) +

1

2

4(x2 + x+
5

4
)(y2 + y +

5

4
)
||x− y|

≤ 16

25
|y − x| = 16

25
d(x, y)

for all x, y ∈ X . Also, there exists x0 = 0 ∈ X such that x0 = 0 ≤ Kx0 is satisfied. This shows that conditions of
Theorem 2.1 hold andK has a fixed point

1

2
∈ [0, 1].

We may remove the continuity criteria onK in Theorem 2.1 as follows.

Theorem 2.3. Let (X, d,⪯) be a complete partially ordered metric space and letK be a non-decreasing self-mapping
defined on X . Suppose that a self-mappingK satisfies the following condition:

d(Kx,Ky) =




λd(x, y) + µ

d(x,Kx)d(x,Ky) + d(y,Kx)d(y,Ky)

d(y,Kx) + d(x,Ky)
if A ̸= 0,

0 if A = 0,

for all x, y ∈ X with y ⪯ x, where A = d(x,Kx) + d(y,Ky) and λ, µ are non-negative reals with λ+ µ < 1. And
also suppose that X has the (OC) property. If there exists x0 ∈ X with x0 ⪯ Kx0, thenK has a fixed point.

Now we prove the sufficient condition for the uniqueness of the fixed point in Theorem 2.1 and Theorem 2.3, that is,
U : for any y, z ∈ X , there exists x ∈ X which is comparable to y and z.

Theorem 2.4. Adding the above mentioned condition to the hypothesis of Theorem 2.1 (or Theorem 2.3), one obtains
the uniqueness of the fixed point ofK.

We get the following fixed point theorem in partially ordered metric spaces if we take λ = 0 in the before theorems.

Theorem 2.5. Let (X, d,⪯) be a complete partially ordered metric space and letK be a non-decreasing self-mapping
defined on X . Suppose that a self-mappingK satisfies the following condition:

d(Kx,Ky) =




µ
d(x,Kx)d(x,Ky) + d(y,Kx)d(y,Ky)

d(y,Kx) + d(x,Ky)
if A ̸= 0,

0 if A = 0,

for all x, y ∈ X with y ⪯ x, where A = d(y,Kx) + d(x,Ky) and µ are non-negative real with 0 ≤ µ < 1. Suppose
also that eitherK is continuous orX satisfies the condition (OC). If there exists x0 ∈ X with x0 ⪯ Kx0, thenK has
a fixed point.

If (X,⪯) satisfies the conditionused in Theorem 2.4, then the uniqueness of a fixed point can be proved.
In the following, we prove some coincidence, common fixed point theorems in the context of ordered metric space.
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Theorem 2.6. Let (X, d,⪯) be a complete partially ordered metric space. Suppose that the self mapping f andK on
X are continuous,K is a monotone f-nondecreasing,K(X) ⊆ f(X) and satisfying the following condition

d(Kx,Ky) ≤ α
d(fx,Kx)d(fy,Ky)

d(Kx, fy)
+ β[d(fx,Kx) + d(fy,Ky)] + γd(fx, fy)

for all x, y ∈ X with f(x) ̸= f(y) are compareable, where α, β, γ ∈ [0, 1) with 0 ≤ α+2β+ γ < 1. If there exists a
point x0 ∈ X such that f(x0) ⪯ K(x0) and the mappingK and f are compatible, thenK and f have a coincidence
point in X .

Corollary 2.7. Let (X, d,⪯) be a complete partially ordered metric space. Suppose that the self mapping f and K
on X are continuous,K is a monotone f-nondecreasing,K(X) ⊆ f(X) and satisfying the following condition

d(Kx,Ky) ≤ α
d(fx,Kx)d(fy,Ky)

d(fx, fy)
+ β[d(fx,Kx) + d(fy,Ky)]

for all x, y ∈ X with f(x) ̸= f(y) are compareable, where α, β ∈ [0, 1) with 0 ≤ α+ 2β < 1. If there exists a point
x0 ∈ X such that f(x0) ⪯ K(x0) and the mappingK and f are compatible, thenK and f have a coincidence point
in X .

Corollary 2.8. Let (X, d,⪯) be a complete partially ordered metric space. Suppose that the self mapping f and K
on X are continuous,K is a monotone f-nondecreasing,K(X) ⊆ f(X) and satisfying the following condition

d(Kx,Ky) ≤ β[d(fx,Kx) + d(fy,Ky)] + γd(fx, fy)

for all x, y ∈ X with f(x) ̸= f(y) are compareable, where β, γ ∈ [0, 1) with 0 ≤ 2β + γ < 1. If there exists a point
x0 ∈ X such that f(x0) ⪯ K(x0) and the mappingK and f are compatible, thenK and f have a coincidence point
in X .

We may remove the continuity criteria ofK in Theorem 2.6 is still valid by assuming the following hypothesis inX:
If {xn} is nondecreasing sequence in X such that xn → x, then xn ⪯ x for all n ∈ N.

Theorem 2.9. Let (X, d,⪯) be a complete partially ordered metric space. Suppose that the self mapping f andK on
X are continuous,K is a monotone f-nondecreasing,K(X) ⊆ f(X) and satisfying the following condition

d(Kx,Ky) ≤ α
d(fx,Kx)d(fy,Ky)

d(fx, fy)
+ β[d(fx,Kx) + d(fy,Ky)] + γd(fx, fy)

for all x, y ∈ X with f(x) ̸= f(y) are compareable for some α, β, γ ∈ [0, 1) with 0 ≤ α + 2β + γ < 1. If there
exists a point x0 ∈ X such that f(x0) ⪯ K(x0) and {xn} is a nondecreasing sequence inX such that xn → x, then
xn ⪯ x for all n ∈ N.

If f(x) is a complete subset of X then K and f have a coincidence point in X . Further, if K and f are weakly
compatible, thenK and f have a common fixed point inX . Moreover, the set of common fixed points ofK and f is
well ordered if and only ifK and f have one and only one common fixed point in X .

Corollary 2.10. Let (X, d,⪯) be a complete partially ordered metric space. Suppose that f andK are self mapping
on X ,K is a monotone f-nondecreasing,K(X) ⊆ f(X) and satisfying the following condition

d(Kx,Ky) ≤ α
d(fx,Kx)d(fy,Ky)

d(fx, fy)
+ β[d(fx,Kx) + d(fy,Ky)]

for all x, y ∈ X with f(x) ̸= f(y) are compareable, where α, β,∈ [0, 1) with 0 ≤ α+ 2β < 1. If there exists a point
x0 ∈ X such that f(x0) ⪯ K(x0) and {xn} is a nondecreasing sequence in X such that xn → x, then xn ⪯ x for
all n ∈ N.
If f(X) is a complete subset of X , then K and f have a coincidence point in X . Further, if K and f are weakly
compatible, thenK and f have a coincidence point inX . Moreover, the set of common fixed points ofK and f is well
ordered if and only ifK and f have one and only one common fixed point in X .
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Corollary 2.11. Let (X, d,⪯) be a complete partially ordered metric space. Suppose that f andK are self mapping
on X ,K is a monotone f-nondecreasing,K(X) ⊆ f(X) and satisfying the following condition

d(Kx,Ky) ≤ β[d(fx,Kx) + d(fy,Ky)] + γd(fx, fy)

for all x, y ∈ X with f(x) ̸= f(y) are compareable, where β, γ ∈ [0, 1) with 0 ≤ 2β + γ < 1. If there exists a point
x0 ∈ X such that f(x0) ⪯ K(x0) and {xn} is a nondecreasing sequence in X such that xn → x, then xn ⪯ x for
all n ∈ N.
If f(X) is a complete subset of X , then K and f have a coincidence point in X . Further, if K and f are weakly
compatible, thenK and f have a coincidence point inX . Moreover, the set of common fixed points ofK and f is well
ordered if and only ifK and f have one and only one common fixed point in X .
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Abstract

In this paper, we prove that an operatorK satisfying certain rational forward contration condition
has a fixed point in a partially ordered asymmetric metric spaces.

1. Introduction

The Banach contraction principle is one of the most versatile result in fixed point theory and approximation theory. It
plays an important role in solving many existing problems in pure and applied mathematics. There is a vast literature
dealing with technical extensions and generalizations of Banach contraction principle, some instance of these works
are in [1, 2]. Besides, this famous classical theorem gives an iteration process through which we can obtain better
approximation to the fixed point. It renders a key role in solving system of linear algebra equation involving iteration
process. Iteration procedures are using in nearly every banach of applied mathematics covergence proof and also in
estimating the process of errors, very often by an application of banach,s fixed point theorem.
In recent time, fixed points of mapping in ordered metric spaces are of great use in many branches of mathematical
analysis for solving nonlinear equations. The first result in this direction was initiated by work [9]. Ran and Reurings
[8] studied the existence of fixed points for certain mapping in partially ordered metric spaces and applied their results
to matrix equations. The results of Ran and Reurigs [8] were extended by Nieto et al.[6, 7] for non decreasing mapping
and obtained the solutions of certain partial differential equations with periodic boundary conditions. While Agarwal
et al. [3] have discussed some new results for generalized contractions in partially ordered metric spaces. There have
been a lot of generalizations and improvements of the results to obtain fixed point, common fixed point results for
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single valued and multivalued operators in various ordered spaces with topological properties, some of which are
[4, 5].
The purpose of this paper is to establish fixed point result of a mapping satisfying cerrtain rational forward contraction
condition in partially ordered asymmetric metric spaces.
The following definitions are frequently used in results given in upcoming sections.
Definition 1.1. A function d : X ×X → R is an asymmetric metric and (X, d) is an asymmetric metric space if

(i) For every x, y ∈ X , d(x, y) ≥ 0 and d(x, y) = 0 holds if and only if x = y,

(ii) For every x, y, z ∈ X , we have d(x, z) ≤ d(x, y) + d(y, z). Henceforth, (X, d) shall be an asymmetric metric
space.

Definition 1.2. A mapping K : X → X is said forward (backward) contraction when there exists 0 < α < 1 such
that

d(Kx,Ky) ≤ αd(x, y) (d(Kx,Ky) ≤ αd(y, x))

for each x, y ∈ X .
Definition 1.3. A sequence {xk}k∈N forward converges to x0 ∈ X , respectively backward converges to x0 ∈ X if
and only if

limk→∞d(x0, xk) = 0, respectively, limk→∞d(xk, x0) = 0.

Then we write xk
f−→ x0, xk

b−→ x0 respectively.
Definition 1.4. A set S ⊂ X is forward complete if every forward Couchy sequence is forward convergent.
Definition 1.5. The triple (X, d,⪯) is called partialy ordered asymmetric metric space, if (X,⪯) is a partially ordered
set together with (X, d) is a asymmetric metric space.
Definition 1.6. If (X, d) is a complete asymmetric metric space, then triple (X, d,⪯) is called complete partialy
ordered asymmetric metric space.
Definition 1.7. Let (X,⪯) be a partially ordered set. A self-mapping f : X → X is said to be stricttly increasing if
f(x) ≺ f(y), for all x, y ∈ X with x ≺ y and is also said to be strictly decreasing if f(x) ≻ f(y) , for all x, y ∈ X
with x ≺ y.
Definition 1.8. A point x ∈ A, whereA is a non-empty subset of a asymmetric metric space (X, d) is called common
fixed (coincidence) point of two self-mapping f andK if fx = Kx = x(fx = Kx).
Definition 1.9. The two self-mapping f andK defined over a subsetA of a asymmetric metric space (X, d) are called
commuting if fKx = Kfx for all x ∈ A.
Definition 1.10. Two self-mappings f andK defined over a subset A ⊂ X are compatible, if for any sequence {xn}
with limn→+∞fxn = limn→+∞Kxn = µ, for some µ ∈ A then limn→+∞(Kfxn, fKxn) = 0

Definition 1.11. Two self-mappings f andK defined over a subset A ⊂ X are said to be weakly compatible, if they
commute at their coincidence points. i. e., if fx = Kx then fKx = Kfx.
Definition 1.12. Let f andK be two self-mapping defined over a partially ordered set (X,⪯). A mappingK is called
a monotone f non-decreasing if

fx ⪯ fy implie Kx ⪯ Ky, for all x, y ∈ X.

Definition 1.13. Let A be a non-empty subset of a partially ordered set (X,⪯). If very two elements of A are
comparable then it is called well ordered set.
Definition 1.14. A partially ordered asymmetric metric space (X, d,⪯) is called on ordered complete, if for each
convergent sequence {xn}+∞

n=0 ⊂ X , one of the following condition holds
• if {xn} is a nondecreasing sequence inX such that xn → x implies xn ⪯ x, for all n ∈ N that is, x = sup{xn}
or

• if {xn} is a nonincreasing sequence inX such that xn → x implies x ⪯ xn, for all n ∈ N that is, x = inf{xn}.
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2. Main results

Theorem 2.1. Let (X, d,⪯) be a complete partially ordered asymmetric metric space and letK be a non-decreasing
continuous self-mapping defined on X . Suppose that a self-mapping K satisfies

d(Kx,Ky) =




λd(x, y) + µ

d(x,Kx)d(x,Ky) + d(y,Kx)d(ky, y)

d(y,Kx) + d(x,Ky)
if A ̸= 0,

0 if A = 0,
(1)

for all x, y ∈ X with y ⪯ x, where A = d(y,Kx) + d(x,Ky) and λ, µ are non-negative reals such that λ+ µ < 1.
If there exists x0 ∈ X with x0 ⪯ Kx0, then K has a fixed point.

Proof. By assumption, there exists x0 ∈ X with x0 ⪯ Kx0. If x0 = Kx0, then the proof is finshed. So, we suppose
that x0 ≺ Kx0. Since k is a non-decreasing mapping, we get

x0 ≺ Kx0 ⪯ K2x0 ⪯ ... ⪯ Kmx0 ⪯ Km+1x0 ⪯ ...

by iteration. Put xn+1 = kxn. If there exists n0 ∈ N such that xn0 = xn0+1, then from xn0 = xn0+1 = Kxn0 , we
get xn0 is fixed point, and the proof is finished. Suppose that xn ̸= xn+1 for n ∈ N . Since the points xn and xn−1

are compareable for all n ∈ N , we have the following two cases.

Case 1 . If A = d(y,Kx) + d(x,Ky) ̸= 0, then using the contractive condition (2.1), we get

d(xn+1, xn) = d(Kxn,Kxn−1)

≤ λd(xn, xn−1) + µ
d(xn,Kxn)d(xn,Kxn−1) + d(xn−1,Kxn)d(Kxn−1, xn−1)

d(xn−1,Kxn, ) + d(xn,Kxn−1)

≤ λd(xn, xn−1) + µ
d(xn, xn+1)d(xn, xn) + d(xn−1, xn+1)d(xn, xn−1)

d(xn−1, xn+1) + d(xn, xn)

≤ λd(xn, xn−1) + µ
d(xn−1, xn+1)d(xn, xn−1)

d(xn−1, xn+1)

≤ (λ+ µ)d(xn, xn−1).

Hence, we drive that d(xn+1, xn) ≤ hnd(x0, x1), where h = (λ + µ) < 1. Moreover, by the triangular
inequality, we have, form ≥ n,

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + ...+ d(xn+1, xn)

≤ (hm−1 + hm−2 + ...+ hn)d(x1, x0) ≤
hn

1− h
d(x1, x0)

and this proves that d(xm, xn) → 0 as m,n → ∞. So, {xn} is a forward Cauchy sequence and, since X is a
forward complete metric space, there exists z ∈ X such that xn

f−→ z as n → ∞ . Further, the continuity ofK
impliesKz = K(limn→∞xn) = limn→∞Kxn = limn→∞xn+1 = z. Thus z is a fixed point.

Case2 . IfA = d(y,Kx)+d(x,Ky) = 0, then d(xn+1, xn) = 0. This implies that xn = xn+1, a forward contraction.
Thus there exists a fixed point z ofK.

Example 2.2. Let X = R ≥ 0 be a nonempty set. Consider the map d : X ×X → R ≥ 0 defined by

d(x, y) =




y − x y ≥ x,
1

4
(x− y) x > y
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It is easy to show that (X, d) is an asymmetric metric space. Consider K : X → X by Kx =
1

2
x. Clearly, K is a

forward cotraction, whereas it is not backward. For this, let α be an arbitary with 0 < α < 1. Set x = 2−2α and
y = 2−α. Then we have

d(Kx,Ky) =
1

2
|(2−α − 2−2α)|

≤ 1

4
|(2−2α − 2−α)|+ |µd(x,Kx)d(x,Ky) + d(y,Kx)d(y,Ky)

d(y,Kx) + d(x,Ky)
|

≤ 1

4
|(2−2α − 2−α)|

≤ 1

4
d(x, y)

for all x, y ∈ X . This shows that conditions of Theorem (2.1) hold and K has a fixed point.
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Abstract

In this paper, we study the split common fixed point problem for a finite family of generalized
demimetricmappings inHilbert spaces. We introduce an iterative schemewhich does not require
any prior knowledge of operator norm and prove the strong convergence of our iterative scheme
for approximating a solution of this problem. As application we use our algorithm for solving
the multiple-set split feasibility problem.

1. Introduction and Preliminaries

LetH andK be real Hilbert spaces,A : H → K be a bounded linear operator and let {Ci}mi=1 be a family of nonempty
closed convex subsets in H and {Qi}mi=1 be a family of nonempty closed convex subsets in K. The multiple-set split
feasibility problem (MSSFP) was introduced by Censor et al. (2005) [1] and is formulated as finding a point x⋆ with
the property:

x⋆ ∈
m∩

i=1

Ci and Ax⋆ ∈
m∩

i=1

Qi.

The multiple-set split feasibility problem withm = 1 is known as the split feasibility problem (introduced by Censor
and Elfving (1994) ([2])).
Let C be a nonempty, closed, and convex subset ofH. For each point x ∈ H, there exists a unique nearest point in C,
denoted by PC(x), such that

∥x− PC(x)∥ ≤ ∥x− y∥, ∀y ∈ C.

The mapping PC : H → C is called the metric projection of H onto C and is characterized by the following two
properties: PC(x) ∈ C and

⟨y − PC(x), x− PC(x)⟩ ≤ 0, ∀x ∈ H, y ∈ C.
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Let E be a normed space and let U : E → E be a nonlinear mapping. A point x ∈ E such that Ux = x is
called a fixed point of U . The set of fixed points of nonlinear mapping U shall be denoted by Fix(U). That is,
Fix(U) := {x ∈ E : Ux = x}. Since every closed convex subset of a Hilbert space is the fixed point set of its
associating projection, the MSSFP becomes a special case of the split common fixed point problem (SCFPP) [3] of
finding a point x⋆ with the property:

x⋆ ∈
m∩

i=1

Fix(Si) and Ax⋆ ∈
m∩

i=1

Fix(Ti).

where Si : H → H, and Ti : K → K(i = 1, ...,m) are nonlinear operators.
The split feasibility problem and the split common fixed point problem have received much attention due to its appli-
cations in signal processing, image reconstruction, with particular progress in intensity-modulated radiation therapy,
approximation theory and control theory. For examples, one can refer to [4, 5] and related literature. Various algo-
rithms have been invented to solve it (see, for example, [6] and references therein).
We recall the following definitions concerning mapping T : H → H. The mapping T : H → H is called:
• Contraction, if there exists a constant 0 ≤ k < 1 such that

∥T (x)− T (y)∥ ≤ k∥x− y∥, ∀x, y ∈ H.

• Nonexpansive, if
∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ H.

Definition 1.1. Assume that T : H → H is a nonlinear mapping with Fix(T ) ̸= ∅. Then I − T is said to be
demiclosed at zero if {xn} is a sequence in C converges weakly to x and (I − T )xn converges strongly to zero, then
(I − T )x = 0.

In 2018, Kawasaki and Takahashi [7], introduced a new general class of mappings, called generalized demimetric
mappings as follows:

Definition 1.2. Let ζ be a real number with ζ ̸= 0. A mapping T : H → H with Fix(T ) ̸= ∅ is called generalized
demimetric, if

ζ⟨x− x⋆, x− Tx⟩ ≥ ∥x− Tx∥2,
for all x ∈ H and x⋆ ∈ Fix(T ). This mapping T is called ζ-generalized demimetric.

Such a class of mappings is fundamental because it includes many types of nonlinear mappings arising in applied
mathematics and optimization, see [7, 8] for details.
In this paper, we introduce a new algorithm for solving the split common fixed point problem for a finite family of
generalized demimetric mappings in Hilbert spaces. We derive a strong convergence theorem of the proposed iterative
algorithm under appropriate situations. Our results improved and extend the corresponding results announced bymany
others.

2. Main result

In this section, we present our algorithm for solving the split common fixed points problem.

Theorem 2.1. Let H and K, be real Hilbert spaces. Let for i = 1, 2, ...,m, µ(i) ̸= ∅ and T (i) : H → H be a finite
family of µ(i)−generalized demimetric mappings such that T (i)−I is demiclosed at 0. Let for i = 1, 2, ...,m, ζ(i) ̸= ∅
and S(i) : K → K be a finite family of ζ(i)− generalized demimetric mappings such that S(i) − I is demiclosed at
0. Let A : H → K be a bounded linear operator such that A ̸= 0. Suppose that Ω = {x∗ ∈ ∩m

i=1 Fix(T (i))) :
Ax∗ ∈ ∩m

i=1 Fix(S(i))} ̸= ∅. Assume that f be a contraction of H into itself with constant k ∈ (0, 1). For x1 ∈ H,
let {xn} be a sequence defined by:





zn = xn −∑m
i=1 l

(i)α
(i)
n θ

(i)
n A∗(Axn − S(i)Axn)

yn = zn −∑m
i=1 r

(i)β
(i)
n γ

(i)
n (I − T (i))zn,

xn+1 = (1− ξn)yn + ξn f(yn), ∀n ≥ 1,

(1)
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where l(i) = ζ(i)

|ζ(i)| , r
(j) = µ(j)

|µ(j)| , {τ
(i)
n } ⊂ [a(i), b(i)] ⊂ (0, 2l(i)

ζ(i) ),

θ(i)n =
τ
(i)
n ∥Axn − S(i)Axn∥2

∥A∗(Axn − S(i)Axn)∥2 + ρ
(i)
n

and {ρ(i)n } is a sequence of positive real numbers for each i = 1, 2, ...,m. Let {α(i)
n }, {β(i)

n }, {γ(i)
n }, and {ξn} satisfy

the following conditions:

(i) {α(i)
n }mi=1 ⊂ (0, 1),

∑m
i=1 α

(i)
n = 1 and lim infn α(i)

n > 0;
(ii) {β(i)

n }mi=1 ⊂ (0, 1),
∑m

i=1 β
(i)
n = 1 and lim infn β(i)

n > 0;
(iii) 0 < d(i) ≤ γ

(i)
n < 2 r(i)

µ(i) for i ∈ {1, 2, ...,m};
(iv) limn→∞ ξn = 0 and

∑∞
n=0 ξn = ∞.

Then, the sequence {xn} converges strongly to a point x⋆ ∈ Ω which solves the variational inequality;

⟨x⋆ − f(x⋆), x− x⋆⟩ ≥ 0, ∀x ∈ Ω. (2)

3. Application

As application we utilize our main result for solving the multiple-set split feasibility problem in Hilbert spaces.

Theorem 3.1. LetH andK, be real Hilbert spaces and let A : H → K be bounded linear operators such that A ̸= 0.
Let {Ci}mi=1 be a finite family of nonempty closed convex subsets ofH and let {Qi}mi=1 be a finite family of nonempty
closed convex subsets of K. Suppose that Ω =

∩m
i=1 Ci ∩ A(−1)Qi ̸= ∅. Assume that f be a contraction of H into

itself with constant k ∈ (0, 1). For x1 ∈ H, let {xn} be a sequence defined by:




zn = xn −∑m
i=1 α

(i)
n θ

(i)
n A∗(Axn − PQiAxn)

yn = zn −∑m
i=1 β

(i)
n (I − PCi)zn,

xn+1 = (1− ξn)yn + ξn f(yn), ∀n ≥ 1,

(3)

where {τ (i)n } ⊂ [a(i), b(i)] ⊂ (0, 2),

θ(i)n =
τ
(i)
n ∥Axn − PQi

Axn∥2

∥A∗(Axn − PQi
Axn)∥2 + ρ

(i)
n

and {ρ(i)n } is a sequence of positive real numbers for each i = 1, 2, ...,m. Let {α(i)
n }, {β(i)

n }, and {ξn} satisfy the
following conditions:

(i) {α(i)
n }mi=1 ⊂ (0, 1),

∑m
i=1 α

(i)
n = 1 and lim infn α(i)

n > 0;
(ii) {β(i)

n }mi=1 ⊂ (0, 1),
∑m

i=1 β
(i)
n = 1 and lim infn β(i)

n > 0;
(iii) limn→∞ ξn = 0 and

∑∞
n=0 ξn = ∞.

Then, the sequence {xn} converges strongly to a point x⋆ ∈ Ω.

Proof. We know that PCi and PQi are 1−generalized demimetric mappings. Also we know that PCi − I and PQi − I

are demiclosed at 0. Note that Fix(PCi) = Ci and Fix(PQi) = Qi. Now putting γ
(i)
n = 1 in Theorem 2.1 we

obtained the desired result.
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Abstract

In this note, we study bounded linear operators associated with unitary representations which
commute with certain module actions.

1. Introduction and preliminaries

Throughout G is a locally compact group with the unit e, a fixed left Haar-measure. The left Haar-integral of a
complex-valued Haar-measurable function f on G will be denoted by

∫
G
f(x) dx. The convolution product of two

complex-valued functions f and g on G is defined as follows.

f ∗ g(x) =
∫

G

f(y)g(y−1x) dx,

when the integral makes sense. As usual, L1(G) denote the group algebra of G as defined in [3]. The notation lx is
the left translation operator by x ∈ G; i.e., lxf(y) = f(xy) for all complex-valued function f on G. Note that L1(G)
is a left G-module with the action x · ϕ = lx−1ϕ for all x ∈ G and ϕ ∈ L1(G). Let L∞(G) is usual Lebesgue space
as defined in [3] equipped with the essential supremum ‖ · ‖∞. Then L∞(G) can be identified by the first dual space
of L1(G) under the pairing

〈f, ϕ〉 =
∫

G

f(x)ϕ(x) dx (f ∈ L∞(G), ϕ ∈ L1(G)).

Moreover, the dualization of the left G-module action on L1(G) makes L∞(G) as a right G-module as follows

〈f · x, ϕ〉 = 〈f, x · ϕ〉 (f ∈ L∞(G), x ∈ G).
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We can also consider L∞(G) as a right Banach L1(G)-module by the following action.

f · ϕ =

∫

G

f · xϕ(x) dx (f ∈ L∞(G), ϕ ∈ L1(G)).

Let also, LUC(G) denote the C∗-algebra of left uniformly continuous functions; i.e., f ∈ LUC(G) when the map
x 7→ lxf from G into L∞(G) is norm continuous.
In recent years, many authors have extensively studied the behavior and relations of G-module and L1(G)-module
maps, in the sense of the map commute with the translations, convolutions and conjugations; see for example [5–8].
Special attention has focused on such operators on L∞(G). As known, any bounded linear operator on L∞(G) that
commutes with convolution from the left also commutes with left translations; see [7]. Here, we study such notions
with an emphasis on unitary representations.
All over this paper, (π, Hπ) is a unitary representation of a locally compact group G. As mentioned in [1], Tr(Hπ),
denotes all of the trace-class operators on Hπ with norm ‖T‖1 = tr|T |, take the role played by L1(G) in the theory
of amenable groups and the left action of G on L1(G) being replaced by the following left action of G on Tr(Hπ).

x ·π S = π(x)Sπ(x)−1
(
x ∈ G, S ∈ Tr(Hπ)

)
.

Moreover, Tr(Hπ) is an isometric Banach G-module by Lemma 2.1 of [1]. Also, B(Hπ) is known as the dual space
of Tr(Hπ) by the duality T (S) = tr(ST ) for all T ∈ B(Hπ) and S ∈ Tr(Hπ). Clearly, T ·π x = π(x)−1Tπ(x) for
each T ∈ B(Hπ) and x ∈ G. These facts imply that B(Hπ) is a right Banach L1(G)-module as follows.

T ·π ϕ =

∫

G

T ·π xϕ(x) dx (T ∈ B(Hπ), ϕ ∈ L1(G)).

Since the map x 7→ T ·π x from G into B(Hπ) is not necessarily norm-continuous, B(Hπ) is not Banach as a G-
module, in general. So, one has considered the set of all T ∈ B(Hπ) for which G −→ B(Hπ), x 7−→ T ·π x
is norm-continuous, UCB(π). Elements in UCB(π) are called G-continuous operators. Moreover, the Cohen’s
factorization theorem implies that

B(Hπ) ·π L1(G) = UCB(π) ·π L1(G) = UCB(π).

See [1] for more details and the survey article. For any M ∈ B(Hπ)
∗ and T ∈ B(Hπ), we can define a complex-

valued functionMT on G by
MT (x) = 〈M, T ·π x〉 (x ∈ G).

Obviously,MT is bounded by ‖M‖‖T‖. Besides,
lxMT = (M)(T ·π x) (x ∈ G).

Suppose that M ∈ B(Hπ)
∗. Then the linear operator ρM : UCB(π) −→ LUC(G) given by T 7−→ MT is well-

defined due to [2, Lemma 2.2]. Furthermore, let T ∈ UCB(π) and ϕ ∈ L1(G). Then 〈MT, ϕ〉 = 〈M, T ·π ϕ〉 by
directly calculaion. Therefore, ρM (T ·π ϕ) = ρM (T ) · ϕ. Also, ρM (T ·π x) = ρM (T ) · x for all x ∈ G. These
simple properties of ρM are a motivating force for this research. We extend them by the following definition that is
the starting point of our path to express the main results in this note.

Definition 1.1. Let (π, Hπ) be a unitary representation of a locally compact groupG, and let γ : B(Hπ) −→ L∞(G)
be a bounded linear operator.
(a) γ is said to commute with the action as L1(G)-module if

γ(T ·π ϕ) = γ(T ) · ϕ (T ∈ B(Hπ), ϕ ∈ L1(G)). (1)

(b) γ is said to commute with the action as G-module if

γ(T ·π x) = γ(T ) · x (T ∈ B(Hπ), x ∈ G), (2)

Remark 1.2. Suppose that M ∈ B(Hπ)
∗. We do not yet whether MT ∈ L∞(G) for all T ∈ B(Hπ) or not.

Therefore, we can not define safely the operator ρM from B(Hπ) into L∞(G) by ρM (T ) = MT . But as will be seen,
there exist such operators. For instance, the map γM defined by 〈γM (T ), ϕ〉 = 〈M, T ·π ϕ〉 for all T ∈ B(Hπ) and
ϕ ∈ L1(G) satisfies in the both of 1 and 2.
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2. The results

We commence the note by the following result that shows 1 and 2 coincide when the operator γ restricts to UCB(π).
Before starting, note that for all M ∈ UCB(π)∗ and T ∈ UCB(π), we can also define the complex-valued function
MT by MT on G, where M is any Hahn-Banach extension of M . Since the Hahn-Banach extension is not unique,
in general, we use again the notation ρM instead of ρM for unification.

Theorem2.1. Let (π, Hπ) be a unitary representation of a locally compact groupG, and let γ : UCB(π) −→ L∞(G)
be a bounded linear operator. Then each of the following statements implies that the range of γ lies in LUC(G). Also,
they are equivalent.

(a) γ commutes with the action as L1(G)-module,
(b) γ = ρM for some M ∈ UCB(π)∗,
(c) γ commutes with action as G-module.

Proof. Let T ∈ UCB(π). If (a) holds, then γ(T ) = γ(S ·π ϕ) = γ(S) ·ϕ for some S ∈ UCB(π) and ϕ ∈ L1(G) that
yields γ(T ) ∈ LUC(G). If (b) holds, then γ(T ) = ρM (T ) = MT ∈ LUC(G). Finally, if (c) holds and xα −→ x in
G, then

‖lxα
γ(T )− lxγ(T )‖∞ = ‖γ(T ) · xα − γ(T ) · x‖∞

= ‖γ(T ·π xα)− γ(T ·π x)‖∞
≤ ‖γ‖ ‖T ·π xα − T ·π x‖
−→ 0.

It follows that γ(T ) ∈ LUC(G).
Now, for equivalency of them, we can confirm (a) and (c) if (b) holds, as noted earlier. Suppose that (a) holds and (ϕi)
is a bounded approximate identity of L1(G). Then (γ∗(ϕi)) is bounded in UCB(π)∗, where γ∗ is the usual adjoint
of γ. Let now M ∈ UCB(π)∗ be a weak∗-cluster point of (γ∗(ϕi)). So, we may assume that γ∗(ϕi) −→ M in the
weak∗-topology of UCB(π)∗. Let T ∈ UCB(π). Then for each ϕ ∈ L1(G), we have

〈ρM (T ), ϕ〉 = 〈MT, ϕ〉 = 〈M, T ·π ϕ〉
= lim

i
〈γ∗(ϕi), T ·π ϕ〉 = lim

i
〈ϕi, γ(T ·π ϕ)〉

= lim
i
〈ϕi, γ(T ) · ϕ〉 = lim

i
〈γ(T ) · ϕ, ϕi〉

= lim
i
〈γ(T ), ϕ ∗ ϕi〉 = 〈γ(T ), ϕ〉.

Therefore, part (b) holds. Assume now, γ is commuting with the action asG-module. TakeM = γ∗(δe) ∈ UCB(π)∗,
where δe(f) = f(e) for all f ∈ LUC(G). Then for each T ∈ UCB(π) and x ∈ G, we have

γ(T )(x) =
(
γ(T ) · x

)
(e) = 〈δe, γ(T ) · x〉

= 〈δe, γ(T ·π x)〉 = 〈γ∗(δe), T ·π x〉
= 〈M, T ·π x〉 = MT (x).

It follows that γ(T ) = MT = ρM (T ) for all T ∈ UCB(π) and so, γ = ρM . One shows the implication (c) into
(b).

Asmentioned earlier, every bounded linear operator onL∞(G) commuting with the action asL1(G)-module commute
also, with the action as G-module. Here, we have the following result.

Proposition 2.2. Let (π, Hπ) be a unitary representation of a locally compact groupG, and let γ be a bounded linear
operator from B(Hπ) into L∞(G) that is commuting with the action as L1(G)-module. Then γ commutes with the
action as G-module.
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Proof. Suppose that T ∈ B(Hπ), x ∈ G and ϕ ∈ L1(G). One can easily check that (T ·π x) ·π ϕ = T ·π (x · ϕ). Let
furthermore, (ϕi) is an approximate identity for L1(G). Then

〈γ(T ·π x), ϕ〉 = lim
i
〈γ(T ·π x), ϕi ∗ ϕ〉

= lim
i
〈γ(T ·π x) · ϕi, ϕ〉

= lim
i
〈γ
(
(T ·π x) ·π ϕi

)
, ϕ〉

= lim
i
〈γ
(
T ·π (x · ϕi)

)
, ϕ〉

= lim
i
〈γ(T ) · (x · ϕi), ϕ〉

= lim
i
〈γ(T ), (x · ϕi) ∗ ϕ〉

= lim
i
〈γ(T ), x · (ϕi ∗ ϕ)〉

= lim
i
〈γ(T ) · x, ϕi ∗ ϕ〉

= 〈γ(T ) · x, ϕ〉.
Therfore, γ commutes with the action as G-module.

It is tempting to know whether the converse of Proposition 2.2 is valid or not. It’s known that in the same style of
operators on L∞(G), the converse fails. So, it turns out that the converse fails here, too. Due to Theorem 2.1, for take
an example, one can consider a non-discrete group G and the left unitary representation (λ, L2(G)).
We end the work with the following example that shows the converse of Proposition 2.2 has been unable to confirm
in general.

Example 2.3. LetG be either (R, +) or any infinite compact abelian group. We show that there exists a bounded linear
operator γ fromB

(
L2(G)

)
into L∞(G) such that γ commutes the action asG-module; whereas, γ(T ·λϕ) 6= γ(T ) ·ϕ

for some T ∈ B
(
L2(G)

)
and ϕ ∈ L1(G). Toward this end, first, recall that for each f ∈ L∞(G), the map τ : f 7→ Tf

is an isometric embedding of L∞(G) into B
(
L2(G)

)
, where Tf is the multiplication operator on L2(G) by f . It is

rutin checking that Tf ·λ ϕ = Tf ·ϕ for each f ∈ L∞(G) and ϕ ∈ L1(G). On the other hand,G satisfies in conditions
of Theorem 4.1 of [8]. So, the following statements hold for some bounded linear operators Ψ on L∞(G) such that
(a) Ψ commutes the action as G-module.
(b) each Ψ(f) is a constant function for all f ∈ L∞(G).
(c) Ψ(f · ϕ) 6= Ψ(f) · ϕ for some f ∈ L∞(G) and some continuous function ϕ with compact support.

Take now, γ = Ψ ◦ τ−1
l , where τ−1

l is the left inverse of τ . Note thatG is non-discrete and so, B(L2(G)) 6= UCB(λ)
by using of [4, , Remark 3.11 (i)]. However, it follows that

γ(Tf ·λ x) = Ψ(f · x) = Ψ(f) · x = γ(Tf ) · x
for each f ∈ L∞(G) and ϕ ∈ L1(G). Besides,

γ(Tf ·λ ϕ) = Ψ(f · ϕ) 6= Ψ(f) · ϕ = γ(Tf ) · ϕ
for each f and ϕ that satisfy part (c) in the above.
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Abstract

Some Hermite-Hadamard type inequalities for Lipschitzian bifunctions are obtained by the use
of polar coordinates. Also bifunctions whose the partial derivative is Lipschitzian are consid-
ered.

1. Introduction and Preliminaries

Suppose that D(C,R) is a closed disk in the plane centered at the point C = (a, b) having the radius R > 0. In [2],
the Hermite-Hadamard inequality for a convex function defined on D(C,R) was presented as the following:

Theorem 1.1. If the mapping W : D(C,R) → R is convex on D(C,R), then one has the inequality

W(C) ≤ 1

πR2

∫ ∫

D(C,R)

W(x, y)dxdy ≤ 1

2πR

∫

∂(C,R)

W(ψ)dl(ψ), (1)

where ∂(C,R) is the circle centered at the point C = (a, b) with radius R. The above inequalities are sharp.

Note that the classic form of Hermite-Hadamard inequality (see [4, 5, 7]) for a real valued convex function f defined
on [a, b] is as follows:

f
(a+ b

2

)
(b− a) ≤

∫ b

a

f(x)dx ≤ (b− a)
f(a) + f(b)

2
. (2)
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Generally, in the literature associated to any Hermite-Hadamard type inequality there exist two inequalities which we
call them trapezoid and mid-point type inequalities. The names ”trapezoid” and ”mid-point” comes from two classic
inequalities (Due to their geometric interpretation) related to the Hermite-Hadamard inequality obtained in [3] and [6],
respectively:

∣∣∣∣∣

∫ b

a

f(x)dx− (b− a)
f(a) + f(b)

2

∣∣∣∣∣ ≤
1

8
(b− a)2

(
|f ′(a)|+ |f ′(b)|

)
, (3)

and
∣∣∣∣∣

∫ b

a

f(x)dx− (b− a)f
(a+ b

2

)∣∣∣∣∣ ≤
1

8
(b− a)2

(
|f ′(a)|+ |f ′(b)|

)
, (4)

where f : I◦ ⊆ R → R is a differentiable mapping on I◦, a, b ∈ I◦ with a < b and |f ′| is convex on [a, b].
Recently in [1] the authors obtained the trapezoid and mid-point type inequality related to (1) as the following, respec-
tively.

Theorem 1.2. Consider a set I ⊂ R2 with D(C,R) ⊂ I◦. Suppose that the mapping W : D(C,R) → R has
continuous partial derivatives in the disk D(C,R) with respect to the variables ρ and φ in polar coordinates. If for
any constant φ ∈ [0, 2π], the function

∣∣∂W
∂ρ

∣∣ is convex with respect to the variable ρ on [0,R] then:
∣∣∣∣∣

1

2πR

∫

∂(C,R)

W(γ)dl(γ)− 1

πR2

∫ ∫

D(C,R)

W
(
x, y)dxdy

∣∣∣∣∣ ≤
1

6π

∫

∂(C,R)

∣∣∣∂W
∂r

∣∣∣(γ)dl(γ), (5)

and
∣∣∣∣

1

πR2

∫ ∫

D(C,R)

W
(
x, y)dxdy −W(C)

∣∣∣∣ ≤
2

3π

∫

∂(C,R)

∣∣∣∂W
∂r

∣∣∣(γ)dl(γ). (6)

Note that inequality (5) is sharp.

In this paper, we obtain some trapezoid andmid-point type inequalities related to (1) for Lipschitzian mappings defined
on the disk D(C,R) in a plane. Also we investigate trapezoid and mid-point type inequalities in the case that in polar
coordinates (ρ, φ), the derivative of considered function with respect to the variable ρ is Lipschitzian.

2. Main Results

We start with the definition of L-Lipschitzian bifunctions:
Definition 2.1. [8] A functionW : I ⊂ R2 → R is said to satisfy a Lipschitz condition (briefly L-Lipschitzian) on I
with respect to a norm ||.||, if there exists a constant L > 0 such that

|W(X1)−W(X2)| ≤ L||X1 −X2||,

for any X1, X2 ∈ I .

If W : D(C,R) → R is Lipschitzian with respect to a constant L > 0 and the Euclidean norm ||.||, then for any
X1 = (a+ ρ1 cosφ1, b+ ρ1 sinφ1) and X2 = (a+ ρ2 cosφ2, b+ ρ2 sinφ2) we have

|W(X1)−W(X2)| =
∣∣∣W(a+ ρ1 cosφ1, b+ ρ1 sinφ1)−W(a+ ρ2 cosφ2, b+ ρ2 sinφ2)

∣∣∣

≤ L||(ρ1 cosφ1 − ρ2 cosφ2, ρ1 sinφ1 − ρ2 sinφ2)|| = L
√
ρ21 + ρ22 − 2ρ1ρ2 cos(φ1 − φ2),

for any ρ1, ρ2 ∈ [0,R] and φ1, φ2 ∈ [0, 2π]. Also it is obvious that if W : I ⊆ R2 → R is Lipschitzian with respect
to a constant L > 0 on I , then it is continuous and so integrable on I .
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2.1. W is Lipschitzian
The first result of this section is the trapezoid type inequality related to (1) for the case that our considered function is
Lipschitzian. We start with a lemma.

Lemma 2.2. Define a functionW : D(C,R) → R as

W(X) = W
(
a+ ρcosφ, b+ ρsinφ

)
= L(R− ρ),

for fixed L > 0 and all 0 ≤ ρ ≤ R, 0 ≤ φ ≤ 2π. Then the functionW is L-Lipschitzian

Theorem 2.3. Suppose that the mappingW : D(C,R) → R is Lipschitzian with respect to a constant L > 0 and the
Euclidean norm ||.||. Then:

∣∣∣∣∣
1

2πR

∫

∂(C,R)

W(ψ)dl(ψ)− 1

πR2

∫ ∫

D(C,R)

W
(
x, y)dxdy

∣∣∣∣∣ ≤
LR
3
, (7)

where ∂(C,R) is the boundary of D(C,R) and ψ : [0, 2π] → R2 is its corresponding curve. Also inequality (7) is
sharp.

The following result is the mid-point type inequality related to (1) for Lipschitzian functions defined on a closed disk.

Theorem 2.4. Suppose that the mappingW : D(C,R) → R is Lipschitzian with respect to a constant L > 0 and the
Euclidean norm ||.||. Then:

∣∣∣∣
1

πR2

∫ ∫

D(C,R)

W
(
x, y)dxdy −W(C)

∣∣∣∣ ≤
2LR
3

. (8)

Furthermore inequality (8) is sharp.

In the following example for a given function it is illustrated that how we can obtain a Lipschitz constant L for a real
valued bifunction defined on a disk.

Example 2.5. ConsiderW(x, y) = (x− a)n + (y − b)n, (x, y) ∈ D(C,R), n ∈ N. We find a Lipschitz constant for
W as follows:
For X1, X2 ∈ D(C,R) consider the path η : [0, 1] → D(C,R) from X2 to X1 in D(C,R) as

η(s) = sX1 + (1− s)X2,

for s ∈ [0, 1]. The fundamental theorem of calculus implies that:

∣∣W(X1)−W(X2)
∣∣ =

∣∣W(η(1))−W(η(0))
∣∣ =

∣∣∣∣
∫ 1

0

dW(η(s))

ds
ds

∣∣∣∣.

Also the chain rule for differentiation implies that:

dW(η(s))

ds
= ∇W(η(s)).η′(s) = ∇W(η(s))(X1 −X2),

where ∇f is the gradient vector of W . So
∣∣∣∣
∫ 1

0

dW(η(s))

ds
ds

∣∣∣∣ =
∣∣∣∣
∫ 1

0

∇W(η(s))(X1 −X2)ds

∣∣∣∣ ≤ ||X1 −X2||
∫ 1

0

||∇W(η(s))||ds

≤ ||X1 −X2|| sup
w∈D(C,R)

||∇W(w)||,
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which implies that

|W(X1)−W(X2)| ≤ ||X1 −X2|| sup
w∈D(C,R)

||∇W(w)||.

Now we conclude that L = supw∈D(C,R) ||∇W(w)|| (if exists) is a Lipschitz constant for W . Therefore for any
(x, y) ∈ D(C,R) we have

∇W(x, y) =
(
n(x− a)n−1, n(y − b)n−1

)
,

and then by the use of polar transformation we get

||∇W(w)|| =
√
(n(x− a)n−1)2 + (n(y − b)n−1)2 = n

√
(ρ2 cos2 φ)n−1 + (ρ2 sin2 φ)n−1

≤ n

√
(ρ2 cos2 φ+ ρ2 sin2 φ)n−1 = nρn−1 ≤ nRn−1.

So we can choose L = supw∈D(C,R) ||∇W(w)|| = nRn−1 as a Lipschitz constant for W on D(C,R).

2.2.
∂W
∂ρ

is Lipschitzian

In this part, we investigate the trapezoid and mid-point type inequalities in the case that in polar coordinates (ρ, φ),
the partial derivative of considered function with respect to the variable ρ is Lipschitzian in the Euclidean norm ||.||.

Theorem 2.6. Consider a set I ⊂ R2 with D(C,R) ⊂ I◦ and a mapping W : D(C,R) → R such that
∂W
∂ρ

(partial

derivative of W with respect to the variable ρ in polar coordinates) is Lipschitzian with respect to a constant L > 0
and the Euclidean norm ||.||. Then:

∣∣∣∣∣
1

2πR

∫

∂(C,R)

W(ψ)dl(ψ)− 1

πR2

∫ ∫

D(C,R)

W
(
x, y)dxdy

∣∣∣∣∣ ≤
LR2

4
. (9)

The following is a trapezoid type inequality for the case that the partial derivative of considered function with respect
to the variable ”ρ” is Lipschitzian with respect to the Euclidean norm ||.||.

Theorem 2.7. Consider a set I ⊂ R2 with D(C,R) ⊂ I◦ and a mapping W : D(C,R) → R such that
∂W
∂ρ

(partial

derivative of f with respect to the variable ρ in polar coordinates) is Lipschitzian with respect to a constant L > 0
and the Euclidean norm ||.||. Then:

∣∣∣∣
1

πR2

∫ ∫

D(C,R)

W
(
x, y)dxdy −W(C)

∣∣∣∣ ≤
3LR2

4
. (10)

Example 2.8. Consider a, b > 0, 0 < R ≤ min{a, b} and 0 ≤ ρ ≤ R. For n ∈ N and polar function W(ρ, φ) =
(a− ρ)n + (b− ρ)n which is defined on D

(
(a, b),R

)
, by some calculations we can conclude that

∇
(∂W
∂ρ

)
(ρ, φ) = n(n− 1)

(
(a− ρ)n−2 + (b− ρ)n−2, 0

)
,

and then
L = sup

0≤ρ≤R,0≤φ≤2π

∣∣∣
∣∣∣∇

(∂W
∂ρ

)
(ρ, φ)

∣∣∣
∣∣∣ = n(n− 1)(an−2 + bn−2),

is a Lipschitz constant for W . Then
∣∣∣∣A

(
(a−R)n, (b−R)n

)
−A(an, bn)

∣∣∣∣ ≤
n(n− 1)A(an−2, bn−2)R2

2
,

where A(a, b) = a+b
2 is arithmetic mean of a and b.
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Abstract

The aim of this paper is to extend the Kakutani’s fixed point theorem from locally convex topo-
logical vector spaces to linear topological spaces. Finally, as an application, an existence result
of a solution for quasi-equilibrium problem is given.

1. Introduction

Fixed-point theory is an important branch of nonlinear analysis. It is used to investigate the conditions under which
single-valued or multivalued mappings have solutions. Numerous problems occuring in different branches of mathe-
matics, such as differential equations, optimization theory and variational analysis ( see, for instance, [1, 2]).
In mathematical analysis, the Kakutani’s fixed-point theorem [8] is a fixed point theorem for set-valued mapping. It
provides sufficient conditions for a set valued mapping defined on a convex, compact subset of a Euclidean space
to have a fixed point, i.e. a point which is mapped to a set containing it. The Kakutani fixed point theorem is a
generalization of Brouwer fixed point theorem. The Brouwer fixed point theorem is a fundamental result in topology
which proves the existence of fixed points for continuous functions defined on compact convex subsets of Euclidean
spaces. Kakutani’s theorem extends this to set-valued functions.
The theorem was developed by Kakutani in 1941 [8] and was used by Nash in his description of Nash equilibria [10].
The existence of Nash equilibria point is closely related to fixed point theory, intersection theorems for a family of
sets and existence of maximal elements for set valued mappings.
The quasi equilibrium problem (QEP) was introduced and studied by Noor and Oettli [11]. The quasi-equilibrium
problem is a mixed problem of fixed point and equilibrium problem (EQ) (for more details of EQ the reader can
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consulate to [4, 6, 7, 11]) is to find x ∈ K such that x ∈ A(x) and f(x, y) ≥ 0, ∀y ∈ A(x), where K is a subset of a
topological vector space and A : K → 2K , the set of all subsets ofK, is a set-valued mapping.
In the book of Aubin and Cellina [3](see, Pages 85,213,232) is proved the existence of equilibrium point, i.e. Brouwer
fixed point Theorem, which is equivalent to the Kakutani’s Theorem. From an applied point of view in economic
dynamics, the method described in [9] is based on calulating locally conjugate mappings of compositions of set-valued
mappings, where the duality problem is formulated for the problem under consideration.
The first aim of this paper is to extend the Kakutani’s theorem from locally convex topological vector space to topo-
logical vector space. Finally, as an application, an existence result of a solution for quasi-equilibrium problem is
given.
The rest of this section we recall some definitions and results which are needed in the next section.

Definition 1([12]) Let K be a non-empty subset of topological vector space X . A set-valued mapping T : K → 2X

is called a KKM -mapping if for every finite subset {x1, x2, ..., xn} of K, conv{x1, x2, ..., xn}(={
∑n

i=1 tixi : ti ≥
0,
∑n

i=1 ti = 1}) is contained in∪n
i=1 T (xi), where conv denotes the convex hull.

The KKM-mappings were first considered by Knaster, Kuratowski and Mazurkiewicz (KKM) [12] in 1920, in order
to guarantee the finite intersection property for values of the mapping.

Lemma 1 ([5]) LetK be a nonempty subset of a topological vector spaceX and F : K −→ 2X be aKKM -mapping
with closed values inK. Assume that there exists a nonempty compact convex subset B ofK such that ∩x∈BF (x) is
compact. Then ∩x∈KF (x) ̸= ∅.

Remark that if F : K −→ 2X is a KKM -mapping with closed values in K, then the family {Fx : x ∈ X} of sets
has the finite intersection property.

2. Main results

In this section, we apply theKKM -mapping to obtain the existence of solutions for QEP .

Theorem 1 Let K be a compact convex subset of a Hausdorff topological vector space and A : K → 2K be a non-
empty set-valued mapping such that for every y ∈ K, A−1(y) = {x ∈ K : y ∈ A(x)} is open in K. Then there
exists x∗ ∈ Ksuch that x∗ ∈ (convA(x∗) = {∑n

i=1 tixi : ti ≥ 0,
∑n

i=1 ti = 1, xi ∈ A(x∗)}).
One can consider Theorem 1 as a topological vector space version of Kakutani’s fixed point theorem which is a gen-
eralization of Brouwer’s fixed point theorem.

Theorem 2 Let K be a compact convex subset of a Hausdorff topological vector space and A : K → 2K be a non-
empty set-valued mapping with convex values such that for every y ∈ K, A−1(y) is open in K. Then A has a fixed
point, that is, there exists x∗ ∈ Ksuch that x∗ ∈ A(x∗).
In the next result, by using Theorem 1, a new proof of Ky Fan’s Lemma 1 is provided.

Lemma 2 Let K be a compact convex subset of a topological vector space and T : K → 2K be a KKM -mapping
with closed values inK. Then

∩
x∈K T (x) ̸= ∅.

The next result is a new version of Lemma 2 by relaxing the compactness of the convex setK.

Theorem 3 LetK be a non-empty convex subset of a topological vector space andA : K → 2K be aKKM -mapping
with closed values inK. Further, assume that there exist a compact convex subset B0 ofK and a compact subset N0

of K such that for each x ∈ K\N0, there exists u ∈ B0 that x /∈ A(u). Then
∩

u∈K A(u) ̸= ∅.
We are now ready to present the first application of this section.

Theorem 4 Let f : C × C → R be a function and K : C → 2C be a set-valued mapping, where C is a non-empty
compact and convex subset of a Hausdorff topological vector space of X . Assume that the following conditions are
satisfied:
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i) for all x ∈ C,K(x) is a nonempty closed and convex set and f(x, x) ≥ 0;
ii) for each x ∈ C and y ∈ K(x) the set {w ∈ K(x) : f(w, y) < 0} is open and convex;
iii) for all x ∈ C, y ∈ K(x), the set {w ∈ K(x) : f(w, y) ≥ 0} is convex.
iv)K−1(y)

∩ {x | y ∈ EP (f, K(x))} is open.
Then the solution set of quasi equilibrium problem (QEP (f,K)) is non-empty and compact.
Theorem 5 LetA : K → 2K be a set-valued mapping, whereK is a non-empty convex subset of a topological vector
space of X . Assume that

i) For each x ∈ K, A(x)is a convex set;
ii) For every x ∈ K, x /∈ A(x);
iii) For each y ∈ K, A−1(y) = {x ∈ K : y ∈ A(x)} is open in K;
iv) There exist non-empty compact and convex subset B ⊆ Kand non-empty compact subset N ⊆ K such that

A(x)
∩

B ̸= ϕ, ∀x ∈ K\N.

Then there exists x∗ ∈ K such that A(x∗) = ϕ.
The following example illustrates the previous theorem.

Example 1 Let X = R the real line,K = [0, 1] and A : K → 2K be defined by A(x) = (0, x). It is obvious that for
each x of K the A(x) is convex and x ̸∈ A(x). It is clear that A−1(y) = ∅ when y = 0, 1 and A−1(y) = (y, 1] for
y ∈ (0, 1) which are open inK. Hence A satisfies all the assumptions of Theorem 2 and A(x∗ = 0) = ∅.

Remark 1By reviewing the proof of Theorem 5, one can replace conditions (i) and (ii) of it by the following condition:

x /∈ convA(x), ∀x ∈ K.

Because in line seven of the proof we obtained

xi ∈ A(z), ∀i = 1, 2, ..., n.

where z =
n∑

i=1

λixi,
n∑

i=1

λi = 1 and λi ≥ 0 for all i, so

xi ∈ convA(z).

Hence z =
n∑

i=1

λixi ∈ convA(z) and the rest of the proof can be continued. Moreover, it follows from condition (ii)

that the set-valued mappingA is never a KKM mapping. Hence we cannot use Ky Fan’s Lemma 1 for the mapping A.
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Abstract

In this paper, a system of generalized operator equilibrium problems(for short, SGOEP) in the
setting of topological vector spaces is introduced. Moreover, using Ky Fan’s lemma an existence
result for the generalized operator equilibrium problem(for short, GOEP) is established. The
results of the paper can be viewed as a generalization and improvement of the corresponding
results in this area.

1. Introduction

Throughout the paper, unless otherwise specified, we use the following notations.
Let I be an index set, for each i ∈ I , letXi and Yi stand for topological vector spaces(for short, t.v.s.) and L(Xi, Yi),
the space of all continuous linear operators from Xi into Yi. Consider a family of nonempty convex subset {Ki}i∈I

with Ki in L(Xi, Yi). The symbol Πj∈IKj denotes the cartesian product of Kj . So for each f ∈ Πj∈IKj , we have
f = (fj)j∈I , where fj ∈ Kj .
For each i ∈ I , let Ci : Πj∈IKj → 2Yi be a set-valued mapping such that, for each f ∈ Πj∈IKj , Ci(f) is closed,
pointed convex cone such that ei ∈ intCi(f) (we recall that a subsetCi(f) of Yi is convex cone and pointed whenever
λCi(f) + (1− λ)Ci(f) ⊆ Ci(f), for all 0 < λ < 1, 2Ci(f) ⊆ Ci(f) and Ci(f)∩−Ci(f) = {0Yi}, resp.), for more
details see [7].
Also for each i ∈ I , let Fi : Πj∈IKj ×Ki → 2Yi be a set-valued mapping. We consider the following problem which
we call system of generalized operator equilibrium problem(for short, SGOEP):
Find f∗ = (f∗

j )j∈I ∈ Πj∈IKj such that for each i ∈ I ,

Fi(f
∗, gi) ⊈ −Ci(f

∗), ∀gi ∈ Ki. (1)
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We remark that, for suitable choices of I, Fi,Ki, Xi, Yi and Ci, SGOEP (1) reduces to the preoblems presented in
[1, 8] and the references therein.
When I is singelton, that is Fi = F , Xi = X , Yi = Y , Ki = K ⊆ L(X,Y ), Ci = C : K → 2Y , then (1) reduces
to the following problem which is called a generalized operator equilibrium problem(for short, GOEP) and studied in
[8]:
Find f∗ ∈ K such that

F (f∗, g) ⊈ −C(f∗), ∀g ∈ K. (2)

Now, we recall some concepts and results which are used in the sequel.

Definition 1.1. [2] Let X and Y be two topological spaces. A set valued mapping G : X −→ 2Y is called

(i) upper semicontinuous(u.s.c.) at x ∈ X if for each open set V containingG(x), there is an open set U containing
x such that for each t ∈ U,G(t) ⊆ V ; G is said to be u.s.c. on X if it is u.s.c. at all x ∈ X;

(ii) lower semicontinuous(l.s.c.) at x ∈ X if for each open set V with G(x) ∩ V ̸= ∅, there is an open set U
containing x such that for each t ∈ U,G(t) ∩ V ̸= ∅; G is said to be l.s.c. on X if it is l.s.c. at all x ∈ X;

(iii) closed if the graph of G, that is, the set {(x, y) : x ∈ X, y ∈ G(x)}, is a closed set in X × Y ;

(iv) compact if the closure of range G, that is, clG(X), is compact, where G(X) =
∪

x∈X G(x).

Remark 1.2. One can see that if G(x) is compact and G is u.s.c., then for any net {xα} ⊆ X such that xα −→ x
and for every yα ∈ G(xα) there exist y ∈ G(x) and a subnet {yβ} of {yα} such that yβ −→ y.

The nonlinear scalarization mapping that has a crucial role in the paper, was first introduced in [6] in order to apply to
study the vector optimization theory and vector equilibrium problems.

Definition 1.3. [6, 10] Let X be a topological vector space with the convex and pointed cone C. The formula

ξe(x) := inf{r ∈ R : re− x ∈ C},

where x ∈ X and e ∈ intC, defines a mapping fromX into R(The real line) and is called the nonlinear scalarization
mapping on X(with respect to C and e).

The following lemma characterizes some of the important properties of the nonlinear scalarization mapping which are
used in the sequel.

Lemma 1.4. [3, 5, 9] Let X be a t.v.s. and C be a closed, pointed convex cone of X with e ∈ intC. Then for each
r ∈ R and x ∈ X the following statements are satisfied:

(i) ξe(x) = min{r ∈ R : re− x ∈ C}.

(ii) ξe(x) ≤ r ⇐⇒ re− x ∈ C.

(iii) ξe(x) < r ⇐⇒ re− x ∈ intC.

(iv) ξe(x) = r ⇐⇒ x ∈ re− ∂C, where ∂C is the topological boundary of C.

(v) y2 − y1 ∈ C =⇒ ξe(y1) ≤ ξe(y2).

(vi) The mapping ξe is continuous, positively homogeneous and subadditive(that is sublinear) on X .

For proving an existence result of an eqeuilibrium problem, Ky Fan’s lemma plays a key role. We are going now to
state it. Before stating it we need the following definition.
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Definition 1.5. [4] LetK be a nonempty subset of topological vector spaceX . A set-valued mapping T : K → 2X is

called a KKM-mapping if, for every finite subset {x1, x2, ..., xn} ofK, conv{x1, x2, ..., xn} is contained in
n∪

i=1

T (xi),

where conv denotes the convex hull.

Ky Fan in 1984 obtained the following result, which is known as Ky Fan’s lemma.

Lemma 1.6. (Ky Fan-1984) [4] Let K be a nonempty subset of topological vector space X and T : K → 2X be a
KKM-mapping with closed values inK. Assume that there exists a nonempty compact convex subsetB ofK such that∩

x∈B

T (x) is compact. Then
∩

x∈K

T (x) ̸= ∅.

2. Main results

The following maximal element theoremwhich proved by Ky Fan’s lemma will be used in establishing some existence
results in this paper.

Theorem 2.1. For each i ∈ I , let Ki be a nonempty convex subset of L(Xi, Yi) and let Γi : Πj∈IKj → 2Ki be a
set-valued mapping satisfying the following conditions:

(i) ∀i ∈ I and ∀f = (fj)j∈I ∈ Πj∈IKj; fi /∈ convΓi(f), where fi is the ith projection of f ;

(ii) ∀i ∈ I and ∀gi ∈ Ki; Γ−1
i (gi) is open in Πj∈IKj;

(iii) There exist a nonempty compact subsetD ofΠj∈IKj and a nonempty compact convex subsetEj ⊆ Kj , ∀j ∈ I
such that ∀f ∈ Πj∈IKj \D there exists j ∈ I such that Γj(f) ∩ Ej ̸= ∅.

Then there exists f∗ ∈ Πj∈IKj such that Γj(f
∗) = ∅, for each j ∈ I .

Following the same arguments as in the proof of Theorem 2.1, we can get the following result.

Theorem 2.2. Let all assumptions of Theorem 2.1 and the following conditions hold:

(i) ∀i ∈ I and ∀f ∈ Πj∈IKj; Γi(f) is convex;

(ii) ∀i ∈ I and ∀gi ∈ Ki, Γ−1
i (gi) is open in Πj∈IKj;

(iii) There exist a nonempty compact subsetD ofΠj∈IKj and a nonempty compact convex subset Ei ⊆ Ki, ∀i ∈ I,
such that ∀f ∈ Πj∈IKj \D there exists i ∈ I with Γi(f) ∩ Ei ̸= ∅.

Then

(a) if ∃i ∈ I such that Γi(f) ̸= ∅, ∀f ∈ Πj∈IKj , then there exist i ∈ I and f ∈ Πj∈IKj such that fi ∈ Γi(f).

(b) if ∀i ∈ I and ∀f ∈ Πj∈IKj , fi /∈ Γi(f), then there exists f∗ ∈ Πj∈IKj such that Γi(f
∗) = ∅, for each i ∈ I .

Now applying the properties of nonlinear scalarization mapping and Lemma 2.1, we prove the following existence
theorem for SGOEP.

Theorem 2.3. For each i ∈ I , let Ki be nonempty and convex subset of L(Xi, Yi) and Fi : Πj∈IKj ×Ki −→ 2Yi

be a mapping satisfying the following conditions:

(i) ∀i ∈ I and ∀(fj)j∈I ∈ Πj∈IKj , Fi((fj)j∈I , fi) ⊈ −C((fj)j∈I), where fi is the ith component of (fj)j∈I ;

(ii) ∀i ∈ I and ∀(fj)j∈I ∈ Πj∈IKj , the mapping gi −→ ξeioFi((fj)j∈I , gi) is R+-natural quasi convex;
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(iii) ∀i ∈ I and ∀gi ∈ Ki, the set

{(fj)j∈I ∈ Πj∈IKj : Fi((fj)j∈I , gi) ⊈ −C((fj)j∈I)},

is closed in Πj∈IKj;

(iv) There exist a nonempty compact subsetD of Πj∈IKj and a nonempty compact convex subset Ei ⊆ Ki, ∀i ∈ I
such that ∀(fj)j∈I ∈ Πj∈IKj \D; there exist i ∈ I and g∗i ∈ Ei with

Fi((fj)j∈I , g
∗
i ) ⊂ −Ci((fj)j∈I).

Then the solution set of SGOEP is nonempty and relatively compact.

The next result is a special case of Theorem 2.3 when I is singelton.

Theorem 2.4. Let X and Y be two t.v.s. and K be a nonempty convex subset of L(X,Y ), C be a closed, pointed
convex cone in Y with e ∈ intC and also F : K×K −→ 2Y be a set-valued mapping with nonempty values. Assume
that the following conditions hold:

(i) for all f ∈ K, F (f, f) ⊈ −C(f);

(ii) for all fixed f ∈ K, the mapping g −→ ξeoF (f, g) is R+−natural quasi convex;

(iii) for all g ∈ K, the set
{f ∈ K : F (f, g) ⊆ −C(f)},

is open in K;

(iv) there exist a nonempty compact convex subset D of K and a nonempty compact subset E of K such that for
each f ∈ K \D, there exists g ∈ E satisfying F (f, g) ⊆ −C(f).

Then the solution set of GOEP is nonempty and relatively compact.

Remark 2.5. If F (f, .) is C(.)−natural quasi convex, then the mapping g −→ ξeoF (f, g) is R+−natural quasi
convex. Therefore Theorem 2.4 is valid when one replaces ξeoF (f, .) by F (f, .).

The next example shows that although Theorem 2.4 is true when F (f, .) is C(.)−natural quasi convex but condition
(ii) is sharper than it.

Example 2.6. Assume that

f(x) =

{
|x| x ∈ Q ∩ [−1, 1]
2|x|+ 1 x ∈ Qc ∩ [−1, 1].

Define the mapping F : [−1, 1] −→ 2R
2 by

F (x) = [f(x), f(x) + 1]× [3, 4],

ξeoF (x) = [3, 4], where C = {(x, y) : x, y ≥ 0} and e = (1, 1) ∈ intC.
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Abstract

In this paper, we extend very recent fixed point theorems in the setting of ordered non-Archimedean
fuzzy metric spaces. We present some fixed point theorems for self-mappings satisfying gener-
alized (ϕ, ψ)-contraction condition in partially ordered complete non-Archimedean fuzzy met-
ric spaces. On the other hand, we consider a more general class of auxiliary functions in the
contractivity condition and we extend recent fixed point theorems for complete ordered non-
Archimedean fuzzy metric spaces. Also, we present a few examples to illustrate the validity of
the results obtained in the paper.

1. Introduction

Fixed points of mappings satisfying contractive conditions in generalized metric spaces are highly useful in large
number of mathematical problems of pure and applied mathematics. There are two well-known extensions of the
notion of metric space to frameworks in which imprecise models are considered: fuzzy metric spaces (see [12]) and
probabilistic metric spaces [14, 15]. These two concepts are very similar, but they are different in nature. The con-
cept of a fuzzy metric space was introduced in different ways by some authors (see [3, 4]). Gregori and Sapena [4]
introduced the notion of fuzzy contractive mappings and gave some fixed point theorems for complete fuzzy metric
spaces in the sense of George and Veeramani, and also for Kramosil and Michalek’s fuzzy metric spaces which are
complete in Grabiec’s sense. Mihet [10] developed the class of fuzzy contractive mappings of Gregori and Sapena,
considered these mappings in non-Archimedean fuzzy metric spaces in the sense of Kramosil and Michalek, and ob-
tained a fixed point theorem for fuzzy contractive mappings. Lots of different types of fixed point theorems has been
presented by many authors by expanding the Banach’s result, simultaneously (see [5, 16]). Recently, Sun and Yang in-
troduced the concept of fuzzy metric spaces and proved two common fixed point theorems for four mappings (see [5]).

Recently, many fixed point theorems have been presented for probabilistic metric space (X,F, ∗), where F is a dis-
tance distribution function. Many of them were inspired by the corresponding results on metric spaces. One of the

Email address: r−farokhzad@gonbad.ac.ir (Razieh Farokhzad Rostami)

https://conf.gonbad.ac.ir/msc1400


R. Farokhzad Rostami / The 3rd National Congress on Mathematics and Statistics 165

most attractive and effective ways to introduce contractivity conditions in the probabilistic framework is based on
considering some terms like in the following expression:

1

F (x, y, t)
− 1, where x, y ∈ X and t > 0

(see [4, 10, 17]).

In this paper, we consider the more general contractivity conditions, replacing the function t→ 1
t − 1 by an appropri-

ate function h to establish the existence of fixed points for a self-mapping and common fixed points and coincidence
points for two self-mappings in ordered complete fuzzy metric space. Our results generalize Theorem 2.1 and 2.2 of
[2] and the corollaries of [6, 11].

2. Preliminaries

Before giving our main results, we recall some basic concepts and results in metric space and fuzzy metric spaces.

Definition 2.1. [1] A point ν ∈ X , is called coincidence (common fixed) point for two self-mappings T and S, if
Tν = Sν (ν = Tν = Sν).

Definition 2.2. [9] A metric spaceX with a partially ordered relation⪯ is called a partially ordered metric space and
is denoted by (X,⪯).

Definition 2.3. [9] Let (X,⪯) be a partially ordered metric space.
(i) If any two elements of X are comparable, then it is called a well-ordered set.
(ii) A self-mapping T on X is said to be monotone nondecreasing, if T (ν) ⪯ T (µ) for all ν, µ ∈ X with ν ⪯ µ.
(iii) Let T and S be two self-mappings on X . Then T is called monotone S-nondecreasing, if Tx ⪯ Ty for all
x, y ∈ X with Sx ⪯ Sy.

Definition 2.4. [8] Let (X, d) be a metric space.
(i) Two self-mappings T and S on X are called compatible, if for all sequence {xn} with lim

n→∞
Txn = lim

n→∞
Sxn,

then lim
n→∞

d(TSxn, STxn) = 0.
(ii) A pair of self-mappings (T, S) onX is called weakly compatible, if they commute at their coincidence points, i.e.
Tν = Sν implies TSν = STν.

Definition 2.5. [15] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a continuous triangular norm (in short,
continuous t−norm) if it satisfies the following conditions:

(TN-1) ∗ is commutative and associative,
(TN-2) ∗ is continuous,
(TN-3) ∗(a, 1) = a for all a ∈ [0, 1],
(TN-4) ∗(a, b) ≤ ∗(c, d) whenever a, b, c, d ∈ [0, 1] with a ≤ c, b ≤ d.

Definition 2.6. [5] A fuzzy metric space is a triple (X,F, ∗) where X is a nonempty set, ∗ is a continuous t−norm
and F is a fuzzy set on X2 × (0,∞) satisfying the following conditions for all x, y, z ∈ X:

(FM-1) F (x, y, t) > 0 for all t > 0,
(FM-2) F (x, y, t) = 1 for all t > 0 if and only if x = y,
(FM-3) F (x, y, t) = F (y, x, t) for all t > 0,
(FM-4) F (x, y, t+ s) ≥ F (x, z, s) ∗ F (z, y, t) for all s, t > 0,
(FM-5) F (x, y, .) : (0,∞) → [0, 1] is continuous.
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If the triangular inequality (FM-4) is replaced by

F (x, y,max{s, t}) ≥ F (x, z, s) ∗ F (z, y, t)

for all x, y, z ∈ X and all s, t > 0 or equivalently,

F (x, y, t) ≥ F (x, z, t) ∗ F (z, y, t), (1)

then the triple (X,F, ∗) is called a non-Archimedean fuzzy metric space [7].

Example 2.7. Let (X, d) be a metric space. Then the triple (X,F, ∗) is a fuzzy metric space onX where ∗(a, b) = ab
for all a, b ∈ [0, 1] and F (x, y, t) = t/(t + d(x, y)) for all x, y ∈ X and all t > 0. We call this F as the standard
fuzzy metric induced by the metric d. Even if we define a ∗ b = min{a, b} for all a, b ∈ [0, 1], the triple (X,F, ∗) will
be a fuzzy metric space.

Definition 2.8. [5] Let {xn} be a sequence in a fuzzy (or a non-Archimedean fuzzy) metric space (X,F, ∗). We say
that:

• {xn} converges to x if and only if lim
n→∞

F (xn, x, t) = 1; i.e., for all t > 0 and all λ ∈ (0, 1), there exists n0 ∈ N
such that F (xn, x, t) > 1− λ for all n ≥ n0 (in such a case, we write {xn} → x);

• {xn} is a Cauchy sequence if and only if for all t > 0 and all λ ∈ (0, 1), there exists n0 ∈ N such that
F (xn, xm, t) > 1 − λ for all n,m ≥ n0. {xn} is a G-Cauchy sequence if and only if for all t > 0
and all λ ∈ (0, 1), there exists n0 ∈ N such that F (xn, xn+p, t) > 1 − λ for all n ≥ n0 and p > 0
(i.e., lim

n→∞
F (xn, xn+p, t) = 1).

• The fuzzy (or the non-Archimedean fuzzy) metric space (X,F, ∗) is called complete (G-complete) if every
Cauchy (G-Cauchy) sequence is convergent.

Lemma 2.9. [5] Let (X,F, ∗) be a fuzzy metric space. Then F (x, y, t) is nondecreasing with respect to t for all
x, y ∈ X .

Lemma 2.10. [5] Let (X,F, ∗) be a fuzzy metric space. Then F is a continuous function on X2 × (0,∞).

It is easy to prove that a F (x, y, t) in a non-Archimedean fuzzy metric space (X,F, ∗) is also nondecreasing with
respect to t and continuous for all x, y ∈ X .

Definition 2.11. [5] A (complete) fuzzymetric space (X,F, ∗)with a partially ordered relation⪯ is called a (complete)
partially ordered fuzzy metric space and denoted by (X,F, ∗,⪯).

The following families of auxiliary functions were considered in [13].

Definition 2.12. Let Φ be the family of all functions ϕ : [0,∞) → [0,∞) satisfying:
(1) ϕ(t) = 0 if and only if t = 0;
(2) lim

t→∞
ϕ(t) = ∞;

(3) ϕ is continuous at t = 0.

Definition 2.13. Let Ψ be the class of all functions ψ : [0,∞) → [0,∞) satisfying:
(1) ψ is nondecreasing;
(2) ψ(0) = 0
(3) for a sequence {an} in [0,∞) whit {an} → 0, {ψn(an)} → 0 (ψn denotes the nth-iterate of ψ)

It worths mentioning that ψ ∈ Ψ is continuous at t = 0. (Proposition 7 of [13])

The following family of auxiliary functions were considered in [13].
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Definition 2.14. LetH be the family of all functions h : (0, 1] → [0,∞) satisfying the following conditions,
(H1) for all sequence {an} in (0, 1], {an} → 1 if and only if {h(an)} → 0;
(H2) for all sequence {an} in (0, 1], {an} → 0 if and only if {h(an)} → ∞.

The previous conditions are guaranteed whenever h : (0, 1] → [0,∞) is a strictly decreasing bijection such that h
and h−1 are continuous (in a broad sense, it is sufficient to assume the continuities of h and h−1 on the extremes of
the respective domains). For instance, this is the case of the function h(t) = 1/t − 1 for all t ∈ (0, 1]. However, the
functions inH need not to be continuous nor monotone.

Proposition 2.15. [13] If h ∈ H, then h(1) = 0. Furthermore, h(t) = 0 if and only if t = 1.

3. Main results

In this section, we present an extension of fixed point theorems in several ways: the metric space is more general, the
contractivity condition is better and the involved auxiliary functions form a wider class.

Theorem 3.1. Let (X,F, ∗,⪯) be a partially ordered G-complete non-Archimedean fuzzy metric space and let T :
X → X be a continuous and nondecreasing mapping with regards to ⪯. Suppose that there exist c ∈ (0, 1), ϕ ∈
Φ, ψ ∈ Ψ and h ∈ H such that

h(F (Tx, Ty, ϕ(ct))) ≤ ψ(h(M(x, y))) (2)

for all x, y ∈ X with x ⪯ y and all t > 0 and

M(x, y) = max

{
F (x, y, ϕ(t)),

F (x, Tx, ϕ(t)) ∗ F (y, Ty, ϕ(t))
1 + F (Tx, Ty, ϕ(t))

}
. (3)

If there exists x0 ∈ X such that x0 ⪯ Tx0 and also lim
t→∞

F (x0, Tx0, t) = 1, then T has at least one fixed point inX .

Proof. If there exists x0 ∈ X such thatTx0 = x0, then the proof is finished. Suppose x0 ∈ X , such that x0 ≺ Tx0 and
lim
t→∞

F (x0, Tx0, t) = 1, then construct the sequence {xn} ⊂ X by xn+1 = Txn for n ≥ 0. Since T is nondecreasing,
by using mathematical induction, we get the following

x0 ≺ Tx0 = x1 ⪯ Tx1 = x2 ⪯ .... ⪯ Txn−1 = xn

⪯ Txn = xn+1 ⪯ ....
(4)

If for some n0 ∈ N, xn0
= xn0+1 = Txn0

then xn0
is a fixed point of T and we have nothing to prove.

Suppose that xn ̸= xn+1 for all n ≥ 0. Since xn ≻ xn−1 for all n ≥ 1, by (2) we have

h(F (xn, xn+1, ϕ(ct))) = h(F (Txn−1, Txn, ϕ(ct)))

≤ ψ(h(M(xn−1, xn))),
(5)

where

M(xn−1, xn) = max

{
F (xn−1, xn, ϕ(t)),

F (xn−1, Txn−1, ϕ(t)) ∗ F (xn, Txn, ϕ(t))
1 + F (Txn−1, Txn, ϕ(t))

}

= max

{
F (xn−1, xn, ϕ(t)),

F (xn−1, xn, ϕ(t)) ∗ F (xn, xn+1, ϕ(t))

1 + F (xn, xn+1, ϕ(t))

}
.

(6)

Since
F (xn−1, xn, ϕ(t)) ∗ F (xn, xn+1, ϕ(t))

1 + F (xn, xn+1, ϕ(t))
≤ F (xn−1, xn, ϕ(t)),

by (6) we have
M(xn−1, xn) = F (xn−1, xn, ϕ(t)),
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and hence from (5) again we have

h(F (xn, xn+1, ϕ(ct))) ≤ ψ(h(F (xn−1, xn, ϕ(t)))) (7)

for all t > 0 and all n ≥ 1.
We claim that lim

n→∞
F (xn, xn+1, s) = 1 for all s > 0. In order to prove it, let s > 0 be arbitrary. As lim

r→∞
crs = 0

and ϕ is continuous at t = 0, then lim
r→∞

ϕ(crs) = ϕ(0) = 0. Since s > 0, there exists r ∈ N such that

ϕ(crs) ≤ s.

Let n ∈ N be such that n > r. Applying the contractivity (7), it follows that

h(F (xn, xn+1, ϕ(c
rs))) ≤ ψ(h(F (xn−1, xn, ϕ(c

r−1s)))). (8)

Repeating this argument, we find that

h(F (xn−1, xn, ϕ(c
r−1s))) ≤ ψ(h(F (xn−2, xn−1, ϕ(c

r−2s)))).

As ψ is nondecreasing, then

ψ(h(F (xn−1, xn, ϕ(c
r−1s)))) ≤ ψ2(h(F (xn−2, xn−1, ϕ(c

r−2s)))). (9)

Combining inequalities (8) and (9), we deduce that

h(F (xn, xn+1, ϕ(c
rs))) ≤ ψ(h(F (xn−1, xn, ϕ(c

r−1s))))

≤ ψ2(h(F (xn−2, xn−1, ϕ(c
r−2s)))).

By repeating this argument n times, we have

h(F (xn, xn+1, ϕ(c
rs))) ≤ ψn(h(F (x0, x1, ϕ(c

r−ns))))

≤ ψn(h(F (x0, x1, ϕ(
s

cn−r
)))),

(10)

for all n > r. As a consequence,

lim
n→∞

s

cn−r
= ∞ ⇒ lim

n→∞
ϕ(

s

cn−r
) = ∞

⇒ lim
n→∞

F (x0, x1, ϕ(
s

cn−r
)) = 1

⇒ lim
n→∞

h(F (x0, x1, ϕ(
s

cn−r
))) = 0.

As the sequence {an = h(F (x0, x1, ϕ(
s

cn−r )))} → 0 we have {ψn(an)} → 0. Since h ∈ H, by (10) we deduce that

lim
n→∞

h(F (xn, xn+1, ϕ(c
rs))) = 0.

In particular, as h ∈ H, condition (H1) implies that

lim
n→∞

F (xn, xn+1, ϕ(c
rs)) = 1.

Taking into account ϕ(crs) < s, we observe that

F (xn, xn+1, ϕ(c
rs)) ≤ F (xn, xn+1, s) ≤ 1.

Therefore,
lim

n→∞
F (xn, xn+1, s) = 1



R. Farokhzad Rostami / The 3rd National Congress on Mathematics and Statistics 169

which means that {xn} is a G-Cauchy sequence in X , [13, Lemma 15]. Since X is G-complete, there exists x ∈ X
such that {xn} → x.
Also, the continuity of T implies that

Tx = T ( lim
n→∞

xn) = lim
n→∞

Txn = lim
n→∞

xn+1 = x.

Therefore, x is a fixed point of T in X .

Example 3.2. Let X = [0, 1), ∗(a, b) = min{a, b}, and

F (x, y, t) =

{
1, if x = y

1
1+max{x,y} , otherwise,

where x, y ∈ X and t > 0. It is easy to prove that (X,F, ∗,⪯) is a complete partially ordered non-Archimedean fuzzy
metric space with usual ordering. Define T : X → X by T (x) = x/2 for all x ∈ X . Assume that ψ(t) = ϕ(t) = t
for all t ∈ [0,∞) and let h : (0, 1] → [0,∞) be a strictly decreasing bijection between (0, 1] and [0,∞) such that
h and h−1 are continuous (for instance, h(t) = 1/t − 1, t ∈ (0, 1], but any other function verifying these properties
yields the same result). In this context, the contractivity conditions (2) and (3) are equivalent to

h(F (Tx, Ty, ϕ(ct))) ≤ ψ(h(M(x, y)))

⇔ h(F (Tx, Ty, ct)) ≤ h(M(x, y))

⇔ F (Tx, Ty, ct) ≥M(x, y) ≥ F (x, y, t),

for all c ∈ (0, 1) and x, y ∈ X , whit x ̸= y and for all t > 0,

F (Tx, Ty, ct) = F (
x

2
,
y

2
, ct)

=
1

1 +max{x
2 ,

y
2}

≥ 1

1 +max{x, y}
= F (x, y, t).

In the case x = y it is trivial. As a result, the contractivity condition is verified. Also, all the assumptions made in
Theorem 3.1 are satisfied and hence, it guarantees that T has a unique fixed point (which is x = 0).

By weakening the continuity property of a map T in Theorem 3.1, we have the following result.

Theorem 3.3. In Theorem 3.1 let X has the property that, for every nondecreasing sequence {xn} with {xn} → x,
we have xn ⪯ x for all n ∈ N, i.e., x = sup xn. Then a non-continuous map T has a fixed point in X .

The uniqueness of an existing fixed point in Theorems 3.1 and 3.3, can be obtained, if the set of fixed pints of T ,
Fix(T ), is well-ordered.

Theorem 3.4. If in Theorems 3.1 and 3.3, Fix(T ), is well-ordered and lim
t→∞

F (x, y, t) = 1 for all x, y ∈ Fix(T )

and also h ∈ H is decreasing, then T has a unique fixed point in X .

We have the following results, which are the generalizations of Theorems 3.1 and 3.3 in the partially ordered non-
Archimedean fuzzy metric spaces.

Theorem3.5. Let (X,F, ∗,⪯) be a partially ordered non-Archimedean fuzzymetric space and supposeT, S : X → X
are continuous mappings such that
(i) for some c ∈ (0, 1), ϕ ∈ Φ, ψ ∈ Ψ, and h ∈ H with

h(F (Tx, Ty, ϕ(ct))) ≤ ψ(h(MS(x, y))) (11)
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for all x, y ∈ X with Sx ⪯ Sy and all t > 0 and

MS(x, y) = max

{
F (Sx, Sy, ϕ(t)),

F (Sx, Tx, ϕ(t)) ∗ F (Sy, Ty, ϕ(t))
1 + F (Tx, Ty, ϕ(t))

}
(12)

(ii) TX ⊆ SX and SX is a G-complete subspace of X ,
(iii) T is a monotone S-nondecreasing mapping,
(iv) T and S are compatible.

If there exists x0 ∈ X such that Sx0 ⪯ Tx0 and lim
t→∞

F (Sx0, Tx0, t) = 1, then T and S have a coincidence point in
X .

Replacing the condition of being weakly compatible instead of compatibility in Theorem 3.5, we obtain the following
result.

Corollary 3.6. Assume in Theorem 3.5, lim
t→∞

F (Tx, Ty, t) = 1 for all coincidence points of T and S and h ∈ H
is decreasing. If X has the property that for every nondecreasing sequence {Sxn} in X such that lim

n→∞
Sxn = Sx

implies that Sxn ⪯ Sx for all n ∈ N, that is Sx = sup Sxn. If T and S are weakly compatible for every coincidence
point ν of T and S with Sν ⪯ S(Sν), then T and S have common fixed point in X . Furthermore, the set of common
fixed point of T and S is well-ordered if and only if T and S have one common fixed point in X .
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Abstract

In this paper, we extend very recent fixed point theorems in the setting of Menger probabilistic
metric spaces. We present some fixed point theorems for self mappings satisfying general-
ized (ϕ, ψ)-contraction condition in Menger probabilistic metric spaces. On the other hand, we
consider a more general class of auxiliary functions in the contractivity condition. The aim of
this paper is to prove the existence of coincidence points, coupled coincidence points, common
fixed point and common coupled fixed points of auxiliary functions in the contractivity con-
dition which include both reciprocal and weakly reciprocal continuous mappings on Menger
probabilistic metric spaces.

1. Introduction

The concept of a Menger probabilistic metric space was initiated by Menger [8]. The idea of Menger was ti use a
distribution function instead of a nonnegative number for the value of a metric. In recent times, many fixed point
theorems have been presented in the setting of probabilistic metric space (X,F,△) that F is a distance distribution
function. Many of them were inspired by their corresponding results on metric spaces. One of the most attractive,
effective ways to introduce contractivity conditions in the probabilistic framework is based on considering some terms
like in the following expression:

1

Fx,y(t)
− 1, where x, y ∈ X and t > 0

(see [9, 15]).

In this paper, we consider the more general contractivity conditions replacing the function t→ 1
t −1 by an appropriate

function h to establish an existence of a fixed point and its uniqueness of a self mapping and common fixed point,
coincidence point for two self mappings in Menger probabilistic metric space. Also, we will establish an existence of
a coupled coincidence point and common coupled fixed point for two mappings in Menger probabilistic metric space.
Our results generalize Theorem 2.1 and 2.2 of [2] and the Corollaries of [3, 4, 10].

Before giving our main results, we recall some basic definitions and facts which will be used further on.
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Definition 1.1. [6] A function f : (−∞,∞) → [0, 1] is called a distribution function, if it is nondecreasing and
left continuous with infx∈R f(x) = 0. If in addition f(0) = 0, then f is called a distance distribution function.
Furthermore, a distance distribution function f satisfying limt→∞ f(t) = 1 is called a Menger distance distribution
function.

The set of all Menger distance distribution functions is denoted by Λ+.

Definition 1.2. [6] A triangular norm (abbreviated, T -norm) is a binary operation △ on [0, 1], which satisfies the
following conditions:
(a) △ is associative and commutative,
(b) △ is continuous,
(c) △(a, 1) = a for all a ∈ [0, 1],
(d) △(a, b) ≤ △(c, d) whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Among the important examples of a T -norm we mention the following two T -norms: △p(a, b) = ab and△m(a, b) =
min{a, b}. The T -norm△m is the strongest T -norm, that is,△ ≤ △m for every T -norm△.

Definition 1.3. [5] A triangular norm △ is said to be of H-type (Hadžić type) if a family of functions {△n(t)}+∞
n=1

is equicontinuous at t = 1, that is,

∀ε ∈ (0, 1), ∃δ ∈ (0, 1) : t > 1− δ ⇒ △n(t) > 1− ε (n ≥ 1),

where△n : [0, 1] → [0, 1] is defined as follows:

△1(t) = △(t, t), △n(t) = △(t,△n−1(t)), n = 2, 3, ... .

Obviously,△n(t) ≤ t for any n ∈ N and t ∈ [0, 1].

Definition 1.4. [14] AMenger probabilistic metric space (abbreviated, Menger PM space) is a triple (X,F,△)where
X is a nonempty set, △ is a continuous T -norm and F is a mapping from X ×X into Λ+ such that, if Fp,q denotes
the value of F at the pair (p, q),the following conditions hold:
(PM1) Fp,q(t) = 1 for all t > 0 if and only if p = q (p, q ∈ X),
(PM2) Fp,q(t) = Fq,p(t) for all t > 0 and p, q ∈ X ,
(PM3) Fp,r(s+ t) ≥ △(Fp,q(s), Fq,r(t)) for all p, q, r ∈ X and every s > 0, t > 0.

Definition 1.5. [14] A sequence {xn} inMenger PM spaceX is said to converge to a point x inX (written as xn → x),
if for every ϵ > 0 and λ ∈ (0, 1), there is an integer N(ϵ, λ) > 0 such that Fxn,x(ϵ) > 1 − λ, for all n ≥ N(ϵ, λ).
The sequence is said to be Cauchy sequence if for each ϵ > 0 and λ ∈ (0, 1), there is an integerN(ϵ, λ) > 0 such that
Fxn,xm

(ϵ) > 1 − λ, for all n,m ≥ N(ϵ, λ). A Menger PM space (X,F,△) is said to be complete if every Cauchy
sequence in X converges to a point of X . Also, the sequence is said to be G-Cauchy sequence if for each ϵ > 0 and
λ ∈ (0, 1), there is an integer N(ϵ, λ) > 0 such that Fxn+p,xn(ϵ) > 1− λ, for all n ≥ N(ϵ, λ) and p ∈ N. A Menger
PM space (X,F,△) is said to be G-complete if every G-Cauchy sequence in X converges to a point of X .

It is easy to see that, for ã = (x, y), b̃ = (u, v) ∈ X2 = X × X , the function F̃ from X2 into Λ+, is a distribution
function:

F̃ã,b̃(t) = min{Fx,u(t), Fy,v(t)} for all t > 0.

Lemma 1.6. [16] If (X,F,△) is a complete Menger PM space, then (X2, F̃ ,△) is also a complete Menger PM
space.

Definition 1.7. [1] (i) Let f and g be two maps from X into Y . We say f and g have a coincidence point, if there
exists a point x in X such that fx = gx.
(ii) Let f and g be two self maps on X . We say x ∈ X is a common fixed point of f and g, if fx = gx = x.
(iii) An element (x, y) ∈ X × X is called a coupled point of the mapping T : X × X → X , if T (x, y) = x and
T (y, x) = y.
(iv) An element (x, y) ∈ X × X is called a coupled coincidence point of the mappings T : X × X → X and
g : X → X if T (x, y) = gx and T (y, x) = gy.
(v) An element (x, y) ∈ X × X is called a common coupled fixed point of the mappings T : X × X → X and
g : X → X if T (x, y) = gx = x and T (y, x) = gy = y.
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Definition 1.8. [4] Let f and g be two self maps of a Menger PM space (X,F,△). Then f and g are said to beMenger
compatible if limn→∞ Ffgxn,gfxn(t) = 1 for all t > 0, whenever {xn} is a sequence such that limn→∞ fxn =
limn→∞ gxn = x ∈ X .

Two self mappings f and g of a metric space (X, d) are called R-weakly commuting of type-(Ag) [12], if there exists
some positive real number R such that d(ffx, gfx) ≤ Rd(fx, gx) for all x ∈ X . Similarly, two self mappings f
and g of a metric space (X, d) are called R-weakly commuting of type-(Af ) [12], if there exists some positive real
number R such that d(fgx, ggx) ≤ Rd(fx, gx) for all x ∈ X .

In 2007, Kohali and Vashistha [7] introduced the notions of R-weakly commuting mappings in probabilistic metric
spaces as follow:

Definition 1.9. Two self mappings f and g of a Menger PM space (X,F,△) are called R-weakly commuting of
type-(MAg), if there exists some real number R ≥ 0 such that Fffx,gfx(t) ≥ Ffx,gx(

t
R ) for all t > 0 and x ∈ X .

In 1998, Pant [11] introduced the concept of reciprocal continuity for the pair of single valued maps. In the following,
we have the same definition but in a Menger PM spaceX .

Definition 1.10. Two self mappings f and g of a Menger PM spaceX are called reciprocally continuous , if limn→∞
gfxn = gx and limn→∞ fgxn = fx, whenever {xn} is a sequence inX such that limn→∞ fxn = limn→∞ gxn = x
for some x ∈ X .

Note that a pair of mappings which is reciprocally continuous need not be continuous even on their common fixed
point ( see for example [11]).

Pant et al. [12] generalized reciprocal continuity by introducing the notion of weakly reciprocal continuity for a pair
of single valued maps as follows but in metric space (X, d).

Definition 1.11. [4] Two self mappings f and g of a Menger PM space X are called weakly reciprocally continuous
, if limn→∞ gfxn = gx or limn→∞ fgxn = fx, whenever {xn} is a sequence in X such that limn→∞ fxn =
limn→∞ gxn = x for some x ∈ X .

It seems important to note that reciprocal continuity implies weak reciprocal continuity, but the converse is not true
(see Example 7 [3]).

Definition 1.12. Let Φ be the family of all functions ϕ : [0,∞) → [0,∞) satisfying:

(1) ϕ(t) = 0 if, and only if, t = 0;
(2) lim

t→∞
ϕ(t) = ∞;

(3) ϕ is continuous at t = 0.

Definition 1.13. Let Ψ be the class of all functions ψ : [0,∞) → [0,∞) satisfying:

(1) ψ is nondecreasing;
(2) ψ(0) = 0;
(3) if {an} ⊂ [0,∞) is a sequence such that {an} → 0, then {ψn(an)} → 0(where ψn denotes the nth-iterate of ψ).

We shall remind that ψ is continuous at t = 0 for functions in Ψ. (Proposition 7 of [13])

The following family of auxiliary functions are introduced in [13].

Definition 1.14. LetH be the family of all functions h : (0, 1] → [0,∞) satisfying:

(H1) if {an} ⊂ (0, 1], then {an} → 1 if, and only if, {h(an)} → 0;
(H2) if {an} ⊂ (0, 1], then {an} → 0 if, and only if, {h(an)} → ∞.
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The previous conditions are guaranteed when h : (0, 1] → [0,∞) is a strictly decreasing bijection between (0, 1] and
[0,∞) such that h and h−1 are continuous (in a broad sense, it is sufficient to assume the continuities of h and h−1 on
the extremes of the respective domains). For instance, this is the case of the function h(t) = 1/t− 1 for all t ∈ (0, 1].
However, the functions inH need not be continuous nor monotone.

Proposition 1.15. [13] If h ∈ H, then h(1) = 0. Furthermore, h(t) = 0 if, and only if, t = 1.

2. Main Results

In this section we present an extension of fixed point theorems in several ways: the metric space is more general, the
contractivity condition is better and the involved auxiliary functions form a wider class.

Theorem 2.1. Let (X,F,△) be a Menger PM space with a T -norm △ of H-type, T, S are two self maps of X such
that for some c ∈ (0, 1), ϕ ∈ Φ, ψ ∈ Ψ, and h ∈ H satisfying

h(FTx,Ty(ϕ(ct))) ≤ ψ(h(MS(x, y))), (1)

for any x, y ∈ X and all t > 0 and

MS(x, y) = max{FSx,Sy(ϕ(t)),
△(FSx,Tx(ϕ(t)), FSy,Ty(ϕ(t)))

1 + FTx,Ty(ϕ(t))
}, (2)

with T (X) ⊆ S(X), then T and S have a coincidence point inX if either
(a) X is G-complete and S is surjective ; or
(b X is G-complete and S is continuous and T and S are Menger compatible; or
(c) S(X) is G-complete; or
(d) T (X) is G-complete.
Furthermore, if h ∈ H is decreasing, the coincidence point is unique, i.e. Sp = Sq whenever Sp = Tp and Sq = Tq
(p, q ∈ X).

Corollary 2.2. Let (X,F,△) be a G-complete Menger PM space with a T -norm △ ofH-type and T a self mapping
of X satisfying (1) for some c ∈ (0, 1), ϕ ∈ Φ, ψ ∈ Ψ, and h ∈ H with S = I , the identity map on X . Then T has a
fixed point and at this fixed point T is continuous.

Example 2.3. Let X = [0,∞). Define F : X ×X → Λ+ by

Fx,y(t) =

{
ϵmax{x,y}(t), if x ̸= y

1, if x = y.

for all x, y ∈ X and for all t > 0, such that

ϵa(t) =

{
0, if 0 ≤ t ≤ a

1, if a < t ≤ ∞.

It is easy to see that (X,F,△p) is a G-complete Menger PM space (see Example 12,[13]). Let T : X → X be the
self-mapping defined by Tx = x

2 , for all x ∈ X .
Now, consider self-mappings ϕ and ψ on [0,∞) defined by ψ(t) = ϕ(t) = t, for all t ∈ [0,∞), and let h : (0, 1] →
[0,∞) be whatever strictly decreasing bijection between (0, 1] and [0,∞) such that h and h−1 are continuous (for
instance, h(t) = 1/t− 1 for all (0, 1], but any other function verifying these properties yields the same result). In this
context, the contractivity conditions (1) and (2) are equivalent to

h(FTx,Ty(ϕ(ct))) ≤ ψ(h(M(x, y)))

⇔ h(FTx,Ty(ct)) ≤ h(M(x, y))

⇔ FTx,Ty(ct) ≥M(x, y) ≥ Fx,y(t).
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For all x, y ∈ X , t > 0 and for some c ∈ (0, 1). Let x ̸= y and by setting c = 1
2 , we get

FTx,Ty(ct) = F x
2 ,

y
2
(
t

2
)

= ϵmax{ x
2 ,

y
2 }(

t

2
)

=

{
0, if 0 ≤ t

2 ≤ max{x
2 ,

y
2}

1, if max{x
2 ,

y
2} < t

2

=

{
0, if 0 ≤ t ≤ max{x, y}
1, if max{x, y} < t

= Fx,y(t).

It is clear, if x = y. As a result, the contractivity condition is verified. Also, all the assumptions made in Theorem
2.1 or Corollary 2.2 are satisfied and hence, it guarantees that T has a unique fixed point (which is x = 0) and it is
continuous at fixed point.

Definition 2.4. [4] Let (X,F,△) be a Menger PM space and T : X ×X → X and g : X → X . Then T and g are
Menger compatible if

lim
n→∞

FgT (xn,yn),T (gxn,gyn)(t) = 1,

for all t > 0 and
lim

n→∞
FgT (yn,xn),T (gyn,gxn)(t) = 1,

for all t > 0 , whenever {xn} and {yn} are sequences in X , such that

lim
n→∞

T (xn, yn) = lim
n→∞

gxn = x,

and
lim

n→∞
T (yn, xn) = lim

n→∞
gyn = y,

for all x, y ∈ X .

Corollary 2.5. Let (X,F,△) be a Menger PM space with a T -norm△ ofH-type,G : X×X → X and f : X → X
are two mappings such that for some c ∈ (0, 1), ϕ ∈ Φ, ψ ∈ Ψ, and h ∈ H

h(FG(x,y),G(u,v)(ϕ(ct))) ≤ ψ(h(M∗
f ((x, y), (u, v)))), (3)

for all (x, y), (u, v) ∈ X ×X and all t > 0 and

M∗
f ((x, y), (u, v)) = max{min{Ffx,fu(ϕ(t)), Ffy,fv(ϕ(t))},

△(min{Ffx,G(x,y)(ϕ(t)), Ffy,G(y,x)(ϕ(t))},min{Ffu,G(u,v)(ϕ(t)), Ffv,G(v,u)(ϕ(t))})
1 +min{FG(x,y),G(u,v)(ϕ(t)), FG(y,x),G(v,u)(ϕ(t))}

},
(4)

with G(X × X) ⊆ f(X). Then G and f have a coupled coincidence point if either one of the conditions (a) or
(b) or (c) in Theorem (2.1) holds, or G(X × X) is G-complete. Furthermore, if h ∈ H is decreasing, the coupled
coincidence value is unique.

Following similar arguments as in proof of Corollary (2.2) and (2.5), we can deduce the next result. we omit the details
of the proof.
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Corollary 2.6. Let (X,F,△) be a G-complete Menger PM space with a T -norm △ of H-type, G : X ×X → X is
a mapping such that for some c ∈ (0, 1), ϕ ∈ Φ, ψ ∈ Ψ, and h ∈ H,

h(FG(x,y),G(u,v)(ϕ(ct))) ≤ ψ(h(M∗((x, y), (u, v)))),

for all (x, y), (u, v) ∈ X ×X and all t > 0 and

M∗((x, y), (u, v)) = max{min{Fx,u(ϕ(t)), Fy,v(ϕ(t))},
△(min{Fx,G(x,y)(ϕ(t)), Fy,G(y,x)(ϕ(t))},min{Fu,G(u,v)(ϕ(t)), Fv,G(v,u)(ϕ(t))})

1 +min{FG(x,y),G(u,v)(ϕ(t)), FG(y,x),G(v,u)(ϕ(t))}
.

Then G has a coupled point and at this coupled point G is continuous.

Theorem 2.7. Let (X,F,△) be a G-complete Menger PM space with a T -norm △ of H-type, T, S are two weakly
reciprocally continuous self maps of X satisfying (1) and (2) for some c ∈ (0, 1), ϕ ∈ Φ, ψ ∈ Ψ, and h ∈ H, with
T (X) ⊆ S(X), then T and S have a coincidence point in X (if h is decreasing, T and S have a common fixed point
in X ,) if either
(a) T and S are Menger compatible; or
(b) T and S are R-weakly commuting of type-(MAS); or
(c) T and S are R-weakly commuting of type-(MAT ).

Now, we first recall the concept of weakly commuting of two mappings T : X × X → X and g : X → X on a
Menger PM space X .

Definition 2.8. [4] Let (X,F,△) be a Menger PM space and T : X ×X → X and g : X → X . Then T and g are
called R-weakly commuting of type-(MAg), if there exists some real number R ≥ 0 such that

FT (T (x,y),T (y,x)),gT (x,y)(t) ≥ FT (x,y),gx(
t

R
),

and
FT (T (y,x),T (x,y)),gT (y,x)(t) ≥ FT (y,x),gy(

t

R
),

for all t > 0 and (x, y) ∈ X ×X .

Definition 2.9. [4] Let (X,F,△) be a Menger PM space and T : X ×X → X and g : X → X . Then T and g are
called R-weakly commuting of type-(MAT ), if there exists some real number R ≥ 0 such that

FT (gx,gy),ggx(t) ≥ FT (x,y),gx(
t

R
),

and
FT (gy,gx),ggy(t) ≥ FT (y,x),gy(

t

R
),

for all t > 0 and (x, y) ∈ X ×X .

Reciprocal continuity and weakly reciprocal continuity are generalized for a pair of single valued maps in Menger PM
space as follows.

Definition 2.10. [4] Let (X,F,△) be a Menger PM space and T : X ×X → X and g : X → X . Then T and f are
called reciprocally continuous , if limn→∞ fT (xn, yn) = fx, limn→∞ fT (yn, xn) = fy and limn→∞ T (fxn, fyn) =
T (x, y), whenever {(xn, yn)} is a sequence in X × X such that limn→∞ T (xn, yn) = limn→∞ fxn = x and
limn→∞ T (yn, xn) = limn→∞ fyn = y for some (x, y) ∈ X ×X .

Definition 2.11. [4] Let (X,F,△) be a Menger PM space and T : X × X → X and g : X → X . Then T
and f are called weakly reciprocally continuous , if limn→∞ fT (xn, yn) = fx and limn→∞ fT (yn, xn) = fy or
limn→∞ T (fxn, fyn) = T (x, y), whenever {(xn, yn)} is a sequence in X × X such that limn→∞ T (xn, yn) =
limn→∞ fxn = x and limn→∞ T (yn, xn) = limn→∞ fyn = y for some (x, y) ∈ X ×X .
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Theorem 2.12. Let (X,F,△) be aG-complete Menger PM space with a T -norm△ ofH-type,G : X×X → X and
f : X → X are twoweakly reciprocally continuousmappings satisfying (3) and (4) for some c ∈ (0, 1), ϕ ∈ Φ, ψ ∈ Ψ,
and h ∈ H, withG(X ×X) ⊆ f(X), thenG and f have a coupled coincidence point inX (if h is decreasing,G and
f have a common coupled fixed point in X ,) if either
(a) G and f are Menger compatible; or
(b) G and f are R-weakly commuting of type-(MAf ); or
(c) G and f are R-weakly commuting of type-(MAG).
Example 2.13. Let X = {2n : n ∈ N}∪{0} and define the mapping F : X × X → Λ+ by Fx,y(0) = 0 for all
x, y ∈ X , Fx,x(t) = 1 for all x ∈ X and t > 0,

Fx,y(t) =

{
3
5 , if 0 < t ≤ |x− y|,
1, if t > |x− y|.

for all x, y ∈ X with x ̸= y. It is easy to see that (X,F,△m) is a complete Menger PM space.
Let G : X ×X → X and f : X → X be two mappings defined by

G(x, y) = 0,

for all x, y ∈ X with xy = 0,
G(2, y) = 0,

for all y ∈ X ,
G(x, y) = x,

for all x, y ∈ X with x ̸= y and x ̸= 2 and

f(0) = 0, f(2n) = 2n+1

for each n ∈ N. It is easy to see thatG(X ×X) = f(X) = {2n+1 : n ∈ N}∪{0} and so f(X) is complete. We also
see that G and f are weakly reciprocally continuous and compatible.
Now, consider self-mappings ϕ and ψ on [0,∞) defined by ψ(t) = ϕ(t) = t, for all t ∈ [0,∞), and let h : (0, 1] →
[0,∞) be whatever strictly decreasing bijection between (0, 1] and [0,∞) such that h and h−1 are continuous. In this
context, the contractivity conditions (3) and (4) are equivalent to

h(FG(x,y),G(u,v)(ϕ(ct))) ≤ ψ(h(M∗
f ((x, y), (u, v))))

⇔ h(FG(x,y),G(u,v)(ct)) ≤ h(M∗
f ((x, y), (u, v)))

⇔ FG(x,y),G(u,v)(ct) ≥M∗
f ((x, y), (u, v))

⇔ FG(x,y),G(u,v)(ct) ≥min{Ffx,fu(t), Ffy,fv(t)}. (5)

If c = 1
2 , for all x, y, u, v ∈ X , if xy = 0 and uv = 0, then G and f satisfy (5). For all x, y, u, v ∈ X with xy ̸= 0 or

uv ̸= 0 and t > 0, if 1
2 > |G(x, y)−G(u, v)|, then we have

FG(x,y),G(u,v)(
t

2
) = 1 ≥ min{Ffx,fu(t), Ffy,fv(t)}.

Next, assume that 1
2 ≤ |G(x, y)−G(u, v)|. We show the condition (5) by the following cases:

(I) xy = 0, u = 2n, v = 2m. For all t > 0, t
2 < |G(x, y)−G(u, v)| = 2n implies that t < 2n+1 = f(u) and so

FG(x,y),G(u,v)(
t

2
) =

3

5
= min{Ffx,fu(t), Ffy,fv(t)}.

(II) xy ̸= 0 and uv ̸= 0. Let x = 2k, y = 2l, u = 2n and v = 2m for each k, l, n,m ∈ N. For all t > 0,
t
2 < |G(x, y)−G(u, v)| = |2k − 2n| implies that t < |2k+1 − 2n+1| = |f(x)− f(u)| and so

FG(x,y),G(u,v)(
t

2
) =

3

5
= min{Ffx,fu(t), Ffy,fv(t)}.

By the cases above, (3) holds for all x, y, u, v ∈ X and all t > 0. Therefore, by Theorem (2.12), G and f have a
common coupled fixed point in X . i.e., there exist x∗, y∗ ∈ X such that G(x∗, y∗) = f(x∗) = x∗ and G(y∗, x∗) =
f(y∗) = y∗. In fact, x∗ = y∗ = 0
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Abstract

In this article, using a theorem for differentiable functionals due to Ricceri, we establish the
existence of at least two solutions for a class of systems of second order partial differential
equations with Dirichlet boundary conditions.

1. Introduction

In [7], the author has proved the following theorem:
Let X be a topological space, I a real interval and Ψ : X × I → Y = R a real-valued function. If Ψ is lower
semicontinuous and inf-compact in X , quasiconcave and continuous in I and satisfies supI infX Ψ < infX supI Ψ,
then there exists λ∗ ∈ I such that Ψ(·, λ∗) has at least two global minima.
In papers [5] and [8], this theorem was extended to the case where Y is an arbitrary convex set in a vector space.
Applications of the results of these articles can be found in [3, 4, 10].
Ricceri in [3] established following theorem:

Theorem 1.1. Let X be a topological space, (Y, ⟨·, ·⟩) a real Hilbert space, T ⊆ Y a convex set dense in Y and
I : X → R, φ : X → Y two functions such that, for each y ∈ T, the function x → I(x) + ⟨φ(x), y⟩ is lower
semicontinuous and inf-compact. Moreover, assume that there exists a point x0 ∈ X, with φ(x0) ̸= 0 such that

(φ1) x0 is a global minimum of both functions I and ∥φ(·)∥;

(φ2) infx∈X⟨φ(x), φ(x0)⟩ < ∥φ(x0)∥2.

Then, for each convex set S ⊆ T dense in Y, there exists ỹ ∈ S such that the functional x→ I(x) + ⟨φ(x), ỹ⟩ has at
least two global minima in X.
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An application of this theorem in solving a system of elliptic equations is also presented.
In this paper, employing a special case of this theorem, we show that a system involving Kirchhoff-type operator has
at least three weak solutions.
In the past years, problems involving Kirchhoff-type operators have been studied in many papers, we refer interested
readers to [1, 2, 6, 9, 11].

2. Main results

Let Ω ⊆ Rn (n ≥ 2) is a bounded domain with smooth boundary. We denote by A the class of all functions
Φ : Ω× R2 → R which are measurable in Ω, C1 in R2 and satisfy

sup
(x,u,v)∈Ω×R2

|Φu(x, u, v)|+ |Φv(x, u, v)|
1 + |u|m + |v|m < +∞

where Φu (resp. Φv) denoting the derivative of Φ with respect to u (resp. v) andm > 0 withm < n+2
n−2 when n > 2.

Here, we are interested in the problem




−(a+ b
∫
Ω
|∇u|2dx)∆u = Φu(x, u, v) in Ω,

−(a+ b
∫
Ω
|∇v|2dx)∆v = Φv(x, u, v) in Ω,

u = v = 0, on ∂Ω,
(1)

where Φ ∈ A, a, b ∈ R with a, b > 0.
A weak solution of (1) is any (u, v) ∈ H1

0 (Ω)×H1
0 (Ω) such that

(a+ b

∫

Ω

|∇u|2dx)
∫

Ω

∇u(x)∇φ(x)dx =

∫

Ω

Φu(x, u(x), v(x))φ(x)dx,

(a+ b

∫

Ω

|∇v|2dx)
∫

Ω

∇v(x)∇ψ(x)dx =

∫

Ω

Φv(x, u(x), v(x))ψ(x)dx

for all φ,ψ ∈ H1
0 (Ω).

Let IΦ : H1
0 (Ω)×H1

0 (Ω) → R be the functional defined by

IΦ(u, v) =
1

2

(
a
( ∫

Ω

|∇u|2dx
)
+
b

2

( ∫

Ω

|∇u|2dx
)2

+ a
( ∫

Ω

|∇v|2dx
)
+
b

2

( ∫

Ω

|∇v|2dx
)2
)

−
∫

Ω

Φ(x, u(x), v(x))dx

for all (u, v) ∈ H1
0 (Ω)×H1

0 (Ω). Hence, the critical points of the functional IΦ are the weak solutions of the problem
(1).
Our main result is as follow:

Theorem 2.1. Let F,G,H,K ∈ A, withK(x, 0, 0) = 0 for all x ∈ Ω, satisfy the following conditions:

(k1) there is η ∈ (0, aλ1

2 ) such thatK(x, s, t) ≤ η(s2+t2) for allx ∈ Ω, s, t ∈ R,whereλ1 = infu∈H1
0 (Ω)\{0}

∫
Ω
|∇u|2dx∫

Ω
|u|2dx ;

(f1) lims2+t2→+∞
supx∈Ω(|F (x,s,t)|+|G(x,s,t)|+|H(x,s,t)|)

s2+t2 = 0;

(f2) one has meas({x ∈ Ω : |F (x, 0, 0)|2 + |G(x, 0, 0)|2 + |H(x, 0, 0)|2 > 0}) > 0
and

|F (x, 0, 0)|2 + |G(x, 0, 0)|2 + |H(x, 0, 0)|2 ≤ |F (x, s, t)|2 + |G(x, s, t)|2 + |H(x, s, t)|2

for all x ∈ Ω, s, t ∈ R;
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(f3) one has

meas({x ∈ Ω : inf
(s,t)∈R2

(|F (x, 0, 0)|F (x, s, t) + |G(x, 0, 0)|2G(x, s, t) + |H(x, 0, 0)|2H(x, s, t))

< |F (x, 0, 0)|2 + |G(x, 0, 0)|2 + |H(x, 0, 0)|2}) > 0

Then, for every convex setS ⊆ L∞(Ω)×L∞(Ω)×L∞(Ω) dense inL2(Ω)×L2(Ω)×L2(Ω), there exists (α, β, γ) ∈ S
such that the problem





−(a+ b
∫
Ω
|∇u|2dx)∆u = α(x)Fu(x, u, v) + β(x)Gu(x, u, v)

+γ(x)Hu(x, u, v) +Ku(x, u, v) in Ω,
−(a+ b

∫
Ω
|∇v|2dx)∆v = α(x)Fv(x, u, v) + β(x)Gv(x, u, v)

+γ(x)Hv(x, u, v) +Kv(x, u, v) in Ω,
u = v = 0, on ∂Ω

has at least three weak solutions, two of which are global minima inH1
0 (Ω)×H1

0 (Ω) of the functional

(u, v) →1

2

(
a
( ∫

Ω

|∇u|2dx
)
+
b

2

( ∫

Ω

|∇u|2dx
)2

+ a
( ∫

Ω

|∇v|2dx
)
+
b

2

( ∫

Ω

|∇v|2dx
)2
)

−
∫

Ω

(α(x)F (x, u, v) + β(x)G(x, u, v) + γ(x)H(x, u, v) +K(x, u(x), v(x)))dx.

Next, we wish to point out two remarkable particular cases of Theorem 2.1.

Theorem 2.2. Let K ∈ A, with K(x, 0, 0) = 0 for all x ∈ Ω, satisfies (k1). Then, for every convex set S ⊆
L∞(Ω)× L∞(Ω)× L∞(Ω) dense in L2(Ω)× L2(Ω)× L2(Ω), there exists (α, β, γ) ∈ S such that the problem





−(a+ b
∫
Ω
|∇u|2dx)∆u = (α(x) cos(uv)− β(x) sin(uv) + γ(x))v +Ku(x, u, v) in Ω,

−(a+ b
∫
Ω
|∇v|2dx)∆v = (α(x) cos(uv)− β(x) sin(uv) + γ(x))u+Kv(x, u, v) in Ω,

u = v = 0, on ∂Ω

has at least three weak solutions, two of which are global minima inH1
0 (Ω)×H1

0 (Ω) of the functional

(u, v) →1

2

(
a
( ∫

Ω

|∇u|2dx
)
+
b

2

( ∫

Ω

|∇u|2dx
)2

+ a
( ∫

Ω

|∇v|2dx
)
+
b

2

( ∫

Ω

|∇v|2dx
)2
)

−
∫

Ω

(α(x)sin(u(x)v(x)) + β(x)cos(u(x)v(x)) + γ(x)u(x)v(x) +K(x, u(x), v(x)))dx.

Proof. Apply Theorem 2.1 to the functions F,G,H : R2 → R defined by F (s, t) = sin(st), G(s, t) = cos(st) and
H(s, t) = st for all (s, t) ∈ R2.

Corollary 2.3. Let F,G,H : R → R belong toA and assume that F,G,H are twice differentiable at 0 and such that

0 < |F (0)|2 + |G(0)|2 + |H(0)|2 = inf
s∈R

(|F (s)|2 + |G(s)|2 + |H(s)|2)

F ′′(0)F (0) +G′′(0)G(0) +H ′′(0)H(0) < 0. (2)

Then, for every convex setS ⊆ L∞(Ω)×L∞(Ω)×L∞(Ω) dense inL2(Ω)×L2(Ω)×L2(Ω), there exists (α, β, γ) ∈ S
such that the problem

{
−(a+ b

∫
Ω
|∇u|2dx)∆u = α(x)F ′(u) + β(x)G′(u) + γ(x)H ′(u) in Ω,

u = 0, on ∂Ω

has at least three weak solutions, two of which are global minima inH1
0 (Ω) of the functional

(u, v) →1

2

(
a
( ∫

Ω

|∇u|2dx
)
+
b

2

( ∫

Ω

|∇u|2dx
)2
)

−
∫

Ω

(α(x)F (u(x)) + β(x)G(u(x)) + γ(x)H(u(x)))dx.
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Abstract

In this article, by using critical point theory, we prove the existence of infinitely many weak
solutions for a nonlinear problem with Hardy potential. Indeed, intervals of parameters are
determined for which the problem admits an unbounded sequence of weak solutions.

1. Introduction

In this work, we discuss the existence of infinitely many weak solutions for the following problem




−∆3
pu+ |u|p−2u

|x|3p = λf(x, u) + µg(x, u), x ∈ Ω,

u = ∆u = ∆2u = 0, x ∈ ∂Ω,
(1.1)

whereΩ ⊂ RN (N > 3) is a bounded domain with boundary of classC1, λ is a positive parameter, µ is a non-negative

parameter, f, g ∈ C0(Ω × R) and p is a constant with 1 < p < N
3 . The operator ∆

3
pu := div

(
∆(|∇∆u|p−2∇∆u)

)

is the p-triharmonic operator.

In recent years, the study of boundary value problems involving the triharmonic operator has been considered see for

instance [9, 11].
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Rahal [9] studied the existence of weak solutions to the following nonlinear Navier boundary value problem involving

the p(x)-Kirchhoff type triharmonic operator




−M
(∫

Ω
1

p(x) |∇∆u|p(x)dx
)
∆3

p(x)u = λζ(x)|u|α(x)−2u− λξ(x)|u|β(x)−2u, x ∈ Ω,

u = ∆u = ∆2u = 0, x ∈ ∂Ω,

where Ω ⊂ RN (N > 3) is a bounded domain with smooth boundary, λ is a positive parameter, p ∈ C0(Ω) with

1 < p(x) < N
3 for any x ∈ Ω and ζ, ξ, α, β ∈ C0(Ω).

In [4], presenting a version of the infinitely many critical points theorem of Ricceri (see [10, Theorem 2.5]), the exis-

tence of an unbounded sequence of weak solutions for a Strum-Liouville problem, having discontinuous nonlinearities,

has been established. In such an approach, an appropriate oscillating behavior of the nonlinear term either at infinity

or at zero is required. This type of methodology has been used in several works in order to obtain existence results for

different kinds of problems (see, for instance, [1–3, 5–7, 12] and references therein).

The rest of this paper is organized as follows. In Section 2, some known definitions and results on Lebesgue and

Sobolev spaces, which will be used in sequel, are collected. Moreover, the abstract critical points theorem (Lemma

2.1) is recalled. In Section 3, we state the main result and its proof.

2. Preliminaries

Here and in the sequel Ω is an open bounded subset of RN and

X := W 3,p(Ω) ∩W 1,p
0 (Ω)

endowed with the norm

∥u∥ =

(∫

Ω

|∇∆u|p dx
) 1

p

(2.2)

for u ∈ X.

Corresponding to f and g, we introduce the functions F,G : Ω× R → R, respectively, as follows

F (x, t) :=

∫ t

0

f(x, ξ) dξ, G(x, t) :=

∫ t

0

g(x, ξ) dξ

for all x ∈ Ω and t ∈ R.

For every u ∈ X, let us define Φ,Ψ : X → R by putting

Φ(u) :=
∥u∥p
p

+
1

p

∫

Ω

|u(x)|p
|x|3p dx, Ψ(u) =

∫

Ω

[F (x, u(x)) +
µ

λ
G(x, u(x)]dx.

By standard arguments, we have that Φ and Ψ are Gâteaux differentiable and whose derivative are

Φ′(u)(v) =
∫

Ω

|∇∆u|p−2∇∆u · ∇∆vdx+

∫

Ω

|u|p−2

|x|3p uvdx

Ψ′(u)(v) =
∫

Ω

[f(x, u(x)) +
µ

λ
g(x, u(x))]v(x) dx
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for any u, v ∈ X. Fixing q ∈ [1, p∗ := pN
N−3p ), from the Sobolev embedding there exists a positive constant cq such

that ∥u∥Lp∗ (Ω) ≤ cq∥u∥ for u ∈ X. Thus the embedding X ↪→ Lq(Ω) is compact.

We recall Hardy inequality in X , which says that
∫

Ω

|u(x)|p
|x|3p dx ≤ 1

H

∫

Ω

|∇∆u(x)|pdx,

where H = ( [N(p−1)+p](N−p)(N−3p)
p3 )p.

Finally, a weak solution of problem (1.1) is a function u ∈ X such that
∫

Ω

|∇∆u|p−2∇∆u · ∇∆vdx+

∫

Ω

|u(x)|p−2

|x|3p uvdx

− λ

∫

Ω

f(x, u(x))v(x) dx− µ

∫

Ω

g(x, u(x))v(x) dx = 0

for all v ∈ X , it is obvious that our goal is to find critical points of the functional Iλ. For achieving this aim, our main

tool is the following critical point theorem of Ricceri [10, Theorem 2.5] (see also [4] for a refined version).

Lemma 2.1. LetX be a reflexive real Banach space, letΦ,Ψ : X → R be two Gâteaux differentiable functionals such

that Φ is sequentially weakly lower semicontinuous, strongly continuous and coercive, and Ψ is sequentially weakly

upper semicontinuous. For every r > infX Φ, let

ϕ(r) := inf
u∈Φ−1(−∞,r)

(
supv∈Φ−1(−∞,r) Ψ(v)

)
−Ψ(u)

r − Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), and δ := lim inf
r→(infX Φ)+

ϕ(r).

Then the following properties hold:

(a) For every r > infX Φ and every λ ∈ (0, 1/ϕ(r)), the restriction of the functional

I := Φ− λΨ

to Φ−1(−∞, r) admits a global minimum, which is a critical point (local minimum) of Iλ in X .

(b) If γ < +∞, then for each λ ∈ (0, 1/γ), the following alternative holds: either

(b1) I possesses a global minimum, or

(b2) there is a sequence {un} of critical points (local minima) of I such that

lim
n→+∞

Φ(un) = +∞.

3. Main results

In this section, we present our main results.

Theorem 3.1. Assume that
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(A1) F (x, t) ≥ 0 for every (x, t) ∈ Ω× [0,+∞[;

(A2) there exists s > 0 such that, if we put

α := lim inf
t→+∞

sup∥ξ∥Lq(Ω)≤t

∫

Ω

F (x, ξ) dx

tp
,

β := lim sup
t→+∞

∫

B(0, s2 )

F

(
x,

t

h

)
dx

tp
,

where α < Rβ, h > 1 is a constant, R = hp

σcpq
and

σ =
H + 1

H

2π
N
2

Γ(N2 )

∫ s

s
2

∣∣∣∣
128

3s4
(N + 2)r − 64

s3
(N + 1) +

32

3sr2
(N − 1)

∣∣∣∣
p

rN−1dr.

Then, for each λ ∈
(

1
pcpqRβ

, 1
pcpqα

)
and for every g ∈ C0(Ω × R) whose potential G(x, t) :=

∫ t

0
g(x, ξ) dξ for all

(x, t) ∈ Ω× [0,+∞[, is a non-negative function satisfying the condition

g∞ := lim sup
ξ→+∞

sup∥ξ∥Lq(Ω)≤t

∫

Ω

G(x, ξ) dx

tp
< +∞, (3.3)

if we put

µg,λ :=
1

pcpqg∞

(
1− λpcpqα

)
,

where µg,λ = +∞ when g∞ = 0, problem (1.1) has an unbounded sequence of weak solutions for every µ ∈ [0, µg,λ)

in X .

Proof. We want to apply Lemma 2.1(b) with X = W 3,p(Ω) ∩W 1,p
0 (Ω) endowed with the norm introduced in (2.2).

For fix λ ∈ (λ1, λ2) and µ ∈ (0, µg,λ), we take Φ,Ψ as in the previous section. Similar arguments as those used in

[1] and assumption (A2), imply that

γ ≤ lim inf
n→+∞

ϕ(rn) ≤ pcpq

(
α+

µ

λ
g∞

)
< +∞, (3.4)

and consequently λ < 1
γ .

Let λ be fixed. We claim that the functional I is unbounded from below. Since

1

λ
<

php

σ
β,

there exist a sequence {τn} of positive numbers and η > 0 such that limn→+∞ τn = +∞ and

1

λ
< η <

php

σ

∫

B(0, s2 )

F (x,
τn
h
) dx

τpn
(3.5)
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for each n ∈ N large enough. For all n ∈ N define wn ∈ X by

wn(x) :=





0 if x ∈ Ω \B(0, s),

τn
h

(
16
3s4 ρ

4 − 64
3s3 ρ

3 + 24
s2 ρ

2 − 32
3sρ+

8
3

)
if x ∈ B(0, s) \B(0, s

2 ),

τn
h if x ∈ B(0, s

2 ),

(3.6)

where ρ = dist(x, 0) =
√∑N

i=1(xi − x0
i )

2. Then, we have

∂wn(x)

∂xi
=





0 if x ∈ Ω \B(0, s) ∩B(0, s
2 ),

τn
h

(
64
3s4 ρ

2 − 64
s3 ρ+

48
s2 − 32

3sρ

)
xi if x ∈ B(0, s) \B(0, s

2 ),

∂2wn(x)

∂x2
i

=





0 if x ∈ Ω \B(0, s) ∩B(0, s
2 ),

τn
h

(
64
3s4 (ρ

2 + 2x2
i )− 64

s3

(
ρ2+x2

i

ρ

)
+ 48

s2 + 32
3s

(
x2
i−ρ2

ρ3

))

if x ∈ B(0, s) \B(0, s
2 ),

N∑

i=1

∂2wn(x)

∂x2
i

=





0 if x ∈ Ω \B(0, s) ∩B(0, s
2 ),

τn
h

(
64ρ2

3s4 (N + 2)− 64ρ
s3 (N + 1) + 48

s2N − 32
3sρ (N − 1)

)

if x ∈ B(0, s) \B(0, s
2 ),

∂∆wn(x)

∂xi
=





0 if x ∈ Ω \B(0, s) ∩B(0, s
2 ),

τn
h

(
128
3s4 (N + 2)xi − 64

s3ρ (N + 1)xi +
32

3sρ3 (N − 1)xi

)

if x ∈ B(0, s) \B(0, s
2 ),

and

|∇∆wn(x)| =
τn
h

∣∣∣∣
128

3s4
(N + 2)ρ− 64

s3
(N + 1) +

32

3sρ2
(N − 1)

∣∣∣∣ .

For any fixed n ∈ N, one has

Φ(wn) ≤
H + 1

pH

∫

B(0,s)\B(0, s2 )

|∇∆wn(x)|pdx (3.7)

=
H + 1

pH

(τn
h

)p 2π
N
2

Γ(N2 )

∫ s

s
2

∣∣∣∣
128

3s4
(N + 2)r − 64

s3
(N + 1) +

32

3sr2
(N − 1)

∣∣∣∣
p

rN−1dr =
στpn
php

.

On the other hand, bearing (A1) in mind and since G is non-negative, from the definition of Ψ, we infer

Ψ(wn) =

∫

Ω

[
F (x,wn(x)) +

µ

λ
G(x,wn(x))

]
dx ≥

∫

B(0, s2 )

F (x,
τn
h
) dx. (3.8)

By (3.5), (3.7) and (3.8), we observe that

I(wn) ≤
στpn
php

− λ

∫

B(0, s2 )

F (x,
τn
h
) dx <

σ

php
(1− λη)τpn (3.9)

for every n ∈ N large enough. Since λη > 1 and limn→+∞ τn = +∞, we have

lim
n→+∞

I(wn) = −∞.
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Then, the functional Iλ is unbounded from below, and it follows that Iλ has no global minimum. Therefore, by Lemma

2.1(b), there exists a sequence {un} of critical points of Iλ such that

lim
n→+∞

∥un∥ = +∞,

and the conclusion is achieved.

Now, we present the following consequence of Theorem 3.1 with µ = 0.

Theorem 3.2. Let all the assumptions in the Theorem 3.1 hold. Then, for each

λ ∈
(

1

pcpqRβ
,

1

pcpqα

)

the problem 



−∆3
pu+ |u|p−2u

|x|3p = λf(x, u), x ∈ Ω,

u = ∆u = ∆2u = 0, x ∈ ∂Ω
(3.10)

has an unbounded sequence of weak solutions in X .

Here, we point out the following consequence of Theorem 3.1.

Corollary 3.3. Let the assumption (A1) in the Theorem 3.1 holds. Suppose that

α <
1

pcpq
, β >

1

pcpqR
.

Then, the problem 



−∆3
p(x)u+ |u|p−2u

|x|3p = f(x, u), x ∈ Ω,

u = ∆u = ∆2u = 0, x ∈ ∂Ω

has an unbounded sequence of weak solutions in X .
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Abstract

Extensions of the linear multistep methods for the numerical solution of ordinary differential
equations by aiming increasing the order of convergence and wider region of stability have been
carried out in some directions. The use of the second derivative of the solution and equipping
the methods with superfuture point technique have led to efficient methods. In this paper, we
analyze the stability of a family of such methods and give a general formula for their stability
functions. This formula while facilitates the stability analysis, assists that how maneuvering on
the structure of the method can be useful in improving its stability properties.

1. Introduction

Several attempts have been made to derive efficient numerical methods for solving stiff initial value problems (IVPs)
in ordinary differential equations (ODEs)

y′(x) = f(x, y(x)), x ∈ [x0, X],

y(x0) = y0,
(1)

where f : [x0, X] × Rm → Rm and m is the dimensionality of the system. Most of the constructed methods
in the class of linear multistep methods (LMMs) are improvements on backward differentiation formulae (BDF) by
using some techniques such as higher derivatives of the solutions, off-step points and super future points. Among
the main directions in searching for higher order A-stable methods, the use of the second derivative of the solution
has been one of the effective techniques for the construction of methods of higher order with extensive region of
stability. Second derivative multistep methods (SDMMs) [1] and second derivative BDF methods (SDBDF) [3] were
the first second derivative LMMs, meanwhile they have been also base for other modifications of second derivative
methods in this class. The SDMMs equipped with super future point technique have led to successful methods. A
class of SDMMs equipped with the super future point technique based on SDBDF methods, so called ESDMMs, and

∗Leila Taheri Koltape
Email addresses: ghojjati@tabrizu.ac.ir (Gholamreza Hojjati), taherik99@ms.tabrizu.ac.ir (Leila Taheri Koltape)
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their modification, MESDMMs, were constructed in [5]. Furthermore, some perturbations of these methods which
improve their stability properties while preserve their order, were studied in [2]. In an another attempt, to implement
the methods in parallel computers, a scheme was investigated in [4] based on SDBDF possessing super future point
technique, so-called PMESDMM, which let them be faster on the vast majority of the problem. For each of the above-
mentioned methods analyzing the stability properties goes through the increasingly complicated calculations. In this
paper, we are going to derive a general formula that generates the stability functions of the implicit advanced step-point
SDMMs (IASS) encompassing SDBDF, ESDMM, MESDMM and PMESDMM. Such general formulae can provide
us with a glimpse of the theoretical and computational difficulties encountered during the investigation of multi-stage
methods. A similar general formula for a group of implicit advanced step-point methods incorporating only the first
derivative of the solution has been given in [6].

2. Second derivative LMMs

In this section, we brifely recall the structure of some Second derivative LMMs.

2.1. SDBDF methods
SDBDF methods, inspired from BDF, have been designed such that in which the structure of the stability function
allows to get better absolute stability properties than general form of SDMMs. A k-step SDBDF takes the form

k∑

j=0

αjyn+j = hβkf(yn+k) + h2γkg(yn+k), (2)

in which, αk = 1 and the other coefficients are chosen such that the method has order p = k + 1.

2.2. ESDMM Methods
The ESDMM is an implicit scheme which uses two SDBDF predictors and one implicit SDMM corrector given by
the formula

k∑

j=0

α̂jyn+j = hβ̂kfn+k + h2(γ̂kgn+k − γ̂k+1gn+k+1). (3)

Here α̂k = 1 and the coefficients α̂j , j = 0, 1, . . . , k − 1, β̂k, γ̂k, γ̂k+1 are chosen so that (3) has the order p =
k + 2. The coefficients of the k-step methods of class (3) are given in [5]. Assuming that the solution values of
yn, yn+1, . . . , yn+k−1 are available, the ESDMM approach goes as follows:

• Stage 1. Use the SDBDF (2) as predictor to compute yn+k as

yn+k +

k−1∑

j=0

αjyn+j = hβkfn+k + h2γkgn+k, (4)

where fn+k = f(xn+k, yn+k) and gn+k = g(xn+k, yn+k).

• Stage 2. Use the SDBDF (2) as predictor to compute yn+k+1 as

yn+k+1 + αk−1yn+k +

k−2∑

j=0

αjyn+j+1 = hβkfn+k+1 + h2γkgn+k+1, (5)

where fn+k+1 = f(xn+k+1, yn+k+1) and gn+k+1 = g(xn+k+1, yn+k+1).

• Stage 3. Compute yn+k as the solution of the corrector

yn+k +
k−1∑

j=0

α̂jyn+j = hβ̂kfn+k + h2(γ̂kgn+k − γ̂k+1gn+k+1).

The overall k-step ESDMM is of order p = k + 2.
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2.3. MESDMM Methods
In each stage of ESDMM scheme, the algebraic equations are solved using a modified form of Newton. The Jacobian
matrix for stages 1 and 2 is the same but it differs for Stage 3. In order to unify the Jacobin matrix in all three stages
with the aim of reducing the computational cost, a modification of ESDMM, so-called MESDMM, was introduced in
which the third stage is replaced by the following formula

• Stage 3⋆. Compute yn+k as the solution of the corrector

yn+k +
k−1∑

j=0

α̂jyn+j =h(β̂k − βk)fn+k + hβkfn+k + h2(γ̂k − γk)gn+k

−h2γ̂k+1gn+k+1 + h2γkgn+k.

(6)

This modification does not affect on the order of methods while there is an improvement on the stability regions for
all values of k in MESDMMs.

2.4. PMESDMM Methods
A class of methods possessing a parallel feature has been introduced in [4]. These three-stage methods which are based
on MESDMMs, so-called PMESDMMs, may grant the possibility of their efficiently using on a parallel computer.
Assuming that the solution values yn, yn+1, . . . , yn+k−1 are available, the PMESDMMs take the following form

• Stage 1. Use the SDBDF (2) as predictor to compute yn+k.

• Stage 2. Use the following predictor to compute yn+k+1

yn+k+1 +
k−1∑

j=0

αjyn+j = hβk+1f(xn+k+1, yn+k+1) + h2γk+1g(xn+k+1, yn+k+1), (7)

where the coefficients αj , j = 0, 1, . . . , k − 1, βk+1 and γk+1, reported in [4], are chosen so that (7) has order
k + 1.

• Stage 3. Compute the corrected solution yn+k using (6).

The parallel feature is because of independent of the second predictor of the first one. The overall k-step PMESDMMs
is of order p = k+2. The numerical experiments reported in [4] indicate that the accuracy of the PMESDMMs is very
satisfactory. Even a little improvement happens in the stability properties of PMESDMMs respect to MESDMMs.

3. A general formula for the stability functions of SDBDF and IASS methods

In this section, we introduce a general formula which generates the stability functions of SDBDF and IASS methods
without needing to go through the increasingly complicated calculations for each case.

Theorem 3.1. Suppose that

i) αj , βk and γk are the coefficients of SDBDF (2);

ii) α̂j , β̂k, γ̂k and γ̂k+1 are the coefficients of ESDBDF (3);

iii) αj , βk+1 and γk+1 are the coefficients of SDBDF (7).
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Then, for any permitted order and step-point k, the stability functions of the distinct schemes ESDMMs, MESDMMs
and PMESDMMs, collectively named IASS methods, together with the stability function of SDBDF method can be
obtained from the general formula

Φ(w, z) =
k∑

j=0

Cj(z)w
j , (8)

where

Ck(z) = 1− z(βk + bk)− z2(γk + ck),

Cj(z) =
(
1− θ + µ

z(β̂k − βk) + z2(γ̂k − γk)

A

)
αj + θα̂j + θz2γk+1

(
νdj +

(ν − 1)αj

A

)
,

(9)

in which the other coefficients for each method are given in Table 1. The largest values of step-point k for SDBDF
and IASS methods take k = 10 and k = 12, respectively.

Table 1. The coefficients in (9).
bk ck θ µ ν

SDBDF 0 0 0 0 free
ESDMMs β̂k − βk γ̂k − γk 1 0 1
MESDMMs 0 0 1 1 1
PMESDMMs 0 0 1 1 0

Proof. For the proof, one can obtain the stability function for each of the mentionedmethods separately by the standard
linear stability analysis and then verify the general formula (8) with the coefficients (9).

The general formula given in Theorem 3.1 provides the expected results for the stability functions which can be of sub-
stantial assistance in stability analysis of the methods. Also, by using this general formula and developing a MATLAB
code, one can plot the stability regions and drive the angles of A(α)-stability of the methods. Such a general formula
is also important as they can provide ideas for designing new algorithms with better stability properties.
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Abstract

The linear barycentric interpolants and their modifications, unlike the customary polynomial
interpolants, have some interesting properties which make them to be useful in the construc-
tion of numerical methods for some functional equations. We are going to introduce a class of
methods based on linear barycentric rational interpolants for the numerical solution of ordinary
differential equations. The proposed methods have better accuracy and stability properties in
comparison with the similar methods constructed based on polynomial interpolants.

1. Introduction

The traditional numerical methods for solving initial value problems (IVPs) in ordinary differential equations (ODEs)
in the form

y′(t) = f(y(t)), t ∈ [t0, T ],

y(t0) = y0,
(1)

are based on the classical polynomial interpolation. These interpolations are ill-conditioned and lead to Runge’s phe-
nomenon if the interpolation nodes are equispaced. The linear barycentric rational interpolants (LBRIs), however,
which have been first introduced by Berrut [5] and generalized by Floater and Hormann [8], have some interesting
convergence and stability properties. For these futures of LBRIs, they have been recently used to construct efficient
methods for the numerical solution of functional equations such as ODEs [2, 4, 7] and Volterra integral equations
[1, 3, 6].
In this paper, we are going to design a class of methods based on LBRIs. To do this, extended second derivative
backward differentiattion formulus (ESDBDF) methods [9] are considered as the base algorithm. The introduced
algorithms have better stability properties that the base methods.
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2. The linear barycentric rational interpolants

For the given support points (tj , yj), j = 0, 1, . . . , n, LBRIs are based on a blend of the local polynomial interpolants
taking the form

rn(t) =

n−d∑

j=0

λj(t)pj(t)

n−d∑

j=0

λj(t)

,

with the blending functions

λj(t) =
(−1)j

(t− tj) · · · (t− tj+d)
, j = 0, 1, . . . , n− d.

Here d ≤ n is a fixed nonnegative integer and pj stands for the unique polynomial of degree at most dwith pj(tk) = yk,
k = j, j + 1, . . . , j + d. By representing the blended polynomials pj in Lagrange form and rearranging the sums,
LBRIs can be written in the form

rn(t) =

n∑

j=0

βj

t− tj
yj

/
n∑

j=0

βj

t− tj
,

in which the barycentric weights βj for equispaced nodes are

βj =
(−1)j−d

2d

∑

i∈Jj

(
d

j − i

)
, Jj :=

{
i ∈ {0, 1, . . . , n− d} : j − d ≤ i ≤ j

}
. (2)

This form is more efficient in view of the numerical computations.

3. Methods based on LBRIs

Methods based on LBRIs, including RBDF [4], REBDF (and MREBDF) [7], and RSDBDF methods [2], have been
recently introduced.

3.1. BDF-type methods based on LBRIs (RBDF methods)
Consider a uniform grid t0 < t1 < · · · < tN = T for the given interval [t0, T ]with the constant stepsize h = tj+1−tj ,
j = 0, 1, . . . , N−1. Suppose thatm andn, n ≤ m be positive integers. Then, the barycentric rational finite differences
(RFD) formula for approximating the first derivative of y at the points tm−n, tm−n+1, . . ., tm can be written as

y′(tm−n+i) ≈
1

h

n∑

j=0

di,jy(tm−n+j), i = 0, 1, . . . , n,

where

di,j =





βj

(i− j)βi
, j ̸= i,

−
n∑

l=0, l ̸=i

di,l , j = i.

Applying the left one-sided RFD formula to the IVP (1) yields the RBDF method as follows

n∑

j=0

dn,jym−n+j = hf(ym), m = n, n+ 1, . . . , N.
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The order of this family of the methods is d in case of even n−d, and d+1 in case of odd n−d. In order to implement
RBDF methods, the set of starting values y1, y2, . . . , yn is calculated using the RFD formula at the mesh points tm,
m = 1, 2, . . . , n, as

n∑

j=0

dm,jyj = hf(ym), m = 1, 2, . . . , n.

3.2. SDBDF-type methods based on LBRIs (RSDBDF methods)
The class of the n-step SDBDF-type methods based on LBRIs for the numerical solution of IVPs (1) is introduced as

n∑

j=0

α̂jym−n+j = hC
(2)
n,df(ym)− h2C

(1)
n,dg(ym), m = n, n+ 1, . . . , N, (3)

where α̂j = d
(1)
nj C

(2)
n,d − d

(2)
nj C

(1)
n,d,

d
(1)
ij =





βj

βi

1

i− j
, j ̸= i,

−
n∑

l=0
l ̸=i

d
(1)
il , j = i.

d
(2)
ij =





2
(
d
(1)
ij d

(1)
ii −

d
(1)
ij

i− j

)
, j ̸= i,

−
n∑

l=0
l ̸=i

d
(2)
il , j = i.

C
(1)
n,d =





−n− d+ 1

2d+ 4
, n− d is odd,

− 1

d+ 1
, n− d is even,

C
(2)
n,d = C ·





−n− d+ 1

d+ 2
, n− d is odd,

− 2

d+ 1
, n− d is even.

with

C = (−1)n−d+1
d∑

m=1

1

m
+ d!

n−d−1∑

i=0

(−1)i
i+d∏

k=i

1

n− k
.

Here the function g stands for the second derivative of the solution (1) given by g := fyf . For more details, one
should study [2].

4. ESDBDF-type methods based on LBRIs (RESDBDF methods)

Using the future-step point technique, the class of ESDBDF methods has been introduced in [10]. By equipping
RSDBDF with this technique, we will be able to introduce a new class of second derivative multistep methods which
will be referred to as RESDBDF methods. Therefore, the class of the n-step RESDBDF methods for the numerical
solution of IVPs (1) is introduced as

n∑

j=0

αjym−n+j = hβnf(ym) + h2γng(ym) + h2γn+1g(ym+1), (4)
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in which

αj = C
(3)
n,d

(
C

(2)
n,dd

(1)
n,j − C

(1)
n,dd

(2)
n,j

)
− C

(12)
n,d

(
C̃

(2)
n,dd

(2)
n,j − C

(2)
n,dd̃

(2)
n,j

)
,

βn = C
(3)
n,dC

(2)
n,d,

γn = −C
(3)
n,dC

(1)
n,d − C

(12)
n,d C̃

(2)
n,d,

γn+1 = C
(12)
n,d C

(2)
n,d

and

d̃
(2)
n,j =

∑n
i=0

βi

n+1−id
(2)
ij∑n

i=0
βi

n+1−i

.

In order to implement the RESDBDF, we design the three-stage scheme as

(i) Compute ym+k as the solution of the n-step RSDBDF

α̂nym +
n−1∑

j=0

α̂jym−n+j = hC
(2)
n,df(ym)− h2C

(1)
n,dg(ym). (5)

(ii) Compute ym+k+1 as the solution of the the n-step RSDBDF

α̂nym+1 + α̂n−1ym +
n−2∑

j=0

α̂jym+1−n+j = hC
(2)
n,df(ym+1)− h2C

(1)
n,dg(ym+1). (6)

(iii) Compute ym+k as the solution of the n-step RESDBDF

n∑

j=0

αjym−n+j = hβnf(ym) + h2γng(ym) + h2γn+1g(ym+1). (7)

References

[1] A. Abdi, J.P. Berrut and S.A. Hosseini. Explicit methods based on barycentric rational interpolants for solving non-stiff Volterra integral
equations. Applied Numerical Mathematics, to appear.

[2] A. Abdi and G. Hojjati, Second derivative backward differentiation formulae for ODEs based on barycentric rational interpolants. Numerical
Algorithms, 87: 1577–1591, 2021.

[3] A.Abdi, S.A.Hosseini andH. Podhaisky. Numericalmethods based on the Floater–Hormann interpolants for stiff VIEs.Numerical Algorithms,
85: 867–886, 2020.

[4] A. Abdi, S.A. Hosseini and H. Podhaisky. Adaptive linear barycentric rational finite differences method for stiff ODEs. Journal of Computa-
tional and Applied Mathematics, 357: 204–214, 2019.

[5] J.P. Berrut. Rational functions for guaranteed and experimentally well-conditioned global interpolation. Computers and Mathematics with
Applications, 15: 1–16, 1988.

[6] J.P. Berrut, S.A. Hosseini and G. Klein. The linear barycentric rational quadrature method for Volterra integral equations. SIAM Journal on
Scientific Computing, 36: A105–A123, 2014.

[7] Z. Esmaeelzadeh, A. Abdi and G. Hojjati. EBDF-type methods based on the linear barycentric rational interpolants for stiff IVPs. Journal of
Applied Mathematics and Computing, 66: 835–851, 2021.

[8] M.S. Floater and K. Hormann. Barycentric rational interpolation with no poles and high rates of approximation.Numerische Mathematik, 107:
315–331, 2007.

[9] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential–Algebraic Problems. Springer, Berlin (2010)
[10] Hojjati, G., Rahimi Ardabili, M.Y., Hosseini, S.M.: New second derivative multistep methods for stiff systems. Applied Mathematical Mod-

elling, 30: 466–476, 2006.



Gonbad Kavous University

The 3rd National Congress on Mathematics and StatisticsThe 3rd National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1400

The 3rd National Congress on Mathematics and Statistics, NA–146, pp. 198–203

An effective scheme based on three-dimensional orthonormal
Legendre polynomial for solving Fredholm integral equations

Hamed Jaliliana,∗, Hamed Shahib
aSchool of Mathematics, Iran University of Science and Technology Narmak, Tehran 16844, Iran
bSchool of Mathematics, Iran University of Science and Technology Narmak, Tehran 16844, Iran

Article Info

Keywords:
Legendre scaling function
Three-dimensional integral
equations

2020 MSC:
65R20

Abstract

In this paper, an efficient computational method is provided for the numerical solution of three-
dimensional integral equations based on the Legendre scaling functions. Firstly, the definitions
and features of the Legendre scaling functions are presented. In the following, with the aid
of these features as well as numerical integration techniques, the three-dimensional Fredholm
integral equations have been converted into an algebraic equation system. Finally, three test
examples are mentioned to illustrate the superiority of the Legendre scaling function method
over other numerical methods.

1. Introduction

Integral equations have amazingly far been reaching applications in the numerous areas, such as mathematics, physics,
engineering and economics. The multi-dimensional integral equations are integration which is carried out about differ-
ent variables. Our study is concerned with the Fredholm three-dimensional Integral Equation of second kind expressed
as

u(x, y, z) = f(x, y, z) +

1∫

0

1∫

0

1∫

0

k(r, s, t, x, y, z)u(r, s, t)drdsdt, (1)

(x, y, z) ∈ Ω = [0, 1]× [0, 1]× [0, 1] ,

where f(x, y, z), k(r, s, t, x, y, z) are known continuous functions described on Ω and Ω2, and u(x, y, z) is unknown
function which we will find it approximately.
Strategies for solving three-dimensional integral equations are very important as they are show up in the formulation
of Mathematica. Since such equations are typically troublesome to solve analytically, the object of this research is to
reach an appropriate scheme of analytical solutions for treating these equations.
In this paper, we chose Legendre polynomials as the basis functions for solving three-dimensional Fredholm integral
equations and our computational results indicate that this kind of problem can be solved effectively using the process.
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The numerical methods for solving two-dimensional integral equations were employed by numerous studies. A system
of integral equations in [1] has already been provided with Hybrid Legendre .Block-Pulse as a useful implement and
bivariate Chebyshev collocation methods for mixed type Volterra-Fredholm integral equations has been applied in [2].
Many authors have used the Legendre technique to solve numerically one-dimensional and two-dimensional integral
equations [4–7]. Numerous times the Legendre wavelet has also been used to solve ordinary differential equations as
well as partial differential equations[8–11], moreover the Legendre wavelet is also used to solve fractional derivative
problems [12–14]. Numerical solutions for high-dimensional Fredholm integral equation have been developed using
Barycentric interpolation collocation methods in [15]. Another method for three-dimensional Fredholm integral equa-
tions was also tested with the aid of three-dimensional Jacobi polynomials by concentrating on low cost computational
solution in [16].
This paper structure is divided into five sections: In Section 2 Legendre scaling function are introduced. In the section
3 and 4 we will discuss the methodology and how to approximate a function using scaling function. In the section 5
the efficiency of the approach is illustrated through numerical examples and comparison with other method’s. Finally,
conclusions of this study is given in the section 6.

2. Legendre scaling functions

In the past decades, Legendre Polynomials have received considerable attention for their applications. One of the most
popular applications is Legendre scaling functions which is constructed by Legendre Polynomials. Orthogonality of
these functions gives capability to turn integral equation into the system of linear and nonlinear equations.
Legendre polynomials of degreem in the interval [−1, 1] are defined as follows:

p0(x) = 1
p1(x) = x
.
.
.
pm+1(x) = (1 + m

m+1 )pm(x)− (1− m
m+1 )pm−1(x), m = 1, 2, 3, ...

Three-dimensional Legendre scaling functions can also be defined on the interval [0, 1]× [0, 1]× [0, 1] in this way:

ψi,j,k(x, y, z) =





√
2i+ 1

√
2j + 1

√
2k + 1pi(2x− 1)pj(2x− 1)pk(2x− 1) (x, y, z) ∈ Ω

0 O.W.

where
Ω = [0, 1]× [0, 1]× [0, 1].

Note that three-dimensional Legendre scaling function are orthonormal set on Ω.

3. Function approximation

Assume that u(x, y, z) is a function in L2(Ω), then it can be approximated as follows:

u(x, y, z) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

Ci,j,kψi,j,k(x, y, z) (2)

Where Ci,j,k is called the scaling function coefficient and is determined in this way

Ci,j,k =

1∫

0

1∫

0

1∫

0

u(x, y, z)ψi,j,k(x, y, z)dxdydz.
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Instead of (2), one can use the following approximation

u(x, y, z) =
m∑
i=0

n∑
j=0

l∑
k=0

Ci,j,kψi,j,k(x, y, z) (3)

At this point, it is necessary to pay attention to the following matters:
1. The first feature is the orthogonality of Legendre functions, so

1∫

0

1∫

0

1∫

0

ψi1,j1,k1(x, y, z)ψi2,j2,k2(x, y, z)dxdydz =





1 i1 = i2, j1 = j2, k1 = k2

0 O.W.

2. According to relation (3), we have that

u(x, y, z) ≃ CTΨ(x, y, z),

where

Ψ(x, y, z) = [ψ0,...,0(x, y, z), ..., ψ0,...,l(x, y, z), ...ψl,...,0(x, y, z), ..., ψl,...,l(x, y, z)]
T
,

and
C = [C0,...,0, ..., C0,...,l, ..., Cl,...,0, ..., Cl,...,l]

T
.

3. Integral of multiplying the Legendre functions is the identity matrix
1∫

0

1∫

0

1∫

0

Ψ(x, y, z)ΨT (x, y, z)dxdydz = I.

4. methodlogy

Considering the three-dimensional integral equation of the Fredholm type such as this

u(x, y, z) = f(x, y, z) +

1∫

0

1∫

0

1∫

0

k(r, s, t, x, y, z)u(r, s, t)drdsdt. (4)

By using the following approximation for unknown functions u(x, y, z) and with the aid of Legendre scaling function
as well as numerical integration techniques for known functions f , k we have

u(x, y, z) = CTΨ(x, y, z) =
m∑

i=0

m∑

j=0

m∑

k=0

Ci,j,k(x, y, z)ψi,j,k(x, y, z) = ΨT (x, y, z)C, (5)

f(x, y, z) ≃ FTΨ(x, y, z), (6)

k(r, s, t, x, y, z) = Ψ(x, y, z)KΨT (x, y, z), (7)

whereK(m+1)3×(m+1)3 and F(m+1)3×1 are known matrices.
By substituting (5), (6) and (7) in (4) we have that

ψT (x, y, z)C = ψTF +

1∫

0

1∫

0

1∫

0

ψT (x, y, z)Kψ(x, y, z)ψTCdrdsdt,

⇒ C = F +KC ⇒ C = (I −K)−1F.
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5. Computational illustrations

Throughout this section, we will present numerical results on several examples from the proposed method. Three ex-
amples are discussed below. We compared our method with approaches from [3]. Analysis of the errors demonstrates
that the method described in this article is much more efficient and reliable. Note that the numerical results associated
with the examples were achieved usingMATLAB R2013a.

Example 5.1. Consider the following three-dimensional integral equation of Fredholm type as:

u(x, y, z)− 1

2

∫

Ω

x cos(y + z)u(r, s, t)dtdsdr = f(x, y, z),

where
∫
Ω
=

∫ ∫ ∫
and,

f(x, y, z) = x2z + y2z + 0.008181230850 cos(y + z).

The exact solution is with relation u(x, y, z) = x2z + y2z. The absolute errors in this solution provided in Table 1
and Table 2 while the error of the Legendre scaling function system in our paper overcomes the radial base methods
such as GA, MQ and IMQ.

Table 1. Maximum absolute error(MAE) for Exp. 5.1.

GA method in [3] MQ method in [3] IMQ method in [3] Present method

n = 44 5000− pointMC 5000− pointMC 5000− pointMC m = 2

MAE 2.69e− 03 1.94e− 03 3.23e− 3 6.93e− 5

Example 5.2. Consider the following three-dimensional integral equation of Fredholm type as:

u(x, y, z)− 1

2

∫

Ω

u(r, s, t)

1 + x+ y + z
dtdsdr = f(x, y, z),

where
f(x, y, z) = z cos(x+ y)− 0.081008167157

1 + x+ y + z
.

The exact solution is given by the relation u(x, y, z) = z cos(x+ y). The absolute errors in this solution are given in
Table 3 and Table 4. We compared the obtained Lgendre scaling function errors with the GA and MQ method errors
in [3], which indicates our provided method is accurate and efficient.

Table 2. Absolute errors for Example 5.1.
m 1 2

(x, y, z) Present method Present method
( 12 ,

1
2 ,

1
2 ) 8.92×10−6 7.77×10−7

( 14 ,
1
4 ,

1
4 ) 3.62×10−5 7.22×10−6

( 18 ,
1
8 ,

1
8 ) 3.75×10−4 4.37×10−6

( 1
16 ,

1
16 ,

1
16 ) 1.44×10−3 6.32×10−5

( 1
32 ,

1
32 ,

1
32 ) 1.27×10−3 6.93×10−5



202 Author / The 3rd National Congress on Mathematics and Statistics

Table 3. Maximum absolute error(MAE) for Ex. 5.2.

GA method in [3] MQ method in [3] MQ method in [3] Present method

n = 19 1000− pointMC 1000− pointMC 4000− pointMC m = 2

MAE 3.85e− 02 1.46e− 02 1.44e− 2 4.51e− 4

Table 4. Absolute errors for Example 5.2
m 1 2

(x, y, z) Present method Present method
( 12 ,

1
2 ,

1
2 ) 2.74×10−4 8.27×10−6

( 14 ,
1
4 ,

1
4 ) 3.25×10−3 6.75×10−5

( 18 ,
1
8 ,

1
8 ) 1.20×10−2 2.42×10−4

( 1
16 ,

1
16 ,

1
16 ) 1.44×10−2 4.51×10−4

( 1
32 ,

1
32 ,

1
32 ) 1.83×10−2 1.33×10−4

Example 5.3. Consider the following three-dimensional integral equation of Fredholm type as:

u(x, y, z)− 1

2

∫

Ω

cos(x+ y + z)u(r, s, t)dtdsdr = f(x, y, z),

where
f(x, y, z) = sin(x+ y + z)− 0.129776032028 cos(x+ y + z),

the unique solution is given by u(x, y, z) = sin(x+ y + z). The absolute errors in our solution were given in Table 5
and Table 6.

Table 5. Maximum absolute error(MAE) for Ex. 5.3.

GA method in [3] MQ method in [3] IMQ method in [3] Present method

n = 29 3000− pointMC 3000− pointMC 3000− pointMC m = 2

MAE 7.47e− 03 8.75e− 03 1.02e− 3 6.36e− 4

6. Conclusion

In this paper, the three-dimensional Fredholm integral equation is converted by the Legendre scaling function into an
algebraic equation system. This approach is attractive and simple because of the Legendre scaling function orthog-
onality. The efficiency of the Legendre scaling function method is verified by a comparison of this method with the
radial basis functions method. With the aid of Legendre scaling function, we can concentrate on solving nonlinear
multi-dimensional integral equations as a subject for future study.
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Table 6. Absolute errors for Example 5.3
m 1 2

(x, y, z) Present method Present method
( 12 ,

1
2 ,

1
2 ) 1.73×10−6 8.71×10−5

( 14 ,
1
4 ,

1
4 ) 8.37×10−5 3.33×10−4

( 18 ,
1
8 ,

1
8 ) 1.07×10−3 7.19×10−4

( 1
16 ,

1
16 ,

1
16 ) 1.43×10−3 1.34×10−4

( 1
32 ,

1
32 ,

1
32 ) 1.60×10−3 6.36×10−4
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Abstract

In this article, by making use of the homotopy analysis method(HAM), solutions of nonlinear
Schrodinger equation are excatly obtained in the form of convergent Taylor series. Also, through
an example, the results of the desired method are examined.

1. Intruduction

The Schrodinger equation is an important and widely used partial differential equation in many different sciences such
as plasma physics and chemistry.
One of the remarkable forms of the nonlinear Schrodinger equations is power law nonlinearity which was studied by
Wazwaz in [4] by applying the tanh-coth method.
In this paper, Schrodinger equation with a power law nonlinearity of the form

i
∂w

∂t
+ a

∂2w

∂x2
+ b

∂4w

∂x4
+ c|w|2nw = 0, n ≥ 2, w(x, 0) = f(x), i2 = −1, (1)

where a, b, c are real constant is considered and w = w(x, t) is a complex unknown function [3,4].

2. Main Idea

In this section, we consider Eq. (1) , as follows:

i
∂w

∂t
+ a

∂2w

∂x2
+ b

∂4w

∂x4
+ cwn+1w̄n = 0, w(x, 0) = f(x), i2 = −1. (2)
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we consider:
L[Φ(x, t, q)] = i

∂Φ(x, t, q)

∂t
, L(c) = 0, (3)

where c is a real constant and

N [Φ(x, t, q)] = i
∂Φ(x, t, q)

∂t
+ a

∂2Φ(x, t, q)

∂x2
+ b

∂4Φ(x, t, q)

∂x4
+ cΦn+1(x, t, q)Φ̄n(x, t, q). (4)

andH(t) = 1 and zeroth-order deformation equation is:

(1− q)L[Φ(x, t, q)− w0] = qhN [Φ(x, t, q)]. (5)

Themth-order deformation equation:

L[wm − χmwm−1] = hRm(wm−1), (6)

which

Rm(wm−1) = i
∂wm−1

∂t
+ a

∂2wm−1

∂x2
+ b

∂4wm−1

∂x4
+

c
m−1∑

k1=0

k1∑

k2=0

k1−k2∑

k3=0

. . .

k1−k2−...−k2n∑

kn+1

m−1−k1∑

α1=0

m−1−k1−α1∑

α2=0

. . .

m−1−k1−α1−...−αn−2∑

αn−1=0

wk2
wk3

. . . wkn+1
w(k1−k2−...−kn+1)w̄α1

w̄α2
. . . w̄αn−1

w̄(m−1−k1−α1−...−αn−1). (7)

Here, it is mentioned that the number of summations will be 2n. Then them-th order deformation equation is:

wm = χmwm−1 +
h

i

∫ t

0

Rm(wm−1)dt+ c, m ≥ 1, (8)

w0(x, t) = f(x),

R1(w0) = c | f(x) |n f(x) + af (2)(x) + bf (4)(x),

and
w1(x, t) = −hi(c | f(x) |n f(x) + af (2)(x) + bf (4)(x))t, ....

For more details about the HAM, we refer readers to [1,2].
Also, in order to prove the convergence of the method, the following theorem is proposed.

Theorem 2.1. (Convergence of the HAM) If the series solution

w(x, t) = w0(x, t) + w1(x, t) + . . . ,

generated from the HAM is convergent, it converges to the exact solution of the Eq.(2).

Proof. suppose the serises
∞∑

m=0

wm(x, t)

be convergent. So, we consider

w(x, t) =
∞∑

m=0

wm(x, t).



206 Soheila Naghshband / The 3rd National Congress on Mathematics and Statistics

In this case, we will get,
lim

m→∞
wm(x, t) = 0. (9)

So
n∑

m=1

[wm(x, t)− χmwm−1(x, t)] = wn(x, t) (10)

By using Eq.(10), we will have:

∞∑

m=1

[wm(x, t)− χmwm−1(x, t)] = lim
n→∞

wn(x, t) = 0, (11)

then we can write :
∞∑

m=1

L[wm(x, t)− χmwm−1(x, t)] = L(
∞∑

m=1

(wm(x, t)− χmwm−1(x, t)) = 0. (12)

By applying
L[wm(x, t)− χmwm−1] = hH(t)Rm(wm−1) (13)

we get:
∞∑

m=1

L[wm(x, t)− χmwm−1] = hH(t)
∞∑

m=1

Rm(wm−1). (14)

Moreover, we know h,H(t) ̸= 0 then
∞∑

m=1

[Rm(wm−1)] = 0 (15)

According to the Eq.(7) and after summarizing ,it can be written:

∞∑

m=1

[Rm(wm−1)] =

i
∂

∂t

∞∑

m=0

wm + a
∂2

∂t2

∞∑

m=0

wm + b
∂4

∂t4

∞∑

m=0

wm+

c
∞∑

k2=0

wk2

∞∑

k3=0

wk3

∞∑

k4=0

wk4
. . .

∞∑

kn+1=0

wkn+1

∞∑

k1=0

wk1

∞∑

α1=0

w̄α1

∞∑

α2=0

w̄α2 . . .
∞∑

αn−1=0

w̄αn−1

∞∑

m=0

w̄m (16)

From Eqs.(15)(16), and the formula
∞∑

m=0

w̄m =

∞∑

m=0

wm

We can consider that

w(x, t) =

∞∑

m=0

wm(x, t)

is the exact solution of the Eq.(2).
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3. Example

In this part ,we solve a Schrodinger equation with power law nonlinearity with the HAM by applying Eqs.(7),(8) and
display some numerical results ,also an h-curve is drawn.

Example 3.1. Consider the following PDE:

iwt + 1/2wxx − 1/2wxxxx + 2|w|4w = 0, w(x, 0) = eix. (17)

after applying the HAM, we will obtain:
w0(x, t) = eix,

w1(x, t) = −htieix,

w2(x, t) = −(htexi(2h+ 2− hti)i)/2,

w3(x, t) = −(htexi(−h2t2i+ 6h2t+ 6h2i+ 6ht+ 12hi+ 6i))/6, ...

if h = −1 we get:
w0(x, t) = eix,

w1(x, t) = texii,

w2(x, t) = −(t2exi)/2 = (it)2exi/2!,

w3(x, t) = −(t3exii)/6 = (it)3exi/3!, ...

so, we have:
w(x, t) = w0(x, t) + w1(x, t) + w2(x, t) + w3(x, t) + . . . =

eix + texii+ (it)2exi/2! + (it)3exi/3! + . . . = ei(x+t).

which is the exact solution of the equation. See Fig.1 that shows the convergence area of the equation at the point
(1, 1) and −1.5 < h < 0.

−4 −3 −2 −1 0 1 2

−200

0

200

400

600

800

w
t(1

,1
)

h

 

 

 

Imaginary part
Real part

Fig.1.The h-curve of 5-approximation for the example when x=1 and t=1.

See Table 1 that shows the error of the HAM at x = 1 and different value of t, when n = 15 and h = −1.

Table 1. The error of the HAM at x = 1.
t 0.2 0.4 0.6 0.8 1

error 1.1102e−016 1.1444e−016 1.2912e−016 1.2413e−015 4.7647e−014

See Table 2 which shows the error of the HAM at point (2,0.7) when h = −1 .
Fig.2 compares the imaginary part of approximation solution and imaginary part of exact solution and Fig.3 presents
the real part of approximation solution and exact solution when n = 7 , x ∈ [−2, 2] , t ∈ [0, 1], h = −1.
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Table 2. The error of the HAM
n error

2 5.664393231101619e-002
4 1.393798067426435e−003
6 1.629160728583589e−005
8 1.109812227816635e−007
10 4.946498263544871e−010
12 1.554355314496644e−012
14 3.652363777994156e−015
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Fig.2.Imaginary part of 7-approximation(left) and imaginary part of exact solution
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Fig.3.Real part of 7-approximation(left) and real part of exact solution
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Abstract

The manuscript deals with a numerical method of the a class of fractional variational prob-
lems(FVPs) based on the Caputo fractional derivative by the ritz approximation. To use this
method, we transform the FVPs into an optimization problem and obtain the system of nonlinear
algebraic equations. By polynomial basis functions, we approximate solutions. Then we have
the coefficients of polynomial expansions by solving the system of nonlinear equations. Some
numerical examples are included to demonstrate the theoretical results and the performance of
the numerical approximation.

1. Introduction

The fractional calculus is an important research field in several different areas such as chemistry, physics, biology,
economics and control theory [3, 6, 8]. It has its origin more than 300 years ago when L’Hopital asked Leibniz what
should be the meaning of a derivative of non-integer order. After that episode, several more famous mathematicians
contributed to the development of fractional calculus: Abel, Fourier, Liouville, Riemann, Riesz [11, 20]. In the last
decades, considerable research has been done in fractional calculus. Generally, the analytical solutions of most frac-
tional differential equations are not easy, even impossible. Therefore, seeking numerical solutions of these equations
becomes more and more important [15, 16]. This is particularly true in the area of the calculus of variations which
has a long history, and it has been used almost in every field where energy principles are applicable [4, 5]. In a lot
of problems arising in physics, mechanics, geometry, quantization, control theory and others, it is necessary to deter-
mine the maximal or minimal of a certain functional. Because of the important role of this problem in science and
engineering, considerable attentions has been received on these kinds of problems. Such problems are called varia-
tional problems. Riewe [18, 19] was the first to propose Euler-Lagrange equations for the variational problems with
fractional derivatives. In[5], the fractional Euler-Lagrange equation has been used to formulate fractional variational
problems. In [14] an extension of Riewe’s fractional Hamiltonian formulation is obtained for fractional constrained
systems. Agrawal [4] proposed a general finite element formulation for a class of FVPs. Malinowska and Torres[13]
presented the necessary and sufficient optimality conditions for problems of the fractional calculus of variations with
a Lagrangian depending on the free-end-points. In [7] a discrete-time fractional calculus of variational on the time
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scale is introduced for solving FVPs. Yousefi et al. [21], obtained necessary conditions which must be satisfied to
make the fractional variational problems with completely free boundary conditions having extremum. Wang and Xiao
[22], presented the fractional discrete Euler-Lagrange equation and the fractional variational integrators for a class of
fractional variational problems. Khader and Hendy [9] introduced a general fractional Chebyshev finite difference
formulation for solving FVPs. Their method is based on the combination of a useful properties of Chebyshev poly-
nomials approximation and finite difference method. Khader [10]introduced an approximate formula for the Caputo
fractional derivative using Rayleigh–Ritz method and chain rule for solving a wide class of FVPs.

2. Solution of fractional variational problems

In this section, we give a numerical technique for obtaining the extremal values of functionals of the general form

J [u] =

1∫

0

F (t, u(t), Dβu(t), Dαu(t))dt, n− 1 < α ≤ n, 0 ≤ β ≤ α,

with the boundary conditions
u(j)(0) = κj , u

(j)(1) = ηj , j = 0, 1, ..., n− 1.

Here F is a linear or nonlinear function. Fractional derivatives are taken in the Caputo sense that defind[1]

Dαu(t) =
1

Γ(n− α)

∫ t

0

u(n)(τ)

(t− τ)−n+α+1
dτ

The method consists of conversion fractional optimal control problem to optimization problem and expanding the
solution by polynomial basis functions with unknown coefficients.
We approximateu(t) as

u(t) ∼= um(t) =
m∑

i=0

cit
j+1(t− 1)j+1ϕi(t) + w(t), j = 0, 1, ..., n, (1)

where ϕi(t) are polynomial basis functions and ci are unknown coefficients. In following, we determine w(t) as
w(j)(0) = u(j)(0) and w(j)(1) = u(j)(1).
Now we have the following optimal problem

J [c0, c1, ..., cm] =

1∫

0

F (t, um(t), Dβum(t), Dαum(t))dt, (2)

If ckare decided by the optimizing function J , then by (1), we obtain functions which approximate the optimum value
of J in (2). To find unknowns ck, k = 0, 1, ...,m in um(t), according to the necessary conditions of optimization for
(2), we have

∂J

∂ck
= 0, k = 0, ...,m. (3)

Then by solving the above system of m algebraic equations (3), we obtain ck, k = 0, 1, ...,m. The approached
demonstrated here relies on the Ritz method. Then with solving this problem by mathematica software, we obtain ck.
The method presented here is based on the Ritz method. We refer the interested reader to [2] for more information.

3. Illustrative examples

To demonstrate the effectiveness of the method, here we consider a fractional variational problems. The following
example demonstrate that the desired approximate solution can be determined by solving the resulting system of
equations, which can be effectively computed using symbolic computing codes on any personal computer. Illustrative
example show that this method in comparison to other methods has high accuracy and is easily implemented.
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Example 3.1. Consider the following FVP: find the extremum of the functional [12]

J [u] =

1∫

0

(D
1
4u(t) +D

5
2u(t)− f(t))2dt, (4)

where

f(t) =
5
√
πΓ( 74 )t

9
4

2Γ( 34 )Γ(
13
4 )

+
15
√
πt

5
4

8Γ( 94 )
,

under the following boundary conditions
u(0) = 0, u′(0) = 0,
u(1) = 1, u′(1) = 5

2 .

The exact solution is given by u(t) = t
5
2 .

By applying our method with different values of m, we obtain the numerical results. Fig. 1 shows the absolute error
of this problem obtained by the present method withm = 8. From Fig. 1, we can see that the present method provides
accurate results.

0.2 0.4 0.6 0.8 1.0

2.×10-6

4.×10-6

6.×10-6

Fig.1. The absolute error between exact and numerical solution form = 8.

The following table shows the values of minimum J for different values of approximations.

m = 3 m = 5 m = 8
J 1.38821× 10−6 2.14559× 10−7 2.64512× 10−8

Example 3.2. Consider the following FVP: find the extremum of the functional [17]

J(u) =
1

2

1∫

0

(Dαu(t))
2
dt, 0 ≤ α ≤ 1, (5)

under the following boundary conditions
u(0) = 0, u(1) = 1.

A closed-form solution for this problem is given in [9]

u(t) =
1

2α− 1

t∫

0

dx

[(1− x)(t− x)]
1−α .

For α = 1, the exact solution of this problem is u(t) = t. We apply the Ritz Approximation explained in Section 2
for solving numerically (5) and obtain u(t) = t.
Fig. 3 represents the approximate solutions of u(t) for α = 0.5, 0.7, 0.9, 1 with m = 5 in comparison with the exact
solution u(t). Numerical results are presented to demonstrate the effectiveness of the proposed method.
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Fig. 2. Comparison of um(t) form = 5 with α = 0.6, 0.7, 0.8, 0.9, 1 and the exact solution.

Example 3.3. Consider the following FVP: find the extremum of the functional [4]

J [u] =

1∫

0

(
1

2
(Dαu(t))

2 − (t))dt, 0 ≤ α ≤ 1, (6)

under the following boundary conditions
u(0) = 0, u(1) = 0.

For α = 1, the exact solution of this problem is u(t) = t
2 (1 − t). We apply the Ritz Approximation explained in

Section 2 for solving numerically (6) and for α = 1 obtain u5(t) =
t
2 (1− t).

Fig. 3 represents the approximate solutions of u(t) for α = 0.6, 0.7, 0.8, 0.9, 1 with m = 5 in comparison with the
exact solution u(t). Numerical results are presented to demonstrate the effectiveness of the proposed method.
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Fig.3. Comparison of um(t) form = 5 with α = 0.6, 0.7, 0.8, 0.9, 1 and the exact solution.

4. Conclusion

This paper presents a simple and effective approach to solve a wide class of fractional variational problems. The
desired approximate solution can be determined by solving the resulting system of equations, which can be effectively
computed using symbolic computing codes on any personal computer. Illustrative example show that this method has
high accuracy and is easily implemented. The method will be expected to deal with other fractional problems such
as fractional inverse problems, fractional optimal problems and other problems, which will be discussed in a future
papers.
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Abstract

In this paper, we have introduced a computational method for a class of two-dimensional non-
linear Volterra integral equations, based on the expansion of the solution as a series of Haar
functions. To achieve this aim it is necessary to define the integral operator. The Banach fixed
point theorem guarantees that under certain assumptions this operator has a unique fixed point,
we have introduced an orthogonal projection and by interpolation property, we have achieved
an operational matrix of integration. Also, by using the Banach fixed point theorem, we get an
upper bound for the error of our method. Since our examples in this article are selected from dif-
ferent references, so should be the numerical results obtained here can be compared with other
numerical methods.

1. Introduction and preliminaries

The first work for the solution of two-dimensional linear Volterra integral equations(VIE) has been done by Brunner
and Kauthen [2], who introduced collocation and iterated collocation methods. Kauthen has extended this study to the
case of linear Volterra-Fredholm integral equations (VFIE) [8] and Brunner has considered in [11], the case of nonlinear
VIE. For example, radiation transfer problems, different kinds of Cauchy problems for certain partial differential
equations (e.g. the telegraph equation), or the Darboux problem can also be reduced to an equation of this form.
Several methods are used to approximate this equation, for example, Nystrom trapezoidal, iterated collocation, and
Galerkin combined with extrapolation, basis of block-pulse functions, besides projection methods and Euler method,
other kinds of computational algorithms have been used to solve this equation. The aim of this work is to present a
numerical method for approximating the solution of nonlinear second-kind Volterra integral equation as follows:

u(t, s) = f(t, s) +

∫ s

0

∫ t

0

W1(t, s, x, y, u(x, y))dxdy + α

∫ s

0

W2(t, s, y, u(t, y))dy + β

∫ t

0

W3(t, s, x, u(x, s))dx,

(1)
where x, y, t, s ∈ [0, 1], u ∈ X = C([0, 1]2), and α, β ∈ R and

f : [0, 1]2 → R2,

∗Talker
Email addresses: erfaniyan@uoz.ac.ir (Majid Erfanian), h.zeidabadi@yahoo.com (Hamed Zeidabadi)
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W1 : [0, 1]4 × R2 → R2,

W2,W3 : [0, 1]3 × R2 → R2,

are assumed to be known continuous functions satisfying the Lipschitz condition, that is, there existM1,M2,M3 ⩾ 0
such that:

|W1(t, s, x, y, v1(x, y))−W1(t, s, x, y, v2(x, y))| ⩽M1|v1 − v2|,
|W2(t, s, y, v1(t, y))−W2(t, s, y, v2(x, y))| ⩽M2|v1 − v2|,
|W3(t, s, x, v1(x, s))−W3(t, s, x, v2(x, y))| ⩽M3|v1 − v2|,

where v1, v2 ∈ R2, and the unknown function to be determined is u : [0, 1]2 → R2.
The numerical solution of equation (1) is computed by using Rationalized Haar functions. The orthogonal set of Haar
wavelets is a group of square waves with magnitude −2j/2, 2j/2 and 0 for j = 0, 1, ..., [9]. Lynch and Reis’s [5]
have Rationalized the Haar transform by deleting the irrational numbers and introducing the integral powers of two.
This modification results in what is called the Rationalized Haar (RH) transform. The RH transform preserves all the
properties of the original Haar transform and can be efficiently implemented using digital pipeline architecture [14].
The corresponding functions are known as RH functions. The RH functions are composed of only three amplitude+1,
−1, and 0.The numerical solution of nonlinear one-dimensional Fredholm equations using a basis of Haar functions
has been considered by Razzaghi and Ordokhani in [17]. Certain types of partial differential equations can be refor-
mulated as two-dimensional Volterra integral equation, for example in [7], the Darboux problem has been considered
for a, b, a0, b0 ∈ [0,∞) as

Dxyz(x, y) = f(x, y, z(x, y)), (x, y) ∈ E = (0, a]× (0, b],

z(x, y) = ϕ(x, y) for (x, y) ∈ ([−a0, a]× [−b0, b]) \ E,

where Dxyz =
∂2z
∂x∂y , B = [−a0, 0]× [−b0, b], and

f : E × C(B,R) → R, z : E0 ∪ E → R,

and in [12] it has been shown that if E = (0, 1]× (0, 1] this problem is equivalent to

u(t, s) = u(t, 0) + u(0, s) +

∫ s

0

∫ t

0

W (x, y, u(x, y))dxdy − u(0, 0). (2)

Another example can be cited as a telegraph equation

utt + (α+ β)ut + αβu = c2uxx,

where c2 = 1
LC , α = G

C , β = R
L , which consists of a resistor of resistance Rdx, a coil of inductance, Ldx, a resistor

of conductance Gdx or a capacitor of capacitance Cdx.
In [15] it has been shown that the telegraph equation can be reduced to an equation of the form (1), if α, β ̸= 0, and

W1(t, s, x, y, u(x, y)) = g1(x, y, u(x, y)),

W2(t, s, y, u(t, y)) = g2(t, y, u(t, y)),

W3(t, s, x, u(x, s)) = g3(x, s, u(x, s)).

The numerical results presented in that paper show a fast convergence of another method when applied to integral
equations. To achieve this aim it is necessary to define the integral operator, T : (X, ∥.∥∞) → (X, ∥.∥∞). By
applying this operator in Eq (1), we have

T (u(t, s)) = f(t, s)+

∫ s

0

∫ t

0

W1(t, s, x, y, u(x, y))dxdy+α

∫ s

0

W2(t, s, y, u(t, y))dy+β

∫ t

0

W3(t, s, x, u(x, s))dx.

(3)
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The Banach fixed point theorem guarantees that under certain assumptions [1], T has an unique fixed point; that is,
the two-dimensional Volterra integral equation has exactly one solution. Indeed, suppose further that W1,W2,W3

are Lipschitz functions with respect to their fifth and fourth variables with Lipschitz constantsM1,M2,M3 > 0 and
M1+ |α|M2+ |β|M3 < 1, then the operator T is contractive with contraction number q =M1+ |α|M2+ |β|M3, and
thus T has an unique fixed point u. Moreover, u = limn→∞ Tn(u0), where u0 is any continuous function on [0, 1].
Since, in general it is not possible to calculate u explicitly from the sequence of functions {Tn(u)}n∈N, so we define
a new sequence of functions, denoted by {ui}i∈N, obtained recursively by using interpolation and RH basis.

2. Properties of the Rationalized Haar functions

Definition 2.1. The RH wavelet is the function defined on the real line R as follows:

H(t) =





1, 0 < t ≤ 1
2 ,

−1, 1
2 < t < 1,

0, otherwise.
(4)

Definition 2.2. The RH functions hn(t) for any n = 1, 2, . . . ,where n = 2i+j, for i = 0, 1, . . . and j = 0, 1, . . . , 2i−
1, are defined by

hn(t) = H(2it− j) =





1 j.2−i ≤ t < (j + 1
2 )2

−i

−1 (j + 1
2 )2

−i ≤ t < (j + 1)2−i

0 otherwise.

Also, we define h0(t) = 1 for all t ∈ [0, 1). Here the integer 2i, i = 0, 1, . . . , indicates the level of the wavelet and
j = 0, 1, . . . , 2i − 1 is the translation parameter. Note that the basic multiplication properties of RH functions are as
follows:

h0(t)hq(t) = hq(t),

for q ∈ Z+ ∪ {0}, and for 0 < l < q, we have

hl(t)hq(t) =





hq(t), if hq occurs during the positive half − wave of hl,
−hq(t), if hq occurs during the negative half − wave of hl,

0, otherwise.
(5)

Also, the square of any RH function is a block-pulse with magnitude 1 during both positive and negative half-waves
of RH function. It can be shown that the sequence {hn}∞n=0 is a complete orthogonal system in L2[0, 1] and also for
n = 2j + k, for j = 0, 1, . . . and k = 0, 1, . . . , 2j − 1, we can expand f(t) ∈ C[0, 1] with RH function as

f(t) =
∞∑

n=0

anhn(t), (6)

where
an = 2j

∫ 1

0

f(t)hn(t)dx.

Thus the series
∑

n 2
j⟨f, hn⟩hn, will converge to f , see e.g. [16], if (6) truncated up to its firstm terms thatm = 2λ+1,

λ = 0, 1, ... where j = 0, 1, ..., λ then:

f(t) =

m−1∑

n=0

anhn(t) = ATh(t), (7)
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where A = [a0, a1, ..., am−1]
T , and h(t) = [h0(t), h1(t), . . . , hm−1(t)]

T . It is known that

< hl(t), hq(t) >=

∫ 1

0

hl(t)hq(t)dt =





2−i, if l = q = 2i + j with i ∈ Z+ ∪ {0} and j ∈ Ji
1, if l = q = 0,
0, if l ̸= q,

(8)

where Ji = {0, 1, . . . , 2i − 1} for any i ∈ Z+ ∪ {0}. Consequently, all the RH functions hl(t), l ∈ Z+ ∪ {0}, are
orthogonal to each other. The integration of the hl(t) is given by

∫ 1

0

hl(t)dt =

{
1, if l = 0,
0, if l ̸= 0.

(9)

Also, any function f(t, s) of two variables in X can be similarly approximated in terms of RH functions as

f(t, s) =
m−1∑

i=0

m−1∑

j=0

fijhij(t, s) = FTh(t, s), (10)

that two-dimensional RH functions are defining as hij(t, s) = hi(t)hj(s), and

F = [f00, f01, ..., fm−1,m−1]
T
(m−1)×(m−1),

h(t, s) = [h00, h01, ..., hm−1,m−1]
T
(m−1)×(m−1)(t, s).

The RH function coefficients fij are given by

fij =
⟨f(t, s), hij(t, s)⟩

∥hij(t, s)∥22
.

3. Numerical approximation of the solution

We now describe the idea of our proposed numerical method. The first point lies in the operator formulation of the
two-dimensional nonlinear Volterra integral equationss. Using an initial function u0 ∈ C[0, 1], and since in general
we cannot calculate T (u0), explicitly we approximate this function as follows:
for each t, s ∈ [0, 1] andm ∈ N, thatm = 2i+1 for i = 0, 1, ...,we define recursively

ui(t, s) = f(t, s)+

∫ s

0

∫ t

0

W1(t, s, x, y, ui−1(x, y))dxdy+α

∫ s

0

W2(t, s, y, ui−1(t, y))dy+β

∫ t

0

W3(t, s, x, ui−1(x, s))dx.

(11)
In this section we assume:

ψ
(i−1)
1 (t, s, x, y) :=W1(t, s, x, y, ui−1(x, y)), (12)

ψ
(i−1)
2 (t, s, y) :=W2(t, s, y, ui−1(t, y)), (13)

ψ
(i−1)
3 (t, s, x) :=W3(t, s, x, ui−1(x, s)), (14)

we can expand ψ(i−1)
i for i = 1, 2, 3 in terms of RH functions as

ψ
(i−1)
1 (t, s, x, y) = hT (t, s)K1h(x, y),

ψ
(i−1)
2 (t, s, y) = hT (t, s)K2h(t, y),

ψ
(i−1)
1 (t, s, x) = hT (t, s)K3h(x, s),

if Qm is an orthogonal projection with following interpolation property we have

Qm(ψ
(i−1)
1 (t, s, x, y)) =

m−1∑

i=0

m−1∑

j=0

m−1∑

r=0

m−1∑

q=0

k1ijrqhij(t, s)hrq(x, y), (15)
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Qm(ψ
(i−1)
2 (t, s, y)) =

m−1∑

i=0

m−1∑

j=0

m−1∑

r=0

m−1∑

q=0

k2ijrqhij(t, s)hrq(t, y), (16)

Qm(ψ
(i−1)
3 (t, s, x)) =

m−1∑

i=0

m−1∑

j=0

m−1∑

r=0

m−1∑

q=0

k3ijrqhij(t, s)hrq(x, s). (17)

ThusK1,K2,K3 are block matrices of the form

Ks = [K(i,j)
s ]m−1

i,j=0, s = 1, 2, 3, (18)

where
K(i,j)

s = [Ks
ijrq]

m−1
i,j,r,q=0, s = 1, 2, 3, (19)

and for coefficientsKs
ijrq, s = 1, 2, 3 we have:

k1ijrq =
⟨W1(t, s, x, y, u(x, y)), hrq(x, y)⟩, hij(t, s)⟩
⟨hij(t, s), hij(t, s)⟩⟨hrq(x, y), hrq(x, y)

, (20)

k2ijrq =
⟨W2(t, s, y, u(t, y)), hrq(t, y)⟩, hij(t, s)⟩
⟨hij(t, s), hij(t, s)⟩⟨hrq(t, y), hrq(t, y)

, (21)

k3ijrq =
⟨W3(t, s, x, u(x, s)), hrq(x, s)⟩, hij(t, s)⟩
⟨hij(t, s), hij(t, s)⟩⟨hrq(x, s), hrq(x, s)

. (22)

The row vector below has been introduced by Chen and Hsiao [6]

h(t) = [h0(t), h1(t), . . . , hm−1(t)]
T . (23)

Now we have ∫ t

0

h(s)ds = Ph(t), (24)

where P = Pk×k is called the operational matrix of integration, that k = m− 1. Chen and Hsiao have shown that the
following recursive formula holds:

P =
1

2k

(
2k P( k

2 )×( k
2 )

− �̂( k
2 )×( k

2 )

�̂−1
( k
2 )×( k

2 )
0

)
, (25)

The Haar coefficient matrix �̂m×m is defined as:

�̂m×m = [h( 1

2m
), h( 3

2m
), . . . , h(2m− 1

2m
)]. (26)

For example, the first eight RH functions can be written in matrix form as

�̂8×8 =




h0(t)
h1(t)
...

h7(t)


 =




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1




. (27)

Which �̂1×1 = [1], P1×1 = [ 12 ], and

�̂−1
k×k = (

1

k
).�̂T

k×k.diag
(
1, 1, 2, 2, 22, . . . , 22︸ ︷︷ ︸

22

, 23, . . . , 23︸ ︷︷ ︸
23

, . . . ,
k

2
, . . . ,

k

2︸ ︷︷ ︸
k
2

)
. (28)
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Thus for the nonlinear two-dimensional Volterra integral equations we have:

ui(t, s) = f(t, s)+

∫ s

0

∫ t

0

Qm(ψ
(i−1)
1 (t, s, x, y))dxdy+α

∫ s

0

Qm(ψ
(i−1)
2 (t, s, y))dy+β

∫ t

0

Qm(ψ
(i−1)
3 (t, s, x))dx.

(29)

4. Error analysis

In this section, by using the Banach fixed point theorem, we get an upper bound for the error of our method. Suppose
that, f : [0, 1] → R be an arbitrary continuous function, we define

||f ||∞ = sup{|f(x)|;x ∈ [0, 1]}. (30)

If we generalize this norm for two-dimensional function f(x, t) : [0, 1]2 → R2, we have

||f ||∞ = sup{|f(x, y)|; (x, y) ∈ [0, 1]× [0, 1]}. (31)

Lemma 4.1. Let W1 ∈ C([0, 1]4 × R2), and W2,W3 ∈ C([0, 1]3 × R2) are Lipschitz functions with respect to
their fifth and fourth variables, with Lipchitz constantsM1,M2 andM3, then T has an unique fixed point and for all
u0 ∈ C([0, 1]2)

∥u− T i(u0)∥∞ ≤ ∥T (u0)− u0∥∞ ×
∞∑

j=i

qj , (32)

where q =M1 + |α|M2 +M3|β| < 1, and u is the fixed point of T .

Proof: For u, v ∈ C([0, 1]2), we have:

|T (u(t, s))− T (v(t, s))| = |
∫ s

0

∫ t

0

(W1(t, s, x, y, u(x, y))−W1(t, s, x, y, v(x, y)))dxdy

+α

∫ s

0

(W2(t, s, y, u(t, y))−W2(t, s, y, v(t, y)))dy

+β

∫ t

0

(W3(t, s, x, u(x, s))−W3(t, s, x, v(x, s)))dx|

≤
∫ s

0

∫ t

0

|W1(t, s, x, y, u(x, y))−W1(t, s, x, y, v(x, y))|dxdy

+|α|
∫ s

0

|W2(t, s, y, u(t, y))−W2(t, s, y, v(t, y))|dy

+|β|
∫ t

0

|W3(t, s, x, u(x, s))−W3(t, s, x, v(x, s))|dx

≤M1

∫ s

0

∫ t

0

|u(x, y)− v(x, y)|dxdy +M2|α|
∫ s

0

|u(t, y)− v(t, y)|dy

+M3|β|
∫ t

0

|u(x, s)− v(x, s)|dx

≤M1||u− v||∞ +M2|α|||u− v||∞ + |β|M3||u− v||∞
≤(M1 + |α|M2 + |β|M3)||u− v||∞.

By induction, for all n ∈ N we have

∥Tn(u)− Tn(v)∥∞ ≤ qn∥u− v∥∞,
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since q < 1 we have:

∞∑

n=1

∥Tn(u)− Tn(v)∥∞ <∞.

Thus T has a unique fixed point which means that (3) has a unique solution and (32) follows from the Banach fixed-
point theorem. □

Theorem 4.2. Assume thatψ(i−1)
1 ∈ C([0, 1]4), andψ(i−1)

2 , ψ
(i−1)
3 ∈ C([0, 1]3) and {ui}i≥1 is a subset ofC([0, 1]2),

and W1 ∈ C([0, 1]4 × R2),W2,W3 ∈ C([0, 1]3 × R2) are Lipschitz functions with respect to their fifth and fourth
variables, then we have

∥u− ui∥∞ ≤ ∥T (u0)− u0∥∞
∞∑

j=i

qj + c, (33)

where c is a constant

Proof: If

Li−1 = max{∥∂ψ
i−1
k

∂t
∥∞, ∥

∂ψi−1
k

∂s
∥∞ ∥∂ψ

i−1
k

∂x
∥∞, ∥

∂ψi−1
k

∂y
∥∞},

for k = 1, 2, 3 andm = 2i+1 for i = 1, . . ., then

∥T (ui−1)− ui∥∞ ≤ ∥
∫ s

0

∫ t

0

ψ
(i−1)
1 (t, s, x, y)−Qm(ψ

(i−1)
1 (t, s, x, y))dxdy∥∞

+|α| ∥
∫ s

0

ψ
(i−1)
2 (t, s, y)−Qm(ψ

(i−1)
2 (t, s, y))dy∥∞

+|β| ∥
∫ t

0

ψ
(i−1)
3 (t, s, x)−Qm(ψ

(i−1)
3 (t, s, x))dx∥∞

≤∥ψi−1
1 −Qm(ψi−1

1 )∥∞ + |α| ∥ψi−1
2 −Qm(ψi−1

2 )∥∞ + |β| ∥ψi−1
3 −Qm(ψi−1

3 )∥∞.

If we define
g(t, s, x, y) := ψi−1 −Qm(ψi−1),

by using interpolating property and the mean-value theorem for four variables with t0, s0, x0, y0 = 0 and

ti =
1

2n1+1
+

v1
2n1

, for i = 2n1 + v1,

sj =
1

2n2+1
+

v2
2n2

, for j = 2n2 + v2,

xk =
1

2n3+1
+

v3
2n3

, for k = 2n3 + v3,

yl =
1

2n4+1
+

v4
2n4

, for l = 2n4 + v4,



M. Erfanian & H. Zeidabadi / The 3rd National Congress on Mathematics and Statistics 221

where n1, n2, n3, n4 ≥ 1, and i, j, k, l ≤ m− 1, we have

∥ψi−1 −Qm(ψi−1)∥∞ =∥g(ti, sj , xk, yl) +
∂g

∂t
(ξ, γ, τ, υ)(ξ − ti) +

∂g

∂s
(ξ, γ, τ, υ)(γ − sj)+

∂g

∂x
(ξ, γ, τ, υ)(τ − xk) +

∂g

∂y
(ξ, γ, τ, υ)(υ − yl)∥∞

=∥(I −Qm)
∂ψi−1

∂t
(ξ, γ, τ, υ) + (I −Qm)

∂ψi−1

∂s
(ξ, γ, τ, υ)

+(I −Qm)
∂ψi−1

∂x
(ξ, γ, τ, υ) + (I −Qm)

∂ψi−1

∂y
(ξ, γ, τ, υ)∥∞

max{∥ξ − ti∥∞, ∥γ − sj∥∞, ∥τ − xk∥∞, ∥υ − yl∥∞}

≤ 2

2i
∥(I −Qm)∥∞∥∥∂ψ

i−1

∂t
(ξ, γ, τ, υ) +

∂ψi−1

∂s
(ξ, γ, τ, υ)

+
∂ψi−1

∂x
(ξ, γ, τ, υ) +

∂ψi−1

∂y
(ξ, γ, τ, υ)∥∞ ≤ 8Li−1

2i
.

The same proof holds for ψi−1
k for k = 2, 3. We have

∥T (ui−1)− ui∥∞ ≤ (4 + 3|α|+ 3|β|)2Li−1

2i
. (34)

For certain constants ε1, ε2, . . . , εi > 0 that i ≥ 1, if

(4 + 3|α|+ 3|β|)2Li−1

2i
< εk for k = 1, 2, ..., i,

we have

∥T (ui−1)− ui∥∞ < εi, i ≥ 1. (35)

By applying the triangle inequality, we achieve

∥u− ui∥∞ ≤ ∥u− T i(u0)∥∞ +

i∑

j=1

qj∥T (uj−1)− uj∥∞. (36)

From (32) and (35) we conclude

∥u− ui∥∞ ≤ ∥T (u0)− u0∥∞
∞∑

j=i

qj +

i∑

j=1

qi−jεj . (37)

5. Numerical examples

We illustrate the behavior of our numerical method by three examples, in this section. To define the sequence of
approximating functions {ui}i∈N we have taken an initial function u0 ∈ C([0, 1]2) andm = 2j+1 for all j = 0, 1, ....
We exhibit the absolute errors committed in points (xi, ti) ∈ [0, 1]2, when we approximate the exact solution u
iteratively. In this section points are proposed as (xi, ti) = ( 1

2i ,
1
2i ) for i = 1, 2, ...6, numerical results obtained here

can be compared with other numerical methods.

Example 5.1. For the first example, consider the special case of Cauchy problem equation onX = [0, 1]× [0, 1] (see
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[15])

u(x, t) =
1

4

∫ t

0

∫ x

0

sin(u(y, z))cos(
y − z

2
)sin(

y + z

2
) + cos(u(y, z))sin(

y − z

2
)cos(

y + z

2
)dydz

−1

4

∫ x

0

sin(u(y, t)) + cos(u(y, t))− sin(u(y, 0))− cos(u(y, 0))dy

+
1

4

∫ t

0

cos(u(x, z)) + cos(u(x, z))− cos(u(0, z)) + sin(u(0, z))dz

+sin2(
x

2
)− sin2(

t

2
),

with exact solution u(x, t) = sin(x+t
2 )sin(x−t

2 ). Numerical results for Example 1 are displayed in Table 1.

Table 1. Numerical results for Example 1.
(x, t) Legendre polynomials method([13]) Presented method Presented method

M = 6 m = 16 m = 32
(0.0,0.2) 1.5 × 10−6 0 0
(0.2,0.4) 6.4 × 10−6 2.19 × 10−6 5.89 × 10−7

(0.3,0.6) 5.6 × 10−6 2.93 × 10−6 7.36 × 10−7

(0.4,0.8) 3.5 × 10−6 3.53 × 10−6 9.29 × 10−7

(0.8,1.0) 3.3 × 10−6 2.80 × 10−6 7.26 × 10−7

Fig. 1. Comparison of absolute errors for Example 1 with grid=[20,20]

Example 5.2. Let us consider the nonlinear two dimensional Volterra integral equation of the second kind (see
[13],[3]).

u(x, t) = x+ t− 1

12
xt(x3 + 4x2t+ 4xt2 + t3) +

∫ t

0

∫ x

0

(x+ t− y − z)u2(y, z)dydz, (38)

with exact solution u(x, t) = x+ t, and 0 ≤ x, t < 1. Numerical results for Example 2 are displayed in Table 2.

Table 2. Numerical results for Example 2.
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(x, t) = ( 1
2i ,

1
2i ) Legendre polynomials method ([13]) Haar wavelet method ([3]) Presented method

M = 2 m = 32 m = 16
i=1 3.5 × 10−3 3.1 × 10−2 2.15 × 10−4

i=2 4.5 × 10−4 3.1 × 10−2 6.71 × 10−4

i=3 6.1 × 10−4 3.1 × 10−2 2.08 × 10−5

i=4 5.7 × 10−4 3.1 × 10−2 6.38 × 10−7

i=5 3.6 × 10−4 3.1 × 10−2 1.73 × 10−8

i=6 2.0 × 10−4 2.2 × 10−9 7.76 × 10−10

Fig. 2. Comparison of absolute errors for Example 2 with grid=[20,20]

Example 5.3. Finally let us, consider the following nonlinear two-dimensional Volterra integral equation (see [10],[4],[3])

u(x, t) = x2 + t2 − 1

45
xt(9x4 + 10x2t2 + 9t4) +

∫ t

0

∫ x

0

u2(y, z)dydz, (39)

with exact solutionu(x, t) = x2+t2, and 0 ≤ x, t < 1. For Example 3, we haveα = β = 0 andW1(t, s, x, y, u) = u2,
where u is the unknown function. Since in this example u(x, t) = x2 + t2, and
(x, t) ∈ [0, 1)× [0, 1), we have 0 ≤ u < 2 and the Lipschitz constant forW1 is

q =M1 = max|2u| < 4 , that 0 ≤ u < 2

which does not satisfy the sufficient condition prescribed in Lemma 4.1. But, since in this example u(x, t) = x2 + t2,
and 0 ≤ x, t < 1

2 , the sufficient condition prescribed in Lemma 4.1, is satisfied. Numerical results for Example 3 are
displayed in Table 3.

Table 3. Numerical results for Example 3.
(x, t) = ( 1

2i ,
1
2i ) 2D-BPFs method([10]) Haar wavelet method ([3]) Presented method

m = 32 m = 32 m = 32
i=2 1.0 × 10−1 1.6 × 10−2 5.90 × 10−5

i=3 7.0 × 10−2 8.5 × 10−3 9.06 × 10−7

i=4 5.8 × 10−2 4.6 × 10−3 1.29 × 10−8

i=5 5.3 × 10−2 2.6 × 10−3 1.43 × 10−10

i=6 2.1 × 10−4 1.6 × 10−4 2.00 × 10−12
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6. Conclusions

We have introduced a new method for solving two-dimensional nonlinear Volterra integral equations, based on the
expansion of the solution as a series of Haar functions. As an advantage, this method does not require the so-
lution of algebraic systems and in this case, we use a small number of basis functions to obtain high accuracy.
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Abstract

In this study, we suggest a numerically practical algorithm to approximate the solution of two-
dimensional nonlinear mixed Volterra-Fredholm integral equations. This method is based on
two-dimensional Legendre wavelets to reduce these nonlinear integral equations to a system
of nonlinear algebraic equations. The main characteristic of this approach is high accuracy and
computational efficiency of performing which are the consequences of Legendre wavelets prop-
erties. The convergence analysis and error bound of the proposed Legendre wavelets method
is investigated. Numerical examples confirm that the Legendre wavelets collocation method is
accurate and reliable for solving nonlinear two-dimensional integral equations.

1. Introduction

In recent years, several authors have written a number of papers which establish numerical techniques for finding
an approximation of the two-dimensional nonlinear integral equations. These methods can be categorized into radial
basis functions methods (see, e.g. [1, 2]), triangular functions method (see, e.g. [6]), Legendre polynomials method
(see, e.g. [8]), hybrid functions method (see, e.g. [7]) and the rationalized Haar functions method (see, e.g. [3, 4]).
Consider the following two-dimensional nonlinear mixed Volterra-Fredholm integral equation of the second kind

f(x, y) = g(x, y) +

∫ y

0

∫ 1

0

k
(
x, y, s, t, f(s, t)

)
dsdt (x, y) ∈ [0, 1]× [0, 1], (1)

where the functions g and k are known continuous functions defined on [0, 1]× [0, 1] andΩ = [0, 1]4×R, respectively,
and f(x, y) is an unknown real-valued function to be determined. Volterra-Fredholm integral equations arise in a
variety of applications in many fields including modeling of the spatio-temporal development of an epidemic, theory
of parabolic initial boundary value problems, population dynamics, and Fourier problems [5, 9, 10].
The objective of this study is to propose an effective approach based on a new set of two-dimensional orthogonal
functions which are extensions of one-dimensional Legendre wavelets. The present method consists of reducing the
solution of Eq. (1) to a nonlinear system of algebraic equations by using the numerical integration and collocation
method. The analysis of the accuracy estimation of the method is given and the performance of the proposed method
is illustrated by means of a numerical example.

Email address: s.sohrabi@urmia.ac.ir (S. Sohrabi)
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2. Two-dimensional Legendre wavelets

2.1. Definition
Consider the well-known Legendre polynomials, which are orthogonal with respect to the weight function w(x) = 1
and derived from the following recursive formula

L0(x) = 1,

L1(x) = x,

Lm(x) = 2m−1
m xLm−1(x)− m−1

m Lm−2(x), m = 2, 3, . . . .

Legendrewaveletsψn,m(x) = ψ(k, n̂,m, x) have four arguments, k = 2, 3, . . . , n̂ = 2n−1, n = 1, 2, 3, . . . , 2k−1,m =
0, 1, 2, . . . ,M − 1 is the order of Legendre polynomials and M is a fixed positive integer. They are defined on the
interval [0, 1) as follows:

ψn,m(x) =

{√
(m+ 1

2 ) 2
k
2Lm(2kx− n̂), n̂−1

2k
⩽ x < n̂+1

2k

0, elsewhere.
(2)

Two-dimensional Legendre wavelet, ψn1m1n2m2(x, y), are defined on [0, 1)× [0, 1) as:




√
(m1 +

1
2 )(m2 +

1
2 ) 2

k1+k2
2 Lm1

(2k1x− n̂1)Lm2
(2k2y − n̂2),

n̂1−1
2k1

⩽ x < n̂1+1
2k1

n̂2−1
2k2

⩽ y < n̂2+1
2k2

0, elsewhere.

(3)

where n̂1 = 2n1 − 1, n̂2 = 2n2 − 1, n1 = 1, 2, 3, . . . , 2k1−1, n2 = 1, 2, 3, . . . , 2k2−1,m1 = 0, 1, . . . ,M1 − 1,m2 =
0, 1, . . . ,M2 − 1, and k1, k2,M1,M2 are arbitrary positive integers. Here Lm1 and Lm2 are Legendre polynomials
of orderm1 andm2, respectively.

2.2. Function approximation
A function f(x, y) defined over [0, 1)× [0, 1) may be expanded as

f(x, y) =
∞∑

i1=1

∞∑

j1=0

∞∑

i2=1

∞∑

j2=0

ci1j1i2j2ψi1j1i2j2(x, y). (4)

If the infinite series in Eq. (4) is truncated, then Eq. (4) can be written as

f(x, y) ≃
2k1−1∑

i1=1

M1−1∑

j1=0

2k2−1∑

i2=1

M2−1∑

j2=0

ci1j1i2j2ψi1j1i2j2(x, y) = CT�(x, y) = ΨT (x)FΨ(y), (5)

where Ψ(x) and Ψ(y) are 2k1−1M1 × 1 and 2k2−1M2 × 1 matrices respectively given by

Ψ(x) =
[
ψ10(x), . . . , ψ1M1

(x), ψ20(x), . . . , ψ2M1
(x), . . . , ψ2k1−10(x), . . . , ψ2k1−1M1

(x)
]T
, (6)

Ψ(y) =
[
ψ10(y), . . . , ψ1M2

(y), ψ20(y), . . . , ψ2M2
(y), . . . , ψ2k2−10(y), . . . , ψ2k2−1M2

(y)
]T
. (7)

F is a 2k1−1M1 × 2k2−1M2 matrix whose elements can be calculated from
∫ 1

0

∫ 1

0

ψi1j1(x)ψi2j2(y)f(x, y)dydx,

with i1 = 1, . . . , 2k1−1, j1 = 0, . . . ,M1 − 1, i2 = 1, . . . , 2k2−1, j2 = 0, . . . ,M2 − 1.
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3. Solution of two-dimensional nonlinear integral equation

In this section, we consider the two-dimensional nonlinear Volterra-Fredholm integral equation (1) and perform the
expansion of the unknown function f(x, y) using two-dimensional Legendre wavelets expansion given in Eq. (5) such
that k1 = k2 = k,M1 =M2 =M, and N = 2k−1. Then we have

f(x, y) ≃ f̄N,M (x, y) =
N∑

i1=1

M−1∑

j1=0

N∑

i2=1

M−1∑

j2=0

fi1j1i2j2ψi1j1i2j2(x, y) = FT�(x, y), (8)

Substituting Eq. (8) into Eq. (1) gives

f̄N,M (x, y) = g(x, y) +

∫ y

0

∫ 1

0

k
(
x, y, s, t, f̄N,M (s, t)

)
dsdt (9)

Now, we discretize Eq. (9) at the set of collocation nodes (xi, yj) for i, j = 1, 2, . . . , NM as follows:

g(xi, yj) = f̄N,M (xi, yj)−
∫ yj

0

∫ 1

0

k
(
xi, yj , s, t, f̄N,M (s, t)

)
dsdt (10)

where

xi =
1

2

(
cos(

(2i− 1)π

2NM
) + 1

)
, i = 1, 2, . . . , NM (11)

yj =
1

2

(
cos(

(2j − 1)π

2NM
) + 1

)
, j = 1, 2, . . . , NM (12)

are zeros of the shifted Chebyshev polynomials TNM (2x − 1) and TNM (2y − 1), respectively. Now the Gauss-
Legendre quadrature formula is employed to approximate the integral operator in Eq. (10). For this purpose, linear
transformations must be applied with the following forms

τ = 2s− 1, s ∈ [0, 1], η =
2

yj
t− 1, t ∈ [0, yj ]. (13)

Then

g(xi, yj) = f̄N,M (xi, yj)−
yj
4

∫ 1

−1

∫ 1

−1

k

(
xi, yj , (

1

2
(τ + 1),

yj
2
(η + 1), f̄N,M (

1

2
(τ + 1),

yj
2
(η + 1))

)
dτdη, (14)

By applying the Legendre–Gauss–Lobatto integration formula, we obtain

g(xi, yj) = f̄N,M (xi, yj)−
yj
4

r1∑

n=1

r2∑

m=1

wnwm

(
k(xi, yj , (

1

2
(τm + 1),

yj
2
(ηn + 1), f̄N,M (

1

2
(τm + 1),

yj
2
(ηn + 1))

)
,

i = 1, 2, . . . , NM, j = 1, 2, . . . , NM. (15)

where τm and ηn are the Legendre–Gauss points, zeros of Legendre polynomials of degrees r1 and r2 in [−1, 1],
respectively, and wms and wns are the corresponding weights. Eq. (15) generates a nonlinear system of (NM)2

algebraic equations that can be solved using Newton’s iteration method.

4. Convergence analysis

In this section we obtain an error estimate for the best approximation of the function f based on Legendre wavelets
and describe the convergence behavior of the proposed numerical method. For this purpose, we present the following
results. The first theorem provides an error term for the best approximation of f(x, y).
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Table 1. Absolute errors for Example 5.1.

(x, y) = ( 1
2l
, 1
2l
) k = 2,M = 4 k = 2,M = 6 k = 2,M = 8

l = 1 2.54× 10−4 2.34× 10−6 3.21× 10−7

l = 2 3.13× 10−5 8.47× 10−7 4.49× 10−9

l = 3 1.12× 10−5 9.17× 10−8 5.38× 10−10

l = 4 2.49× 10−6 3.44× 10−8 5.92× 10−11

l = 5 1.57× 10−6 5.71× 10−9 7.63× 10−11

l = 6 3.11× 10−7 5.92× 10−9 2.81× 10−11

∥eN,M (x, y)∥∞ 3.54× 10−4 6.74× 10−6 5.71× 10−7

Theorem 4.1. Suppose that f ∈ CM ([0, 1] × [0, 1]) is a real-valued function. Then fNM (x, y) = CT�(x, y)
approximates f(x, y) with the following error bound

∥∥f(x, y)− CT�(x, y)
∥∥
2
⩽ γ2M

NMM !
, γ = max

x,y∈[0,1]
0⩽k⩽M

∣∣∣∣
∂Mf(x, y)

∂xk∂yM−k

∣∣∣∣. (16)

Theorem 4.2. Consider the Eq. (1) and suppose that k ∈ C1(Ω),Ω = [0, 1]4×R, withC0 = supΩ |kz(x, y, s, t, z)| <
∞. Moreover, let f ∈ CM ([0, 1]× [0, 1]) (M > 2) be the exact solution of the Eq. (1). Then, we have,

∥f(x, y)− f̄NM (x, y)∥2 ⩽ 2M

NNM !

(
γ + C1∥A−1∥2(NM)2(ln(M) + 1)

)
, (17)

where f̄NM (x, y) is the approximation of f and

A =
[
ψi1j1i2j2(xi, yj)−

∫ yj

0

∫ 1

0

kz(xi, yj , s, t, ζ)ψi1j1i2j2(s, t)dsdt
]
, 1 ⩽ i1, i2 ⩽ N, 0 ⩽ j1, j2 ⩽M − 1,

that assumed to be nonsingular.

5. Numerical example

In this section, we apply the presented method for a numerical example (selected from [3]) to demonstrate the accuracy
and effectiveness of the method.

Example 5.1. Consider the following two-dimensional nonlinear Volterra-Fredholm integral equation of second kind:

f(x, y) = g(x, y) +

∫ y

0

∫ 1

0

x(1− s2)

(1 + y)(1 + t2)
(1− exp(−f(s, t)))dsdt, (x, y) ∈ [0, 1)× [0, 1),

where
g(x, y) = − log(1 +

xy

1 + y2
) +

xy2

8(1 + y)(1 + y2)
,

with the exact solution f(x, y) = − log(1 + xy
1+y2 ). For different values of k,M , the absolute values of errors are

presented in Table 1. Also, a comparison of maximum absolute errors is given in Table 2, which confirms that the
proposed method in this paper is effective than the method given in [3].
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Table 2. Comparison of maximum absolute errors for Example 5.1.

Presented method Haar wavelets method [3]

k = 2,M = 2 3.27× 10−2 2M = 4 1.6× 10−3

k = 2,M = 4 3.54× 10−4 2M = 8 4.4× 10−4

k = 2,M = 8 5.71× 10−7 2M = 16 1.2× 10−4
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Abstract

In this paper, we construct some reproducing kernels based on the shifted Chebyshev polyno-
mials of the second kind and introduce an efficient numerical method for solving the nonlinear
two-point fractional boundary value problems based on the constructed kernels. In fact, we find
the best approximation for the solution of the problem in a finite-dimensional space. The frac-
tional derivatives are described in Caputo sense. An illustrative example is provided to confirm
the reliability and effectiveness of the proposed method.

1. Introduction

In this paper, we consider the following nonlinear fractional two–point boundary value problems:
{
Dα

t y(t) = f(t, y(t)), t ∈ (0, 1)
y(0) = 0, y(1) = 0,

(1)

where f : [0, 1]×R → R is continuous,Dα
t is the left-sided Caputo fractional derivative of order α ∈ (1, 2), denoted

by

Dαy(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1y(n)(s)ds, t > 0, (2)

where n − 1 < α < n, n ∈ N+. Fractional differential equations have many applications in physics, chemistry,
engineering, finance, and other sciences that have been developed in the last few decades [2]. The investigation of the
existence and uniqueness of nonlinear fractional boundary value problems can be found in[2, 5]. Since the fractional
differential equations have no closed-form solution in general, we require to design efficient numerical methods solving
them. Many numerical methods have been developed to solve fractional differential equations, for example see [5]
and the references therein. Here, we propose an efficient method based on the reproducing kernels constructed by
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second kind shifted Chebyshev polynomials. The numerical methods based on the reproducing kernels method have
successfully been applied to several problems, for example see [1] and the references therein. The convergence of
the proposed iterated technique is proved and an example is presented to illustrate the validity and efficiency of the
presented method. The proposed iterative method is fast and easy to implement.

1.1. Second kind shifted Chebyshev reproducing kernel
Definition 1.1. The Chebyshev polynomials Un(t) of the second kind are defined as

Un(t) =
sin(n+ 1)θ

sinθ
,

where t = cosθ and 0 ≤ θ ≤ π [4]. They are orthogonal polynomials on [−1, 1] with respect to the following inner
product

(Un(t), Um(t)) =

∫ 1

−1

√
1− t2Un(t)Um(t)dt =

{
0, n ̸= m,
π
2 , n = m.

(3)

Un(t) can be generated using the following recurrence relation

Un(t) = 2tUn−1(t)− Un−2(t), n = 2, 3, ... (4)

with U0(t) = 1, U1(t) = 2t.

In order to use these polynomials on the interval [0, T ] the shifted chebyshev polynomials of the second kind are
defined as U∗

n(t) = Un(2t− 1). The shifted version are orthogonal on [0, 1] as follows

(U∗
n(t), U

∗
m(t))ω =

∫ 1

0

√
t− t2U∗

n(t)U
∗
m(t)dt =

{
0, n ̸= m,
π
8 , n = m,

(5)

where ω(t) =
√
t− t2 is the weight function. U∗

n(t) can be generated using the following recurrence relation

U ∗n (t) = 2(2t− 1)U∗
n−1(t)− U∗

n−2(t), n = 2, 3, ... (6)

with U0(t) = 1, U1(t) = 4t− 2.

Definition 1.2. Let Pn[0, 1] := span{1, t, t2, ..., tn}, equipped with the following inner product

(u, v)ω =

∫ 1

0

√
t− t2 × u(t)v(t)dt, ∀u, v ∈ Pn[0, 1],

and the norm ∥u∥Pn
=

√
(u, u)ω .

Theorem 1.3. Pn[0, 1] is a finite dimensional reproducing kernel space and its reproducing kernel is Kn(t, s) =
8
π

∑n
i=0 U

∗
i (t)U

∗
i (s), which has the following property

I.Kn(t, .) ∈ Pn[0, 1], ∀t ∈ [0, 1],
II.(f(.),Kn(t, .))ω = f(t), ∀f ∈ Pn[0, 1], ∀t ∈ [0, 1] (The reproducing property).

2. The numerical method

In this section, an iterative method based on the second kind shifted Chebyshev reproducing kernel is presented. We
can convert (1) into an equivalent Volterra-Fredholm integral equations, stated in the following theorem [2, 5].

Theorem 2.1. Assume that 1 < α < 2, y is a function with absolutely continuous first derivative, and f : [0, T ]×R →
R is continuous. Then we have that y ∈ C1[0, T ] is a solution of the boundary value problem (1) if and only if it is a
solution of the following integral equation,

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds− t

TΓ(α)

∫ T

0

(T − s)α−1f(s, y(s))ds. (7)
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To overcome the nonlinearity of the problem (7), we solve the following linearized problem in each iteration

ym+1(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ym(s))ds− t

TΓ(α)

∫ T

0

(T − s)α−1f(s, ym(s))ds. (8)

If f has the Lipschitz condition, we can prove the convergence of the linearized scheme [2, 5]. Now, we solve the
equivalent equations (8) instead of the fractional boundary value problem (1). For n ≥ 2, let {ti}ni=0 be n+1 distinct
nodes in [0, 1] and letψi(t) = Kn(ti, t). It can be easily shown that {ψi}ni=0 is a basis forPn[0, 1] [3]. The orthonormal
system {ψ̄i}ni=0 of Pn[0, 1] can be derived from Gram-Schmidt orthogonalization process of {ψi}ni=0, as

ψ̄i(t) =
i∑

k=0

βkiψk(t), i = 0, 1, ..., n.

The numerical approximation of the solution of (8) in the Pn[0, 1] will be obtained by the following iterative scheme:




y0(t) = 0,

Bm
i =

∑i
k=0 βkiF

m
k ,

ym+1
n+1 (t) =

∑n
i=0Biψ̄i(t),

(9)

where

Fm
k =

1

Γ(α)

∫ tk

0

(tk − s)α−1f(s, ym(s))ds− tk
TΓ(α)

∫ T

0

(T − s)α−1f(s, ym(s))ds.

Theorem 2.2. If {tk}nk=0 be n+ 1 distinct nodes in [0, 1], then the approximate solution ym+1
n+1 (t) derived from (9) is

the best approximation of the exact solution of (8) in Pn[0, 1].
Proof. Pn[0, 1] is a finite dimensional subspace of a reproducing kernel space H. Let ŷ be the orthogonal projection
of y onto Pn[0, 1]. From the best approximation theorem we know that ŷ is the best approximation of y in Pn[0, 1] in
the sense that

∥y − ŷ∥ω < ∥y − v∥ω,
for all v in Pn[0, 1] distinct from ŷ. Now we can see easily that ym+1

n+1 (t) derived from (9) is the orthogonal projection
of ym+1 onto Pn[0, 1].

ŷ(t) =
∑n

i=0(y
m+1(s), ψ̄i(s))ωψ̄i(t)

=
∑n

i=0(y
m+1(s),

∑i
k=0 βkiψk(s))ωψ̄i(t)

=
∑n

i=0

∑i
k=0 βki(y

m+1(s), ψk(s))ωψ̄i(t)

=
∑n

i=0

∑i
k=0 βki(y

m+1(s),K(tk, s))ωψ̄i(t)

=
∑n

i=0

∑i
k=0 βkiy

m+1(tk)ψ̄i(t),

and from (8) we have

ym+1(tk) =
1

Γ(α)

∫ tk

0

(tk − s)α−1f(s, ym(s))ds− tk
TΓ(α)

∫ T

0

(T − s)α−1f(s, ym(s))ds.

3. Numerical results

In this section, we present some numerical results to illustrate the efficiency of the proposed second kind shifted
Chebyshev reproducing kernel method. The approximated solutions are compared with the exact solution.
Example 3.1. Consider the following nonlinear fractional boundary value problem:

{
Dα

t y(t) = sin(t)y2(t) + g(t), t ∈ (0, 1)
y(0) = y(1) = 0.

(10)

The exact solution of this problem is given by y(t) = t − t2. Using the presented method, the numerical results for
various α, number of data points n and number of iteration m are given in figures 1 and 2. The reported results
show high accuracy even when we have used the proposed method with a relatively small number of data points and
iterations.
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Fig. 2. The absolute error in logarithmic scale for α = 7
4 and various n andm.

4. Conclusions

In this paper, an efficient numerical method for solving a two-point fractional boundary value problem is presented.
The numerical approach is based on the reproducing kernel space method. The second kind shifted Chebyshev poly-
nomials are used to construct the reproducing kernel. In fact, we will find the best approximation for the solution of
the problem in a finite-dimensional space. To show how good and accurate the presented method is, the results of
numerical experiments are compared with the analytical solutions. The reported results and comparison confirm the
accuracy and applicability of the proposed method.
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Abstract

This paper presents a quasi-wavelets spectral collocation method to obtain the approximate so-
lution of nonlinear Fredholm integral equations in complex plane. The periodic quasi-wavelets
and their main properties are used to reduce the solution of a nonlinear integral equation to a
complex system of algebraic equations. The rate of approximation solution converging to the
exact solution is given and numerical examples confirm the accuracy and ease of implementation
of the method.

1. Introduction

We consider the following nonlinear integral equation

y(t) = f(t) +

∫ 2π

0

k(t, s)g(s, y(s))ds, t ∈ [0, 2π] (1)

where y(t) is an unknown complex-valued function to be determined and f , k and g are given continuous complex-
valued periodic functions. The real type of Eq. (1) was introduced for the first time by A. Hammerstein in [6].
Equations of this type appear in many applications. For example, They arise as a reformulation of the nonlinear two-
point boundary value problems in magnetohydrodynamics [1].
Several authors have written a number of papers which establish numerical techniques for finding an approximation of
the real type Hammerstein integral equations. Some of the schemes which have considered the solution of the linear
and nonlinear cases of Eq. (1), numerically, are projection methods [7, 9, 10], continuous and discrete time spline
collocation method [8], the Adomian decomposition method [12], wavelets method [11, 15, 16] and the Sinc collo-
cation method [13]. Complex type of integral equations are much more difficult to solve than real integral equations.
Therefore, only a few authors have tried to overcome these difficulties [2-5, 14].
In this paper, we will consider the use of periodic quasi-wavelets in a collocation method for numerical solution of
Eq. (1). The analysis of the accuracy estimation of the method is given and the performance of the proposed method
is illustrated by means of a numerical example.
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2. Review of periodic quasi-wavelets

In this section, we shall state an overview of the basic formulation of the periodic quasi-wavelets based on B-spline
functions [3, 4, 14]. We first introduce the periodic spline functions.
Definition 2.1. The periodic B-spline function Bn,m

p (x) with period T is defined by

Bn,m
p (x) = (Km)n

∑

l∈Z

(
sin(lπ/Km)

lπ

)n+1

exp
( i2πlx

T

)
, x ∈ R (2)

whose degree is n, and corresponding step length is hm = T
Km

, (m ∈ Z, m ≥ 0), where T = hq, Km = 2mq in
which h is a positive real number and n, q ∈ N such that q ≥ n+ 1.
From the basic properties of spline functions the following holds:
(a) V0 ⊂ V1 ⊂ ... ⊂ Vm ⊂ Vm+1 ⊂ ...;

(b) {Vm} is dense in L2
p[0, T ], that is

∪
m∈Z,m≥0 Vm = L2

p[0, T ];

(c)
{
Bn,m

p (x− jhm), j = 0, ...,Km − 1
}
forms a Riesz basis of Vm,

where
Vm = Span

{
Bn,m

p (x− jhm), j = 0, ...,Km − 1
}
. (3)

Bn,m
p (x − jhm), j = 0, ...,Km − 1 is a basis for Vm, but it is not orthogonal. We construct an orthogonal basis for

Vm. For this purpose, we define

An,m
v (x) = Cn,m

v

Km−1∑

l=0

exp
( i2πlv

Km

)
Bn,m

p (x− lhm), x ∈ R, (4)

where

Cn,m
v =

{
t0 + 2

q∑

λ=1

tλ cos(λvhm)
}−1/2

, (5)

and
tλ = B2q+1,m

p (λhm). (6)
The Fourier expansion of An,m

v (x) is given by

An,m
v (x) = Cn,m

v (Km)
n+1

∑

λ∈Z

(
sin(vπ/(Km)

(v + λKm)π

)n+1

exp
( i2π(v + λKm)x

T

)
(7)

From Eq. (7), we have the following lemma:
Lemma 2.2. The set of functions {An,m

v (x)}Km−1
v=0 is an orthonormal basis for Vm .i.e.,

⟨An,m
v1 , An,m

v2 ⟩ = δv1,v2
(8)

where v1, v2 = 0, ...,Km − 1, and δv1,v2
denotes the Kronecker delta.

Proposition 2.3. Setting Pmf(t) =
∑Km−1

l=0 ⟨f,An,m
l ⟩An,m

l (t), one can have the followings for all f ∈ L2
p[0, T ]

(1) ∥Pm∥ ≤ 1 ,

(2) ∥f − Pmf∥2 ≤ Cωn+1(f, hm), where C is a constant and

ωn+1(f, hm) = sup
0<h≤hm

∥△n+1
h f∥, △r

hf(t) = r!hr[t, t+ h, ....t+ rh]f.

Here L2
p[0, T ] denotes the space of all square integrable complex-valued functions on [0, T ] with period T by the

following inner product:

⟨f, g⟩ = 1

T

∫ T

0

f(x)g(x)dx. (9)



236 S. Sohrabi / The 3rd National Congress on Mathematics and Statistics

3. Methodolgy

In this section, we apply the periodic quasi-wavelets constructed on [0, 2π] to approximate the integral kernel and then
obtain the numerical solutions by means of the degenerate kernel scheme and the collocation method. For this purpose,
first assume

z(t) := g(t, y(t)), t ∈ [0, 2π] (10)

By substituting (10) into (1) we get

y(t) = f(t) +

∫ 2π

0

k(t, s)z(s)ds, t ∈ [0, 2π] (11)

which concludes that the new unknown z(t) satisfies the nonlinear integral equation

z(t) = g
(
t, f(t) +

∫ 2π

0

k(t, s)z(s)ds
)
, t ∈ [0, 2π]. (12)

Suppose that
{
An,m

j

}
are the periodic quasi-wavelets described in Section 2. Then the kernel k(t, s) is approximated

by a degenerate kernel

km(t, s) =

Km−1∑

i,j=0

αm
ijA

n,m
i (t)An,m

j (s) (13)

where the coefficients αm
ij are given by

αm
ij =

⟨
An,m

i (t), ⟨k(t, s), An,m
j (s)⟩

⟩
. (14)

Also, z(t) is approximated by a linear combination of periodic quasi-wavelets:

zm(t) =

Km−1∑

l=0

aml An,m
l (t) t ∈ [0, 2π]. (15)

Substituting (13) and (15) into (12) and using the orthonormality of
{
An,m

l ; 0 ≤ l ≤ Km − 1
}
we find that

Km−1∑

l=0

aml An,m
l (t) = g

(
t, f(t) +

Km−1∑

i,j=0

amj αm
ijA

n,m
i (t)

)
, (16)

where the coefficients aml ; 0 ≤ l ≤ Km − 1 are determined by collocating Eq. (16) at the collocation points τmi :

Km−1∑

l=0

aml An,m
l (τmi ) = g

(
τmi , f(τmi ) +

Km−1∑

i,j=0

amj αm
ijA

n,m
i (τmi )

)
, 0 ≤ i ≤ Km − 1 (17)

Eq. (17) generates a closed set ofKm algebraic nonlinear equations for aml which can be solved by a suitable iterative
method. By substituting the approximation zm into the right-hand side of (11), the required approximated solution
y(t) for Eq. (1), can be obtained as

ym(t) := f(t) +

∫ 2π

0

k(t, s)zm(s)ds. (18)

4. Convergence analysis

In this section, we show that the approximation zm converges under suitable conditions to an exact solution of (11). We
assume that the solution y∗(t) to be determined is geometrically isolated, in other words, there is some ballB(y∗, δ) =
{y ∈ L2

p[0, T ] : ∥y − y∗∥ ≤ δ}, with δ > 0, that contains no solution of Eq. (1) other than y∗.
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Table 1. Absolute values of error for Example 5.1.

tj m = 1 m = 2

1 7.92872× 10−03 2.70904× 10−14

2 8.44997× 10−03 3.88034× 10−14

3 1.03184× 10−02 3.41905× 10−14

4 8.29130× 10−03 2.49492× 10−14

5 8.06694× 10−03 3.73776× 10−14

6 1.02886× 10−02 3.72215× 10−14

Theorem 4.1. Under the assumptions given in [15, 16], there exists a neighborhood of z∗ in which for sufficiently
large m equation (16) has a unique solution zm and the following estimate holds:

∥z∗ − zm∥ ≤ α∥z∗ − Pmz∗∥+ β∥(K −Km)z∗∥, (19)

where α, β are independent of m.

Corollary 4.2. If z∗ ∈ Hs[0, 2π], then with L2-norm, we have

∥z∗ − zm∥ = O
(
2−ms

)
, (20)

where s < r and r is the Holder index of the functions An,m defined in Section 2.

Proposition 4.3.
∥y∗ − ym∥ ≤ ∥K∥.∥z∗ − zm∥. (21)

5. Numerical example

In this section, a numerical example was solved by our method with the collocation points chosen to be

τmi =
2π

Km
i, i = 0, . . . ,Km − 1,

and the basis functions
{An,m

i }, i = 0, . . . ,Km − 1,

are taken as periodic quasi-wavelets, in which the natural number n is the degree of quasi-wavelets. Also, we applied
the norm

∥y∗ − ym∥ = max
j

|y∗(tj)− ym(tj)|, tj =
π(j − 1)

500
, j = 1, 2, . . . , 1000.

Example 5.1. consider the following nonlinear complex integral equation

y(t) = f(t) +

∫ 2π

0

sin(t− s)y2(s)ds (22)

where f(t) is selected so that y(t) = ecos(t) + i sin(t) is the exact solution. Equation (22) was solved by our method
with the periodic quasi-wavelet of order n = 2. We make a simulation and display of the numerical results in Table 1
and Figs. 1. Better approximation is expected by choosing m = 2, which we get

∥z∗ − zm∥ = 1.65012× 10−7, ∥y∗ − ym∥ = 4.33201× 10−14.

It is observed that ym converges to y∗ faster than zm to z∗.
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Fig. 1. Parametric plot of the approximate and exact solutions form = 1 (left) andm = 2 (right) in Example 5.1.

References

[1] K.E. Atkinson, A survey of numerical methods for solving nonlinear integral equation, J. Integral Equations Appl. 4 (1992) 15-47.
[2] H. Beiglo, M. Gachpazan, PQWs in complex plane: Application to Fredholm integral equations, 37(22), (2013), 9077-9085.
[3] H.L. Chen, S.L. Peng, A quasi-wavelet algorithm for second kind boundary integral equations, Adv. Comput. Math. 11, (1999), 355-7375.
[4] H.L. Chen, Complex Harmonic Splines, Periodic quasi-wavelets, Theory and Applications, kluwer Academic Publishers, (1999)
[5] M. Erfaniany and H. Zeidabadi, Solving two-dimensional nonlinear mixed Volterra Fredholm integral equations by using rationalized Haar

functions in the complex plane, Journal of Mathematical Modeling, 7(4) (2019), 399-416.
[6] A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math., 54 (1930) 117-176.
[7] S. Kumar, A new collocation-type method for Hammerstein integral equations, J. Math. Comput. 48 (1987) 585-593.
[8] M. Lakestani, M. Razzaghi, andM. Dehghan, Solution of nonlinear Fredholm-Hammerstein integral equations by using semiorthogonal spline

wavelets, Mathematical Problems in Engineering 2005(1), (2005), 113-121.
[9] Y. Mahmoudi, Wavelet Galerkin method for numerical solution of nonlinear integral equation, Applied Mathematics and Computation, 167

(2005) 1119-1129.
[10] K. Maleknejad, S. Sohrabi and Y. Rostami, Numerical solution of nonlinear Volterra integral equations of the second kind by using Chebyshev

polynomials, Applied Mathematics and Computation, 188 (2007) 123-128.
[11] K. Maleknejad and H. Derili, The collocation method for Hammerstein equations by Daubechies wavelets, Applied Mathematics and Com-

putation 172 (2006) 846-864.
[12] K. Maleknejad, M. Hadizadeh, The numerical analysis of Adomian’s decomposition method for nonlinear Volterra integral and integro-

differential equations, International Journal of Engineering Science, Iran University of Science & Technology 8 (2a) (1997) 33-48.
[13] K. Maleknejad, K. Nedaiasl, Application of Sinc-collocation method for solving a class of nonlinear Fredholm integral equations, Computers

& Mathematics with Applications, 62(8), (2011), 3292-3303.
[14] K. Maleknejad, S. Sohrabi, H. Beiglo, PQWs method for Fredholm integral equations with convolution kernel in complex plane, The 4th

Iranian Conference on Applied Mathematics , 10-12 March, 2010, Zahedan, Iran.
[15] Z. Shen, Y. Xu, Degenerate kernel schemes by wavelets for nonlinear integral equations on the real line, Applicable Analysis, 59 (1995)

163-184.
[16] X.o. Wang, W. Lin, ID-wavelets method for Hammerstein integral equations, Journal of Computational Mathematics, 16 (6) (1998), 499-508.



Gonbad Kavous University

The 3rd National Congress on Mathematics and StatisticsThe 3rd National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1400

The 3rd National Congress on Mathematics and Statistics, NA–307, pp. 239–244

Optimal Control of spacecraft controlling path based on transformed
Legendre polynomials and collocation method

Asiyeh Ebrahimzadeha,∗, Mehdi Shahinib
aDepartment of Mathematics Education, Farhangian university, Tehran, Iran
bDepartment of Mathematics and Statistics, Gonbad Kavous University, Gonbad Kavous, Iran

Article Info

Keywords:
Optimal control
Legendre polynomials
Operational matrix of derivative
Infinite horizon problem
Nonlinear programing

Abstract

In this article, an efficacious approach for finding the numerical solution of infinite horizon op-
timal control of the dynamic system which is modeled for control of a spacecraft’s path with a
quadratic performance index and various weight coefficients is presented. This paper is based
on Legendre polynomials and their derivative operational matrix to convert the OCP to a math-
ematical programming problem that can be solved with various well-developed optimization
algorithms. Numerical results demonstrate the efficiency of the propounded approach.

1. Introduction

Optimal control problems with infinite horizon come in some of the well-known areas of application, such as man-
agement science and economics [3], aerospace engineering [2], chemical reaction systems [4] and biology [5]. Such
problems are defined on an infinite time domain, [0,∞). To study the methods that have been used so far to solve
infinite horizon optimal control problems see [7, 8] and references therein.
Let β(t) be the control of pitch angle. The differential equation that describes the motion of spacecraft is given by [9]

C d2

dt2
[β(t)] = η(t), (1)

where C is the angular moments inertia and η(t) is the torque caused by the gas jets. By considering x1(t) := β(t)
and x2(t) := β′(t) as the state variables and u(t) := η

C as control function. The state equations are given by

x
′
1(t) = x2(t), (2)

x
′
2(t) = u(t).

Our goal is by using small acceleration to hold the angular position close to zero. The objective function is considered
as follows:

J =

∫ ∞

0

[q11x
2
1(t) + q22x

2
2 +Ru2(t)]dt, (3)
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where q11, q22 and R are positive weighting function.
This paper aims to present a method for an efficient solution of optimal control problems with infinite horizon modeled
spacecraft path. For this purpose, at first, the infinite horizon optimal control problem is converted to a finite horizon
problem by using a change of variable. After that, an appropriate finite or discrete representation of the solution of
the problem which is based on Legendre functions is determined. Next, the infinite horizon optimal control problem
is transcribed to a mathematical programming problem by using this discrete representation of the solution and col-
locating the differential equations on Chebyshev nodes. The obtained mathematical programming problem, then, can
be solved by well-developed optimization algorithms.
This paper is organized as follows: In Section 2, we discuss some necessary preliminaries and basic results. Section 3,
is devoted to the proposed method. In Section 4, the proposed method is applied to the given optimal control problem
and numerical results are shown.

2. Preliminary Considerations

The Legendre polynomials Lm(t) are defined on the interval [−1, 1] as follows [6]:

L0(t) = 1, L1(t) = t, Lm+1(t) =
2m+ 1

m+ 1
tLm−1(t)−

m

m+ 1
Lm−1(t), m = 1, 2, · · · . (4)

They are also complete on this interval. A function f(t) defined on an interval [−1, 1], may be approximated by
Legendre polynomials and is denoted by fM (t) as

f(t) ≈ fM (t) =
M∑

i=0

fiLi(t) = FTL(t), (5)

where
F = [f0, f1, · · · , fM ]T L(t) = [L0(t), L1(t), · · · , LM (t)]T . (6)

The operational matrix of derivative in interval [−1, 1] is defined as follows [6]:

dL(t)

dt
= DL(t), (7)

in which D is the (M + 1)(M + 1) operational matrix of derivative given as

dij =




2j + 1, j = i− k

{
k = 1, 3, . . . ,M M is odd,
k = 1, 3, . . . ,M − 1 M is even,

0, otherwise.

(8)

3. Proposed Method

In the discretization of the controlled system, we utilize both the operational matrix of derivative and the Legendre
approximation of control, state, and state rate functions. We use the Legendre-Gauss quadrature rule to approximate
the performance index.
For discretization of dynamic system (3), we utilize logarithmicmap t = −Ln( 1−τ

2 ) = ϕ(τ) to transform semi-infinite
horizon interval [0,∞] to [−1, 1]. The new function y1, y2 and u are defined on interval [0,∞] by

x1(t) = x1(ϕ(τ)) = y1(τ), x2(t) = x2(ϕ(τ)) = y2(τ), u(t) = u((ϕ(τ))) = v(τ). t ∈ [0,∞], τ ∈ [−1, 1]. (9)

From x2(t) = x
′
1(t) in (2), relations given in (9) and utilizing Chain rule in derivatives, we obtain y2(τ) = (1 −

τ)y
′
1(τ), so we have

y
′
2(τ) = −y

′
1(τ) + (1− τ)y

′′
1 (τ) (10)
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Table 1. CPU time
m 6 8 10 12

CPU TIME 0.21875 0.359375 0.60975 1.20375

From equation (2), it will be concluded that u(t) = x
′
2(t) = x

′′
1 (t), so we obtain

v(τ) = (1− τ)y
′
2(τ). (11)

At last, from equations (11) and (10), the following equation will be resulted

v(τ) = −(1− τ)y
′
1(τ) + (1− τ)2y

′′
1 (τ). (12)

For discretization of (3), we suppose

y1(τ) = Y T
1 L(τ), y

′
1(τ) = Y T

1 DL(τ), y
′′
1 (τ) = Y T

1 D2L(τ),

By substituting (12) and (3) in objective functional (3) and utilizing logical transformation t = −Ln( 1−τ
2 ), we gain

∫ ∞

0

4x2
1(t) + 0.1u2(t)dt =

∫ 1

−1

(
4y21(τ) + 0.1

(
−(1− τ)y

′
1(τ) + (1− τ)2y

′′
1 (τ)

)2
)

1

1− τ
dτ (13)

By utilizing Gauss-Legendre (GL) quadrature formula and (3), we obtain

M∑

j=0

ωj

1− τj

(
4(Y T

1 L(τj))
2 + 0.1

(
−(1− τj)Y

T
1 DL(τj) + (1− τj)

2Y T
1 D2L(τj)

)2) (14)

where τjs are GL nodes, zeros of Legendre polynomials LM+1 in the interval [−1, 1] and wjs are the corresponding
weights. While explicit formulas for quadrature nodes are not known, the weights can be expressed in closed form by
the following relation [1]

ωj =
2

((1− (τj)2)(L
′
m+1(τj))

2
. (15)

Also, the initial values x1(0) = 10 and x2(0) = 0 is converted to

Y T
1 L(−1) = 10, Y T

1 DL(−1) = 0. (16)

Therefore, the optimal control problem given in equations (2) and (3) is approximated to a nonlinear optimization
problem with equation (14) as the objective functional and equation (16) as constraints. Finally, we can utilize many
well-developed optimization algorithms to solve the resulted optimization problem.

4. Numerical Discussion

In this part, we illustrate the performance of the propounded technique with three numeral examples.The following
numerical implementations are performed by using Mathematica 10.4 software and AMD A6- 4400M APU 2.70 GHz
package. In this paper, by considering q11 = 4, q22 = 0, x1(0) = 10, x2(0) = 0 and some values of R, we dissolve
considered optimal control problem in (2) and (3). A manned spacecraft has been shown in figure (1). The figures
(2) and (3) are demonstrated the state functions (x1(t), x2(t)) and control function u(t) for m = 12 and R = 0.1
respectively. Figures (4) and (5) are also shown state and control functions for m = 12 and R = 10 respectively.
The optimal value of objective functional for m = 12 is 224.937. The total CPU times utilized with Mathematica
software for this example are given in Table. IncreasingR places a heavier penalty on acceleration and control energy
expenditure.
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Fig. 1. Attitude Control of the Spacecraft

Fig. 2. Position and Velocity as functions of time for R = 0.1

Fig. 3. Acceleration as a function of time for R = 0.1
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Fig. 4. Position and Velocity as functions of time for R = 10

Fig. 5. Acceleration as a function of time for R = 10
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Abstract

In this paper, an efficient method is developed for approximate solution of a benchmark non-
smooth dynamical system. In the proposed method, the trapezoidal method is utilized for solv-
ing the Tacoma Narrows Bridge equation. For this purpose, at first, the integral form of the
dynamical equation is considered. Afterward, the obtained integral equation is discretized by
the trapezoidal method. The accuracy and performance of the proposed method are examined
by means of some numerical experiments.

1. Introduction

One of the most challenging problems in engineering which has been attracted the attention of many engineers, physi-
cists, and mathematicians is the Tacoma Narrows Bridge problem. The Tacoma Narrows Bridge was a suspension
bridge in the State of Washington which suffered collapse in a strong wind on the morning of November 7, 1940 (see
Fig. 1). In many physics textbooks, the event is presented as an example of elementary forced mechanical resonance,
but it was more complicated in reality. Accordingly, many researchers considered the reasons of the collapse which
we can refer to the remarkable reference [1] in this regard. This paper will not discuss the reasons of this collapse, but
instead a simple mathematical model of the problem is considered. It should be noted that the presented model is a
very simplified one-dimensional model which can not consider all of the role-playing parameters of the problem. The
interested readers are referred to [6] for more complicated models.
Now, consider the following Tacoma Narrows Bridge equation which is taken from [3, 5]. The problem is

mÿ(t) = g(t) + F (y), 0 ≤ t ≤ 3π,

y(0) = 0, ẏ(0) = 1,

where
F (y) =

{
−αy, y ≥ 0,
−βy, y < 0,
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Fig. 1. Collapse of the Tacoma Narrows Bridge.

and the constant parameters are considered as m = 1, α = 4, β = 1 and g(t) = sin(4t). For more details on the
history and how to model this problem, the interested readers are referred to [3, 4, 6]. The problem has the following
analytical solution

y(t) =





( 23 − 1
6 cos(2t)) sin(2t), 0 ≤ t ≤ π

2 ,
( 75 − 4

15 sin(t) cos(2t)) cos(t),
π
2 ≤ t ≤ 3π

2 ,
(− 11

15 − 1
6 cos(2t)) sin(2t),

3π
2 ≤ t ≤ 2π,

(− 23
15 − 4

15 cos(t) cos(2t)) sin(t), 2π ≤ t ≤ 3π.

It is noted that, this problem is actually a non-smooth dynamical system which has a smooth solution. It is simple to
show that, by using a substitution

y1 = y,

y2 = ẏ,
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the order of the problem is reduced to one and the following system of first-order initial value problems is derived




ẏ1(t) = y2(t),

ẏ2(t) =
1
m (g(t)−

{
αy1(t), y1(t) ≥ 0,
βy1(t), y1(t) < 0,

,

y1(0) = 0, y2(0) = 1.

(1)

The non-smooth dynamical systems whose right hand side of their dynamical systems or trajectories may not be
differentiable everywhere are utilized to model a wide variety of phenomenon, especially in mechanical and control
systems. It is necessary to mention that, due to non-smoothness in the right hand side of their dynamical systems or in
their solution, the numerical approximation of non-smooth dynamical systems is a very difficult task. The aim of this
paper is to present a method for an efficient numerical solution of the non-smooth dynamical equation of the Tacoma
Narrows Bridge model. The next section is about introducing this method.

2. The proposed approach

Let’s go back to the non-smooth initial value problem (1). In particular, the non-smooth initial value problem (1) can
be considered as an initial value problem of the form

{
ẏ(t) = f(t, y(t)), t0 ≤ t ≤ tf ,
y(t0) = y0,

(2)

where, y = [y1, . . . , yp]
T : [t0, tf ] → Rp and f = [f1, . . . , fp]

T : [t0, tf ]×Rp → Rp. It is worthwhile to note that, in
the Eq. (2), the function f(t, y(t)) is a non-smooth function with respect to t or y. Furthermore, it is assumed that, the
Eq. (2) has a unique solution. Now, by integrating the dynamical equations in the Eq. (2) from t0 to t, the equivalent
system of Volterra integral equations is induced as

y(t) = y(t0) +
∫ t

t0

f(τ, y(τ))dτ = y0 +
∫ t

t0

f(τ, y(τ))dτ, t0 ≤ t ≤ tf . (3)

In the following, the trapezoidal integral formula for approximating the Volterra integral equations (3) is reviewed.
For this purpose, at first, an equally spaced grid

ti = ih, i = 0, 1, . . . , N,

is considered, where, hN ≤ tf and h(N + 1) > tf . Now, for n > 0, we can write

y(tn) = yn = y0 +
∫ tn

t0

f(τ, y(τ))dτ, n = 1, 2, . . . , N. (4)

As a general approach, the integral term in the Eq. (4) can be approximated by the numerical integration such as
∫ tn

t0

f(τ, y(τ))dτ ≃ h
n∑

j=0

wn,jf(tj , y(tj)), n = 1, 2, . . . , N, (5)

where, the quadrature weights hwn,j are allowed to vary with the grid point tn. So, the Eq. (4) is approximated by

yn ≃ y0 + h
n∑

j=0

wn,jf(tj , y(tj)), n = 1, 2, . . . , N. (6)

Obviously, the Eq. (6), defines yn implicitly. In other words, the Eq. (6) is a set of algebraic equations which can be
solved by the root finding methods.
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It is noted that, in this paper, the Eq. (6) is solved by the simple fixed point iteration method [2] where h is supposed
to be sufficiently small. As we can see in the numerical illustrations section, using the fixed point iterations greatly
increased the speed of the method. So, as a result, the Eq. (6) will find the following form

y(k+1)
n ≃ y0 + h

n−1∑

j=0

wn,jf(tj , yj) + hwn,nf(tn, y(k)n ), k = 0, 1, . . . (7)

for some given initial estimation of y(0)n . There are many possible schemes for being in the Eq. (6). In this paper, the
fantastic trapezoidal numerical method will be used. It is worthwhile to note that, the trapezoidal rule has the form

∫ α+h

α

F (s)ds ≃ h

2
[F (α) + F (α+ h)].

So, in Eq. (5) we have

∫ tn

t0

f(τ, y(τ))dτ ≃ h

2
f(t0, y0) + h

n−1∑

j=1

f(tj , yj) +
h

2
f(tn, yn),

and consequently looking at the Eq. (7), the trapezoidal method will lead to the following iterative equation

y(k+1)
n ≃ y0 +

h

2
f(t0, y0) + h

n−1∑

j=1

f(tj , yj) +
h

2
f(tn, y(k)n ), k = 0, 1, . . . (8)

It is emphasized again that, the Eq. (8) is solved by the simple fixed point iteration method where h is supposed to be
sufficiently small. This leads the proposed method being very fast.

3. Numerical illustrations

This section is devoted to the numerical illustrations and the effectiveness of the presented method is shown. Noted
that, all computations are performed on a 2.53GHz Core i5 PC Laptop with 4GB of RAM running inMATLAB R2016a.
Now, consider the non-smooth initial value problem (1) again. This problem is solved by using the presented method.
The approximated solution for N = 6000 discretization points is shown in Figure 2 alongside the exact solution,
and the absolute error of the approximated solution on the interval 0 ≤ t ≤ 3π. Also, for exploring the dependence
of the error of the approximated solution on the parameter N , the presented method is applied on this problem for
various values of N . In Figure 3, an overview of the rate of convergence by plotting the Euclidean norm of error,
EN , as a function ofN can be seen. Obviously, ifN increases, then the Euclidean norm of error will become smaller.
Furthermore to better show the efficiency of the method, the CPU time of the presented method versus N is shown
in Figure 4 and the log-linear graph for better vision, is plotted. As we can see, the presented method has desirable
speed.

4. Conclusion

In this paper, the fantastic trapezoidal method is proposed for the numerical solution of the non-smooth Tacoma Nar-
rows Bridge equation. The method can be easily applied to any type of non-smooth initial value problems. According
to the numerical illustrations, the accuracy and the speed of the method is satisfactory. Furthermore, by using the
simple iteration method for solving the root finding problem appeared in the method, the CPU time of the method is
significantly reduced. Further research in the usage of the presented method to solve the non-smooth boundary value
problems will be interesting.
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Abstract

In this paper, an area-biased form of the single parameter Poisson-exponential distribution (PED)
is obtained by area biasing the discrete Poisson-exponential distribution (PED) introduced by
Fazal and Bashir. Poisson-exponential distribution is an important discrete distribution which
has many applications in countable data sets. The first four moments (about origin) and the
central moments (about mean) have been obtained and hence expression for coefficient of vari-
ation (CV), skewness, kurtosis and index of dispersion are derived. To estimate the parameters
of area-biased Poisson-exponential distribution (ABPED), maximum likelihood method (MLE)
and method of moments (MOM) are also developed. The goodness of fit for ABPED has been
discussed using three real data sets the fit shows a better fit over size-biased Poisson-Lindley
distribution (SBPLD).

1. Introduction

Fazal and Bashir [1] have obtained discrete Poisson-exponential distribution (PED) for modelling count data with
probability mass function (p.m.f):

(1)
The Poisson-exponential distribution (PED) in (1) is a mixture of Poisson and exponential distribution when the pa-
rameter of Poisson distribution (λ) follows exponential distribution. The first four moments (about origin) and the
variance of (PED) obtained by Fazal and Bashir [1] are given as:
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(2)
The mathematical properties and estimation of parameter have been discussed by Fazal and Bashir and its applica-
tion proves that it is a good replacement of Poisson distribution and Lindley distribution. The size-biased form of
(PED) has been discussed by Fazal and Bashir and its goodness of fit gives quite satisfactory fit over size-biased
Poisson distribution, size-biased Lindley distribution and size-biased geometric distribution. The mixture of Poisson
and size-biased exponential distribution has been discussed by Fazal and Bashir with properties and applications. The
size-biased and area-biased distributions were discussed earlier by Fisher c when sample observations have unequal
probability of selection therefore we apply weights to the distribution to model bias. If the random variable ‘x’ had
pdf f(x, θ);x = 0, 1, 2, . . ..., ; θ≥0 , then the weighted distribution is of the form:

(3)
For m=1 and m=2 we get the size-biased and area-biased distributions respectively. Area-biased distributions are ap-
plicable for sampling in forestry, medical sciences, psychology etc. Different discrete mixed distributions have been
size-biased and discussed with their applications in real data sets. Shankar & Kumar [3] obtained size-biased Poisson-
Garima distribution with mathematical properties to analyze genetics data sets. Shankar [4] introduced size-biased
Poisson-Shankar distribution with applications. Shankar & Fasshaye [5] considered the size–biased form of Poisson-
Sujata distribution which was first introduced by Shankar for modelling count data in various fields of knowledge.
Shakila & Mujahid Rasul [6] derived the Poisson area-biased Lindley distribution with its applications in biological
data to prove that it gives a better fit than Poisson distribution. Shankar & Fassahe [7] proposed the size-biased form
of Poisson-Amarenda distribution and its applications proved that it is a good replacement of size-biased Poisson
distribution (SBPD), size-biased Poisson-Lindley distribution (SBPLD) and Size-biased Poisson-Sujhata Distribution
(SBPSD). Shakila and Mujahid [8] proposed the size-biased form of Poisson-Janardhan distribution and derived its
mathematical properties, whereas Janardhan distribution is a two parameter distribution obtained by Rama & Mishra
[9] as a mixture of exponential and gamma distribution. Rama & Mishra obtained the size-biased form of Qaussi
Poisson-Lindley distribution of which size-biased poisson-Lindley distribution is a particular case (SBPLD). Ahmed
& Munir [10] have discussed few size-biased discrete distributions and their generalizations with properties and ap-
plication. The size-biased version of Poisson-Lindley distribution has been discussed by Ghitanni & Mutairi [11] and
the new distribution introduced in this paper i.e area-biased Poisson-exponential distribution (ABPED) gives more
satisfactory fit as compared to size-biased Poisson-Lindley distribution. The mathematical properties and estimation
of parameters has been discussed and goodness of fit is also presented [12-16].
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2. Area–biased poisson exponential distribution

Using (1), (2), (3) the pmf of the area-biased Poisson-exponential distribution can be obtained as:

(4)

where is the second raw moment of discrete Poisson-exponential distribution. With simplifications we get
the pmf of area-biased Poisson-exponential distribution with parameter θ as:

(5)
Graphs of area– biased Poisson-exponential distribution for different values of θ are shown in Figure 1.

Fig. 1. Graphs of area–biased Poisson-exponential distribution for different values of θ

3. Moments and moment based measures of area-biased Poisson-exponential distribution

We start the mathematical derivations with moments and moment measures. The first four rawmoments of area-biased
Poisson- exponential distribution (ABPED) are:

(6)

The mean moments of ABPED are obtained by using the relationship between moments about mean and moments
about origin:
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(7)
The harmonic mean of area-biased Poisson-exponential distribution is:

(8)
The coefficient of variation (C.V), coefficient of skewness, coefficient of kurtosis and index of dispersion of area-
biased Poisson-exponential distribution ABPED are obtained respectively as:

(9)
For the area-biased Poisson-exponential distribution, (ABPED), from (9) it can be seen that the model is positively
skewed and leptokurtic. To study the characteristics and comparative behavior of ABPED and SBPLD, a table of

for varying values of the parameter θ, has been prepared and presented in the Tables 1 & 2.

Table 1. Values of θ for ABPED

The comparative graphs of coefficient of variation, coefficient of skewness, coefficient of kurtosis and index of dis-
persion of ABPED and SBPLD are shown in Figure 2.
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Table 2. Values of θ for SBPLD

Fig. 2. Graphs of for ABPED and SBPLD

4. Reliability measures

Using pmf of ABPED from (4), we have:

(10)
Which is a decreasing function of x, therefore ABPED is uni-modal and has an increasing failure rate.
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5. Generating functions of ABPED

Probability generating function: the probability generating function of ABPED can be obtained as:

(11)
Fisher information matrix: If:

is the pmf of area–biased Poisson-exponential distribution with θ > 0, then:

(12)
is the Fisher Information Matrix of ABPED.
Moment generating function: the moment generating function of ABPED is obtained as:

(13)

6. Estimation of parameters

Method of moment (MOM) estimate: let be a sample of size n from ABPED then equating the
population parameter to the sample mean we obtain the MOM estimate of ABPED as:

(14)
where x̄ is the sample mean.
Maximum likelihood estimate (MLE): let be a sample of size n from ABPED), the MLE estimate

is obtained as:

(15)

7. Goodness of fit for ABPED

The area-biased Poisson-exponential distribution has been fitted to a number of countable data sets, and compared with
size–biased Poisson-Lindley distribution. The following examples are used to illustrate a few situations generating the
area–biased distribution and their applications. Microsoft Excel has been used to facilitate the use of the size-biased
models to real life data. The MOM and MLE estimates are used to fit the distributions and is presented in the tables
below. The data sets include number of observations of size distributions i.e. small groups in various public situations
reported by James [12], Coleman and James[13], and Simnoff [14], thunderstorm data sets reported by Shankar et al.,
for all these datasets the ABPED distribution gives much closer fit than SBPLD (Tables 3-6).
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Table 3. Counts of group of people in public Places on a spring afternoon in Portland

Table 4. Counts of shopping groups-Eugene, spring, department store and public market
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Table 5. Counts of play Groups-Eugene, spring, public playground D

Table 6. Frequency of thunderstorm events containing X thunderstorms at Cape kennedy for May

8. Conclusions

Area-biased Poisson-exponential distribution (ABPED) has been derived by area biasing the Discrete Poisson- ex-
ponential distribution (PED) introduced by Fazal and Bashir. The discussion on estimation and applications of the
area–biased distribution demonstrates that ABPED has a practical use to real life data. Form AIC and BIC measures
the proposed area-biased model appears to offer substantial improvements in fit over the size-biased Poisson-Lindley
model. Also the fitting in these tables reveal that the area-biased distribution provides us with better fits in the situ-
ations where zero-class is missing gives a better fit than size-biased Poisson-Lindley distribution (SBPLD) and size-
biased Poisson distribution (SBPD) therefore we conclude that area-biased Poisson-exponential distribution is a good
replacement of (SBPLD).
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Abstract

The main objective of current study is to obtain induced abortion rate among married women be-
tween 15 to 49 years old. Although this issue is the priority of national medical science research
related to women’s health and fertility, it is difficult to obtain real data to this respect. This cross-
sectional research with sample size of 550 people was conducted using simple sampling from
married women between 15 to 49 years old (as patients or in company with them) who referred
to Aliyeh Garden and Abbaspour town medical centers. Since real data collection by question-
naires was difficult to perform, random response method was applied. The induced abortion
ratio and variance were obtained. This rate is significantly different from values resulting from
previous studies using Z-test (p<0.001).
Regarding the results of current study, it seems that this statistical method gives a higher and
more realistic evaluation of induced abortion level in women between 15 to 49 years old. In
order to achieve more accurate data, other studies using this method and a larger sample size are
proposed, particularly among high-risk women.

1. Introduction

Investigation of frequency and complications of induced abortion is the first priority of medical science research on
women’s fertility and health. However, it is very difficult to obtain real information to this respect. If we raise the
respective questions in questionnaires, most of people avoid giving correct answers due to fear, distrust and feeling
of guilt etc. direct interviews with people may bring about similar problems and decrease exact and precise answers.
In health evaluations or planning, similar conditions frequently occur where the researcher needs real information.
Common data collection methods can not give sufficient and exact information. Sometimes, it may seem immoral to
directly ask questions from the interviewer’s or respondents’ point of view.
In order to meet such requirements, random response method was developed. This method applies in statistical inves-
tigations to decrease or remove response errors. Warner (1965) first introduced this method. In this method data is
collected indirectly. The respondent randomly selects two or more questions, at least one of which is the main question.
She responds the selected question (without showing the questioner which question she has selected). As the response
type and scope are the same for each question, the respondent’s privacy will be observed. However, the obtained data
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is sufficient to evaluate the critical parameters under question; 2) this method is very effective in evaluation of such
parameters and is more precise than direct questions.
This method applies in medical research to evaluate contraband alcoholic drinks [3], drug use [4,6,8]. Alcohol use
[4,7,9,10], smoking and sexual activities in adolescents [4] and induced abortion [11]. This is a relatively temporary
method for attracting the respondents’ confidence [7,8,10,11]. In 1971, a study was conducted on privileged classes
in Iran to investigate frequency of induced and spontaneous abortions in which induced abortion rate was 16.7%.
Another investigation in the same article using devices such as catheter, knitting mill, feather and strong caustic sub-
stances diagnosed 4.8% of all abortions referring to the hospital as incomplete induced abortion. 25% of patients
belonged to low social classes suffering from acute uterine hemorrhage subsequent to abortions with dangerous and
ineffective kits. In women from privileged social classes, the degree of both application of contraception remedies
and induced abortion was higher. Women from lower social classes less frequently used contraception remedies or
induced abortion because they were very expensive and unavailable.
In 1976, abortion and infertility laws were changed in Iran. Although, since 1972, abortions were performed in health
centers and clinics, the official permission was issued regarding 3 following cases in 1976:
1- Social and medical reasons
2- If the fetus is younger than 12 weeks and parents’ written consent is obtained.
3- In cases where survival of fetus endangers mother’s life.
These rules were revised and changed after Islamic revolution. In a study, it became clear that in spite of changes in
population policies during 1987-88 about illegality of abortion, privileged people could afford and provide scientific
abortion methods but poor people resorted to infectious abortions [14]. No values were presented to prove this claim.
Najaf Zare et.al, (2001) conducted a similar study in Shiraz in which induced abortion ratio was 2.86% with variance
718%. Since updated information is not available to this respect and traditional methods are not precise, we decided to
apply this method to estimate induced abortion ratio in women between 15 to 49 years old referring to health centers
in Minab.

2. Materials and Methods

This cross-sectional studywas conducted inDecember, 2012. Subjects of studywerewomen, 15-49 years old, admitted
at Clinic No. 102 inMinab as patients or her fellow. Using random response method, some questions were asked about
patients’ history of induced abortion. Considering confidence level 95% and assuming induced abortion frequency
about 2%, based on previous studies [15] and the expected assumed rate 5%, the minimum sample size was estimated
by inverse binominal method 330 to find at least 10 cases of induced abortion.
Eq.)
X: number of people with induced abortion in an n-people sample
Since the number of people who would answer the main question was 6% of sample size, total number of sample
was estimated 550 people. Simple sampling was conducted on population of study. Our method was as follows: 55
uniform cards were prepared on 35 of which this two-option question was written:
Have you ever had induced abortion?
a) Yes b)No
It was the main question of study with only one correct answer. An unrelated question was written on 20 remaining
cards: “Is your ID card number even or odd?”
a) Yes b)No
This question was chosen so that its two options had specific and uniform distribution. In other words, probability of
each unrelated answer was evident.
Some papers were distributed among subjects, on which the following statement was written:
Please check your response a) yes b) no
Subjects of study were justified and convinced in 5- to 10-people groups and their confidence was obtained about lack
of questioner’s knowledge about their response and the content of question. Induced abortion was defined as follows:
“ a miscarriage with curettage, use of intrauterine kits, manipulation of uterus by a doctor or a midwife or a person
without medical qualification, or taking abortion-inducing medicine”. We deranged 55-card bunches and asked the
first person under study to randomly select a card and check her response on the answer sheet and throw it into a box
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prepared to this end. Then we put the selected card among other cards, deranged and offered them to the next person.
Using this method, it was not clear for the questioner that which questions the respondent had responded to.

3. Findings

The number of responses to each question was as follows:
a) Yes b) No
Analyses were conducted by substituting the resulting numbers from manual operations into the respective equation.
Our study variable had two conditions. In other words, total probability of each response was 1.
π : the respective parameter which is the ration or percentage of population with the respective characteristic.
θ : the ration of cards on which the critical question was written.
ρ : probability of “yes” response to the unrelated question, 0.5
n: sample size=550
x: the number of people with “yes” response (whether to the main or unrelated question)
The objective is to estimate π, that is, probability or ratio of induced abortion.
In current study, probability of attempting to induced abortion by a woman during her conjugal life was estimated
……. This estimation is not diagonal ad its variance is calculated as follows.
If we assume this ratio in society equal to zero, z-test will be significant for the obtained ratio (p < 0.1)

4. Conclusion

Assumed induced abortion rate was 5%. As it can be seen, this rate was….% in current research. However, this
study is not based on sampling from total population of society and this rate is different among different populations.
In order to estimate abortions across the country, sampling should include all existing population groups across the
area of study. Estimation of this rate may be of a greater importance among high risk populations in terms of health
planning and death preventions. We hope that this study and introduction of random response methods can be useful
in future work to answer similar health- and treatment-related questions.
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Abstract

Time-to- failure under different causes of failure is known as a competing risks model. Practice,
competing risks data can be appeared in different applications such as engineering fields or bi-
ological and medical lifetime studies as well as other related areas. Also, the causes of failure,
which are competing may be partially observed. In this paper, we adopted the competing risks
model with partially observed causes of failure when the latent failure times follow exponen-
tial distribution under type-II generalized hybrid censoring scheme. The maximum likelihood
estimators of the model parameters with the associated confidence intervals are discussed. The
results are discussed using a simulated data set for illustration purposes. Finally, the simulation
experiments are performed to assess the proposed method.

1. Introduction

The problem of deriving the efficient statistical procedures under different life testing experiments for the unknown
interesting quantities has considerable on the basis of different censoring methodologies. In the literature, there are
a various censoring schemes which can be used in reliability analysis Hybrid censoring scheme (HSC) is more con-
ventional for different situations than other censoring schemes such as type-I and type-II censoring schemes. In HSC,
the experiment is terminated at some specified conditions of time and a number of failures. HSC can be appeared in
different types such as type-I HCS and type-II HCS. Let, Xm denoted to the mth failure time and τ denoted to the
prescribed test termination time. In type-I HCS, the test terminated at a random time η = min{Xm, τ}. The larger
lifetimes of testing units than the time s have shown that a few number of failures can be observed through the exper-
iment. Then, the statistical inference is done with a low precision result. Therefore, type-II HCS is suggested by [2]
and applied to obtain the exact distribution of the MLE and exact lower confidence bound to mean of the exponential
model, whereas the random termination time of the test is changed to satisfy that, at least m failures is observed.
The type-I and type-II HCSs are still having the small number of failure and test in a large period of time, respectively.
These problems have been handled with generalized hybrid censoring scheme (GHCS), see [3]. The experiments under
GHCS has guarantees not only controls within a proper testing period, but present at least fixed number of failures in
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testing procedure. Also, the statistical inference is more efficiency under GHCS due to more observed failures. The
simple types of GHCS are known by type-I and type-II GHCSs described as follows.
For the machansim of type-II GHCS, consider a life-testing experiment in which n identical units are put to test, with
priors integers m ∈ 1, 2, . . . , n; and times 0 < τ1 < τ2 < ∞. The time to failure Ti is recorded until the time τ1 is
reached. If the failure time Tm < τ1; the experiment is terminated at τ1. But if τ1 < Tm < τ2 then, the experiment
is terminated at Tm. Also, if τ2 < Tm then, the experiment is terminated at τ2. So, the terminated test time η and the
number D of the observed failure times, t = (t1:n, t1:n, . . . , tD:n) is defined as (η,D) and given by

(η,D) =





(τ2, D) 1 ≤ D ≤ m if τ1 < τ2 < Tm,
(Tm,m) if τ1 < Tm < τ2,
(τ1, D) m ≤ D ≤ n if Tm < τ1.

(1)

In type-II HCS the experiment has guaranteed that it will be completed by time τ2. Hence, the time τ2 is the allow
time that the researcher is willing to complete the experiment.
If the experimenter need to remove a survival unit from the test other than the final point, then generalized progres-
sive censoring schemes (GPCSs) are applied. The different conventional types of censoring schemes are included
in GPCSs as a special cases, such as type-I censoring, type-II censoring, progressive type-I censoring, progressive
type-II censoring and some other HCSs. For extensive reviews of progressive censoring schemes, one could refer to
the works of [4] and [5], as well as the reference therein.
The competing risks model is appeared when units, are failing with different causes of failure, one of them has caused
the failure. Then, this model is aimed to assess one cause of failure with respect to other causes of failure. The outcome
in competing risks models is described, the time-to-failure T and the corresponding cause of failure ρ. So, the time
T present a continuous random variable, but failure cause ρ is a fixed number labeled by 1, . . . , p, where p is the
number of causes. Hence, the bivariate distribution is applied as the basic probabilistic framework with continuous
and discrete random variables given by T and ρ, respectively. Practice, the framework of the competing risks model
has appeared in a several fields. In a medical field, ρ present the cause of death and T is the individual age. The time
T in economics field, may be present a spent time on the unemployment register, but ρ is the reason for de-registering.
Also, in the manufacturing field, the time T is the usage of the machine and ρ may be the cause of the breakdown
of a machine. And, in the reliability field, T is a time running from start-up to breakdown and ρ may be the faulty
component in a system.
Exponential distribution is widely used in electrical products, and its probability density function can be described as

f(t) = θe−θt, t, θ > 0, (2)

where θ is the scale parameter.

2. Model description

Suppose that, T1, T2, . . . , Tn be n identical independent distributed (i.i.d.) lifetime of n testing units under life testing
experiment. Then, the latent failure time under two independent causes of failure of any unit is defined by

Ti = min{Ti1, Ti2}, i = 1, 2, . . . , n. (3)

Under type-II GHSC, suppose the prefixed numberm and two ideal test times (τ1, τ2), are detrimental. Firstly, when
the experiment is running, the failure times and the corresponding cause of failure (Ti:m:n, ρi), i = 1, 2, . . . , D are
recorded, whereD denote to number of failure units until terminated time of the experiment ρ; where (η,D) is defined
by (1). When the failure time Tm < τ1, the experiment is terminated at η = τ1. But if τ1 < Tm < τ2 then, the
experiment is terminated at η = Tm. Also, if τ1 < τ2 < Tm then, the experiment is terminated at η = τ2. So,
the observed failure times are: t = {(t1:n, ρ1), (t2:n, ρ2), . . . , (tD:n, ρD)} and the corresponding cause of failure is
defined with indicator value ρi

ρi = j, j = 1, 2, 3, i = 1, 2, . . . , D, (4)
where the value 1 of ρi mean that failure under the first cause, 2 mean failure under the second cause and, 3 mean
failure cannot be determined its cause. Under some restricted the complex operating environment of units some failure
causes cannot be detected clearly, then, we applied the partially observed causes of failure competing risks model.
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From the type-II GHS sample of size D,t, the joint likelihood function from [1] is given by

L(t | ω) =
n!

(n−D)!
S(η)n−D

D∏

i=1

[f1(ti)S2(ti)]
I(ρi=1)[f2(ti)S1(ti)]

I(ρi=2)[f(ti)]
I(ρi=3), (5)

where ρi is defined by (4) and f(.) and S(.) denoted to density and survival function of Ti = min{Ti1, Ti2} and

I(ρi = j) =

{
1 ρi = j,
0 else

(6)

Hence, under the consideration that the observed sample is of type-II GHSC competing risk sample drawn from
exponential and two independent failure causes, say Tik ∼ Exp(θk), k = 1, 2. Also the random variable Ti =
min{Ti1, Ti2}, i = 1, 2, . . . , n are independent and distributed as exponential with scale parameter θ1 + θ2. There-
fore, the likelihood function of θ1 and θ2 can be expressed by

L(θ1, θ2 | t) ∝ θm1
1 θm2

2 (θ1 + θ2)
m3e−η(n−D)(θ1+θ2)

D∏

i=1

e−(θ1+θ2)ti , (7)

wheremj =
∑D

i=1 I(ρi = j), j = 1, 2, 3 and η is given by (1).

Remark 2.1. The proposed model has suggested that failure time is recorded for some units with unknown cause of
failure is distributed with exponential with θ1 + θ2 as scale parameter.

Remark 2.2. The discrete random variable m3 is distributed with a Bernoulli distribution with masking probability
p, where 0 ≤ p ≤ 1. Hence, the values 1 and 0 denote, respectively, to the failures with unknown and known cause of
failure.

Remark 2.3. The discrete random variables m1 and m2 which describe the number of units fails under first and
second causes of failure are distributed as binomial distributions with sample size (D −m3), and with probability of
success θ1

θ1+θ2
and θ2

θ1+θ2
, respectively.

3. ML estimation

In this section, we present point estimation and asymptotic confidence intervals of the model parameters for given two
independent causes of failure and observed sample of size D, t. The indicator causes of failure ρi, i = 1, 2, . . . , D
are defined by (4). From the log-likelihood function, after taking the first derivative with respected to θ1 and θ2; and
equating to zero, we have

∂ℓ(θ1, θ2 | t)
∂θj

=
mj

θj
− (n−D)η +

m3

θ1 + θ2

D∑

i=1

ti = 0, j = 1, 2. (8)

TheML estimates of θ1 and θ2 can not be obtained in closed form, then some numerical techniques need to be employed
to solve the non-linear equation (8).

3.1. Interval estimation
In this subsection, the approximate confidence intervals (CIs) of the parameters are constructed using the asymptotic
normality of MLE. The minus expectation of second derivatives of the log-likelihood function has defined the Fisher
informationmatrix (FIM) with respect to model parameters. Generally, in more situations the expectation of the second
derivative is more serious. Then, the observed FIM present a suitable approximation which can be used to construct
interval estimation as follows.
The oserved information matrix F at the ML estimate of the vector parameter Θ = {θ1, θ2} define by F̂ . Now, under
standard regularity conditions the asymptotic distribution theory of MLE tell us that Θ̂ = {θ̂1, θ̂2} can be distributed as
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Table 1. Point and 95% interval ML estimate.
Parameters MLE 95% CI Length
θ1 = 0.4 0.3985 (0.2816,0.5154) 0.2338
θ2 = 0.2 0.2032 (0.1187,0.2877) 0.1690

a bivariate normal distribution with meanΘ = {θ1, θ2} and variance covariance matrix F−1(Θ̂). Then, 100(1−α)%
approximate interval estimate of Θ = {θ1, θ2} is given by

θ̂1 ± γα/2

√
F̂11 , θ̂2 ± γα/2

√
F̂22 (9)

where γα/2 present the standard normal values with probability tailed α/2 and the values F̂11 and F̂22 are the diagonal
of the matrix F−1(Θ̂).
However, sometimes the lower bound of the confidence intervals (9) may be less than 0, which contradicts with the
prerequisite θ1, θ2 > 0. Log-transformation and delta method are used in order to avoid that case.
Under normal property of the pivotal ζ = log Θ̂−logΘ

var(log Θ̂)
with mean 0 and variance 1, the 100(1 − α)% approximate

confidence interval of Θ = {θ1, θ2} is given by

 θ̂j

exp{γα/2
√

var(log θ̂j)}
, θ̂j exp{γα/2

√
var(log θ̂j)}


 (10)

where var(log θ̂j) = var(θ̂j)

θ̂j
and j = 1, 2. For more details, see [6].

4. Simulation studies

This section devotes to carry out a simulation study to evaluate the performance of the proposedML estimationmethod.
We generate a random sample from exponential distribution with parameter θ1 + θ2 of size 50, where θ1 = 0.4 and
θ1 = 0.2. Also, under the generalized type-II hybrid censoring competing risks with consideration τ1 = 3 and τ2 = 7
and m = 15. Under consideration that, n = 50, m = 15 and D = 21 with masking probability p = 0.1 generate a
random sample of size 21 from Bernoulli distribution. The number of masking failure m3 = 7. Then, generate m1

andm2 from a binomial distribution with probability of success θ1
θ1+θ2

and θ2
θ1+θ2

, respectively from a sample of size
(D −m3 = 14) to bem1 = 10 andm2 = 4.
The results of ML estimate are reported in Table 1 for point and 95% confidence interval estimates.
 
In addition, we measure the change of sample size n and affected sample sizem as well as parameter vector. Also, we
test the effect of the change of ideal test times (τ1, τ2). The values of the parameters are arbitrarily assigned. Different
combinations of (n,m, τ1, τ2, p) are considered. The simulation study is done with respect to 1000 simulated data
sets. The tools that used to test the point estimate is the mean estimate (ME) with the associated mean squared error
(MSE). But, the interval estimate test under the mean interval length (MIL) and probability coverage (PC). For The
results of simulation study are reported in Table 2.
 

5. Conclusions

The problem of ”time-to-failure” under different causes of failure is commonly in reliability studying. On natural,
causes of failure may be dependent, but in our modeling, we proposed the causes of failure are independent. In the
model under consideration some of failure time is observed and its causes not observed, which is known as partially
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Table 2. MEs, (MSEs) and MIEs, (CPs) for Θ = (1.0, 1.5)

(τ1, τ2, p) (n,m) MLE MSE MIE CP
θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

(2.5,5.5,0.3) (30,15) 1.325 1.725 (0.284) (0.512) 2.547 3.412 (0.87) (0.89)
(30,25) 1.285 1.624 (0.235) (0.4561) 2.518 3.385 (0.90) (0.89)
(50,25) 1.276 1.615 (0.226) (0.4553) 2.509 3.377 (0.91) (0.91)
(50,40) 1.245 1.590 (0.180) (0.350) 2.450 3.324 (0.92) (0.90)
(70,50) 1.201 1.549 (0.145) (0.309) 2.438 3.307 (0.93) (0.92)

(2.5,5.5,0.1) (30,15) 1.308 1.704 (0.259) (0.500) 2.541 3.404 (0.89) (0.89)
(30,25) 1.275 1.625 (0.226) (0.4559) 2.504 3.371 (0.91) (0.90)
(50,25) 1.271 1.607 (0.218) (0.4541) 2.501 3.364 (0.90) (0.92)
(50,40) 1.238 1.584 (0.168) (0.337) 2.438 3.311 (0.91) (0.93)
(70,50) 1.197 1.544 (0.129) (0.292) 2.424 3.291 (0.92) (0.91)

(3.5,5.5,0.1) (30,15) 1.312 1.698 (0.238) (0.483) 2.525 3.382 (0.90) (0.89)
(30,25) 1.271 1.618 (0.211) (0.442) 2.481 3.348 (0.92) (0.89)
(50,25) 1.269 1.603 (0.201) (0.442) 2.484 3.351 (0.92) (0.91)
(50,40) 1.229 1.571 (0.149) (0.328) 2.421 3.300 (0.92) (0.93)
(70,50) 1.191 1.537 (0.114) (0.276) 2.403 3.275 (0.93) (0.92)

observed causes of failure. This model is built under exponential lifetime distribution with type-II generalized hy-
brid censoring scheme. Classical approach is discussed. From the simulation results, we have reported some points
described as follows:

• The proposed model under type-II generalized hybrid censoring scheme for competing risks model serve well
for all choice of censoring schemes.

• The increasing of the affect sample sizem is reducing the MSE and MIL.

• The small value of masking probability serves well than the large values.

• The result is better for increasing the minimum ideal test time τ1.
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Abstract

The problem of deriving bounds on distribution functions has been studied for a long time in
the literature. This paper continue this line of research by implementing the new aging notion.
In fact, we define the weighted new better (worse) than used in expectation and provide some
results on it.

1. Introduction

The problem of deriving inequalities on distribution functions has been studied for a long time in the literature. These
inequalities are useful in life testing and reliability modeling. Moreover, they may be also used to produce distribution-
free bounds on reliability when certain information about the underlying life distribution is available. Another useful
application of them is to characterize the behavior of certain classes of life distributions in terms of their hazard rates and
lower order moments in the reliability theory. SinceMarkov’s fundamental inequality, a number of improvements have
been obtained under additional assumptions on the underlying distribution function. It states that for a nonnegative
random variable with mean µ = E(X), and survival probability F (t) = P (X > t) it holds that F (t) ≤ µ/t
for t > µ and F (t) ≤ 1 for 0 < t ≤ µ. Since then this inequality is improved in the literature. For instance,
Haines and Singpurwalla [1] and Marshall and Proschan [3] have obtained improvements of comparable simplicity
by restricting the distributions to new better than used in expectation (NBUE) new worse than used in expectation
(NWUE), respectively. The aim of this paper is to introduce a generalization of these definitions and obtain some new
results.

2. Main results

In this section, we introduce with some general theorems and aging notions that are later applied to obtain more
specific results. Let X be the lifetime of a system or a component with the CDF F (x), probability density function
(PDF) f(x) and survival functionF (x) = 1−F (x). Then, the residual or excess ofX , given that it exceeds a threshold
t, is denoted byXt = [X − t |X > t], where as usual [X|B] denotes a random variable having the same distribution
ofX conditioned on B. The survival function ofXt is given as F t(x) = F (x+ t)/F (t), x, t > 0, and so the PDF is
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ft(x) = f(x+t)/F (t) for x, t > 0.Moreover, themean residual life (MRL) function ofX with finite mean µ = E[X]
is defined as

m(t) = E[X − t|X > t], t > 0. (1)

We say thatX is increasing (decreasing) MRL, denoted as IMRL(DMRL), ifm(t) is increasing (decreasing) in t > 0.
Another ageing class of life distributions is defined in the follows definition. Aging notions and stochastic orders,
as discussed by Shaked and Shanthikumar [5], have found important uses in many disciplines. We now introduce
briefly some definitions of ageing concept and stochastic orders, which are most pertinent for the developments here.
Throughout this paper, the terms ‘increasing’ and ‘decreasing’ are used in a non-strict sense.

Definition 2.1. Let X be a nonnegative random lifetime with survival function F (x), mean µ = E[X] < ∞, and
MRL function m(t). Then X is new better (worse) than used in expectation NBUE(NWUE) if m(t) ≤ (≥)µ for
t > 0.

Now, we provide a generalization of the above definition. To this aim, let us assume an increasing nonnegative and
differentiable function ψ(x) such that ψ′(x) = ϕ(x) ≥ 0. Additionally, if the weight function ϕ(x) is increasing
(decreasing) in x > 0, then ψ(x) is convex (concave). We recall the weighted mean residual life (WMRL) function
defined by

mψ(t) = E[ψ(X)− ψ(t)|X > t] =
1

F (t)

∫ ∞

t

ϕ(x)F (x) dx, (2)

for all t ≥ 0 such that F (t) > 0; see Toomaj and Di Crescenzo [6]. It is clear that mψ(0) = E[ψ(X)]. It is worth
noting that this function appears in the hazard rate function of the weighted distribution see Eq. (2.1) of Nanda and Jain
[4]. As pointed out by Toomaj and Di Crescenzo [6], we recall thatX has increasing (decreasing) WMRL, denoted as
WIMRL(WDMRL), ifmψ(t) is increasing (decreasing) in t > 0. Now, we define the following definition.

Definition 2.2. LetX be a nonnegative random variable with WMRLmψ(t) such thatmψ(0) = E[ψ(X)] <∞.We
say that X is weighted new better (worse) than used in expectation WNBUE(WNWUE) if mψ(t) ≤ (≥)mψ(0) for
t > 0.

In particular, when ψ(t) = t, and hence ϕ(t) = 1, then WNBUE(WNWUE) reduces to NBUE(NWUE) property. We
immediately have the following theorem.

Theorem 2.3. Under the conditions of Definition 2.2, if X is DWMRL(IWMRL), then X is WNBUE(WNWUE).

Proof. Since X is DWMRL(IWMRL) by the assumption, then mψ(t) is decreasing(increasing) in t > 0 and hence
this completes the theorem.

Recently, Toomaj and Di Crescenzo [6] showed that the variance of a transformed random variable X can be repre-
sented in terms of WMRL function as follows:

σ2
ψ(X) = V ar(ψ(X)) = E[m2

ψ(X)],

provided that the expectation exists. In this case, ifX is WNBUE(WNWUE), then we have

σ2
ψ(X) ≤ (≥)m2

ψ(0) = E2[ψ(X)],

or equivalently

γψ(X) =
σψ(X)

E[ψ(X)]
≤ (≥)1.

The new definition will allows us to find several characterization and bounds for the survival function. Consider the
following example.
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Example 2.4. Let us assume a series system with lifetimeX1:n = min{X1, . . . , Xn} consisting of n independent and
identically distributed absolutely continuous non-negative random variables X1, . . . , Xn having the common CDF
F (x) and PDF f(x). Denote by F 1:n(x) = [F (x)]n, x ≥ 0, the survival function of X1:n. Hence, by setting ψ(t) =
F (t), and thus ϕ(t) = f(t), from (2) we obtain, for t > 0,

mF (X1:n)(t) =
1

F 1:n(t)

∫ ∞

t

f(x)F 1:n(x) dx =
1

[F (t)]n

∫ ∞

t

f(x)[F (x)]n dx =
F (t)

n+ 1
.

It is well-known that F (X1:n) ∼ Beta(1, n) and so µψ = E[F (X1:n)] = 1/(n + 1). It is clear that mF (X1:n)(t) ≤
mF (X1:n)(0) for all t > 0, which means that X1:n is WNBUE. Since

V ar(F (X1:n)) =
n

(n+ 1)2(n+ 2)
,

so we have

γ(F (X1:n)) =

√
V ar(F (X1:n))

E[F (X1:n)]
=

√
n

n+ 2
≤ 1.

It is not an easy task to prove the aging properties of WMRL directly in some case. In the following theorem, we
provide sufficient conditions for the monotonicity ofmψ(t).

Theorem 2.5. Let X be a nonnegative random variable with the hazard rate function λ(x). If any of the following
conditions hold:

(i) If ϕ(x)/λ(x) is decreasing (increasing) in x ≥ 0;

(ii) If ϕ(x) is decreasing (increasing) in x, and if X is DMRL(IMRL);

(iii) If X is NBU(NWU) and ϕ(x) is decreasing (increasing) in x > 0;

then X is WNBUE (WNWUE).

Proof. Under the conditions (i) and (ii), Theorems 1 and 2 of Toomaj andDi Cresenzo [6] implies thatX is DWMRL(IWMRL)
and hence we have the result due to Theorem 2.3. For the case (iii), from (2), we have

mψ(t) =

∫ ∞

0

ϕ(x+ t)
F (x+ t)

F (t)
dx,

≤ (≥)

∫ ∞

0

ϕ(x+ t)F (x) dx,

≤ (≥)

∫ ∞

0

ϕ(x)F (x) dx = mψ(0), t > 0.

The first inequality is obtained by noting that X is NBU(NWU) while the last inequality is obtained by the fact that
ϕ(x) is decreasing (increasing) in x > 0.

Another useful result is given in the next theorem. First, we recall the concept of total positivity which is applied to
demonstrate monotonicity results in the reminder of this paper. For two subsets of the real lineA andB, a non-negative
functionK(x, y) defined onA×B is said to be totally positive of order 2 (regular of order 2), denoted by TP2 (RR2),
if K(x1, y1)K(x2, y2) ≥ (≤)K(x1, y2)K(x2, y1), for all x1 ≤ x2 in A and y1 ≤ y2 in B. For further details we
refer to Karlin [2].

Theorem 2.6. Let X be a nonnegative random variable with the hazard rate function λ(x). If ψ(x)λ(x)/ϕ(x) is
decreasing in x, then X is WNWUE.
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Proof. We first prove that X is IWMRL. Since ψ(t) ≥ 0 is increasing in t, from

mψ(t) = ψ(t)
mψ(t)

ψ(t)
,

it is sufficient to prove that the following function is increasing in t > 0:

mψ(t)

ψ(t)
=

∫ ∞

t

ϕ(x)F (x) dx

ψ(t)F (x)
=

∫ ∞

t

ϕ(x)F (x) dx
∫ ∞

t

[ψ(x)f(x) + ϕ(x)F (x)] dx
. (3)

Define now
Ψ(i, t) :=

∫ ∞

0

ν(i, x)η(x, t) dx, i = 1, 2,

where

ν(i, x) =

{
ψ(x)f(x) + ϕ(x)F (x), i = 1

ϕ(x)F (x), i = 2,
and η(x, t) = 1[x > t],

with 1[·] the indicator function, i.e. 1[π] = 1 when π is true, and 1[π] = 0 otherwise. Due to the assumption, ν(i, x) is
TP2 in (i, x) ∈ {1, 2}× (0,∞). On the other hand, it is easy to observe that η(x, t) is TP2 in (x, t) ∈ (0,∞)2. From
the general composition theorem of Karlin [2], it follows that Ψ(i, t) is TP2 in (i, t) ∈ {1, 2} × (0,∞). This implies
thatmψ(t)/ψ(t) is increasing in t and hence X is IWMRL. So, Theorem 2.3 gives the desired result.

3. Concluding remarks

In this note, we provide a generalization of NBUE(NWUE) of definition and obtained some results on it. Moreover,
we provided an application of the new definition.
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Abstract

In this paper, a lifetime model is introduced and studied. We have named this model inverse
Weibull-Pareto II distribution. First, we define the inverseWeibull-generated family of distribu-
tions, and then introduce inverse Weibull-Pareto II distribution using inverse Weibull-generated
family and The Pareto II distribution. We find the reliability, hazard function, moment, quantile
function, Rényi entropy, and order statistics for the inverse Weibull-Pareto II distribution. The
maximum likelihood, least squares, and weighted least squares estimators are obtained. The
bias and mean square error of the unknown parameter estimators are examined for the simulated
data.

1. Introduction

The inverse Weibull (IW) distribution is proper for statistical analysis of lifetime in reliability engineering research.
This distribution has been employed to an extended range of sites, including utilization in medication, reliability, and
ecology. Erto and Ropone [4] represented that IW distribution grants goodness of fit to several data sets. Khan et al. [8]
displayed the flexibility of the IW distribution and absorbing properties. According to Murty et al. [10], degradation
phenomena of mechanical components such as dynamic components of the diesel engine can be effectively based
on IW distribution. Calabria and pulcini [3] supplied exposition of IW distribution in the context of load strength
relationship for a component. Shafiei et al. [12] displayed that IW distribution is a suitable model for hazard function
unimodal and indicated it’s as one of the typical distributions in supplementary risk matters.
The Pareto II (the Lomax) distribution was introduced to model business failure data by Lomax [9]. This distribution
has gained wide usage in a diversity of fields such as income and wealth inequality, actuarial science, medical and
biological sciences, engineering, lifetime, and reliability modeling.
The probability distribution function (PDF) and the cumulative distribution function (CDF) of the Pareto II distribution
with two parameters, β (shape parameter) and θ (scale parameter) is as follows, respectively.

f (x;β, θ) = βθ (1 + θx)
−(β+1)

;x, β, θ > 0,

F (x;β, θ) = 1− (1 + θx)
−β (1)
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The rth raw moment and the quantile function derivatives are, respectively.

µ
′
r =

γ(β − r)γ(1 + r)

θrγ(β)
;β > r, r = 1, 2, . . . , Q (p;β, θ) =

1

θ

[
(1− p)

− 1
β − 1

]
(2)

Among the statisticians who have presented extended new families of distributions by utilizing several techniques are
Eugene et al. [5], Jones [7], Alzaatreh et al. [1], and Bourguignon et al. [2]. Bourguignon et al. [2] introduced the
Weibull- generated family of distributions. Therefore, the CDF of the inverse Weibull- generated family of distribu-
tions can be defined as follows.

F (x;λ, α, ψ) =

∫ G(x;ψ)

G(x;ψ)

0

αλt−(α+1)e−λt−αdt = EXP

[
−λ

(
G (x;ψ)

G (x;ψ)

)−α
]
;x, λ, α > 0, (3)

where, λ and α are scale and shape parameters, respectively, and G (x;ψ) is the baseline CDF with parameter vector
ψ and G (x;ψ) = 1− G (x;ψ) .

2. The Inverse Weibull - Pareto II Distribution

Considering the CDF of the Pareto II in (1) as the baseline CDF in (3), the CDF of the inverse Weibull - Pareto II
distribution (IWPD) is determined by

F (x;ϕ) = EXP [−λ[(1 + θx)
β − 1]−α];x, λ, α, β, θ > 0 (4)

where (λ,ϴ) and (α, β) are scale and shape parameters, respectively and ϕ = (λ, θ, α, β) is set of parameters. The
PDF of IWPD is obtained as follows.

f (x;ϕ) = αβλθ (1 + θx)
(β−1)

[(1 + θx)
β − 1]−(α+1)EXP

[
−λ[(1 + θx)

β − 1]−α
]
;x, λ, α, β, θ > 0. (5)

By applying the Taylor’s series expansion of the exponential function and the binomial expansion as follows,

eu =
∑∞

i=0

ui

i!
, (1− w)

−k
=

∑∞

i=0

γ(k + i)

γ(k)i!
wi, (6)

then, the PDF in (5) can be expanded as follows,

f (x;ϕ) = αβθ
∑∞

i,j=0

(−1)
i
λi+1γ(α+ αi+ j + 1)

i!j!γ(α+ αi+ 1)
(1 + θx)

−(β(α+αi+j)+1)
. (7)

It can be summarized as follows,

f (x;ϕ) =
∑∞

i,j=0
hi,j l (x;β (α+ αi+ j) , θ) , (8)

where hi,j = α(−1)iλi+1γ(α+αi+j)
i!j!γ(α+αi+1) and l (x;β (α+ αi+ j) , θ) indicates the PDF of the Pareto II distribution with

two parameters β (α+ αi+ j) and θ. The plots of the IWPD PDF for several parameter values are shown in Figure
1. in Appendix.

3. PROPERTIES OF THE IWPD

3.1. Reliability
The reliability (or survival) function and the hazard function related to IWPD are exposed through,

R (x;ϕ) = 1− EXP [−λ[(1 + θx)
β − 1]−α], h (x;ϕ) =

αβλθ (1 + θx)
(β−1)

[(1 + θx)
β − 1]−(α+1)

EXP

[
λ
[
(1 + θx)

β − 1
]−α

]
− 1

The plots of the hazard function for different parameter values are shown in Figure 2. in Appendix.
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3.2. Moments
The rth raw moment for IWPD by using (2) and (8) becomes
µ

′
r =

∑∞
i,j=0hi,j

γ(β(α+αi+j)−r)γ(1+r)
θrγ(β(α+αi+j)) ;β (α+ αi+ j) > r, r = 1, 2, . . ..

Thus, E (X) = µ
′

1 =
∑∞

i,j=0hi,j
1

θ(β(α+αi+j)−1) .
The rth central moment for IWPD becomes

µr = E(X − E(X))r =
∑r

i=0
(−1)r−iµ

′
i

(
µ

′
1

)r−i

. (9)

The moment measures of skewness and kurtosis can be calculated Using (9).

3.3. Quantile function
Using CDF of IWPD (4), the quantile function and hence median and interquartile range (IQR) for IWPD can be
expanded as follows

Q (p;ϕ) = 1
θ

[(
1 +

(
−λ

log(p)

) 1
α

) 1
β

− 1

]
, Median = 1

θ

[(
1 + (1.4427λ)

1
α

) 1
β − 1

]
,

IQR = 1
θ

[(
1 + (3.4761λ)

1
α

) 1
β − 1

]
− 1

θ

[(
1 + (0.72135λ)

1
α

) 1
β − 1

]
.

3.4. Rényi entropy
The entropy is a tool for measuring the amount of uncertainty contained in a random observation (Rény, [11]). The
concept of entropy is applied in various statuses in engineering, physics, statistical mechanics, and other applied
sciences. The Rényi entropy of the IWPD is determined by

IR (γ) =
1

1− γ
ln
∫ ∞

0

fγ (x) dx

=
1

1− γ
ln
∫ ∞

0

(αβλθ)
γ
(1 + θx)

γ(β−1)
[
(1 + θx)

β − 1
]−γ(α+1)

EXP

[
−γλ

[
(1 + θx)

β − 1
]−α

]
dx.

It can be summarized using (6) as follows

IR (γ) =
1

1− γ
ln

[
(αβλ)

γ
θγ−1

∑∞

i,j=0

(−1)
i
(γλ)

i
γ(γ (α+ 1) + αi+ j)

i!j!γ(γ (α+ 1) + αi)(γ (1 + αβ) + β (αi+ j)− 1)

]
.

3.5. Order statistics
The PDF of the rth order statistics for a random sample X1, X2, . . . , Xn from the IWPD using (4), (5), and (6) is
derived by

f(r) (x) = r

(
n
r

)
αβλθ (1 + θx)

(β−1)
∑n−r

i=0

∑∞

j=0

(
n− r
i

)
(−1)

i+j

j!
(λ(r+ i))j [(1 + θx)

β − 1]−(α+αj+1).

After simplification, it is obtained as

f(r) (x) = r

(
n
r

)
αβλθ

∑n−r

i=0

∑∞

j,k=0

(
n− r
i

)
(−1)

i+j
γ(α+ αj + k + 1)

j!k!γ(α+ αj + 1)
(λ(r+i))j (1 + θx)

−β(α+αj)+k−1
.
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4. Estimation of parameters

4.1. The maximum likelihood (ML) estimation
Suppose X1,X2, . . . ,Xn be a random sample of size n from IWPD (5). The log-likelihood function is obtained as
follows

l (ϕ) = n ln (αβλθ)+(β − 1)
∑n

i=0
ln (1 + θxi)−(α+ 1)

∑n

i=0
ln
[
(1 + θxi)

β − 1
]
−
∑n

i=0
λ
[
(1 + θxi)

β − 1
]−α

.

The ML estimators of α, β, λ, andθ are obtained by dissolving the nonlinear equations:

∂l

∂α
=
n

α
−
∑n

i=0
ln
[
(1 + θxi)

β − 1
]
+
∑n

i=0
λ
[
(1 + θxi)

β − 1
]−α

ln
[
λ
(
(1 + θxi)

β − 1
)]

= 0,

∂l

∂β
=
n

β
+

∑n

i=0
ln (1 + θxi)− (α+ 1)

∑n

i=0

(1 + θxi)
β ln (1 + θxi)

(1 + θxi)
β − 1

+
∑n

i=0
λα

[
(1 + θxi)

β − 1
]−(α+1)

(1 + θxi)
β ln (1 + θxi) = 0,

∂l

∂λ
=
n

λ
−
∑n

i=0

[
(1 + θxi)

β − 1
]−α

= 0,

∂l

∂θ
=
n

θ
+ (β − 1)

∑n

i=0

xi
(1 + θxi)

− (α+ 1)
∑n

i=0

β (1 + θxi)
β−1

xi

(1 + θxi)
β − 1

+ λα
∑n

i=0

[
(1 + θxi)

β − 1
]−(α+1)

β (1 + θxi)
β−1

xi = 0.

These equations can be solved numerically like Newton-Raphson.

4.2. The Least Squares and Weighted Least Squares estimation
In this section, the Least Squares (LS) and Weighted Least Squares (WLS) estimators of the unknown parameters for
IWPD based on the method proposed by Swain et al. [13] are obtained. let X1,X2, . . . ,Xn be a random sample of
size n from a CDF and X(1) ≤ X(2) ≤ . . . ≤ X(n) be its order statistics, can be written (Johnson et al. [6])
E
(
F
(
X(i)

))
= i

n+1 , V ar
(
F
(
X(i)

))
= i(n+1−i)

(n+1)2(n+2)
.

By minimizing
∑n

i=1[F
(
X(i)

)
− E

(
F
(
X(i)

))
]2, the LS estimators of the unknown parameters is obtained.

Then, minimize
∑n

i=1

[
EXP

(
−λ

[(
1 + θx(i)

)β − 1
]−α

)
− i

n+1

]2
, respect to α, β, λ, θ.

By minimizing
∑n

i=1vi[F
(
X(i)

)
− E

(
F
(
X(i)

))
]2 where vi = [V ar

(
F
(
X(i)

))
]−1, the WLS estimators of the

unknown parameters is obtained.

5. Simulation Study

To compare the three estimation methods, we simulated random samples using software R. The conclusions have been
truncated after four decimal places. The means squared error (MSE) and the average bias are calculated in the ML,
LS, and WLS estimators for each set of sample size and parameters. We provide the results of simulation study for
(α, β, λ, θ) = {(1.3, 3.2, 1.1, 2.1) , (1.2, 3.8, 1.2, 1.7)} with using 1000 iterations per sample size, n = 50, 100, 150.
Table1 display the simulation results. It shows that MSEs decrease while sample size increases, and MSEs of the ML
method are often lower than the other two methods.
Table1. The average bias and MSEs for (α̂,β̂, λ̂, θ̂) using ML, LS, and WLS estimators.
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6. Conclusion

In this paper, we introduce a four-parameter distribution called the inverse Weibull - Pareto II distribution. Several
statistical properties of this distribution such as reliability, hazard function, moment, quantile function, Rényi en-
tropy, and order statistics were discussed. Estimation of parameters of the distribution is derived through maximum
likelihood, least squares, and weighted least squares methods.
The simulation results display that estimation performance is acceptable.

Fig. 1. The plots of the IWPD pdf for different parameter values.

References

[1] Alzaatreh, A., Lee, C. and Famoye, F. A new method for generating families of continuous distributions. Metron, 71, 63-79. 2013.
[2] Bourguignon, M., Silva, R. B. and Cordeiro, G.M. TheWeibull-G family of probability distributions. Journal of Data Science, 12, 53-68.2014.
[3] Calabria, R., & Pulcini, G. Bayes 2-sample prediction for the inverse Weibull distribution. Communications in Statistics-Theory and Meth-

ods, 23(6), 1811-1824. 1994.
[4] Erto, P., and M. Rapone. Non-informative and practical Bayesian confidence bounds for reliable life in the Weibull model. Reliability Engi-

neering 7 (3):181–191. 1984.
[5] Eugene, N., Lee, C. and Famoye, F. The beta –normal distribution and its applications. Communications in Statistics–Theory and Methods,

31(4), 497-512. 2002.
[6] Johnson NL, Kotz S, Balakrishnan N. Continuous univariate distribution, vol 2, 2nd edn. Wiley, New York.1995.
[7] Jones, M. C. Families of distributions arising from distributions of order statistics. Test, 13, 1-43. 2004
[8] Khan, M. S., Pasha, G. R., & Pasha, A. H. Theoretical analysis of inverse Weibull distribution. WSEAS Transactions on Mathematics, 7(2),

30-38.
[9] Lomax, K.S. Business failures: Another example of the analysis of failure data, Journal of the American Statistical Association 49, 847–852,

1954.
[10] Murthy, D. P., Xie, M., & Jiang, R. Weibull models (Vol. 505). John Wiley & Sons. 2004.



H. Karimi & S. Piradl / The 3rd National Congress on Mathematics and Statistics 277

Fig. 2. The plots of the hazard function related to IWPD for different parameter values.

[11] Rényi A. On measures of entropy and information. In: Proceedings of the 4th Fourth Berkeley Symposium on Mathematical Statistics and
Probability, 547561. University of alifornia Press, Berkeley. 1961.

[12] Shafiei, S., Darijani, S., & Saboori, H. Inverse Weibull power series distributions: properties and applications. Journal of Statistical Compu-
tation and Simulation, 86(6), 1069-1094. 2016.

[13] Swain JJ, Venkatraman S, Wilson JR. Least squares estimation of distribution function in John-son’s translation system. J Stat Comput Simul
29(4):271–297.1988.



Gonbad Kavous University

The 3rd National Congress on Mathematics and StatisticsThe 3rd National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1400

The 3rd National Congress on Mathematics and Statistics, ST–155, pp. 278–284

Inference on stress-strength reliability for the generalized
exponential distribution based on hybrid censoring scheme

Nooshin Hakamipour∗

Imam Khomeini International University -Buin Zahra Higher Education Center of Engineering and Technology

Article Info

Keywords:
Confidence Interval
Generalized Exponential
Distribution Hybrid censoring
scheme Parametric Bootstrap
Stress-Strength Reliability

2020 MSC:
90B25
62N01

Abstract

Stress-strength reliability is a measure to compare the lifetimes of two systems. One of the
most important subjects in the field of life testing is the stress-strength reliability, which always
refers to the quantity P (Y < X) in any statistical literature. It resamples a system with random
strength (X) that is subjected to a random strength (Y ) such that a system fails in case the stress
exceeds the strength. In this study, we consider stress-strength reliability where the strength (X)
and stress (Y ) follow generalized exponential distribution. The maximum likelihood estimator
of stress-strength reliability and its asymptotic distribution, along with a asymptotic confidence
interval and two parametric bootstrap confidence intervals are obtained. A simulation study is
performed to compare different estimation procedures and various hybrid censoring schemes.
The simulation studies show that asymptotic confidence intervals provide more accurate average
lengths of confidence intervals and higher probabilities to contain the true value of the parameter.

1. Introduction

In reliability theory, inferences of stress-strength reliability R = P (Y < X), where, X and Y have independent
distributions, is a general problem of interest. For example, in mechanical reliability of a system, if X is the strength
of a component which is subject to stress Y , then R is a measure of system performance. The system fails, if at any
time the applied stress exceeds than its strength. The model of stress-strength has found applications in many statistical
problems, including quality control, engineering statistics, medical statistics and biostatistics, among others [6]. The
problem of the estimation of stress-strength model has received considerable attention in the statistical literature. In
connection of classical Mann-Whitney statistic, Birnbaum [3] introduced stress-strength model. Since then, a lot of
work has been done on the estimation of stress-strength model for different distributions from the both frequentist and
Bayesian approaches in complete sample case. An excellent monograph by Kotz et al. [8] provides a comprehensive
treatment of different stress-strength models. Some recent works on stress-strength model can be found in Kundu and
Gupta [11], Rezaei et al. [14], Babayi et al. [2], Sharma [15], etc.
Most of the inferences for stress-strength model have been carried out under complete sample case and very little
work has been done based on censored data. Specially, stress-strength model is unexplored based on hybrid censored
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data. For example, Lio and Tsai [12] studied estimation of stress-strength parameter for Burr XII distribution based on
progressively first failure censored samples, Kumar et al. [10] discussed estimation of the stress-strength parameter for
Lindley distribution using progressively first failure censoring. Asgharzadeh et al. [1] studied estimation for Weibull
distribution based on hybrid censored samples.
In life testing experiments experimenter often does not have complete control on the experiment in hand and items put
on test are often lost or removed from the experiment before the completion of the experiment. In this case available
data are censored. In literature the most common censoring schemes are Type-I and Type-II censoring schemes which
are popularly used in life testing experiments. In Type-I censoring scheme the experiment is terminated after a pre-
fixed time and in Type-II censoring scheme experiment is terminated after getting a pre-specified number of failures.
A new censoring scheme was introduced by Epstein [5] which is the mixture of Type-I and Type-II censoring schemes
and called it hybrid censoring scheme. In recent years, the hybrid censoring scheme has received considerable attention
in the reliability theory and life testing experiments.
The hybrid censoring scheme can be described as follows: Let n identical units are put on life testing experiment and
their lifetimes are assumed to be independently and identically distributed (i.i.d.) random variables with probability
density function (pdf) f(X) and cumulative distribution function (cdf) F (x).
Let X1:n < X2:n < · · · < Xr:n < · · · < Xn:n denote the ordered lifetimes of the experimental units. The test is
terminated when a pre-specified number r out of n units have failed or a pre-specified time T has been reached. It
is also assumed that the failed items are not replaced. In hybrid censoring scheme, the experiment is terminated at
min{Xr:n, T} . Thus, under hybrid censoring scheme available data may be in one of the following forms:

• Case I: x1:n, x2:n, . . . , xr:n, if xr:n ≤ T ;

• Case II: x1:n, x2:n, . . . , xm:n, if 0 ≤ m < r, xm:n < T < xm+1:n,

where,m denotes the number of observed failures that occur before the time pointT . Note thatxm+1:n, xm+2:n, . . . , xr:n

are not observed in case II. On combining both of the cases, the likelihood function for hybrid censored sample, is
given by

L(x1:n, x2:n, . . . , xd:n) = A

d∏

i=1

f(xi:n)
(
1− F (c)

)n−d
, (1)

where, A = n(n−1)(n−2) . . . (n − d + 1), c = min{xr:n, T} and d =
∑r

i=1 I{xi:n ≤ c}, here I is an indicator
function.
The cdf of the generalized exponential (GE) distribution, is given by

F (x) = (1− e−λ/x)α, (2)

where, α > 0 and λ > 0 are the shape and scale parameters, respectively. The GE distribution has increasing or
decreasing hazard rate depending on the shape parameter. The two-parameter GE distribution is a particular member
of the three-parameter exponentiated Weibull distribution, introduced by Mudholkar and Srivastava [13].
This article considers the problem of point and interval estimation of the stressstrength reliability R = P (Y < X)
under the assumption that X and Y both are independent GE random variables based on hybrid censored data. Let
X ∼ GE(α, λ) and Y ∼ GE(β, λ) be independent random variables, the stress-strength reliability is given by

P (Y < X) =

∫ ∞

0

FY (x)fX(x)dx =
β

α+ β
. (3)

Proposition 1.1. (i) R is independent of λ, and (ii) when α = β, R = 0.5, i.e.,in this case X and Y are i.i.d. and
there is an equal chance that Y is smaller than X .

The rest of the paper is organized as follows: In Section 2, the maximum likelihood estimator (MLE) of stress-strength
reliability is derived. Section 3 deals with the asymptotic and two parametric bootstrap confidence intervals. In section
4, a simulation study is performed to compare different estimation procedures and various hybrid censoring schemes.
Finally, conclusions and a brief discussion on the paper are given in Section 5.
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2. Maximum Likelihood Estimation

Let (x1, x2, . . . , xd1
) = (x1:n1

, x2:n1
, . . . , xd1:n1

) be a hybrid censored sample of size d1 from GE(α, λ) with cen-
soring scheme (r1, T1) and (y1, y2, . . . , yd2

) = (y1:n2
, y2:n2

, . . . , yd2:n2
) be a independent hybrid censored sample of

size d2 from GE(β, λ) with censoring scheme (r2, T2). Then the likelihood function without constant terms is given
by

L(x1, . . . , xd1
, y1, . . . , yd2

;α, β, λ) = αd1βd2λd1+d2

d1∏

i=1

1

x2
i

d2∏

j=1

1

y2j
e
−λ(

∑d1
i=1

1
xi

+
∑d2

j=1
1
yj

)

d1∏

i=1

(1− e
− λ

xi )α−1
d2∏

j=1

(1− e
− λ

yj )β−1

(
1− (1− e−

λ
c1

)α
)n1−d1

(
1− (1− e−

λ
c2

)β
)n2−d2 , (4)

where ck = min(rk, Tk), dk =
∑rk

i=1 Ixi:n ≤ ck and k = 1, 2. Since, MLEs do not exist for d1 = d2 = 0, therefore d1
and d2 both are assumed greater than zero. Therefore, the log likelihood function denote by ℓ. MLEs of the parameters
α, β and λ, respectively, are the solutions of the following non-linear equations:

∂ℓ

∂α
=

d1
α

+

d1∑

i=1

log(1− e
− λ

xi )− (n1 − d1) log(1− e−
λ
c1 )

(1− e−
λ
c1 )α

1− (1− e−
λ
c1 )α

, (5)

∂ℓ

∂β
=

d2
β

+

d2∑

j=1

log(1− e
− λ

yj )− (n2 − d2) log(1− e−
λ
c2 )

(1− e−
λ
c2 )β

1− (1− e−
λ
c2 )β

, (6)

∂ℓ

∂λ
=

d1 + d2
λ

−
d1∑

i=1

1

xi
−

d2∑

j=1

1

yj
+ (α− 1)

d1∑

i=1

e
− λ

xi

xi(1− e
− λ

xi )
+ (β − 1)

d2∑

j=1

e
− λ

yj

yj(1− e
− λ

yj )

(n1 − d1)αe
− λ

c1
(1− e

− λ
xi )α−1

c1(1− (1− e−
λ
c1 )α)

− (n2 − d2)βe
− λ

c2
(1− e−

λ
c2 )β−1

c2(1− (1− e−
λ
c2 )β)

. (7)

The α̂, β̂ and λ̂ can not be obtained in closed form, then some numerical techniques need to be employed to solve the
non-linear equations (5)-(7).
Therefore, the MLE of R can be obtained using invariance property of MLEs as

R̂ =
β̂

α̂+ β̂
(8)

3. Different Confidence Intervals

In this Section, asymptotic confidence interval ofR is constructed based on the asymptotic distribution of R̂. Also,the
use of two parametric bootstrap confidence intervals of R are proposed.

3.1. Asymptotic Confidence Interval
In this subsection, we derive the asymptotic confidence interval of R based on the approximate asymptotic variance-
covariance matrix, which is given by

I−1(α̂, β̂, λ̂) =
[
− ∂2ℓ

∂θi∂θj

]−1

, i, j = 1, 2, 3,

where Θ = (α, β, λ) and I is Fisher information matrix, which is not provided due to page restrictions.
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Now, we find the approximate estimate of the variance of R̂, using the delta method. Let defineG = [∂R∂α ,
∂R
∂β ,

∂R
∂λ ]

′ =
1

(α+β)2 [−β, α, 0]′. Thus, an approximate estimate of V ar(R̂) is given by

V̂ ar(R̂) = [GI−1G′]α̂,β̂,λ̂.

Now, using the asymptotic normality property of MLEs, the R̂ is asymptotically normal distributed with mean R and
variance V̂ ar(R̂). Therefore, the asymptotic (1− γ)100% confidence interval for R is given by

(
R̂− zγ/2

√
V̂ ar(R̂), R̂+ zγ/2

√
V̂ ar(R̂)

)
, (9)

where −zγ/2 is the upper γ/2 quantile of the standard normal distribution.
Since, 0 < R < 1, a better confidence interval may be obtained using transformed confidence interval. Here, we use
the logit transformation for the confidence interval estimation as suggested by Krishnamoorthy and Lin [9].
Let ρ̂ = ln R̂

1−R̂
be the MLE of ρ = ln R

1−R , using the asymptotic normality property of MLEs and the delta method,
the asymptotic (1− γ)100% confidence interval for ρ is given by

ρ̂L < ρ < ρ̂U ,

ρ̂L = ln
R̂

1− R̂
− zγ/2

√
V̂ ar(R̂)

R̂(1− R̂)
,

ρ̂U = ln
R̂

1− R̂
+ zγ/2

√
V̂ ar(R̂)

R̂(1− R̂)
.

Thus, the two sided equal tail asymptotic (1− γ)100% confidence interval for R is obtained as
(

eρ̂L

1 + eρ̂L
,

eρ̂U

1 + eρ̂U

)
. (10)

3.2. Bootstrap Confidence Intervals
Here, we propose the use of two parametric bootstrap confidence intervals. The two bootstrap methods that are widely
used in practice are (i) the percentile bootstrap (boot-p) method proposed by Efron [4], and (ii) the bootstrap-t (boot-t)
method proposed by Hall [7]. The boot-t confidence interval is developed based on a Studentized ’pivot’ and requires
an estimator of the variance of theMLE ofR . We use the following algorithms for two parametric bootstrap confidence
intervals for the stress-strength reliability R.
Boot-p method:

Step 1. Generate a hybrid censored sample x = (x1, x2, . . . , xd1
) with pre-fixed censoring scheme (r1, T1) of size

d1 from GE(α, λ) and generate another hybrid censored sample y = (y1, y2, . . . , yd2
) with censoring scheme

(r2, T2) of size d2 from GE(β, λ). Compute the α̂, β̂, λ̂.

Step 2. Generate a bootstrap sample x∗ = (x∗
1, x

∗
2, . . . , x

∗
d1
) with pre-fixed censoring scheme (r1, T1) of size d1 from

GE(α̂, λ̂) and generate a bootstrap sample y∗ = (y∗1 , y
∗
2 , . . . , y

∗
d2
) with censoring scheme (r2, T2) of size d2

from GE(β̂, λ̂). Compute the R̂∗ using equation (8).

Step 3. Repeat step 2, NBOOT times.

Step 4. Now, the approximate (1− γ)100% boot-p confidence interval of R is given by
(
R̂Bp[γ/2], R̂Bp[1− γ/2]

)
.

Boot-t method:
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Table 1. Censoring schemes for simulation study.
(n, r, T ) (30,20,1.5) (30,25,1.5) (30,20,2.5) (30,25,2.5) (50,30,2) (50,40,2) (50,30,3) (50,40,3)

CS S1 S2 S3 S4 S5 S6 S7 S8

Step 1. Same as in boot-p method..

Step 2. Same as in boot-p method.

Step 3. Compute the following statistic T ∗ =
√
d1(R̂

∗ − R̂)/

√
V̂ ar(R̂∗). Compute V̂ ar(R̂∗ = B̂∗/d1

Step 4. Repeat steps 2 and 3, NBOOT times.

Step 5. Now, the approximate (1− γ)100% boot-t confidence interval of R is given by
(
R̂Bt[γ/2], R̂Bt[1− γ/2]

)
.

4. Simulation Studies

This Section deals with the simulation study to compare the performance of different estimation procedures under
various hybrid censoring schemes. The MLE of R along with average estimate (AE) and mean squared errors (MSE)
are obtained. Also, the asymptotic and two types of bootstrap confidence in terms of average lengths and coverage
probabilities are compared. Different parameter values, various censoring schemes and different sample sizes are
considered. One set of true values of parameters α = 1.5, β = 2, λ = 1 so that R = 0.5714 is taken.
Also, eight hybrid censoring schemes are considered and given in Table 1. The AEs and MSEs of ML estimator
are obtained over 1000 pairs of hybrid censored samples generated from GE distribution. The average length of 95%
asymptotic confidence interval based on logit scale, boot-p and boot-t confidence intervals of stress-strength parameter
R are obtained. Here, NBOOT = 1000 for bootstrap methods is considered.
The results of the simulation study are presented in Tables 2 and 3, respectively.
Table 2 shows that as the effective sample size increases the AEs become close to their true values andMSEs decrease.
Again, as the true value of R increases AEs depart from their true values and the MSEs decrease. In general, the
combination of censoring schemes S6 and S8 give best results in comparison to other censoring schemes in terms of
AEs, MSEs, average length of different confidence intervals.
Tables 3 presents the average confidence and credible lengths with corresponding coverage probabilities. The nominal
level for the confidence and the credible intervals is 0.95 in each case. This Table shows that the average length
of asymptotic and bootstrap confidence intervals narrow down as effective sample sizes increase. Also, the boot-
t confidence intervals are wider than the asymptotic and boot-p confidence intervals. The asymptotic confidence
intervals provide the smallest average credible lengths for different censoring schemes. Also, it is evident that the
asymptotic confidence intervals provide the highest coverage probabilities in most cases considered.
 
 
 

5. Conclusions

In this article, the problem of classical estimation of stress-strength reliability R = P (Y < X) for generalized
exponential distribution using hybrid censored samples was considered. The hybrid censoring scheme is an operational
censoring scheme and very useful in real life applications. Different estimation methods for estimating the stress-
strength reliability in the case of different shapes and common scale unknown parameters of GE distribution were
considered. The MLE of R and its asymptotic distribution was computed. Also, two parametric bootstrap confidence
intervals were proposed and it was observed that the asymptotic confidence interval works the best even for small
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Table 2. The AE and MSE of the MLE of R
CS AE MSE

(S1, S2) 0.5733 0.0068
(S1, S3) 0.5792 0.0070
(S1, S4) 0.5698 0.0062
(S2, S1) 0.5789 0.0064
(S2, S3) 0.5788 0.0065
(S2, S4) 0.5705 0.0055
(S3, S1) 0.5729 0.0068
(S3, S2) 0.5623 0.0058
(S3, S4) 0.5699 0.0058
(S4, S1) 0.5796 0.0066
(S4, S2) 0.5719 0.0055
(S4, S3) 0.5821 0.0062
(S5, S6) 0.5668 0.0038
(S5, S7) 0.5708 0.0043
(S5, S8) 0.5684 0.0038
(S6, S5) 0.5784 0.0039
(S6, S7) 0.5779 0.0040
(S6, S8) 0.5745 0.0033
(S7, S5) 0.5753 0.0046
(S7, S6) 0.5656 0.0037
(S7, S8) 0.5650 0.0039
(S8, S5) 0.5794 0.0039
(S8, S6) 0.5726 0.0034
(S8, S7) 0.5734 0.0037

 

Table 3. The AL and CP of 95% asymptotic, bootstrap confidence intervals of R.
R̂MLE R̂Bp R̂Bt

CS AL CP AL CP AL CP
(S1, S2) 0.2842 0.925 0.3086 0.923 0.3314 0.910
(S1, S3) 0.2931 0.934 0.3154 0.925 0.3458 0.908
(S1, S4) 0.2806 0.941 0.3028 0.914 0.3244 0.905
(S2, S1) 0.2916 0.938 0.3080 0.935 0.3385 0.923
(S2, S3) 0.2907 0.944 0.3041 0.928 0.3363 0.913
(S2, S4) 0.2772 0.955 0.2889 0.927 0.3135 0.915
(S3, S1) 0.2915 0.935 0.3158 0.926 0.3433 0.909
(S3, S2) 0.2836 0.946 0.3023 0.935 0.3250 0.922
(S3, S4) 0.2767 0.944 0.2965 0.928 0.3175 0.914
(S4, S1) 0.2830 0.930 0.3030 0.924 0.3295 0.902
(S4, S2) 0.2718 0.949 0.2886 0.926 0.3097 0.912
(S4, S3) 0.2823 0.937 0.2988 0.930 0.3267 0.915
(S5, S6) 0.2266 0.949 0.2378 0.937 0.2472 0.930
(S5, S7) 0.2418 0.942 0.2540 0.932 0.2680 0.922
(S5, S8) 0.2260 0.942 0.2369 0.951 0.2463 0.944
(S6, S5) 0.2333 0.951 0.2418 0.931 0.2558 0.922
(S6, S7) 0.2333 0.940 0.2420 0.940 0.2560 0.926
(S6, S8) 0.2135 0.941 0.2214 0.941 0.2308 0.931
(S7, S5) 0.2412 0.932 0.2538 0.939 0.2680 0.925
(S7, S6) 0.2267 0.947 0.2379 0.951 0.2473 0.942
(S7, S8) 0.2265 0.935 0.2367 0.945 0.2465 0.932
(S8, S5) 0.2316 0.947 0.2410 0.940 0.2541 0.925
(S8, S6) 0.2111 0.941 0.2206 0.942 0.2289 0.932
(S8, S7) 0.2320 0.950 0.2410 0.936 0.2539 0.928
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effective sample sizes. The performance of the point and interval estimates ofR is examined by extensive simulations.
Simulation results suggested that the performance of asymptotic confidence interval work very well and these can be
used for all practical purposes.
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Abstract

In this paper, a new unimodal, multimodal and skew-symmetric circular distribution, called the
weighted cardiod distribution, is introduced. The structural properties of the probability density
function, trigonometric moment, mean resultant lenght and mean direction of this distribution
are discussed.

1. Introduction

The classical models for circular data, such as the von Mises, wrapped Cauchy, cardioid and wrapped normal distri-
butions (Mardia and Jupp, 1999; Jammalamadaka and SenGupta, 2001), are all symmetric. Weighted sampling arises
when the sampling mechanism records the unit sample proportion to a non-negative function, called weight function.
This is a generalization of random sampling under which the recorded data is weighted sample rather than the original
sample. Therefore the classical statistical techniques lead to non-valid results and must be modified. The original
study of this biased sampling traces back to Fisher (1934).
In this paper, we adapted the approach of Patil and Rao (1987) in order to obtain a new weighted cardiod for the
symmetric, asymmetric, unimodal and multimodal cases.

2. Weighted cardiod distribution

If Θ is a circular random variable having the cardiod distribution, its probability density function takes the form

fw(θ) =
1

2π
(1 + 2ρ cos θ), (1)
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where θ ∈ [−π, π), ρ ∈ [0, 1
2 ].

Patil and Rao (1978) suggested that the class of probability density functions can be obtained by using

fw(x) =
w(x)f(x)

E[w(X)]
,

where w(x) is a non-negative weight function and

E[w(X)] =

∫
w(x)f(x)dx < ∞.

Weighted circular distribution was the result of applying the above concept, In theorem 1, to the circular cases. Re-
member that a circular pdf is a non-negative periodic function with a period 2π, which has an integration interval of
length 2π. To make it more special, in the study ahead, we assume that the distribution is defined over the interval
[−π, π).

Theorem 2.1. Suppose that θ is a circular random variable with pdf f(θ). The pdf of the weighted circular random
variable Θw is given by

fw(θ) =
w(θ)f(θ)

E[w(Θ)]
, (2)

where w(θ) is a non-negative and periodic i.e. w(θ) = w(θ + 2kπ) for all integers k.

Proof. fw(θ) is a density on [−π, π) because f(θ) is a density on [−π, π) and w(θ) > 0 for θ ∈ [−π, π). But fw(θ)
is also circular density because

fw(θ + 2kπ) =
w(θ + 2kπ)f(θ + 2kπ)

E[w(Θ + 2kπ)]
=

w(θ)f(θ)

E[w(Θ)]
= fw(θ),

for all integers k.

Let weight function, w(θ) = 1+ λ1 sin θ+ λ2 cos θ for λ1, λ2 ∈ [−1, 1], with |λ1|+ |λ2| ≤ 1, θ ∈ [−π, π). Then we
define the density of what we shall refer to as a weighted cardiod distribution by

fw(θ) =
(1 + λ1 sin θ + λ2 cos θ){1 + 2ρ cos θ}

2π(1 + λ2ρ)
, (3)

where θ ∈ [−π, π), ρ ∈ [0, 1
2 ].

The flexibility of this model is illustrated in Figure 1.

Fw(θ) =
1

2π

{
(θ + π) +

1

1 + λ2ρ
(λ1(1− cos θ +

ρ

2
(1 + cos 2θ) + λ2(sin θ +

ρ

2
sin 2θ) + 2ρ sin θ)

}
.

Since the pth cosine moments of a cardioid distribution are α1 = ρ and αp = 0 for p = 2, 3, ..., for j = 1 the
trigonometric moments of a SCWC distribution are

αw
1 =

λ2 + 2ρ

2(1 + λ2ρ)
, αw

2 =
λ2ρ

2(1 + λ2ρ)
, αw

p = 0 (p ≥ 3)

and

βw
1 =

λ1

2(1 + λ2ρ)
, βw

2 =
λ1ρ

2(1 + λ2ρ)
, αw

p = 0 (p ≥ 3).

Thus, the mean resultant lenghts is given by

ρw =
1

1 + λ2ρ

√
(
λ2

2
+ ρ)2 +

λ2
1

4
, ρw2 =

1

1 + λ2ρ

√
ρ2

4
(λ2

1 + λ2
2), ρwp = 0 (p ≥ 3),
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Fig. 1. Weighted cardioid densities with µ = 0 and κ = 1.

and the mean direction is given by

µw = arg{λ2 + 2ρ+ iλ1}, µw
2 = arg{λ2ρ+ iλ1ρ}, µw

p = 0 (p ≥ 3).

Now, we can represent the circular variance and circular standard deviation by

V w = 1− ρw = 1− 1

1 + λ2ρ

√
(
λ2

2
+ ρ)2 +

λ2
1

4
,

σw = {−2 log(1− V w)} 1
2

=
{
− 2 log{ 1

1 + λ2ρ

√
(
λ2

2
+ ρ)2 +

λ2
1

4
}
} 1

2 .
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Abstract

In this paper, we obtain the distribution ofZ d
= (X|Y > µy)whenX and Y are related through

the elliptical copula. We explore our results in two special cases, the Gaussian as well as the
T-copula. Using a simulation study, we compare the performance of our proposed distributions
with the conventional skew-normal and skew-t distribution.

1. Introduction

1.1. Copula Function
Copula is a powerful way to model the dependence of a random vector. One key insight is due to the famous Sklar
theorem: the distribution of any continuous random vector can be expressed using copula and the marginal distribu-
tions. It is easy to estimate the marginals of a random vector, so all we need is to estimate the copula function and this
would lead to an estimator of the joint distribution.

Definition 1.1. [3].
LetX ∈ Rd be a random vector and F be the distribution function ofX , i.e., F (x) = P (X1≤x1, ..., Xd≤xd). Further,
we denote F1, ..., Fd be the marginal distribution functions of X1, ..., Xn. A copula is a function C : [0, 1]d→[0, 1]
with the following properties:
(A) Marginal. For any i = 1, ..., d, C(ui, 1) = ui.
(B) Isotonic. C(u) ≤ C(v) if u ≤ v, where u ≤ v means that uj ≤ vj for all j = 1, ..., d.
(C) d-increasing. For any box [a, b] ⊂ [0, 1]d with non-empty volume, C([a, b]) > 0.
Note that when there are d variables, C is often called the d-copula. A copula can be viewed as a distribution function
of d-dimensional random vector U such that Uj ∼ Unif [0, 1], j = 1, 2, ..., d.

Theorem 1.2. Sklar’s theorem
For a random vector X with distribution function F and univariate marginal distribution functions F1, ..., Fd. There
exists a copula C such that F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)). If X is continuous, then such a copula C is
unique.
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1.2. Assymetric elliptical distributions
Definition 1.3. [2]. Multivariate Gaussian copula.
Let R be a symmetric and positive definite matrix with diag(R) = (1, 1, ..., 1)T and ΦR is the standardized multi-
variate normal distribution with correlation matrixR, then the multivariate Gaussian copula is

CGa(u1, u2, ..., un) = ΦR(Φ
−1(u1),Φ

−1(u2), ...,Φ
−1(un)), (1)

where Φ−1, as usual, is the inverse of the standard univariate normal distribution function Φ.

Definition 1.4. [2]. Multivariate Student’s t copula.
LetR be a symmetric and positive definite matrix with diag(R) = (1, 1, ..., 1)T and tR,ν the standardizedmultivariate
Student’s t distribution with correlation matrixR and ν degrees of freedom, i.e.

CT (u1, u2, ..., un) = TR,ν(T
−1
ν (u1), T

−1
ν (u2), ..., T

−1
ν (un)), (2)

where t−1ν is the inverse of the univariate c.d.f. of Student’s t with ν degrees of freedom.

In the following, we will give a brief definition of skew normal, and skew t distribution.

Lemma 1.5. [1]. A random variable Z is said to have a skew-symmetric (SS) distribution if its probability density
function (PDF) can be written as

f(z) = 2f0(z)G(w(z)), z ∈ R

where f0 the density function of a continuous random variable which is centrally symmetric around 0, and by G
a distribution function such that G(−x) = 1−G(x) for all real x. If w(z) is a function from Rd to R such that
w(−z) = −w(z) for all z ∈ Rd.

Skew-normal distribution [1]. Given a full-rank d×d covariance matrixΩ = (wrs), definew = diag(w1, ..., wd) =
diag(w11, ..., wdd)

1/2 and let Ω̄ = w−1Ωw be the associated correlation matrix; also let ξ, α ∈ Rd. A d-dimensional
random variable Z is said to have a skew normal distribution if it is continuous with density function at z ∈ Rd of
type

2φd(z − ξ; Ω)Φ(αTw−1(z − ξ)),

We shall then write Z ∼ SNd(ξ,Ω, α), referring to ξ,Ω, α as the location, dispersion and shape or skewness parame-
ters, respectively.
Skew-t distribution [1]. The density function of the following form is called the skew-t density function

2td(z; ν)T1

(
αTw−1(z − ξ)

(
ν+d
Qz+ν

)1/2
; ν + d

)
,

where Qz = (z − ξ)TΩ−1(z − ξ) and td(z; ν) is the density function of a d-dimensional t variate with ν degrees of
freedom, and T1(x; ν + d) denotes the scalar t distribution function with ν + d degrees of freedom. We shall then
write Z ∼ Std(ξ,Ω, α, ν) .

2. Main results

In this paper, we talked about how to obtain the density function Z d
= (X|Y > µy) using the copula function and the

marginal functions. Now, according to the hypotheses of the following two theorems, we try to calculate the density
function Z in these cases.

Theorem 2.1. Let X be a vector of random variables that have multivariate normal distribution with correlation
matrix Ω and Y has a distribution function FY (y) so that are connected via the Gussian-copula with correlation
matrix R, then the distribution of Z d

= X|Y > µy is

fZ(z) = mµyφX(z,Ω)Φ(
αT z − |Ω|Φ−1(FY (µy))√

|R||Ω|
(z ∈ Rd). (3)
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Corollary 2.2. If Y has a normal distribution in the theorem 2.1, then the distribution of (3) is the same as standard
skew-normal.

Theorem 2.3. Let X be a vector of random variables that have multivariate student’s t-distribution with correlation
matrixΩ and ν degree freedom and Y has a distribution function FY (y) so that are connected via the T -copula with
correlation matrix R, then the distribution of Z d

= X|Y > µy is

fZ(z) = mµy
tν,X(z,Ω)T (

αT z − |Ω|T−1(FY (µy))√
|R||Ω|

√
ν + d√

ν + zTΩ−1z
, ν + d) (z ∈ Rd), (4)

in the content providedΩ is the correlation matrix ofX and αT = (−|R|a12 ....−|R|a1d) where a1i, i = 2, 3, ..., d,
are the elements of the first row of matrixR−1.

Corollary 2.4. If Y has a normal distribution in the theorem 2.3, then the distribution of (4) is the same as standard
skew-t.

3. Simulation study

In this section, the simulation is performed in two ways, first using the assumptions of Theorem 2.1 and then us-
ing the assumptions of Theorem 2.3 also we used a Monte Carlo simulation study. We generated 100 random pairs
(Xi, Yi), i = 1, 2, ..., 1000.
1) In the first scenario, we assume thatX1 andX2 followed are normal distribution with correlation matrix ρX1,X2 =
0.6 and Y came from χ2

10 distribution and they are connected via a Gaussian-copula with correlation ρX1,Y = 0.7,
ρX2,Y = 0.5 and ρX1,X2

= 0.6 . We then repeated this procedure 5000 times. Table 1 shows the AIC and BIC values
  in four modes: skew-normal-copula, skew-normal, skew-t-copula and skew-t. According to the reported results, under
the assumptions of Theorem 2.1, skew-t-copula performs better than the others.
2) In the second scenario, we assume that X1 and X2 followed student’s t-distribution with 10 degree of freedom
with correlation matrix ρX1,X2 = 0.5 and Y came from a χ2

10 distribution and they are connected via a T-copula with
correlation ρX1,Y = 0.8, ρX2,Y = 0.6 and ρX1,X2

= 0.5. We then repeated this procedure 5000 times. A similar
comparison is made in Table 1 and gives better results according to the assumptions of skew-normal-copula.

Table 1. AIC and BIC of skew-normal-copula , skew-normal , skew-t-copula and skew-t.

First comparison Estimation skew-normal-copula skew-normal skew-t-copula skew-t
AIC 293 292 285 286
BIC 320 320 312 313

Second comparison Estimation skew-normal-copula skew-normal skew-t-copula skew-t
AIC 216 217 218 220
BIC 244 244 245 248
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Figure 1, depicts a visualization of this comparison.

Fig. 1. Performance of skew-normal-copula , skew-normal , skew-t-copula and skew-t. a) first comparison, b) second comparison.

4. Conclusion

As mentioned, in many practical problems, the variables are interdependent and skewed. In this study, we sought to
calculate Z d

= (X|Y > µy), while the variables are related through elliptical copula functions, and as it can be seen
in the simulation results, the presented cases perform better according to the two criterias AIC and BIC.
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Abstract

Chen and Lio (Computational Statistics and Data Analysis 54: 1581-1591, 2010) proposed five
methods for estimating parameters of the generalized exponential distribution under progressive
type-I interval censoring scheme. Unfortunately, among them, the proposed EM algorithm is
incorrect. Here, we propose the correct EM algorithm and compare its performance with the
maximum likelihood estimators and that proposed by Chen and Lio (2010) in a simulation study.

1. Introduction

1.1. Generalized exponential (GE) distribution
The random variable X follows GE distribution if its probability density function (pdf) and distribution function are
given by

f(x, θ) = α
(
1− e−λx

)α−1
e−λx, (1)

and

F (x, θ) =
(
1− e−λx

)α
, (2)

where θ = (α, λ) is parameter vector (α is the shape parameter and λ is the rate parameter). The family of GE
distributions was introduced by Mudholkar and Srivastava (1993). For a comprehensive account of the theory and
applications of GE distribution, we refer the readers to Gupta and Kundu (2007).
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1.2. Progressively type-I interval censoring scheme
Suppose n subjects are placed on a life testing simultaneously at time t0 = 0 and under inspection atm pre-determined
times t1 < t2 < · · · < tm in which tm is the time to terminate the life testing. At the i-th inspection time, ti, the
number,Xi, of failures within (ti, ti+1] is recorded andRi alive items are randomly removed from the life testing, for
i = 1, . . . ,m. As pointed out by Chen and Lio (2010), since the number, Yi, of surviving items is a random variable
and the exact number of items withdrawn should not be greater than Yi at time schedule ti, thenRi could be determined
by the pre-specified percentage of the remaining surviving units at ti, or equivalently R = ⌊piYi⌋; for i = 1, . . . ,m.
Each progressively type-I interval censoring scheme is shown by {Xi, Ri, Ti}mi=1 where n =

∑m
i=1 Xi + Ri is the

sample size. If Ri = 0; for i = 1, . . . ,m − 1, then the progressively type-I interval censoring scheme is equivalent
to a type-I interval censoring scheme with sample X1, X2, . . . , Xm, Xm−1 = Rm. Suppose a {Xi, Ri, Ti}mi=1 life
testing scheme where n items each follows independently the cdf F (., θ) is under the test. The likelihood function is
(see [1]) is

L(θ) ∝
m∏

i=1

[
F (ti, θ)− F (ti−1, θ)

]Xi
[
1− F (ti, θ)

]Ri
. (3)

As the most common used tool, the maximum likelihood (ML) approach is employed to estimate the θ. But, equation
(3) must be maximized through iterative algorithm such as Newton-Raphson to obtain the ML estimators and there is
no guarantee that the Newton-Raphson method converges. Another technique is the expectation-maximization (EM)
algorithm that always converges, see [5]. However, if practitioner is interested in the ML estimators, the first few steps
of the EM algorithm can be used to get a good starting value for the Newton-Raphson algorithm, see [8].

1.3. EM algorithm
The EM algorithm, introduced by [3], is known as the popular method for computing the ML estimators when we
encounter the incomplete data problem. In other word, the use of the EM algorithm involves cases that we are dealing
with the latent variables, provided that the statistical model is formulated as a missing or latent variable problem. In
what follows, we give a brief description of the EM algorithm. Let ξ, Z, and ω denote the complete, unobservable
variable, and observed data, respectively (complete data consists of observed values and unobservable variables, i.e.,
ξ = (Z,ω)). The EM algorithm works by maximizing the conditional expectation Q

(
θ|θ(t)

)
= E

(
lc(θ; ξ)|ω, θ(t)

)

of complete data log-likelihood function given observed data and a current estimate θ(t) of the parameter vector θ
where lc(θ;x) denotes the complete data log-likelihood function. Each iteration of the EM algorithm consists of two
steps:

1. Expectation (E)-step: Computing Q
(
θ|θ(t)

)
at the t-th iteration.

2. Maximization (M)-step: Maximizing Q
(
θ|θ(t)

)
with respect to θ to get θ(t+1).

The E-step and M-step are repeated until convergence occurs, see [3] and [6].

2. EM algorithm for GE family under progressive type-I interval censoring scheme

Suppose n failure times follow the GE distribution with pdf and cdf given by expressions (1) and (2), respectively.
For convenience, let us to use the notations given by Chen and Lio (2010). So, let ti,j ; for j = 1, . . . , Xi, denote the
independent and identically distributed (iid) failure times in the subinterval (ti−1, ti]; for i = 1, . . . ,m and t∗I,j ; for
j = 1, . . . , Ri, indicate on iid failure times of the randomly removed items alive at the end of the subinterval (ti−1, ti];
for i = 1, . . . ,m. Then, the complete data log-likelihood, lc(θ), is (see [2])

lc(θ) ∝
m∑

i=1

Xi∑

j=1

log f(Ti,j , θ) +

m∑

i=1

Ri∑

j=1

log f(T ∗
i,j , θ). (4)

In expression (4), we show unobservable (or missing) variables by capital letters Ti,j (for i = 1, . . . ,m, j = 1, . . . , xi)
and T ∗

i,j (for i = 1, . . . ,m; j = 1, . . . , ri) in which
∑m

i=1 xi + ri = n. The progressive type-I censoring scheme is an
incomplete data problem. The observed values are xis and ris; for i = 1, . . . ,m and unobservable variables are Ti,j
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(iid failure times during subinterval (ti−1, ti]) and T ∗
i,j (iid withdrawn survival times during subinterval (ti−1, ti]).

Therefore, under EM algorithm framework mentioned in subsection 1.3, the vector of observed data, ω, is ω =
(x1, . . . , xm, r1, . . . , rm) and the vector of unobservable variables is, Z = (Ti,1, . . . , Ti,xi , T

∗
i,1, . . . , T

∗
i,ri

); for i =
1, . . . ,m. Assuming that we are at t-th iteration, in order to implement the EM algorithm, we follow two steps given
by the following.

• E-step: we need to compute the conditional expectation Q
(
θ
∣∣θ(t)

)
= E

(
lc(θ; ξ)

∣∣ω, θ(t)
)
of the complete data

log-likelihood function. It follows, form (4), that

Q
(
θ
∣∣θ(t)

)
=C+

m∑

i=1

E
( Xi∑

j=1

log f(Ti,j , θ)
∣∣∣ω, θ = θ(t)

)
+

m∑

i=1

E
( Ri∑

j=1

log f(T ∗
i,j , θ)

∣∣∣ω, θ = θ(t)
)

=C+
m∑

i=1

E
( Xi∑

j=1

log f(Ti,j , θ)
∣∣∣Xi = xi, Ti,j ∈ (ti−1, ti], θ = θ(t)

)

+

m∑

i=1

E
( Ri∑

j=1

log f(T ∗
i,j , θ)

∣∣∣Ri = ri, T
∗
i,j ∈ [ti,∞), θ = θ(t)

)

=C+

m∑

i=1

xi∑

j=1

E
(
log f(Ti,j , θ)

∣∣Ti,j ∈ (ti−1, ti], θ = θ(t)
)

+
m∑

i=1

ri∑

j=1

E
(
log f(T ∗

i,j , θ)
∣∣T ∗

i,j ∈ [ti,∞), θ = θ(t)
)

=
(
log(α) + log(λ)

)( m∑

i=1

(xi + ri)
)
− λ

m∑

i=1

xi∑

j=1

E
(
Ti,j

∣∣Ti,j ∈ (ti−1, ti], , θ = θ(t)
)

− λ
m∑

i=1

ri∑

j=1

E
(
T ∗
i,j

∣∣T ∗
i,j ∈ [ti,∞), θ = θ(t)

)

+ (α− 1)
m∑

i=1

xi∑

j=1

E
(
log

(
1− e−λTi,j

)∣∣Ti,j ∈ (ti−1, ti], θ = θ(t)
)

+ (α− 1)

m∑

i=1

ri∑

j=1

E
(
log

(
1− e−λT∗

i,j
)∣∣T ∗

i,j ∈ [ti,∞), θ = θ(t)
)
, (5)

where C is a constant independent of θ and θ(t) = (α(t), λ(t)). We note that the lifetimes of the ri unobserved
items during subinterval (ti−1, ti] are conditionally independent, identically distributed, and follow the trun-
cated GE distribution on interval [ti,∞). Also, lifetimes of the xi unobservable subjects during subinterval
(ti−1, ti] are conditionally independent, identically distributed, and follow the double-truncated GE distribu-
tion on subinterval (ti−1, ti]; for i = 1, . . . ,m. Therefore, considering the right-hand side of (5), the required



M. Teimouri / The 3rd National Congress on Mathematics and Statistics 295

conditional expectations are:

E1i = E
(
Ti,j

∣∣∣Ti,j ∈ (ti−1, ti], θ
(t) = (α(t), λ(t))

)
=

∫ ti
ti−1

uf
(
u, θ(t)

)
du

F
(
ti, θ(t)

)
− F

(
ti−1, θ(t)

) , (6)

E2i = E
(
log

(
1− e−λTi,j

)∣∣∣Ti,j ∈ (ti−1, ti], θ
(t) = (α(t), λ(t))

)

=

∫ ti
ti−1

log
(
1− e−λu

)
f
(
u, θ(t)

)
du

F
(
ti, θ(t)

)
− F

(
ti−1, θ(t)

) , (7)

E3i = E
(
T ∗
i,j

∣∣∣T ∗
i,j ∈ [ti,∞), θ(t) = (α(t), λ(t))

)
=

∫∞
ti

uf
(
u, θ(t)

)
du

1− F
(
ti, θ(t)

) , (8)

E4i = E
(
log

(
1− e−λT∗

i,j
)∣∣T ∗

i,j ∈ [ti,∞), θ(t) = (α(t), λ(t))
)

=

∫∞
ti

log
(
1− e−λu

)
f
(
u, θ(t)

)
du

1− F
(
ti, θ(t)

) , (9)

where i = 1, . . . ,m and t0 = 0.

• M-step: by substituting the computed conditional expectations E1i, E2i, E3i, and E4i given in (6)-(9) into the
right-hand side of (5), we follow the EM algorithm by calculating the derivatives with respect to parameters as
follows.

∂Q
(
θ
∣∣θ(t)

)

∂α
=

∑m
i=1(xi + ri)

α
+

m∑

i=1

xiE2i +
m∑

i=1

riE4i, (10)

∂Q
(
θ
∣∣θ(t)

)

∂λ
=

∑m
i=1(xi + ri)

λ
−

m∑

i=1

xiE1i −
m∑

i=1

riE3i, (11)

where
∑m

i=1(xi + ri) = n. Equating the right-hand side of (10) and (11) to zero it turns out that

α(t) = − n∑m
i=1 xiE2i +

∑m
i=1 riE4i

, (12)

and

λ(t) =
n∑m

i=1 xiE1i +
∑m

i=1 riE3i
. (13)

The M-step is complete.

We mention that the EM algorithm proposed by Chen and Lio (2010) is incorrect since they took expectation form
the complete data log-likelihood function after differentiating it with respect to parameters which in not usual in the
EM framework. Using the starting values as θ(0) = (α(0), λ(0)) and repeating the E-step and M-step described as
above the EM estimators are obtained. Compare the updated shape and rate parameters at t-th iteration given in (12)
and (13) with those given by Chen and Lio (2010). It is known that the updated shape parameters are the same but
there is a significant difference between updated rate parameter given here and that given in Chen and Lio (2010).
Although, difference between rate parameters is theoretically significant, however we perform a simulation study in
the next section to observe the differences visually.

3. Simulation study

Here, we perform a simulation study to compare the performance of three estimators including: EM algorithm, ML,
and EM algorithm proposed by Chen and Lio (2010) for estimating the parameters of GE distribution when items lie
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under progressive type-I censoring scheme. For simulating a {Xi, Ri, Ti}mi=1 scheme we use the algorithm proposed
by Chen and Lio (2010). We consider four scenarios as:

p(1) = (0.25, 0.25, 0.25, 0.25, 0.50, 0.50, 0.50, 0.50, 1),

p(2) = (0.50, 0.50, 0.50, 0.50, 0.25, 0.25, 0.25, 0.25, 1),

p(3) = (0, 0, 0, 0, 0, 0, 0, 0, 1),

and p(4) = (0.25, 0, 0, 0, 0, 0, 0, 0, 1). Under each of above four scenarios, we simulate n = 112 observations from
GE distribution with shape parameter α = 1.5 and rate parameter λ = 0.06 and m = 9 pre-specified inspection
times including: t1 = 5.5, t2 = 10.5, t3 = 15.5, t4 = 20.5, t5 = 25.5, t6 = 30.5, t7 = 40.5, t8 = 50.5, and
termination time is t9 = 60.5. These settings was used by Chen and Lio (2010). We run simulations for 1000 times
when the ML method, proposed EM algorithm in this paper (called here EM), and proposed EM algorithm by Chen
and Lio (2010) (called here EM-Chen) take part in the competition. We note that the starting values for implementing
both of EM and EM-Chen algorithms are α(0) = 1 and λ(0) = 0.5. The stopping criterion for both algorithms is
max

{∣∣α(t+1) − α(t)
∣∣,
∣∣λ(t+1) − λ(t)

∣∣} ≤ 0.000001; for t = 0, . . . , 100. The time series plots of the estimators are
displayed in Figures (1)-(2). The summary statistics including bias and mean of squared errors (MSE) of estimators
are given in Table 1. Recall that the EM and EM-Chen algorithms give the same estimators for the shape parameter
and hence time series plot of α̂EM−Chen disappeared in left-hand side subfigures of Figures (1)-(2). As it is seen
from Table 1, proposed EM algorithm outperforms EM-Chen algorithm under the first, second, and fourth scenarios
in terms of bias, and it outperforms the EM-Chen algorithm in all four scenarios in the sense of MSE. Also, the EM
algorithm shows better performance than the ML approach under the first scenario in the sense of both bias and MSE
criteria.

Table 1. Bias and MSE of α̂EM , λ̂EM , α̂ML, λ̂ML, α̂EM−Chen, and λ̂EM−Chen under four settings p(1), p(2), p(3), and p(4).

scenario Estimator bias α̂ MSE α̂ bias λ̂ MSE λ̂

p(1)
EM -0.03470 0.03709 0.01747 0.00033
ML 0.05680 0.10186 0.00119 0.00012

EM-Chen -0.03470 0.03709 0.04212 0.00203

p(2)
EM 0.10301 0.05822 0.03990 0.00162
ML 0.07546 0.16765 0.00222 0.00027

EM-Chen 0.10301 0.05822 0.08084 0.00701

p(3)
EM -0.21885 0.05793 -0.00581 0.00005
ML 0.05504 0.06842 0.00140 0.00006

EM-Chen -0.21885 0.05793 0.00518 0.00007

p(4)
EM -0.23154 0.06314 0.00364 0.00003
ML 0.05017 0.06794 0.00101 0.00007

EM-Chen -0.23154 0.06314 0.01484 0.00027

4. Conclusion

We have discovered that the EM algorithm proposed by Chen and Lio (Computational Statistics and Data Analysis
54: 1581-1591, 2010) for estimating the parameters of generalized exponential distribution under progressive type-
I censoring scheme is incorrect. Here, the corrected EM algorithm is proposed and then a comparison study have
been made to discover differences. Theoretically there is no difference between shape estimators of our proposed
EM algorithm and that proposed by Chen and Lio (2010). However, for the rate parameter the difference is quite
significant. A simulation study have been performed to show visually the differences between performance of our
proposed EM algorithm, maximum likelihood estimators, and EM algorithm proposed by Chen and Lio (2010). We
note that both of our proposed EM algorithm and EM algorithm proposed by Chen and Lio (2010) converge under all
four scenarios before 20 iterations.
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Fig. 1. Time series plot of α̂EM , α̂ML, and α̂EM−Chen under settings p(1) (top row) and p(2) (bottom row).
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Abstract

In this study, we use the skewed Cauchy distribution that is the central member of the class of
stable distributions. The Cauchy distribution received much attention in several fields including
economics, hydrology, image processing, physics, seismology, and signal processing. In this
paper, we derive estimators for the parameters of the Cauchy and mixture of Cauchy distribu-
tions through the expectation-maximization (EM) algorithm. Performance of the presented EM
algorithm is demonstrated through simulations and real data applications.

1. Introduction

The class of α-stable distributions includes a wide range of distributions that can control both of tails thickness and the
skewness of the probability density function. So the α-stable distributions are becoming increasingly popular in many
fields of studies. The Cauchy distribution, as the central member of the class of α-stable distributions, itself has many
applications in a variety of fields such as econometric [5, 8, 33, 38], electronic [49], hydrology [24], image processing
[17, 31], physics [28, 32, 44], seismology [22], signal processing [6, 14, 15], and tensor decomposition [50]. The
probability density function of a Cauchy distribution has no closed-form expression and is represented through an
integral form. The probability density function of Y can be represented as [37]:

fY (y|θ) =
1

πσ

∫ +∞

0

e−t cos
[(y − µ− 2

πβσ logσ
σ

)
t+ β

2

π
t log t

]
dt, (1)

where θ = (β, σ, µ)T is the parameter vector. Here, β ∈ [−1, 1], σ ∈ R+, and µ ∈ R account for the skewness,
scale, and location parameters, respectively. We use the generic symbol Ca(β, σ, µ) to indicate the family of Cauchy
distributions with probability density function given by (1). Evidently, Ca(0, σ, µ) is the ordinary symmetric Cauchy
distribution with probability density function given by f(y|θ) = σ/

[
π(σ2+(x−µ)2)

]
. If β = 1 (or -1), we have the
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class of totally skewed to the right (or left) Cauchy distributions. The integral in right-hand side of (1) is computed
numerically [36]. For standard case (µ = 0, σ = 1), the probability density function ofCa(β, σ, µ) has been displayed
in Figure 1. It should be noted that the probability density function of skew-Cauchy distribution induced by theAzzalini
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Fig. 1. The Probability density functions of the Cauchy induced by: (a) α-stable and (b) Azzalini (1985)’s skew-symmetric distributions.

(1985)’s methodology is given by [16]:

g(x) =
1

πσ
(
1 + z2

)
{
1 +

2

π
arctan(λz)

}
,

where z = (x − µ)/σ and −∞ < λ < +∞ is the skewness parameter. If λ = 0 and β = 0, then both of Cauchy
distributions induced by α-stable and Azzalini (1985)’s method are the same. In what follows, some applications of
Cauchy distribution in economics and hydrology are given.

• Application in economics: Studies show that a majority of financial variables follow a sharp peak and heavy-
tailed distribution to which the Cauchy belongs [27]. Let Pt denotes the stock price at time t. The quantities
Pt/Pt−1 and logPt/Pt−1 are among themain variables for analyzing the stockmarket [18, 34]. If both ofPt and
Pt−1 independently come from a zero-mean normal distribution, then Pt/Pt−1 follows a Cauchy distribution
[3, 12, 30]. In practice, however, some deviation from symmetry is possible and so, it seems reasonable to
suppose that a skewed Cauchy is an appropriate model for distribution of Pt/Pt−1. As an example, the monthly
exchange rates between the US Dollar and the Tanzanian Shilling over period January 1975 to September 1997
has been studied in [38]. After fitting an α-stable to the log of monthly successive exchange rates, the maximum
likelihood (ML) estimates with 95% confidence intervals are: α ∈ (1.088 ± 0.185), β ∈ (0.112 ± 0.251), σ ∈
(0.03 ± 0.0055), and µ ∈ (0.005 ± 0.00621). As it is seen, the confidence interval for α contains α = 1,
for which every α-stable distribution turns into a Cauchy distribution [37]. On the other hand, the confidence
interval for β that is (-0.139, 0.363) has longer overlap with positive values leading us to believe that data are
skewed to the right. So, based on this example, a Cauchy distribution with positive skewness parameter is an
appropriate candidate for modelling the logarithm of monthly successive exchange rates in developing countries.

• Application in hydrology: Logarithm of the area-averaged rain rate over L× L square, denoted by logRL, is
an important factor in hydrology for rain rate modelling. Now, distribution of RL is restricted to be infinitely
divisible and a suitable candidate for RL is minus of a totally skewed to the left Cauchy distribution [24].

It is worth noting that the Cauchy distribution with probability density function given in (1) is infinitely divisible.
The class of Cauchy distributions generated by skew-symmetric families are not generally infinite divisible [11]. The
property of infinite divisibility received much attention in some study fields such as economics [13, 19] and hydrology
[24].
The aim of this paper is twofold: (i) proposing the EM algorithm for computing theML estimators of the Cauchy distri-
butions and (ii) proposing the EM algorithm for computing the ML estimators of the mixture of Cauchy distributions.
The remainder of this paper is organized as follows. Section 2 gives the EM algorithm for Cauchy distribution. The
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EM algorithm for mixture of Cauchy distributions is presented in Section 3. Section 4 is devoted to the robust analysis
and stopping criterion of the proposed EM algorithm for one-component and mixture models. Performance of the EM
algorithm for estimating the parameters of Cauchy distribution in one- and two-component cases is demonstrated in
Section 5 through simulation and real data analysis. We conclude the paper in Section 6.

2. EM algorithm for Cauchy distribution

In the following, Theorem 2.1 gives a new stochastic representation for class Ca(β, σ, µ). This representation plays
main role for implementing the EM algorithm.

Theorem 2.1. Suppose random variables Y ∼ Ca(β, σ, µ), Z,N ∼ N (0, 1), and P ∼ Ca(1, 1, 0) are mutually
independent. Then,

Y
d
= η

N

Z
+ λP + δ, (2)

where d
= denotes the equality in distribution, η = σ (1− |β|), and λ = σβ, and δ = µ+ 2

πλ log |λ|.
Proof: Proof of Theorem 2.1 is given in Appendix A. The EM algorithm is the most popular approach for computing
the maximum likelihood (ML) estimators of a statistical model parameters when we face with the missing or latent
data problem [10, 35, 39]. This algorithm is an iterative approach and always converges [26]. The log-likelihood
function of class Ca(β, σ, µ) has complicated form and hence computing the ML estimators is a so difficult task.
Fortunately, as it is seen from (2), each Cauchy random variable can be represented as a complete data problem and
admits a hierarchy given by the following.

Yi|Zi = zi, Pi = pi ∼ N
(
δ + λpi,

η2

z2i

)
,

Zi ∼ N (0, 1),

Pi ∼ Ca(1, 1, 0), (3)

where Zi and Pi are independent, for i = 1, · · · , n. Assume that y = (y1, · · · , yn)T constitutes a sequence of iden-
tically and independent realizations from Ca(β, σ, µ). Let ξ =

(
ξT1 , . . . , ξ

T
n

)T
=

(
(y1, p1, z1), . . . , (yn, pn, zn)

)T
denote the vector of complete data wherein z = (z1, · · · , zn)T and p = (p1, · · · , pn)T are realizations of unob-
servable variables Z and P , respectively. Based on hierarchy (3), the complete data log-likelihood function lc(Θ)
becomes

lc(Θ) = C−
n∑

i=1

log
η

zi
− 1

2

n∑

i=1

(yi − δ − λpi
η

)2

z2i ,

where C is a constant independent of the parameters vectorΘ = (η, λ, δ)T . The conditional expectationQ
(
Θ
∣∣Θ(t)

)
=

E
(
lc(Θ;p, z)

∣∣Θ(t),y
)
of complete data log-likelihood function is given by

Q
(
Θ
∣∣Θ(t)

)
=C− n log η − 1

2η2

n∑

i=1

(
yi − δ

)2
E
(
Z2
i

∣∣Θ(t), yi
)

+
λ

η2

n∑

i=1

(
yi − δ

)
E
(
Z2
i Pi

∣∣Θ(t), yi
)
− λ2

2η2

n∑

i=1

E
(
Z2
i P

2
i

∣∣Θ(t), yi
)
, (4)

where Θ(t) =
(
η(t), λ(t), δ(t)

)T . In order to complete the E-step of the EM algorithm we need to compute the
conditional expectations given in (4). We have

E
(t)
ri =E

(
Z2
i P

r
i

∣∣∣Θ(t), yi

)
=

2

π2ηf
(
y
∣∣θ
)
∫ +∞

−∞

∫ +∞

0

pr exp{−t} cos
(
pt+ 2

π t log t
)

[
1 +

(
y−δ−λp

η

)2]2 dpdt. (5)



302 M. Teimouri / The 3rd National Congress on Mathematics and Statistics

Details for approximating the required expectations for completing E-step are given in Appendix B. The steps of the
EM algorithm are given by the following.

• E-step: Given a current guess of Θ, i.e., Θ(t), compute E(t)
ri given in (5) for r = 0, 1, 2 and i = 1, · · · , n.

• M-step: Update Θ(t) as Θ(t+1) by maximizing Q
(
Θ
∣∣Θ(t)

)
given in (4) with respect to δ, η, and λ. We have

(
η(t+1)

)2
=

∑n
i=1

(
yi − δ(t)

)2
E

(t)
0i +

(
λ(t)

)2 ∑n
i=1 E

(t)
2i

n
− 2

λ(t)
∑n

i=1

(
yi − δ(t)

)
E

(t)
1i

n
, (6)

λ(t+1) =

∑n
i=1

(
yi − δ(t)

)
E

(t)
1i∑n

i=1 E
(t)
2i

, (7)

δ(t+1) =

∑n
i=1 yiE

(t)
0i − λ(t+1)E

(t)
1i∑n

i=1 E
(t)
0i

. (8)

Both of E- and M-steps are repeated until convergence occurs.

Using the quantities given in (6)-(8), the parameter vector Θ(t) is updated as Θ(t+1) =
(
η(t+1), λ(t+1), δ(t+1)

)T .
Once we have obtained Θ(t+1), the parameter vector θ(t) is updated as θ(t+1) =

(
β(t+1), σ(t+1), µ(t+1)

)T . For
this aim, the root of the equation βη(t+1) − λ(t+1)(1 − |β|) = 0 is considered as β(t+1). Also, we have σ(t+1) =
λ(t+1)/(1− |β(t+1)|) and µ(t+1) = δ(t+1) − 2/πβ(t+1)σ(t+1) log |β(t+1)σ(t+1)|, for |β(t+1)| ̸= 1.

Remark 2.2. Computing the quantities given in right-hand side of (5), requires to evaluate three two-dimensional
integrates in each iteration of the EM algorithm. For reduce the computational burden, we used the Monte Carlo
approximation of these integrals.

3. EM algorithm for mixture of Cauchy distributions

The mixture of α-stable distributions has been considered as a suitable model for statistical analysis of the phenomena
with multimodal and heavy-tailed relative frequency [7, 41, 42, 46]. The works by [7] and [41] focused on estimating
the parameters of themixture ofα-stable distributions that is computationally cumbersome. [42] proposed the Bayesian
framework for estimating the parameters of the symmetric α-stable mixture model that possessing a lesser number of
parameters an so, requires less computational effort compared with that of [7] and [41]. Additionally, [46] proposed
the EM algorithm for estimating the parameters of the mixture of symmetric α-stable distributions that is faster than
all these works. There is a considerable difference between the work of [46] and that we are dealing with in this work.
In the work by [46], for each component, the parameter α varies in (0,2] and parameter β is zero. In contrast, in this
work, for each component the parameter β varies in (-1,1) and parameter α is one. The probability density function
FY (y|Ψ), of the Cauchy mixture model is represented by

FY (y|Ψ) =

K∑

j=1

ωjfY (y|θj), (9)

where the constantK denotes the number of components, θj =
(
βj , σj , µj)

T , for j = 1, · · · ,K is the parameter vec-
tor of the j-th component, fY (y|θj) is the probability density function of the j-th component in class Ca

(
βj , σj , µj

)
,

and Ψ =
(
ω1,θ

T
1 , · · · , ωK ,θT

K

)T is the whole parameter vector. The vector of mixing parameters is shown by
ω =

(
ω1, · · · , ωK

)T in which wjs, for j = 1, · · · ,K are non-negative values summing up to one.

3.1. Identifiability of the mixture of Cauchy distributions
A finite mixture distribution is identifiable if distinct mixing distributions with finite support correspond to distinct
mixtures. The concept of identifiability plays main role in parameter estimation and hypothesis testing. It is shown that
the label switching can lead to difficulties when model-based clustering is carried out within the Bayesian paradigm
[45], but when we are working within the EM algorithm framework, lack of identifiability can be resolved by defining
some ordering on the mixing parameters [4].
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Definition 3.1. [Holzmann et al. (2006)] Finite mixtures from the family G = {f(x|Λ)| Λ = (λ1, · · · , λd)
T ∈ Rd}

are identifiable if the relation of the form

K∑

j=1

ωjf
(
x|Λj

)
=

K∑

j=1

ω
′
jf

(
x|Λ′

j

)
,

where
∑K

j=1 ωj =
∑K

j=1 ω
′
j = 1 and ωj , ω

′
j ≥ 0 for j = 1, · · · ,K, implies that there exists a permutation q ∈ SK

such that
(
ωj ,Λj

)
=

(
ω

′
q(j),Λ

′
q(j)

)
for all j.

It is known that symmetric Cauchy mixture models are identifiable [20, Theorem 1]. For the Cauchy mixture model
with probability density function given in (9) the following result holds.

Theorem 3.2. Finite mixtures of the family G =
{
fY (y|θ)| θ = (β, σ, µ)T : β ∈ [−1, 1], σ ∈ R+, µ ∈ R

}
are

identifiable when σβ is constant.

Proof: Proof of Theorem 3.2 is given in Appendix C.

Corollary 3.3. The class of Cauchy mixture models with probability density function given in (9) is identifiable if each
components follows a symmetric ordinary Cauchy distribution, i.e., when βj = 0 for j = 1, · · · ,K.

As it is seen from Corollary 3.3, the call of Cauchy mixture models are not identifiable generally, but we have not
observed any problem in simulation study due to the non-identifiability. It is worth noting that lack of identifiability
can be resolved by defining some ordering on the mixing parameters [4].

3.2. Estimation of model parameters
The log-likelihood function of the Cauchymixturemodel with probability density function given in (9) has complicated
form and hence computing the ML estimators is a very difficult task. Fortunately each Cauchy random variable can
be represented as a complete data problem that makes it easy to implement the EM algorithm. So, the EM algorithm
can be applied for estimating the parameters of a Cauchy mixture model. We follow the method given by [39, 48] to
represent the complete data log-likelihood function. The complete data related to the mixture model given in (9) is
shown by ξ =

(
ξT1 , · · · , ξTn

)T
=

(
(y1, p1, z1, b

T
1 ), · · · , (yn, pn, zn, bTn )

)T in which y = (y1, · · · , yn)T is vector of
observed data, p = (p1, · · · , pn)T and z = (z1, · · · , zn)T are vectors of unobserved data, and b = (bT1 , · · · , bTn )T
where bi = (bi1, · · · , biK)T as the realizations of the latent vectorBi =

(
Bi1, · · · , BiK

)T . For each observed value
such as yi, for i = 1, · · · , n, one of the components of Bi is one and others are zero. For instance, if yi comes from
the j-th component, then Bij = 1 and Bik = 0, for k = 1, · · · ,K and k ̸= j. If random variable Y has a probability
density function of the form FY (y|Ψ), then Y admits a hierarchy given by the following.

Yi

∣∣Zi = zi, Pi = pi, Bij = 1 ∼ N
(
δj + λjpi,

η2j
z2i

)
,

Pi ∼ Ca(1, 1, 0),

Zi ∼ N (0, 1),

Bi ∼ Multinomial(1, ω1, . . . , ωK), (10)

for j = 1, . . . ,K and i = 1, . . . , n. Based on representation (10) the complete data log-likelihood function is

lc
(
Θ;p, z, b

)
=C+

n∑

i=1

K∑

j=1

bij logωj −
n∑

i=1

K∑

j=1

bij

(
log

ηj
zi

+

(
yi − δj − λjpi

)2
z2i

2η2j

)
, (11)

whereΘ =
(
ΘT

1 , . . . ,Θ
T
K

)T
=

(
(ω1, η1, λ1, δ1), . . . , (ωK , ηK , λK , δK)

)T and C is a constant independent ofΘ. Tak-
ing the expectation after expanding and rearranging the right-hand side of (11), the conditional expectationQ

(
Θ
∣∣Θ(t)

)
=
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E
(
lc(Θ;p, z, b)

∣∣Θ(t),y
)
of the complete data log-likelihood function at the t-th iteration of the EMalgorithm becomes

Q
(
Θ|Θ(t)

)
=

n∑

i=1

K∑

j=1

E
(t)
1ij logωj −

n∑

i=1

K∑

j=1

E
(t)
1ij log ηj −

1

2

n∑

i=1

K∑

j=1

(yi − δj
ηj

)2

E
(t)
2ij

+

n∑

i=1

K∑

j=1

(
yi − δj

)
λj

η2j
E

(t)
3ij −

1

2

n∑

i=1

K∑

j=1

(λj

ηj

)2

E
(t)
4ij ,

where

E
(t)
1ij =E

(
Bij

∣∣∣Θ(t), yi

)
=

ω
(t)
j fY

(
yi
∣∣θ(t)

j

)
∑K

j=1 ω
(t)
j fY

(
yi
∣∣θ(t)

j

) , (12)

E
(t)
2ij =E

(
BijZ

2
i

∣∣∣Θ(t), yi

)
= E

(t)
1ijE

(
Z2
i

∣∣∣Θ(t)
j , yi

)
, (13)

E
(t)
3ij =E

(
BijZ

2
i Pi

∣∣∣Θ(t), yi

)
= E

(t)
1ijE

(
Z2
i Pi

∣∣∣Θ(t)
j , yi

)
, (14)

E
(t)
4ij =E

(
BijZ

2
i P

2
i

∣∣∣Θ(t), yi

)
= E

(t)
1ijE

(
Z2
i P

2
i

∣∣∣Θ(t)
j , yi

)
, (15)

in which Θ
(t)
j =

(
ω
(t)
j , η

(t)
j , λ

(t)
j , δ

(t)
j

)T . The quantities E
(
Z2
i P

r
∣∣Θ(t)

j , yi
)
, for r = 0, 1, 2, given in the right-hand

side of (13)-(15) are computed in the same fashion as described in (5). Both of E- and M-steps of the EM algorithm
are given by the following.

• E-step: At the t-th iteration, given a guess ofΘ such asΘ(t), the quantitiesE
(
Z2
i P

r
i

∣∣Θ(t)
j , yi

)
given in (12)-(15)

are computed for r = 0, 1, 2, j = 1, · · · ,K, and i = 1, · · · , n.
• M-step: At the t-th iteration, the M step maximizes Q

(
Θ
∣∣Θ(t)

)
with respect to Θj to obtain the elements of

Θ
(t+1)
j as follows.

ω
(t+1)
j =

ω
(t)
j fY

(
yi
∣∣θ(t)

j

)
∑K

j=1 ω
(t)
j fY

(
yi
∣∣θ(t)

j

) , (16)

δ
(t+1)
j =

∑n
i=1 yiE

(t)
2ij − λ

(t)
j

∑n
i=1 E

(t)
3ij∑n

i=1 E
(t)
2ij

, (17)

(
η
(t+1)
j

)2

=

∑n
i=1 E

(t)
2ij

(
yi − δ

(t+1)
j

)2

∑n
i=1 E

(t)
1ij

+

(
λ
(t)
j

)2∑n
i=1 E

(t)
4ij

∑n
i=1 E

(t)
1ij

− 2λ
(t)
j

∑n
i=1 E

(t)
3ij

(
yi − δ

(t)
j

)

∑n
i=1 E

(t)
1ij

, (18)

λ
(t+1)
j =

∑n
i=1 E

(t)
3ij

(
yi − δ

(t+1)
j

)

∑n
i=1 E

(t)
4ij

,

for j = 1, . . . ,K . Using the quantities given in (16)-(18), the parameter vector Θ(t) is updated as Θ(t+1)
j =

(
ω(t+1), η(t+1), λ(t+1), δ(t+1)

)T , for j = 1, · · · ,K. Once we have obtained Θ(t+1), the elements of the pa-
rameter vector Ψ(t) are updated, for j = 1, · · · ,K, as follows. The vector of mixing parameters is updated
from (16). For updating θ

(t)
j =

(
β
(t)
j , σ

(t)
j , µ

(t)
j

)T , note that the root of the equation βη
(t+1)
j − λ

(t+1)
j (1 −

|β|) = 0 is considered as β(t+1)
j . Also, we have σ

(t+1)
j = λ

(t+1)
j /(1 − |β(t+1)

j |) and µ
(t+1)
j = δ

(t+1)
j −

2/πβ
(t+1)
j σ

(t+1)
j log |β(t+1)

j σ
(t+1)
j |, for |β(t+1)

j | ̸= 1.

Remark 3.4. Analogous to the one-component case, computing the quantities given in right-hand sides of (13)-(15),
requires to evaluate three two-dimensional integrates in each iteration of the EM algorithm for each component. For
reduce the computational burden, we used the Monte Carlo approximation of these integrals.
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4. Initial values, robustness analysis, and stopping criterion

Here we perform some investigations about the initial values, robustness, and stopping criterion of the EM algorithm
proposed in Section 2 (for one-component) and Section 3 (for mixture model).

4.1. Initial values and robustness analysis for one-component model
The initial (starting) values for implementing the EM algorithm play important role to reach convergence. It turns
out that the estimators of the parameters based on empirical characteristic function (ECF) method suggested in [23]
provide reasonable initial values for implementing the EM algorithm introduced in Section 2. In what follows, we
compare the performance of the EM algorithm when the initial values are provided using two scenarios. In the first
scenario, we use the ECF estimators as the initial values and in the second scenario the initial values are drawn from
uniform distributions. In the second scenario, for implementing the EM algorithm in each run, the initial values of the
parameters, i.e., β, σ, and µ follow U(−1, 1), U(0.1, 10), and U(−10, 10), respectively. During comparison study,
we set β = 0.9, σ = 1, and µ = 0. The central processing unit (CPU) usage time is shown in Figure 2. As it is seen,

●
●
●
●●●●●
●●●●●●●
●
●
●
●●●
●●
●●●●
●●
●● ●●●●●

●
●
●●
●
●
●●●
●
●●●●●●●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
10

20
30

40
50

Sample size

30 300 3000

0
10

20
30

40
50

●
●

●

●
●

●

●●●

●

●●●
●
●●●
●

●●●

●

●●

●●●
●
●

●

●

●

●●

●

●

●

●●
●
●
●
●

●

●
●

●

●
●

●●
●
●
●
●
●
●●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●●●

●●

0
5

10
15

20

Sample size

30 300 3000

0
5

10
15

20

Fig. 2. Left-hand side: CPU usage time (in seconds) when the initial values are allowed to come from uniform distribution. Right-hand side: CPU
usage time (in seconds) when the ECF estimators are used as the initial values.

the CPU usage time in left-hand side are clearly more scattered than those of the right-hand side. This means that the
ECF estimators speed up the convergence of the EM algorithm. So, we use the ECF estimators as the initial values.
Also, as a further investigation, the EM algorithm introduced in this work has a complexity of O(n2) where n is the
sample size.

4.2. Stopping criterion for the one-component case
Suppose l(θ(t)) denotes the log-likelihood value at t-th iteration of the EM algorithm and is defined as

l(θ(t)) =
n∑

i=1

log fY
(
yi
∣∣θ(t)

)
. (19)

Based on Aitken’s acceleration criterion, the convergence occurs id the predicted value, i.e.,

l∞ = l(θ(t−1)) +
1

1− LR(t)

[
l(θ(t))− l(θ(t−1))

]
,

is substantially larger than l(θ(t)) or

LR(t) =
l(θ(t+1))− l(θ(t))

l(θ(t))− l(θ(t−1))
,

is close to zero [25]. Unfortunately, the Aitken’s acceleration criterion dose not work reasonably well for the EM
algorithm presented in this work, since in each iteration the expected values in E-step are approximated by the Monte
Carlo simulation. So, we suggest the use of an algorithm given by the following for stopping the EM algorithm.
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1. Suppose θ(0) denotes the initial value of the parameter vector. SetR(1)

θ(0) = 1;
2. Set g = 2;
3. Suppose we are currently at (100g + 1)-th iteration of the EM algorithm. Evaluate

R(g)

θ(100g+1) =
l(θ(100g+1))− 2l(θ(100(g−1)+1)) + l(θ(100(g−2)+1))

l(θ(100(g−1)+1))− l(θ(100(g−2)+1))
;

4. If

min
{
R(g)

θ(g) ,
R(g)

θ(g) −R(g−1)

θ(g−1)

R(g−1)

θ(g−1)

}
< 0.05,

then go to the next step; otherwise set g = g + 1 and go to step (3) of the algorithm;
5. Accept θ(100g+1) as the EM estimators for the parameter vector and stop the EM algorithm.

4.3. Initial values and robustness analysis for mixture model
For estimating the parameters of the Cauchy mixture model using the EM algorithm proposed in Section 3, the initial
values are determined by K-means clustering. For this purpose, before implementing the EM algorithm, observations
are partitioned intoK groups and assuming that observations within each group follow a Cauchy distribution, the ECF
method is applied to each group for estimating the parameters of each group. The ratio of group sizes to the number
of observations is considered as the initial values of the mixing parameters.
In order to investigate the robustness of the EM algorithm with respect to initial values, we simulate 600 samples
of size 1000 under four scenarios as described in Table 1. For each scenario, the initial values come from uniform
distribution over (a, b) as indicated in Table 1 by ub

a. The results of simulations are shown in Figure 3. There are
three curves in each sub-figure of Figure 3 including the estimated probability density function, the probability density
function under true parameters of scenario, and probability density function under initial values of scenario. It should
be noted that the averages of the estimated parameters after 600 runs are used to compute the estimated probability
density function. We note that for drawing the probability density function of the Cauchy mixture models we have
used software STABLE available at http://www.robustanalysis.com.

Table 1. Scenarios for checking the robustness of the EM algorithmwhen it is applied to two-component Cauchymixturemodel. Note that a ∼ u0.8
0.2.

Parameters
Scenario Parameter State ω1 ω2 β1 β2 σ1 σ2 µ1 µ2

1 true value 0.7 0.3 0 0 0.5 0.5 -1 1
initial value a 1-a u0.9

0 u0.9
0 u5

3 u5
3 u−5

−15 u15
5

2 true value 0.7 0.3 0 0 0.75 0.75 -1 1
initial value a 1-a u0.9

0 u0.9
0 u6

4 u6
4 u−5

−15 u15
5

3 true value 0.7 0.3 0.9 0.9 0.5 0.5 -1 1
initial value a 1-a u0.5

−0.5 u0.5
−0.5 u5

3 u5
3 u−5

−15 u15
5

4 true value 0.7 0.3 0.9 0.9 0.75 0.75 -1 1
initial value a 1-a u0.5

−0.5 u0.5
−0.5 u6

4 u6
4 u−5

−15 u15
5

4.4. Stopping criterion for the mixture model
As a criterion for stopping the EM algorithm applied to the mixture of Cauchy distributions, we use the stopping
criterion for the EM algorithm that has been applied to the Cauchy distribution introduced in Subsection 4.2.
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Fig. 3. Histogram of 1000 observations from two-component Cauchy mixture model under four scenarios. The first scenario (top left), second
scenario (top right), third scenario (bottom left), and fourth scenario (bottom right). Superimposed are estimated probability density function (blue
solid curve), computed probability density function under true parameters of scenario (red dashed curve), and probability density function under
initial values of scenario (dotted black curve).

5. Simulation and real data analysis

Here, the performance of the EM algorithm proposed in Section 2 (for one-component) and Section 3 (for mixture
model) will be demonstrated through simulations and real data applications. This section has four parts. In Subsection
5.1, we perform a simulation study to compare the performance of the EM and ML approaches for estimating the
parameters of the class Ca(β, σ, µ). We use the software STABLE for computing the ML estimators. A simulation
study is carried out in Subsection 5.2 in order to investigate performance of the EM algorithm for estimating parameters
of the two-component Cauchy mixture model. Performance of the EM algorithm in one- and two-component cases
will be demonstrated by applying it to the real data in Subsections 5.3 and 5.4, respectively. We note that the right-hand
sides of (5) in both one- and multi-component cases is approximated by the Monte Carlo simulation.

5.1. One-component model validation via simulation
Here, we perform a simulation study to compare the performances of the EM andML approaches for estimating the pa-
rameters of the classCa(β, σ, µ). To do this, we setµ = 0, σ = 0.1, 2, 5, andβ = 0.0, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90
and for each combination of these settings of parameters, a sample of 300 realizations are generated from class
Ca(β, σ, µ). Comparisons between the EM and ML approaches are made based on the root of mean square error
(RMSE). Since the required expectations in the E-step of the EM algorithm are approximated by the Monte Carlo
simulation, so there is a small difference between RMSE of the EM and ML estimators as it is seen in Figure 4.

5.2. Mixture model validation via simulation
Here, we perform a simulation study to investigate the performance of the EM algorithm in estimating the parameters
of two-component Cauchy mixture model. For this purpose, we generate a sample of size 1000 for 600 runs under
each of four scenarios given by the following.
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Fig. 4. The RMSE of estimators obtained through the EM and ML approaches. The estimators are obtained when realizations of size 300 are
generated for from class Ca(β, σ, µ) for 600 runs. In each sub-figure, the subscripts ML and EM indicate that the estimators β̂, σ̂, and µ̂ are
obtained using the EM algorithm (blue solid line) or the ML approach (red dashed line). Sub-figures in the first, second, and the third columns
correspond to σ = 0.10, σ = 2, and σ = 5, respectively.

• β = (β1, β2)
T = (β, β)T for β = 0.0, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90, σ = (σ1, σ2)

T = (0.25, 0.25)T ,
µ = (µ1, µ2)

T = (−3, 3)T , and ω = (ω1, ω2)
T = (0.5, 0.5)T .

• β = (β1, β2)
T = (β, β)T for β = 0.0, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90, σ = (σ1, σ2)

T = (0.5, 0.5)T , µ =

(µ1, µ2)
T = (−3, 3)T , and ω = (ω1, ω2)

T = (0.5, 0.5)T .

• β = (β1, β2)
T = (β, β)T for β = 0.0, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90, σ = (σ1, σ2)

T = (0.5, 0.5)T , µ =

(µ1, µ2)
T = (−1, 1)T , and ω = (ω1, ω2)

T = (0.7, 0.3)T .

• β = (β1, β2)
T = (β, β)T for β = 0.0, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90, σ = (σ1, σ2)

T = (0.75, 0.75)T ,
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µ = (µ1, µ2)
T = (−1, 1)T , and ω = (ω1, ω2)

T = (0.7, 0.3)T .

The results of simulations are displayed in Figure 5 and Figure 6. We note that theML approach that has been developed
for the one-component stable distributions cannot be applied for the mixture of Cauchy distributions. Theorem 3.2
states that the class of the Cauchy mixture models are identifiable only under this condition that σβ is constant, but
we have not observed any source of non-identifiability during simulation study carried out in Subsection 4.3 (for
robustness analysis) and herein. It should be noted that the problem of non-identifiability can be solved by defining
some ordering on the mixing parameters [4].

5.3. One-component model validation using real data
Here, we consider the features related to large intensities (in Richter scale) of the earthquake recorded in seismometer
locations in western North America between 1940 and 1980 [9, 21]. Among the features, we focus on 182 distances
between seismological measuring station and epicenter of the earthquake (in km) as the variable of interest. This set
of data can be found in package nlme developed for R environment. The histogram of distances superimposed by the
estimated probability density function as well as the time series plots of the EM algorithm across iterations are shown
in Figure 7. The EM-based estimators are µ̂ = 16.685, σ̂ = 11.423, and β̂ = 0.918. The corresponding Kolmogorov-
Smirnov (K-S) statistic is 0.0428. Furthermore, we consider other candidates for modelling this set of data including
normal, skew normal, t, skew t, symmetric α-stable, and α-stable distributions. The K-S statistics correspond to these
candidates are 0.2464, 0.2953, 0.1886, 0.0505, 0.178, and 0.034, respectively, leading us to believe that just α-stable
works better than the Cauchy for modelling this set of data. This fact that α-stable provides better fit than the Cauchy
distribution is not a strange outcome since α-stable is a wider class that involves the Cauchy distribution. We note that
for modelling data using normal, skew normal, t, and skew t, we have used the package sn [1] and mixsmsn [40].
Also, for modelling data using α-stable distribution the package STABLE. All these packages have been developed
for R environment.

5.4. Two-component mixture model validation using real data
Here, application of the two-component Cauchy mixture model will be illustrated using two sets of real data. The first
set is related to the diagnostic tests on patients with cushing’s syndrome [47] and the second set is the survival time in
days of 72 guinea pigs infected with virulent tubercle bacilli [2]. For cushing’s syndrome data that is available in MASS
package developed for R environment, we focus on the urinary excretion rate (mg/24hr) of tetrahydrocortisone. We use
the EM algorithm described in Section 3 for modelling this set of data using two-component Cauchy mixture model.
To implement the EM algorithm, we use the initial values ω0 = (0.70, 0.30)T , σ0 = (1, 3)T , β0 = (0.95, 0.95)T ,
and µ0 = (3, 10)T . The updated parameters are plotted against iterations in Figure 8. The EM-based estimators of
the parameters are ω̂ = (0.481, 0.519)T , σ̂ = (0.967, 2.702)T , β̂ = (0.954, 0.920)T , and µ̂ = (3.088, 9.849)T . The
fitted distribution function shown in the left-hand side of Figure 9 captures general shape of the empirical distribution
function well. The corresponding K-S statistic is 0.0852. For survival time of guinea pigs, we used initial values
ω0 = (0.65, 0.35)T , σ0 = (20, 55)T , β0 = (0.20, 0.05)T , and µ0 = (110, 250)T . Applying the EM algorithm,
the ML estimators are obtained as ω̂ = (0.540, 0.460)T , σ̂ = (16.391, 39.119)T , β̂ = (0.123, 0.828)T , and µ̂ =
(107.166, 196.929)T . The corresponding K-S statistic is 0.0563. The fitted distribution function to the survival time
of guinea pigs is shown in Figure 9 (right-hand side). As a further study, we demonstrate that two-component Cauchy
mixture model (shown in Table 2 by MC) outperforms other candidates that can be considered for modelling above
sets of data. These candidates consist of two-component mixtures of normal (MN), skew normal (MSN), Student’s t
(MT), skew Student’s t (MST), and symmetric α-stable (MSαS). It turns out from Table 2 that MC provides better fit
than other competitors for both survival time of guinea pigs and urinary excretion rate data. Furthermore, we followed

Table 2. Computed K-S statistic when two-component mixture models including normal (MN), skew normal (MSN), Student’s t (MT), skew
Student’s t (MST), symmetric α-stable (MSαS), and Cauchy (MC) are fitted to survival time of guinea pigs and urinary excretion rate data.

Candidate
Dataset MN MSN MT MST MSαS MC

Survival time 0.0910 0.0672 0.1327 0.0776 0.071 0.0623
Urinary excretion rate 0.1337 0.1112 0.0886 0.1009 0.125 0.0798
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the method of Louis (1982) for computing the observed Fisher information matrix (FIM) of the EM estimators, see
Appendix D. By inverting observed FIM, we can find the standard error of the EM estimators. The standard errors of
the estimators obtained using the EM algorithm applied to real data are given in Table 3.

Table 3. Computed standard errors of the estimators obtained using the EM algorithm applied to the real data.
EM estimators

ω̂1 β̂1 σ̂1 µ̂1 ω̂1 β̂2 σ̂2 µ̂2

Survival time 0.0921 0.2877 3.9380 10.6309 0.1216 0.3992 10.7953 39.4761
Urinary excretion rate 0.1089 0.5298 0.2725 0.1354 0.1205 0.2078 1.0463 0.3773

6. Conclusion

In this paper, we have derived the expectation-maximization (EM) algorithm for estimating the parameters of Cauchy
and mixture of Cauchy distributions. In both cases, performance of the EM algorithm has been shown by simulations
and real data applications. It has been shown that the mixture of Cauchy distributions are robust with respect to the
initial values. Also since Cauchy is a heavy-tail distribution, so the mixture of Cauchy distributions can be used
appropriately for robust mixture modelling. Real data analysis demonstrated that a two-component Cauchy mixture
model gives superior performance than other commonly used models such as mixture of normal, skew normal, t,
and skew t distributions. Programs written in R environment for implementing the EM algorithm are available upon
request.

Appendices

Appendix A. Proof of Theorem 2.1

Let T and P denote two independent random variables which follow Ca(0, 1, 0) and Ca(1, 1, 0), respectively. Define
Y = ηT + λP + δ in which η = σ (1− |β|), λ = σβ, and δ = µ+ 2/πλ log |λ|. We can write

E exp(itY ) =E exp
{
it
[
σ (1− |β|)T + λP + δ

]}

=E exp
{
it
[
σ (1− |β|)T + δ

]}
E exp

{
itλP

}

= exp
{
−(1− |β|) |σt|+ itδ

}
E exp

{
itλP

}

= exp
{
−(1− |β|) |σt|+ itµ+ it

2

π
σβ log |σβ|

}
E exp

{
itλP

}
. (A.1)

It follows from that

E exp
{
itλP

}
= exp

{
− |λt|

[
1 + i

2

π
sign(λ)sign(t) log |λt|

]}
= exp

{
− |σβt| − it

2

π
σβ log |t| − it

2

π
σβ log |σβ|

}
.

(A.2)

Substitute the right-hand side of (A.2) into the right-hand side of (A.1). It turns out that

E exp(itY ) = exp
{
−|σt|

[
1 + i

2

π
βsign(t) log |t|

]
+ it

(
µ+

2

π
σβ log |σβ| − 2

π
σβ log |σβ|

)}
,

= exp
{
−|σt|

[
1 + i

2

π
βsign(t) log |t|

]
+ itµ

}
,

where the last expression is the chf of Y ∼ Ca(β, σ, µ). LetN andZ denote two independent standard normal random
variables. It is well-known that T can be represented as the ratio ofN andZ. Therefore, Y = ηN/Z+λP+δ follows
Ca(β, σ, µ). The proof is complete.
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Appendix B. Computing E
(
Z2P r

∣∣Θ, y
)

LetN (a, b) denote a normal distribution with mean a and variance b, whose probability density function is shown by
g(.|a, b). The random variable Z follows N (0, 1) and fY (.) is the probability density function of Y ∼ Ca(β, σ, µ).
Also, h(.) denotes the probability density function of P ∼ Ca(1, 1, 0). Define I = E

(
Z2P r

∣∣Θ, y
)
, for r = 0, 1, 2.

Based on hierarchy (3), the joint distribution of Z, P and Y can be represented as the product of g
(
y
∣∣δ + λp, η2/z2

)
,

g(z|0, 1), and h(p). So, we can write

I =

∫
R
∫
R z2prg

(
y
∣∣δ + λp, η2/z2

)
g(z|0, 1)h(p)dzdp

f(y|θ) (B.1)

Substituting the probability density functions g
(
y
∣∣δ + λp, η2/z2

)
and g(z|0, 1) in the right-hand side of (B.1) and

some algebraic simplifying, it follows that

I =
1

f
(
y
∣∣θ
)
∫

R

∫

R
z2pr

|z|e− z2(1+q2)
2

2πη
h(p)dzdp,

where q = (y − δ − λp)/η and η = σ (1− |β|). Use a change of variable of the form z2(1 + q2)/2 = w to see

I =
2

f
(
y
∣∣θ
)
∫

R

prh(p)

πη(1 + q2)2
dp (B.2)

where r = 0, 1, 2. It turns out from (1) that the probability density function of P that follows Ca(1, 1, 0) can be
represented as

h(p) =
1

π

∫ +∞

0

exp{−t} cos
(
pt+

2

π
t log t

)
dt. (B.3)

Substituting the right-hand side of (B.3) into the right-hand side of (B.2), we have

I =
2

π2ηf
(
y
∣∣θ
)
∫ +∞

−∞

∫ +∞

0

pr exp{−t} cos
(
pt+ 2

π t log t
)

[
1 +

(
y−δ−λp

η

)2]2 dpdt. (B.4)

The result follows.

Appendix C. Proof of Theorem 3.2

In order to investigate the identifiability of the Cauchy mixture model represented in (9) we follow the standard pro-
cedure given by Definition 3.1. Suppose G =

{
fY (y|θ) ∈ Ca(β, σ, µ)

∣∣σβ = C, β ∈ [−1, 1], σ ∈ R+, µ ∈ R
}
where

C denotes a constant. To start, assume that µ = 0 and set γ = (β, σ)T . We order G by defining an ordering on γ as:
γ1 ≺ γ2 if σ2 > σ1 and β2 > β1. We can write

lim
t→∞

ϕγ2
(t)

ϕγ1
(t)

= lim
t→∞

exp
{
− |σ2t| [1 + i 2πβ2 sgn(t) log |t|]

}

exp
{
− |σ1t| [1 + i 2πβ1 sgn(t) log |t|]

}

= lim
t→∞

exp
{
−(σ2 − σ1)|t| − i

2

π
(σ2β2 − σ1β1)t log |t|

}
= 0. (C.1)

Now, suppose that there exists a relation such that

K∑

j=1

πjfY (y|θj) = 0, (C.2)
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where πj ∈ R, θj = (βj , σj , µj)
T , and fY (y|θj) ∈ Ca(βj , σj , µj) in which θj is pairwise distinct. Applying the

Fourier transform on the both sides of (C.2), we have

K∑

j=1

πje
itµjϕγj

(t) = 0. (C.3)

For m ≥ 1, define the ordering γ1 ⪯ · · · ⪯ γK such that γ1 = · · · = γm ⪯ γm+1 ⪯ · · · ⪯ γK . Divide both sides
of (C.3) by eitµ1ϕγ1

(t) to see that

π1 +
m∑

j=2

πje
it(µj−µ1) +

K∑

j=m+1

πje
it(µj−µ1)

ϕγj
(t)

ϕγ1
(t)

= 0. (C.4)

Recall that since limt→∞ ϕγ2
(t)/ϕγ1

(t) = 0, therefore the third term in (C.4) is zero when t → ∞. Also, the second
term goes to zero. This means that π1=0 and an inductive argument completes the proof [20].

Appendix D. Observed Fisher information matrix (FMI)

Using the method proposed by [29], let us to rewrite the complete data log-likelihood function presented in (11) as
follows.

L(Θ|B,y) =C+

n∑

i=1

K∑

j=1

Bij logωj +

n∑

i=1

K∑

j=1

Bij log fY (yi|θ), (D.1)

where fY (yi|θ) is the probability density function of Y ∼ Ca(β, σ, µ) as defined in (1) and ω = (ω1, · · · , ωK)T

is vector of mixing parameters. Further, B =
(
B1, · · · ,Bn

)T denotes the vector of missing component labels as
described in Subsection 3.2. As suggested by Louis (1985), the observed FIM Iy , is represented as follows.

Iy =−
n∑

i=1

E
(∂2L(Θ|B, yi)

∂Θ∂ΘT

∣∣∣yi,Θ∗
)∣∣∣∣

Θ=Θ∗
−

n∑

i=1

E
(∂L(Θ|B, yi)

∂Θ

∂L(Θ|B, yi)

∂ΘT

∣∣∣yi,Θ∗
)∣∣∣∣

Θ=Θ∗

+
n∑

i=1

E
(∂L(Θ|B, yi)

∂Θ

∣∣∣yi,Θ∗
)
E
(∂L(Θ|B, yi)

∂ΘT

∣∣∣yi,Θ∗
)∣∣∣∣

Θ=Θ∗

= −I1 − I2 − I3, (D.2)

whereΘ =
(
ΘT

1 , · · · ,ΘT
K

)T
= (ω1,θ

T
1 , · · · , ωK ,θT

K

)T with θj =
(
βj , σj , µj

)T , for j = 1, · · · ,K. For computing
Iy given in (D.2), we need to compute elements of the conditional expected complete data observed information I1
(Hessian matrix of the complete data log-likelihood function (D.1)), matrix of gradient vector I2, and matrix of I3. To
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construct I1, I2, and I3 we need the following quantities.

E
(∂L(Θ|B,y)

∂ωj

∣∣∣y,Θ∗
)∣∣∣∣

Θ=Θ∗
=

n∑

i=1

E∗
ij

ω∗
j

, (D.3)

E
(∂L(Θ|B,y)

∂βj

∣∣∣y,Θ∗
)∣∣∣∣

Θ=Θ∗
=

n∑

i=1

E∗
ij

f
βj

Y (yi|θ∗
j )

fY (yi|θ∗
j )

, (D.4)

E
(∂L(Θ|B,y)

∂σj

∣∣∣y,Θ∗
)∣∣∣∣

Θ=Θ∗
=

n∑

i=1

E∗
ij

f
σj

Y (yi|θ∗
j )

fY (yi|θ∗
j )

, (D.5)

E
(∂L(Θ|B,y)

∂µj

∣∣∣y,Θ∗
)∣∣∣∣

Θ=Θ∗
=

n∑

i=1

E∗
ij

f
µj

Y (yi|θ∗
j )

fY (yi|θ∗
j )

, (D.6)

E
(∂2L(Θ|B,y)

∂ω2
j

∣∣∣y,Θ∗
)∣∣∣∣

Θ=Θ∗
=−

n∑

i=1

E∗
ij

ω∗2
j

, (D.7)

E
(∂2L(Θ|B,y)

∂β2
j

∣∣∣y,Θ∗
)∣∣∣∣

Θ=Θ∗
=
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ij

[fβjβj

Y (yi|θ∗
j )

fY (yi|θ∗
j )

−
(fβj

Y (yi|θ∗
j )

fY (yi|θ∗
j )

)2]
, (D.8)

E
(∂2L(Θ|B,y)

∂σ2
j

∣∣∣y,Θ∗
)∣∣∣∣

Θ=Θ∗
=
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ij
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−
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, (D.9)

E
(∂2L(Θ|B,y)

∂µ2
j

∣∣∣y,Θ∗
)∣∣∣∣

Θ=Θ∗
=

n∑

i=1

E∗
ij

[fµjµj

Y (yi|θ∗
j )

fY (yi|θ∗
j )

−
(fµj

Y (yi|θ∗
j )

fY (yi|θ∗
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)2]
, (D.10)

where θ∗j = (β∗
j , σ

∗
j , µ

∗
j )

T , for j = 1 · · · ,K, and the generic symbols fβj

Y (yi|θj) and f
βjβj

Y (yi|θj), respectively, refer
to the first and second derivatives of Cauchy probability density function fY (yi|θj) given by (1) with respect to βj .
This pattern is valid for the parameters σj and µj , for j = 1, · · · ,K. Moreover,

E∗
ij = E

(
Bij

∣∣∣Θ∗, yi
)
=

ω∗
j fY

(
yi
∣∣θ∗

j

)
∑K

j=1 ω
∗
j fY

(
yi
∣∣θ∗

j

) .

For example, in what follows, we represent the matrices I2 and I3 whenK = 2. We note that the generic symbols fi,
f
βj

i , and fβjβj

i have been used for fY (yi|θ∗
j ), f

βj

Y (yi|θ∗
j ), and f

βjβj

Y (yi|θ∗
j ), respectively. This pattern is valid for σj

and µj (for j = 1, · · · ,K).
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Fig. 5. The RMSE of ω̂, β̂, σ̂, and µ̂ when EM algorithm is applied to the sample of size 1000 generated from two-component Cauchy mixture
model for 600 runs. In each sub-figure, dashed red line and blue solid line refer to RMSE of the estimator for the first and the second components,
respectively.
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Fig. 6. The RMSE of ω̂, β̂, σ̂, and µ̂ when EM algorithm is applied to the sample of size 1000 generated from two-component Cauchy mixture
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respectively.
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Fig. 7. Histogram of 182 distances from the seismological measuring station to the epicenter of the earthquake is shown in top left. Superimposed
is the estimated probability density function with parameters µ̂ = 16.685, σ̂ = 11.423, and β̂ = 0.918. Outputs of the EM algorithm for the
skewness (top right), scale (bottom left), and location (bottom right) across iterations are shown. We note that oscillations in the movement of the
output is due to the fact that expected values in the E-step are obtained by the Monte Carlo approximation. The time for implementing the EM
algorithm for 10000 iterations is almost 490 seconds, but as it is seen the EM algorithm reaches convergence before 1000-th iteration.
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Fig. 8. Output of the EM algorithm across iterations when it is applied to the tetrahydrocortisone data. Outputs are for mixing parameters (top left),
skewness parameters (top right), scale parameters (bottom left), and location parameters (bottom right). We note that oscillations in the movement
of the output is due to the fact that expected values in the E-step are obtained by the Monte Carlo approximation.
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time (right-hand side) data. Estimated distribution function is shown by a blue solid curve.
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Abstract

In comparative reliability experiments, the joint censoring scheme is usually adopted for eval-
uating the performance of two identical products manufactured coming from different lines. In
this paper, the analysis of joint Type-II censored competing risks data is considered. For this
purpose, two random samples from two different lines are simultaneously put on a lifetime test
and in order to save time and cost, a joint Type-II censoring scheme is conducted. Also, it is as-
sumed that lifetime distribution of each competing cause of failure follows independently from
a proportional hazard rate model with different proportionality parameter. Under this setup, the
maximum likelihood estimator of the unknown parameters is discussed.

1. Introduction

Assessing the performance of products plays an essential role in manufacturing industries nowadays. But, there are
situations in which the experimenters plan to compare several competing products. In these situations, comparative
reliability life-tests are obviously most desirable. Also, in reliability life-tests, all lifetimes of all products on life-test
cannot usually be observed due to the time limitation or the costs of experiments. Therefore, censored samples may
occur in practice. When it is desirable to compare products manufactured by several lines in a combined manner, joint
censoring schemes are suggested. There are several types of joint censoring schemes in reliability analysis. In this
paper, we consider the joint Type-II censoring case. Consider products are being produced by two linesL1 andL2. Two
independent samples of sizes n1 and n2 are randomly selected from these two lines and then placed simultaneously
on a life test and the test terminates at the time of the r-th failure. When the r-th failure occurs, all of the surviving
units n1 +n2 − r are removed from the test. Notice that r is pre-fixed. Also, if r = n1 +n2, this censoring scheme is
reduced to complete samples. The joint censored data have been discussed for the parametric inferences on different
distributions. Balakrishnan and Rasouli [1] discussed the exact likelihood-based inferences based on the joint Type-II
censored data coming from two independent exponential distributions. Also, see Rasouli and Balakrishnan [14], Parsi
et al. [13], Doostparast et al. [6], Balakrishnan et al. [2] and Mondal and Kundu [11, 12].
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In reliability theory and survival analysis, when there exist more than one cause of failure (defined as risk factor),
assessing the lifetime of products with an isolated risk factor is not usually possible. Hence, the experimenter needs to
assess the effect of each risk factor in the presence of other risk factors. In these situations, the experimenter encounters
the problem of competing risks. For example, the failure of a bearing assembly may be related to bearing failure or
shaft failure. The data for such a competing risks model must come in a bivariate form composed of the lifetime of
the unit and an indicator variable denoting which risk factor occurred for the unit. In practice, the risk factors may
be statistically independent or dependent. In most situations, however, for analyzing a competing risks model, the
risk factors are assumed to be independent. For more details, see, for example, David and Moeschberger [5] and
Crowder [4]. In this paper, we consider a problem of competing risks involving k risk factors which are statistically
independent. Many researchers have been interested the statistical inferences based on censored data in the presence
of competing risks. For example, Mao et al. [8] and Mao et al. [9] studied the exact likelihood-based inferences
based on the joint Type-II hybrid and the joint Type-I hybrid censored data arising from two independent exponential
distributions, respectively.
Throughout this article, we suppose that the distibution functions (DFs) of lifetimes satisfy the proportional hazard
rate model. Let X and Y be two random variables with hazard rate functions hF and hG, respectively. Then X and
Y are said to satisfy the proportional hazard rate model, proposed by Cox [3], with proportionality constant θ > 0, if
hF (x) = θ hG(x) for all x. Or, equivalently,

F̄ (x) =
(
Ḡ(x)

)θ
, (1)

for all x, where F̄ = 1 − F and Ḡ = 1 − G. This model includes several well-known lifetime distributions such
as exponential, Rayleigh, Pareto, Weibull and so on and is a subclass of the one-parameter exponential family of
distributions. Also, this model is flexible enough to accommodate both monotonic as well as non-monotonic failure
rates even though the baseline failure rate is monotonic. For further details on proportional hazard rate models, one
may refer to Marshall and Olkin [10].
In this paper, we present a brief overview of the considered model in Section 2. Then, we obtain the maximum
likelihood estimators (MLEs) of the unknown parameters in Section 3. We show that these MLEs do not always
exist. In Section 4, under some distributions belonging to proportional hazard rate model, the MLEs of parameters are
derived.

2. Description of model

Assume that we have two production lines denoted by L1 and L2. Also, suppose that each unit from these two lines
fails only by one of k specified fatal risk factors and the time-to-failure by competing risks follows independently from
a proportional hazard rate model as given (1) with the same baseline DF G and the different proportionality constants
θ. In other words, if Tij is the lifetime of a test unit from line Li (i = 1, 2) due to risk factor j (j = 1, . . . , k), the DF
and the probability density function (PDF) of Tij under the model (1) are

Fij(x) = 1−
(
Ḡ(x)

)θij
; x > 0, (2)

and
fij(x) = θij g(x)

(
Ḡ(x)

)θij−1
; x > 0, (3)

respectively, where g is the baseline PDF. Since, we observe only the smaller of {Ti1, . . . , Tik} for i = 1, 2, then the
overall time-to-failure of a test unit is Ti = min(Ti1, . . . , Tik). It is easy to show that the DF and the PDF of Ti for
i = 1, 2 under the exponential distribution, from (2), are, respectively,

FTi
(t) = 1−

k∏

j=1

(
F̄ij(t)

)
= 1−

(
Ḡ(t)

)λi
; t > 0,

and
fTi(t) = λi g(t)

(
Ḡ(t)

)λi−1
; t > 0,
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where λi =
∑k

j=1 θij . Then, Ti follow a proportional hazard ratemodel with the baseline DFG and the proportionality
constant λi.
After conducting a lifetime expriment with adopting the joint Type-II censoring scheme and k competing risks, the
observed data are (W,Z) where W = (W1, . . . ,Wr) is the vector of observed lifetime data with W1 < · · · < Wr,
Z = (Z1, . . . ,Zr) where Zh =

(
Z

(11)
h , . . . , Z

(1k)
h , Z

(21)
h , . . . , Z

(2k)
h

)
for h = 1, . . . , r with Z

(ij)
h = 1 if h-th failure

belongs to line Li and due to risk factor j, otherwise Z(ij)
h = 0 for i = 1, 2 and j = 1, . . . , k.

Based on the obtained data (w, z), the likelihood function of the vector of parameters θ is written as

L(θ;w, z) = C
r∏

h=1





2∏

i=1

k∏

j=1

(
fij(wh) ·

k∏

l=1
l ̸=j

F̄il(wh)

)z
(ij)
h





×
2∏

i=1

(
k∏

j=1

F̄ij(wr)

)ni−mi

, (4)

wheremi =
∑r

h=1

∑k
j=1 z

(ij)
h for i = 1, 2 is the total number of observed failures from lineLi andC is the nomalizing

constant given by

C =
n1!n2!

(n1 −m1)! (n2 −m2)!
.

3. Maximum likelihood estimates

Substituting Equations (2) and (3) into Equation (4), the likelihood function of the vector of parameters θ = (θ11, . . . , θ1k, θ21, . . . , θ2k)
is simplified to

L(θ;w, z) = C

2∏

i=1

k∏

j=1

θ
mij

ij

r∏

h=1

2∏

i=1

k∏

j=1

(
g(wh)

(
Ḡ(wh)

)∑k
l=1 θil−1

)z
(ij)
h (

Ḡ(wr)
)∑2

i=1 λi(ni−mi)
, (5)

wheremij =
∑r

h=1 z
(ij)
h is the total number of observed failures belonging to the line Li which are failed due to risk

factor j between r failures occured.
The log-likelihood function of θ is readily obtained from (5) as

logL(θ;w, z) = logC+

2∑

i=1

k∑

j=1

mij log θij+
r∑

h=1

2∑

i=1

k∑

j=1

z
(ij)
h

[
log g(wh)+

( k∑

l=1

θil−1
)
log Ḡ(wh)

]
+

2∑

i=1

λi(ni−mi) log Ḡ(wr).

Then, we readily obtain the likelihood equations as

∂ logL(θ;w, z)
∂θij

=
mij

θij
+

r∑

h=1

δ
(i)
h log Ḡ(wh) + (ni −mi) log Ḡ(wr) = 0 ; i = 1, 2, j = 1, . . . , k, (6)

where δ(i)h =
∑k

l=1 z
(il)
h for i = 1, 2 and h = 1, . . . , r determines whether h-th failure belongs to the line Li or not.

From Equation (6), the MLE of θij is easily obtained as

θ̂ij = mij

[
−

r∑

h=1

δ
(i)
h log Ḡ(Wh)− (ni −mi) log Ḡ(Wr)

]−1

, (7)

conditional onmij ≥ 1 for all i = 1, 2 and j = 1, . . . , k, that is, θij is estimable if it is observed at least one failure be-
longing to the lineLi caused by risk factor j. Hence, theMLEof the vector of parameters θ = (θ11, . . . , θ1k, θ21, . . . , θ2k)
exists, providedm =

(
m11, . . . ,m1k,m21, . . . ,m2k

)
satisfies the following condition

{
m
∣∣∣mij ≥ 1 for all i = 1, 2, j = 1, . . . , k and

2∑

i=1

k∑

j=1

mij = r

}
.
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4. Special cases

In reliability and life-testing applications, the exponential, Rayleigh and Pareto distributions are extensively used for
modelling the lifetime data; See, for example, Lawless [7]. Therefore, in this paper, we will specifically consider the
following three distributions. However, the conditional MLE obtained here is applicable to any proportional hazard
rate model.

1. Exponential distribution with DF F (x) = 1− exp
{
− θx

}
, x > 0.

2. Rayleigh distribution with DF F (x) = 1− exp
{
− θx2

}
, x > 0.

3. Pareto distribution with DF F (x) = 1− x−θ, x > 1.

Then, from Equation (7), the conditional MLEs of parameters θij (i = 1, 2 and j = 1, . . . , k) under the exponential,
Rayleigh and Pareto distributions are

θ̂ij = mij

[ r∑

h=1

δ
(i)
h Wh + (ni −mi)Wr

]−1

,

θ̂ij = mij

[ r∑

h=1

δ
(i)
h W 2

h + (ni −mi)W
2
r

]−1

,

and

θ̂ij = mij

[ r∑

h=1

δ
(i)
h logWh + (ni −mi) logWr

]−1

,

respectively.
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Abstract

Themain endeavor of this paper is to compare the result of parameter estimation for Archimedean
copulas by using Kendal coefficient and Goodness of fit test. It is seen that on modeling depen-
dency structure of data by the GOFmethod, at the same time, we are able to estimate parameters
and also test the compatibility of copulas to data.

1. Introduction

Copulas are used in modeling the dependence structure between variables, this modeling is irrespective of their
marginal distributions. On the other hand copulas allow to choose different margins and merge the margins into a
genuine multivariate distribution. Sklar (1959) fro the first time used the concept of copula and it has been introduced
by in the following way,
A copula is a function C : [0, 1]2 → [0, 1] which satisfies:
(I) for every u, v in [0, 1], C(u, 0) = 0 = C(0, v), and C(u, 1) = u and C(1, v) = v;
(II) for every u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2 and v1 ≤ v2,C(u2, v2)−C(u2, v1)−C(u1, v2)+C(u1, v1) ≥ 0.
Sklar’s Theorem describes the importance of copulas as follows:
Let X and Y be random variables with joint distribution function H and marginal distribution functions F and G,
respectively. Then there exists a copula C such that, H(x, y) = C(F (x), G(y)), for all x, y in R. If F and G are
continuous, then C is unique. Otherwise, the copula C is uniquely determined on Ran(F )×Ran(G). Conversely, if
C is a copula and F andG are distribution functions, then the functionH is a joint distribution function with margins
F and G. This means that, one-dimensional margins of joint distribution functions are linked by copulas. For a more
formal definition of copulas, the reader is referred to Nelsen (2006).
There are several parametric and non-parametric methods for estimating parameters of copulas. In this paper we
compare the result of parameter estimation for Archimedean copulas by using Kendal confident and also Goodness of
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fit test. It can be an advantage for non-parametric GOF method, as it is able at the same time, to estimate parameters
and also test the compatibility of copulas to data.
This paper is constructed as follows: Section 2 discusses related with estimation of copula parameters and copula
selection methods. Section 3 explains the GOF method. An application study is given in Section 4 and finally Section
5 summarizes the conclusion of our work.

2. Copula selection methods

In multivariate statistical analysis of copulas one of the main topics is related with statistical inference on the depen-
dence parameter. In the literature several methods proposed for estimation copula parameters. Genest and Rivest
(1993) proposing a method which is based on concordance. Genest et al. (1995) proposed fully maximum likelihood
(ML), pseudo maximum likelihood (PML). In 2005, Joe discussed on inference function for margins (IFM) and Tsuka-
hara in 2005 proposed minimum distance (MD) method. There are some discussions about these methods by Kim et
al. (2007) and also Najjari (2016).
As a result, PML estimator is better than ML and IFM in the most practical situations. simulation study by Kim et
al. (2007) carried out that the PML method is conceptually almost the same as the IFM one. By using the PML
method, any important statistical insights that would be gained by applying the IFM, would not be loosed. Therefore,
the PML estimator is better than those of the ML and IFM in most practical situations. However, in high dimensional
copulas (n > 3) ML, PML, IFM and MD methods, in time-consuming point of view, require so much computations.
In these methods copula density function are used so that increases complexity of calculations, specially for d > 21

(Yan, 2007). Semi-parametric estimation of copula models based on the method of moments proposed by Brahimi and
Necir in 2012. This method is quick and simple, nonetheless, Brahimi and Necir’s method has its own complexity.
After estimating copula parameters, another step is in selecting the right copula that has the best fits to data. In the
literature several methods proposed for selecting the best copula some of which are summarized as follows:
Most of methods for selecting right copula are based on a likelihood approach.For example, the Akaike Information
Criteria (AIC), Pseudo-likelihood ratio test proposed by Chen and Fan (2005).
There are other methods of selecting the best copula which defines indicators of performance. Genest and Rivest
(1993) proposed a method in Archimedean copulas as below,

Kθ(t) = P (C(u, v |θ) < t)

with its non-parametric estimationKn, given by

Kn =
1

n

n∑

j=1

1(ejn ≤ t)

where ejn = (1/n)
∑n

k=1 1(X1k ≤ X1j , ..., Xpk ≤ Xpj). A copula that the functionKθ is closest toKn, is the best
one.
Choosing the best copula with minimizing the distance (L2-norm, Kolmogorov, etc) from Kθ to the non-parametric
estimation Kn suggested by Durrleman et al. (2000). Genest et al. (1995) proposed a GOF test statistic with a
non-truncated version of Kendall process,

Kn(t) =
√
n{Kn(t)−Kθn(t)}

where θn denotes a robust estimation of θ. The expression for the statistic is simple and the test has nice properties.
In the p-dimensional copulas, Pollard (1979) presented χ2 tests as bellow:

χ2 =
I∑

i=1

J∑

j=1

[oij − eij ]
2

eij

1Dimensions
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where n is the sample size, I, J are the numbers of classes. oij is the observed frequency of data in class ij and eij is
the theoretical frequency of data for every class ij. Growing number of the classes increases power of the test. Kendall
and Stuart(1983) discuss related with arbitrary choice of the subsets that divide the p-dimensional space [0, 1]p.
As examples, Dobric and Schmidt (2004) used this method in a financial application. Çelebioǧlu (2003) in modeling
student grades relies on this method. Najjari &Ünsal (2012) used this method in modeling meteorological data, Najjari
et al. (2014) applied this method in modeling data of the Danube river, also see Şahin Tekin et al. (2014) and Kazemi
Rad et al. (2021).

3. Goodness of fit test in selection of the right copula

All of the mentioned criteria the Section 2 rely on previous estimation of an optimal parameter set of copulas to select
the right copula. In this section, a method is described in selecting the right copula which is independent of the chosen
optimal parameter. On the other hand, at the same time, it is able to estimate the copula parameters and also it is able
to select the right copula. For two dimensional data (X,Y ) thid method is described as follows:
Time dependency of data are tested, then random samples (X1, Y1), · · · , (Xn, Yn) are converted into normalized ranks
in the usual fashion by setting Ul = rank(Xl)/n and Vl = rank(Yl)/n for each l ∈ {1, 2, · · · , n}. Then the data are
grouped into r × r contingency table by using r = round( 4

√
n).

Let observed frequencies is matrix OI×J , and matrix EI×J consists of estimation of the expected frequencies (I =
J = r) and in the matrix O, oij is an element of ith row and jth column, and eij is the expected value of the oij ,
which is calculated by multiplying the number of observations nwith appropriate theoretical frequency estimated with
copulas, where i, j ∈ {1, 2, · · · , r}. Let copula parameters θ be in the form θ = (θ1, θ2, ..., θs), where s is the number
of copula parameters. Cθ for some θ ∈ Θ (where Θ is parameters space), expected frequencies ejk(θ) are computed
for the contingency table. So eij(θ) is a function of the parameters θ and can be calculated as follows

eij(θ) = n× [Cθ(ui, vj)− Cθ(ui−1, vj)− Cθ(ui, vj−1) + Cθ(ui−1, vj−1)]

where i, j ∈ {1, 2, · · · , r} and e11(θ) = n× Cθ(u1, v1). So the standard GOF statistic value is as follows,

h(θ) = χ2
θ =

∑ (oij − eij(θ))
2

eij(θ)
. (1)

In order to determine the right copula that fits the best to data, obviously expected frequencies estimated by copula
must be close to observed frequencies. Clearly this fact occurs in point θ̂ (estimation of θ) that minimizes χ2

θ in (1).
Meanwhile, if χ2

θ̂
in (1) yields a low p-value by reference to the chi-squared distribution with (r−1)× (r−1) degrees

of freedom, then H0 : Cθ̂ ∈ Cθ is rejected. On the other hand in the range of copula parameters minimum point of
the function h(θ), is an estimating of the copula parameters and also a way in choosing the right copula that had best
fits to data. Without loss of generality it can be assumed that the minimum value is accrued only on a single point
of its parameters range and calculating minimum value of the function h(θ) of course is not complicated and easily
applicable in multiparameter copulas. See also Najjari (2016).

4. Application

In our application we use minimum and maximum QFE data from 2010-2020 in Tehran-Iran which are 420 data and
are available online at I.R OF IRAN METEOROLOGICAL ORGANIZATION (IRIMO). We remember that, QFE is
the barometric altimeter setting that will cause an altimeter to read zero when at the reference datum of a particular
airfield (in general, a runway threshold). In ISA temperature conditions the altimeter will read height above the datum
in the vicinity of the airfield.
We consider six most widely used Archimedean families of copulas (Table 1, 2): Clayton, Gumbel and A12, A14,
A15, A18 (this copula families numbered as 4.2.12, 4.2.14, 4.2.15, 4.2.18 respectively in the Nelsen’s book [14]). In
continue, related QFE data is arranged and has been divided to total data sample size plus one, as below ( see [6], [2]):

ui =
R(xi)

n+ 1
, vi =

R(yi)

n+ 1
, i = 1, 2, 3, ..., n
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Fig. 1. Scatterplots for minimum and maximum QFE data.

where xi is the minimum, and yi is the maximum QFE data and R(xi) and R(yi) are (in ascending order) the rank
of related data. Our final data (u and v) will be in interval (0, 1). Figure 1 shows the scatterplots of the final data.
Kendall’s tau for this data is τ = 0.3894. To apply GOF test, with using relation 4

√
n, (n number of data), (see [2],

Table 1. Definition and parameter domain of the copulas used in this paper.

[13]), we divided the range of two variables uniform transformation into 4 intervals each, therefore df = 9, and the
critical point in GOF test is χ2

0.05,df = 16.9190. As Kendall’s tau for this data is τ = 0.3894, for each copulas family
nonparametric estimation of family parameter applied, and then calculated the value of χ2 test statistic. Result are in
Table 3. In the GOF test method, GOF test statistic, we posed as a function of copula parameter, and then we calculated
the minimum value of this function (see Figure 2). Hereby we will estimate copulas parameter and also we will find
the right copula between copula families (see Table 3).
With respect to Table 3, obviously nonparametric estimation and the new method, selected Gumbel and A15 family
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Table 2. Kandell’s tau and it’s domain of the copulas used in this paper.

Table 3. Estimated copula parameter and GOF test statistic value.

as right copulas, also Gumbel copula fits better to data, because it has lowest test statistic value. In Gumbel family,
nonparametric estimation of copula parameter is θ = 1.64 and χ2 test statistic value is 8.8204, while the new method
estimated copula parameter as θ = 1.59 and χ2 test statistic value as 8.4987. In A15 family, nonparametric estimation
of copula parameter is θ = 2.14 andχ2 test statistic value is 14.3921, while the newmethod estimated copula parameter
as θ = 2.08 and χ2 test statistic value as 13.7028.

5. Conclusion

In this study we used GOF test statistic, as a function on copula parameter. By this technique it is possible to have an
estimation for copulas parameters. This means we don’t need to rely on previous estimation of an optimal parameter
set. Then with calculating minimum point of this function in the range of copula parameter, we will reach to both
aims, estimating the copula parameter and choosing the right copula that fits the best to data.
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Abstract

In this paper, we propose a Stein-rule estimator for the measurement error model with nor-
mal distributions and when a set of equality constrains binding the regression coefficients is
available. The asymptotic properties of the estimator are derived and the risk function under a
specific quadratic loss function is studied. We also obtained a sufficient condition for the dom-
inance of the proposed estimator over a consistent estimator. The results of a simulation study
are presented to demonstrate the finite sample properties of the estimators.

1. Introduction

A basic assumption in classical linear regression is that the response and exploratory variables are measured correctly.
However, in some practical situations, this assumption is violated and the variables are observed with measurement
errors, see Fuller [8] and Carroll et al. [2] for more details.
In the presence of measurement errors, the usual regression tools do not lead to correct and valid model. In order to
obtain consistent estimators of the parameters some prior information about is required. In some cases, some additional
information about the regression coefficients is available in the form of exact restrictions which can be used to improve
the efficiency of estimators, [6].
In the context of regression analysis, the family of Stein-rule estimators is widely used to overcome the inconsistency
problem of the ordinary least square estimator, see for example [14], [9], [18], [16], [20], [1] and [13].
[3] proposed a Stein-rule estimator for the linear regression model with a set of linear restrictions on the regression
coefficients.
In this study we consider a multivariate ultrastructural model which is a very general form of measurement error model.
The ultrastructural model includes structural and functional variants as well as the classical regression model as its
special cases. [18] proposed a Stein-rule estimator for the regression coefficients in the ultrastructural model which
dominates a popular consistent estimator with respect to a specific loss function.
In this paper, we consider the ultrastructural model for the modeling of the measurement errors, and also assume that
the additional information about unknown coefficients is the form of exact linear restrictions. We propose a restricted
Stein-rule estimator that satisfies the given restriction and study asymptotic properties of the estimator.
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The paper is organized as follows. In Section 2, we first introduce the ultrastructural model as the general form
of measurement error model, and describe the additional information on regression coefficients. We also present
an estimator driving from Stein-rule procedure. Section 3 contains the main results of our work, where we obtain
the asymptotic properties of the estimator and present a sufficient condition for proposed estimator to dominate a
consistent estimator. In Section 4, we conduct a simulation study to investigate the proposed estimator.

2. The ultrastructural model and prior information

Let η be the (n× 1) vector of true values the study variable and Ξ = (ξ1, ξ2, . . . , ξn)
T be the (n× p) matrix of n true

values on each of the p explanatory variables are related by

η = Ξβ, (1)

where β is a (p× 1) vector of regression coefficients. The recorded values of the study and explanatory variables are
observed with additive measurement errors, then we observe y and X as

y = η + ϵ, (2)

and
X = Ξ+∆, (3)

where ϵ = (ϵ1, ϵ2, . . . , ϵn)
T is an (n× 1) vector of sum of equation errors and measurement errors that contaminates

the study variable η and ∆ = (δ1, δ2, . . . , δn)
T is an (n × p) matrix of measurement errors that contaminates the

explanatory variables.
LetM be the (n × p) matrix of mean of the variables in Ξ, then the true values of the explanatory variables (Ξ) can
be written as

Ξ = M +Φ, (4)

where Φ = (ϕ1, ϕ2, . . . , ϕn)
T is the random matrix of order (n× p).

Equations (1)-(4) denote a multivariate ultrastructural model, see [7] and [5]. The ultrastructural model is a combina-
tion of structural and functional model. If the row vectors of Ξ have the same mean, i.e. when the all row vectors of
M are identical, the ultrastructural model will reduce to the structural model. If the matrix of the explanatory variables
(Ξ) is fixed but is contaminated with measurement error, the ultrastructural model will become the functional form
of the measurement error model. The ultrastructural model will specify the classical linear regression model if the
explanatory variables are fixed and observed without any measurement errors.
We also assume that we have some prior information on the regression coefficients which can be expressed in the form
of linear restriction

r = Rβ, (5)

where r is an (m× 1) known vector and R is an (m× p) known matrix of rankm < (p).
We assume that ϵi, (i = 1, . . . , n) are independent and identically normally distributed with mean 0 and variance σ2

ϵ .
In addition, δi, (i = 1, . . . , n) are assumed to be independent and identically multivariate normally distributed with
mean 0 and variance covariance matrix Σδ . Similarly, the vectors ϕi, (i = 1, . . . , n) are considered to be independent
and identically multivariate normally distributed with mean 0 and variance covariance matrix Σϕ. Furthermore, ϵ, ∆
and Φ are assumed to be statistically independent of each other. We also assume that the limiting form of n−1M ′M
exists and is non-singular and limiting form of the matrix n−1M ′en exists, where en is an (n× 1) vector of elements
unity, as n → ∞.
These assumption are required for the validity of the asymptotic approximation theory and they also avoid the possi-
bility of any trend in the observations, see [17] and [19].
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2.1. Estimators
Stein-rule estimator of the coefficients in the ultrastructural model has been proposed by [18] as the following form:

β̂S =

[
1−

(
k

n− p+ 2

)
(Y −Xβ̂)′(Y −Xβ̂)

β̂′ (S − nΣδ) β̂

]
β̂, (6)

where S = X ′X , k(≥ 0) is the shrinkage factor, and β̂ is a consistent estimator for β under the ultrastructural linear
measurement errors, which can be considered as β̂ =

(
S − nσ2

δIp
)−1

X ′Y .
When some prior information about the regression coefficients in the ultrastructural model is available in the form of
exact linear restriction, [19, 20] presented some consistent estimators of β. In this paper, we consider the following
consistent estimator

β̂R = β̂ +
(
S − nσ2

δIp
)−1

R′R−1
Sδ

(
r −Rβ̂

)
, (7)

where RSδ = R
(
S − nσ2

δIp
)−1

R′.
Then similarly to the estimator (6), a Stein-rule restricted estimator of β under the model and the linear constraints (5),
can be considered as follows:

bRS =

[
1−

(
k

n− p+ 2

)
(Y −Xβ̂R)

′(Y −Xβ̂R)

β̂′
R (S − nΣδ) β̂R

]
β̂R. (8)

Unfortunately, we have RbRS ̸= r. To solve this problem we restrict the Stein-rule estimator of β, in the sense that
we replace β̂ with β̂S in the restricted estimator (7). Therefore, the restricted Stein-rule estimator is obtained by

β̂RS = β̂S + (S − nΣδ)
−1

R′R−1
Sδ

(
r −Rβ̂S

)
. (9)

Proposition 2.1. The restricted Stein-rule estimator of regression coefficients in the ultra structural model with linear
restriction can be written as follows:

β̂RS =

(
Ip −

(
k

n− p+ 2

)
(Y −Xβ̂)′(Y −Xβ̂)

β̂′ (S − nσ2
δIp) β̂

G

)
β̂R, (10)

where G =
(
Ip − (S − nΣδ)

−1
R′R−1

SδR
)
.

When the shrinkage factor k = 0, the restricted Stein-rule estimator β̂RS coincide with the restricted estimator β̂R.

3. Comparison of the estimators

In order to compare the estimator, we study the asymptotic properties of the estimators β̂R and β̂RS in this section. The
consistent estimator of coefficients in the ultra structural model without prior information can be equivalently written
as

β̂ = β + n−1/2
[
Ip + n−1/2Σ−1

Ξ H
]−1

Σ−1
Ξ h,

where

H = n−1/2 [S −M ′M − nΣδ − nΣϕ] , (11)

h = n−1/2 [X ′(ε−∆β) + nΣδβ] , (12)

and

ΣΞ = n−1M ′M +Σϕ. (13)
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Using Neumann Series (see [15]), it can be proved that:

β̂ = β + n−1/2Σ−1
Ξ h− n−1Σ−1

Ξ HΣ−1
Ξ h+Op

(
n−3/2

)
. (14)

Additionally using Neumann Series to expand R−1
Sδ , and apply these expansion in the consistent restricted estimator,

β̂R, we can show that

β̂R = β + n−1/2Σ−1
Ξ h− n−1Σ−1

Ξ HΣ−1
Ξ h

− n−1/2BΣ−1
Ξ h+ n−1BΣ−1

Ξ HΣ−1
Ξ h

− n−1BΣ−1
Ξ HBΣ−1

Ξ h+ n−1Σ−1
Ξ HBΣ−1

Ξ h+Op

(
n−3/2

)
, (15)

where B = Σ−1
Ξ R′(RΣ−1

Ξ R′)−1R.
Analogously to the estimator (10), we can obtain

β̂RS = β̂R − n−1kθ(I −B)β + kn−3/2θ

(
β′Hβ + 2β′h

β′ΣΞβ
− u

)
(I −B)β

− n−3/2kθ(I −B)Σ−1
Ξ h− n−3/2kθ(I −B)Σ−1

Ξ HBβ +Op

(
n−2

)
. (16)

where

θ =
σ2
ε + β′Σδβ

β′ΣΞβ
, (17)

and

u =
(ε−∆β)′(ε−∆β)

n1/2(σ2
ε + σ2

δβ
′β)

− n1/2. (18)

Proposition 3.1. The restricted and restricted Stein-rule estimators asymptotically are unbiased, and then up to order
O(n−2), the bias vectors of the estimators β̂R and β̂Rs are obtained by

B(β̂R) = E[β̂R]− β

= n−1(I −B)Σ−1
Ξ [(p+ 1−m)Σδβ −B′Σδβ

+Σδ(I −B)Σ−1
Ξ Σδβ + tr(Σδ(I −B)Σ−1

Ξ )Σδβ]

B(β̂RS) = E[β̂Rs]− β

= n−1(I −B)Σ−1
Ξ [(p+ 1−m)Σδβ −B′Σδβ +Σδ(I −B)Σ−1

Ξ Σδβ

+ tr(Σδ(I −B)Σ−1
Ξ )Σδβ]− n−1kθ(I −B)β

In the follow, we compare the mean squared error matrices of estimators β̂R and β̂RS . For this purpose, the difference
of the mean squared error matrices is consider as follows:

∆MSE = E
[
(β̂R − β)(β̂R − β)′

]
− E

[
(β̂RS − β)(β̂RS − β)′

]
.

Theorem 3.2. If the assumptions about the distribution of ϵ, ∆ and Φ hold, and when Σδ = σ2
δIp and Σϕ = σ2

ϕIp,
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then we have

∆MSE = −k2n−2θ2(Ip −B)ββ′(Ip −B)′

+ kn−2σ2
δθ(Ip −B)[(p+ 1−m) + σ2

δ tr((I −B)Σ−1
Ξ )

+
σ2
ϕβ

′β − 2σ2
ε − 3σ2

δβ
′β

β′ΣΞβ
]ββ′Σ−1

Ξ (Ip −B)′

− kn−2σ2
δθ(Ip −B)ββ′BΣ−1

Ξ (Ip −B)′ + kn−2σ4
δθ(Ip −B)ββ′Σ−1

Ξ (Ip −B)′Σ−1
Ξ (Ip −B)′

− 2kn−2θ(Ip −B)
σ2
ε

β′ΣΞβ
ββ′(Ip −B)′ − 2kn−2θ(Ip −B)ββ′Σ−1

Ξ (Ip −B)′

+ kn−2θ(σ2
ε + σ2

δβ
′β)(Ip −B)Σ−1

Ξ (Ip −B)′ + kn−2σ2
δθ(σ

2
ε + σ2

δβ
′β)(Ip −B)Σ−2

Ξ (Ip −B)′

+ kn−2σ4
δθ(Ip −B)Σ−1

Ξ ββ′Σ−1
Ξ (Ip −B)′ − kn−2σ2

δθ(Ip −B)Σ−1
Ξ β′Bβ(Ip −B)′

− kn−2σ2
δθ(Ip −B)Σ−1

Ξ ββ′B′(Ip −B)′ − kn−2σ2
δ (σ

2
δ + σ2

ϕ)θ(Ip −B)Σ−1
Ξ ββ′B′Σ−1

Ξ (Ip −B)′

− kn−2σ2
δ (σ

2
δ − σ2

ϕ)θ(Ip −B)Σ−1
Ξ β′BβΣ−1

Ξ (Ip −B)′

+ trancepose of the all of the above terms except of the first term +Op

(
n−3

)

The identification range of k which consequence the difference of the mean squared error matrices is positive definite,
is difficult. Then to compare the estimators, we consider the quadratic loss function

L(β̃, β) = (β̃ − β)′W (β̃ − β),

where β̃ is an estimator of β andW is a positive definite weight matrix.
Theorem 3.3. Let W = (Ip −B′)−1ΣΞ(Ip −B)−1, and the assumptions of Theorem 3.2 hold, then the difference
between the risks of the estimators under the quadratic loss is given by

R(β̂R)−R(β̂RS) = −k2n−2θ2β′ΣΞβ

+ 2kn−2σ2
δθ[(p+ 1−m) + σ2

δ tr((I −B)Σ−1
Ξ )

+
σ2
ϕβ

′β − 2σ2
ε − 3σ2

δβ
′β

β′ΣΞβ
]β′β

− 2kn−2σ2
δθ(p+ 2)β′Bβ + 2kn−2σ4

δθβ
′Σ−1

Ξ (Ip −B)′β

− 4kn−2θσ2
ε − 4kn−2θβ′ΣΞβ

+ 2kn−2θ(σ2
ε + σ2

δβ
′β)[p+ σ2

δ tr(Σ
−1
Ξ )]

+ 2kn−2σ4
δθβ

′Σ−1
Ξ β

− 2kn−2σ2
δ (σ

2
δ + σ2

ϕ)θβ
′B′Σ−1

Ξ β

− 2kn−2σ2
δ (σ

2
δ − σ2

ϕ)θβ
′Bβtr(Σ−1

Ξ ) +O
(
n−3

)
.

Thus we can conclude that if

0 < k < 2[p− 2 + (p+ 2 + σ2
δ tr(Σ

−1
Ξ ))σ2

δ

β′β − β′Bβ

σ2
ε + σ2

δβ
′β

+ (1−m− σ2
δ tr(BΣ−1

Ξ ))
σ2
δβ

′β
σ2
ε + σ2

δβ
′β

+ (σ4
δβ

′Σ−1
Ξ (Ip −B)′β + σ4

δβ
′(Ip −B)′Σ−1

Ξ β)
1

σ2
ε + σ2

δβ
′β

+
σ2
δβ

′β(σ2
ϕβ

′β − σ2
ε)

β′ΣΞβ(σ2
ε + σ2

δβ
′β)

− 2β′ΣΞβ

(σ2
ε + σ2

δβ
′β)

+ σ2
δ tr(Σ

−1
Ξ )

+ σ2
δσ

2
ϕ

β′Bβtr(Σ−1
Ξ )− β′BΣ−1

Ξ β

σ2
ε + σ2

δβ
′β

],
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the estimator β̂RS dominates the estimator β̂R with respect to the quadratic loss function to order O(n−2). Finally,
if λmax(A) denotes the maximum eigenvalue of A, a sufficient condition for the dominance of β̂RS over β̂R can be
obtained as follows:

0 < k < 2[p− 2 + (1−m)− σ2
δλmax(Σ

−1
Ξ )− 2σ−2

δ λmax(ΣΞ)]. (19)

4. Simulation Study

In this section, we carry out a simulation study to investigate the behaviour of the estimators β̂R and β̂RS . We suppose
that the parameters β, R matrix and r vector in (5) have the following forms respectively,

β =




2.2
1.1
3
4.2
2.5




, β =




−2.2
−1.1
−3
−4.2
−2.5




, β =




2.2
−1.1
3

−4.2
2.5




, R =




0.8 0.6 0.7 0.9 0.8
0.2 0.7 0.4 0.7 0.8
0.6 0.4 0.6 0.1 0.4


 ,

and r = Rβ. We choose a matrixM of mean values. For our chosenM ,

1

n
M ′M =




11.158 6.240 2.133 7.146 7.039
6.240 9.111 1.195 6.886 7.159
2.133 1.195 11.970 4.180 7.138
7.146 6.886 4.180 19.890 6.147
7.039 7.159 7.138 6.147 14.739




, when n = 25

and

1

n
M ′M =




7.516 2.463 2.387 3.171 3.474
2.463 10.498 4.356 4.690 2.319
2.387 4.356 13.634 4.810 7.074
3.171 4.690 4.810 15.208 0.802
3.474 2.319 7.074 0.802 12.946




, when n = 45.

In the table 1, we numerically estimate the bias, k, risk and difference risks (D) of two estimators β̂R and β̂RS for
above distributions of measurement errors by 105 samples with size of 25 and 45, respectively. The middle points
of interval () is considered as the value of k. From the table 1, it is observed that the absolute bias of β̂R and β̂RS

decreases as the sample size increases. The values of absolute bias and risk are smaller under the sample size n = 45
than under n = 25 which shows that the estimators under consideration are asymptotically unbiased even for this
sample size. The estimator β̂RS has smaller absolute bias and risk than β̂R in both the small and large samples. The
absolute bias and risk of two estimators increases when the measurement error variances are increased. The obtained
results show that β̂RS has much better performance compared to β̂R.
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Abstract

A new statistical test procedure is described to evaluate whether a set of radioactive-decay data
is compatible with the assumption that these data originate from the decay of a single radioactive
species. Criteria to detect contributions from other radioactive species and from different event
sources are given. The test is applicable to samples of exponential distributions with two or
more events.

1. Introduction

In the observation of radioactive-decay events it is a question of basic interest whether the data are compatible with
the assumption that the measured time values originate from the decay of a single radioactive species. In the present
work we will present a test particularly adapted to low counting statistics, which is based on the second moment of the
logarithmic decay-time distribution. The new test provides an additional tool to validate important discoveries based
on low event numbers as e.g. in the search for new heavy elements. A radioactive nucleus is characterised by a certain
decay probability per time dP/dt=λ. From a specific number n0 of radioactive nuclei, each one decays independently
of the others. Therefore, the number of remaining nuclei n(t) decreases gradually as a function of time:

dn/dt = −λn(t). (1)

The solution of this differential equation is
n(t) = n0 exp(−λt). (2)

The number of decay events per time is given by

|dn/dt| = λ n0exp(−λt). (3)

This is the density distribution of radioactive decays of one species of nuclei.
In an experiment, the times t1, t2, ..., ti,... , tn of individual radioactive decays from a limited number of nuclei represent
a sample of this density distribution. This sample is subject to statistical fluctuations. It is the task of a statistical
analysis to deduce an estimate of the decay constant λ. This task may be complicated by the fact that the radioactive
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decays can only be observed in a limited time range, above a lower threshold tmin and below an upper threshold tmax.
In addition, events of other species which decay with different decay constants or background events which appear
with a constant rate may be mixed in. An even more complex situation appears, if daughter nuclei produced in the
primary decay are also radioactive. Elaborate methods have been developed to determine the decay constants λ of the
contributing radioactive species and their statistical uncertainties (see e.g. ref. [1] and the references given therein).
A short review on these methods with special emphasis on their applicability to low counting statistics allows us to
develop a new procedure in order to test the compatibility of measured data with the assumption of a radioactive decay.
This test might be helpful to decide whether an observed sample of events originates from the radioactive decay of a
single radioactive species. It also gives a handle to discover events from other sources than radioactive decay.

2. 2. Analysis methods

2.1. First moment of the decay times
The first moment (average) of the density distribution (3) is

t =

∫∞
0
tλn0 exp (−λt) dt∫∞

0
λn0 exp (−λt) dt

=

[−λt−1
λ2 exp (−λt)

]∞
0[

1
−λ exp (−λt)

]∞
0

=
1

λ
(4)

That means that the first moment of the measured decay times

texp =

∑n
i=1ti
n

(5)

is an estimate of the inverse of the decay constant 1/λ. However, there are a few prerequisites for the application of
this method:

1. The full time range must be covered by the measurement. (tmin must be very small and tmax must be very large
compared to 1/λ.)

2. Any contribution of other radioactive species and any background must be excluded.

The first moment of the measured decay times is easily evaluated and gives a good estimate for the decay constant, also
in the case of low statistics, even for a single event. The second moment could be used for testing the compatibility
of the data with a radioactive decay. However, it is inconvenient that its value strongly depends on the decay constant
which can only roughly be determined from the data in the case of low statistics.

2.2. Exponential decay curve
In the conventional analysis procedure of radioactive-decay data, the individual decay times are sorted into a spectrum
with time intervals of constant width δt. The channel m of the spectrum contains the number of events observed
between the time tm and the time tm+δt. The expected shape of this spectrum is approximately equal to the density
distribution (3):
δn/δt ≈ dn/dt (6)
This spectrum has the shape of an exponential function. When drawn in a logarithmic scale, the data points are
expected to follow a straight line. The decay constant can be determined by a fit, e.g. by the least-squares method
which minimises the sum of the quadratic deviations of measured and calculated numbers of events per time interval.
Contributions of another radioactive species and of background events can be recognised and extracted by using a
more complex fit function. The usage of this method is not so evident in the case of low statistics. Many time intervals
may not contain any event, and the shape of the spectrum is dominated by statistical fluctuations. In this case, it is
difficult to judge whether the spectrum contains decay events of a single nuclear species only. Another disadvantage
of the method is that one needs a large number of channels to represent the mixture of different radioactive species
with strongly differing life times.
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2.3. Logarithmic time scale
An unconventional way to represent radioactive-decay data, first proposed in ref. [2], consists of sorting the individual
decay times into a spectrum with time intervals δt which have a width that is proportional to the time t, that means δt/t
= constant. The representation in such logarithmic time bins allows storing the relevant information of decay times
over a very large range of time with a moderate number of channels. The corresponding density distribution is given
by

dn
d(ln t)

=
dn
dt

dt
d(ln t)

= −n0λt exp (−λt) =

−n0 exp (ln (λt)) exp (− exp (ln (λt))) =
−n0 exp(ln t+ lnλ) exp(exp (− ln t+ lnλ))

(7)

or if we introduce Θ = ln t:1∣∣ dn
dΘ

∣∣ = n0 exp (Θ + lnλ) exp (− exp (Θ + lnλ)). (8)
This is a bell-shaped, slightly asymmetric curve. It is obvious that the distribution does not depend in shape on the
decay constant λ, it is just shifted by -lnλ=ln(1/λ). Only the height scales with the number of counts n0. Its integral
is equal to n0. The maximum of this function is located at Θmax which is given by:
d2n
dΘ2 = 0 → Θmax = ln

(
1
λ

)
. (9)

The standard deviation (the square root of the second moment) of this curve is:

σθ =

√∫ +∞
−∞

(
Θ−Θ

)2 ∣∣ dn
dΘ

∣∣ dΘ
n

(10)

with

Θ =

∫ +∞
−∞Θ

∣∣ dn
dΘ

∣∣ dΘ
n

(11)

The value of σθ is about 1.28. The fact that a radioactive decay curve has a universal shape in this representation gives
us a handle to detect if a second radioactive species contributes to the spectrum. In this case, the standard deviation of
the logarithm of the measured decay times

σθexp =

√∑n
i=1

(
Θi −Θexp

)2

n
(12)

with
Θexp =

∑n
i=1Θi

n
(13)

is larger. If the standard deviationσθexp is significantly smaller, this might be an indication that the decay-time spectrum
is incomplete because the experiment was not sensitive to the whole range of decay times. If this possibility is excluded,
this is a strong indication that the observed events or at least part of them do not originate from radioactive decays but
from some other source.

3. Test procedure

As suggested in the preceding chapter, the universal shape of the logarithmic time distribution of radioactive decays
offers the possibility for testing whether a set of measured data is compatible with the assumption that these data
originate from the radioactive decay of a single nuclear species. On the basis of this idea, we will elaborate a test
which compares the standard deviation of the measured logarithmic time distribution with theoretical expectations.
Like the time values ti of individual radioactive-decay events, also the standard deviation σθexp of the logarithmic
decay-time distribution of a specific experiment evaluated by equation (12) is subject to statistical fluctuations. The

1In these considerations we use t and λ as dimensionless numbers by implicitely introducing a time unit. The results of this work do not depend
on the choice of this time unit.
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expected magnitude of these fluctuations can be estimated. They give a measure for the expected deviation of the width
of the measured logarithmic decay-time distribution from the expected value. The basic idea of the test we propose
in the present work is best illustrated for the case of two observed decay events. Let us assume that their decay times
differ by a factor of two or three. Considering the spread of an exponential decay, such behaviour looks quite ”normal”
to us. Now take another two decay events which differ by several orders of magnitude in time. This does not look like
a ”normal” behaviour. One is tempted to attribute the two events to two different radioactive species with different life
times. A third sample may consist of two measured events with almost exactly the same time values. Also this sample
does not look ”normal”, it is a fortuitous, not very probable result. It will be our task to find a quantitative description
for the compatibility of such observations with the assumption of the decay of a single radioactive species. A closer
view on the problem reveals that the expected distribution of the standard deviation σθexp of logarithmic decay-time
distributions (equation 12) differs systematically from the distribution of σθ values defined by equation (10). The
reason for this difference is that Θ in equation (10) is the ”true” mean value of the distribution, while Θexp is the
estimate for the mean value deduced from the observed events (equation 13). Therefore, the standard deviation σθexp
is systematically smaller than the value of σθ, especially for small numbers of events. Some expected characteristic
properties of the distribution of σθexp values have been calculated withMonte-Carlo techniques. A number n of random
decay times t1,…, tn from a given exponential distribution were chosen at random and analysed according to equations
(12) and (13) to determine a statistical sample of σθexp . This procedure was repeated many times. These samples of
σθexp are denoted by xj(n), j = 1 to k, in the following. From a large number of samples (k→∞) for different values of
n, the expectation value En, the standard deviation σn, and the relative skewness γn of the distribution of the quantity
σθexp as a function of n were calculated from the relations:

En = lim
k→∞

{∑k
j=1xj (n)

k

}
, (14)

σn =

√√√√ lim
k→∞

{∑k
j=1 (xj (n)− En)

2

k

}
, (15)

and

γn = lim
k→∞

{∑k
j=1 (xj (n)− En)

3

k

}
/σ

3
2
n (16)

The resulting values are listed in table 1. (Of course, only a finite value of k could be realised in the numerical
calculation. This explains the slightly irregular behaviour of the values.) By normalising the distributions obtained
for σθexp from these samples and integrating up to levels of 5 % and 95 %, respectively, one obtains the limits which
comprise the range of σθexp values which can be accepted with a 90 % significance level to belong to the radioactive
decay of a single radioactive species. These limits are also listed in table 1. Experimental values of σθexp falling below
the lower limit can be rejected with an error chance below 5 % to originate from radioactive decay. If the experiment
was sensitive to the whole decay-time range, at least part of the events originates from another kind of source, may
be from some periodic noise. Experimental values of σθexp falling above the upper limit can be rejected with an error
chance below 5 % to belong to the decay of a single radioactive species. If any background can be excluded, there
is probably another radioactive species with another life time which contributes to the observed sample. The test can
easily be extended to other values of the significance level.

4. Examples

Finally, we would like to illustrate the test procedure with two examples. In the discovery of the nucleus 271110, five
events with alpha energies close to 10.74 MeV have been observed []. The decay times measured were 0.6 ms, 1.8
ms, 4.4 ms, 0.5 ms, and 2.6 ms. The analysis of these events results in a value of 0.84 for σθexp . This value falls well
between the limits (0.41 and 1.9) defined by a significance level of 90 % given in table 1 for 5 events. Thus, these
events are consistent with the assumption, that they originate from the decay of one radioactive species, namely the
same state of 271110.
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Table 1. Expected properties of the distribution of the standard deviation σθexp of logarithmic decay-time distributions, defined by equations (12)
and (13) for given numbers n of observed events. The values have been calculated by Monte-Carlo techniques. This explains their slightly irregular
behaviour. Experimental values falling below the lower limit can be rejected with an error chance below 5 % to originate from radioactive decay.
Experimental values falling above the upper limit can be rejected with an error chance below 5 % to belong to the decay of a single radioactive
species.
Number of
events n

Expectation value
En for σθexp

Expected standard
deviationσn of σθexp

Expected relative
skewness γn

Lower limit
of σθexp

Upper limit
of σθexp

1 0 0 0 - -
2 0.69 0.58 1.42 0.04 1.83
3 0.89 0.55 1.24 0.19 1.91
4 0.98 0.50 1.13 0.31 1.92
5 1.04 0.47 1.12 0.41 1.90
6 1.08 0.44 1.10 0.48 1.89
7 1.11 0.42 0.99 0.52 1.87
8 1.13 0.40 0.96 0.58 1.85
9 1.15 0.38 0.95 0.62 1.84
10 1.16 0.37 0.90 0.65 1.82
11 1.17 0.35 0.84 0.67 1.81
12 1.18 0.34 0.84 0.70 1.79
13 1.19 0.33 0.82 0.72 1.77
14 1.19 0.32 0.78 0.73 1.77
15 1.20 0.31 0.78 0.75 1.76
16 1.20 0.30 0.76 0.77 1.75
17 1.21 0.30 0.74 0.78 1.74
18 1.22 0.29 0.72 0.79 1.73
19 1.22 0.28 0.69 0.80 1.72
20 1.22 0.28 0.68 0.81 1.71
30 1.24 0.23 0.57 0.89 1.64
40 1.25 0.20 0.55 0.94 1.60
50 1.25 0.20 0.55 0.98 1.57
60 1.26 0.17 0.44 1.00 1.54
70 1.26 0.15 0.45 1.02 1.53
80 1.27 0.15 0.45 1.04 1.51
90 1.27 0.14 0.40 1.05 1.50
100 1.27 0.13 0.37 1.06 1.49

n→∞ 1.28 1.3 /√n → 0 1.28 - 2.15/√n 1.28 + 2.15/√n

Figure 1 demonstrates the time distribution of these events on a logarithmic time scale. The expected logarithmic
decay-time distribution (Eq. 7) with ln

(
1
λ

)
= 0.84 (using a time unit of 1 ms) is shown in addition. This graphical

presentation gives an illustration on the scattering of the decay times of a radioactive nucleus.
As a second example we chose the three decay chains, attributed to the alpha-decay cascade of the nucleus 293118
as reported in ref. [4]. Since the decay times of the second, the third and the forth decay in these chains are rather
close in time, we apply the test to the totality of these 9 observed decay times. The values are given in table 2. The
data originate from the decay of at least 3 different states. Therefore, we expect some broadening of the distribution if
compared to the decay of a single state. This means that only deviations of σθexp below the lower limit of the confidence
interval are significant. They would give some indication that the source of the events is different from a radioactive
decay.
The resulting value of σθexp = 0.467, calculated from the values in table 2 with equations (12) and (13), is clearly lower
than the lower limit of the 90 % confidence interval given in table 1 which was determined to be 0.62. According to
our criterion, the assumption that these events originate from radioactive decays is statistically rejected with an error
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Fig. 1. Logarithmic decay-time distribution of 5 events observed in the α decay of 271110 with alpha energies close to 10.74 MeV. Data are taken
from ref. [3]. The curve shows the logarithmic decay-time distribution (Eq. 7). The units on the ordinate are arbitrary.

probability of less then 5 %. This value gives the probability for an error of the first kind, i.e. the probability that
the rejection is not justified. We would like to stress that the level of 5% does not provide strong evidence for the
interpretation of these data. The test just yields an additional criterion for the judgement of the data, to be combined
with the other experimental information available.

Table 2. Measured decay times of the second, third and forth alpha decay of the three decay chains, attributed to the decay of 293118 in ref. [4].
First chain Second chain Third chain

α2 1.243 ms 1.207 ms 0.310 ms
α3 0.708 ms 0.741 ms 1.047 ms
α4 1.201 ms 1.750 ms 0.939 ms

5. Conclusion

We have developed a procedure to test the hypothesis that a set of data originates from the decay of a single radioactive
species. Larger fluctuations indicate that there is a continuous background or that one or more additional radioactive
species with different half lives contribute to the data. Smaller fluctuations indicate that at least part of the data cannot
be attributed to a radioactive decay but rather originates from a periodic noise. The test is particularly suited for small
event numbers. It is applicable to any random variable governed by an exponential distribution.
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Abstract

The generalized exponential distribution proposed by Gupta and Kundu (1999) is an important
lifetime distribution in survival analysis. In this paper, we consider the maximum likelihood
estimation procedure of the parameters of the generalized exponential distribution when the
data are left censored. We obtain the maximum likelihood estimators of the unknown parameters
and also obtain the Fisher Information matrix. Simulation studies are carried out to observe the
performance of the estimators in small sample.

1. Introduction

The generalized exponential (GE) distribution (Gupta and Kundu; 1999) has the cumulative distribution function
(CDF)

F (x; α, λ) =
(
1− e−λx

)α
; α, λ, x > 0,

with the corresponding probability density function (PDF) given by

f(x; α, λ) = αλ
(
1− e−λx

)α−1
e−λx, forx > 0.

Here α and λ are the shape and scale parameters respectively. GE distribution with the shape parameter α and the scale
parameterλwill be denoted byGE(α, λ). It is known that the shape of the PDF of the two-parameter GE distribution is
very similar to the corresponding shapes of gamma or Weibull distributions. It has been observed in Gupta and Kundu
(1999) that the two-parameter GE(α, λ) can be used quite effectively in analyzing many lifetime data, particularly
in place of two-parameter Gamma or two-parameter Weibull distributions. The two-parameter GE(α, λ) can have
increasing and decreasing failure rate depending on the shape parameter. The readers are referred to Raqab (2002),
Raqab and Ahsanullah (2001), Zheng (2003) and the references cited there for some recent developments on GE
distribution. Although several papers have already appeared on the estimation of the parameters of GE distribution
for complete sample case, see for example the review article of Gupta and Kundu (2006b), but not much attention
has been paid in case of censored sample. The main aim of this is to consider the statistical analysis of the unknown
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parameters when the data are left censored from a GE distribution. We obtain the maximum likelihood estimators
(MLEs) of the unknown parameters of the GE distribution for left censored data. It is observed that the MLEs can not
be obtained in explicit form and the MLE of the scale parameter can be obtained by solving a non-linear equation. We
propose a simple iterative scheme to solve the non-linear equation. Once the MLE of the scale parameter is obtained,
the MLE of the shape parameter can be obtained in explicit form. We have also obtained the explicit expression of
the Fisher information matrix and it has been used to construct the asymptotic confidence intervals of the unknown
parameters. Extensive simulation study has been carried to observe the behavior of the proposed methods for different
sample sizes and for different parameter values and it is observed that the performances of the proposed methods are
quite satisfactory. There is a widespread application and use of left-censoring or left-censored data in survival analysis
and reliability theory. For example, in medical studies patients are subject to regular examinations. Discovery of a
condition only tells us that the onset of sickness fell in the period since the previous examination and nothing about
the exact date of the attack. Thus the time elapsed since onset has been left censored. Similarly, we have to handle
left-censored data when estimating functions of exact policy duration without knowing the exact date of policy entry;
or when estimating functions of exact age without knowing the exact date of birth. A study on the “Patterns of Health
Insurance Coverage among Rural and Urban Children” (Coburn, McBride and Ziller, 2001) faces this problem due
to the incidence of a higher proportion of rural children whose spells were ”left censored” in the sample (i.e., those
children who entered the sample uninsured), and who remained uninsured throughout the sample. Yet another study
(Danzon, Nicholson and Pereira, 2004) which used data on over 900 firms for the period 1988-2000 to estimate
the effect on phase-specific (phases 1, 2 and 3) biotech and pharmaceutical R&D success rates of a firm’s overall
experience, its experience in the relevant therapeutic category, the diversification of its experience across categories,
the industry’s experience in the category, and alliances with large and small firms, saw that the data suffered from left
censoring. This occurred, for example, when a phase 2 trial was initiated for a particular indication where there was
no information on the phase 1 trial. Application can also be traced in econometric model, for example, for the joint
determination ofwages and turnover. Here, after the derivation of the corresponding likelihood function, an appropriate
dataset is used for estimation. For a model that is designed for a comprehensive matched employer-employee panel
dataset with fairly detailed information on wages, tenure, experience and a range of other covariates, it may be seen
that the raw dataset may contain both completed and uncompleted job spells. A job duration might be incomplete
because the beginning of the job spells is not observed, which is an incidence of left censoring (Bagger, 2005). For
some further examples, one may refer to Balakrishnan (1989), Balakrishnan and Varadan (1991), Lee et al. (1980), etc.
The rest of the paper is organized as follows. In Section 2 we derive the maximum likelihood estimators ofGE(α, λ)
in the presence of left censoring. In Section 3, we provide the complete enumeration of the Fisher Information matrix
and discuss certain issues on the limiting Fisher information matrix. Simulation results and discussions are provided
in Section 4.

2. Maximum Likelihood Estimation

In this section, maximum likelihood estimators of theGE(α, λ) are derived in presence of left censored observations.
LetX(r+1), . . . , X(n)be the last n−r order statistics from a random sample of size n followingGE(α, λ) distribution.
Then the joint probability density function ofX(r+1), . . . , X(n) is given by

f
(
x(r+1), . . . , x(n); α, λ

)
=

n!

r!

(
F (x(r+1))

)r
f
(
x(r+1)

)
. . . f

(
x(n)

)

=
n!

r!

(
1− e−λx(r+1)

)r α
(αλ)

n−r
e−λ

∑n
i=r+1x(i)

n
π

i=r+1

(
1− e−λx(i)

)α−1
. (2.1)

Then the log likelihood function denoted by L
(
x(r+1), . . . , x(n); α, λ

)
(or simply,L (α, λ)) is

L (α, λ) = ln n!− ln r! + (n− r) ln α+ (n− r) ln λ+ α r ln
(
1− e−λx(r+1)

)

+(α− 1)
∑n

i=r+1
ln
(
1− e−λx(i)

)
− λ

∑n

i=r+1
x(i). (2.2)
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The normal equations for deriving the maximum likelihood estimators become

∂L

∂α
=

n− r

α
+ r ln

(
1− e−λx(r+1)

)
+
∑n

i=r+1
ln
(
1− e−λx(i)

)
= 0 (2.3)

and
∂L

∂λ
=

n− r

λ
+

rα

1− e−λx(r+1)
x(r+1)e

−λx(r+1) + (α− 1)
∑n

i=r+1

x(i)e
−λx(i)

1− e−λx(i)
−
∑n

i=r+1
x(i) = 0. (2.4)

From (2.3), we obtain the maximum likelihood estimator of αas a function of λ, say α̂ (λ) , where

α̂ (λ) = − n− r

r ln
(
1− e−λx(r+1)

)
+
∑n

i=r+1 ln
(
1− e−λx(i)

) (2.5)

Putting α̂ (λ)in (2.2) we obtain the profile log-likelihood on λ as

L (α̂ (λ) , λ) = ln n!− ln r! + (n− r) ln λ+ (n− r) ln

(
− n− r

r ln
(
1− e−λx(r+1)

)
+
∑n

i=r+1 ln
(
1− e−λx(i)

)
)

− r (n− r)

r ln
(
1− e−λx(r+1)

)
+
∑n

i=r+1 ln
(
1− e−λx(i)

) ln
(
1− e−λx(r+1)

)

−
(

n− r

r ln
(
1− e−λx(r+1)

)
+
∑n

i=r+1 ln
(
1− e−λx(i)

) + 1

)∑n

i=r+1
ln
(
1− e−λx(i)

)
− λ

∑n

i=r+1
x(i)

i.e.

L (α̂ (λ) , λ) = k + (n− r) ln λ− λ
∑n

i=r+1
x(i) −

∑n

i=r+1
ln
(
1− e−λx(i)

)

− (n− r)
(
ln
(
r
(
− ln

(
1− e−λx(r+1)

)))
+ ln

(∑n

i=r+1
− ln

(
1− e−λx(i)

)))
(2.6)

= g(λ), say.

where, k in (2.6) is a constant independent of λ. Thus, the maximum likelihood estimator of λ, say λ̂MLE , can be
obtained by maximizing (2.6) with respect to λ. The maximizing λ can be obtained (Gupta and Kundu; 1999b) from
the fixed point solution of

h(λ) = λ, (2.7)

where, h(λ) is obtained from the fact that ∂g(λ)
∂λ = 0 and is given by

h (λ) =


 1

n− r

∑n

i=r+1

x(i)

1− e−λx(i)
+

rx(r+1)e
−λx(r+1)

1−e
−λx(r+1)

+
∑n

i=r+1
x(i)e

−λx(i)

1−e
−λx(i)

r ln
(
1− e−λx(r+1)

)
+
∑n

i=r+1 ln
(
1− e−λx(i)

)




−1

. (2.8)

We apply iterative procedure to find the solution of (2.7). Once we obtain λ̂MLE , the maximum likelihood estimator
of αsay α̂ can be obtained from (2.5) as α̂MLE = α̂

(
λ̂MLE

)
.

3. Approximate and Limiting Fisher Information Matrices

3.1. Approximate Fisher Information Matrix
In this sub-section, we first obtain the approximate Fisher information matrix of the unknown parameters of GE dis-
tribution when the data are left censored, which can be used to construct asymptotic confidence intervals. The Fisher
information matrix I(α, λ) can be written as follows;

I (α, λ) = − 1

n

[
E
(
∂2L/∂α2

)
E
(
∂2L/∂α∂λ

)

E
(
∂2L/∂λ∂α

)
E
(
∂2L/∂λ2

)
]
. (3.1)
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Note that the elements of the Fisher Information matrix can be written as;

E

(
∂2L

∂α2

)
= −

(
n− r

α2

)
,

E

(
∂2L

∂α∂λ

)
= E

(
rX(r+1)e

−λX(r+1)

1− e−λX(r+1)
+
∑n

i=r+1

X(i)e
−λX(i)

1− e−λX(i)

)
= E

(
∂2L

∂λ∂α

)
(3.2)

and

E

(
∂2L

∂λ2

)
= −E

(
n− r

λ2
+

αrX2
(r+1)e

−λX(r+1)

(
1− e−λX(r+1)

)2 + (α− 1)
∑n

i=r+1

X2
(i)e

−λX(i)

(
1− e−λX(i)

)2

)
. (3.3)

Thus to compute (3.2) and (3.3) we are required to obtain explicit expressions of expectations of the formsE
(

X(i)e
−λX(i)

1−e
−λX(i)

)

and E

(
X2

(i)e
−λX(i)

(
1−e

−λX(i)
)2

)
for i = r + 1, . . . , n. Note that the density of the ith order statistic from a random sample

of size n following the GE(α, λ) distribution is

fX(i)
(x) =

n!

(i− 1)!(n− i)!

(
1− e−λx

)α(i−1)
(
1−

(
1− e−λx

)α)n−i

αλ
(
1− e−λx

)α−1
e−λx; x > 0.

Then,

E

(
X(i)e

−λX(i)

1− e−λX(i)

)
= Cn, i αλ

∫ ∞

0

x
(
1− e−λ,x

)α i−2
e−2λx

(
1−

(
1− e−λx

)α )n−i

dx

= −Cn,i

λ
α

∫ 1

0

y ln y (1− y)
α i−2

(1− (1− y)
α
)
n−i

dy

= −Cn,i

λ
α
∑n−i

k=0
(−1)

n−i−k

(
n− i

k

)∫ 1

0

y ln y (1− y)
αn−αk−2

dy

= −Cn,i

λ
α
∑n−i

k=0
(−1)

n−i−k

(
n− i

k

)∑αn−αk−2

l=0
(−1)

αn−αk−l−2

(
αn− αk − 2

l

)

×
∫ 1

0

yαn−αk−l−1 ln y dy

=
Cn,i

λ
α
∑n−i

k=0
(−1)

(n−k)(α+1)−(i+2)

(
n− i

k

)∑αn−αk−2

l=0
(−1)

l

(
αn− αk − 2

l

)

× 1

(αn− αk − l)2
; for αn− αk − l > 0 (3.4)

where,
Cn,i =

n!

(i− 1)!(n− i)!
.

Similarly,

E

(
X2

(i)e
−λX(i)

(
1− e−λX(i)

)2

)
= Cn,i αλ

∫ ∞

0

x2
(
1− e−λx

)α i−3
e−2λx

(
1−

(
1− e−λx

)α )n−i

dx

=
Cn,i

λ2
α
∑n−i

k=0
(−1)

(n−k)(α+1)−(i+3)

(
n− i

k

)∑αn−αk−3

l=0
(−1)

l

(
αn− αk − 3

l

)

× 2

(αn− αk − l)3
; for αn− αk − l > 0 (3.5)
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(3.4) and (3.5) are obtained using the fact that
∫ 1

0

ym (ln y)n dy =
(−1)nn!

(m+ 1)
n+1 ; m > n− 1; n = 0, 1, 2....

For i = n,

E

(
X(i)e

−λX(i)

1− e−λX(i)

)
=

nα

λ
(−1)

αn−2
∑αn−2

l=0
(−1)

l

(
αn− 2

l

)
1

(αn− l)
2 ; αn− l > 0,

and

E

(
X2

(i)e
−λX(i)

(
1− e−λX(i)

)2

)
=

nα

λ2
(−1)

αn−3
∑αn−3

l=0
(−1)

l

(
αn− 3

l

)
2

(αn− l)
3 ; αn− l > 1.

3.2. LIMITING FISHER INFORMATION MATRIX
In this sub-section we explore the asymptotic efficiency and hence attempt to obtain the limiting information matrix
when r

n converges to, say, p which lies in (0, 1). For the left censored observations at the time point T , it has been
observed by Gupta, Gupta and Sankaran (2004) that the limiting Fisher information matrix can be written as

I (α, λ) =

(
b11 b12
b21 b22

)
(3.6)

where
bij =

∫ ∞

T

(
∂

∂θi
ln r (x, θ)

)(
∂

∂θj
ln r (x, θ)

)
f (x; θ) dx,

and θ = (α, λ) , r (x, θ) = f(x;θ)
F (x;θ) , the reversed hazard function. Moreover, it is also known, see Zheng and

Gastwirth (2000), that for location and scale family, the Fisher information matrix for Type-I and Type-II (both for
left and right censored data) are asymptotically equivalent. It is also mentioned by Zheng and Gastwirth (2000) that
for general case (not for location and scale family) the results for Type-II censored data (both for left and right) of the
asymptotic Fisher information matrices are not very easy to obtain. Unfortunately, the GE family does not belong to
the location and scale family and we could not obtain the explicit expression for the limiting Fisher information matrix
in this case. Numerically, we have studied the limiting behavior of the Fisher information matrix by taking n = 5000
(assuming it is very large) and compare them with the different small samples and different ‘p’ values. The numerical
results are reported in Section 4.

4. Numerical Results and Discussions

In this section we report extensive simulation results for different sample sizes, for different parameter values and
for different censored proportions. We mainly observe the performance of the proposed MLEs and the confidence
intervals based on the asymptotic distribution of the MLEs. The performance of MLEs are based on their means
squared errors (MSEs) and the performance of the confidence intervals are based on the coverage percentages (CPs).
We begin with the generation of the GE (α, λ) random sample. Note that, if U is a random variable following an
Uniform distribution in [0, 1], thenX =

(
− ln

(
1− U1/α

))
/λ followsGE (α, λ). Using the uniform random number

generator, the generation of the GE random deviate is immediate. We consider different sample sizes ranging from
small to large. Since λ is the scale parameter and the MLE is scale invariant, without loss of generality, we take λ = 1
in all our computations and consider different values of α. We report the average relative estimates and the average
relative MSEs over 1000 replications for different cases. We compute the maximum likelihood estimates when both
the parameters are unknown. λ̂ can be obtained from the fixed point solution of (2.7) and α̂ (λ) can be obtained from
(2.5). We consider the following sample sizes n = 15, 20, 50, 100, whereas α for different sample sizes are taken
as α = 0.25, 0.5, 1.0, 2.0 and 2.5. For left censoring, we leave out the first 10% and 20% of the data in each of the
above cases of different combinations of n and α. Throughout, we consider λ = 1 and for each combination of n and
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α generate a sample of size n from GE (α, 1) and estimate α and λ in the case of left censoring of the given data of
given order. We report the average values of (α̂/α), called the relative estimates, λ̂ (also its relative estimate since the
true parameter is λ = 1)and also the corresponding average MSEs. All reported results are based on 1000 replications.
Furthermore, using the asymptotic covariance matrix we obtain the average lower and the upper confidence limits of
the estimates of both the shape and the scale parameters and also report the estimated coverage probability, computed
as the proportion of the number of times, out of 1000 replications, the estimated confidence interval contains the true
parameter value. The results corresponding to the shape parameter α, for various sample sizes are reported in Tables
1-4 and the results for the scale parameter λ are presented in Table 5-8.

Table 1. Average relative estimates, average relative MSEs, confidence limit and coverage probability of α when λ is unknown (n = 15)

α
No. of observations
in left censoring

Average relative
estimate MSE Average

LCL
Average
UCL

Coverage
Probability

0.25 3 1.2133 0.2896 0.1025 0.5041 0.9650
2 1.2090 0.2816 0.1128 0.4917 0.9630

0.50 3 1.2833 0.5381 0.1563 1.1270 0.9750
2 1.2591 0.4321 0.1863 1.0728 0.9750

1.00 3 1.3991 0.9235 0.1245 2.6736 0.9700
2 1.3503 1.0461 0.2184 2.4822 0.9750

2.00 3 1.8132 2.2276 0.0000 8.5207 0.9580
2 1.4857 1.4957 0.0000 6.0154 0.9680

2.50 3 1.7451 3.7330 0.0000 9.8770 0.9620
2 1.4940 3.0090 0.0000 7.8995 0.9470

Table 2. Average relative estimates, average relative MSEs, confidence limit and coverage probability of α when λ is unknown (n = 20)

α
No. of observations
in left censoring

Average relative
estimate MSE Average

LCL
Average
UCL

Coverage
Probability

0.25 4 1.1341 0.1430 0.1233 0.4437 0.9740
2 1.1239 0.1279 0.1342 0.4277 0.9570

0.50 4 1.2109 0.2763 0.2181 0.9928 0.9740
2 1.1533 0.2165 0.2436 0.9096 0.9680

1.00 4 1.3051 0.4810 0.3125 2.2977 0.9760
2 1.2113 0.3270 0.3995 2.0230 0.9620

2.00 4 1.4219 1.3320 0.1536 5.5341 0.9660
2 1.3037 0.5870 0.5063 4.7085 0.9700

2.50 4 1.4463 1.8454 0.0000 7.2910 0.9520
2 1.3013 0.5963 0.4804 6.0260 0.9740

From the simulations results, we observe that for a fixed level of left censoring, as sample size increases the biases
and the average relative MSE of the estimates decrease quite rapidly. For example, for 10% left censored data and
when n = 15, the average relative MSE of the estimate of the shape parameter α = 2, is 1.4957 which reduces
to 0.5870 for n = 20, 0.0941 for n = 50 and 0.0392 for n = 100. A similar trend is observed for other levels
of chosen shape parameter values and censoring levels (20%). This is indicative of the fact that the estimators are
consistent and approaches the true parameter values as the sample size increases. Furthermore, for a fixed level of
left censoring, as sample size increases the length of the confidence intervals also decrease significantly keeping the
coverage probability around 0.95 to 0.98. For example, for a 10% censoring level and n = 15, the average length of
the confidence interval for α = 0.25 is 0.3789, this reduces to 0.2935 for n = 20, 0.1696 for n = 50 and 0.1179 for
n = 100, all with a coverage probability of 0.96. Note that in Tables 1, 2 and 5 for some α, LCL’s are zero. Actually,
they were negative, since α > 0, we forcefully truncated them at 0. We also observe that for a fixed sample size,
the performance of the estimators deteriorate as the number of left censored observations increase, which is a natural
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Table 3. Average relative estimates, average relative MSEs, confidence limit and coverage probability of α when λ is unknown (n = 50)

α
No. of observations
in left censoring

Average relative
estimate MSE Average

LCL
Average
UCL

Coverage
Probability

0.25 10 1.0518 0.0425 0.1703 0.3556 0.9560
5 1.0393 0.0334 0.1750 0.3446 0.9580

0.50 10 1.0640 0.0536 0.3245 0.7395 0.9500
5 1.0566 0.0422 0.1710 0.3573 0.9510

1.00 10 1.0892 0.0884 0.5967 1.5817 0.9690
5 1.0933 0.0727 0.6480 1.5385 0.9490

2.00 10 1.1090 0.1262 1.0229 3.4132 0.9570
5 1.0857 0.0941 1.1374 3.2053 0.9710

2.50 10 1.1185 0.1466 1.1974 4.3951 0.9660
5 1.1063 0.1127 1.3680 4.1633 0.9550

Table 4. Average relative estimates, average relative MSEs, confidence limit and coverage probability of α when λ is unknown (n = 100)

α
No. of observations
in left censoring

Average relative
estimate MSE Average

LCL
Average
UCL

Coverage
Probability

0.25 20 1.0361 0.0190 0.1947 0.3233 0.9570
10 1.0239 0.0156 0.1970 0.3149 0.9550

0.50 20 1.0342 0.0234 0.3756 0.6586 0.9570
10 1.0327 0.0189 0.3869 0.6457 0.9550

1.00 20 1.0375 0.0315 0.7111 1.3640 0.9570
10 1.0383 0.0260 0.7436 1.3330 0.9510

2.00 20 1.0558 0.0508 1.3230 2.9002 0.9540
10 1.0501 0.0392 1.4028 2.7975 0.9570

2.50 20 1.0680 0.0510 1.6120 3.7282 0.9640
10 1.0382 0.0354 1.6898 3.5012 0.9650

Table 5. Average relative estimates, average relative MSEs, confidence limit and coverage probability of λ when α is unknown (n = 15)

α
No. of observations
in left censoring

Average relative
estimate MSE Average

LCL
Average
UCL

Coverage
Probability

0.25 3 1.4862 1.5186 0.0000 2.9978 0.9690
2 1.5140 1.6061 0.0000 3.0353 0.9590

0.50 3 1.3227 0.5718 0.2549 2.3904 0.9570
2 1.2930 0.6331 0.2701 2.3159 0.9500

1.00 3 1.2291 0.3111 0.3942 2.0640 0.9470
2 1.2423 0.3049 0.4202 2.0644 0.9590

2.00 3 1.1790 0.2069 0.4675 1.8904 0.9500
2 1.1770 0.1887 0.4945 1.8595 0.9530

2.50 3 1.2119 0.2086 0.5050 1.9188 0.9510
2 1.1378 0.1701 0.4939 1.7817 0.9460

consequence of censoring. The degree of deterioration however is not significantly felt for moderate to high sample
sizes (sample sizes 50 and 100). It is further observed that for a fixed sample size and a fixed level of censoring, the
average relative MSE of the estimates and the length of the respective confidence intervals increase as the value of
the shape parameter α increases. This indicates that estimation of the shape parameter under left censoring becomes
difficult when the value of the shape parameter of the underlying GE distribution is large. It may indicate that the
Fisher information contained in the left censored data may be a decreasing function of α.
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Table 6. Average relative estimates, average relative MSEs, confidence limit and coverage probability of λ when α is unknown (n = 20)

α
No. of observations
in left censoring

Average relative
estimate MSE Average

LCL
Average
UCL

Coverage
Probability

0.25 4 1.3296 0.7683 0.1322 2.5271 0.9590
2 1.3473 0.8900 0.1519 2.5427 0.9560

0.50 4 1.2394 0.3360 0.3636 2.1152 0.9570
2 1.1871 0.2686 0.3614 2.0129 0.9500

1.00 4 1.2025 0.2183 0.4902 1.9148 0.9530
2 1.1393 0.1479 0.4845 1.7940 0.9570

2.00 4 1.1515 0.1399 0.5453 1.7577 0.9400
2 1.1420 0.1254 0.5728 1.7112 0.9440

2.50 4 1.1333 0.1348 0.5537 1.7129 0.9410
2 1.1093 0.0985 0.5727 1.6458 0.9470

Table 7. Average relative estimates, average relative MSEs, confidence limit and coverage probability of λ when α is unknown (n = 50)

α
No. of observations
in left censoring

Average relative
estimate MSE Average

LCL
Average
UCL

Coverage
Probability

0.25 10 1.1088 0.1418 0.4609 1.7567 0.9570
5 1.1129 0.1587 0.4699 1.7559 0.9550

0.50 10 1.0747 0.0729 0.5775 1.5720 0.9530
5 1.1039 0.1380 0.4596 1.7482 0.9620

1.00 10 1.0613 0.0538 0.6507 1.4719 0.9470
5 1.0787 0.0553 0.6802 1.4772 0.9500

2.00 10 1.0438 0.0374 0.6877 1.3999 0.9440
5 1.0438 0.0346 0.7070 1.3805 0.9460

2.50 10 1.0483 0.0368 0.7021 1.3946 0.9510
5 1.0466 0.0311 0.7214 1.3718 0.9480

Table 8. Average relative estimates, average relative MSEs, confidence limit and coverage probability of λ when α is unknown (n = 100)

α
No. of observations
in left censoring

Average relative
estimate MSE Average

LCL
Average
UCL

Coverage
Probability

0.25 20 1.0622 0.0585 0.6207 1.5036 0.9560
10 1.0618 0.0563 0.6253 1.4982 0.9510

0.50 20 1.0325 0.0319 0.6921 1.3729 0.9510
10 1.0417 0.0315 0.7076 1.3758 0.9540

1.00 20 1.0294 0.0224 0.7451 1.3136 0.9530
10 1.0301 0.0225 0.7579 1.3023 0.9460

2.00 20 1.0305 0.0190 0.7807 1.2804 0.9430
10 1.0273 0.0170 0.7921 1.2625 0.9430

2.50 20 1.0304 0.0153 0.7887 1.2720 0.9620
10 1.0188 0.0133 0.7935 1.2441 0.9550

Now we study the limiting behaviour of the Fisher information matrix as n → ∞. Since it is not possible to compute
it analytically, we take very large n (n = 5000) and compute I(α, λ) as defined in (3.1). We compute 1

nE
(

∂2L
∂α∂λ

)

and 1
nE
(

∂2L
∂λ2

)
for different n, r and α values and report the results in Table 9. Corresponding to each n(r) and

α values, the first and second figures represent − 1
nE
(

∂2L
∂α∂λ

)
and 1

nE
(

∂2L
∂λ2

)
, respectively. We mainly compare
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1
nE
(

∂2L
∂α∂λ

)
and 1

nE
(

∂2L
∂λ2

)
for n = 15, 20, 50, 100 with n = 5000 for different p = r

n values. We do not report
1
nE
(

∂2L
∂α2

)
, because for all n it is constant if r = np. The results are presented in the following table.

Table 9. Elements of the approximate and asymptotic Fisher information matrices
n(r) α = 0.25 α = 0.50 α = 1.00 α = 2.00 α = 2.50
15(3)
20(4)
50(10)
100(20)

5000(1000)

(0.2630, 0.5933)
(0.2641, 0.5948)
(0.2668, 0.5974)
(0.2679, 0.5983)
(0.2687, 0.5994)

(0.4417, 0.6312)
(0.4432, 0.6318)
(0.4455, 0.6328)
(0.4464, 0.6333)
(0.4467, 0.6339)

(0.6310, 0.9982)
(0.6322, 0.9985)
(0.6336, 0.9989)
(0.6334, 0.9991)
(0.6340, 0.9991)

(0.7828, 1.9628)
(0.7834, 1.9630)
(0.7843, 1.9632)
(0.7843, 1.9630)
(0.7842, 1.9629)

(0.8202, 2.4629)
(0.8207, 2.4631)
(0.8215, 2.4633)
(0.8215, 2.4631)
(0.8214, 2.4630)

15(2)
20(2)
50(5)
100(10)
5000(500)

(0.2836, 0.6005)
(0.2927, 0.6031)
(0.2946, 0.6039)
(0.2955, 0.6042)
(0.2958, 0.6047)

(0.4552, 0.6340)
(0.4609, 0.6350)
(0.4622, 0.6352)
(0.4626, 0.6355)
(0.4625, 0.6358)

(0.6386, 0.9993)
(0.6418, 0.9997)
(0.6426, 0.9999)
(0.6426, 0.9999)
(0.6423, 1.0000)

(0.7866, 1.9632)
(0.7885, 1.9635)
(0.7889, 1.9636)
(0.7888, 1.9634)
(0.7886, 1.9633)

(0.8234, 2.4633)
(0.8248, 2.4636)
(0.8252, 2.4636)
(0.8251, 2.4634)
(0.8249, 2.4633)

From the tabulated results it is clear that even for small sample sizes, viz., n = 15 or 20, 1
nE
(

∂2L
∂α∂λ

)
and 1

nE
(

∂2L
∂λ2

)

match very well with limn→∞ 1
nE
(

∂2L
∂α∂λ

)
and limn→∞ 1

nE
(

∂2L
∂λ2

)
, respectively. It justifies the use of approximate

Fisher information matrix to draw inference of the unknown parameters of the generalized exponential distribution,
when the data are left censored.
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Abstract

In this paper, we consider the wavelet estimation of copula density for negatively superadditive
dependent. We propose and develop a new wavelet-based methodology for this problem. In
particular, a BlockShrink estimator is constructed and we prove that it enjoys powerful mean
integrated squared error properties over Besov balls. The main result is prepared to display the
performance of the wavelet based estimator.

1. Introduction

The theory of wavelet and their applications in statistics and other sciences have become a significant technique. Since
the problem of estimating copula density has only recently begun to receive attention in the literature, one can find
extensive work on statistical estimation of different type of density functions using wavelets under non-complete data.
For example [1] used wavelet methods for estimating regression function under biased data or [4] obtained an optimal
rate for wavelet estimating of copula function through censored data.
One of the most applicable dependence concepts is that of negative superadditive dependence (NSD), which was
introduced by [5]. the definition of NSD random variables is expressed on the basis of the superadditive functions. A
function f : Rn → R is called superadditive if

f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y)

for all x, y ∈ Rn, where ∨ and ∧ stand for componentwise maximum and minimum, respectively. Consequently, the
NSD concept is proposed as follows. A random vector (X1, ..., Xn) is said to be NSD if

Ef(X1, ..., Xn) ≤ Ef(X∗
1 , ..., X

∗
n) (1)

whereX∗
1 , ..., X

∗
n are independent such thatX∗

i andXi have the same distribution for each i, and f(.) is a superadditive
function such that the expectations above exist. if f(.) has continuous second partial derivatives, then the superadditive
of f(.) is equivalent to ∂2f/∂xi∂xj ≥ 0 , 1 ≤ i ̸= j ≤ n. Also, a sequence {Xn, n ≥ 1} of random variables is
NSD if every finite subfamily is NSD.
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In this paper we consider the estimation of copula density under NSD random variables. It has been shown by [2] that
the family of NSD sequences contains negatively associated (NA) random variables as a spacial case. So, the NSD
assumptions aremore general. [6] obtained an spacial rate as exponential convergence rate for kernel density estimation
under NSD, whereas, our proposed estimator here achieve optimal rate in general by using block-thresholding wavelet
methods.
The organisation of the article is as follows. In Section 2, we present some preliminaries of wavelet expansion of a
function and Besov balls that are used later to introduce the estimator for copula density and subsequent analysis. The
form of the estimator is given in Section 3 and main results are given in Section 4.

2. Wavelet and Besov balls

The term wavelet is used to refer to a set of orthonormal basis functions. Here hj,k(.) denotes the function 2j/2h(2j .−
k) for h(.) being either ϕ(.) or ψ(.). The bivariate wavelet basis is as follows

ϕj,k(x, y) = ϕj,k1
(x)ϕj,k2

(y),

ψϵ
j,k(x, y) = Π2

m=1ϕ
1−ϵm
j,km

(x)ψϵm
j,km

(y),

for all k = (k1, k2) and ϵ = (ϵ1, ϵ2) ∈ S2 = {(0, 1), (1, 0), (1, 1)} . For any j0 ∈ N , the set {ϕj0,k, ψϵ
j,l|j ≥ j0, k ∈

{0, ..., 2j0 − 1}2, l ∈ {0, ..., 2j − 1}2, ϵ ∈ S2} is an orthonormal basis of L2([0, 1]
2
). The expansion of function h ie

given by

hk′(x, y) =
∑

k∈{0,...,2j0−1}2

αj0,kϕj0,k(x, y) +
∑

j≥j0

∑

k∈{0,...,2j−1}2

∑

ϵ∈S2

βϵ
j,kψ

ϵ
j,k(x, y), x, y ∈ [0, 1]

2
,

where the scaling coefficient αj0,k and the wavelet coefficient βϵ
j,k are given by

αj0,k =

∫

(0,1)2
h(x, y)ϕj0,k(x, y)dxdy, and βϵ

j,k =

∫

(0,1)2
h(x, y)ψϵ

j,k(x, y)dxdy.

To simplify the notation, we omit the range of k and ϵ in the summation from now on.
Since we deal with the wavelet method, it is very common to consider Besov spaces as functional spaces because they
are characterized in term of wavelet coefficients as follows. Besov spaces depend on three parameters s > 0, 1 < p <
∞ and 1 < q < ∞ and are denoted by Bs

pq . Let f ∈ L2(R2) and let s be smaller than r (wavelet regularity), define
the sequence norm of the wavelet coefficients of function f ∈ Bs

pq by

|fBs
pq
| = (

∑

k∈Z2

|αj0k|p)
1/p

+ (
∑

j≥j0

[2j0(s+d(1/2−1/p))(
∑

k∈Z2

|βj,k|p)1/p]q)
1/q
,

where (|βj,k|p)1/p = (
∑

k∈Z2

∑
ϵ∈S2

|βϵ
j,k|p)1/p. We assume that the copula density c belongs to the Besov spaces.

3. Estimation procedures

Assuming that the copula density c belongs toL2([0, 1]
2
), we present wavelet procedure of its estimation. We introduce

the newwavelet estimator for copula density under NSD assumptions. Let d ∈ (0,∞), j1 and j2 be the integers defined
by 2j1−1 < (log(n−K ′))1/2 ≤ 2j1 and 2j2−1 < (n − k′)1/2 ≤ 2j2 . For any j ∈ {j1, ..., j2}, set L = log(n − k′)

and Aj = {0, ...L−1(2j − 1)}. For anyK ∈ Aj , we consider the set Uj,K = {k ∈ {0, ...2j − 1}2; (K − 1)L ≤ k ≤
KL− 1}. We define the BlockShrink estimator under NSD assumptions by

ĉk′(u, v) =
∑

k

α̂j0,kϕj0k(u, v) +

j2∑

j=j1

∑

K∈Aj

∑

k,ϵ

β̂ϵ
j,k1{b̂j,K≥d(n−k′)−1/2}ψ

ϵ
j,k(u, v), u, v ∈ [0, 1].
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Where b̂j,K = (L−1
∑

k∈Uj,K
|β̂ϵ

j,k|2)
1/2

, and the natural estimator of αj0k and βϵ
j,k are given by

α̂j0,k =
1

n− k′

n−k′∑

i=1

ϕj0,k(F (Xi), G(Xk′+i)), β̂ϵ
j,k =

1

n− k′

n−k′∑

i=1

ψϵ
j,k(F (Xi), G(Xk′+i)).

for a given threshold level λn =
√

log(n−k′)
n−k′ and a set of indicies (j1, j2).

If the functions F and G are unknown, then the estimator of αj0k and βϵ
j,k are given by

α̃j0,k =
1

n− k′

n−k′∑

i=1

ϕj0,k(Fn(Xi), Gn(Xk′+i)), β̃ϵ
j,k =

1

n− k′

n−k′∑

i=1

ψϵ
j,k(Fn(Xi), Gn(Xk′+i)).

So the wavelet-based estimator for copula density is as

c̃k′(u, v) =
∑

k

α̃j0,kϕj0k(u, v) +

j2∑

j=j1

∑

K∈Aj

∑

k,ϵ

β̃ϵ
j,k1{b̂j,K≥d(n−k′)−1/2}ψ

ϵ
j,k(u, v), u, v ∈ [0, 1]. (2)

where b̃j,K = (L−1
∑

k∈Uj,K
|β̃ϵ

j,k|2)
1/2

.
The nonlinear procedure given in (2) deponds on the level indices (j1, j2) and on the threshold value λn > 0. Note
that Φ is compactly supported, we get α̂j0k = 0 except for a finite number of k indices. The above expressions are the
NSD versions of the corresponding wavelet density estimators in the direct data copula density estimation context. In
the next section, the performance of our procedure is measured and it is explained how to choose the parameters to
achieve optimal rate.
In order to fix the notations, we assume that supp(X1, Y1) = [0, 1]2, (another interval of the form [a, b] with a > 0
and b > 0 can be considered).
H1. The sequence {Xn, n ≥ 1} is an identically distributed sequence of NSD random variables with the bounded
density function h(.).
H2. The functions ϕ and ψ have bounded and continuous partial derivatives of first and second orders.
H3. There exists a constant C > 0 such that

∫ 1

0

∫ 1

0
ϕ(x, y)dxdy ≤ C.

4. Main results

4.1. Upper Bounds
The purpose of this section is to study the behavior of ĥk′(x, y) as an estimator of the bivariate density function under
NSD assumptions. The mean integrated square error is defined as

MISE(c̃k′ , ck′) = E

[∫ 1

0

∫ 1

0

(ĉk′(u, v)− ck′(u, v))
2
dxdy

]
,

MISE(c̃k′ , ck′) ≤ 2MISE(c̃k′ , ĉk′) + 2MISE(ĉk′ , ck′).

Precisely, suppose that hk′ belongs to the ball of radius ForM > 0 in the Besov spaceBs
p,q(M) where the parameters

s and p are s > 0 and p ≥ 2, 1 ≤ q ≤ ∞ or s > 2/p− 1 and p ∈ [1, 2], 1 ≤ q ≤ ∞ and also s∗ could be defined as
s∗ = s+ 1− 2/p, if p ∈ [1, 2] and for the otherwise, s∗ = s.

Theorem 4.1. Let ϕ be a scalling function that mentioned in section 2.2 havingm derivatives withm > 1+1/s∗ and
for arbitrary j0 ∈ N , let ĉLin

k′ be the wavelet linear estimator of ck′ defined as ĉLin
k′ =

∑
k∈{0,...,2j0−1}2 αj0,kϕj0,k(u, v).

Then there exists a constant C1 > o such that for all M ∈ (0,∞), s > 2/p − 1 and p, q ∈ [1,∞), if j0 satisfies
2j0 ≃ (n− k′)1/(2+2s∗), then

sup
ck′∈Bs

p,q(M)

MISE(c̃Lin
k′ , ck′) ≤ C1(n− k′)−s∗/(1+s∗).
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The proof of Theorem (4.1) uses a suitable decomposition of the MISE and Proposition (4.3) in the next subsection.
Theorem (4.2) below determines the upper bound for the MISE of c̃k′ (the BlockShrink estimator of c) over Besov
balls.

Theorem 4.2. Let p ≥ 2 and c̃k′ be the BlockShrink estimator defined by (2) with a large enough threshold constant
λ. Then there exists a constant C2 > 0 such that, all M ∈ (0,∞), s > 2/p − 1 and p, q ∈ [1,∞), if j0 satisfies
2j0 ≃ (n− k′)1/(2+2s∗), we have

sup
c∈Bs

p,q(M)

MISE(c̃k′ , ck′) ≤ C2(n− k′)−s∗/(1+s∗).

Note that (n−k′)−s∗/(1+s∗) is the optimal rate of convergence (in the minimax sense) for the standard nonparametric
bivariate density function.

4.2. Intermediate Results
Proposition 4.3. Suppose that a constant C > 0 such that

∫ ∫
ϕ2(x, y)dxdy ≤ C (x, y) ∈ [0, 1], then there exists

a constant C > 0 such that for any j ≥ j0 and any k = (k1, k2) ∈ {0, ..., 2j − 1}2, ϵ,

E

(∑

k

(α̂j0k − αj0k)
2

)
≤ C(n− k′)−s∗/(1+s∗).

for some constant C > 0 depending only on ϕ and either

||c||2 =

∫

[0,1]2
ck′(u, v)2dudv or ||c||∞ = sup

u,v∈[0,1]

|ck′(u, v)|

Proposition 4.4. Suppose that the assumptions of Theorem (4.2) are satisfied. Then there exists a constant C > 0
such that, for any j1 ≤ j ≤ j2, any k = (k1, k2) ∈ {0, ..., 2j − 1}2, ϵ,

E
(
(β̂ϵ

j,k − βϵ
j,k)

4
)
≤ C(n− k′)−2.

The above inequality holds for (α̂j,k, αj,k) instead of (β̂ϵ
j,k, β

ϵ
j,k).

Proposition 4.5. Suppose that the assumptions of Theorem (4.2) are satisfied. Then there exists a constant κ > 0
such that, for any j1 ≤ j ≤ j2, anyK ∈ Aj , ϵ,

p





 ∑

k∈Uj,K

(β̂ϵ
j,k − βϵ

j,k)
2




1/2

≥ 2−1κ(log(n− k′))1/2(n− k′)−1/2


 ≤ (n− k′)−2
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Abstract

In regressionmodeling, existence of collinearity in input variables leads to take some cares about
the method of parameter estimation. On the other hand, there are many response variables that
are fuzzy in nature. Although fuzzy modeling should be used but crisp values   are provided for
them. In fact, considering the non-fuzzy values for the output variable means transferring the
consequent error of the ambiguity in this variable to the error term. So, we need spread values as
vagueness of the response values, But in practice we cannot determine those values   for response
variables, because we do not have definite functions of them. Now to solving of this lack, since
the α − cut of the membership function of the fuzzy numbers based on the own structure can
be equivalent with the (1 − γ)% in confidence interval of classic regression in this paper, we
propose a ridge regression model in which not only fix the collinearity problem in variables,
but also improve the performance of output variable with produce the fuzzy response. This will
done, with using the various confidence intervals instead of α-cuts.

1. Introduction

Fuzzy regression model (FRM) was initiated by Tanaka [26], using a linear programming model in 1982 for the
first time. This method, called the possibility regression, was further developed and improved by other researches.
The primary model was defined based on non-fuzzy inputs, coefficients and output triangular fuzzy numbers with
the aim of minimizing the overall ambiguity of the model. Subsequently, in the following years, the change in the
objective function, the fuzzy input and the change in the membership function of the various components of the model,
created several ways to improve the possibility model [11, 13, 15–17, 20, 25, 29]. On the other hand, Celmins [1]
and Diamond [7] proposed the least-squares view, which minimizes the distance between the observed and estimated
response variable derived from the classical regression method. Also, in [18, 19], the method of least absolute error has
been used with conditions and different ideas to reduce the impact of remote locations [17, 29]. Combination methods
such as [5] have been proposed and used to improve the performance of the models. In the process of developing
fuzzy regression, innovative methods have been presented such as bootstrap [9, 28], semi-parametric [10, 12, 30],
Neural Networks [6, 24], Support Vector Machines [27], Logistic regression [21], and etc. In 1998, Sanders et al.
[23] examined Ridge’s regression in dual variables. Hong et al. in [14] presented Ridge estimation with crisp inputs
and fuzzy output (with Gaussian membership function) in a form relationship. Balasundarma and Kapil [2] estimated
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the weighted fuzzy ridge regression parameters with crisp inputs and triangular fuzzy output. Recently, Fuzzy ridge
regression were studied in [22]. But, in [3], Buckley introduced a new approach to relationship between classical
and fuzzy regression by confidence interval. This view was examined in [8] and its effectiveness for symmetric
distributions was confirmed and proposed a improved method for variance confidence intervals based on Buckley
approach. Now, we can be utilize this approach, when the dataset has an ambiguous response variable but was reported
with crisp values.
In this paper, based on [3, 4, 8] we propose a new method to estimation of coefficients of regression model based on
ridge regression (in classic regression) with crisp inputs and output. In fact, we utilize confidence intervals (1− γ)%
instead of α-cuts to estimate the fuzzy coefficients and provide the fuzzy model (see [4] for more details). In this
perspective, we will pursue two objectives: first, the impact of this estimate when there is collinearity between ex-
planatory variables. Second, introducing a fuzzymodel that has better performance than the classic model in prediction
of response observations, when the input or output data are vagus nature. So using this method, we can generate a
flexible estimate, which in addition to eliminate collinearity, does not hide the produced ambiguity by the response
variable in the model error.
Accordingly, in Section 2, Buckley’s approach is described. Using the previous section, our proposed method and
fuzzy criterion is presented in the next section. In Section 4, we will show the effectiveness of this method in numerical
examples. In the final section, we will describe as summaries the conclusion of using this method.

2. Buckley’s Approach

LetX1, ..., Xn be a random sample from a distribution with probability density/mass function f(X; θ), with observed
values x1, ..., xn. Since, θ is a unknown parameter andmust be estimated, so we obtain a point estimation with a classic
method such as maximum likelihood. But we would never expect this point estimate to exactly equal θ. Therefore, as
usual, is computed a (1− γ)% confidence interval for θ.
Buckley In [3, 4] introduced and developed that, we canmake a (1−γ)%confidence interval for θ by any γ (0 ≤ γ ≤ 1)
and denote these confidence intervals as [Lγ(θ), Uγ(θ)]. By increases γ, the length of confidence intervals is decreases,
and vice versa. So, we used the confidence intervals employed, reserved for α-cuts of fuzzy sets. Notice that, these
intervals are nested and for γ = 0 and 1 we have maximum and minimum intervals respectively. Thus, it is similar to
α-cut structure in fuzzy numbers and could be intended as a fuzzy number. In this way, Buckley also used his view to
estimate regression coefficients .

3. Ridge estimation in fuzzy regression modeling

In this section, in order to better represent the method, we introduce the model factors as follows.

Definition 3.1. Consider the following regression model

Y = Xβ + ϵ, (1)

where, Y and ϵ (as the components of response and error of the regression model) are n× 1 vectors, X is n× (p+ 1)
matrix and β is p× 1 vector. Also, the prerequisites are establishment for the model error term.

The regression model can be stated by (1) So, the model prediction is

Ŷ = Xβ̂ (2)

where, Ŷ = (y1, ..., yn)
⊤ and β̂ = (β1, ..., βp+1)

⊤ are estimated of response and parameter vectors and X is a matrix
of constants.
Now, if has existed collinearity between input variables, it should be used the ridge regression. Because, variance of
the estimations of obtain from least-squares method will be big and we will have various estimations for coefficients.
So, the regression problem can be rewritten under an optimization model.
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min
β

((
Ŷ − Y

)⊤(
Ŷ − Y

)
+ kβ⊤β

)
=

min
β

((
Xβ − Y

)⊤(Xβ − Y
)
+ kβ⊤β

)
,

(3)

where, k > 0 is tuning parameter.
Now, we write the spectral decomposition of the positive definite design matrix X⊤X to get X⊤X = ���⊤, where
�(

(p+1)×(p+1)
) is a column orthogonal matrix of eigenvectors and � = Diag(λ1, λ2, ..., λ(p + 1)) where, λj >

0, j = 1, 2, ..., p + 1 is the ordered eigenvalue matrix corresponding to X⊤X. Then, with deferential from (3) under
the β,
we have:

β̂Ridge =
(
X⊤X+ kI

)−1X⊤Y. (4)

So, the covariance matrix (COV) for β̂Ridge is

COV (β̂Ridge) =COV
[(
X⊤X+ kI

)−1X⊤Y
]

=
(
X⊤X+ kI

)−1
COV

(
X⊤Y

)(
X⊤X+ kI

)−1
.

(5)

Thus, according to the spectral decomposition structure the total variance (VAR) of β̂Ridge is given by

V AR(β̂Ridge) =σ2tr
[(
�+ kI

)−1�
(
�+ kI

)−1
]

= σ2

p+1∑

j=1

[ λj(
λj + k

)2

]
.

(6)

Hence, for obtain the variance of any β̂Ridge
j we have

V AR
(
β̂Ridge
j

)
= σ2

[ λj(
λj + k

)2

]
, (7)

where,

σ̂2 =

∑n
i=1(yi − ŷi)

2

(n− (p+ 1))
.

Therefore, the (1− γ)% confidence interval for any coefficient of the regression model is given by
[
β̂j

Ridge − t γ
2

√
V AR(β̂Ridge

j ), β̂j

Ridge
+ t γ

2

√
V AR(β̂Ridge

j )
]
, (8)

where, t γ
2
is quantile of (1− γ)% from the t distribution with (n-p-1) degrees of freedom.

Now, we put the above (1 − γ)% confidence intervals instead of α-cut by using the various values from the 0.01 ≤
γ < 1 rang.
Thus, based on Buckley’s approach, the lower and upper bound of confidence interval for any γ (as one α-cut) can be
considered as follows [

Lγ

(
β̂j

Ridge)
, Uγ

(
β̂j

Ridge)]
, (9)

so, in (9), minimum and maximum values are provided a symmetric fuzzy number.
Accordingly, the estimated response in fitted model, is obtained as follows into the fuzzy number structure

ˆ̃Yi(γ) =
[
Lγ(

ˆ̃Yi), Uγ(
ˆ̃Yi)

]
=

[ p+1∑

j=1

xijLγ

(
β̂j

Ridge)
,

p+1∑

j=1

xijUγ

(
β̂j

Ridge)]
. (10)
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Remark 3.2. In equivalent (10), we relocate the lower and upper of β̂j

Ridge
limits together, for any xij < 0.

3.1. Fuzzy criterion
In this section, we introduce fuzzy criteria to evaluate the results and demonstrate the efficiency of the proposed
method.
Let Eq.(10), as a goodness of fit measure the length of confidence interval (LCI) is

LCI( ˆ̃Yi(γ)) = Uγ(
ˆ̃Yi)− Lγ(

ˆ̃Yi).

Lemma 3.3. In estimated fuzzy regression models (based on this approach) for any 0 < γ ≤ 1 (as a α-cut), the LCI
of ith estimated response is given by

LCI
( ˆ̃Yi(γ)

)
= 2t γ

2

p+1∑

j=1

xij

√
V AR(β̂j). (11)

Proof. for any 0 < γ ≤ 1 (as a α-cut) we have

LCI
( ˆ̃Yi(γ)

)
= Uγ(

ˆ̃Yi)− Lγ(
ˆ̃Yi),

so, based on equation(10) estimated βj from both of method

LCI
( ˆ̃Yi(γ)

)
=

p+1∑

j=1

xijUγ

(
β̂j

)
−

p+1∑

j=1

xijLγ

(
β̂j

)
,

Now, with put on of Eq.(8), could be written for β̂j

LCI
( ˆ̃Yi(γ)

)
=

p+1∑

j=1

xij

(
β̂j + t γ

2

√
V AR(β̂j)

)
−

p+1∑

j=1

xij

(
β̂j − t γ

2

√
V AR(β̂j)

)
,

thus, for any 0 < γ ≤ 1

LCI
( ˆ̃Yi(γ)

)
= 2t γ

2

p+1∑

j=1

xij

√
V AR(β̂j). (12)

Hence, can be used as a criterion the value of LCI
(
ˆ̃Y
M1
i (γ)

)

LCI
(
ˆ̃Y
M2
i (γ)

) ratio.

Therefore, the ratio of LCI betweenM1 andM2 methods and is denoted by RLCI(M1,M2), obtaining

RLCI(M1,M2) =
LCI

( ˆ̃Y M1
i (γ)

)

LCI
( ˆ̃Y M2

i (γ)
) =

∑p+1
j=1 xij

√
V AR(β̂j

M1
)

∑p+1
j=1 xij

√
V AR(β̂j

M2
)

(13)

In this measure, the value of greater than 1 indicates growth amount of the length of the ˆ̃Y M1
i (γ) confidence interval

from ˆ̃Y M2
i (γ). In addition to, this scale is independent to γ (as a α-cut).

4. Computation

In the following, shown the better performance of Ridge model by creating the 95% confidence intervals for each
coefficient in both method. Also, these intervals is obtained for some samples of estimated response variables. The
superiority of the Ridge model is presented by some shapes and criteria. This section included by two examples
Simulated and real data respectively.
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4.1. Simulation study
Based on 30 simulated data set of size n = 20, consider the following proposed multiple linear regression model (1):
where

1. Xi1 = zi1 + ϵi1, zi1 ∼ N(4, 1) and ϵi1 ∼ N(0, 0.02),
Xij = zij + ϵij , zij ∼ N(6,Σ), [Σlk] = Cov(Xil, Xik) = 0.9|l−k| for j = 2, 3, 4,
and ϵij ∼ N(0, 0.04), for j = 2, 3, 4

2. β0 = 3, β1 = 1.5 β2 = −2, β3 = 0.5, β4 = 2,

3. ϵi ∼ N(0, 2).

Based on the simulated data above, the mean of the values of the RLCI criterion for 30 simulated data in each one of the
samples which are produced from least squares (LS) and ridge (R) methods have been computed. Also, this measure
has been presented for the 12th data-set ( as the best result obtained in all simulated data) which has been obtained by
the ridge model tuning parameter. Notice that, the value of response variable is vagus but has been registered by crisp
value.
All of these comparing results have been shown in Table 1. In addition, effectiveness of 12th data, from the simulated
data set, in reduction of mean square error of produced model by ridge method has been presented in Figure 1.

Table 1. Mean of the RLCIs criterion for 30 simulated data and this measure for the 12th data-set.
Sample Mean of the 30 simulated data 12th simulated data

RLCI(LSM, RM) RLCI(LSM, RM)
1 1.428 2.234
2 1.305 2.165
3 1.571 2.586
4 2.105 2.359
5 1.895 2.365
6 2.216 2.403
7 1.287 2.408
8 1.942 2.579
9 2.421 2.694
10 1.362 2.606
11 2.307 2.457
12 2.477 2.670
13 1.749 2.512
14 1.903 2.384
15 1.338 2.437
16 1.957 2.675
17 2.407 2.573
18 2.097 2.684
19 1.876 2.465
20 2.253 2.494

Tuning parameter (k) — 2.008
Mean of RLCI(LSM, RM) 1.995 2.477
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Fig. 1. Logarithm of the tuning parameter (k) in 12th data set.

Despite the added ambiguity of the response variable byBuckley’s approach, the value registered inmean of RLCI(LSM,
RM) criterion for average of the 30 simulated data in Table 1, shows that the effectiveness of RM for each γ is 1.995
times than LSM. Also, in best result in 12th from simulated data, this criterion has been obtain 2.477.
In next part, this performance has been shown in real data.

4.2. Real data (Cheese taste data)
These data produced in a real experiment from evaluate the impact of three variables on cheese tasting. In the data,
acetic acid, hydrogen sulfide, and lactic acid are the three input variables, respectively. The output variable is also
considered as the cheese flavor presented by an expert. The observations, introduce in Table 2.
In this real example, the output value have a vague nature but it was registered by crisp values. Therefore, the output
should be reported in fuzzy values. Thus, the ambiguity resulting from the response variable is not added to error term.

Table 2. Data set 1 for quality of cheese taste.
No. Acetic Acid Hydrogen Sulfide Lactic Acid Cheese Taste
1 4.543 3.135 0.86 12.3
2 5.159 5.043 1.53 20.9
3 5.366 5.438 1.57 39.0
4 5.759 7.496 1.81 47.9
5 4.663 3.807 0.99 5.6
6 5.697 7.601 1.09 25.9
7 5.892 8.726 1.29 37.3
8 6.078 7.966 1.78 21.9
9 4.898 3.85 1.29 18.1
10 5.242 4.176 1.58 21.0
11 5.74 6.142 1.68 34.9
12 6.446 7.908 1.9 57.2
13 4.477 2.996 1.06 0.7
14 5.236 4.942 1.30 25.9
15 6.151 6.752 1.52 54.9
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The data set is presented in Table 2. To distinguish whether the multicollinearity effect is present, we computed vari-
ation inflation factor (VIF) index and observed V IF1 = 12.064, V IF2 = 7.914, and V IF3 = 2.808. In addition,
the condition number is

√
λ1/λ3 = 13.67, where λ1 and λ3 are the maximum and minimum eigenvalues of X⊤X,

respectively.
But, there is collinearity between explanatory variables, so we use the ridge regression modeling to estimate the model
parameters. Now based on ridge programming (with R package) the results of cheese taste data are shown in Figure
2.
According to the Figure 2, the value of ridge tuning parameter is k = 0.705 in which we have best situation versus
of least squares method (LSM). Here, we have obtained the estimation of coefficients for both the least squares and
ridge method (RM)(in best k) in Figure 3 using the Buckly’s view point.

Table 3. Estimated coefficients and their variances of cheese taste data for both of methods.

Coefficient & variance Method Measure value in each sample
LSM RM Sample RLCI(LSM, RM)

β̂0 −127.69 −43.18 1 2.527
2 2.595

V AR(β̂0) 2225.95 1168.27 3 2.611
4 2.614

β̂1 31.12 8.47 5 2.532
6 2.556

V AR(β̂1) 203.06 14.71 7 2.561
8 2.635

β̂2    − 2.92 1.68 9 2.582
10 2.634

V AR(β̂2)    13.37 20.72 11 2.642
12 2.686

β̂3    2.76 11.21 13 2.538
14 2.591

V AR(β̂3)    170.56 28.41 15 2.661
Tuning parameter (k) — 0.705

Mean of RLCI(LSM, RM) 2.598

Also, the result of Table 3 from mean of the RLCI scale, show that this value is equal to 2.598 and it means that, the
LCI in LSM for each γ is over 2.5 times than LCI in RM.
According to the Figure 2, the value of mean square error (MSE) for RM is less than LSM in k = 0.705. So, the
performance of RM is better than LSM in prediction. Figure 3 introduce effectiveness of RM on reduce of estimated
coefficients variance clearly. Therefore, the correspondent confidence intervals for parameters and their estimated
response in RM, doubtless are smaller than LSM.
For illustrating the better performance of RM versus LSM in improvement of the estimated model, we obtained the
these intervals for estimated response variables in samples of 4, 7, 11, and 15 from the observations and illustrated in
Figure 4. Due to the this plot, superiority of the RM is shown clearly.
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Fig. 2. Logarithm of the tuning parameter (k) in ridge model

Fig. 3. Membership functions of estimated coefficients for Least squares(LS) and ridge(R) methods.

5. Conclusion

The nature of some natural phenomena are vagus. So, the value of them should be recorded as a fuzzy numbers. In
such cases, if they are measured with crisp values, in fact, we will add a new error into the error of model, due to the
ambiguity of nature of variable. Therefore, we increase the error generated in the estimated model. In other hand,
existence of collinearity between explanatory variables in regression modeling cause be that the variance of estimated
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Fig. 4. Membership functions of estimated responses for Least squares(LS) and ridge(R) methods in some of the observations. (a) 4th sample (b)
7th sample (c) 11th sample (d) 15th sample.

coefficients of model have be large.
Thus, using the Buckley approach and utilization of the ridge method in its, we obtain the optimal model. So, not
only is removed the collinearity effect, but the ambiguity of response variable is also taken from the error term. In this
paper, has been illustrated the efficient of both method along with superiority of RM versus LSM (Buckley’s approach)
in real data.

5.1. Discussion
Usually in regression modeling, are tested existence or not the estimated coefficients. The results of these hypotheses
identify the effective or inefficient input variables and present the final model. Hence, can be using by [4, 8], per-
formed the respective hypotheses.
These tests are based on the t-distribution and their statistic structure for each coefficient of β∗

j , as follow.
{
H0 : β∗

j = 0

H1 : β∗
j ̸= 0

, T − statistic =
β̂∗
j√

σ̄2
(
β̂∗
j

)

critical values of T-statistic based on confidence intervals is given by
[
TL, TU

]
in which,

TL =
β̂∗
j√

σ̄2
L

(
β̂∗
j

) , TU =
β̂∗
j√

σ̄2
U

(
β̂∗
j

) , (14)

and

σ̄2
L =

(n− 1)V ar(β̂∗
j )

χ2
n−1,γν+1−γ

, σ̄2
U =

(n− 1)V ar(β̂∗
j )

χ2
n−1,γν

, (15)
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where, the denominator of (15) fraction and ν = χ2
n−1(n − 1) are values of density and cumulative probability of

chi-square distribution respectively. Consequently, at first is provided the membership function of T-statistic to obtain
the TL and TU then is made decision about the accept or reject of coefficients hypothesis tests.

Appendix
This section briefly reviews several concepts and terminologies related to fuzzy numbers and a distance between fuzzy
numbers used throughout the paper. Let X be a universal set.

Definition 5.1. A fuzzy set of X is a mapping Ã : X → [0, 1], which assigns a degree of membership 0 ≤ Ã(x) ≤ 1
to each x ∈ X. The set Ã0 is also defined as equal to the closure of {x ∈ R|Ã(x) > 0}. Let R be the set of all real
numbers.

Definition 5.2. The α-cut of a fuzzy number Ã is a non-fuzzy set defined as

Aα := {x ∈ Rn | ξÃ(x) ≥ α, 0 ≤ α ≤ 1}.

The set of all fuzzy numbers will be denoted by Fc(R). The α-cut Aα of Ã ∈ Fc(R) is a closed and bounded interval
for each α ∈ [0, 1]. Hence a fuzzy number Ã ∈ Fc(R) is completely determined by the end points of the intervals
Aα =

[
AL

α, A
U
α

]
. The arithmetic operations for two fuzzy numbers Aα and Bα are defined in the standard way, in

terms of the α-cuts for α ∈ [0, 1].
Addition: Aα +Bα =

[
AL

α +BL
α , A

U
α +BU

α

]
.

Scalar multiplication: for given k ∈ R,

k ·Aα =

{[
kAL

α, kA
U
α

]
if k ≥ 0[

kAU
α , kA

L
α

]
if k < 0

Scalar addition: k +Aα =
[
k +AL

α, k +AU
α

]
.

The set of all fuzzy numbers with continuous membership functions is denoted byF(R). Notably, the most commonly
used types of fuzzy numbers in F(R), is so-called LR-fuzzy numbers denoted by Ã = (mA, lA, rA)LR, lA, rA > 0.
The membership function of an LR-fuzzy number Ã is defined by:

Ã(x) =




L
(

mA−x
lA

)
, x ≤ mA,

R
(

x−mA

rA

)
, x > mA,

(16)

whereL andR are strictly decreasing functions from [0, 1] to [0, 1] satisfyingL(0) = R(0) = 1 andL(1) = R(1) = 0.
A special type of LR-fuzzy number is the triangular fuzzy number (TFN) with the shape functions L(x) = R(x) =
max{0, 1− |x|}, x ∈ R, where we denote by Ã = (mA, lA, rA)T . If lA = rA = sA, then Ã is called a symmetric
triangular fuzzy number and it is denoted by Ã = (mA, sA)T .
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Abstract

Let A be a Banach algebra. An element a ∈ A has gs-Drazin inverse if there exists b ∈ A such
that

b = bab, ab = ba and a− ab ∈ Aqnil.

We study the gs-Drazin inverse of a 2 × 2 operator matrix M =

(
A B
C D

)
under several

conditions and we investigate various perturbation conditions with spectral idempotent under
whichM has gs-Drazin invers.

1. Introduction

Throughout this article, A will denote a Banach algebra with an identity 1. The commutant of a ∈ A is defined by
comm(a) = {x ∈ A | xa = ax}. An element a in A has gs-Drazin inverse if and only if there exists b ∈ A such that

b = bab, ab = ba, a− ab ∈ Aqnil.

Such b, if exists, is unique, and is denoted by a
′′ , where a′′ is called the gs-Drazin inverse of a. Here, Aqnil = {a ∈

A | 1 + ax ∈ U(A)} for every x ∈ comm(a) and is the set of quasinilpotent elements of A. As it is well known, for
a Banach algebra A,

a ∈ Aqnil ⇐⇒ lim
n→∞

∥an∥
1
n = 0.

We always use A′′ to denote the set of all gs-Darazin invertible elements a ∈ A. An element a ∈ A has generalized
Drazin inverse, in case there is an element b ∈ A such that

b = bab, ab = ba and a− a2b ∈ Aqnil.

Such b is called generalized Drazin inverse of a and denoted by ad.
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In this paper, we consider the gs-Drazin inverse of a 2× 2 operator matrix

M =

(
A B
C D

)
(∗)

where A ∈ L(X), D ∈ L(Y ) have gs-Drazin inverses and X,Y are complex Banach spaces. Here, M is a bounded
operator onX⊕Y . We present the gs-Drazin inverse for a 2×2 opratormatrixM under a number of diffrent conditions,
which generalizes [6, Theorem 2.1 and Theorem 2.2]. Now we will state auxiliary proposition and theorem.

Proposition 1.1. LetA be a Banach algebra, and let a, b, c ∈ A. If a, b ∈ A have gs-Drazin inverses, then
(
a c
0 b

)
∈

M2(A) has gs-Drazin inverse.

Theorem 1.2. Let a, b ∈ A′′ . If aba2 = 0, abab = 0, ab2a = 0 and ab3 = 0, then a+ b ∈ A′′ and

(a+ b)
′′
=

(
a+ b ab+ b2

)
M

′′
(
a
1

)
,

M
′′
= F

′′
+ (F

′′
)2G,G2 = 0,

F
′′
= B

′′
+ (B

′′
)2A,A2 = 0,

B
′′
= (I −KK

′′
)

[ ∞∑

n=0

Kn(H
′′
)n

]
H

′′
+K

′′

[ ∞∑

n=0

(K
′′
)nHn

]
(I −HH

′′
),

H
′′
=

(
(a

′′
)3 0

(a
′′
)4 + b(a

′′
)5 0

)
, K

′′
=

(
0 0

(b
′′
)4 (b

′′
)3

)

As an immediate consequence, we derive

Corollary 1.3. Let a, b ∈ A′′ . If abab = 0, aba2 = 0 and b2 = 0, then a+ b ∈ A′′ .

2. Main results

Let A ∈ L(X), D ∈ L(Y ) have gs-Drazin inverse andM be given by (∗). In fact the explicit gs-Drazin invers ofM
could be computed by the formula in Theorem 1.2. WhereM is a bounded liner operators on X ⊕ Y .

Theorem 2.1. If BCA = 0, BCB = 0, ABD = 0 and CBD = 0, thenM has gs-Drazin inverse.

Proof. Write (
A B
C D

)
=

(
A 0
C D

)
+

(
0 B
0 0

)
:= P +Q .

By Proposition 1.1, P,Q have gs-Drazin inverse. Then Q2 = 0, PQP 2 = 0 and PQPQ = 0. Therefor we complete
the proof by Corollary 1.3.

Corollary 2.2. If BC = 0 and BD = 0, thenM has gs-Drazin inverse.

Proof. This is obvious by Theorem 2.1.

Theorem 2.3. If BCA = 0, DCA = 0, CBC = 0 and CBD = 0, thenM has gs-Drazin inverse.

Proof. Write (
A B
C D

)
=

(
A B
0 D

)
+

(
0 0
C 0

)
:= P +Q .

By Proposition 1.1, P,Q have gs-Drazin inverse. then Q2 = 0, PQP 2 = 0 and PQPQ = 0. Therefor we complete
the proof by Corollary 1.3.
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Corollary 2.4. If CA = 0 and CB = 0, thenM has gs-Drazin inverse.

LetM be an operator matrixM given by (∗). It is of interest to consider the gs-Drazin inverse ofM under generalized
Schur condition D = CA

′′
B (see [5]). We now investigate various perturbation conditions with spectral idempotent

under whichM has gs-Drazin invers.

Theorem 2.5. Let A ∈ L(X)
′′
, D ∈ L(Y )

′′ and M be given by (∗). If CAπBC = 0, BCAπA2 = 0, ABCA
′′
=

BCAA
′′ and D = CA

′′
B, thenM ∈ L(X ⊕ Y )

′′ .

Proof. Clearly, we have

M =

(
A B

C CA
′′
B

)
= P +Q,

where
P =

(
0 0

CAπ 0

)
, Q =

(
A B

CAA
′′

CA
′′
B

)
.

By assumption, we verify that P 2 = 0, QPQ2 = 0, QPQP = 0. Clearly, P is nilpotent, and then it has gs-Drazin
inverse. Moreover, we see that

Q = Q1 +Q2, Q1 =

(
A2A

′′
AA

′′
B

CAA
′′

CA
′′
B

)
, Q2 =

(
AAπ AπB
0 0

)

and Q1Q2 = 0. Since AAπ ∈ L(X ⊕ Y )qnil, it follows by Lemma 1.1 that Q2 ∈ L(X ⊕ Y )
′′ . Moreover, we have

Q1 =

(
AA

′′

CA
′′

)(
A AA

′′
B
)
. Clearly, we see that

(
A AA

′′
B
)(AA

′′

CA
′′

)
= A2A

′′
+AA

′′
BCA

′′
.

Since A2A
′′
+AA

′′
BCA

′′
= AA

′′
[A+BCA

′′
], we will suffice to prove [A+BCA

′′
]AA

′′
= A2A

′′
+BCA

′′ has
gs-Drazin inverse, by means of Clines formula. Since D = CA

′′
B has gs-Drazin inverse, it follows by [4, Corallary

2.4], thatBCA
′′ has gs-Drazin inverse. In view of [4, Corollary 3.3], A2A

′′
= A(AA

′′
) has gs-Drazin inverse. Since

ABCA
′′
= BCAA

′′ , we have (A2A
′′
)(BCA

′′
) = A(AA

′′
BCA

′′
) = ABCA

′′
= BCAA

′′
= (BCA

′′
)(A2A

′′
).

In view of [4, Corollary 3.5], A2A
′′
+ BCA

′′ has gs-Drazin inverse. By using Cline’s formula, Q1 has gs-Drazin
inverse. Therefore Q has gs-Drazin inverse by [4, Crollary 3.5, Lemma 4.5]. According to Corollary 1.3, M has
gs-Drazin inverse, as requird.

Corollary 2.6. Let A ∈ L(X)
′′
, D ∈ L(Y )

′′ andM be given by (∗). If CAπBC = 0, BCAπAB = 0, BCAπA2 =
0, A2BCA = ABCA2 and D = CA

′′
B, thenM ∈ L(X ⊕ Y )

′′ .

Theorem2.7. LetA ∈ L(X)
′′
, D ∈ L(Y )

′′ andM be given by (∗). IfAπABCA = 0, CAπBCA = 0, BCAπBC =
0, ABCA

′′
= BCAA

′′ and D = CA
′′
B, thenM ∈ L(X ⊕ Y )

′′ .

Proof. Clearly, we have M =

(
A B

C CA
′′
B

)
= P +Q , where

P =

(
0 AπB
0 0

)
, Q =

(
A AA

′′
B

C CA
′′
B

)

By assumption, we verify that P 2 = 0, QPQ2 = 0, QPQP = 0. Clearly, P is nilpotent, and then it has gs-Drazin
inverse. Moreover, we see that

Q = Q1 +Q2, Q1 =

(
AAπ 0
CAπ 0

)
, Q2 =

(
A2A

′′
AA

′′
B

CAA
′′

CA′′B

)
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and Q1Q2 = 0. Clearly, Q1 has gs-Drazin inverse by lemma 1.1. Moreover, we have Q2 =

(
AA

′′

CA
′′

)(
A AA

′′
B
)
.

We see that
(
A AA

′′
B
)(AA

′′

CA
′′

)
= A2A

′′
+AA

′′
BCA

′′
. Since AπBCA2 = 0 and ABCA

′′
= BCAA

′′ , as

in the proof in Theorem 2.5, we see that Q2 has gs-Drazin inverse. Therefore Q has gs-Drazin inverse. By using
Corollary 1.3 again,M has gs-Drazin inverse, as required.

Corollary 2.8. LetA ∈ L(X)
′′
, D ∈ L(Y )

′′ andM be given by (∗). IfAπABCA = 0, CAπBCA = 0, BCAπBC =
0, A2BCA = ABCA2 and D = CA

′′
B, thenM ∈ L(X ⊕ Y )

′′ .
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Abstract

Let R be a muliplicative hyperring. In this paper, we introduce and study the concept of 2-
absorbing ϕ-δ-primary hyperideals which is a extended class of 2-absorbing hyperideals. We
give a number of main results to explain the general framework of these structures.

1. Introduction

The theory of hyperstructures has been introduced by Marty in 1934 at the 8th Congress of the Scandinavian Mathe-
maticians [8]. He introduced hypergroups as a generalization of groups. In algebraic hyperstructures, the product of
two elements is not an element but a set, while in classical algebraic structures, the binary operation of two elements
of a set is an element of the set. In 1982, the notion of multiplicative hyperrings as an important class of algebraic
hyperstructures was studied by R. Rota [10]. In the hyperrings, multiplication is a hyperoperation, while the addition is
an operation. The concept of prime hyperideals in multiplicative hyperrings is introduced in brief by Procesi and Rota
and it is further generalized by Dasgupta in [4]. Two extended classes of prime and 2-absorbing hyperideals which are
called δ-primary and 2-absorbing δ-primary hyperideals, respectively, were presented by Ulucak in [7]. Badawi in [3]
studied a generalization of prime ideals called 2-absorbing ideals and Ghiasvand generalized the idea in multiplicative
hyperrings [6].
In this paper, we introduce and study the concept of 2-absorbing ϕ-δ-primary hyperideals which is a generalization of
2-absorbing hyperideals. We get some properties of such hyperideals.

2. Preliminaries

Recall first the basic terms and definitions from the hyperring theory. A hyperoperation ” ◦ ” on nonempty set G is a
mapping of G ×G into the family of all nonempty subsets of G. Let ” ◦ ” be a hyperoperation on G. Then (G, ◦) is
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a hypergroupoid. We can extend the hyperoperation on G to subsets of G as follows. Let A and B be two nonempty
subsets of G, then we denote A ◦B =

∪
x∈A, y∈B x ◦ y, and if r ∈ G, then we denote A ◦ r = A ◦ {r}.

A semihypergroup is a hypergroupoid (G, ◦), which is associative, that is for all x, y, z ∈ G, (x ◦ y) ◦ z = x ◦ (y ◦ z).
A hypergroup is a semihypergroup (G, ◦), that satisfies the reproduction axioms, that is x ◦ G = G = G ◦ x for all
x ∈ G.
A nonempty set R with two hyperoperations ” + ” and ” ◦ ” is called hyperring hyperring if (R,+) is a canonical
hypergroup, (R, ◦) is a semihypergroup with x ◦ 0 = 0 = 0 ◦ x for all x ∈ R. The hyperoperation ” ◦ ” is distributive
over ”+ ”, that is x ◦ (y + z) = x ◦ y + x ◦ z for all x, y, z ∈ R.
A multiplicative hyperring is an abelian group (R,+) in which a hyperoperation ◦ is defined satisfying the following:

(1) for all x, y, z ∈ R, we have x ◦ (y ◦ z) = (x ◦ y) ◦ z,

(2) for all x, y, z ∈ R, we have x ◦ (y + z) ⊆ x ◦ y + x ◦ z and (y + z) ◦ x ⊆ y ◦ x+ z ◦ x,

(3) for all x, y ∈ R, we have x ◦ (−y) = (−x) ◦ y = −(x ◦ y).

If in (2) the equality holds then we say that the multiplicative hyperring is strongly distributive.
A non empty subset I of a multiplicative hyperring R is a hyperideal if it has the followings:

(1) a− b ∈ I for each a, b ∈ I ,

(2) rox ⊆ I for each x ∈ I and r ∈ R.

Definition 2.1. [4] A proper hyperideal P of R is called a prime hyperideal if x ◦ y ⊆ P for x, y ∈ R implies that
x ∈ P or y ∈ P . The intersection of all prime hyperideals of R containing I is called the prime radical of I , being
denoted by

√
I . If the multiplicative hyperringR does not have any prime hyperideal containing I , we define

√
I = R.

Definition 2.2. Let C be the class of all finite products of elements of R i.e. C = {r1 ◦ r2 ◦ ... ◦ rn : ri ∈ R,n ∈
N} ⊆ P ∗(R). A hyperideal I of R is said to be a C-hyperideal of R if, for any A ∈ C, A ∩ I ̸= ∅ implies A ⊆ I .

Let I be a hyperideal of R. Then,D ⊆
√
I whereD = {r ∈ R : rn ⊆ I for some n ∈ N}. The equality holds when

I is a C-hyperideal of R([? ], proposition 3.2). In this paper, we assume that all hyperideals are C-hyperideal. In this
paper, we assume that all hyperideals are C-hyperideal.

Definition 2.3. Let I, J be two hyperideals of R and x ∈ R. Then define:

(I : a) = {r ∈ R : r ◦ a ⊆ I}

(I : J) = {r ∈ R : r ◦ J ⊆ I}

Definition 2.4. [2] A function δ is called a hyperideal expansion ofR if it assigns to each hyperideal I ofR a hyperideal
δ(I) such that I ⊆ δ(I) and if I ⊆ J for any hyperideals I, J of R, then δ(I) ⊆ δ(J).

For example, consider the hyperideal expansions δ0, δ1, δ+ and δ∗ of R defined with δ0(I) = I , δ1(I) =
√
I ,

δ⋆(I) = I + J (for some hyperideal J of R) and δ∗(I) = (I : K) (for some hyperideal K of R) for all hyperideals
I of R, respectively. Also, let δ be a hyperideal expansion of R and I, J two hyperideals of R such that I ⊆ J . Let
δq : R/I −→ R/I be defined by δq(J/I) = δ(J)/I . Then δq is a hyperideal expansion of R/I .

Definition 2.5. Let L(R) be the set of all hyperideals of R. A function ϕ from L(R) into L(R) ∪ {∅} is called a
hyperideal reduction of R if ϕ(I) ⊆ I and I ⊆ I ′ implies that ϕ(I) ⊆ ϕ(I ′) for every I and I ′ in L(R).

3. main results

Theorem 3.1. A proper hyperideal I of R is called 2-absorbing ϕ-δ-primary if whenever x, y, z ∈ R with x ◦ y ◦ z ⊆
I − ϕ(I), then x ◦ y ⊆ I or x ◦ z ⊆ δ(I) or y ◦ z ⊆ δ(I).
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Example 3.2. Let (Z,+, .) be the ring of integers. Consider multiplicative hyperring (Z,+, ◦) with a hyperoperation
x ◦ y for all x, y ∈ Z and the hyperideal expansion δ̄ of Z with δ̄(I) = I + pZ for some prime integer p. Let q be a
prime integer such that p ̸= q and ϕ(qZ) = ∅. Then the hyperideal qZ of Z is 2-absorbing ϕ-δ̄-primary.

Theorem 3.3. Let I be a proper hyperideal ofR and a ∈ R− I with (δ(I) : a) ⊆ δ(I : a) and (ϕ(I) : a) ⊆ ϕ(I : a).
If I is a 2-absorbing ϕ-δ-primary hyperideal of R, then (I : a) is so.

Theorem 3.4. Let I and I ′ be hyperideals of R such that I ′ ⊈ I . If I is 2-absorbing ϕ-δ-primary with (δ(I) : I ′) ⊆
δ(I : I ′) and (ϕ(I) : I ′) ⊆ ϕ(I : I ′), then (I : I ′) is a 2-absorbing ϕ-δ-primary hyperideal of R.

Theorem 3.5. Let I is a 2-absorbing ϕ-δ-primary hyperideal ofR. Then (I : x◦y) = (δ(I) : x)∪(δ(I) : y)∪(ϕ(I) :
x ◦ y) for x, y ∈ R with x ◦ y ⊈ I .

Theorem 3.6. Let the hyperideal I of R be 2-absorbing ϕ-δ-primary with
√
ϕ(I) ⊆ ϕ(

√
I) and

√
δ(I) ⊆ δ(

√
I).

Then
√
I is 2-absorbing ϕ-δ-primary.

If the hyperideal expansion δ and the hyperideal reduction ϕ hold δ(I∩I ′) = δ(I)∩δ(I ′) and ϕ(I∩I ′) = ϕ(I)∩ϕ(I ′)
for each hyperideals I ,I ′ of R, they have the property of intersection preserving.
Theorem 3.7. Let δ, ϕ have the property of intersection preserving. If I1, ..., In are 2-absorbing ϕ-δ-primary hyper-
ideals such that δ(Ii) = δ(Ij) and ϕ(Ii) = ϕ(Ij) for every 1 ≤ i, j ≤ n, then

∩n
i=1 Ii is a 2-absorbing ϕ-δ-primary

hyperideal of R.

Theorem 3.8. Let δ, γ be two hyperideal expansions of R such that δ(I) ⊆ γ(I) for all proper hyperideals I of R.
Let ϕ, ψ be two hyperideal reductions of R such that ϕ(I) ⊆ ψ(I) for all hyperideals I of R. Then:

(1) Every 2-absorbing ϕ-δ-primary hyperideal of R is 2-absorbing ψ-δ-primary.

(2) Every 2-absorbing ϕ-δ-primary hyperideal of R is 2-absorbing ϕ-γ-primary.

(3) Every 2-absorbing ϕ-δ-primary hyperideal of R is 2-absorbing ψ-γ-primary.

Let (R1,+1, ◦1) and (R2,+2, ◦2) be two multiplicative hyperrings. A mapping from R1 into R2 is said to be a good
homomorphism if for all x, y ∈ R1, ϕ(x+1 y) = ϕ(x) +2 ϕ(y) and ϕ(x ◦1 y) = ϕ(x) ◦2 ϕ(y) [5].
Let h : R1 −→ R2 be a good hyperring homomorphism, δ and γ hyperideal expansions of R1 and R2, respectively.
Suppose thatϕ,ψ are hyperideal reductions ofR1 andR2, respectively. Then h is called a (δ, ϕ)-(γ, ψ)-homomorphism
if δ(h−1(I2) = h−1(γ(I2)) and ϕ(h−1(I2) = h−1(ψ(I2)) for each hyperideal I2 of R2. Moreover, If h is a (δ, ϕ)-
(γ, ψ)-epimorphism and I1 is a hyperideal of R1 with Kerh ⊆ I1, then γ(h(I1)) = h(δ(I1)) and ψ(h(I1)) =
h(ϕ(I1)).
Theorem 3.9. Let δ and γ be hyperideal expansions ofR1 andR2, respectively. Let ϕ and ψ be hyperideal reductions
of R1 and R2, respectively, such that h : R1 −→ R2 is a (δ, ϕ)-(γ, ψ)-homomorphism. Then:

(1) If I2 is a 2-absorbing ψ-γ-primary hyperideal of R2, then h−1(I2) is a 2-absorbing ϕ-δ-primary hyperideal
of R1.

(2) Let h be an epimorphism. If I1 is a 2-absorbing ϕ-δ-primary hyperideal of R1 withKerh ⊆ I1, then h(I1) is
a 2-absorbing ψ-γ-primary hyperideal of R2.

Theorem 3.10. Let δ and ϕ be the hyperideal expansion and the hyperideal reduction ofR, respectively. Suppose that
I and I ′ be hyperideals of R with I ⊆ ϕ(I ′) ⊆ I ′. Then I ′ is a 2-absorbing ϕ-δ-primary hyperideal of R if and only
if I ′/I is a 2-absorbing ϕq-δq-primary hyperideal of R/I .

Let (R1,+1, ◦1) and (R2,+2, ◦2) be two multiplicative hyperrings with non zero identity. [7] Recall (R1×R2,+, ◦)
is a multiplicative hyperring with the operation + and the hyperoperation ◦ are defined respectively as
(x1, x2) + (y1, y2) = (x1 +1 y1, x2 +2 y2)
(x1, x2) ◦ (y1, y2) = {(x, y) ∈ R1 ×R2 | x ∈ x1 ◦1 y1, y ∈ x2 ◦2 y2}.
Let δ1 and δ2 be hyperideal expansions of R1 and R2, respectively. It is easy to see that δR1×R2

(I1 × I2) = δ1(I1)×
δ2(I2) for every hyperideals I1 of R1 and I2 of R2 is a hyperideal expansion of R1 × R2. Moreover, let ϕ1 and ϕ2
be hyperideal reductions of R1 and R2, respectively. It is seen that ϕR1×R2(I1 × I2) = ϕ1(I1) × ϕ2(I2) for every
hyperideals I1 of R1 and I2 of R2 is a hyperideal reduction of R1 ×R2.
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Theorem 3.11. Let R1 and R2 be two multiplicative hyperrings and I1 be a proper hyperideal of R1. Suppose that
δ1,δ2 are hyperideal expansions of R1 and R2, respectively, and ϕ1,ϕ2 are hyperideal reductions of R1 and R2,
respectively. I1 is a 2-absorbing δ1-primary hyperideal ofR1 if and only if I1×R2 is a 2-absorbing ϕR1×R2 -δR1×R2 -
primary hyperideal of R1 ×R2.

Recall from [7] that a proper hyperideal I ofR refers to a δ-primary hyperideal if for x, y ∈ R, x◦y ⊆ I implies either
x ∈ I or y ∈ δ(I). Also, a proper hyperideal I of R is called 2-absorbing δ-primary if for x, y, z ∈ R, x ◦ y ◦ z ⊆ I
implies x ◦ y ⊆ I or y ◦ z ∈ δ(I) or x ◦ z ∈ δ(I).

Theorem 3.12. Let R1 and R2 be two multiplicative hyperrings and I1, I2 be two hyperideals of R1 and R2, respec-
tively. Suppose that δ1,δ2 are hyperideal expansions of R1 and R2, respectively, and ϕ1,ϕ2 are hyperideal reductions
of R1 and R2, respectively. If I1 × I2 is a proper hyperideal of R1 × R2 with δi(Ii) ̸= Ri and ϕi(Ii) ̸= Ri for each
i ∈ {1, 2}, then the followings are equivalent.

(1) I1 × I2 is a 2-absorbing ϕR1×R2 -δR1×R2 -primary hyperideal of R1 ×R2.

(2) Ii is a δi-primary hyperideal ofRi for each i ∈ {1, 2} or I1 = R1 and I2 is a 2-absorbing δ2-primary hyperideal
of R2 or I2 = R2 and I1 is a 2-absorbing δ1-primary hyperideal of R1.

Theorem 3.13. LetR1 andR2 be twomultiplicative hyperrings and I1 be a proper hyperideal ofR1. Assume that δ1,δ2
are hyperideal expansions ofR1 andR2, respectively, and ϕ1,ϕ2 are hyperideal reductions ofR1 andR2, respectively.
Then the followings are equivalent.

(1) I1 is a 2-absorbing ϕ1-δ1-primary hyperideal ofR1 such that it is not 2-absorbing ϕ1-δ1-primary, ϕR1×R2
(I1×

R2) ̸= ∅ and ϕ2(R2) = R2.

(2) I1 × R2 is a 2-absorbing ϕR1×R2
-δR1×R2

-primary hyperideal of R1 × R2 such that it is not 2-absorbing
δR1×R2 -primary hyperideal.
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Abstract

An ideal Q of a duo ring R is said to be weak prime if for ideals I and J of R, the inclusion
I ∩ J ⊆ Q implies that either I ⊆ Q or J ⊆ Q. In this paper we study weak prime ideals
in duo rings and a topology similar to the Zariski topology related to weak prime ideals. This
topology is called weak Zariski topology and has the Zariski topology defined by prime ideals
as one of its subspace topologies.

1. Preliminaries

Definition 1.1. A ring R is called a duo ring if each right or left ideal of R is a two sided ideal.

Example 1.2. Commutative rings and division rings are duo ring.

Example 1.3. If D is a division ring, then R = {
[
a b
0 c

]
|a, b, c ∈ D} is a duo ring.

Proposition 1.4. Let R be a ring. Then the following are equivalent:

1. R is a duo ring.
2. For every x ∈ R, Rx = xR.
3. If a and b are two elements of R, then there exist x, y ∈ R such that, ab = bx = ya.

Definition 1.5. Let R be a duo ring and I be an ideal of R. We denote by
√
I the subset {r ∈ R|∃n ∈ N, rn ∈ I} of

R.

Proposition 1.6. Let R be a duo ring and P be a proper ideal of R. Then the following statements are equivalent:

1. P is prime ideal.
2. For every x, y ∈ R, if xy ∈ P then x ∈ P or y ∈ P .
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Therefore, if P is a prime ideal of R and xn ∈ P , for some x ∈ R and n ∈ N, then x ∈ P .

Corollary 1.7. If P is a prime ideal of a duo ring R, then
√
P = P .

Lemma 1.8. Let R be a duo ring and I and J be ideals of R. Then
√
I ∩ J =

√
I ∩

√
J =

√
IJ

Proposition 1.9. Let R be a duo ring and I be an ideal of R. Then
√
I is an ideal of R.

Proposition 1.10. Let R be a duo ring. Then the ideals which are the power of prime ideals commute.

Proposition 1.11. Let R be a duo ring. Then N(R) =
∩

P∈spec(R)

P .

Theorem 1.12. Let P1, P2, . . . , Pn where n ⩾ 2, be ideals of duo ring R such that at most two of them are not prime.

Let S be an additive subgroup of R which is closed under multiplication. Suppose that S ⊆
n∪

i=1

Pi. Then S ⊆ Pj for

some i ∈ {1, 2, . . . , n}.

Lemma 1.13. Let b and c be elements in a duo ring R. Then bR ∩ cR = b(cR :R bR) = c(bR :R cR). Moreover; if
I is an ideal in R such that I ⊆ bR; then I = b(I :R bR).

2. Main Results

Definition 2.1. An ideal Q of duo ring R is weak prime if for idealsI and J of R, the inclusion I ∩ J ⊆ Q implies
that either I ⊆ Q or J ⊆ Q.

Lemma 2.2. Let Q be a weak prime ideal in a duo ring R. Then Q is irreducible.

Corollary 2.3. If Q is a waek prime ideal of Noetherian duo ring R, then Q is primary ideal.

Lemma 2.4. If Q is a prime ideal of duo ring R, then Q is weak prime.

Lemma 2.5. If Q is weak prime ideal of duo ring R and I is an ideal contained in Q, then Q
I is weak prime in R

I is
weak prime in R

I .

Proposition 2.6. Let Q be an ideal of duo ring R. Then Q is weak prime if and only if, Rx ∩ Ry ⊆ Q implies that
x ∈ Q or y ∈ Q.

Proposition 2.7. Let Q be a weak prime ideal of duo ring R. Then Q is prime if and only if
√
Q = Q.

Proposition 2.8. For each proper ideal I of R, there is a minimal weak prime ideal over I .

Proposition 2.9. If Q is weak prime ideal of duo ring R and Q has primary decomposition, then Q is primary.

Proposition 2.10. If R be a duo ring, then every proper ideal of R is weak prime ideal if and only if, R is a uniserial
duo ring.

Proposition 2.11. Let R be a local duo ring with maximal idealM and let I be a weak primeM -primary ideal in R.
Assume that I ⊆ (I :R M). Then:

1. (I :R M) is a principal ideal.
2. I = (I :R M)M .
3. For each ideal J in R either J ⊆ I or (I :R M) ⊆ J .

If R is a duo ring, we consider WSpec(R) to the set of all weak prime ideal of R. We call WSpec(R), the weak
prime spectrum of R. In this section, a topology on WSpec(R) introduced. This topology is defined exactly similar
to the Zariski topology defined by prime ideals and the set of prime ideals is a subspace topology ofWSpec(R). This
topology is called weak Zariski topology.



380 A. R. Alehafttan / The 3rd National Congress on Mathematics and Statistics

Definition 2.12. If I is an ideal of R, variety of I , denoted byWV (I), as also for each a ∈ R and each ideal I of R,
let OP (I) = {Q ∈ WSpec(R)|I ⊈ Q}, OP (a) = OP (Ra). WT (R) = {OP (I)|I is an ideal of R}.

Proposition 2.13. If R is a duo ring, thenWT (R) is a topology onWSpec(R).

Lemma 2.14. Let x be an element of duo ring R. Then:

1. If OP (x) = ∅, then x is a nilpotent element of R.
2. OP (x) = WSpec(R) if and only if, x is a unit element of R.

Proposition 2.15. If I and J are ideals of duo ring R and OP (I) = OP (J), then
√
I =

√
J

Proposition 2.16. Let R be a duo ring. ThenWSpec(R) is a quasi-compact topological space.

Proposition 2.17. If R is a duo ring, thenWSpec(R) is a T0 topological space.

Proposition 2.18. Let R be a Noetherian duo ring. Then closed sets of WSpec(R) satisfy the descending chain
condition.

Definition 2.19. A nonempty closed set C of a topological space is said to be irreducible if C can not be written as
the union of two distinct closed sets.

Lemma 2.20. If I is an ideal of R such thatWV (I) is irreducible closed set. Then there eists an irreducible ideal J
of R such thatWV (I) = WV (J).

Proposition 2.21. If I is an ideal of duo ring R and closed sets ofWSpec(R) satisfy the descending chain condition,
then we have:

1. WV (I) can be written as a finite union of irreducible closed sets WV (Ik), k = 1, 2, . . . , n such that for each
k, Ik is an irreducible ideal of R.

2. WV (I) can be written as a finite union of irreducible closed sets WV (Ik), k = 1, 2, . . . , n such that for each
k, Ik is an irreducible ideal of R.
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Abstract

Leibniz algebras introduced by J. L. Loday (1993) are non-antisymmetric generalizations of
Lie algebras. The classification problem of complex nilpotent Leibniz algebras was first studied
by Loday himself. Recently, Albeverio, Omirov and Rakhimov obtained the classification of
4-dimensional complex nilpotent Leibniz algebras. In this short note, we show that one of the
algebras should be omitted from their list, as it is isomorphic to another algebra in the list.

1. Introduction

Leibniz algebras was first introduced by Loday in [4] and [5] as a non-antisymmetric versions of Lie algebras. The clas-
sification problem of complex nilpotent Leibniz algebras was first studied by Loday. In [5] he gave a complete classifi-
cation of complex nilpotent Leibniz algebras of dimension n ≤ 2. Later Ayupov and Omirov classified 3−dimensional
complex nilpotent Leibniz algebras in [2]. Recently, Albeverio, Omirov and Rakhimov have obtained a classification
of 4-dimensional complex nilpotent Leibniz algebras in [1].
One of the techniques to classify nilpotent Lie algebras was introduced by Skjelbred and Sund in [8]. Rakhimov and
Langari used Skjelbred-Sund method in Leibniz algebras [3]. They also applied in [7] and [3] this technique to obtain
the classification of complex nilpotent Leibniz algebras of dimension n ≤ 4. Comparing the results of [3] and [6] with
classification in [1] we realized that the Skjelbred-Sund method could be used to check the validity of the main result
of [1]. In this part we give the basic definitions and properties of Leibniz algebras.

Definition 1.1. A Leibniz algebra L is a vector space over a field F equipped with a bilinear map

[·, ·] : L× L −→ L

satisfying the Leibniz identity

[x, [y, z]] = [[x, y], z]− [[x, z], y], (x, y, z ∈ L).
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The first pure algebraic motivation of J.-L. Loday to introduce this class of algebras was the search for an “obstruc-
tion” to the periodicity in algebraic K-theory. Besides this purely algebraic motivation, some relationships with
classical geometry have recently been discovered, which could lead to an investigation of the (co)homological theory
of Leibniz algebras in view of concrete applications in non-commutative geometry and its physical interpretations.
Obviously, a Lie algebra is a Leibniz algebra. A Leibniz algebra is a Lie algebra if and only if

[x, x] = 0, (x ∈ L).

Let n be the dimension of Leibniz algebra L. Let {e1, e2, ..., en} be a basis in L. The structural constants of L are the
numbers Ck

ij given by

[ei, ej ] =

n∑

k=1

Ck
ijek (i, j = 1, ..., n).

We can identify the Leibniz identity with its structural constants. These constants satisfy:

n∑
l=1

(Cl
jkC

s
il − Cl

ijC
s
lk + Cl

ikC
s
lj) = 0 (i, j, k, s = 1, ..., n).

Definition 1.2. Let L is a Leibniz algebra. We define

L1 = L, Lk =
[
Lk−1, L

]
(k > 1).

The series

L1 ⊇ L2 ⊇ L3 ⊇ ...

is called the descending central series ofL. If the series terminates for some positive integer s, then the Leibniz algebra
L is said to be nilpotent.

Theorem 1.3. [1] The isomorphism classes of four-dimensional complex nilpotent Leibniz algebras are given by the
following representatives.




R1: [e1, e1] = e2, [e2, e1] = e3, [e3, e1] = e4;
R2: [e1, e1] = e3, [e1, e2] = e4, [e2, e1] = e3, [e3, e1] = e4;
R3: [e1, e1] = e3, [e2, e1] = e3, [e3, e1] = e4;
R4(α): [e1, e1] = e3, [e1, e2] = αe4, [e2, e1] = e3, [e2, e2] = e4, [e3, e1] = e4, α ∈ {0, 1};
R5: [e1, e1] = e3, [e1, e2] = e4, [e3, e1] = e4;
R6: [e1, e1] = e3, [e2, e2] = e4, [e3, e1] = e4;
R7: [e1, e1] = e4, [e2, e1] = e3, [e3, e1] = e4, [e1, e2] = −e3, [e1, e3] = −e4;
R8: [e1, e1] = e4, [e2, e1] = e3, [e3, e1] = e4, [e1, e2] = −e3 + e4, [e1, e3] = −e4;
R9: [e1, e1] = e4, [e2, e1] = e3, [e2, e2] = e4, [e3, e1] = e4, [e1, e2] = −e3 + 2e4, [e1, e3] = −e4;
R10: [e1, e1] = e4, [e2, e1] = e3, [e2, e2] = e4, [e3, e1] = e4, [e1, e2] = −e3, [e1, e3] = −e4;
R11: [e1, e1] = e4, [e1, e2] = e3, [e2, e1] = −e3, [e2, e2] = −2e3 + e4;
R12: [e1, e2] = e3, [e2, e1] = e4, [e2, e2] = −e3;
R13(α): [e1, e1] = e3, [e1, e2] = e4, [e2, e1] = −αe3, [e2, e2] = −e4, α ∈ C;
R14(α): [e1, e1] = e4, [e1, e2] = αe4, [e2, e1] = −αe4, [e2, e2] = e4, [e3, e3] = e4, α ∈ C;
R15: [e1, e2] = e4, [e1, e3] = e4, [e2, e1] = −e4, [e2, e2] = e4, [e3, e1] = e4;
R16: [e1, e1] = e4, [e1, e2] = e4, [e2, e1] = −e4, [e3, e3] = e4;
R17: [e1, e2] = e3, [e2, e1] = e4;
R18: [e1, e2] = e3, [e2, e1] = −e3, [e2, e2] = e4;
R19: [e2, e1] = e4, [e2, e2] = e3;
R20(α): [e1, e2] = e4, [e2, e1] =

1+α
1−αe4, [e2, e2] = e3, α ∈ C \ {1};

R21: [e1, e2] = e4, [e2, e1] = −e4, [e3, e3] = e4.
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2. Main results

In this section we prove that R13(α = 1) ∼= R19. Therefore, the Leibniz algebra R19 should be omitted from the list
1.3. Here we rewrite the relations in these algebras as follows:

R13(α = 1): [e1, e1] = e3, [e1, e2] = e4, [e2, e1] = −e3, [e2, e2] = −e4;

and

R19: [e′2, e′1] = e′4, [e
′
2, e

′
2] = e′3.

The matrix A representing the linear transformation with respect to these bases is

A =




c11 c12 0 0
−c22 c22 0 0
c31 c32 c222 −c222
c41 c42 −c22c11 −c22c11


 ;

where det(A) = −2c422c11c12 − c422c
2
11 − c422c

2
12.

We can easily get the following constrains for a matrix A such that det(A) ̸= 0 :

c12 = c31 = c32 = c41 = c42 = 0, c22 = −1, c11 = 1.

Thus we get

A =




1 0 0 0
1 −1 0 0
0 0 1 −1
0 0 1 0


 .

Writing the elements of basis R13(α = 1) in terms of the basis R19 we have





e1 = e′1 + e′2;
e2 = −e′1;
e3 = e′3 + e′4;
e4 = −e′3.

It shows that R13(α = 1) ∼= R19.
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Abstract

In this paper, we first recall the concept of an information system and then introduce an algebraic
closure operator on a set of some special subsets of the information system. Finally, we prove
the class of information systems and

∩
-structures are isomorphic.

1. First Section

2. introduction and preliminaries

Information systems have been introduced by D.S. Scott [2, 3] to provide an interpretation for states of knowledge in
computational models. On the other hand,

∩
-structures, that is, a family of subsets of a set which is closed under the

intersection of any non-empty family, have an extensive application in order theory. More precisely, very many lattices
in algebra are

∩
-structure. Moreover, the relationship between closure operators and

∩
-structure on a given set set is

bijective one. In this paper, we first introduce some concepts from order theory and then that of information systems.
Then we introduce a closure operator and prove the class information systems and

∩
-structures are isomorphisms.

First we recall from [1], some concepts that will be needed in the sequel.

Definition 2.1. Let P be an ordered set. A map c : P → P is called a closure operator (on P ) if, for all x, y ∈ P ,

(1) x ≤ c(x),
(2) x ≤ y =⇒ c(x) ≤ c(y),
(3) c(c(x)) = c(x).

An element x ∈ P is called closed if c(x) = x. The set of all closed elements of P is denoted by Pc.

Proposition 2.2. Let c be a closure operator on a complete lattice L. Then Lc is a complete lattice, under the order
inherited from L, such that, for every subset S of Lc,

∧
Lc

S =
∧

L S and
∨

Lc
S = c(

∨
L S).

∗Talker
Email address: h_moghbeli@sbu.ac.ir (Halimeh Moghbeli)

https://conf.gonbad.ac.ir/msc1400


Halimeh Moghbeli / The 3rd National Congress on Mathematics and Statistics 385

Definition 2.3. Let L be a complete lattice and let k ∈ L. k is called finite (in L) if, for every directed set D in L,
that is for each pair a, b ∈ D there is an element c ∈ D with a, b ≤ c,

k ≤
∨

D =⇒ k ≤ d for some d ∈ D.

The set of all finite elements of L is denoted F (L). A complete lattice L is said to be algebraic if, for each a ∈ L,
a =

∨{k ∈ F (L) | k ≤ a}.

Definition 2.4. Let c be a closure operator on a complete lattice L. We say that c is algebraic if, the complete lattice
Lc is algebraic.

Definition 2.5. Let X be a set. The non-empty family {Ai}i∈I of subsets of X is said to be directed if for each pair
of elements i, j ∈ I , there exists a k ∈ I with Ai, Aj ⊆ Ak.

Definition 2.6. LetX be a set and L a non-empty family of subsets ofX . The family L is said to be an
∩
-structure if∩

i∈I Ai ∈ L for any non-empty family {Ai}i∈I in L. The
∩
-structure L is algebraic if

∪
i∈I Ai ∈ L for any directed

family {Ai}i∈I in L.

We denote the class of all
∩
-structures by

∩
S.

In the following we recall from [2], the definition of an information system.

Definition 2.7. An information system is a triple A = (A,Cons,`) consisting of
(i) A set A of propositions or units of informations.
(ii) Cons is a non-empty set (system) of finite subsets of A which satisfy

(IS1) Y ∈ Cons and Z ⊆ Y implies Z ∈ Cons,
(IS2) a ∈ A implies {a} ∈ Cons,

(iii) ` called entailment relation is a relation between member of Cons and members of A (formally ` is a subset of
Cons×A) satisfying

(IS3) Y ∪ {a} ∈ Cons whenever Y ∈ Con, a ∈ A and Y ` a,
(IS4) Y ∈ Cons and a ∈ Y implies Y ` a,
(IS5) Y, Z ∈ Cons and a ∈ A satisfy Y ` b for all b ∈ Z, and Z ` a, then Y ` a.

Read Y ` a as “Y entails a” or “a is deducible from Y ”.
We denote the class of all information systems by INF.

Definition 2.8. Let A = (A,Cons,`) be an information system. An arbitrary subset X ⊆ A is said to be consistent
if every finite subset of X is in Cons. We show that the set of all consistent subset of A by Cons(A).

Remark 2.9. Let A = (A,Cons,`) be an information system.

(1) In our notations, Y ⋐ A means that Y is a finite (possibly empty) subset of A.
(2) Considering (IS1), every set in Cons is a consistent subset of A, so the terminology Cons is in fact an abbre-

viation for consistent subsets.

3. Main results

In this section, we first prove some technical lemmas an theorems, and using them to prove that the class of information
systems and

∩
-structures are isomorphic. The following rules are frequently used in proofs:

Lemma 3.1. Let A = (A,Cons,`) be an information system.

(a) If Y ∈ Cons, Z ⊆ Y and Z ` a then Y ` a.
(b) If Y ∈ Con, Z is finite and Y ` a for every a ∈ Z, then Z ∈ Cons.
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Proof. (a): By (IS4), Y ` z for every z ∈ Z. Having this and Z ∈ Cons, (IS5) implies Y ` a.
(b): First, we use induction on |Z| to show that Y ∪ Z ∈ Cons, then using (IS1), we conclude Z ∈ Cons, as
required. If |Z| = 1, then IS2 implies Z ∈ Cons, as required. Let |Z| = 2 and take Z = {z1, z2}. By hypothesis,
Y ` z1 and Y ` z2. So by (IS3), Y ∪ {z1} ∈ Cons. Having Y ` z2, (a) implies Y ∪ {z1} ` z2. Then (IS3)
implies (Y ∪{z1})∪{z2} ∈ Cons. Having this and {z1, z2} ⊆ Y ∪{z1, z2}, (IS1) implies Z = {z1, z2} ∈ Cons, as
required. Now let for every finite subsetZ with |Z| = n, (b) holds. Take a finite subsetK = {k1, · · · , kn+1} ofAwith
|K| = n+1 such that Y ` k for every k ∈ K. By induction hypothesis, Y ∪K ′ ∈ Cons whereK ′ := {k1, · · · , kn}.
Hence and by Y ` zn+1, (a) implies Y ∪K ′ ` zn+1. Thus (IS3) implies that Y ∪K = (Y ∪K ′)∪{zn+1} ∈ Cons.
Now, by (IS1),K ∈ Cons, as required.

Information systems have a strong connection with
∩
-structures. To make this precise, we need more definitions.

Definition 3.2. Let A = (A,Cons,`) be an information system. A subset E of A is called an element of A if E is
consistent and `-closed, in the sense that Y ∈ Cons, Y ⋐ E and Y ` a imply a ∈ E. The set of elements of A is
denoted by |A|.

Definition 3.3. For any consistent set X we define X := {a ∈ A | (∃ Y ⋐ X) Y ` a}, this may be interpreted as
the set of informations deducible fromX .

Lemma 3.4. Let A = (A,Cons,`) be an information system and X ∈ Cons. Then X = {a ∈ A | X ` a}.

Proof. We have to show that {a ∈ A | (∃ Y ⋐ X) Y ` a} = {a ∈ A | X ` a}. By Lemma 3.1(a), the first is a
subset of the latter. The inverse inclusion trivially holds.

Lemma 3.5. Let A = (A,Cons,`) be an information system and X a consistent subset of A. Then X is an element
of A.

Proof. First we show that X is consistent. To prove this, we take T ⋐ X and show that T ∈ Cons. For each t ∈ T ,
there exists Zt ⋐ X with Zt ` t. Moreover

∪
t∈T Zt ⋐ X and so

∪
t∈T Zt ∈ Cons, since X is consistent. Now,

using Lemma 3.1 (a),
∪

t∈T Zt ` t, for all t ∈ T . Hence and by Lemma 3.1 (b), T ∈ Cons, as required. Finally,
using the definition of X , it is easy to see that X is `-closed. Consequently, X is an element.

Lemma 3.6. Let A = (A,Cons,`) be an information system and X a consistent subset of A. Then X is an element
of A if and only if X = X .

Proof. Let X = X , then by Lemma 3.5, X is an element of A. To prove the other direction, let X be an element of
A, we show that X = X . For all x ∈ X , {x} ∈ Cons and {x} ` x imply x ∈ X . So X ⊆ X . Now, take a ∈ X ,
then there is Y ⋐ X with Y ` a. Thus, since X is `-closed, a ∈ X . This gives X ⊆ X . Consequently, X = X , as
required.

Theorem 3.7. Let A = (A,Cons,`) be an information system. Then the map (−) : Cons(A) → Cons(A),X → X
is an algebraic closure operator.

Proof. LetX be a consistent subset of A. Moreover, for all x ∈ X , {x} ⋐ X , {x} ∈ Cons and {x} ` x. So, x ∈ X .
This givesX ⊆ X . Now, we show that ifX ⊆ Y , thenX ⊆ Y . Take an element a ∈ X , then there exists Z ∈ Cons
with Z ⋐ X and Z ` a. Thus Z ⋐ X ⊆ Y . This gives that a ∈ Y , as required. Finally, we show that for any
consistent subsetX ofA,X = X . By Lemma 3.5,X is an element and so by Lemma 3.6,X = X , as required. Now,
we show that (−) is algebraic. First notice that the ordered set (Cons(A),⊆) is complete, because the intersection of
any family of consistent subset is consistent. Second, by Lemma 3.6, the set of all closed elements of (Cons(A),⊆)
is |A| which is a complete lattice (by Theorem 2.2). It is easy to show that the finite elements of |A| are exactly the
sets Y where Y ∈ Cons. Thus, using Theorem 3.8(ii), we obtain that |A| is algebraic.

Theorem 3.8. Let A = (A,Cons,`) be an information system and let E ⊆ A. Then the following are equivalent:

(i) E is an element of A.
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(ii) {Y | Y ∈ Cons and Y ⋐ E} is directed and

E =
∪

{Y | Y ∈ Cons and Y ⋐ E}
.

(iii) E = X , for some consistent set X .

Proof. (iii =⇒ i) Let Z := {x1, . . . , xn} ⋐ E. For each i, there exists Yi ⋐ X with Yi ` xi. Then Y :=
Y1 ∪ . . . ∪ Yk ⋐ X and so Y ∈ Cons, since X is consistent. By Rule (a) in 3.1, Y ` xi for each i. By Rule (b) in
3.1, Z ∈ Cons. Hence E is consistent. To show E is `-closed, assume Z ` a. The set Y above is such that Y ` b
for each b ∈ Z. By (IS5), Y ` a, so a ∈ X = E.
(i =⇒ ii) Let T := {Y | Y ∈ Cons and Y ⋐ E}. Take Y , Z ∈ T. We have (Z ∪ Y ) ⋐ E and since E is consistent,
(Z ∪ Y ) ∈ Cons. Thus Z ∪ Y ∈ T with Y , Z ⊆ Z ∪ Y (notice that (−) is a closure operator). Consequently, T is
directed. To prove the second part, we have for all Y ∈ Cons and Y ⋐ E, Y ⊆ E = E (the last equality is true by
Lemma 3.6). Thus

∪{Y | Y ∈ Cons and Y ⋐ E} ⊆ E. To prove the reverse inclusion, take e ∈ E. Then {e} ` e
gives that x ∈ {e} and so e ∈ ∪{Y | Y ∈ Cons and Y ⋐ E}. Thus E ⊆ ∪{Y | Y ∈ Cons and Y ⋐ E}, as
required.
(ii =⇒ iii) By Proposition 2.2,

∪
{Y | Y ∈ Cons and Y ⋐ E} =

∪
{Y | Y ∈ Cons and Y ⋐ E}.

Hence E =
∪{Y | Y ∈ Cons and Y ⋐ E}, as required.

Theorem 3.9. Let A = (A,Cons,`) be an information system. Then |A| is an algebraic
∩
-structure.

Proof. We show that |A| is a non-empty family of sets closed under intersections and directed unions of non-empty
subfamilies. Since |A| contains ∅, it is non-empty. It is routine to show that if {Ei}i∈I is a non-empty subfamily of
|A| then ∩

i∈I Ei is consistent and `-closed, and so is in |A|. Finally, assume D = {Ei}i∈I is a directed system in
|A| and let E =

∪
i∈I Ei. Take Y ⋐ E. Because D is directed, Y ⋐ Ei for some i. Since Ei is consistent, we have

Y ∈ Cons. Assume also Y ` a. Then a ∈ Ei since Ei is `-closed. This completes the proof of the claim. The finite
elements of |A| are exactly the sets Y where Y ∈ Cons. So by Theorem 3.8, |A| is algebraic.
Theorem 3.10. Let L be an algebraic

∩
-structure. Then IS(L) = (A,Cons,`) is an information system where,

(1) A :=
∪

L,
(2) Cons := {Y | (∃U ∈ L) Y ⋐ U},
(3) Y ` a if and only if a ∈ ∩{U ∈ L | Y ⋐ U}.

Proof. It is very easy to show that IS(L) is an information system.

Theorem 3.11. The class of information systems and the class of algebraic
∩
-structure are isomorphic.

Proof. The maps |− | : INF → ∩
S, A 7→ |A| and IS(−) :

∩
S → INF, L 7→ IS(L) are inverse. LetA = (A,Cons,`)

be an information system, we show that A = IS((A, |A|)). We have:
(i) A =

∪ |A| (by (IS2));
(ii) if Y ⋐ A, then Y ∈ Cons ⇔ (∃E ∈ |A|)Y ⋐ E (for the forward implication note that by Theorem 3.8,

Y ∈ |A| and for the reverse recall that any E ∈ |A| is consistent);
(iii) if Y ∈ Cons and a ∈ A, then Y ` a ⇔ a ∈ ∩{E ∈ |A| | Y ⋐ E} (for the forward implication recall that

any any E ∈ |A| is `-closed and for he reverse use the fact that Y ⊆ Y ∈ |A|). Consequently, by looking at
Theorem 3.9, we see that A = IS((A, |A|)), as required. Finally, Let L be an algebraic

∩
-structure. We show

that |IS(L)| = L. Using Theorem 3.8 and Theorem 3.9, for an element E of |IS(L), we have

E =
∪

{
∩

{U ∈ L | U ⊇ Y } | Y ⋐ E},

with the union taken over a directed set. Since L is algebraic, we have |IS(L)| ⊆ L. Conversely, the definitions
of consistency and entailment in |IS(L)| imply that L ⊆ |IS(L)|. Consequently, |IS(L)| = L, as required.
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Abstract

In [3], uniserial acts are investigated. In this paper, more properties of these kinds of acts are
studied and the relationship between them and some other concepts are investigated.

1. Introduction

Throughout this article S will denote a monoid and an S-act AS (or A) is a right S-act. From [1] an S-act A is called
uniserial if the set of its subacts is linearly ordered by inclusion. Also an S-act A is said to be serial in case that
it is a coproduct of uniserial acts. This paper is a continuation of [3] and we study more properties of uniserial and
serial acts. Here it is necessary to recall some notions. From [4] a non-zero S-act A is called uniform if every its
non-zero subact is large in A i.e., for any non-zero subact B of A, any S-homomorphism g : A −→ C such that
g|B is a monomorphism is itself a monomorphism. We denote this situation by B ⊆′ A. Moreover an S-act A is
called injective(C-injective, F-injective) if for any S-act B, any (cyclic, finitely generated) subact C of B and any
homomorphism f : C −→ A, there exists a homomorphism f̄ : B −→ A such that f̄ |C= f . Also an S-act A is
called quasi-injective if it is injective relative to all inclusions from its subacts (see [2], [6], [7]). We encourage the
reader to see [2] for basic results and definitions relating to acts not defined here.

2. Main results

Proposition 2.1. Suppose S is a commutative monoid and A is a uniserial S-act. If A (SS) satisfies the descending
chain condition on subacts (ideals), then A is quasi-injective.

From [5] an S-act A is called torsion free if for any a, b ∈ A and for any element s ∈ S, the equality as = bs implies
a = b.

Proposition 2.2. Over a commutative monoid S any uniserial torsion free S-act is unifrom.
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Corollary 2.3. Let S be a commutative monoid andA be a torsion free uniserial S-act which contains a zero element.
Then the following conditions are equivalent:
(i) A is C-injective.
(ii) A is F-injective.
(iii) A is injective.
(iv) A contains a C-injective subact.
(v) A contains a F-injective subact.
(vi) A contains an injective subact.

For an S-act A an element θ ∈ A is called a zero element if θs = θ for every s ∈ S. Moreover the one element act is
denoted by Θ = {θ}.

Corollary 2.4. Suppose A is an S-act with the same conditions in the previous proposition. If A is C-injective, then
for any weakly injective subact B of A,A ∼= B ⊔Θ.

Proposition 2.5. Suppose S is a monoid with a left zero and {Ai}i∈I is a family of S-acts. If
∏

i∈I Ai is uniserial,
then for at most one i ∈ I, Ai ̸= Θ.

Proposition 2.6. The following conditions are equivalent over a monoid S:
(i) Every indecomposable S-act is uniserial.
(ii) Every composable S-act ic serial.
(iii) Every indecomposable S-act is uniform.
(iv) S is a group.

Theorem 2.7. Suppose S is a monoid andA is a uniserial (serial) S-act, then the following conditions are equivalent:

(i) A satisfies condition (E).

(ii) A satisfies condition (P).

(iii) A is strongly flat.

(iv) A is equalizer flat.

(iv) A is pullbacks flat.

Suppse f : A −→ B and g : B −→ C are S-homomorphisms. From [1], the sequence A f−→ B
g−→ C is called a

Rees short exact sequence if f is one-to-one, g is onto and kerg = ρImf where ρImf = (f(A)× f(A)) ∪∆B .

Theorem 2.8. Let S be a monoid and A
f−→ B

g−→ C be a Rees short exact sequence. Then B is uniserial if and
only if both A and C are uniserial.

Proof. Sufficiency. Suppose A and C are uniserial and b1, b2 are two elements of B. Due to Proposition 1.2 of [3],
we prove that b1S ⊆ b2S or vice versa. For some c1, c2 ∈ C, g(b1) = c1 and g(b2) = c2. Since C is uniserial, we
can suppose c1 = c2s for some s ∈ S. Hence g(b1) = c2s = g(b2s). Consequently (b1, b2s) ∈ kerg = ρImf and
so b1 = b2s or b1, b2s ∈ Imf . In the first case the proof is completed. For the second case suppose b1 = f(a1) and
b2s = f(a2) for some a1, a2 ∈ A. Also by assumption we can suppose that a1 = a2t for some t ∈ S and hence
b1 = f(a1) = f(a2t) = b2st which completes the proof.
Necessity. Note that factors and subacts of uniserial acts are also uniserial.
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Abstract

LetE be a graded division algebra finite-dimensional over its center F. LetE∗ be the multiplica-
tive group ofE and denote byE′ the commutator subgroup ofE∗. LetG(E) = E∗/NrdE(E∗)E′

where NrdE(E∗) is the image of E∗ under the reduced norm map. In this note we investigate
the group G(E).We then build a bridge between our results and the ungraded case. As a con-
sequence, we recover some known formulas for the corresponding group in the level of valued
division algebras.

1. Introduction

Let D be a finite-dimensional division algebra over its center F . Recall from Theorem 4 of [1, §7] that, as a vector
space, dimF D = n2 for a positive integer n. Such n is called the degree ofD and is denoted by deg(D). LetK1(D)
be the Whitehead group ofD (for a background onK1 we refer the reader to [1, §20]). Recall thatK1(D) ∼= D∗/D′,
whereD∗ andD′ are the multiplicative group and commutator group ofD, respectively. LetG(D) denote the cokernel
of the composite map

K1(D) → K1(F ) → K1(D),

where the left map is induced by the reduced norm NrdD : D∗ −→ F ∗ (see [1, §22]) and the right map is the inclusion
map. So that G(D) = D∗/NrdD(D∗)D′. It is known that G(D) is an abelian torsion group of bounded exponent n
(see [2, Corollary 5.3]), and thus from the Prüfer-Baer Theoremwe conclude thatG(D) ∼= ⊕iZni for some ni dividing
n. In [3] and [4] some algebraic properties of G(D) and its applications in realizing the group theoretic structure of
D is investigated. It is also shown that how one can compute this group (up to isomorphism) for special classes of
division algebras over Henselian fields. In this paper, following the method used in [2, §7], we investigate this group
for graded division algebras. In the last decade, experiences have shown that working with K1-group in the level of
graded division algebras is much more easy and more transparent than in the non-graded setting. The reason is that
when we work with graded structures, instead working with homomorphic images and quotient structures, we need
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only to work with some substructures. After giving some results concerining graded division algebras, we then build
a bridge between our results and the ungraded case.
We now mention some of the terminology that will be used throughout the paper:
Let Γ be a totally ordered abelian group. Let R be a ring graded by Γ. This means that R = ⊕γ∈ΓRγ , where each
Rγ is an additive subgroup of R and RγRδ ⊆ Rγ+δ for all γ, δ ∈ Γ. Let ΓR = {γ ∈ Γ | Rγ ̸= 0} be the grade
set of R and Rh =

∪
γ∈ΓR

Rγ be the set of all homogeneous elements of R. A subring S of R is called a graded
subring if S = ⊕γ∈ΓR

(S ∩ Rγ). For example, the center of R, which is denoted by Z(R), is a graded subring of R.
For a graded ring R, a graded left R-moduleM is a left R-module with a gradingM =

⊕
γ∈Γ′ where eachMγ is an

abelian group and Γ′ is a totally ordered abelian group containing Γ, such thatRγ ·Mδ ⊆ Mγ+δ for all γ ∈ ΓR, δ ∈ Γ′.
Then, ΓM and Mh are defined analogously to ΓR and Rh. A graded left R-module M is said to be graded free if it
has a base as a free R-module whose all elements are homogeneous. A graded ring E = ⊕γ∈ΓEγ is called a graded
division ring if every non-zero homogeneous element of E has a multiplicative inverse. It is clear from the definition
that E0 is a division ring itself. If T is a commutative graded division ring, then we call it a graded field. In particular,
Z(E), the center of a graded division ring E, is a graded field. It is also clear that E is a Z(E)-graded module. By an
easy adaptation of the ungraded arguments, one can prove that E is Z(E)-graded free and the cardinality of every two
homogenous basis are the same. We write [E : Z(E)] for the rank of E as graded left free Z(E)-module. Moreover,
if [E : Z(E)] < ∞ then E is called a graded division algebra. By Corollary 2.29 of [6] we have [E : Z(E)] = n2

for some positive integer n. Such a positive integer n is called the degree of E and is denoted by deg(E). E is called
unramified if ΓE = ΓT. E is said to be totally ramified if E0 = T0. We also say that E is semiramified if E0 is a field
and [E0 : T0] = |ΓE : ΓT| = deg(E).
Let E be a graded division algebra over its center F. If L be a maximal graded subfield of E then E ⊗F L ∼= Mn(L)
where n = deg(E). So for each a ∈ E∗ one can consider a⊗ 1 as an element ofMn(L). Now, the reduced norm of a
is defined by NrdE(a) = det(a⊗ 1). It can be observe that NrdE(a) ∈ F∗ (for these results see [2, §7.5]). Moreover,
multiplicative property of determinant shows that NrdE : E∗ −→ F∗ is a group homomorphism. Now, similar to
ungraded setting we defineG(E) = E∗/NrdE(E)∗E′ where E′ is the commutator subgroup of E∗. It is clear from the
definition that G(E) is an abelian group.

2. Main Results

We begin by the following lemma. For a proof see [2, Prop. 7.6]

Lemma 2.1. Let E be a graded division algebra over its center F. Let deg(E) = n. If N is a normal subgroup of E∗

then Nn ⊆ NrdE(E∗)[E∗, N ] where [E∗, N ] = ⟨aba−1b−1|a ∈ E∗, b ∈ N⟩.
It is clear that if in Lemma 2.1 we replaceN by E∗ then it follows that the groupG(E) is torsion of bounded exponent
n. The following theorem is the main result of this note. Its proof is too long to include in this note. It will be appear
in a forthcoming paper.

Theorem 2.2. Let E be a graded division algebra over its center F. Let deg(E) = n. Then
1. If E is unramified, then we have the following short exact sequence

1 → G(E0) → G(E) → ΓE
nΓE

→ 1.

2. If E is totally ramified, then we have the following short exact sequence

1 → F∗
0

F∗n
0 µe(F0)

→ G(E) → ΓE
nΓE

→ 1,

where e is the exponent of ΓE/ΓF and µe(F0) is the group of all e-th roots of unity in F0.
3. If E is semiramified and E0/F0 is a cyclic extension then we have the following short exact sequence

1 → NE0/F0
(E∗

0)

NE0/F0
(E∗

0)
n
→ G(E) → ΓE

nΓE
→ 1,

where NE0/F0
: E∗

0 → F∗
0 is the norm map of field extensions.
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If in Theorem 2.2 we have ΓE = ⊕k
i=1Z (here the order of ⊕k

i=1Z is given by right-to-left lexicographical ordering)
then ΓE/nΓE ∼= ⊕k

i=1Zn which is a free Zn-module. Since each exact sequence in Theorem 2.2 is in fact an exact
sequence of Zn-modules, all of them split and we have the following corollary.

Corollary 2.3. Let E be a graded division algebra over its center F. Let deg(E) = n and ΓE = ⊕k
i=1Z. Then

1. If E is unramified, then
G(E) ∼= G(E0)⊕

(
⊕k

i=1Zn

)
.

2. If E is totally ramified, then

G(E) ∼= F∗
0

F∗n
0 µe(F0)

⊕
(
⊕k

i=1Zn

)
.

3. If E is semiramified and E0/F0 is a cyclic extension, then

G(E) ∼=
NE0/F0

(E∗
0)

NE0/F0
(E∗

0)
n
⊕
(
⊕k

i=1Zn

)
.

Example 2.4. Let D be a division algebra over its center F of degree n. Let E = D[x, x−1] where

D[x, x−1] = {
k∑

i=0

dix
i|di ∈ D,ni ∈ Z, k ≥ 0}.

Since E = ⊕n∈ZDxn (as an abelian group), it follows that E is a Z-graded division algebra with deg(E) = deg(D).
Moreover, we have Z(E) = F [x, x−1] which is a Z-graded field itself. So E is an unramified graded division algebra
and hence by Corollary 2.3 we obtain G(E) ∼= G(D)⊕ Zn.

Now, let D be a division algebra over its center F and let Γ be a totally ordered abelian group. By a valuation
on D with values in Γ, we mean a map v : D∗ → Γ satisfying, for all a, b ∈ D∗, v(ab) = v(a) + v(b) and
v(a+ b) ≥ min{v(a), v(b)}. We write ΓD for the value group of v, i.e., ΓD = v(D∗). We denote the valuation ring
by VD = {d ∈ D∗ | v(d) ≥ 0} ∪ {0}. It is not hard to observe that this ring has a unique maximal ideal denoted by
MD = {d ∈ D∗ | v(d) > 0}∪{0}. We denote its residue division rin byD = VD/MD. Let UD = {d ∈ D∗ | v(d) =
0} and observe that UD = V ∗

D. When we restrict v to F ∗, we obtain a valuation w on the field F . The objects for
w corresponding to those for v are denoted by ΓF , VF , MF , UF and F . Since VF ∩MD = MF , it may be view the
residue field F as a subalgebra of D. In this setting, F is called Henselian if its valuation has a unique extension to
any algebraic extension of F . By Theorem 1.4 of [6], when F is Henselian, its valuation has a unique extension to
each finite dimensional F -division algebra. D is called tame if Z(D)/F is separable and charF ∤ n. We say thatD is
unramified over F if [ΓD : ΓF ] = 1. At the other extreme,D is said to be totally ramified if [D : F ] = [ΓD : ΓF ]. In
a case in the middle,D is said to be semiramified ifD is a field and [D : F ] = |ΓD : ΓF | = deg(D). Moreover, IfD
has maximal subfelds L and K which are respectively unramifed and totally ramifed over F , then D is called nicely
semiramified.
The following theorm will be used to produce bridge between graded and ungraded case (see [2, Th. 5.12]).

Theorem 2.5. Let D be a tame division algebra over a Henselian field F = Z(D), of index n. Then

(1 +MD) = (1 +MF )[D
∗, 1 +MD].

Given a valued division algebra D, we associate to D a graded division algebra as follows: Given γ ∈ ΓD, let

D≥γ = {d ∈ D | v(d) ≥ γ} ∪ {0}, an additive subgroup of D;

D>γ = {d ∈ D | v(d) > γ} ∪ {0}, a subgroup of D≥γ ; and

gr(D)γ = D≥γ/D>γ .
Then we define

gr(D) =
⊕

γ∈ΓD

gr(D)γ .

Using Theorem 2.5, one can prove the following result.
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Theorem 2.6. LetD be a valued division algebra over its Henselian center F , of degree n. ThenG(D) ∼= G(gr(D)).

Combining Theorem 2.2 and 2.6 we can prove the next result which is in fact a generalization of [4, Cor. 4.27]. It also
has been previosely appeared in [5].

Theorem 2.7. Let D be a tame division algebra over its Henselian center F , of degree n. If F is Henselian, then

1. If D is unramified, then we have the following short exact sequence

1 → G(D) → G(D) → ΓD

nΓD
→ 1.

2. If D is totally ramified, then we have the following short exact sequence

1 → F
∗

F
∗n
µe(F )

→ G(D) → ΓD

nΓD
→ 1,

where e is the exponent of ΓD/ΓF and µe(F ) is the group of all e-th roots of unity in F .
3. If E is semiramified and D/F is a cyclic extension then we have the following short exact sequence

1 →
ND/F (D

∗
)

ND/F (D
∗
)n

→ G(D) → ΓD

nΓD
→ 1,

where ND/F : D
∗ → F

∗ is the norm map of field extensions.

Proof. SinceD is a strongly tame we observe that Z(gr(D)) = gr(F ) and [gr(D) : gr(F )] = [D : F ]. Now, a simple
argument shows that in either of the cases (1)-(3) here, gr(D) is in the corresponding case of Theorem 2.2. Thus, using
the isomorphism G(D) ∼= G(gr(D)) given by Theorem 2.6 together with Theorem 2.2, we obtain the result.
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Abstract

A tree is called double starlike if it has exactly two vertices of degree greater than two. Let
H(p, n, q) denote the double starlike tree obtained by attaching p pendant vertices to one pendant
vertex of the line graph Ln and q pendant vertices to the other pendant vertex of Ln. Also let
H(p, n) be graph obtained by attaching p pendant vertices to one pendant vertex of the line
graph Ln. LetG be an undirected tree. It is shown that∆t(G) is partitionable for all t ≥ 2 and
Stanley’s conjecture holds forK[∆t (G)], where G = H(p, n, q) or G = H(p, n).

1. Introduction

Let ∆ be a simplicial complex on vertex set [n] = {1, · · · , n}, i.e. ∆ is a collection of subsets of [n] with the the
property that if F ∈ ∆, then all subsets of F are also in ∆. An element of ∆ is called a face of ∆, and the maximal
faces of∆ under inclusion are called facets. We denote by F(∆) the set of facets of∆. The dimension of a face F is
defined as dimF = |F | − 1, where |F | is the number of vertices of F . The dimension of the simplicial complex∆ is
the maximum dimension of its facets. A simplicial complex∆ is called pure if all facets of∆ have the same dimension.
Otherwise it is called non-pure. We denote the simplicial complex∆ with facets F1, . . . , Ft by∆ = ⟨F1, . . . , Ft⟩. A
simplex is a simplicial complex with only one facet.
For the simplicial complexes∆1 and∆2 defined on disjoint vertex sets, the join of∆1 and∆2 is∆1 ∗∆2 = {F ∪G :
F ∈ ∆1, G ∈ ∆2}.
For the face F in ∆, the link, deletion and star of F in ∆ are respectively, denoted by link∆F , ∆ \ F and star∆F
and are defined by link∆F = {G ∈ ∆ : F ∩ G = ∅, F ∪ G ∈ ∆} and ∆ \ F = {G ∈ ∆ : F ⊈ G} and
star∆F = ⟨F ⟩ ∗ link∆F .
Let R = K[x1, . . . , xn] be the polynomial ring in n indeterminates over a field K. To a given simplicial complex ∆
on the vertex set [n], the Stanley–Reisner ideal is the squarefree monomial ideal whose generators correspond to the
non-faces of ∆. we set:

xF =
∏

xi∈F

xi.
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We define the facet ideal of ∆, denoted by I(∆), to be the ideal of S generated by {xF : F ∈ F(∆)}. The non-
face ideal or the Stanley-Reisner ideal of ∆, denoted by I∆, is the ideal of S generated by square-free monomials
{xF : F ∈ N (∆)}. Also we call K[∆] := S/I∆ the Stanley-Reisner ring of ∆. Also we define the simplicial
complex∆t(G) to be

∆t(G) = ⟨{xi1 , . . . , xit} : xi1 , . . . , xit is a path of length t in G ⟩.

We say the simplicial complex ∆ is Cohen–Macaulay if K[x1, . . . , xn]/I∆ is Cohen–Macaulay. One of interesting
problems in combinatorial commutative algebra is the Stanley’s conjectures. The Stanley’s conjectures are studied by
many researchers. Let R be a Nn- graded ring andM a Zn- graded R- module. Then Stanley [2] conjectured that

depth (M) ≤ sdepth (M)

He also conjectured in [3] that each Cohen-Macaulay simplicial complex is partitionable. Herzog, Soleyman Jahan
and Yassemi in [1] showed that the conjecture about partitionability is a special case of the Stanley’s first conjecture.
In this paper, for all t ≥ 2 we show that∆t(G) is vertex decomposable if and only ifG = H(p, n, q) orG = H(p, n).
As a consequence we show that ∆t(G) is partitionable for all t ≥ 2 and Stanley’s conjecture holds for K[∆t (G)],
where G = H(p, n, q) or G = H(p, n).

2. Main Results

As the main result of this section, it is shown that ∆t(G) is partitionable for all t ≥ 2 and Stanley’s conjecture holds
forK[∆t (G)], whereG = H(p, n, q) orG = H(p, n). For the proof we need the following lemmas and propositions:

Definition 2.1. A simplicial complex ∆ is recursively defined to be vertex decomposable, if it is either a simplex, or
else has some vertex v so that,

(a) Both∆ \ v and link∆(v) are vertex decomposable, and

(b) No face of link∆(v) is a facet of∆ \ v.

A vertex v which satisfies in condition (b) is called a shedding vertex.

A simplicial complex ∆ is called disconnected, if the vertex set V of ∆ is a disjoint union V = V1 ∪ V2 such that no
face of∆ has vertices in both V1 and V2. Otherwise ∆ is connected.

Remark 2.2. All Cohen-Macaulay simplicial complexes of positive dimension are connected.

Lemma 2.3. Let∆t(Ln) be a simplicial complex on the vertices {x1, . . . , xn} and 2 ≤ t ≤ n. Then∆t(Ln) is vertex
decomposable.

Remark 2.4. Let Ln be a line graph on the vertices {x1, . . . , xn} andH(2, n) be a graph obtained by attaching two
pendant vertices to pendant vertex xn. Then ∆t(H(2, n)) is vertex decomposable for all t ≥ 2.

Proof. By lemma 2.3 proof is trivial.

Proposition 2.5. Let Ln be a line graph on the vertices {x1, . . . , xn} and H(p, n) be a graph obtained by attaching
p pendant vertices to pendant vertex xn. Then ∆t(H(p, n)) is vertex decomposable for all t ≥ 2.

Lemma 2.6. Let p = 2 and q ≥ 2, Then ∆t(H(2, n, q)) is vertex decomposable for all 2 ≤ t ≤ n+ 2

Proposition 2.7. LetQ1, Q2 be two paths of maximum length k in treeG and y be a leaf ofG such that y ∈ Q1 ∩Q2,
|Q1 ∩Q2| = L. Then ∆k(G) is not vertex decomposable.

Proposition 2.8. Let G be a double starlike tree such that G = H(p, n, q) . Then ∆t(G) is vertex decomposable for
all 2 ≤ t ≤ n+ 2.

Now, we are ready that prove one of the main results of this paper.
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Theorem 2.9. Let G be a tree such that is not a path. Then ∆t(G) is vertex decomposable for all t ≥ 2 if and only if
G = H(p, n, q) or G = H(p, n).

Proof. (=⇒)We prove by contradiction. Suppose G ̸= H(p, n, q) and G ̸= H(p, n). So there exists two paths of
maximum length k in G which contain L common vertices such that one of these vertices is a leaf. Therefore by
proposition 2.7∆k(G) is not vertex decomposable which is a contradiction. (⇐=) By proposition 2.5 and proposition
2.8 the proof is completed.

Stanley conjectured in [2] the upper bound for the depth ofK[∆] as the following:

depth (K[∆]) ≤ sdepth (K[∆])

. Also we recall another conjecture of Stanley. Let ∆ be again a simplicial complex on {x1, . . . , xn} with facets
G1, . . . , Gt. The complex ∆ is called partitionable if there exists a partition ∆ =

∪t
i=1[Fi, Gi] where Fi ⊆ Gi are

suitable faces of∆. Here the interval [Fi, Gi] is the set of faces {H ∈ ∆ : Fi ⊆ H ⊆ Gi}. In [3] and [4] respectively
Stanley conjectured each Cohen-Macaulay simplicial complex is partitionable. This conjecture is a special case of the
previous conjecture. Indeed, Herzog, Soleyman Jahan and Yassemi [1] proved that for Cohen-Macaulay simplicial
complex ∆ on {x1, . . . , xn} we have that depth (K[∆]) ≤ sdepth (K[∆]) if and only if ∆ is partitionable. Since
each vertex decomposable simplicial complex is shellable and each shellable complex is partitionable. Then as a
consequence of our results we obtain :

Corollary 2.10. LetG be a tree such that is not a path. ifG = H(p, n, q) orG = H(p, n) then∆t(G) is partitionable
for all t ≥ 2 and Stanley’s conjecture holds for K[∆t (G)].

Proof. Since each vertex decomposable simplicial complex is shellable and each shellable complex is partition-
able.Therefore by theorem 2.9 proof is completed.
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Abstract

An n-Lie algebra analogue of Schur’s theorem and its converse as well as a Lie algebra analogue
of Baer’s theorem and its converse are presented. Also, it is shown that, an n-Lie algebra with
finite dimensional derived subalgebra and finitely generated central factor is isoclinic to some
finite dimensional n-Lie algebra.

Introduction

In 1969, Kurosh [5] introduced the Ω-algebras, that is, an algebra equipped with an n-ary n-linear product. He dis-
cussed skew-symmetric Ω-algebras and noted that they contain the class of Lie algebras. The first and most effective
generalization of Lie algebras is given by Filippov in 1985. Filippov [2], introduced the concept of n-Lie algebras,
as an n-ary multilinear and skew-symmetric operation [x1, . . . , xn], which satisfies the following generalized Jacobi
identity

[[x1, . . . , xn], y2, . . . , yn] =
n∑

i=1

[x1, . . . , [xi, y2, . . . , yn], . . . , xn]].

Clearly, such an algebra becomes a Lie algebra when n = 2. Analogous to Lie algebras, a derivation α of an n-Lie
algebra L is defined as a linear transformation satisfying

α([x1, . . . , xn]) =

n∑

i=1

[x1, . . . , xi−1, α(xi), xi+1, . . . , xn]

for all x1, . . . , xn ∈ L. The set of all derivations of L is denoted by Der(L). Similarly, the adjoint derivation
corresponding to n− 1 elements x1, . . . , xn−1 ∈ L, is defined by

adx1,...,xn−1
(x) = [x, x1, . . . , xn−1].
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The set of all adjoint derivations of L is denoted by Ad(L). The set Der(L) is a Lie algebra under the following
commutator operator

(D1, D2) 7→ [D1, D2] := D1D2 −D2D1

and Ad(L) is its Lie ideal.
In 1986, Kasymov[4] introduced the notion of nilpotency of an n-Lie algebra as follows:
An n-Lie algebra L is nilpotent if Ls = 0 for some non-negative integer s, where Li is defined inductively by L0 = L
and Li+1 = [Li, L, . . . , L]. The ideal L1 = [L, . . . , L] is called the derived subalgebra of L. The center of L is
defined by

Z(L) = {x ∈ L : [x, L, . . . , L] = 0}.
Let Z0(L) = {0}. Then the ith center of L is defined inductively by

Zi(L)

Zi−1(L)
= Z

(
L

Zi−1(L)

)

for all i ≥ 1. Clearly, Z1(L) = Z(L).
In 1904, Schur [8] proved that if G is a group such that G/Z(G) is finite, then G′ is also finite. In 1952, Baer [1]
generalized Schur’s theorem and showed that ifG is a group such thatG/Zi(G) is finite, then so is γi+1(G). In 1994,
Hegarty [3] generalizes Schur’s theorem and proves that if G is a group such that G/L(G) is finite, then so isK(G),
where L(G) = {x ∈ G : x−1xα = 1, α ∈ Aut(G)} is the absolute center of G and K(G) =< {x−1xα : x ∈
G,α ∈ Aut(G)} > is the autocommutator subgroup of G. These results are extended to Lie algebras by Stitzinger
and Turner [9] in terms of derivations of Lie algebras. They proved that if L is a Lie algebra such that L/H(L) has
finite dimension, then L∗ has also finite dimension, where

H(L) =
⋂

α∈Der(L)

Ker(α)

and
L∗ =

∑

α∈Der(L)

Im(α).

Clearly,H(L) ⊆ Z(L) and L1 ⊆ L∗. We intend to generalize the works of Stitzinger and Turner to an arbitrary n-Lie
algebra. Also, we shall extend the result of Niroomand [7] as a converse to Schur’s theorem. Niroomand proves that
if G is a group with finite derived subgroup such that G/Z(G) is finitely generated, then

∣∣∣∣
G

Z(G)

∣∣∣∣ ≤ |G′|d( G
Z(G) ),

where d(G/Z(G)) is the minimum number of generators of G/Z(G).
Using the notion of isoclinism, we shall prove that an n-Lie algebra L such that L1 has finite dimension and L/Z(L)
is finitely generated is isoclinic to some finite dimensional n-Lie algebra.

1. Schur’s theorem and its converses

We begin with providing a generalization of Stitzinger and Turner’s Lie algebra version of Schur’s theorem to an
arbitrary n-Lie algebra. Our proof uses the same method applied by Stitzinger and Turner in [9].

Lemma 1.1. LetL be an n-Lie algebra. If {x1+H(L), . . . , xd+H(L)} is a basis forL/H(L), then a linear operator
ϕ on H(L) for which ϕ(mi1,...,in) = 0 for all 1 ≤ j ≤ n and 1 ≤ ij ≤ d can be extended to a derivation of L, in
which

mi1,...,in = [xi1 , . . . , xin ]−
d∑

r=1

αr
i1,...,inxr

and αr
i1,...,in

are defined by

[xi1 +H(L), . . . , xin +H(L)] =
d∑

r=1

αr
i1,...,in(xr +H(L)).
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Proof. If l ∈ L, then l =
∑d

i=1 αixi + hl for some hl ∈ H(L). Now, define the map φ : L −→ L by φ(l) = hl. We
claim that φ is the required derivation. If l1, . . . , ln ∈ L, then

φ([l1, . . . , ln]) = φ([
d∑

i1=1

αi1xi1 + hl1 , . . . ,
d∑

in=1

αinxin + hln ])

= φ(
∑

i1,...,in

αi1 . . . αin [xi1 , . . . , xin ])

=
∑

i1,...,in

αi1 . . . αinφ([xi1 , . . . , xin ])

=
∑

i1,...,in

αi1 . . . αinφ(mi1,...,in +
d∑

r=1

αr
i1,...,inxr)

=
∑

i1,...,in

αi1 . . . αinϕ(mi1,...,in) = 0

for some hl1 , . . . , hln ∈ H(L) ⊆ Z(L).
On the other hand,

[φ(l1), l2, . . . , ln] = [l1, φ(l2), l3, . . . , ln] = · · · = [l1, l2, . . . , ln−1, φ(ln)] = 0,

which implies that φ is a derivation.

Theorem 1.2. Let L be an n-Lie algebra. If dim(L/H(L)) = d, then dim(L) ≤
(
d
n

)
+ d.

Proof. Let Sn = mi1,...,in : i1, . . . , in = 1, . . . , d. Then Sn ⊆ H(L) ⊆ Z(L) and dim(Sn) ≤
(
d
n

)
. If H(L) 6= Sn,

then we may define a non-zero linear transformation onH(L)which vanishes on Sn. Hence, by Lemma 1.1, we reach
to a derivation of L, which contradicts the definition of H(L). Thus H(L) = Sn, which implies that dim(H(L)) ≤(
d
n

)
. Therefore dim(L) ≤

(
d
n

)
+ d. The proof is complete.

Corollary 1.3. If L is an n-Lie algebra such that L/H(L) has finite dimension, then L∗ has finite dimension.

Corollary 1.4. If L is a Lie algebra and dim(L/H(L)) = d, then dim(L) ≤ 1
2d(d+ 1).

The following theorems provide converses to Corollary 1.4.

Theorem 1.5. Let L be an n-Lie algebra. IfDer(L) is finitely generated and L∗ has finite dimension, then L/H(L)
has finite dimension and

dim
(

L

H(L)

)
≤ d(Der(L)) dim(L∗),

where d(Der(L)) is the minimum number of generators of Der(L).

Proof. Let d(Der(L)) = k. Then, there exist D1, . . . , Dk ∈ Der(L) such that Der(L) =< D1, . . . , Dk >. Let f
be the map defined as follows

f : L
H(L) −→ L∗ ⊕ · · · ⊕ L∗

x+H(L) 7−→ (D1(x), . . . , Dk(x)).

Clearly, f is an injective linear transformation. Hence

dim
(

L

H(L)

)
≤ k dim(L∗),

as required.

By restriction to adjoint derivations instead of arbitrary derivations, we are able to give a result similar to Theorem
1.5.
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Theorem 1.6. Let L be an n-Lie algebra. If L/Z(L) is finitely generated and L1 has finite dimension, then L/Z(L)
has finite dimension and

dim
(

L

Z(L)

)
≤

(
k

n− 1

)
dim(L1),

where k = d (L/Z(L)).

Proof. Let L/Z(L) =< {x1 + Z(L), . . . , xk + Z(L)} > and S = {S1, . . . , St} be the set of all (n− 1)-subsets of
{x1, . . . , xk}. Let f be the map defined as follows

f : L
Z(L) −→ L1 ⊕ · · · ⊕ L1

x+ Z(L) 7−→ (S1(x), . . . , St(x)).

Then, f is an injective linear transformation, from which it follows that

dim
(

L

Z(L)

)
≤ |S| dim(L1) =

(
k

n− 1

)
dim(L1),

as required.

The above theorem can be stated in a more general form for Lie algebras and gives a Lie algebra analogue of Baer’s
theorem and its converse.

Theorem 1.7. Let L be a Lie algebra such that L/Z(L) is finitely generated. Then Li has finite dimension if and only
if L/Zi(L) has finite dimension.

Proof. If i = 1, then the result follows by [6,Lemma 14] and Theorem 1.6. Thus, we may assume that i > 1. Let
L/Z(L) =< {x1 + Z(L), . . . , xk + Z(L)} >. First suppose that Li has finite dimension. Since Li = [Li−1, L],
Li−1/CLi−1(x) has finite dimension as a vector space, for each x ∈ L. Thus, Li−1/(Li−1 ∩Z(L)) has finite dimen-
sion, which implies that

Li−1 + Z(L)

Z(L)
=

(
L

Z(L)

)i−1

has finite dimension. On the other hand, (L/Z(L))/Z(L/Z(L)) is finitely generated. Hence, by using induction,
(L/Z(L))/Zi−1(L/Z(L)) has finite dimension, which implies that L/Zi(L) has finite dimension.
Nowwe prove the converse. Suppose that the result holds for i−1. SinceL/Zi(L) has finite dimension (L/Z(L))/(Zi−1(L/Z(L)))
has finite dimension, which implies that (L/Z(L))i−1 has finite dimension. Thus

Li−1

Li−1 ∩ Z(L)
∼= Li−1 + Z(L)

Z(L)
=

(
L

Z(L)

)i−1

has finite dimension, from which it follows that Li−1/CLi−1(x) or equivalently [Li−1, x] has finite dimension as a
vector space, for each x ∈ L. Therefore,

Li = [Li−1, L] =
k∑

j=1

[Li−1, xj ]

has finite dimension. The proof is complete.

2. Isoclinisms of n-Lie algebras

In this section, we shall use the notion of isoclinism for n-Lie algebras and show that an n-Lie algebra with given
finiteness conditions on its derived subalgebra and central factor is isoclinic to a finite dimensional n-Lie algebra. We
begin with the formal definition of isoclinism between n-Lie algebras.
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Definition 2.1. Let L1 and L2 be two n-Lie algebras. Then L1 and L2 are said to be isoclinic, denoted by L1 ∼ L2,
if there exist two isomorphisms α : L1/Z(L1) → L2/Z(L2) and β : L1

1 → L1
2 such that the following diagram

commutes:

L1

Z(L1)
× L1

Z(L1) → L1
1

α× α ↓ ↓ β
L2

Z(L2)
× L2

Z(L2) → L1
2

where the horizontal maps are defined by (x+ Z(Li), y + Z(Li)) 7→ [x, y].

Note that, isoclinism between n-Lie algebras is an equivalence relation. Hence, n-Lie algebras fall into isoclinism
classes of non-isoclinic n-Lie algebras. The next lemma illustrates an important property of isoclinism classes of
n-Lie algebras.

Definition 2.2. An n-Lie algebra L is a stem n-Lie algebra if Z(L) is a subset of L1.

Lemma 2.3. Let C be an isoclinism class of n-Lie algebras. Then C contains a stem n-Lie algebra.

Proof. The proof is essentially the same as in [6,Lemma 4(1)] and it is omitted.

Proposition 2.4. Let L be an n-Lie algebra such that L/Z(L) is finitely generated. If L1 has finite dimension, then
L is isoclinic to a finite dimensional n-Lie algebra.

Proof. Clearly, by Corollary 1.6, L/Z(L) has finite dimension. By Lemma 2.3, L is isoclinic to a stem n-Lie algebra
S. Since Z(S) ≤ S1 and S1 ∼= L1 has finite dimension, it follows that Z(S) has finite dimension too. On the other
hand, S/Z(S) ∼= L/Z(L) has finite dimension, which implies that S has finite dimension. The proof is complete.

Acknowledgement

The authors would like to thank the referee for some corrections.

References

[1] R. Baer, Endlichkeitskriterien für Kommutatorgruppen,Math. Ann. 124 (1952), 161–177.
[2] V. T. Filippov, n-Lie algebras, Sib. Math. Zh. 26(6) (1985), 126–140.
[3] P. V. Hegarty, The absolute center of a group, J. Alegbra 169(3) (1994), 929–935.
[4] S. M. Kasymov, On a theory of n-Lie algebras, Algebra i Logika 26(3) (1987), 277–297.
[5] A. G. Kurosh, Multioperator rings and algebras, Uspehi Math. Nauk 24(1) (1969), 3–15.
[6] K. Moneyhun, Isoclinism in Lie algebra, Algebras, Groups and Geomerties 11 (1994), 9–22.
[7] P. Niroomand, The converse of Schur’s theorem, Arch. Math. 94 (2010), 401–403.
[8] I. Schur, Über die darstellung der endlichen gruppen durch gebrochene lineare substitutionen, J. für Math. 127 (1904), 20–50.
[9] E. L. Stitzinger and R. M. Turner, Concerning derivations of Lie algebra, Linear Multilinear Algebra 45 (1999), 329–331.



Gonbad Kavous University

The 3rd National Congress on Mathematics and StatisticsThe 3rd National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1400

The 3rd National Congress on Mathematics and Statistics, AL–220, pp. 399–401

Second homology of Leibniz algebras

Banafsheh Veisia,∗
aDepartment of Mathematics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

Article Info

Keywords:
Cover
Leibniz algebras
Leibniz homology

2020 MSC:
17A32

Abstract

The concept of Some properties of the second homology and cover of Leibniz algebras are
established. By constructing a stem cover, the second Leibniz homology and cover of abelian,
Heisenberg Lie algebras and cyclic Leibniz algebras are described. Also, for the dimension of
a non-cyclic nilpotent Leibniz algebra L, we obtain dim(HL2(L)) ≥ 2.

1. Introduction

All algebras considered in this paper are finite dimensional over a field of characteristic different from 2. The ter-
minology and notations employed agree with the standard usage as in [3]. Leibniz algebras are non-antisymmetric
generalizations of Lie algebras. Loday (see [5, 6]) propounded a new type of algebras satisfying only Leibniz relations
when he tried to formulate the non-commutative homology of a Lie algebra which is defined by replacing ⊗ by ∧ in
the Chevalley-Eilenberg complex of a Lie algebra. Recently, the theory of Leibniz algebras has been studied in some
articles and several results of Lie algebras have been developed to Leibniz algebras. An algebra L over a field K is
called a (left) Leibniz algebra if for any a ∈ L the left multiplication map la : L → L given by la(x) = [a, x] is a
derivation, i.e. for all x, y, z ∈ L

[x, [y, z]] = [[x, y]z] + [y, [x, z]].

Obviously, if [x, x] = 0 for all x ∈ L, then a Leibniz algebra is a Lie algebra and Leibniz identity becomes the classical
Jacobi identity.
It is well known that for a Leibniz algebra L, the space spanned by squares of elements, Leib(L) = span{[x, x];x ∈
L}, is an ideal of L contained in the left center of L. Moreover,Leib(L) is the minimal ideal of L with respect to the
property that the quotient algebra L

/
Leib(L) is a Lie algebra.

For any Leibniz algebra L, there is a tensor complex associated to L:
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CL∗(L) : · · · → L⊗n d→L⊗(n−1) d→· · · d→L
0→K

d(x1 ⊗ · · · ⊗ xn) :=
∑

1≤i≤j≤n

(−1)i(x1 ⊗ · · · ⊗ x̂i ⊗ · · · ⊗ [xi, xj ]⊗ xj+1 ⊗ · · · ⊗ xn)

The Leibniz homology (with trivial coeffcients) of L is defined as

HL∗(L) := H∗(CL∗(L), d).

The Leibniz homology of L can be interpreted as

HL∗(L) = Tor∗UL(U(L
/
Leib(L)),K),

where U(L
/
Leib(L)) is the universal enveloping algebra of the quotient Lie algebra L

/
Leib(L) and UL is the uni-

versal enveloping of the Leibniz algebra L. See [7] for more details. If L is a Leibniz algebra of dimension n, then the
maximal possible dimension for HLi(L) is ni which is met if and only if L is abelian. In the following proposition,
we refine this inequality in the second step.

Proposition 1.1. Let L be a n-dimensional Leibniz algebra. Then dim(L2) + dim(HL2(L)) ≤ n2.

2. Stem cover of Leibniz algebras

Wiegold (1965) obtained an estimate for the order of commutator subgroup of a p-group G in terms of the order of
G/Z(G). Later, Batten (1993) in her dissertation obtained a similar result for Lie algebras. We start by establishing a
parallel result for Leibniz algebra

Lemma 2.1. Let L be a Leibniz algebra such that dim(L/Z(L)) = n then dim(L2) ≤ n2.

Now, we go on to show that when equality holds in Lemma 2.1. We use the following notations through rest of the
paper

Zl = {x ∈ L : [x, L] = 0},
Z2(L) = {x ∈ L : [x, L], [L, x] ⊆ Z(L)}.

Proposition 2.2. Let L be a non-abelian nilpotent Leibniz algebra such that dim(L/Z(L)) = n and dim(L2) = n2

then L/Z(L) is a Lie algebra.

Definition 2.3. For any integer n, let Ln = span{x1, · · · , xn, xij : 1 ≤ i, j ≤ n} be the (n2 + n)-dimensional
Leibniz algebra with [xi, xj ] = xij for all 1 ≤ i, j ≤ n and all other products of basis elements being zero.

Proposition 2.4. Let L be a non-abelian nilpotent Leibniz algebra such that dim(L/Z(L)) = n and dim(L2) = n2.
Then there exists an integers n such that L ∼= Ln ⊕A, where A is a finite-dimensional abelian Lie algebra.

Definition 2.5. Let (e) : 0 → N → K
π→L → 0 be a central extension of Leibniz algebras, then (e) (or π according

to the notations of category theory) is called a stem extension of L if the induced morphism HL1(π) : HL1(K) →
HL1(L) is an isomorphism. Furthermore, (e) is called a stem cover ifHL2(π) is zero.

Remark 2.6. If (e) : 0 → N → K
π→L → 0 is a stem extension of a finite-dimensional Leibniz algebra L then by

Lemma 2.1, N and consequently K are also of finite dimensions. Similar to contexts of Lie algebras, (e) is called a
maximal stem extension of L if dim(K) is maximal among all stem extensions of L.

Proposition 2.7. Let (e) : 0 → N → K → L → 0 be a central extension of Leibniz algebras, then

(i) (e) is a stem extension if and only if N ⊆ L2.
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(ii) If (e) is a stem cover, then (e) is isomorphic to (the unique class of) stem extension 0 → HL2(L) → L◦ →
L → 0.

(iii) Every stem extension of L is an epimorphic image of some stem cover.

Corollary 2.8. . Let L be a finite-dimensional Leibniz algebra, then (e) : 0 → N → L◦ → L → 0 is a stem cover of
L if and only if L◦ has the maximal dimension among all stem extensions of L.

Remark 2.9. Suppose L is a Lie algebra. The Lie algebra L∗ is called a Lie cover of L if there exists an ideal
A ⊆ (L∗)2∩Z(L∗) such thatA ∼= H2(L) andL∗/A ∼= L, whereH2(L) is the second Chevalley-Eilenberg homology
of L. It is well known that L∗ has maximal dimension among all stem extensions of L in the category of Lie algebras.
Hence, besides Leibniz covers, we can think about Lie covers for a Lie algebra.

3. The second homology of nilpotent Leibniz algebras

Let L = ⟨a⟩ be a cyclic Leibniz algebra of dimension n and suppose {a, a2 = [a, a], · · · , ai = [a, ai−1], · · · , an} is
a basis for L. It can be easily checked that [a, an] = α2a

2 + · · · + αna
n for some α2, · · · , αn ∈ K. Note that if L

is a nilpotent Leibniz algebra, then we should have [a, an] = 0. In the following proposition, we compute the second
homology of a cyclic Leibniz algebra.

Proposition 3.1. Let L be a cyclic Leibniz algebra of dimension n. Then dim(HL2(L)) = 1.

Theorem 3.2. Let L be a nilpotent Leibniz algebra then HL2(L) is nontrivial. In particular, if L is a nilpotent
non-cyclic Leibniz algebra then dim(HL2(L)) ≥ 2.

Corollary 3.3. . Let L be a two-step nilpotent Lie algebra. Then

dim(L/Z(L)) ≤ dim(HL2(L)).

Now, we present the following general result to compare the Lie cover and Leibniz cover of a Lie algebra

Theorem 3.4. Let L be a finite-dimensional Lie algebra and L�, L◦ be the Lie cover and Leibniz cover of L, respec-
tively. Then L� ∼= L◦/Leib(L◦).
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Abstract

Let R be a commutative Noetherian ring with non-zero identity and I be an ideal of R. Let
M and N be two I-cofinite modules. The purpose of this paper is to show that for a positive
integer t, the R-module Hi

I(M,N) is finitely generated for i < t if and only if Rp-module
Hi

IRp
(Mp, Np) is finitely generated for i < t and also we show that Hi

I(M,N) is finitely
generated if and only if I ⊆ Rad(0 :R Hi

I(M,N)) for i < t.

1. Introduction

Throughout this paper, Let R denote a commutative Noetherian ring and I be an ideal of R. Let M and N be two
finitely generated R-modules. The notion of generalized local cohomology was introduced by Herzog in [4]. The ith
generalized local cohomology modules ofM and N with respect to I is defined as

Hi
I(M,N) ∼= lim

−→
n≥1

ExtiR(M/InM,N).

It is clear thatHi
I(R,N) is just the ordinary local cohomologymoduleHi

I(N). Generalized local cohomologymodules
have been studied by several authors (see for example [5] and [6]).
Hartshorn in [3] defined anR-moduleM to be I-cofinite, if Supp(M) ⊆ V(I) and ExtiR(R/I,M) is finitely generated
module for all i ≥ 0.
Let M and N be finitely generated R-modules. As a generalisation of the J-finiteness dimension fJ

I (N) of N with
respect to I , defined

fJ
I (M,N) = inf

{
i ∈ N0 : J ⊈ Rad(0 :R Hi

I(M,N))
}

and denote f I
I (M,N) by fI(M,N).

The purpose of this paper is to generalize local-global principle for finiteness of generalized local cohomologymodules
to the class of all R-modules that are I-cofinite. More precisely, we shall prove:
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Theorem 1.1. Let R be a Noetherian ring and I be an ideal of R. Suppose that t is an integer. Let M and N be
I-cofinite modules. Then the folowing conditions are equivalent.

1. The R-module Hi
I(M,N) is finitely generated for each i < t.

2. The Rp-module Hi
IRp

(Mp, Np) is finitely generated for each i < t and p ∈ Spec(R).
3. I ⊆ Rad(0 :R Hi

I(M,N)) for each i < t.

For any ideal I of R, we denote {p ∈ SpecR : p ⊇ I} by V(I). We refer the reader to [2] for any unexplained notion
and terminology.

2. The results

The main purpose of this section is to prove Theorem 1.1. But first of all we need the following auxiliary lemma.

Lemma 2.1. Let R be a Noetherian ring and I be an ideal of R andM , N be finitely generated R- modules. Let E•

be an injective resolution of N . Then

H0
I (M,N) ∼= ΓI(HomR(M,N)) ∼= HomR(M,ΓI(N)),

and
Hi

I(M,N) ∼= Hi(ΓI(HomR(M,E•))) ∼= Hi(HomR(M,ΓI(E
•))).

Theorem 2.2. Let R be a Noetherian ring and I be an ideal of R. Suppose that t is an integer. Let M and N be
I-cofinite modules. Then the following conditions are equivalent.

1. The R-module Hi
I(M,N) is finitely generated for each i < t.

2. The Rp-module Hi
IRp

(Mp, Np) is finitely generated for each i < t and p ∈ Spec(R).
3. I ⊆ Rad(0 :R Hi

I(M,N)) for each i < t.

Proof. (i)=⇒(ii) Since for each p ∈ Spec(R),

(Hi
I(M,N))p ∼= Hi

IRp
(Mp, Np),

so, the assertion holds.
(ii)=⇒(i) We use induction on t. If = 1, then we have the exact squence

0 −→ ΓI(N) −→ N −→ N/ΓI(N) −→ 0,

then we have
0 −→ HomR(R/I,ΓI(N)) −→ HomR(R/I,N) −→ HomR(R/I,N/ΓI(N)).

Since

HomR(R/I,N/ΓI(N)) = (0 :N/ΓI(N) I)

⊆ (0 :N/ΓI(N) I
n)

= ΓI(N/ΓI(N)) = 0

it follows that HomR(R/I,N/ΓI(N)) = 0. Therefore HomR(R/I,ΓI(N)) ∼= HomR(R/I,N). Since N is I-
cofinite it follows that HomR(R/I,N) is finitely generated. Hence HomR(R/I,ΓI(N)) is finitely generated so
ΓI(N) is finitely generated andH0

I (M,N) ∼= HomR(N,ΓI(N)). Then H0
I (M,N) is finitely generated.

Now suppose inductively that t > 1 and the assertion holds for t− 1. The exact sequence

0 −→ ΓI(N) −→ N −→ N/ΓI(N) −→ 0
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induces the exact sequence

ExtiR(R/I,N) −→ ExtiR(R/I,N/ΓI(N)) −→ Exti+1
R (R/I,ΓI(N)) (1)

Since ΓI(N) ≤ N , it follows that ΓI(N) is finitely generated. Hence by according the exact sequence (1), we can
deduce that ExtiR(R/I,N/ΓI(N)) is finitely generated. Since

Ht
I(M,N) ∼= Ht

I(M,N/ΓI(N)).

Then ΓI(N) = 0. Now, letER(N) denote the injective hull ofN . Since ΓI(N) = 0, it follows thatER(ΓI(N)) = 0.
We have the exact sequence

0 −→ N −→ ER(N) −→ ER(N)/N −→ 0.

Hence
Hi+1

I (M,N) ∼= Hi
I(M,ER(N)/N), (2)

for each i > t.
Also for each i > t, HomR(R/I, ER(N)) = 0. Hence ExtiR(R/I, ER(N)/N) ∼= Exti+1

R (R/I,N) then ExtiR(R/I, ER(N)/N)
is finitely generated. Also Rp-module (Hi

I(M,ER(N)/N))p is finitely generated then by inductive hypothesise,
Hi

I(M,ER(N)/N) is finitely generated for each i < t− 1. Consequently by (2),Hi
I(M,N) is finitely generated for

each i < t.
(i)=⇒(iii) SinceHi

I(M,N) is finitely generated for each i < t, it follows that there is n ∈ N such that InHi
I(M,N) =

0 which implies I ⊆ Rad(0 :R Hi
I(M,N)).

(iii)=⇒(i) We use induction on t. If t = 1, then I ⊆ Rad(0 :R H0
I (M,N)) so there exists n ∈ N such that

InH0
I (M,N) = 0. Therefore

HomR(R/In,H0
I (M,N)) = 0 :H0

I (M,N) I
n

= H0
I (M,N)

= HomR(M,ΓI(N)).

SinceN is I-cofinitemodule, it follows that ExtiR(R/I,N) is finitely generated for each i ≥ 0. HenceHomR(R/I,N)
is finitely generated then N is finitely generated. Since ΓI(N) ⊆ N , it follows that ΓI(N) is finitely geerated
then H0

I (M,N) = HomR(M,ΓI(N)) is finitely generated. Now, Assume that t > 1 and the assertion holds for
t − 1. By inductive hypothesis, H0

I (M,N), H1
I (M,N), ... and Ht−2

I (M,N) is finitely generated. It is enough to
proveHt−1

I (M,N) is finitely generated. SinceHt−2
I (M,N) is finitely generted, it follows by [1, Theorem 1.2], that

HomR(R/I,Ht−1
I (M,N)) is finitely generated. Therefore

HomR(R/I,Ht−1
I (M,N)) = 0 :Ht−1

I (M,N) I
n = Ht−1

I (M,N).

Hence Ht−1
I (M,N) is finitely generated.

Corollary 2.3. Let R be a Noetherian ring and I be an ideal of R. Let M and N be I-cofinite modules. Then

fI(M,N) = inf{fIRp
(Mp, Np) : p ∈ SpecR}.

Corollary 2.4. Let R be a Noetherian ring and I be an ideal of R. Let M and N be I-cofinite modules. Then

fI(M,N) = inf{i ∈ N0 : I ⊈ Rad(0 :R fI(M,N))}.
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Abstract

In this paper, we first define a new series and two automorphisms on this series. Thenwe identify
the relationships of the members of these series. Finally, we study the relationships of these two
new automorphisms with IA(G), Autc(G), Inn(G), and each other.

1. Introduction

The various series have many applications in algebra. In particular, they are necessary for important definitions such
as nilpotency and solubility of groups. On the other hand, All kinds of automorphisms also have interesting properties.
Hence, automorphisms have been the idea of many researchers articles.

Let G be a group and j be any positive integer. Let us denote by G′, Z(G), Aut(G) and Inn(G), respectively the
commutator subgroup, the centre, the full automorphism group and the inner automorphisms. Also,

Autc(G) =
{
α ∈ Aut(G)

∣∣ g−1α(g) = [g, α] ∈ Z(G), ∀ g ∈ G
}
.

is the central automorphisms group.

Bachmuth [1] in 1965 defined an IA-automorphisms group as

IA(G) =
{
α ∈ Aut(G)

∣∣ g−1α(g) ∈ G′, ∀ g ∈ G
}
.

For any group G, Inn(G) ⩽ IA(G)⊴Aut(G).
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Hegarty [5] in 1994 introduced the autocommutator subgroup as follows:

G∗ = ⟨[g, α] | g ∈ G, α ∈ Aut(G)⟩.

Thereafter, the researchers named it K(G).
On the similar lines, Ghumde and Ghate [4] in 2015 introduced the subgroup

G∗∗ = ⟨[g, α] | g ∈ G, α ∈ IA(G)⟩.

For any group G, G′ = G∗∗ ⩽ K(G).

Bonanome et al. [3] in 2011 have studied the IA-group of a group G for which the upper central series stalls at some
point. We [2] defined new automorphisms on the lower central series and the derived series and identified the rela-
tionships of these automorphisms with IA(G), Autc(G), Inn(G), and each other. Also, according to the definitions of
Bonanome et al. [3] on the upper central series, we present some results that generalize their work.

In this paper, according to Ghumde and Ghate [4] definition, we define a new series and study the automorphisms of
a group G for which this series stalls at some point.

2. Main results

In this section, after some new definitions, we give our main results about the automorphisms on the IA-commutator
series.

Definition 2.1. we define the IA-commutator series of G in the following way:

· · · ⊆ G∗∗
n ⊆ · · · ⊆ G∗∗

2 ⊆ G∗∗
1 = G∗∗ = G′ ⊆ G∗∗

0 = G

where

G∗∗
n =⟨[g, α1, . . . , αn] | g ∈ G, α1, . . . , αn ∈ IA(G)⟩

=[G∗∗
n−1, IA(G)].

Definition 2.2. A group G is called an G∗∗
j -group if the IA-commutator series stalls at some point. This means that

there exists a least positive integer j for which G∗∗
j = G∗∗

j+1 = · · · .
For example, if G be an abelian group, then it is a G∗∗

1 -group.

Definition 2.3. The kernel of the natural homomorphism from Aut(G) to Aut(G/G∗∗
j ) is called the group of G∗∗

j -
automorphism and denoted by AutG∗∗

j
.

According to the above definition, A G∗∗
j -automorphism group acts as the identity on G modulo G∗∗

j , Thus:

AutG∗∗
j
(G) = {α ∈ Aut(G) | g−1α(g) ∈ G∗∗

j , ∀ g ∈ G}⊴Aut(G).

Also, we have AutG∗∗(G) = IA(G) and AutG∗∗
j
(G) ⩽ IA(G) for every j ≥ 2.

Remark 2.4. We use the notation AutAG∗∗
j
(G) = Autc(G) ∩ AutG∗∗

j
(G). Another definition of AutAG∗∗

j
(G) is

given by
AutAG∗∗

j
(G) = {α ∈ Aut(G) | g−1α(g) ∈ Z(G) ∩G∗∗

j , ∀ g ∈ G}.
Proposition 2.5. For any group G,

a) φ ∈ AutG∗∗
j
(G) if and only if [α, φ] ∈ AutG∗∗

j
(G), for every α ∈ Aut(G).

b) AutAG∗∗
j
(G) is a normal subgroup of Autc(G) and we have

Autc(G)

AutAG∗∗
j
(G)

∼=
Autc(G)AutG∗∗

j
(G)

AutG∗∗
j
(G)

.
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Proof. a) It is obvious by the normality of AutG∗∗
j
(G).

b) First, we prove thatG∗∗
j

ch
⩽ G. BecauseG∗∗

j is a generated subgroup, so it is obvious thatG∗∗
j ⩽ G. Letψ ∈ Aut(G)

and [g, α1, . . . , αj ] ∈ G∗∗
j . Then, one can write

ψ([g, α1, . . . , αj ]) = ψ
(
g−1α1 · · ·αj(g)

)

= ψ(g)−1ψ
(
α1 · · ·αj(g)

)

=
(
ψ(g)

)−1
ψα1 · · ·αj

(
ψ−1ψ(g)

)

=
(
ψ(g)

)−1
(ψα1 · · ·αjψ

−1)
(
ψ(g)

)

= [ψ(g)︸︷︷︸
∈G

, ψα1 · · ·αjψ
−1

︸ ︷︷ ︸
∈IA(G)

] ∈ G∗∗
j .

Therefore, ψ([g, α1, . . . , αj ]) ∈ G∗∗
j .

Now, let σ ∈ Autc(G) and β ∈ AutAG∗∗
j
(G). We show that σ−1βσ ∈ AutAG∗∗

j
(G). For every g ∈ G, we have

g−1
(
σ−1βσ

)
(g) = g−1σ−1

(
σ(g)

(
σ(g)

)−1
β
(
σ(g)

))

= g−1gσ−1
((
σ(g)

)−1
β
(
σ(g)

)
︸ ︷︷ ︸

∈ Z(G)∩G∗∗
j

)
.

Because the intersection of two characteristic subgroups is a characteristic subgroup, the first part is proved.

For the second part, the result follows from the definition of AutAG∗∗
j
(G) and the third isomorphism theorem.

Corollary 2.6. For any group G, [Aut(G), AutG∗∗
j
(G)] ⩽ AutG∗∗

j
(G).

Theorem 2.7. Let G be a group. If Autc
(
G/G∗∗

j

)
= Inn

(
G/G∗∗

j

)
, then

Autc(G) ⩽ Inn(G)AutG∗∗
j
(G).

Proof. Let α ∈ Autc(G). By hypothesis, Autc
(
G/G∗∗

j

)
= Inn

(
G/G∗∗

j

)
, so there exists g ∈ G such that for all

x ∈ G,
α(x)G∗∗

j = xgG∗∗
j .

Hence,

x−gα(x) =
(
x−1

(
α(x)

)g−1)g

∈ G∗∗
j

=⇒ x−1
(
α(x)

)g−1

∈ G∗∗
j

=⇒ x−1g
(
α(x)

)
g−1 ∈ G∗∗

j

=⇒ x−1φ−1
g α(x) ∈ G∗∗

j

where φg ∈ Inn(G).

Consequently, φ−1
g α ∈ AutG∗∗

j
(G), i.e., α = φgφ

−1
g α ∈ Inn(G)AutG∗∗

j
(G).

In the special case j=1, we have the following result

Corollary 2.8. Let G be a group. If Autc
(
G/G′) = Inn

(
G/G′), then

Autc(G) ⩽ Inn(G)IA(G).
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Abstract

Let a be an ideal of local ring (R,m) and M a finitely generated R-module and n ∈ N. This
note related to some criteria in cominimaxness of formal local cohomology modules.

1. Introduction

Throughout this note, R is a commutative Noetherian ring with identity(non-zero), a is an ideal of R and M is an
R-module. Let V (a) be the set of prime ideals in R containing a. For an integer i, let Hi

a(M) denote the i-th local
cohomology module of M . We have the isomorphism of Hi

a(M) to lim−→n
ExtiR(R/an,M) for every i ∈ N0 , see [3]

for more details.
Consider the family of local cohomologymodules {Hi

m(M/anM)}n∈N . For everyn there is a natural homomorphism
Hi

m(M/an+1M) → Hi
m(M/anM) such that the family forms a projective system. The projective limit Fi

a(M) :=
lim←−n

Hi
m(M/anM) is called the i-th formal local cohomology of M with respect to a. Formal local cohomology

modules were used by Peskine and Szpiro in [9] when R is a regular ring in order to solve a conjecture of Hartshorne
in prime characteristic.
The basic properties of formal local cohomologymodules are found in [10], [2]. One of important problems concerning
formal local cohomology modules are finiteness results (see, e.g., [6]). Not much has been proven on this subject. But
studies are being done on this. In [2], Asgharzadeh and Divani-Aazar have investigated some properties of formal
local cohomology modules. For instance they showed that Fd

a(M) is Artinian for d := dimM .(See [5, pro. 2.1])
Recall that a moduleM is a minimax module if there is a finitely generated submoduleN ofM such that the quotient
module M/N is Artinian. An R-module M is an a-cominimax module if SuppR(M) ⊆ V (a) and ExtiR(R/a,M)
is a minimax module for all i ≥ 0. The class of cominimax modules includes all cofinite and all Artinian modules.
The notions of weakly Laskerian modules were introduced by Divaani-Aazar and Mafi in [4]. AnRmoduleM is said
to be weakly Laskerian if the set of associated primes of any quotient module of M is finite. Moreover it is closed
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under taking submodules, quotients and extensions, i.e., it is a Serre subcategory of the category of R-modules.
In this paper we investigate some cominimaxness properties of formal local cohomology modules.

2. Cominimaxness of formal local cohomology modules

We begin with an example show that the class of cofinite modules with respect to an ideal is strictly contained in the
class of cominimax modules with respect to the same ideal.

Example 2.1. (see [1]) Let (R,m) be a local ring and p a prime ideal of R such that dimR/p = 1. Then it is easy to
see that the R-module E(R/p) is p-cominimax but not p-cofinite.

The following lemma is used in the sequel.

Lemma 2.2. Let a be an ideal of a Noetherian ring R and M an minimax R-module such that SuppR(M) ⊆ V (a).
Then the following statements are equivalent:

(a) M is a-cominimax.

(b) The R-module HomR(R/a,M) is minimax.

Proof. We know by definitions that (b) follows from (a). LetN be a finite submodule ofM such thatM/N is Artinian
and suppose the R-module HomR(R/a,M) is minimax. The exactness of

0→ HomR(R/a, N)→ HomR(R/a,M)→ HomR(R/a,M/N)→ Ext1R(R/a, N)

implies that HomR(R/a,M/N) is minimax.
SinceM/N is Artinian, it is easy to see that HomR(R/a,M/N) is an Artinian R-module. As M/N is a-torsion, it
follows by Melkersson’s theorem that M/N is Artinian. Thus M is minimax. The a-torsionness of M imples that it
is a-cominimax.

Theorem 2.3. Let a be an ideal of a Noetherian ring R and M an R-module such that dimM ≤ 1 and SuppM ⊆
V (a). Then the following statements are equivalent:

(a) M is a-cominimax.

(b) The R-modules HomR(R/a,M) and Ext1R(R/a,M) are minimax.

Proof. The conclusion (b) follows from (a) is obvious. In order to prove (b)⇒ (a) using lemma 2.2, we may assume
dimM = 1. Now use Lemma 2.2 instead of [8], Lemma 2.1, and the a -cominimaxness instead of a-cofiniteness in
the proof of [8], Theorem 2.3.

Theorem 2.4. Let a be an ideal of a Noetherian ring R and M an weakly Laskerian R-module such that SuppM ⊆
V (a). Then the following statements are equivalent:

(a) M is a-cominimax.

(b) The R-modules HomR(R/a,M) and Ext1R(R/a,M) are minimax.

Proof. The conclusion (b) follows from (a) is obvious. In order to prove (a) follows from (b), by definition there is a
finitely generated submodule N ofM such that dim(M/N) ≤ 1 and SuppM/N ⊆ V (a). Also, the exact sequence

0 −→ N −→M −→M/N −→ 0(⋆)

induces the exact sequence

0 −→ HomR(R/a, N) −→ HomR(R/a,M) −→ HomR(R/a,M/N) −→ Ext1R(R/a, N)

−→ Ext1R(R/a,M) −→ Ext1R(R/a,M/N) −→ Ext2R(R/a, N)

Hence, it follows that the R-modulesHomR(R/a,M/N) and Ext1R(R/a,M/N) are finitely generated. Therefore,
in view of lemma 2.2, the R-module M/N is a-cominimax. Now it follows from the exact sequence (⋆) that M is
a-cominimax.
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Theorem 2.5. Let a be an ideal of a local ring (R,m) and M a is nonzero finitely generated R-module. Let
t ∈ N0. Suppose that the R-module Fi

a(M) is a-cominimax for all i < t, and the R-modules ExttR(R/a,M) and
Extt+1

R (R/a,M) are minimax. Then the R-modules HomR(R/a,Ft
a(M) and Ext1R(R/a,Ft

a(M) are minimax.

Proof. We use induction on t.The exact sequence

0 −→ Γa(M) −→M −→M/Γa(M) −→ 0 (⋆)

induces the exact sequence:

0 −→ HomR(R/a,Γa(M)) −→ HomR(R/a,M) −→ HomR(R/a,M/Γa(M))

−→ Ext1R(R/a,Γa(M)) −→ Ext1R(R/a,M)

Since HomR(R/a,M/Γa(M)) = 0 so HomR(R/a,Γa(M)) and Ext1R(R/a,Γa(M)) are minimax. Assume in-
ductively that t > 0 and that we have established the result for nonnegative integers smaller than t. By applying
the functor HomR(R/a,−) to the exact sequence (⋆), we can deduce that ExtjR(R/a,M/Γa(M)) is minimax for
j = t, t+ 1. On the other hand, F0

a(M/Γa(M)) = 0 and Fj
a(M/Γa(M)) ≃ Fj

a(M) for all j > 0. Therefore we may
assume that Γa(M) = 0. Let E be an injective hull ofM and put N = E/M . ThenHomR(R/a, E) = 0 = Γa(E).
Hence ExtjR(R/a, N) ≃ Extj+1

R (R/a,M) and Fj
a(N) ≃ Fj+1

a (M) for all j ≥ 0. Now, the induction hypothsis
yields that HomR(R/a,Ft

a(M)) and Ext1R(R/a,Ft
a(M)) are minimax, as required.

We are now ready to state and prove the main tteorem.

Theorem 2.6. Let a be an ideal of a local ring (R,m) and M a finitely generated R-module, and t ∈ N0 such that
ExtiR(R/a,M) are minimax for all i ≤ t + 1. Let the R-modules Fi

a(M) be weakly laskerian R-modules for all
i < t. Then the following assertions hold:

(a) The R-modules Fi
a(M) are a-cominimax for all i < t.

(b) For all minimax submodules N of Fi
a(M), the R-modules

HomR(R/a,Ft
a(M)/N) , Ext1R(R/a,Ft

a(M)/N)

are minimax. In particular, the set AssR(F
t
a(M)/N) is finite.

Proof.
(a) We proceed by induction on t. In the case t = 0 there is nothing to prove. So, let t > 0 and suppose the result has
been proved for smaller values of t. By the inductive assumption, Fi

a(M) is a-cominimax for i = 0, 1, · · · , t−2. Hence
by theorem 2.5 and the assumption, HomR(R/a,Ft−1

a (M)) and Ext1R(R/a,Ft−1
a (M)) are minimax. Therefore by

Theorem 2.4, Fi
a(M) is a-cominimax for all i < t. This completes the inductive step.

(b) In view of (a) and theorem 2.5, HomR(R/a,Ft
a(M)) and Ext1R(R/a,Ft

a(M)) are minimax. On the other hand,
N is a-cominimax. Now, the exact sequence

0 −→ N −→ Ft
a(M) −→ Ft

a(M)/N −→ 0

induces the exact sequence:

−→ HomR(R/a,Ft
a(M)) −→ HomR(R/a,Ft

a(M)/N) −→ Ext1R(R/a, N)

−→ Ext1R(R/a,Ft
a(M)) −→ Ext1R(R/a,Ft

a(M)/N) −→ Ext2R(R/a, N)

Consequently,
HomR(R/a,Ft

a(M)/N) , Ext1R(R/a,Ft
a(M)/N)

are minimax, as required.
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Corollary 2.7. Let a be an ideal of a local ring (R,m) andM a finitely generatedR-module such thatExtiR(R/a,M)
are minimax for all i and the R-modules Fi

a(M) are weakly laskerian R-modules for all i. Then:

(a) The R-modules Fi
a(M) are a-cominimax for all i.

(b) For any i ≥ 0 and for any minimax submodule N of Fi
a(M), the R-module Fi

a(M)/N is a-cominimax.

Proof. (a)Clear. (b) In view of (a) theR-moduleFi
a(M) is a-cominimax for all i. Hence theR-moduleHomR(R/a, N)

is minimax, and so it follows that N is a-cominimax. Now, the exact sequence

0 −→ N −→ Fi
a(M) −→ Fi

a(M)/N −→ 0

imply that the R-module Fi
a(M)/N is a-cominimax.

Corollary 2.8. Let a be an ideal of a local ring (R,m) andM a finitely generatedR-module such that theR-modules
Fi
a(M) are weakly laskerian R-modules for all i. Then the following conditions are equivalent:

(a) The R-modules ExtiR(R/a,M) are minimax for all i.

(b) The R-modules Fi
a(M) are a-cominimax for all i.

Proof. (a)⇒ (b) follows by Corollary 2.7.
(a)⇒ (b) follows by [7], Proposition 3.9.
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Abstract

In this paper, we introduce the concept of n-isoclinism between two regular Hom-Lie algebras,
and obtain some equivalent conditions under which Hom-Lie algebras are n-isoclinic. As a main
result, we prove that two n-isoclinic regular Hom-Lie algebras can be isoclinically embedded
into one Hom-Lie algebra.

1. Introduction

The notion of isoclinism was introduced by P. Hall in 1940 [1], which is an equivalence relation on the class
of all groups. In 1994, Moneyhun [3] showed that isoclinism and isomorphism between Lie algebras with the
same finite dimension are equivalent. The notion of n-isoclinism and characterizing n-isoclinism classes of Lie
algebras were given by Salemkar in [5]. In [2], Hartwig, Larsson and Silvestrov introduced the notion of Hom-
Lie algebras and in [4] isoclinism of regular Hom-Lie algebras was generalized.
In this article, we define n-isoclinism of Hom-Lie algebras and investigate some results on n-isoclinism of Lie
algebras which can be extended to n-isoclinism of Hom-Lie algebras.

1.1. Basic definition
Throughout this paper we fix F as a ground field and all the vector spaces are considered over F and linear maps are
F -linear maps. We begin by reviewing some basic concepts and recalling known facts which will be used in the article.

Definition 1.1. A Hom-Lie algebra is a triple (V, [−,−], φ) consisting a vector space V , a bilinear map [−,−] :
V × V −→ V and linear map φ : V −→ V provided

(i) [x, y] = −[y, x], (skew − symmetry)

(ii) [φ(x), [y, z]] + [φ(y), [z, x]] + [φ(z), [x, y]] = 0, (Hom− Jacobi identity)
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for all x, y, z ∈ V .
AHom-Lie subalgebra of (V, φ) is a vector subspaceW ofV , which is closed by bracket andφ, i.e. [w,w′], φ(w) ∈ W
for all w,w′ ∈ W . A Hom-Lie subalgebra (W,φ|) is said to be an ideal if [w, v] ∈ W for all w ∈ W , v ∈ V in which
φ| is the restriction of φ to W . For any ideal W of (V, φ), we can naturally define the quotient Hom-Lie algebra on
the quotient vector space V /W with

∼
φ: V /W −→ V /W which induced naturally by φ.

In thewhole paper, we assume thatφ preserves the product which is calledmultiplicative, i.e. φ([v1, v2]) = [φ(v1), φ(v2)]
for all v1, v2 ∈ V . Taking φ = idV , we exactly recover the Lie algebras. A vector space endowed with triv-
ial bracket and any linear map is called an abelian Hom-Lie algebra. The center of (V, φ) is the vector space
Z(V ) = {x ∈ V : [x, v] = 0, ∀ v ∈ V }. The upper central series of V defined inductively by Z0(V ) = 0
and Zn+1(V )/Zn(V ) is the center of V /Zn(V ), for n ⩾ 0. A multiplicative Hom-Lie algebra (V, φ) is said to be
regular if φ is bijective. It must be noted that Z(V ) is not always an ideal of (V, φ). When (V, φ) is regular, then
Z(V ) will be an ideal. The nth term of the lower central series of V , is denoted by V n and defined inductively by
V 1 = V and V n+1 = [V n, V ], for n ⩾ 1.
Let (V, φ1) and (W,φ2) be two Hom-Lie algebras. A linear map f : V −→ W is a Hom-Lie algebra morphism, if for
all v1, v2 ∈ V , f([v1, v2]) = [f(v1), f(v2)] and f ◦ φ1 = φ2 ◦ f . In other words, the following diagram commutes

V
f−−→ W

φ1 ↓ ↓ φ2

V −−→
f

W

Definition 1.2. Let (V, φ1) and (W,φ2) be two regular Hom-Lie algebras and α : V /Zn(V ) −→ W/Zn(W ) and
β : V n+1 −→ Wn+1 be two Hom-Lie algebra morphisms such that the following diagram commutes

V

Zn(V )
⊕ · · · ⊕ V

Zn(V )
−→ V n+1

αn+1 ↓ ↓ β

W

Zn(W )
⊕ · · · ⊕ W

Zn(W )
−→ Wn+1,

where horizontal maps are defined by (v1, . . . , vn+1) 7−→ [v1, . . . , vn+1], for all v1, . . . , vn+1 ∈ V. In other words,
β([v1, . . . , vn+1]) = [w1, . . . , wn+1], whenever vi ∈ V and wi ∈ α(vi + Zn(V )) for i = 1, . . . , n + 1. Then the
pair (α, β) is called n-homoclinism and if they are both isomorphisms, then (α, β) is n-isoclinism and in this case, we
write V n∼ W .

Note that for n = 0, the above definition yields isomorphism of Hom-Lie algebras, and forn = 1 it gives the isoclinism
of Hom-Lie algebras.

2. Main Results

In this section, we present some equivalent conditions under which Hom-Lie algebras are n-isoclinic. Finally, we
show that two n-isoclinic regular Hom-Lie algebras can be isoclinically embedded into a Hom-Lie algebra.

Lemma 2.1. Let (V, φ) be a regular Hom-Lie algebra with a Hom-Lie subalgebra H and a Hom-ideal W . Then

(i) V
n∼ V ⊕W , for each nilpotent regular Hom-Lie algebra W of class at most n, (n ∈ N).

(ii) H
n∼ H + Zn(V ). In particular, if V = H + Zn(V ), then V

n∼ H .

(iii)
V

W

n∼ V

W ∩ V n+1
. In particular, if W ∩ V n+1 = 0, then

V

W

n∼ V .
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Proof. (i) Since W is nilpotent of class at most n, we have Wn+1 = 0 and Zn(W ) = W , hence Zn(V ⊕ W ) =

Zn(V )⊕W and (V ⊕W )n+1 ∼= V n+1⊕Wn+1 = V n+1⊕0. Nowwe define α :
V

Zn(V )
−→ V ⊕W

Zn(V ⊕W )
such that

α(v+Zn(V )) = (v, 0)+Zn(V ⊕W ) and β : V n+1 −→ (V ⊕W )n+1 by β([v1, · · · , vn+1]) = ([v1, · · · , vn+1], 0).
Trivially, α and β are desired isomorphisms, i.e. α([v1, v2]) = [α(v1), α(v2)] and α ◦ φ1 = φ2 ◦ α in the following
diagram

V

Zn(V )

α−−−→ V ⊕W

Zn(V ⊕W )
v̂

α−−−→ (̃v, 0)

φ1 ↓ ↓ φ2 φ1 ↓ ↓ φ2

V

Zn(V )
−−−→

α

V ⊕W

Zn(V ⊕W )
φ̂(v)

α−−−→ ˜(φ(v), 0)

such that φ1(v̂) = φ̂(v) and φ2((̃v, w)) = ˜(φ(v), φ(w)), for each v ∈ V,w ∈ W . The same relations for β are
obtained.
(ii) We know that Zn(H + Zn(V )) = Zn(H) + Zn(V ). Now, define

α :
H

Zn(H)
−→ H + Zn(V )

Zn(H + Zn(V ))

h+ Zn(H) 7−→ h+ Zn(H + Zn(V ))

and β : Hn+1 −→ (H + Zn(V ))n+1 ∼= Hn+1, identically. One can easily check that α and β are both Hom-Lie
algebra isomorphisms and we have the following commutative diagrams

H

Zn(H)

α−−−→ H + Zn(V )

Zn(H + Zn(V ))
h+ Zn(H)

α−−−→ h+ Zn(H + Zn(V ))

φ1 ↓ ↓ φ2 φ1 ↓ ↓ φ2

H

Zn(H)
−−−→

α

H + Zn(V )

Zn(H + Zn(V ))
φ(h) + Zn(H)

α−−−→ φ(h) + Zn(H + Zn(V ))

where φ1(h+Zn(H)) = φ(h)+Zn(H) and φ2(h+Zn(H +Zn(V ))) = φ(h)+Zn(H +Zn(V )), for each h ∈ H.

(iii) Let V =
V

W
and

∼
V=

V

W ∩ V n+1
. Then v0 ∈ Zn(V ) if and only if ∼

v0∈ Zn(
∼
V ). So the following maps are the

required n-isoclinism pairs

α :
V

Zn(V )
−→

∼
V

Zn(
∼
V )

β : V
n+1 −→

∼
V

n+1

v + Zn(V ) 7−→∼
v +Zn(

∼
V ) [v1, . . . , vn+1] 7−→ [

∼
v1, . . . ,

∼
vn+1]

and the following diagrams commute

V

Zn(V )

α−−−→
∼
V

Zn(
∼
V )

V
n+1 β−−−→

∼
V

n+1

φ1 ↓ ↓∼φ2 φ̂1 ↓ ↓ φ∗
2

V

Zn(V )
−−−→

α

∼
V

Zn(
∼
V )

V
n+1 −−−→

β

∼
V

n+1

whereφ1(v+Zn(V )) = φ1(v)+Zn(V ),
∼
φ2 (

∼
v +Zn(

∼
V )) = φ2(

∼
v)+Zn(

∼
V ), φ̂1([v1, . . . , vn+1]) = [φ1(v1), . . . , φ1(vn+1)]

and φ∗
2([

∼
v1, . . . ,

∼
vn+1]) = [φ2(

∼
v1), . . . , φ2(

∼
vn+1)], for all v, vi ∈ V, 1 ≤ i ≤ n+ 1.
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Let (α, β) be an n-isoclinism pair between regular Hom-Lie algebras (V, φ1) and (W,φ2) and T = {(v, w) ∈ V ⊕W |
α(v + Zn(V )) = w + Zn(W )}, ZV = {(v, 0) | v ∈ Zn(V )} , ZW = {(0, w) | w ∈ Zn(W )}.
Clearly, T is a Hom-Lie subalgebra of V ⊕W and ZV , ZW are Hom-ideals in T such that Tn+1 is generated by the
set {([v1, . . . , vn+1], β([v1, . . . , vn+1])) | vi ∈ V, 1 ≤ i ≤ n+ 1} and ZV ∩ Tn+1 = ZW ∩ Tn+1 = 0.

Proposition 2.2. Let (α, β) be an n-isoclinism pair between regular Hom-Lie algebras (V, φ1) and (W,φ2). Then

V ∼= T

ZW

n∼ T

ZW
⊕ T

Tn+1

n∼ TW
∼= T ∼= TV

n∼ T

ZV
⊕ T

Tn+1

n∼ T

ZV

∼= K

for some Hom-Lie subalgebras TW of
T

ZW
⊕ T

Tn+1
and TV of

T

ZV
⊕ T

Tn+1
.

The next corollary indicates that an n-isoclinism between two regular Hom-Lie algebras yields some certain m-
isoclinisms between their upper central factor Hom-Lie algebras and lower commutator subalgebras.

Corollary 2.3. Let (V, φ1) and (W,φ2) be two n-isoclinic regular Hom-Lie algebras. Then

(i) for all 0 ≤ i ≤ n,
V

Zi(V )

n−i∼ W

Zi(W )
.

(ii) for all 0 ≤ i ≤ n, V i+1 n−i∼ W i+1.

(iii) for all m ≥ n, V m∼ W .

To prove the final theorem, the following lemma is used.

Lemma 2.4. Let (V, φ1) and (W,φ2) be two n-isoclinic regular Hom-Lie algebras. Then there exists a Hom-Lie
algebra X containing Hom-Lie algebras X1, X2 and a nilpotent ideal Zn of class at most n such that

V ∼= X1
n∼ X1 ⊕ Zn = X = X2 + Zn(X)

n∼ X2 and X2
n−1∼ W .

The following theorem may be considered as a kind of dual to 2.2 which states that two n-isoclinic regular Hom-Lie
algebras can be isoclinically embedded into a Hom-Lie algebra.

Theorem 2.5. Let (V, φ1) and (W,φ2) be n-isoclinic regular Hom-Lie algebras. Then there exists a Hom-Lie algebra
T containing subalgebras TV , TW and a nilpotent ideal N of class at most n such that

V ∼= TV
n∼ TV ⊕N = T = TW + Zn(T )

n∼ TW
∼= W.

Proof. Clearly the result holds for n = 1. So we assume that n > 1 and X,X1, X2, Zn are the Hom-Lie algebras
obtained in lemma 2.4 . Using induction on n, one may find a Hom-Lie algebra Y containing Hom-Lie subalgebras
Y1, Y2 and some nilpotent ideal Zn−1 of class at most n− 1 such that

K ∼= Y1
n−1∼ Y1 + Zn−1(Y ) = Y = Y2 ⊕ Zn−1

n−1∼ Y2
∼= X2. (1)

Let T be equal to the external direct sum of Hom-Lie algebrasX1, Zn, Zn−1 and the maps i1 : X = X1 ⊕Zn −→ T
and i2 : Zn−1 −→ T be the canonical Hom-Lie algebra monomorphisms.
Put X1 = i1(X1), Zn = i1(Zn) and Zn−1 = i2(Zn−1). Then it is easily seen that:

(i) T = X1 ⊕ (Zn + Zn−1), where Zn + Zn−1 is a nilpotent Hom-Lie algebra of class at most n.

(ii) Zn(T ) = Zn(X1) + Zn + Zn−1.

(iii) The composite map Y2
τ−−→ X2

⊆−−−→ X
i1−−−→ T is monomorphism, where τ is the isomorphism given in 1 .
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Note that an element y ∈ Y can be written uniquely as the form of y = y2 + z where y2 ∈ Y2 and z ∈ Zn−1. The
map λ : Y −→ T , such that λ(y) = i1(τ(y2))+ i2(z) is a monomorphism with λ(Y ) = i1(τ(Y2))+Zn−1. By using
1, we have

λ(Y ) = λ(Y1) + λ(Zn−1(Y )) = λ(Y1) + Zn−1(λ(Y )) = λ(Y1) + Zn−1(i1(X2) + Zn−1)

= λ(Y1) + Zn−1(i1(X2)) + Zn−1 ⩽ λ(Y1) + Zn(i1(X2))

Now we prove that λ(Y1) + Zn(T ) = T

T = X1 + Zn + Zn−1 = i1(X1) + i1(Zn) + Zn−1 = i1(X) + Zn−1

= i1(X2) + i1(Zn(X)) + Zn−1 = i1(X2) + Zn(i1(X)) + Zn−1

= i1(τ(Y2)) + Zn−1 + Zn(i1(X)) = λ(Y ) + Zn(X1 + Zn)

≤ λ(Y1) + Zn(i1(X2)) + Zn−1 + Zn(X1) + Zn

= λ(Y1) + Zn(i1(X)) ∩ i1(X2) + Zn−1 + Zn(X1) + Zn

= λ(Y1) + Zn(X1 + Zn) ∩ i1(X2) + Zn−1 + Zn(X1) + Zn

λ(Y1) + Zn−1 + Zn(X1) + Zn = λ(Y1) + Zn(T ) ≤ T .

Consequently,
V ∼= X1

n∼ X1 ⊕ (Zn ⊕ Zn−1) = T = λ(Y1) + Zn(T )
n∼ λ(Y1) ∼= Y1

∼= W.

Now, if we put TV = X1 and TW = λ(Y1), then the proof is complete.

The following corollary can be conclude immediately from theorem 2.5 which states some conditions for a regular
Hom-Lie algebra to lie in an arbitrary n-isoclinism class.

Corollary 2.6. If (V, φ1) and (W,φ2) are Hom-Lie algebras, then (W,φ2) lies in the n-isoclinism class of {V } if
and only if one of the following conditions hold:
(i) W ∼= V1 ⊕ Zn, where V1 is a Hom-Lie algebra isomorphic to V , and Zn is a nilpotent Hom-Lie algebra of class
at most n;
(ii) W is a Hom-Lie subalgebra of Hom-Lie algebra M in {V } with M = W + Zn(M);
(iii) There exists an epimorphism δ from a Hom-Lie algebra M in {V } onto W such that kerδ ∩Mn+1 = 0.
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Abstract

Assume that D be an F -central division algebras and let the unit group GLn(D) of the full
n×nmatrix ringMn(D)with n ≥ 1. For the most important results concerning the subgroups
of this unit group, the skew linear groups, can be found in [7] as a good reference, also in as [8]
for linear groups. Let D′ the commutator subgroup of the multiplicative group D∗. We define
G(D) := D∗/RN(D∗)D′, where RN(D∗) is the image of D∗ under the reduced norm of D
to F . Let A be an F -central quaternion algebra . Then either G(A) := A�/F ∗A′ =

⊕
Z2 or

F ∗2 = RND/F (D
∗).

1. Introduction

Let D be an division ring with centre F . Consider that D′ be the commutator subgroup of the multiplicative group
D∗. Denote by G(D) := D∗/RN(D∗)D′, where RN(D∗) is the image ofD∗ under the reduced norm ofD to F , is
an abelian periodic group of a bounded exponent dividing the index of D over F . It is easily checked that this group
is not trivial in general. For example, when D is the algebra of real quaternions, we have G(D) is trivial whereas for
rational quaternionsG(D) is isomorphic to a direct product of copies of Z2. When G(D) is not trivial, thus by Prufer-
Baer Theorem, we conclude that G(D) is isomorphic to a direct product of Zri , when ri divides the index of D over
F . The structure of GLn(D) for n ≥ 1 is generally unknown. In addition, we conclude that the existence of normal
maximal subgroups of finite index inD�. Thus, whenG(D) is not trivial, thenD� contains maximal subgroups. For
a given subgroup G of D∗, G is maximal in D∗ if for any subgroup H of D∗ such that G ⊆ H , we have H = D�.
One way of looking into this problem is to investigate its maximal subgroups if they actually exist. For n = 1 the
question of the existence of maximal subgroups has not been completely settled yet. But as an important class of skew
linear groups, the structure of maximal subgroups of GLn(D) has been investigated recently by several authors.
For more information on these concepts, please refer to [2], [3], [4], [6],[7] and [8].

2. Main Results

In references [1], [3]and [4] various studies have been performed on the maximal subgroups of multiplicative sub-
groups of division algebras as well as the G (D) structure. Proven for example:
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Theorem A. Let D be an F -central division algebra of index pe such that F contains a primitive p-th root of unity
and G(D) = 1. Then D is a quaternion algebra.

Theorem B. Given an F -central division algebra D of index n, the following conditions are equivalent:
(1) G(D) = 1;
(2) SK1(D) = 1 and F ∗2 = F ∗2n;
(3) G0(D) = 1 and F ∗2 = F ∗2n;
(4) D∗is Fπ-perfect where π is the set of all primes dividing ind(D).

Also, examples show that G(D) is not stable under the extension over formal Laurent series. We then have an ana-
logue of the Lipnickii Theorem by showing that there exists a field F and F -central division algebra D of odd index
such that G(D) (or G(D)) can be any finite cyclic group.

For example , we know that there is a strong connection between the question of the existence of maximal subgroups
in the unit group of a division algebra and the Albert’s conjecture that concerning the cyclicity of division algebras of
prime degree.IfD be a finite dimensional F -central division algebra, every subgroupG ofGLn(D)may be viewed as
a linear group. Thus, by the Tits Alternative, G contains a noncyclic free subgroup or it is solvable-by-locally finite.
Applying this Alternative, the structure of maximal subgroups of GL1(D) is investigated.

In this manner, we prove the following result:

Main Result. Let A be an F -central quaternion algebra . Then either G(A) := A�/F ∗A′ =
⊕

Z2 or F ∗2 =
RND/F (D

∗).

Proof. Assume that A is a quaternion algebra over F . If A is not a division ring, then A = M2(F ). By Theorem 5.7
of [5], G(A) = A∗/F ∗A′ = F ∗/F ∗�2 . Thus, G(A) =

⊕
Z2.

If A is a division algebra, there exist α, β ∈ F ∗ such that A = (α,βF ). Therefore, G(A) = RNA/F (A
∗)/F ∗2. By

Prufer–Baer Theorem, we conclude that G(A) is isomorphic to a direct product of copies Z2.

If the number of copies ofZ2 is finite, we obtainRNA/F (A
∗) = F ∗2 ∪F ∗2a1

∪
ꞏꞏꞏ

∪
F ∗2am, where, a1, ..., am ∈ F ∗.

For example when F is a local or global field, it can proved that the number of copies is infinite.
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Abstract

In this paper, we investigate some of the graph energies of the zero-divisor graph Γ(R) of finite
commutative rings R. Let Z(R) be the set of zero-divisors of a commutative ring R with non-
zero identity and Z∗(R) = Z(R) \ {0}. The zero-divisor graph of R, denoted by Γ(R), is a
simple graph whose vertex set in Z∗(R) and two vertices u and v are adjacent if and only if
uv = vu = 0.
We investigate some energies of Γ(R) for the commutative rings R ≃ Zp2 × Zq , R ≃ Zp ×
Zp × Zp and R ≃ Zp × Zp × Zp × Zp where p, q the prime numbers.

1. Introduction

Assume that G = (V,E) is a simple graph with vertex set V = {v1, v2, . . . , vn} and edge set E = {e1, e2, . . . , em}.
The number of edges incident to vertex u in G is denoted degG(u) = d(u). The isolated vertex and pendant vertex
are the vertices with degrees zero and 1 in graph G, respectively.
The adjacency matrix of G, A(G) = (aij) is an n × n matrix, where aij = 1 if vivj ∈ E and aij = 0 otherwise.
The eigenvalues of graph G are the eigenvalues of its adjacency matrix A(G) [16]. The energy of a graph G was
introduced in the 1970s as E(G) =

∑n
i=1 |λj(G)| in which λ1, . . . , λn are the eigenvalues of A(G) [12]. The edge

energy of a graph G is defined as the sum of the absolute values of eigenvalues of A(LG) [6] in which LG is the line
graph of G. The line graph LG ofG is the graph that each vertex of it represents an edge ofG and two vertices of LG

are adjacent if and only if their corresponding edges are incident in G [16].
Let D(G) be the diagonal matrix of order n whose (i, i)-entry is the degree of the vertex vi of the graph G. Then the
matrices L(G) = D(G) − A(G) and L+(G) = D(G) + A(G) are the Laplacian matrix and the signless Laplacian
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matrix, respectively, of the graph G. If µ1, µ2, . . . , µn and µ+
1 , µ

+
2 , . . . , µ

+
n are, respectively, the eigenvalues of the

matrices L(G) and L+(G), then the Laplacian energy of G is defined as [13]

LE = LE(G) =
n∑

i=1

∣∣µi −
2m

n

∣∣,

and the signless Laplacian energy is defined as follows [14]

LE+ = LE+(G) =
n∑

i=1

∣∣µ+
i − 2m

n

∣∣.

Details on the properties and results of Laplacian and signless Laplacian energies and energy of a line graph can be
found in [9, 10, 13, 14, 23].
A subset D of V is the dominating set of graph G if every vertex of V \ D is adjacent to some vertices in D. Any
dominating set with minimum cardinality is called a minimum dominating set [17]. The minimum dominating energy
of graph G, denoted by ED(G), is introduced as the sum of the absolute values of eigenvalues of the minimum
dominating matrix [24]. The minimum dominating matrix AD(G) is as following

AD(G) := (aij) =





1 if vivj ∈ E
1 if i = j and vi ∈ D
0 otherwise

A set F of edges inG is the edge dominating set if every edge in E \F is adjacent to at least one edge in F . The edge
domination number, denoted by γ′, is the minimum the cardinalities of the edge dominating sets of G [11]. Note that
F is the minimum edge dominating set of G or the minimum dominating set of LG. The minimum edge dominating
matrix of G is them×m matrix defined by AF (G) := (aij) in which

AF (G) := (aij) =





1 if ei and ej are adjacent,
1 if i = j and ei ∈ F,
0 otherwise.

The minimum edge dominating energy of G is introduced and studied in [3] as following

EEF (G) =
m∑

i=1

|λi|,

where λ1, λ2, . . . , λm are the eigenvalues of AF (G). Note the minimum edge dominating energy of graph G is a
minimum dominating energy for its line graph LG. Details on the properties and results of the minimum dominating
energy of a graph and its line graph can be found in [3, 18, 20–22, 24].
LetR be a ring and Z(R) denotes the set of all zero-divisors ofR. The zero-divisor graph ofR is a simple graph Γ(R)
with vertex set Z(R) \ {0} such that distinct vertices x and y are adjacent if and only if xy = 0 [4].
In this paper, we investigate graph energy, Laplacian energy, signless Laplacian energy, edge energy and the minimum
edge dominating energy of Γ(R) for the commutative rings R ≃ Zp2 × Zq , R ≃ Zp × Zp × Zp and R ≃ Zp × Zp ×
Zp × Zp where p, q the prime numbers.

2. Preliminaries

In this section, we state some previous results that will be used in the next section. First, we recall the definition of
the Zagreb index of graphG. The Zagreb indexM(G) is defined asM(G) =

∑n
i=1 d

2
i such that the vertices have the

degree di for i = 1, 2, . . . , n [15].

Lemma 2.1. [20] Let G be a graph withm edges. If F is the minimum edge dominating set of graph G, then

EEF (G) ≤ M(G)−m,

whereM(G) is the Zagreb index of graph G.
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Lemma 2.2. [20] Let G be a graph of the order n with m edges. If F is the minimum edge dominating set of graph
G with cardinality k, then

EEF (G) ≤ 4m− 2n+ k.

Lemma 2.3. [20] Let G be a connected graph with n vertices andm(≥ n) edges. Then

EEF (G) ≥ 4(m− n+ s) + 2p,

where p and s are the number of pendant vertices and isolated vertices in G.

Lemma 2.4. [14] Let G be a graph of order n withm edges. Then
√

2M(G)− 4m ≤ E(LG) ≤ M(G)− 2m,

where LG andM(G) are the line graph and the Zagreb index of graph G.

Lemma 2.5. [10] Let G be a connected graph of order n. Then

E(LG) ≥ 2
(
E(G)− 2v+

)
,

where v+ is the number of positive eigenvalues.

Lemma 2.6. [14] Let G be a graph with n vertices andm edges such thatm > n. Then

E(LG) < LE+(G) + 4(m− n).

Lemma 2.7. [8] Let G be a graph of order n withm ≥ n
2 edges and the maximum degree∆. Then

2
(
∆+ 1− 2m

n

)
≤ LE(G) ≤ 4m− 2∆− 4m

n
+ 2.

Lemma 2.8. [20] LetG be a simple graph and LG the line graph ofG. If F is the minimum edge dominating set with
|F | = k, then

EEF (G) ≤ EE(G) + k.

Lemma 2.9. [26, 28] For a graph G with n vertices andm edges,

4m

n
≤ LE(G) ≤ 4m

(
1− 1

n

)
.

Lemma 2.10. [1] Let G be a graph with n vertices andm edges. Then

LE+(G) ≤ 4m
(
1− 1

n

)
.

Lemma 2.11. [5] Let G be a graph with n vertices andm edges. Then, γ′ ≤ ⌊n
2 ⌋.

3. Main Results

In this section, we study energies of the zero-divisor graphs Γ(R) such as the edge energy, the minimum edge dom-
inating energy, the Laplacian energy and the signless Laplacian energy of the commutative rings R ≃ Zp2 × Zq ,
R ≃ Zp ×Zp ×Zp and R ≃ Zp ×Zp ×Zp ×Zp where p, q the prime numbers. Firstly, we investigate these energies
of the zero divisor graph Γ

(
Zp2 × Zq

)
where is defined as follows.

For x ∈ Zp2 and y ∈ Zq , (x, y) /∈ V
(
Γ
(
Zp2 × Zq

))
if and only if x ̸= p, 2p, . . . , (p− 1)p and y ̸= 0. According to
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the structure of graph Γ
(
Zp2 ×Zq

)
, the number of vertices is equal to p2+pq−p−1 [2]. Authors in [2], characterized

the vertices of graph Γ
(
Zp2 × Zq

)
according to their degree as follows.

A =
{
(0, y) : y ∈ {1, 2, . . . , q − 1}

}
, |A| = q − 1,

B =
{
(x, y) : x = p, 2p, . . . , (p− 1)p and y ∈ {1, 2, . . . , q − 1}

}
, |B| = (p− 1)(q − 1),

C =
{
(x, 0) : x ∈ Zp2 \ {0, p, 2p, . . . , (p− 1)p}

}
, |C| = p− 1,

D =
{
(x, 0) : x = p, 2p, . . . , (p− 1)p

}
, |D| = p(p− 1).

Also, they obtained the degree sequence DS of this graph as follows.

DS
(
Γ
(
Zp2 × Zq

))
=

{
(p2 − 1)[q−1], (p− 1)[(p−1)(q−1)], (pq − 2)[p−1], (q − 1)[(p

2−p)]
}
. (1)

Therefore, the number of edges in this graph is equal tom = (p−1)(4pq−3p−2)
2 [2].

Theorem 3.1. Let Γ
(
Zp2 × Zq

)
for prime numbers p, q > 2 be the zero-divisor graph of sizem.

i) If p > q, then 2
(
p2 − α

)
≤ LE

(
Γ
(
Zp2 × Zq

))
≤ 4(m+ 1)− (2p2 + α),

ii) If p < q, then 2
(
pq − α− 1

)
≤ LE

(
Γ
(
Zp2 × Zq

))
≤ 4(m+ 1)− 2(pq + α− 1).

where α = 2(p−1)(4pq−3p−2)
p2+pq−p−1 .

Proof. LetG be the zero-divisor graph Γ
(
Zp2 ×Zq

)
for prime numbers p, q > 2 such that the number of vertices and

the number of edges are n = p2 + p(q − 1) − 1 and m = (p−1)(4pq−3p−2)
2 , respectively. According to the sequence

degree (1) of the zero-divisor graph G, we consider two following cases.
Case 1: If p > q, then the maximum degree of graph G is ∆ = p2 − 1. Using Lemma 2.7, we have

LE(G) ≤ 4m− 2∆− 4m

n
+ 2

= 4m− 2(p2 − 1) + 2− 4(p− 1)(4pq − 3p− 2)

2(p2 + p(q − 1)− 1)

= 4m+ 4− 2p2 − 2(p− 1)(4pq − 3p− 2)

(p2 + p(q − 1)− 1)
.

With putting α = 2(p−1)(4pq−3p−2)
p2+pq−p−1 , the result holds for the upper bound.

For the lower bound, using Lemma 2.7, we have

LE(G) ≥ 2
(
∆+ 1− 2m

n

)

= 2
(
p2 − 1 + 1− 2(p− 1)(4pq − 3p− 2)

(p2 + p(q − 1)− 1)

)
.

So, the result holds.
Case 2: If p < q, then∆ = pq − 2. Similar to the proof of case 1, the result completes.

Theorem 3.2. Let Γ(R) be the zero-divisor graph of the commutative ringR ≃ Zp2 ×Zq for prime numbers p, q > 2.
Then √

2(p− 1)(α− β) ≤ E
(
LΓ(R)

)
≤ (p− 1)(α− β),

in which α = p(q − 1)(q + p(p+ 2)− 4) + pq − 2 and β = 4pq − 3p− 2.
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Proof. We suppose Γ(R) be the zero-divisor graph of the ring R ≃ Zp2 × Zq for prime numbers p, q > 2 of order
n = p2+p(q−1)−1 and sizem = (p−1)(4pq−3p−2)

2 . Using the sequence degree (1) of graphΓ(R)whereR ≃ Zp2×Zq

and the definition of the Zagreb index, we get

M(G) =

p2+p(q−1)−1∑

i=1

d2i

= (q − 1)(p2 − 1)2 + (p− 1)3(q − 1) + (pq − 2)2(p− 1) + (q − 1)2(p2 − p)

= (p− 1)
[
p(q − 1)

(
q + p(p+ 2)− 4

)
+ pq − 2

]
.

Thus, using Lemma 2.4, we have

E
(
Γ(G)

)
≤ M(G)− 2m

= (p− 1)
[
p(q − 1)

(
q + p(p+ 2)− 4

)
+ pq − 2

]
− 2

( (p− 1)(4pq − 3p− 2)

2

)

= (p− 1)
([

p(q − 1)
(
q + p(p+ 2)− 4

)
+ pq − 2

]
− (4pq − 3p− 2)

)
.

With setting α = p(q − 1)(q + p(p+ 2)− 4) + pq − 2 and β = 4pq − 3p− 2 in the above relation, the result holds
for the upper bound.
By applying Lemma 2.4 and similar to the above discussion, the lower bound follows.

Theorem 3.3. Let Γ(R) be the zero-divisor graph of the commutative ringR ≃ Zp2 ×Zq for prime numbers p, q > 2.
If F is the minimum edge dominating set of Γ(R), then

EEF

(
Γ(R)

)
≤ (p− 1)(2α− β)

2
,

in which α = p(q − 1)(q + p(p+ 2)− 4) + pq − 2 and β = 4pq − 3p− 2.

Proof. According to the proof of Theorem 3.2 and using Lemma 2.1, the result completes.

In the following, we are interested to investigate some energies of the zero-divisor graphΓ(R)whereR ≃ Zp×Zp×Zp

and R ≃ Zp × Zp × Zp × Zp for a prime p > 2. To do this, we need the following known result.

Lemma 3.4. [7] Let G be a simple graph of the order n and size m. If λ1, λ2, . . . , λn are the eigenvalues of graph
G, then

n∑

i=1

λ2
i = 2m.

First, we consider the connected graph Γ(R) where R ≃ Zp × Zp × Zp of order n = 3p(p − 1). In the following
theorem, we compute the energy of graph Γ

(
Zp × Zp × Zp

)
.

Theorem 3.5. Let Γ(R) be the zero-divisor graph of the commutative ring R ≃ Zp × Zp × Zp for prime number
p > 2. Then

E
(
Γ(R)

)
= 2(p− 1)

(√
4p− 3 +

√
p
)
.

Proof. Suppose that Γ(R) is the zero-divisor graph of the ring R ≃ Zp × Zp × Zp for prime number p > 2 with the
number of vertices n = 3p(p− 1). According to the structure of the zero-divisor graph Γ(R) in [19], the spectrum of
Γ(R) is as follows.

Spec
(
Γ(R)

)
=

{1

2

(
(p− 1)(

√
4p− 3− 1)

)[2]
,
1

2

(
(1− p)(

√
4p− 3 + 1)

)[2]
,

(
(p− 1)(1 +

√
p)
)[1]

,
(
(p− 1)(1−√

p)
)[1]

, 0[3(p+1)(p−2)]
}
. (2)
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Therefore, the energy of graph Γ(R) equals

E
(
Γ(R)

)
=

3p(p−3)∑

i=1

|λi|

= 2
∣∣1
2

(
(p− 1)(

√
4p− 3− 1)

)∣∣+ 2
∣∣1
2

(
(1− p)(

√
4p− 3 + 1)

)∣∣

+
∣∣(p− 1)(1 +

√
p)
∣∣+

∣∣(p− 1)(1−√
p)
∣∣

= (p− 1)(
√

4p− 3− 1) + (p− 1)(
√

4p− 3 + 1)

+ (p− 1)(1 +
√
p) + (p− 1)(

√
p− 1)

= 2(p− 1)
√

4p− 3 + 2(p− 1)
√
p

= 2(p− 1)
(√

4p− 3 +
√
p
)
.

Theorem 3.6. Let Γ(R) be the zero-divisor graph of the commutative ring R ≃ Zp × Zp × Zp for prime number
p > 2 of order n. Then

4(p− 1) ≤ LE
(
Γ(R)

)
≤ 4

(
p− 1

)
(3p2 − 3p− 1

)
.

Proof. LetG be the zero-divisor graph Γ
(
Zp×Zp×Zp

)
of order n = 3p(p−1) and sizem. Suppose that λ1, . . . , λn

are the eigenvalues of graph G. Using Lemma 3.4 and the spectrum of graph Γ(R) in (2), we have

m =

∑n
i=1 λ

2
i

2

=
6p(p− 1)2

2
= 3p(p− 1)2.

By applying Lemma 2.9, we have

LE(G) ≤ 4m− 4m

n

= 4
(
3p(p− 1)2

)
− 4

(
3p(p− 1)2

)

3p(p− 1)

= 12p(p− 1)2 − 4
(
p− 1

)

= 4(p− 1)
(
3p2 − 3p− 1

)
.

And for the lower bound,

LE(G) ≥ 4m

n

=
4
(
3p(p− 1)2

)

3p(p− 1)

= 4(p− 1).

The following result is obtained directly from Lemma 2.10 and the proof of Theorem 3.6.

Corollary 3.7. For the zero-divisor graph Γ
(
Zp × Zp × Zp

)
where p > 2 is a prime,

LE+
(
Γ
(
Zp × Zp × Zp

))
≤ 4

(
p− 1

)
(3p2 − 3p− 1

)
.
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Theorem 3.8. Let Γ(R) be the zero-divisor graph of the ring R ≃ Zp ×Zp ×Zp for prime number p > 2 of order n.
Then

E
(
LΓ(R)

)
< 4(p− 1)

(
6p2 − 9p− 1

)
.

Proof. The size of graph Γ(R) ism = 3p(p− 1)2. So using Lemmas 2.6 and 2.10,

E
(
LΓ(R)

)
< LE+

(
Γ(R)

)
+ 4(m− n)

≤ 4m− 4m

n
+ 4m− 4n

= 24p(p− 1)2 − 12p(p− 1)2

3p(p− 1)
− 12p(p− 1)

= 24p(p− 1)2 − 4(p− 1)− 12p(p− 1)

= 4(p− 1)
(
6p2 − 9p− 1

)
.

Theorem 3.9. Let Γ(R) be the zero-divisor graph where R ≃ Zp × Zp × Zp for prime number p > 2. Then

E
(
LΓ(R)

)
≥ 4

((
(p− 1)

√
4p− 3 +

√
p
)
− 3

)
.

Proof. According to the spectrum of the zero-divisor graph Γ
(
Zp×Zp×Zp

)
in the proof of Theorem 3.5, the number

of positive eigenvalues of Γ(R) is v+ = 3. Therefore using Lemma 2.5 and Theorem 3.5, we get

E
(
LΓ(R)

)
≥ 2E

(
Γ(R)

)
− 4v+

= 4(p− 1)
(√

4p− 3 +
√
p
)
− 12

= 4
((

(p− 1)
√

4p− 3 +
√
p
)
− 3

)
.

Theorem 3.10. Let Γ(R) be the zero-divisor graph where R ≃ Zp × Zp × Zp for prime number p > 2 of order n.
Then

4n
(
p− 13

8

)
≤ EEF

(
Γ(R)

)
≤ 4n(p− 2).

Proof. Assume that G is the zero-divisor graph Γ
(
Zp × Zp × Zp

)
where p > 2 is a prime. Let F be the minimum

edge dominating set of graph G. Since G is a connected graph of order n = 3(p2 − p) with m = 3p(p − 1)2 edges
without any isolated and pendant vertex for p > 2, then using Lemma 2.3, we get

EEF

(
Γ(R)

)
≥ 4(m− n+ s) + 2p

= 4
(
(3p(p− 1)2)− n

)

= 4
(
n(p− 1)− n

)

= 4n(p− 2).
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Using Lemma 3.4, γ′ = |F | ≤ ⌊n
2 ⌋. Then by applying Lemma 2.2, we get

EEF

(
Γ(R)

)
≤ 4m− 2n+ |F |
4(3p(p− 1)2)− 2n+ ⌊n

2
⌋

≤ 4n(p− 1)− 2n+
n

2

= 4n
(
p− 1− 12

8

)

= 4n
(
p− 13

8

)
.

Therefore, the result completes.

Now, we consider the connected graph Γ(R) whereR ≃ Zp×Zp×Zp×Zp where p > 2 is a prime. The graph Γ(R)
is a connected graph of order n = 2(p− 1)(2p2 − p+ 1) [19].

Theorem 3.11. Let Γ(R) be the zero-divisor graph where R ≃ Zp × Zp × Zp × Zp for prime number p > 2. Then

E
(
Γ(R)

)
= 14p2 − 21p+ 8.

Proof. In [19], the spectrum of graph Γ(R) where R ≃ Zp × Zp × Zp × Zp is obtained as follows.

Spec
(
Γ(R)

)
=

{(
(p− 1)2

)[5]

, (−p2 + p− 1)[1],
−1

2

(
(p− 1)

(
(2p− 1)±

√
4p− 3

))[3]

,

1

2

(
(p− 1)

(
(2p+ 1)±

√
12p− 3

))[1]

, 0[(p
3+p2+5p+7)(p−2)]

}
.

Therefore, the energy of graph Γ(R) equals

E
(
Γ(R)

)
=

(2p−2)(2p2−p+1)∑

i=1

∣∣λi

∣∣

= 5(p− 1)2 + (p2 − p+ 1) +
3

2
(p− 1)

(
(2p− 1) +

√
4p− 3

)

+
3

2
(p− 1)

(
(2p− 1)−

√
4p− 3

)
+

1

2
(p− 1)

(
(2p+ 1) +

√
12p− 3

)

+
1

2
(p− 1)

(
(2p+ 1)−

√
12p− 3

)
.

With the simplification of the above relation, the result follows.

Theorem 3.12. Let Γ(R) be the zero-divisor graph where R ≃ Zp ×Zp ×Zp ×Zp for prime number p > 2 of order
n. Then

4p
(
5n+ α

)
+ 8

n
≤ LE

(
Γ(R)

)
≤

(
4p(5n+ α) + 8

)(
n− 1

)

n
,

where α = −6p3 + p+ 4.

Proof. The zero-divisor graph Γ(R) for R ≃ Zp × Zp × Zp × Zp has n = 2(p − 1)(2p2 − p + 1) vertices. Using
Lemma 3.4 and the spectrum of zero-divisor graph Γ(R) in the proof Theorem 3.11, the number of edges of graph
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Γ(R) ism = 14p4 − 30p3 + 21p2 − 6p+ 2. Using Lemma 2.9, we get

LE
(
Γ(R)

)
≤ 4m

(
1− 1

n

)

=
2(14p4 − 30p3 + 21p2 − 6p+ 2

)(
4p3 − 6p2 + 4p− 3

)

2p3 − 3p2 + 2p− 1

=
2
(
p
(
5(4p3 − 6p2 + 4p− 2)− 6p3 + p+ 4

)
+ 2

)
(n− 1)

n
2

.

With putting n = 4p3 − 6p2 + 4p − 2 and α = −6p3 + p + 4, the upper bound for the Laplacian energy of Γ(R)
follows.
For the lower bound, we get

LE
(
Γ(R)

)
≥ 4m

n

=
4(14p4 − 30p3 + 21p2 − 6p+ 2)

n

=
4
(
p
(
5(4p3 − 6p2 + 4p− 2)− 6p3 + p+ 4

)
+ 2

)

n

=
4
(
p
(
5n− 6p3 + p+ 4

)
+ 2

)

n
.

With putting α = −6p3 + p+ 4 in the above relation, the result completes.

The following result is obtained directly from Lemma 2.10 and the proof of Theorem 3.12.

Corollary 3.13. Let Γ(R) be the zero-divisor graph of the ring R ≃ Zp × Zp × Zp × Zp for prime number p > 2 of
order n. Then

LE+
(
Γ(R)

)
≤

(
4p(5n+ α) + 8

)(
n− 1

)

n
,

where α = −6p3 + p+ 4.

Theorem 3.14. Let Γ(R) be the zero-divisor graph of the ring R ≃ Zp × Zp × Zp × Zp for prime number p > 2 of
order n. Then

E
(
LΓ(R)

)
<

(
4p(5n+ α) + 8

)
(2n− 1)− 4n2

n
,

where α = −6p3 + p+ 4.

Proof. Since the number of edges of graph Γ(R) ism = 14p4 − 30p3 + 21p2 − 6p+ 2, using Lemmas 2.6 and 2.10,
we get

E
(
LΓ(R)

)
< LE+

(
Γ(R)

)
+ 4(m− n)

≤ 4m− 4m

n
+ 4m− 4n

= 8(14p4 − 30p3 + 21p2 − 6p+ 2)− 4(14p4 − 30p3 + 21p2 − 6p+ 2)

n
− 4n.

with considering n = 4p3−6p2+4p−2 and α = −6p3+p+4 and the similar to the discussion in proof of Theorem
3.12, the result follows.
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Theorem 3.15. Let Γ(R) be the zero-divisor graph of the ring R ≃ Zp × Zp × Zp × Zp for prime number p > 2.
Then

E
(
LΓ(R)

)
≥ 2

(
14p2 − 21p− 4

)
.

Proof. According to the spectrum of the zero-divisor graph Γ
(
Zp ×Zp ×Zp ×Zp

)
in the proof of Theorem 3.11, the

number of positive eigenvalues of Γ(R) is v+ = 6. Therefore using Lemma 2.5 and Theorem 3.11, we get

E
(
LΓ(R)

)
≥ 2E

(
Γ(R)

)
− 4v+

= 2
(
14p2 − 21p+ 8

)
− 24

= 28p2 − 42p− 8.

Theorem 3.16. Let Γ(R) be the zero-divisor graph of the ring R ≃ Zp × Zp × Zp × Zp for prime number p > 2 of
order n. Then

56p4 − 136p3 + 108p2 − 56p+ 16 ≤ EEF

(
Γ(R)

)
≤ 56p4 − 126p3 + 93p2 − 36p+ 11.

Proof. Let G be the zero-divisor graph Γ
(
Zp × Zp × Zp × Zp

)
where p > 2 is a prime. Let F be the minimum edge

dominating set of graph G.
SinceG is a connected graph of order n = 4p3− 6p2+8p− 2 withm = 14p4− 30p3+21p2− 6p+2 edges without
any isolated and pendant vertex for p > 2, then using Lemma 2.3, we get

EEF

(
Γ(R)

)
≥ 4(m− n+ s) + 2p

= 4
(
(14p4 − 30p3 + 21p2 − 6p+ 2)− (4p3 − 6p2 + 8p− 2)

)

= 4
(
14p4 − 34p3 + 27p2 − 14p+ 4

)
.

Using Lemma 3.4, γ′ = |F | ≤ ⌊n
2 ⌋, and Lemma 2.2, we get

EEF

(
Γ(R)

)
≤ 4m− 2n+ |F |
≤ 4(14p4 − 30p3 + 21p2 − 6p+ 2)− 2n+ ⌊n

2
⌋

≤ 4(14p4 − 30p3 + 21p2 − 6p+ 2)− 2n+
n

2

= 4(14p4 − 30p3 + 21p2 − 6p+ 2)− 3(4p3 − 6p2 + 8p− 2)

2

= 56p4 − 126p3 + 93p2 − 36p+ 11.

Therefore, the result completes.
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Abstract

The S-R double join, G1 ⊙S RG2, of two disjoint graphs G1 and G2 is the graph obtained from
S(G1) andR(G2) by joining every vertex of V (G1) to every vertex of I(G2) and, every vertex
of I(G1) to every vertex of V (G2). In this paper we determine the generalized first Zagreb
index, second Zagreb index and the forgotten topological index of the S-R double join of two
graphs.

1. Introduction

Throughout this paper, we consider simple connected graphs. Let G = (V (G), E(G)) be a graph with |V (G)| = n
vertices and |E(G)| = m edges. The degree of a vertex x ∈ V (G) is the number of vertices adjacent to x and
is denoted by degG(x). In mathematical chemistry and chemical graph theory, a topological index is a numerical
parameter (a real number) that is measured based on the molecular graph of a chemical constitution [2].
Two important topological indices introduced about forty years ago by Ivan Gutman and Trinajstic [3] are the first
Zagreb indexM1(G) and second Zagreb indexM2(G) which are defined as:

M1(G) =
∑

v∈V (G)

(degG(v))
2

M2(G) =
∑

uv∈E(G)

deg(u) deg(v).

Also the Forgotten topological index is defined as [1]:

F (G) =
∑

v∈V (G)

(degG(v))
3.

The generalized first Zagreb index of a graph G is defined as [4]:

Zα(G) =
∑

x∈V (G)

degαG(x) =
∑

uv∈E(G)

degG(u)
α−1 + degG(v)

α−1,
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where α ∈ R, α ̸= 0, α ̸= 1. If α = 3, then generalized first Zagreb index becomes Forgotten index. For more details
on these topological indices we refer the reader to [4] and [5]. For a connected graphG, two related graphs are defined
as follows [1].
S(G) is the graph obtained by inserting an additional vertex in each edge of G, in other words, each edge of G is
replaced by a path of length two.
R(G) is obtained from G by adding a new vertex corresponding to each edge of G, then joining each new vertex to
the end vertices of the corresponding edge.

2. Main results

Definition 2.1. The S-R double join, G1 ⊙
S R

G2, of two disjoint graphsG1 andG2 is the graph obtained from S(G1)
and R(G2) by joining every vertex of V (G1) to every vertex of I(G2) and, every vertex of I(G1) to every vertex of
V (G2), where I(G1) denotes the vertex set of the added new vertices in S(G1) and I(G2) denotes the vertex set of
the added new vertices in R(G2).

For instance the figure below represents the S-R double join of two graphs P2 andK3.

Fig. 1. P2 ⊙S RK3.

Proposition 2.2. The degree of the vertices of S-R double join graph are given by

degG1 ⊙
S R

G2
(x) =





deg
G1

(x) +m2 x ∈ V (G1)

2 + n2 x ∈ I(G1)
2 deg

G2
(x) +m1 x ∈ V (G2)

2 + n1 x ∈ I(G2)

Theorem 2.3. Let α be positive integer. the generalized first Zagreb index of G1 ⊙
S R

G2 is given by

Zα(G) = m1(2 + n2)
α +m2(2 + n1)

α +

α∑

i=0

(
α

i

)
(m2)

α−iZi(G1) +

α∑

i=0

2i
(
α

i

)
(m1)

α−iZi(G2)

Proof. By considering vertex degrees of the G = G1 ⊙
S R

G2,as represented observation 2.2, and the binomial expan-
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sion in the generalized first Zagreb index is calculated as follows:

Zα(G) =
∑

x∈V (G)

degG(x)
α

=
∑

x∈V (G1)

degG(x)
α +

∑

x∈I(G1)

degG(x)
α +

∑

x∈V (G2)

degG(x)
α +

∑

x∈I(G2)

degG(x)
α

=
∑

x∈V (G1)

(degG1
(x) +m2)

α +
∑

x∈I(G1)

(2 + n2)
α

+
∑

x∈V (G2)

(2 degG2
(x) +m1)

α +
∑

x∈I(G2)

(2 + n1)
α

= [
∑

x∈V (G1)

α∑

i=0

(
α

i

)
(degG1

(x))i(m2)
α−i] + [

∑

x∈V (G2)

α∑

i=0

(
α

i

)
(2 degG2

(x))i(m1)
α−i]

+ m1(2 + n2)
α +m2(2 + n1)

α

=
α∑

i=0

[

(
α

i

)
(m2)

α−i
∑

x∈V (G1)

(degG1
(x))i] +

α∑

i=0

[

(
α

i

)
(m1)

α−i
∑

x∈V (G2)

(2 degG2
(x))i]

+ m1(2 + n2)
α +m2(2 + n1)

α

= m1(2 + n2)
α +m2(2 + n1)

α +
α∑

i=0

(
α

i

)
(m2)

α−iZi(G1) +
α∑

i=0

2i
(
α

i

)
(m1)

α−iZi(G2).

Corollary 2.4. For two arbitrary graphs G1 and G2 we have

M1(G1 ⊙
S R

G2) = M1(G1) + 4M1(G2) + (2 + n2)
2m1 + (2 + n1)

2m2 + 12m1m2 +m2
1n2 +m2

2n1

Proof. It is sufficient to let α = 2 in Theorem 2.3.

Corollary 2.5. For two arbitrary graphs G1 and G2 we have

F (G1 ⊙
S R

G2) = F (G1) + 8F (G2) + 3m2M1(G1) + 12m1M1(G2) + n2m
3
1 +m1(2 + n2)

3

+ m2(2 + n1)
3 + 12m2

1m2 + 6m1m
2
2 +m3

2n1

Proof. It is sufficient to let α = 3 in Theorem 2.3.

Theorem 2.6. The second Zagreb index of G1S ⊙R G2 is given by

M2(G1 ⊙
S R

G2) = (2 + n2)[M1(G1) + 2m1m2] + [4M2(G2) + 2m1M1(G2) +m2
1m2]

+ 2n1[2M1(G2) + 2m1m2] + [m2(2 + n1)(2m1 + n1m2)]

+ m1(2 + n2)[4m2 +m1n2].
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Proof. According to observation 2.2, the second Zagreb index of is as follows.

M2(G1 ⊙
S R

G2) =
∑

uv∈E(G1S⊙RG2)

deg(u) deg(v)

=
∑

uv∈E(S(G1))

(degG1
(u) +m2)(2 + n2)

+
∑

uv∈E(G2)

(2 degG2
(u) +m1)(2 degG2

(v) +m1)

+
∑

uv∈E(S(G2))

(2 degG2
(v) +m1)(2 + n1)

+
∑

u∈V (G1)

∑

v∈I(G2)

(2 + n1)(degG1
(u) +m2)

+
∑

u∈I(G1)

∑

v∈V (G2)

(2 + n2)(2 degG2
(v) +m1)

= (2 + n2)[M1(G1) + 2m1m2] + [4M2(G2) + 2m1M1(G2) +m2
1m2]

+ 2n1[2M1(G2) + 2m1m2] + [m2(2 + n1)(2m1 + n1m2)]

+ m1(2 + n2)[4m2 +m1n2].
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Abstract

The subdivision-vertex neighbourhood corona,G1⊙G2, is the graph obtained from S(G1) and
|V (G1)| copies of G2, all vertex-disjoint, and joining the neighbours of the i-th vertex of n1 to
every vertex in the i-th copy of G2, and the subdivision-edge neighbourhood corona G1 ⊖G2,
is the graph obtained from S(G1) and |I(G1)| copies ofG2, all vertex-disjoint, and joining the
neighbours of the i-th vertex of I(G1) to every vertex in the i-th copy of G2.
In this paper we determine the generalized first Zagreb index, of the subdivision-vertex and
subdivision-edge neighbourhood corona.

1. Introduction

Throughout this paper, we consider simple connected graphs. Let G be such a graph with vertex set V (G) and edge
set E(G) so that the order and size of G is equal to n and m respectively. The degree of a vertex x ∈ V (G) is the
number of first neighbors of x, and is denoted by degG(x). In mathematical chemistry and chemical graph theory, a
topological index is a numerical parameter (a real number) that is measured based on the molecular graph of a chemical
constitution [2].
The F -index of a graph is defined as the sum of cubes of the vertex degrees of the graph [1]:

F (G) =
∑

v∈V (G)

(degG(v))
3.

The generalized first Zagreb index of a graph G is defined as [3]:

Zk(G) =
∑

x∈V (G)

degkG(x) =
∑

uv∈E(G)

degG(u)
k−1 + degG(v)

k−1,

where k ∈ R, k ̸= 0, k ̸= 1. If k = 3, then generalized first Zagreb index becomes Forgotten index. For more details
on these topological indices we refer the reader to [3] and [4]. For a connected graphG, two related graphs are defined
as follows [1]:
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S(G) is the graph obtained by inserting an additional vertex in each edge of G, in other words, each edge of G is
replaced by a path of length two.

2. Main results

Definition 2.1. [5] The subdivision-vertex neighbourhood corona of G1 and G2, denoted by G1 ⊙ G2, is the graph
obtained from S(G1) and n1 copies of G2, all vertex-disjoint, and joining the neighbours of the i-th vertex of n1 to
every vertex in the i-th copy of G2.

For instance, the figure 1 represents the subdivision-vertex neighbourhood corona of two graphs P4 and P2.

Fig. 1. P4 ⊙ P2.

Proposition 2.2. The degree of the vertices of subdivision-vertex neighbourhood corona graph are given by

degG1⊙G2
(vi) = degG1

(vi), i = 1, 2, ..., n1,

degG1⊙G2
(ei) = 2 + 2n2, i = 1, 2, ...,m1,

degG1⊙G2
(uj

i) = degG2
(uj) + degG1

(vi), i = 1, 2, ..., n1, j = 1, 2, ..., n2.

Theorem 2.3. Let k be positive integer the generalized first Zagreb index of G1 ⊙G2 is given by

Zk(G1 ⊙G2) = Zk(G1) +m1(2n2 + 2)k +
k∑

t=0

(
k

t

)
Zt(G2)Z

k−t(G1)

Proof. By considering the degree vertices of the G = G1 ⊙G2, as represented observation 2.2, and the binomial
expansion in the generalized first Zagreb index is calculated as follows:

Zk(G) =
∑

x∈V (G)

degG(x)
k

=

n1∑

i=1

degG1
(vi)

k +

m1∑

i=1

(2n2 + 2)k +

n1∑

i=1

n2∑

j=1

[degG2
(uj) + degG1

(vi)]
k

= Zk(G1) +m1(2n2 + 2)k +

n1∑

i=1

n2∑

j=1

k∑

t=0

(
k

t

)
degG2

(uj)
t degG1

(vi)
k−t

= Zk(G1) +m1(2n2 + 2)k +

k∑

t=0

n1∑

i=1

n2∑

j=1

(
k

t

)
degG2

(uj)
t degG1

(vi)
k−t

= Zk(G1) +m1(2n2 + 2)k +
k∑

t=0

(
k

t

)
Zt(G2)Z

k−t(G1).

Corollary 2.4. For two arbitrary graph G1 and G2 we have

F (G1 ⊙G2) = F (G1) +m1(2n2 + 2)3 + n2F (G1) + 6m2M1(G1) + 6m1M1(G2)
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Proof. It is sufficient to let k = 3 in theorem 2.3.

Definition 2.5. [5] The subdivision-edge neighbourhood corona of G1 and G2, denoted by G1 ⊖ G2, is the graph
obtained from S(G1) and |I(G1)| copies of G2, all vertex-disjoint, and joining the neighbours of the i-th vertex of
I(G1) to every vertex in the i-th copy of G2.
For example, the figure 2 represents the subdivision-vertex neighbourhood corona of two graphs P4 and P2.

Fig. 2. P4 ⊖ P2.

Proposition 2.6. The degree of the vertices of subdivision-edge neighbourhood corona graph are given by

degG1⊖G2
(vi) = [1 + n2] degG1

(vi), i = 1, 2, ..., n1,

degG1⊖G2
(ei) = 2, i = 1, 2, ...,m1,

degG1⊖G2
(uj

i) = degG2
(uj) + 2, i = 1, 2, ..., n1, j = 1, 2, ..., n2.

Theorem 2.7. Let k be positive integer the generalized first Zagreb index of G1 ⊖G2 is given by

Zk(G1 ⊖G2) = [1 + n2]
kZk(G1) +m12

k +

k∑

t=0

(
k

t

)
2tn1Z

k−t(G2)

Proof. By considering the degree vertices of the G = G1 ⊖G2, as represented observation 2.6, and the binomial
expansion in the generalized first Zagreb index is calculated as follows:

Zk(G) =
∑

x∈V (G)

degG(x)
k

=

n1∑

i=1

[1 + n2]
k degG1

(vi)
k +

m1∑

i=1

2k +

n1∑

i=1

n2∑

j=1

[2 + degG2
(uj)]

k

= [1 + n2]
kZk(G1) +m12

k +

n1∑

i=1

n2∑

j=1

k∑

t=0

(
k

t

)
2t degG2

(uj)
k−t

= [1 + n2]
kZk(G1) +m12

k +
k∑

t=0

n1∑

i=1

n2∑

j=1

(
k

t

)
2t degG2

(uj)
k−t

= [1 + n2]
kZk(G1) +m12

k +

k∑

t=0

(
k

t

)
2t

n1∑

i=1

n2∑

j=1

degG2
(uj)

k−t

= [1 + n2]
kZk(G1) +m12

k +
k∑

t=0

(
k

t

)
2t

n1∑

i=1

Zk−t(G2)

= [1 + n2]
kZk(G1) +m12

k +
k∑

t=0

(
k

t

)
2tn1Z

k−t(G2).

Corollary 2.8. For two arbitrary graph G1 and G2 we have

F (G1 ⊖G2) = (1 + n2)
3F (G1) + 8m1 + n1F (G2) + 6n1M1(G2) + 24n1m2 + 8n1n2

Proof. It is sufficient to let k = 3 in theorem 2.7.
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Abstract

The graphG2, power two of graphG is defined on vertex set V (G) and two vertices are joined
if their distance is at most 2 in graph G. In this paper, we determine the exact value of game
chromatic number of power two of Cartesian product P2□Pn, where Pn is a path on n vertices.

1. Introduction

Let G be a simple graph andX be a color set of cardinality k. Consider two players, Alice and Bob. They alternately
color a vertex of G with a color from X such that Alice starting first. In this coloring no two two adjacent vertices
recieve the same color. In the end if all vertices are colored then Alice wins, otherwise Bob wins. The game chromatic
number ofG, denoted by χg(G), is the least numberk for which Alice has a strategy to win. The game coloring intro-
duced by Bodlaender [4]. Bartnicki et al. [3] determined the exact value χg(K2□H), where H can be replaced by a
path graph (Pn), a cycle graph (Cn) or a cpmplete graph (Kn) with n vertices. Also Sia [6] determined χg(Sm□H),
whereH is Pn or Cn and Sm is a star graph with n+1 vertices and χg(P2□H), whereH can be replaced by a wheel
graph (Wn) or a complete bipartite graph (Km,n). There are some results for power graph, see [1, 2, 5]. The trivial
bounds on the game chromatic number are:

χ(G) ≤ χg(G) ≤ ∆(G) + 1. (1)

where χ(G) and∆(G) are chromatic number and maximum degree of the graph G, respectively.
The dth power graph Gd of a graph G is given by V (Gd) = V (G) and two vertices u and v are adjacent in Gd, if
their distance (number of edges in a shortest uv-path) in G is at most d. The Cartesian product of graphs G and H ,
denoted by G□H , where two vertices (u, v) and (u′, v′) are adjacent if and only if u = u′ and vv′ ∈ E(H) or v = v′

and uu′ ∈ E(G). In this paper we determine the exact value of χg((P2□Pn)
2), where Pn is a path with n vertices.
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2. Game chromatic number of (P2□Pn)
2

We denote vertices of copies Pn of graph P2□Pn by V1 = {v1, ..., vn} and V2 = {v′1, ..., v′n}.

Theorem 2.1. χg((P2□P2)
2) = 4

Proof. As (P2□P2)
2 isomorphic to the complete graphK4 and the result can be concluded from trivial bounds.

Theorem 2.2. χg((P2□P3)
2) = 5

Proof. At first, we show that Bob has a winning strategy using 4 colors. For Alice first move consider following the
cases:
Case 1: Alice colors a vertex of degree 4.
Without loss of generality, suppose Alice colors vertex v1 with color 1. Then Bob replies with vertex v′3 with color 2.
In the next move, if Alice colors a vertex of V1, she must use color 3 and Bob replies with vertex v′1 with color 4 and
Bob wins. Similarly, it is proved that if Alice color a vertex of V2, Bob wins.
Case 2: Alice colors a vertex of degree 5.
Without loss of generality, suppose Alice colors vertex v2 with color 1. Then Bob colors vertex v′2 with color 2.
Consider S = V ((P2□P3)

2)− {v2, v′2}. The induced subgraph on subset S is a cycle and Bob wins.
Now we give a winning strategy for Alice with 5 colors. Alice in the first move colors vertex v2 with color 1. After
Alice next move, vertex v′2 is colored and uncolored vertices are of degree 4 and Alice wins.

Lemma 2.3. Let X = {1, ..., k} be a color set. Consider uncolored vertex x of degree at least k such that it has at
least k − 1 colored neighbors with k − 1 colors. If Bob turns then he wins.

Lemma 2.4. Let X = {1, ..., k} be a color set. Consider uncolored vertices x and y such that they are adjacent and
each of them has at least k − 1 colored adjacent vertices with k − 1 different colors then Bob wins the game.

Theorem 2.5. χg((P2□P4)
2) ≥ 6

Proof. Let X = {1, ..., 5} be a color set. We show that Bob has a winning strategy with color set X . For Alice first
move consider the following cases:
Case 1: Alice starts of a vertex of degree 6.
Without loss of generality, suppose Alice colors vertex v2 with color 1. Then Bob replies with vertex v′4 with color 2.
Case 1.1: Alice colors a vertex from V1 in her second move.
Now suppose Alice colors vertex v1 with color 3. Then Bob colors vertex v′3 with color 4 and by Lemma 2.4 Bob
wins. If she colors vertex v1 with color 2 then Bob replies with vertex v′3 with color 3. Alice for next move needs
color 4 and after her move vertices v3 or v′2 have at least 4 colored neighbors with 4 colors and by Lemma 2.3 Bob
wins.
Consider Alice colors vertices v3 or v4, therefore she needs color 3 for coloring. Then Bob colors v′1 or v′2 with color
4 and by Lemma 2.4 Bob wins.
Case 1.2: Alice colors a vertex from V2 in her second move.
Consider vertex v′1 and suppose Alice colors it with color 3. Then Bob replies with vertex v3 with color 4 and by
Lemma 2.4 Bob wins. If she colors vertex v′1 with color 2 then Bob colors vertex v3 with color 3. After Alice third
move, by Lemma 2.3 Bob wins.
Now suppose Alice colors verices v′2 or v′3 in second move. She needs color 3. Corresponding Alice’ move, Bob
colors v4 or v1 and by Lemma 2.4 Bob wins.
Case 2: Alice starts of a vertex of degree 4.
Without loss of generality, suppose Alice colors vertex v1 with color 1. Then Bob replies with vertex v′3 with color 2.
Case 2.1: Alice colors a vertex from V1 in her second move.
If Alice color vertices v2 or v3 then she must use color 3 for coloring. Then corresponding Alice’ move, Bob colors
vertex v′4 or v′1 with color 4 and by Lemma 2.4 Bob wins. Now suppose she colors vertex v4. If she uses color 3 then
Bob colors vertex v′2 with color 4 and by Lemma 2.4 Bob wins. Consider she colors with color 1 then Bob colors
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vertex v′2 with color 3 and Alice needs color 4 for third move and by Lemma 2.3 Bob wins.
Case 2.2: Alice colors a vertex from V2 in her second move.
If Alice color vertex v′1 or v′2 then she must use color 3 for coloring. Then corresponding Alice’ move, Bob colors
vertex v3 or v4 with color 4 and by Lemma 2.4 Bob wins. Suppose she colors vertex v′4. If she uses color 3 then Bob
colors vertex v2 with color 4 and by Lemma 2.4 Bob wins. If Alice colors with color 1 then Bob colors vertex v2 with
color 3. Hence Alice needs color 4 for next move and by Lemma 2.3 Bob wins.

Theorem 2.6. χg((P2□P4)
2) ≤ 6

Proof. Let X = {1, ..., 6} be a color set. We show that Alice has a winning strategy with color set X . At first, Alice
colors vertex v2 with color 1. For Bob first move, consider the following cases:
Case 1: Bob colors a vertex of degree 6.
Bob colors one of the vertices v3, v′2 or v′3 with color 2. Then Alice corresponding Bob’ move, colors one of vertices
v′1, v4 or v1 with color 2. Therefore every uncolored vertices of degree 6 have two colored neighbors with the same
color and all uncolored vertices are colored with this color set.
Case 2: Bob colors a vertex of degree 4.
Bob colors one of vertices v1, v4 or v′1 with color 2. Then Alice corresponding Bob’ move colors one of vertices v′3,
v′2 or v3 with color 2 and she wins.
If Bob colors vertex v′4 with color 2 then Alice in second move colors vertex v′1 with color 2. After Alice third move,
vertex v3 is colored. Thus every uncolored vertices of degree 6 have two colored neighbors with the same color and
Alice wins.

Corollary 2.7. χg((P2□P4)
2) = 6

Theorem 2.8. For every positive integer n ≥ 4, we have χg((P2□Pn)
2) = 6.

Proof. As (P2□P4)
2 is an induced subgraph of graph (P2□Pn)

2, n ≥ 4, we have χg((P2□Pn)
2) ≥ 6. Let X =

{1, ..., 6} be a color set. We show that Alice has a winning strategy with color setX . At first, Alice colors a vertex of
graph. In the following moves, if Bob colors a vertex vi from V1 with color j then in first priority Alice colors vertex
v′i+2 or v′i−2 and in second priority she colors vi+3 or vi−3 with color j. If it is not possible, she colors a vertex among
vi+4, vi−4, v′i+3 or v′i−3 with color j. Otherwise Alice colors another vertex or she uses new color. Similarly, if Bob
colors a vertex v′i from V2 with color j then Alice colors a vertex among vi+2, vi−2, v′i+3 or v′i−3 with color j. If it
is not possible, she colors a vertex among vi+3, vi−3, v′i+4 or v′i−4 with color j. If it is not possible, she colors any
vertex with an available color. In this strategy any uncolored vertex is adjacent to colored neighbors with at most 5
distinict colors and Alice wins.

3. Conclusion

In this paper we have determined the exact value of the game chromatic number power two of Cartesian product
P2□Pn and the following results are obtained:

χg((P2□Pn)
2) =





4 n = 2
5 n = 3
6 n ≥ 4
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Abstract

As a well-known enumerative problem, the number of solutions to the equation m = m1 +
. . .+mk withm1 ⩽ . . . ⩽ mk in positive integers is Π(m, k) =

∑k
i=0 Π(m− k, i) and Π is

called the additive partition function. In this paper, we give a recursive formula for the number
of solutions to the equation m = m1 . . .mk with m1 ⩽ . . . ⩽ mk in positive integers. In
particular, using elementary techniques, we give an explicit formula for the cases k = 1, 2, 3, 4.

1. Introduction

Let F(n; k, ℓ) be the number of unordered factorizations of a positive integer n to exactly k parts, such that each parts
⩾ ℓ. We denote the number of all unordered factorizations of a positive integer n by F(n), that is the number of ways
a positive integer n can be written as a product n = n1 × n2 × . . . × nk, where n1 ⩾ n2 ⩾ . . . ⩾ nk > 1. The
integers n1, n2, . . . , nk are called the factors of the factorization, and it’s clearly that F(n) =

∑n
k=1 F(n; k, 2). We

call F(n) is the unordered Factorization function of n. For example F(12), corresponding to 2× 6, 2× 2× 3, 3× 4
and 12. The sequence F(n) is listed in [1]. The Dirichlet generating function for F(n) is

∞∏

k=2

1

1− k−s
=

∞∑

n=1

F(n)

ns
.

For positive integers ℓ, k ⩾ 1, we denote the number of ordered factorization of positive integer n in exactly k parts,
such that each part ⩾ ℓ byH(n; k, ℓ). We useH(n) to represent the number of all ordered factorization of the integer
n (in analogy with compositions for sum), thenH(n) =

∑n
k=1 H(n; k, 2) . An additive partition of a positive integer

n that denoted p(n), is an integer k-tuple n1 ⩾ n2 ⩾ . . . ⩾ nk > 0, for some k, such that n = n1 +n2 + . . .+nk (in
analogy with factorization function F(n) for product). The integers n1, n2, . . . , nk are the parts of the partitions. For
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example p(4) corresponding to, 1+1+1+1, 1+1+2, 1+3, 2+2 and 4. It is important note that if n = pβ1

1 pβ2

2 . . . pβk

k ,
where p1, p2, . . . , pk are distinct prime numbers and βi ∈ N for 1 ⩽ i ⩽ k, then F(n) and H(n) depend only to
β1, β2, . . . , βk . For instance, if a positive integer n is a prime power n = pk, k ⩾ 1, then F(n) = p(k), and
H(n) = 2k−1. Also, if a positive integer n is square free as n = p1 × p2 × . . . × pk then F(n) =

∑k
i=1

{
k
i

}
,

where
{
n
k

}
is the Stirling number of the second kind, and H(n) =

∑k
i=1 i!

{
k
i

}
. Let F(n; {β1, . . . , βr}, ℓ), be the

number of unordered factorizations of a positive integer n as n = nβ1

1 × . . . × nβr
r , such that β1 + . . . + βr = k

and ℓ ⩽ n1 < . . . < nr, also, H(n; {β1, . . . , βr}, ℓ) be the number of ordered factorizations of a positive integer n
as n = nβ1

1 × . . . × nβr
r , such that ni ⩾ ℓ, and {n1, . . . nk} = {n′

1, . . . , n
′
r} and βj = |{i : ni = n′

j}|, for each
1 ⩽ i, j ⩽ r. For example, F(n; {1, 1, 2}, ℓ) is the number of unordered factorization positive integer n as the form
xyz2, where x, y and z are different positive integers and x > y > z ⩾ ℓ andH(n; {1, 1, 2}, ℓ) = 2!F(n; {1, 1, 2}, ℓ).
It is easy to see that

F(n; {β1, . . . , βr}, ℓ) =
(β1 + . . .+ βr)!

β1! . . . βr!
H(n; {β1, . . . , βr}, ℓ).

More on factorization partitions, including results on bounds and asymptotes of F(n) and algorithms for calculating
the values, can be found in [2–4] and [5].
The goal of this paper is to give some recursive formula for F(n) andH(n) also we obtain F(n, k, ℓ) andH(n, k, ℓ)
for cases n = 2, 3, 4, with elementary ways. Also, we give another proof of general formula for the numberHℓ(n, k)
of ordered factorizations of a positive integer n in exactly k factors that each factor greater than 1, was found in 1893
by MacMahon [6]:

H(n; k, 2) =
k−1∑

i=0

(−1)i
(
k

i

) n∏

j=1

(
βj + k − i− 1

k − i− 1

)
.

At the end, we closed our paper by posting several propositions about additive partition function p(n).

2. Results

In this section we give some recursive formula F(n; k, ℓ) and H(n; k, ℓ). Let n = nβ1

1 × . . . × nβr
r be a positive

integer, where βi ∈ N. By using of above notations, we can write

F(n; k, ℓ) =
∑

β1+...+βr=k;
β1<...<βr,

F(n; {β1, . . . , βr}, ℓ); (1)

and

H(n; k, ℓ) =
∑

β1+...+βr=k

H(n; {β1, . . . , βr}, ℓ). (2)

Theorem 2.1. Let n > 1 and k, ℓ be positive integers. Suppose that ℓs divides n but ℓs+1 does not divide n. Then

F(n; k, ℓ) =

min{k,s}∑

i=max{k−s,1}
F(n; i, ℓ+ 1).

Corollary 2.2. Let n > 1 and k, ℓ be positive integers. Then

F(n; k, 1) =
k∑

i=1

F(n; i, 2).

Lemma 2.3. Let n, k and ℓ be positive integers. Then

F(n; k, ℓ) =
∑

ℓ⩽d|n
Fd(

n

d
, k − 1).
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Abstract

The graph of derangements on n elements is the graph whose vertex set is derangements on n
elements. Also, two vertices are adjacent if one is a derangement of the other. In this paper, we
observe that the graph of derangements is connected.

1. Introduction

Let G be a finite transitive group on the set Ω. An element g ∈ G is called a derangement if g has no fixed points on
Ω, that is, αg ̸= α for each α ∈ Ω. The number of derangements is given by the recurrence relation,

D(n) =





0 if n = 1;
1 if n = 2;
(n− 1)(D(n− 1) +D(n− 2)) if n ≥ 3 .

Suppose that Sn is the symmetric group on the set [n] = {1, 2, . . . , n}. consider (1) the trivial permutation which
fixes each element. Let D be the set of all permutations of the values 1, . . . , n, which is a derangement of (1). The
function A for di, dj ∈ D is defined as a following

A(di, dj) =

{
1 if dj is a derangement of di;
0 otherwise.

It is easy to check that D(n) = {d| d ∈ Sn, A((1), d) = 1}.

Definition 1.1. The graph of derangementDn = (V,E) is the graph whose vertices are derangements on n elements
such that an edge connects two vertices di, dj ∈ V if and only if A(di, dj) = 1.
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Example 1.2. The D4 = (V,E) for four elements is the graph whose vertices an edges are as follows:

V = {2143, 4312, 3421, 3412, 4321, 3142, 2413, 2341, 4123},

E = {(a, b)|a, b ∈ Ki, i = 1, . . . , 4}
where

K1 = {2143, 3421, 4312},K2 = {2143, 3412, 4321},
K3 = {2413, 3142, 4321},K4 = {2341, 3412, 4123}.

2 First & Second

Example 1.2. The D4 = (V, E) for four elements is the graph whose vertices an edges are as follows:

V = {2143, 4312, 3421, 3412, 4321, 3142, 2413, 2341, 4123},

E = {(a, b)|a, b ∈ Ki, i = 1, . . . , 4}

where

K1 = {2143, 3421, 4312},K2 = {2143, 3412, 4321},
K3 = {2413, 3142, 4321},K4 = {2341, 3412, 4123}.

Fig. 1. (Graph D4 with four 3-cycle)

Remark 1.3. The number of derangements on the five elements is 44. The D5 = (V, E) on five elements have 44
vertexes and the number of edges is 56.

Definition 1.4. Let A be a finite set, and let A = (A1, A2, . . . , An) be a collection of subsets of A. A system of
representatives ofA is a collection of elements x1, x2, ..., xn such that xi ∈ Ai for all i ∈ {1, 2, . . . , n}. A Distinct System
of Representatives (SDR) ofA is a collection of elements x1, x2, . . . , xn such that xi , x j for all i, j ∈ {1, 2, . . . , n} and
i , j.

Example 1.5. Let A = {x1, x2, x3, x4, x5}. Also, consider the collection of subsets A = (A1, A2, A3, A4, A5) defined to
be A1 = {x1, x2}, A2 = {x2, x3}, A3 = {x3, x4}, A4 = {x4, x5}, and A5 = {x1, x5}. If we let x1 ∈ A1 represent A1, x2 ∈ A2
represent A2, . . . , x5 ∈ A5 to represent A5, then the collection of elements x1, x2, x3, x4, x5 is a SDR ofA.

Theorem 1.6 ([1]). Let Al, . . . , An be subsets of S such that, for some m,

(i) |Ai| = m for each i ∈ [m]

(ii) each element of S occurs in exactly m of the Ai.

Then A1, . . . , An possesses an SDR.

2. main theorem

Theorem 2.1. Consider a Dn graph (V, E) for n elements. Then Dn is a connected graph

Fig. 1. (GraphD4 with four 3-cycle)

Definition 1.3. Let A be a finite set, and let A = (A1, A2, . . . , An) be a collection of subsets of A. A system
of representatives of A is a collection of elements x1, x2, ..., xn such that xi ∈ Ai for all i ∈ {1, 2, . . . , n}. A
Distinct System of Representatives (SDR) of A is a collection of elements x1, x2, . . . , xn such that xi ̸= xj for all
i, j ∈ {1, 2, . . . , n} and i ̸= j.

Example 1.4. Let A = {x1, x2, x3, x4, x5}. Also, consider the collection of subsets A = (A1, A2, A3, A4, A5)
defined to be A1 = {x1, x2}, A2 = {x2, x3}, A3 = {x3, x4}, A4 = {x4, x5}, and A5 = {x1, x5}. If we let x1 ∈ A1

represent A1, x2 ∈ A2 represent A2, …, x5 ∈ A5 to represent A5, then the collection of elements x1, x2, x3, x4, x5 is
a SDR of A.

Theorem 1.5 ([1]). Let Al, . . . , An be subsets of S such that, for somem,

(i) |Ai| = m for each i ∈ [m]

(ii) each element of S occurs in exactlym of the Ai.

Then A1, . . . , An possesses an SDR.

2. main theorem

Theorem 2.1. Consider a Dn graph (V,E) for n elements. Then Dn is a connected graph

Proof. First, suppose that n = 4. By Example 1.2, it is easy to see that graph D4 is connected. Now, supposed that
n ≥ 5and α = (α1 . . . αn) and β = (β1 . . . αn) are two arbitrary vertex of V . Let αi ̸= βj for i, j ∈ [n]. This means
that there is one edge between two vertices α and β. Now, suppose that there exists at least one i ∈ [n] such that
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αi = βi. With loss of generality, Assume that α1 = β1. We have shown that there exists one path between vertices α
and β. Consider the following reduced Latin rectangle 3× n on [n]\{1}.

2 . . . n
α2 . . . αn

β2 . . . βn

Let Ai denote the set of elements of [n]\{1} that do not occur in the ith column of Latin rectangle. Then by Theorem
1.5, set Ai possesses an SDR which can be extended to a 4 × n Latin rectangle on [n]\{1}. Set γ′ = (γ2 . . . γn) as
a 4th row of the required rectangle. Assume that γ1 ̸= α1 and γ1 ∈ [n]\{γ2, . . . , γn}, Then it is easy to check that
γ = (γ1 . . . γn) is a derangement on n vertex and so γ ∈ V . Since γi ̸= βj for i, j ∈ [n], then there exist an arc
between α and γ. Similarly, there exist an arc between γ and β. Similar to the above argument in other cases, it can
show that graph A is connected.
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Abstract

A subsetD of vertices of a graphG is a total dominating set if for each u ∈ V (G), u is adjacent
to some vertex v ∈ D. The total domination number, γt(G) of G, is the minimum cardinality
of a total dominating set of G. For an even integer n ≥ 2 and 1 ≤ ∆ ≤ ⌊log2 n⌋, a Knödel
graphW∆,n is a∆-regular bipartite graph of even order n, with vertices (i, j), for i = 1, 2 and
0 ≤ j ≤ n

2
− 1, where for every j, 0 ≤ j ≤ n

2
− 1, there is an edge between vertex (1, j) and

every vertex (2, (j + 2k − 1) mod n
2
), for k = 0, 1, · · · ,∆ − 1. In this paper, we determine

the total domination number in 4-regular Knödel graphsW4,n.

1. Introduction

For graph theory notation and terminology not given here, we refer to [15]. Let G = (V,E) denote a simple graph
of order n = |V (G)| and size m = |E(G)|. Two vertices u, v ∈ V (G) are adjacent if uv ∈ E(G). The open
neighborhood of a vertex u ∈ V (G) is denoted by N(u) = {v ∈ V (G)|uv ∈ E(G)} and for a vertex set S ⊆ V (G),
N(S) = ∪

u∈S
N(u). The cardinality ofN(u) is called the degree of u and is denoted by deg(u), (or degG(u) to refer it

toG). Themaximum degree andminimum degree among all vertices inG are denoted by∆(G) and δ(G), respectively.
A graph G is a bipartite graph if its vertex set can be divide into two disjoint sets X and Y such that each edge in
E(G) connects a vertex inX with a vertex in Y . A setD ⊆ V (G) is a dominating set if for each u ∈ V (G) \D, u is
adjacent to some vertex v ∈ D. The domination number, γ(G) of G, is the minimum cardinality of a dominating set
of G. A set D ⊆ V (G) is a total dominating set if for each u ∈ V (G), u is adjacent to some vertex v ∈ D. The total
domination number, γt(G) ofG, is the minimum cardinality of a total dominating set ofG. The concept of domination
theory is a widely studied concept in graph theory and for a comprehensive study see, for example [14, 15].
An interesting family of graphs namely Knödel graphs have been introduced about 1975 [17], and have been studied
seriously by some authors since 2001, see for example [1–4, 7–9]. For an even integer n ≥ 2 and 1 ≤ ∆ ≤ ⌊log2 n⌋, a
Knödel graphW∆,n is a∆-regular bipartite graph of even order n, with vertices (i, j), for i = 1, 2 and 0 ≤ j ≤ n

2 −1,
where for every j, 0 ≤ j ≤ n

2 − 1, there is an edge between vertex (1, j) and every vertex (2, (j + 2k − 1) mod n
2 ),

for k = 0, 1, · · · ,∆− 1 (see [23]). Knödel graphs,W∆,n, are one of the three important families of graphs that they
have good properties in terms of broadcasting and gossiping, see for example [5, 6, 10–13, 16]. It is worth-noting that
any Knödel graph is a Cayley graph and so it is a vertex-transitive graph (see [3]).
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For simplicity, in this paper, we re-label the vertices of a Knödel graph as follows: we label (1, i) by ui+1 for each
i = 0, 1, ..., n

2 − 1, and (2, j) by vj+1 for j = 0, 1, ..., n
2 − 1. Let U = {u1, u2, · · · , un

2
} and V = {v1, v2, · · · , vn

2
}.

From now on, the vertex set of each Knödel graphW∆,n isU∪V such thatU and V are the two partite sets of the graph.
If S is a set of vertices ofW∆,n, then clearly, S∩U and S∩V partition S, |S| = |S∩U |+ |S∩V |,N(S∩U) ⊆ V and
N(S∩V ) ⊆ U . Note that two vertices ui and vj are adjacent if and only if j ∈ {i+20−1, i+21−1, · · · , i+2∆−1−1},
where the addition is taken in modulo n

2 . Figure 1, shows new labeling of Knödel graphsW3,14 andW4,16.

u1 u2 u3 u4 u5 v6 u7

v1 v2 v3 v4 v5 v6 v7
W3,14

v1 v2 v3 v4 v5 v6 v7 v8

u1 u2 u3 u4 u5 u6 u7 u8

W4,16

Fig. 1. New labeling of Knödel graphsW4,16 andW3,14.

Some domination parameters in Knödel graphs are studied in [22]. Xueliang et. al. [23] studied the domination number
in 3-regular Knödel graphs W3,n. They obtained the exact domination number for W3,n. Mojdeh et. al. [19, 20]
determined the exact total domination number for W3,n and the exact domination number for W4,n. Domination
critical and stable Knödel graphs are studied in [18] and the diameter of the general Knödel Graphs is discussed in
[21]. In this paper, we determine the total domination number in 4-regular Knödel graphsW4,n. Infact, we will prove
the following:

γt(W4,n) = 8
⌊n− 4

26

⌋
+ 2

⌊n− 4

8
− 13

4

⌊n− 4

26

⌋⌋
+ 4 = 8

⌊ n

26

⌋
+





0 n ≡ 0 (mod 26)
2 n ≡ 2 (mod 26)
4 n ≡ 4, 6, 8, 10 (mod 26)
6 n ≡ 12, 14, 16, 18 (mod 26)
8 n ≡ 20, 22, 24 (mod 26)

, n ≥ 16

In Section 2, we state some necessary lemmas, and in the Section 3 we prove our main result.

2. Necessary lemmas

In this section we state some necessary definitions and lemmas which we need for the proof of the main result. For
any subset {ui1 , ui2 , · · · , uik} of U with 1 ≤ i1 < i2 < · · · < ik ≤ n

2 , we correspond a sequence based on the
differences of the indices of uj , j = i1, ..., ik, as follows.

Definition 2.1. For any subset A = {ui1 , ui2 , · · · , uik} of U with 1 ≤ i1 < i2 < · · · < ik ≤ n
2 we define a sequence

n1, n2, · · · , nk, namely cyclic-sequence, where nj = ij+1 − ij for 1 ≤ j ≤ k − 1 and nk = n
2 + i1 − ik. For two

vertices uij , uij′ ∈ A we define index-distance of uij and uij′ by id(uij , uij′ ) = min{|ij − ij′ |, n
2 − |ij − ij′ |}.

Observation 2.2. [20] Let A = {ui1 , ui2 , · · · , uik} ⊆ U be a set such that 1 ≤ i1 < i2 < · · · < ik ≤ n
2 and let

n1, n2, · · · , nk be the corresponding cyclic-sequence of A. Then,
(1) n1 + n2 + · · ·+ nk = n

2 .
(2) If uij , uij′ ∈ A, then id(uij , uij′ ) equals to sum of some consecutive elements of the cyclic-sequence ofA and n

2 −
id(uij , uij′ ) is sum of the remaining elements of the cyclic-sequence. Furthermore, {id(uij , uij′ ),

n
2−id(uij , uij′ )} =

{|ij − ij′ |, n
2 − |ij − ij′ |}.

We henceforth use the notation M∆ = {2a − 2b : 0 ≤ b < a < ∆} for ∆ ≥ 2. For example, M4 = {1, 2, 3, 4, 6, 7}.
Lemma 2.3. [20] In the Knödel graph W∆,n with vertex set U ∪ V , for two distinct vertices ui and uj , N(ui) ∩
N(uj) ̸= ∅ if and only if id(ui, uj) ∈ M∆ or n

2 − id(ui, uj) ∈ M∆.
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Lemma 2.4. [20] In the Knödel graph W∆,n with vertex set U ∪ V , for two distinct vertices ui and uj , |N(ui) ∩
N(uj)| = 2 if and only if id(ui, uj) ∈ M∆ and n

2 − id(ui, uj) ∈ M∆.

Corollary 2.5. [20] (i) In the Knödel graphW∆,n with vertex setU∪V , for each 1 ≤ i < j ≤ n
2 , |N(ui)∩N(uj)| = 1

if and only if precisely one of the values id(ui, uj) and n
2 − id(ui, uj) belongs to M∆.

(ii) In the Knödel graph W∆,n, there exist distinct vertices with two common neighbors if and only if n = 2a − 2b +
2c − 2d and a > b ≥ 1, c > d ≥ 1.

Corollary 2.6. [20] Any three vertices in the Knödel graph W∆,n have at most one common neighbor. Indeed, any
Knödel graph is a K2,3-free graph.

Lemma 2.7. [20] In the Knödel graph W∆,n with vertex set U ∪ V and ∆ < log2(n2 + 2), we have:
(i) |N(ui) ∩N(uj)| ≤ 1, 1 ≤ i < j ≤ n

2 .
(ii) |N(ui) ∩N(uj)| = 1 if and only if id(ui, uj) ∈ M∆.

Lemma 2.8. [20] Let W∆,n be a Knödel graph with vertex set U ∪ V . For any non-empty subset A ⊆ U :
(i)

∑
v∈N(A)

|N(v) ∩A| = ∆|A|.

(ii) The corresponding cyclic-sequence of A has at most ∆|A| − |N(A)| elements belonging to M∆.

We remark that one can define the cyclic-sequence and index-distance for any subset of V in a similar way, and thus
the Observation 2.2, Lemmas 2.3 and 2.4 and corollaries 2.5 and 2.6 are valid for cyclic-sequence and index-distance
on subsets of V as well. Therefore, we have:

Lemma 2.9. The subset D = {ui1 , ui2 , · · · , uik} of U with 1 ≤ i1 < i2 < · · · < ik ≤ n
2 dominates V if and only if

the subset D∗ = {vn
2 +1−i1 , vn

2 +1−i2 , · · · , vn
2 +1−ik} of V dominates U .

Proof. It is obvious by the definition or by vertex-transitivity of Knödel graphs.

Remark 2.10. We name D∗ as dual of D. By Lemma 2.9, if D dominates V , then D ∪D∗ is a total dominating set
of the Knödel graph. In section 3, we find a subset D ⊆ U with minimum number of vertices that dominates V .

3. Total domination number ofW4,n

Before starting the proof of the theorem, we explain some observations about the cyclic-sequnce of a subset A ⊆ U
in the case∆ = 4.

Observation 3.1. In a Knödel graph W4,n, let A = {ui1 , ui2 , · · · , uik} be a subset of U with 1 ≤ i1 < i2 < · · · <
ik ≤ n

2 and n1, n2, · · · , nk be the cyclic-sequence of A. If A dominates V , we have:
i) 1 ⩽ ni ⩽ 8, i = 1, 2, · · · , k.
ii) If ni = 8, then ni−3 = ni−2 = ni−1 = 1.
iii) If ni = ni+1 for some i, then ni ⩽ 4.
iv) If ni = 5, then ni−2, ni−1, ni+1, ni+2 ∈ {1, 2, 3, 4}.
v) If ni = ni+3 = 5, then ni+1 = 2 and ni+2 = 1.
vi) ) If ni = ni+4 = 5, then ni+1, ni+2, ni+3 ∈ {1, 2, 3, 4}.

We are now ready to determine the total domination number of W4,n. Clearly n ≥ 16 is an even integer by the
definition ofW4,n. We will prove that for each even integer n ≥ 16,

γt(W4,n) = 8
⌊ n

26

⌋
+





0 n ≡ 0 (mod 26)
2 n ≡ 2 (mod 26)
4 n ≡ 4, 6, 8, 10 (mod 26)
6 n ≡ 12, 14, 16, 18 (mod 26)
8 n ≡ 20, 22, 24 (mod 26)

Observation 3.2. In Table 1, we show aminimumdominating set ofV for all Knödel graphsW4,n, n ∈ {16, 18, · · · , 40}.
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Table 1.
A minimum dminating set of V Knödel graph Total domination number
D8 = {u0, u3, u4} W4,16 6
D9 = {u0, u4, u5} W4,18 6
D10 = {u0, u3, u5, u8} W4,20 8
D11 = {u0, u4, u6, u7} W4,22 8
D12 = {u0, u4, u6, u7} W4,24 8
D13 = {u0, u3, u5, u8} W4,26 8
D14 = {u0, u3, u5, u9, u10} W4,28 10
D15 = {u0, u1, u2, u3, u10, u11} W4,30 12
D16 = {u0, u1, u2, u3, u11, u12} W4,32 12
D17 = {u0, u3, u5, u9, u11, u12} W4,34 12
D18 = {u0, u3, u5, u8, u13, u16} W4,36 12
D19 = {u0, u3, u5, u8, u11, u13, u14} W4,38 14
D20 = {u0, u3, u5, u6, u11, u15, u16} W4,40 14

Observation 3.3. In the Knödel graph W4,n, if n ⩾ 42 and n = 26k + 2t where k ⩾ 1 and 8 ⩽ t ⩽ 20, then

D = Dt ∪ {ut+13i, ut+3+13i, ut+5+13i, ut+8+13i : i = 0, 1, · · · , k − 1}

dominates V and |D| = |Dt|+ 4k.

Corollary 3.4. By Observations 3.2 and 3.3, we have:

γt(W4,n) ⩽ 8
⌊ n

26

⌋
+





0 n ≡ 0 (mod 26)
2 n ≡ 2 (mod 26)
4 n ≡ 4, 6, 8, 10 (mod 26)
6 n ≡ 12, 14, 16, 18 (mod 26)
8 n ≡ 20, 22, 24 (mod 26)

Now, we have an upper bound for the total domination number of all 4-regular Knödel Graphs.

Lemma 3.5. IfW4,n be a Knödel Graph with n = 26k+ 2t, where k ⩾ 1 and t ∈ {8, 10, · · · , 40}, then γt(W4,n) =
8k + 2|Dt|.

Proof. On the contrary, suppose that γt(W4,n) < 8k + 2|Dt| and W4,n has a total dominating set D = A ∪ A∗

with 8k + 2(|Dt| − 1) vertices. Now, we have 26k+2t
8k+2(|Dt|−1) = 3 + 2k+2(t−3|Dt|+3)

8k+2(|Dt|−1) ⩾ 3, that means each vertex
in dominating set dominates 3 vertices in average. According to Lemma 2.8, the number of 5’s or 8’s in the cyclic-
sequnece of a minimum total dominating set should be as large as possible.
By Observation 3.1(ii), for each 8 in cyclic-sequence, there exists three consequent 1 in it. Hence, there is four vertices
that dominate only 11 vertices, less than avsrage 3, a contradiction.
By Observation 3.1(v), If we see the string · · · , 5, 2, 1, 5, 2, 1, · · · in cyclic-sequence, then there is three vertices that
dominate only 8 vertices, less than avsrage 3, a contradiction.
Finaly, we consider the case that introduced in part (vi) of Observation 3.2. In this case, the number of 5’s in the
cyclic-sequence of A(⊆ U) is at most 1

4 |A|. Between two 5’s there exist three elements less than 5. The string
· · · , 5, 3, 2, 3, 5, 3, 2, 3, · · · in a cyclic-sequence is the best choice such that each 4 vertices of A can dominate 13
vertices in V . We have |N(A)| ⩽ 13

4 (4k + |Dt| − 1) = 13k + 13
4 (|Dt| − 1) < 13k + t, and so A does not dominate

V , a contradiction.
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Theorem 3.6. For each even integer n ≥ 16, we have:

γt(W4,n) = 8
⌊n− 4

26

⌋
+ 2

⌊n− 4

8
− 13

4

⌊n− 4

26

⌋⌋
+ 4

= 8
⌊ n

26

⌋
+





0 n ≡ 0 (mod 26)
2 n ≡ 2 (mod 26)
4 n ≡ 4, 6, 8, 10 (mod 26)
6 n ≡ 12, 14, 16, 18 (mod 26)
8 n ≡ 20, 22, 24 (mod 26)

Proof. See Observations 3.2 and 3.3, Corollary 3.4 and Lemma 3.5.
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Abstract

In this paper, we study the domination number of middle graphs. Indeed, we obtain tight bounds
for this number in terms of the order of the graph G. We also compute the domination number
of some families of graphs such as star graphs, double start graphs, path graphs, cycle graphs,
wheel graphs, complete graphs, complete bipartite graphs and friendship graphs, explicitly.

1. Introduction

The notion of domination and its many generalizations have been intensively studied in graph theory and the literature
on this subject is vast, see for example [2], [3], [4], [6], [7] and [5]. Throughout this paper, we use standard notation
for graphs and we assume that each graph is non-empty, finite, undirected and simple. We refer to [1] as a general
reference on graph theory.
Let G be a graph with vertex set V (G) of order n and edge set E(G) of size m. The open neighborhood of a vertex
v ∈ V (G) is NG(v) = {u ∈ V (G) | uv ∈ E(G)} and, similarly, the closed neighborhood of a vertex v ∈ V (G) is
NG[v] = NG(v) ∪ {v}. The degree of a vertex v ∈ V (G) is defined as dG(v) = |NG(v)|. The distance dG(v, w)
in G of two vertices v, w ∈ V (G) is the length of the shortest path connecting v and w. The diameter of G, denoted
diam(G), is the shortest distance between any two vertices in G.

Definition 1.1. A dominating set, briefly DS, of a graphG is a set S ⊆ V (G) such thatNG[v]∩S ̸= ∅, for any vertex
v ∈ V (G). The domination number of G is the minimum cardinality of a DS of G and it is denoted by γ(G).

For any non-empty S ⊆ V (G), we denote byG[S] the subgraph ofG induced on the vertex set S. For any v ∈ V (G),
we denote byG \ v the subgraph ofG induced on the vertex set V (G) \ {v}. Given two graphsG andH with distinct
vertices, we can construct a new graphG∪H by imposing V (G∪H) = V (G)∪V (H) andE(G∪H) = E(G)∪E(H).

∗Talker
Email address: kazemnejad.farshad@gmail.com (Farshad Kazemnejad)

https://conf.gonbad.ac.ir/msc1400
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Given a graph G, its complement, denoted by G, is a graph with vertex set V (G) such that for every two vertices v
and w, vw ∈ E(G) if and only if vw ̸∈ E(G).
The line graph L(G) of a graph G is the graph with vertex set E(G), where vertices x and y are adjacent in L(G) if
and only if the corresponding edges x and y share a common vertex in G.
The concept of middle graphM(G) of a graphG was introduced by Hamada and Yoshimura in [? ] as an intersection
graph on the vertex set of G.

Definition 1.2. The middle graphM(G) of a graphG is the graph whose vertex set is V (G)∪E(G) and two vertices
x, y in the vertex set ofM(G) are adjacent inM(G) in case one the following holds

1. x, y ∈ E(G) and x, y are adjacent in G;
2. x ∈ V (G), y ∈ E(G), and x, y are incident in G.

In other words, the middle graph M(G) of a graph G of order n and size m is a graph of order n + m and size
2m+ |E(L(G))| which is obtained by subdividing each edge of G exactly once and joining all the adjacent edges of
G inM(G). It is obvious thatM(G) always contains the line graph L(G) as an induced subgraphs.
In order to avoid confusion throughout the paper, we fix a “standard” notation for the vertex set and the edge set of
the middle graph M(G). Assume V (G) = {v1, v2, . . . , vn}, then we set V (M(G)) = V (G) ∪ M, where M =
{mij | vivj ∈ E(G)} and E(M(G)) = {vimij , vjmij | vivj ∈ E(G)} ∪ E(L(G)).
The paper proceeds as follows. In Section 2, first we present some upper and lower bounds for γ(M(G)) in terms
of the order of the graph G. In Section 3, we compute explicitly γ(M(G)) for several known families of graphs:
star graphs, double star graphs, path graphs, cycle graphs, wheel graphs, complete graphs, complete bipartite graphs,
corona graphs, 2-corona graphs, join of graphs and friendship graphs.

2. General Bounds

We start our study of domination numbers of middle graph with two key Lemmas.

Lemma 2.1. Let G be a graph of order n ≥ 2 without isolated vertices and S a dominating set ofM(G). Then there
exists S′ ⊆ E(G) a dominating set ofM(G) with |S′| ≤ |S|.

Proof. If S ⊆ E(G), then take S′ = S. On the other hand, assume that there exists v ∈ S ∩ V (G). If all incident
edges to v are already in S, then take S1 = S \{v}. Otherwise, let e ∈ E(G)\S an edge incident to v. Then consider
S1 = (S ∪ {e}) \ {v}. By construction, S1 is again a dominating set of M(G). Since S is finite, then this process
terminates after a finite number of steps, and hence we obtain the described S′.

Lemma 2.2. Let G be a graph of order n ≥ 2 and v ∈ V (G). Then

γ(M(G \ v)) ≤ γ(M(G)) ≤ γ(M(G \ v)) + 1.

Proof. For any dominating set S of M(G \ v), we have that S ∪ {v} is a dominating set of M(G), and hence
γ(M(G)) ≤ γ(M(G \ v)) + 1.
On the other hand, let S be a minimal dominating set of M(G). If v is an isolated vertex, then v ∈ S and S \ {v} is
a minimal dominating set of M(G \ v). This implies that in this case γ(M(G)) = γ(M(G \ v)) + 1. Assume that
G has no isolated vertices. By Lemma 2.1, we can assume that S ⊆ E(G). Consider Sv = NM(G)(v) ∩ S. Since S
is a dominating set, |Sv| ≥ 1. Assume Sv = {e1, . . . , ek}. For any 1 ≤ i ≤ k, ei is an edge of G of the form wiv.
Define S′ = (S \Sv)∪{w1, . . . , wk}. By construction S′ is a dominating set ofM(G\v) with |S′| = |S|, and hence
γ(M(G \ v)) ≤ γ(M(G)).

We start our study of the domination number by describing a lower and an upper bound for the domination number of
the middle graph of a tree.
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Theorem 2.3. Let T be a tree with n ≥ 2 vertices. Then

⌈n
2
⌉ ≤ γ(M(T )) ≤ n− 1.

If we denote by leaf(T ) = {v ∈ V (T ) | dT (v) = 1} the set of leaves of a tree T , then we have the following result.
Proposition 2.4. Let T be a tree with n ≥ 2 vertices. Then

γ(M(T )) ≥ |leaf(T )|.

If we specialize the class of trees that we are considering, we obtain an exact value for the domination number.

Theorem 2.5. Let T be a tree of order n ≥ 4 with diam(T ) = 3. Then

γ(M(T )) = n− 2.

Since path graphs are special type of trees, in general for a tree T , γ(M(T )) = n− 2 does not imply diam(T ) = 3,
as the next example shows.

Example 2.6. Consider the path graph P5. Then diam(P5) = 4 and γ(M(P5)) = 3 = n− 2.

Next we describe a lower and an upper bound for the domination number of the middle graph of an arbitrary graph.

Theorem 2.7. Let G be a graph with n ≥ 2 vertices. Assume G has no isolated vertices, then

⌈n
2
⌉ ≤ γ(M(G)) ≤ n− 1.

3. Middle graph of special family of graphs

In this section, we obtain the domination number of the middle graph of some special families of graphs.

Proposition 3.1. For any star graphK1,n on n+ 1 ≥ 2 vertices, we have

γ(M(K1,n)) = n.

Theorem 3.2. Let G be a connected graph of order n ≥ 4. Then

G = K1,n−1 if and only if γ(M(G)) = n− 1.

Putting together Theorems 2.7 and 3.2, we obtain the following result.

Corollary 3.3. Let G be a connected graph of order n ≥ 4. Assume that G ̸= K1,n−1, then

γ(M(G)) ≤ n− 2.

Next we calculate the domination number of double star graphS1,n,n. Notice that the graphS1,n,n is important because
it is an example of a non-complete bipartite graph.

Definition 3.4. A double star graph S1,n,n is obtained from the star graph K1,n by replacing every edge with a path
of length 2.

Proposition 3.5. For any double star graph S1,n,n on 2n+ 1 vertices, with n ≥ 2, we have

γ(M(S1,n,n)) = n+ 1.

Proposition 3.6. For any path Pn of order n ≥ 2, we have

γ(M(Pn)) = ⌈n
2
⌉.
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Proof. To fix the notation, assumeV (Pn) = {v1, . . . , vn} andE(Pn) = {v1v2, v2v3, . . . , vn−1vn}. ThenV (M(Pn)) =
V (Pn) ∪M, whereM = {mi(i+1) | 1 ≤ i ≤ n− 1}.
Assume that n is even and consider S = {m12,m34, . . . ,m(n−1)n}. Then S is a dominating set for M(Pn) with
|S| = n

2 . Similarly, if n is odd, consider S = {m12,m34, . . . ,m(n−2)(n−1),m(n−1)n}. Then S is a dominating set
for M(Pn) with |S| = n−1

2 + 1 = ⌈n
2 ⌉. This shows that γ(M(Pn)) ≤ ⌈n

2 ⌉. On the other hand, by Theorem 2.3,
γ(M(Pn)) ≥ ⌈n

2 ⌉.

Remark 3.7. Since the star graphs and the path graphs are examples of trees, by Propositions 3.1 and 3.6, the
inequalities of Theorems 2.3 and 2.7 are all sharp.
Using Theorem 2.7 and Proposition 3.6 we obtain the following result.
Theorem 3.8. Let G be a graph with n ≥ 2 vertices. If G has a subgraph isomorphic to Pn, then

γ(M(G)) = ⌈n
2
⌉.

Notice that in general the opposite implication of Theorem 3.8 is false, in fact we have the following example.
Example 3.9. LetG be the graphwith vertex setV (G) = {v0, v1, v2, v3, v4} and edge setE(G) = {v0v1, v0v2, v0v3, v3v4}.
Then a direct computation shows that γ(M(G)) = 3 = ⌈ 5

2⌉, but G has no subgraphs isomorphic to P5.
Since any cycle graph Cn, any wheel graph Wn and any complete graph Kn contain a subgraph isomorphic to Pn,
Theorem 3.8 gives us the following result.
Corollary 3.10. Let n ≥ 3. Then

γ(M(Cn)) = γ(M(Wn)) = γ(M(Kn)) = ⌈n
2
⌉.

Proposition 3.11. LetKn1,n2
be the complete bipartite graph with n2 ≥ n1 ≥ 1. Then

γ(M(Kn1,n2
)) = n2.

Notice that if we consider the case when n1 = 1, the previous result gives us Proposition 3.1.
Definition 3.12. The corona G ◦K1 (also denoted by cor(G)) of a graph G is the graph of order 2|V (G)| obtained
from G by adding a pendant edge to each vertex of G. The 2-corona G ◦ P2 of G is the graph of order 3|V (G)|
obtained from G by attaching a path of length 2 to each vertex of G so that the resulting paths are vertex-disjoint.
Theorem 3.13. For any connected graph G of order n ≥ 2,

γ(M(G ◦K1)) = n.

Theorem 3.14. For any connected graph G of order n ≥ 2,

γ(M(G ◦ P2)) = n+ γ(M(G)).

Definition 3.15. The friendship graph Fn of order 2n+ 1 is obtained by joining n copies of the cycle graph C3 with
a common vertex.
Proposition 3.16. Let Fn be the friendship graph with n ≥ 2. Then

γ(M(Fn)) = n+ 1.
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Abstract

A geodetic set S in a graph G is called a total restrained geodetic set if the induced subgraphs
G[S] and G[V − S] have no isolated vertex. The minimum cardinality of a total restrained
geodetic set inG is the total restrained geodetic number and is denoted by gtr(G). In this paper,
we continue the study of the total restrained geodetic number in graphs.

1. introduction

Through this paper, all graphs G are assumed to be non-trivial, simple and connected with vertex set V (G) and edge
set E(G) (briefly V and E, respectively). For notation and terminology not presented here we refer the reader to [7].
For a vertex v ∈ V the open neighborhood of v is N(v) = {u ∈ V |uv ∈ E} and the closed neighborhood of v is
N [v] = N(v) ∪ {v}. The maximum and minimum degree among the vertices of G is denoted by ∆(G) and δ(G),
respectively. A vertex of degree one is called an end‐vertex (or leaf if the graph is a tree), and its unique neighbor is
called a stem. The sets of all end-vertices and all stems are denoted by L(G) and Stem(G), respectively. We remark
that inK2 a vertex is both an end-vertex and a stem. A vertex of G is called simplicial if the subgraph induced by its
neighborhood is complete. In particular every end-vertex is a simplicial vertex. The set of all simplicial vertices of a
graph G is denoted by Ext(G).
A cycle on n vertices is denoted byCn and a path on m vertices by Pm. The girth of a graphG, denoted by girth(G), is
the length of its shortest cycle. The joinH ∨K of two disjoint graphsH andK is the graph obtained from their union
by adding new edges joining each vertex of V (H) to every vertex of V (K). Let G1 and G2 be two vertex-disjoint
graphs, and ui ∈ V (Gi) for i = 1, 2. The coalescence G1

u◦ G2 of G1 and G2 on u is the graph obtained from the
union of these two graphs by identifying the vertices u1 and u2.
The distance dG(x, y) between two vertices x and y in a connected graphG is the length of a shortest x− y path inG.
For a vertex x ofG, the eccentricity eG(x) of x is the distance between x and a vertex farthest from x. The maximum
eccentricity among the vertices of G is the diameter of G and is denoted by diam(G). An x−y path of length dG(x, y)
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is called an x− y geodesic. The geodetic interval I[x, y] consists of x, y and all vertices lying in some x− y geodesic
of G, and for a nonempty subset S of V (G), we define I[S] = ∪x,y∈SI[x, y].
A subset S of vertices of G is a geodetic set if I[S] = V . The geodetic number g(G) is the minimum cardinality of
a geodetic set of G. A g‐set of G is a geodetic set of G of size g(G) (see [2, 4–6]). A geodetic set S in a graph G is
a total geodetic set if the subgraph G[S] induced by S has no isolated vertices. The minimum cardinality of a total
geodetic set is the total geodetic number and is denoted by gt(G). A geodetic set S ⊆ V (G) is a restrained geodetic set
if the subgraphG[V −S] has no isolated vertex. The minimum cardinality of a restrained geodetic set is the restrained
geodetic number (see [3]).
In this paper, we continue the study of the total restarained geodetic number in graphs. A geodetic set S of a graph
G is a total restrained geodetic set,(or just TRGS), if neither of the induced subgraphs G[S] and G[V − S] have no
isolated vertex. The minimum cardinality of a total restrained geodetic set is the total restrained geodetic number and
is denoted by gtr(G). A total restrained geodetic set of cardinality gtr(G) is called a gtr‐set .
It follows from the definitions that for any connected graph G,

gtr(G) ≥ max{gr(G), gt(G)}.

We make use of the following results:

Observation 1.1. ([1]) Let G be a graph of order n ≥ 2 and S be an arbitrary total restrained geodetic set of G.
Then

(i) Ext(G) ∪ Stem(G) ⊆ S.

(ii) 2 ≤ g(G) ≤ gt(G) ≤ gtr(G) ≤ n. Further gtr(G) ̸= n− 1.

(iii) gtr(G) = 2 if and only if G = K2.

Proposition 1.2. ([1])

(i) For n ≥ 2, gtr(Kn) = n.

(ii) For 3 ≤ m ≤ n, gtr(Km,n) = 4 and gtr(Km,n) = m+ n otherwise.

(iii) Let T be a nontrivial tree andM = {v|N(v) ⊆ Stem(T )}. Then Stem(T )∪M is the unique gtr‐set of T and
gtr(T ) = |Stem(T )|+ |M |.

(iv) gtr(Pn) = 4 when n ≥ 6, and gtr(Pn) = n when 2 ≤ n ≤ 5.

(v) gtr(Cn) = n when n ∈ {3, 4, 5}, gtr(Cn) = n− 2 when n ∈ {6, 7} and gtr(Cn) = 4 otherwise.

2. Results

Lemma 2.1. Let G be a connected graph of order n ≥ 5. If gtr(G) = n− 2, then the induced subgraph on V − S is
K2, where S is a gtr‐set.

Proof. Let S be a gtr‐set of G. Since gtr(G) = n − 2, |V − S| = 2. Now, by the Definition of TRGS of any graph
G, the induced subgraph on V − S has no isolated vertex. From this, we conclude that G[V − S] = K2.

Lemma 2.2. Let T be a nontrivial tree of order n ≥ 6. Then gtr(T ) = n− 2 if and only if T consists of exactly two
adjacent vertices, which are not belong to L(T ) ∪ Stem(T ).

Proof. Assume gtr(T ) = n− 2 and S is a gtr‐set of T . Therefore, we have two vertices, say u and v, which does not
belong to L(T ) ∪ Stem(T )(by Observation 1.1-(i)). Lemma 2.1 shows that these are adjacent.
Conversely, assume that T is a tree which has exactly two adjacent vertices those are not belong to L(T )∪Stem(T ).
It is easy to see that the remaining vertices are in L(T ) or Stem(T ). By using Observation 1.1-(i), we imply that
gtr(G) = n− 2.
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Let G be the family of graphs which obtained fromKn by removing n− k− 1 > 0 edges with 3 ≤ k ≤ n− 2, which
are incident at one vertex ofKn (see Fig. 1).

Theorem 2.3. If G ∈ G, then gtr(G) = n− k + 1.

Proof. Let G be a graph in G. It is easy to check that G having a vertex, say v, of degree k (deg(v) = n− 1− (n−
k − 1) = k). On the other hand, deg(u) = n − 2 for each vertex u /∈ N(v), and the remaining vertices have degree
n− 1.
We first want to prove gtr(G) ≤ n−k+1. Assume S is a gtr‐set ofG. Since deg(u) = n− 1 when u ∈ N(v), so all
the neighbors of the vertex of v are adjacent to all vertices of the graph. Therefore, the vertex v is a simplicial vertex,
so by Observation 1.1, we imply that v ∈ S.
To obtain the gtr‐set we make a geodetic set and say S′. Consider v than the its farest vertices of the graph (to get the
minimum cardinality of the g‐set). Suppose N(v) = {v2, . . . , vr} and vr+1, . . . , vn /∈ N(v). Clearly the length of
the shortest path between v and vertices that are not neighbors of vertex v is 2. Therefore S′ = {v, vr+1,…, vn} and
G−S′ = {v2,…, vr}(= N(v)). Since every vertices of S′−{v} is not in the neighbor of v, therefore v is an isolated
vertex in G[S′]. So add one of the vertices of G − S′ to S′, and call it S. Clearly neither of the induced subgraphs
G[S] and G[V (G)− S] has an isolated vertex. Therefore

gtr(G) ≤ |S|
≤ |S′|+ 1
≤ |V (G)| − |N(v)|+ 1
≤ n− k + 1.

Now we want to prove gtr(G) = n − k + 1. Assume gtr(G) < n − k + 1. So gtr(G) can be one of the numbers
2,…, n− k − 1, n− k. Suppose S′′ is a gtr‐set for G of order n− k. Clearly |G− S| = n− (n− k + 1) = k − 1
and |G− S′′| = n− (n− k) = k. Therefore the set V (G− S′′) has one more vertex than the set V (G− S), call this
vertex u1. There are two positions for the vertex u1 occured. (i) u1 ∈ N(v) or (ii) u1 /∈ N(v).
Case (i): If u1 ∈ N(v), then deg(v) = k and k − 1 vertices adjacent to v are in G − S, So by adding the vertex u1,
there are k neighbors of v in G − S′′. Therefore the vertex v in G[S′′] is an isolated vertex, which contradicts the
assumption.
Case (ii): If u1 /∈ N(v) then there exists a vertex u2 that u1 ∈ I[v, u2] (clearly u1 ̸= v, u2, because v, u2 ∈ S). Since
the length of the shortest path between v and vertices such as u2, which is not adjacent to v, is 2. So u1 is adjacent to
v, which contradicts the assumption. Similarly for gtr(G) = 2,…., n− k − 1 contradicts the assumption. Therefore
gtr(G) = n− k + 1.

Example 2.4. According to Theorem 5 if n = 7, deg(e) = k = 3 then gtr(G) = n− k + 1 = 5.

 

Theorem 7  Let 𝐺 be a connected graph of order 𝑛 ≥ 5 and let 𝐺 = 𝐾𝑡 ⋁ 𝐾𝑛−𝑡
̅̅ ̅̅ ̅̅   with 𝑛 − 𝑡 ≥ 2 

and 𝑡 ≥ 3. Then 𝑔𝑡𝑟(𝐺) = 𝑛 − 𝑡 + 1. 

𝑃𝑟𝑜𝑜𝑓:   Assume 𝑆 is a 𝑔𝑡𝑟(𝐺)‐ 𝑠𝑒𝑡 for graph 𝐺. Clearly all vertices of the subgraph 𝐾𝑛−𝑡
̅̅ ̅̅ ̅̅  are 

simplicial and are in 𝑆 according to Observation 1. On the other hand, since the induced 

subgraph on 𝑉(𝐾𝑛−𝑡
̅̅ ̅̅ ̅̅ ) are isolated vertices, we conclude that 𝑔𝑡𝑟(𝐺) ≥ 𝑛 − 𝑡 + 1. 

Now, let 𝑆 = 𝑉(𝐾𝑛−𝑡) ∪ {𝑢} where 𝑢 ∈ 𝑉(𝐾𝑡). It is easy to check that 𝑆 is a 𝑔𝑡𝑟-set of 𝐺. 

Hence the result.      □   

   

Corollary 8   According to Theorem 5, if 𝐺 = 𝐾3 ⋁ 𝐾𝑛−3
̅̅ ̅̅ ̅̅   (𝑛 − 3 ≥ 2) then 𝑔𝑡𝑟(𝐺) = 𝑛 − 2 . 

 

Let the family of 𝐻1 be obtained from ((𝐾𝑛1
⋃ … ⋃ 𝐾𝑛𝑡

) ⋃(𝐾𝑛𝑡+1
⋃ … ⋃ 𝐾𝑛𝑟

)) ⋁{𝑢} and let the 

family of 𝐻2 be obtained from ((𝐾𝑛𝑡+1
⋃ … ⋃ 𝐾𝑛𝑟

) ⋃(𝐾𝑛𝑟+1
⋃ … ⋃ 𝐾𝑛𝑙

)) ⋁{𝑣}. Let the family 

of 𝐻 be obtained from a graph from 𝐻1 and a graph from 𝐻2 by joining 𝑢 and 𝑣. 

 

 

Theorem 9   𝑔𝑡𝑟(𝐺) = 𝑛 − 2 when 𝐺 ∈ 𝐻. 

 𝑃𝑟𝑜𝑜𝑓:  It is easy to check that each vertex of 

𝐾𝑛1
⋃ 𝐾𝑛2

⋃ … ⋃ 𝐾𝑛𝑡
⋃ 𝐾𝑛𝑡+1

⋃ … ⋃ 𝐾𝑛𝑟
⋃ 𝐾𝑛𝑟+1

⋃ … ⋃ 𝐾𝑛𝑙
 is a simplicial vertex, which we 

imply that 𝑔𝑡𝑟(𝐺) ≥ 𝑛 − 2. On the other hand, 𝑉(𝐺) − {𝑢, 𝑣} is the unique 𝑔𝑡𝑟‐ 𝑠𝑒𝑡 of 𝐺. 

Hence 𝑔𝑡𝑟(𝐺) = 𝑛 − 2.     □ 

Fig. 1. An example of the family of G

Theorem 2.5. Let G be a connected graph of order n ≥ 5 and let G = Kt ∨Kn−t with n− t ≥ 2 and t ≥ 3. Then
gtr(G) = n− t+ 1.
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Proof. Assume S is a gtr(G)‐set for graph G. Clearly all vertices of the subgraph Kn−t are simplicial and are in S
according to Observation 1.1. On the other hand, since the induced subgraph on V (Kn−t) are isolated vertices, we
conclude that gtr(G) ≥ n − t + 1. Now, let S = V (Kn−t) ∪ {u} where u ∈ V (Kt). It is easy to check that S is a
gtr-set of G. Hence the result.

Corollary 2.6. According to Theorem 5, if G = K3 ∨Kn−3(n− 3 ≥ 2), then gtr(G) = n− 2.

Let the family of H1 be obtained from ((Kn1
∪Kn2

∪ · · · ∪Knt
) ∪ (Knt+1

∪ · · · ∪Knr
)) ∨ {u} and let the family

ofH2 be obtained from ((Knt+1 ∪ · · · ∪Knr ) ∪ (Knr+1 ∪ · · · ∪Knl
)) ∨ {v}. Let the family ofH be obtained from

a graph ofH1 and a graph fromH2 by joining u and v (see Fig. 2).

 

Theorem 7  Let 𝐺 be a connected graph of order 𝑛 ≥ 5 and let 𝐺 = 𝐾𝑡 ⋁ 𝐾𝑛−𝑡
̅̅ ̅̅ ̅̅   with 𝑛 − 𝑡 ≥ 2 

and 𝑡 ≥ 3. Then 𝑔𝑡𝑟(𝐺) = 𝑛 − 𝑡 + 1. 

𝑃𝑟𝑜𝑜𝑓:   Assume 𝑆 is a 𝑔𝑡𝑟(𝐺)‐ 𝑠𝑒𝑡 for graph 𝐺. Clearly all vertices of the subgraph 𝐾𝑛−𝑡
̅̅ ̅̅ ̅̅  are 

simplicial and are in 𝑆 according to Observation 1. On the other hand, since the induced 

subgraph on 𝑉(𝐾𝑛−𝑡
̅̅ ̅̅ ̅̅ ) are isolated vertices, we conclude that 𝑔𝑡𝑟(𝐺) ≥ 𝑛 − 𝑡 + 1. 

Now, let 𝑆 = 𝑉(𝐾𝑛−𝑡) ∪ {𝑢} where 𝑢 ∈ 𝑉(𝐾𝑡). It is easy to check that 𝑆 is a 𝑔𝑡𝑟-set of 𝐺. 

Hence the result.      □   

   

Corollary 8   According to Theorem 5, if 𝐺 = 𝐾3 ⋁ 𝐾𝑛−3
̅̅ ̅̅ ̅̅   (𝑛 − 3 ≥ 2) then 𝑔𝑡𝑟(𝐺) = 𝑛 − 2 . 

 

Let the family of 𝐻1 be obtained from ((𝐾𝑛1
⋃ … ⋃ 𝐾𝑛𝑡

) ⋃(𝐾𝑛𝑡+1
⋃ … ⋃ 𝐾𝑛𝑟

)) ⋁{𝑢} and let the 

family of 𝐻2 be obtained from ((𝐾𝑛𝑡+1
⋃ … ⋃ 𝐾𝑛𝑟

) ⋃(𝐾𝑛𝑟+1
⋃ … ⋃ 𝐾𝑛𝑙

)) ⋁{𝑣}. Let the family 

of 𝐻 be obtained from a graph from 𝐻1 and a graph from 𝐻2 by joining 𝑢 and 𝑣. 

 

 

Theorem 9   𝑔𝑡𝑟(𝐺) = 𝑛 − 2 when 𝐺 ∈ 𝐻. 

 𝑃𝑟𝑜𝑜𝑓:  It is easy to check that each vertex of 

𝐾𝑛1
⋃ 𝐾𝑛2

⋃ … ⋃ 𝐾𝑛𝑡
⋃ 𝐾𝑛𝑡+1

⋃ … ⋃ 𝐾𝑛𝑟
⋃ 𝐾𝑛𝑟+1

⋃ … ⋃ 𝐾𝑛𝑙
 is a simplicial vertex, which we 

imply that 𝑔𝑡𝑟(𝐺) ≥ 𝑛 − 2. On the other hand, 𝑉(𝐺) − {𝑢, 𝑣} is the unique 𝑔𝑡𝑟‐ 𝑠𝑒𝑡 of 𝐺. 

Hence 𝑔𝑡𝑟(𝐺) = 𝑛 − 2.     □ 

Fig. 2. The family ofH

Theorem 2.7. gtr(G) = n− 2, when G ∈ H.

Proof. It is easy to check that each vertex of Kn1 ∪Kn2 ∪ · · · ∪Knt ∪Knt+1 ∪ . . .Knr ∪Knr+1 ∪ · · · ∪Knl
is a

simplicial vertex, which we imply that gtr(G) ≥ n− 2. On the other hand, V (G)−{u, v} is the unique gtr‐set of G.
Hence gtr(G) = n− 2.
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Abstract

We study the Walker structures over the conformally flat four-dimensional homogeneous man-
ifolds with non-degenerate Ricci operator. We prove this space is not Walker manifold.

1. Introduction

In the pseudo-Riemannian setting the problem is more complicated and of course interesting. In dimension three, the
conformally flat examples were classified independently in [4], where contrary to the Riemannian case they showed
the existence of non-symmetric examples. By expanding the results of [4], the same authors solved the classification
problem for the Lorentzian manifolds of any dimension with diagonalizable Ricci operator. For homogeneous spaces,
the classification problem has been completely solved for both Lorentzian and neutral signatures in dimension four [3].
A fundamental step for this classification was to determine the forms (Segre types) of the Ricci operator. Homogeneous
spaces are the subject of many interesting research projects in the pseudo-Riemannian framework. Recently, the author
studied the wave equation on Lorentzian conformally flat spaces [1, 2].
A pseudo-Riemannian manifold which admits a parallel degenerate distribution is called a Walker manifold. Walker
spaces were introduced by Arthur Geoffrey Walker in 1949. The existence of such structures causes many interesting
properties for the manifold with no Riemannian counterpart. Walker also determined a standard local coordinates for
these kind of manifolds [5].
In this paper, which is based on the study of conformally flat spaces in [3], we have determined invariant Walker
structures in the case of four-dimensional conformally flat homogeneous manifolds. Conformally flat homogeneous
spaces have been studied classically in pseudo-Riemannian geometry. As it is known, the existence of Walker struc-
tures on a manifold can be responsible for the existence of non-symmetric examples. So we analyze the conformally
flat homogeneous pseudo-Riemannian Walker four-manifolds.
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2. Preliminaries

Let (M, g) be a pseudo-Riemannian manifold of dimension n ≥ 3 and ∇ its Levi-Civita connection. We use the
curvature tensor with the sign conventionR(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] for all vector fieldsX , Y onM . The Ricci
tensor is given by the identity

ϱ(X,Y ) =
4∑

i=1

εig(R(ei, X)Y, ei), (1)

for all X,Y ∈ TpM , where {e1, e2, e3, e4} is a pseudo-orthonormal basis for the tangent space TpM . We denote the
Ricci operator and the scalar curvature by Q and τ respectively. Let p be a point of M and {e1, ..., en} an orthonor-
mal basis of the tangent space TpM . It is well-known that for a conformally flat space the curvature tensor can be
completely determined using the Ricci tensor by the identity

Rijkh = 1
n−2 (gihϱjk + gjkϱih − gikϱjh − gjhϱik)

− τ
(n−1)(n−2) (gihϱjk − gikϱjh).

(2)

Moreover, the Equation (2) characterizes conformally flat pseudo-Riemannian manifolds of dimension n ≥ 4, while
it is trivially satisfied by any three-dimensional manifold. Conversely, the condition

∇iϱjk −∇jϱik = 1
2(n−2) (gjk∇iτ − gik∇jτ), (3)

which characterizes three-dimensional conformally flat spaces, is trivially satisfied by any conformally flat Rieman-
nian manifold of dimension greater than three.
Now, let (M, g) be a locally homogeneous pseudo-Riemannian manifold. Then, for each pair of points p, p′ ∈ M ,
there exists a local isometry ϕ between neighbourhoods of p and p′, such that ϕ(p) = p′. In particular, for any choice
of an index k, ϕ∗ : Tp′M → TpM satisfies ϕ∗(∇iRp′) = ∇iRp for all i = 0, .., k. Consequently, chosen a pseudo-
orthonormal basis {ei}p for TpM , by means of the isometries between p and any other point p′ ∈ M , one can build
a pseudo-orthonormal frame field {ei} on M , with respect to which the components of the curvature tensor and its
covariant derivatives up to order k are globally constant onM .
In the special case when (M, g) is conformally flat, this is equivalent to determining a pseudo-orthonormal frame field
{ei} on (M, g), such that the components of the Ricci tensor ϱ and its covariant derivatives∇iϱ, for i = 1, . . . , k, are
constant globally on M . To note that in particular, with respect to {ei}, the components of the Ricci operator Q are
constant. Specially the Segre type of the Ricci operator stays constant on the whole space.
By the result of [4], for a conformally flat homogeneous manifold of dimension four with digonalizable Ricci operator,
the problem of study Walker structures reduces to the well known space forms.

Theorem 2.1. [4] Let Mn
q be an n(≥ 3)-dimensional conformally flat homogeneous pseudo-Riemannian manifold

with diagonalizable Ricci operator. Then, Mn
q is locally isometric to one of the following:

(i) A pseudo-Riemannian space form;

(ii) A product manifold of a m-dimensional space form of constant curvature k ̸= 0 and a (n − m)-dimensional
pseudo-Riemannian manifold of constant curvature −k, where 2 ≤ m ≤ n− 2;

(iii) A product manifold of a (n− 1)-dimensional pseudo-Riemannian manifold of index q− 1 of constant curvature
k ̸= 0 and an one-dimensional Lorentzian manifold, or a product of a (n− 1)-dimensional pseudo-Riemannian
manifold of index q of constant curvature k ≠ 0 and an one-dimensional Riemannian manifold.

It is obvious from the last theorem that if (M, g) have digonalizable Ricci operator then the Ricci operator is degenerate.
So the study of cases with non-degenerate Ricci operator restricts to the not diagonalizable ones.
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3. Conformally flat with non-degenerate Ricci operator

A conformally flat (locally) homogeneous Riemannian manifold is (locally) symmetric. Let (M, g) be a conformally
flat homogeneous four dimensional manifold with non-degenerate Ricci operator. For any point p ∈ M , we have that
g(0, p) = {0} if and only ifQp is non-degenerate. Therefore, (M, g) is locally isometric to a Lie group equipped with a
left-invariant pseudo-Riemannian metric and the Ricci operator of conformally flat homogeneous pseudo-Riemannian
four-manifolds can only be of Segre type [1, 111̄] if g is neutral, or [11, 11̄] if g is Lorentzian [3]. The Lie group
structure of the mentioned types could be realized by the following theorems.

Theorem 3.1. [3] Let (M, g) be a conformally flat homogeneous four-dimensional manifold with the Ricci operator
of Segre type [1, 111̄]. Then, (M, g) is locally isometric to one of the unsolvable Lie groups SU(2)×R or SL(2,R)×
R, equipped with a left-invariant neutral metric, admitting a pseudo-orthonormal basis {e1, e2, e3, e4} for their Lie
algebra, such that the Lie brackets take one of the following forms:

i) [e1, e2] = εαe3, [e1, e3] = −εαe2, [e2, e3] = 2α(e1 + εe4),

[e2, e4] = −αe3, [e3, e4] = αe2,

ii) [e1, e2] = −εαe1, [e1, e3] = αe1, [e1, e4] = 2α(εe2 − e3),

[e2, e4] = −εαe4, [e3, e4] = αe4,

where α ̸= 0 is a real constant and ε = ±1.

And for the Lorentzian signature we have:

Theorem 3.2. [3] Let (M, g) be a conformally flat homogeneous Lorentzian four-manifold with the Ricci operator of
Segre type [11, 11̄]. Then, (M, g) is locally isometric to one of the unsolvable Lie groups SU(2)×R or SL(2,R)×R,
equipped with a left invariant Lorentzian metric, admitting a pseudo-orthonormal basis {e1, e2, e3, e4} for the Lie
algebra, such that the Lie brackets take one of the following forms:

i) [e1, e2] = −2α(εe3 + e4), [e1, e3] = εαe2, [e1, e4] = αe2,

[e2, e3] = εαe1, [e2, e4] = αe1,

ii) [e1, e2] = 2α(εe3 + e4), [e1, e3] = εαe2, [e1, e4] = αe2,

[e2, e3] = εαe1, [e2, e4] = αe1,

where α ̸= 0 is a real constant and ε = ±1.

By using the above classification theorems we have enough tools to studyWalker structures. The result is the following
theorem.

Theorem 3.3. Let (M, g) be a conformally flat homogeneous four-dimensional manifold with non-degenerate Ricci
operator. Then (M, g) does not admit any left-invariant Walker structure.

Proof. Since the Ricci operator of (M, g) in non-degenerate, according to the Theorem 3.1 for signature (2, 2) and
Theorem 3.2 for Lorentzian signature, we have the explicit description of Lie groups and their Lie algebras. We prove
that the existence of a left invariant parallel null distribution in any possible case leads to a contradiction. We report
the calculations for the case (i) of signature (2, 2). Choose the pseudo-orthonormal basis {e1, e2, e3, e4} and suppose
there exists a two-dimensional parallel distribution D̄ = span(v, w) , where v =

∑4
i=1 viei and w =

∑4
i=1 wiei are

linearly independent and g(v, v) = g(w,w) = g(w, v) = 0 for arbitrary parameters vi and wi. Setting Λi = ∇ei , the
components of the Levi-Civita connection are calculated using the well known Koszul formula and are

Λ1 =




0 0 0 0
0 0 α 0
0 α 0 0
0 0 0 0


 ,Λ4 =




0 0 0 0
0 0 −εα 0
0 −εα 0 0
0 0 0 0


 ,
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Λ2 =




0 0 α(1− ε) 0
0 0 0 0

α(1− ε) 0 0 −α(1 + ε)
0 0 α(1 + ε) 0


 ,

Λ3 =




0 0 −α(1 + ε) 0
α(1 + ε) 0 0 α(1− ε)

0 0 0 0
0 0 α(1− ε) 0


 .

Being parallel of D is expressed by the equations

∇e1v = a1v + b1w, ∇e1w = c1v + d1w,
∇e2v = a2v + b2w, ∇e2w = c2v + d2w,
∇e3v = a3v + b3w, ∇e3w = c3v + d3w,
∇e4v = a4v + b4w, ∇e4w = c4v + d4w,

(4)

for some parameters {ai, bi, ci, di}4i=1. From g(v, v) = g(w,w) = g(w, v) = 0 and the equations∇e1v = a1v+ b1w
and∇e2v = a2v + b2w we have:

v21 + v22 − v23 − v24 = 0, w2
1 + w2

2 − w2
3 − w2

4 = 0,
v1w1 + v2w2 − v3w3 − w4v4 = 0, b1w1 + a1v1 = 0,
b1w4 + a1v4 = 0, b1w2 + a1v2 − αv3 = 0,
b1w3 + a1v3 − αv2 = 0, b2w2 + a2v2 = 0,
b2w1 + a2v1 − αv3(1− ε) = 0,
b2w4 + a2v4 − αv3(1 + ε) = 0, b2w3 + a2v3 + α(v1 + v4)(1− ε) = 0.

These equations yield that the vector v must vanish which contradicts the linear independence of v, w. By similar
argument we suppose that D = span(x) is a null parallel line field, where x =

∑4
i=1 xiei for arbitrary parameters xi.

Thus, the following equations must be satisfied for some parameters ωi and xi,

x2
1 + x2

2 − x2
3 − x2

4 = 0,
ω1x1 = 0, ω1x4 = 0, ω1x2 − αx3 = 0, ω1x3 − αx2 = 0,
ω2x2 = 0, ω2x1 + αx3(ε− 1) = 0, ω2x4 − αx3(ε+ 1) = 0,
ω2x3 + αx4(ε+ 1) + αx1(ε− 1) = 0,
ω3x3 = 0, ω3x1 + αx2(ε+ 1) = 0, ω3x4 + αx2(ε− 1) = 0,
ω3x2 + αx4(ε− 1)− αx1(ε+ 1) = 0,
ω4x1 = 0, ω4x4 = 0, ω4x2 + αx3ε = 0, ω4x3 + αx2ε = 0.

This system of equations yields that x = 0 which is a contradiction. This shows that no left-invariant parallel null line
field exists in this case and this matter finishes the proof.
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Abstract

The invariant introduced by Franks is the signed Bowen-Franks group, which is an augmentation
of the Bowen-Franks group.

1. Introduction

The invariant introduced by Franks is the signed Bowen-Franks group, which is an augmentation of the Bowen-Franks
group[2].

Definition 1.1. Let A be an n× n integer matrix with non-negative entries. The Bowen-Franks group of A is given
by the quotient

BF (A) = Zn/(I −A)Zn

The Bowen-Franks group can be computed quite easily with elementary linear algebra. For the square integer matrix
A, we consider the elementary operations over Z on A to be the following[1]

1. Exchanging two rows or columns of A.
2. Multiplying a row or column of A by −1.
3. Adding an integer multiple of a row or column of A to another row or column, respectively, of A.

Every such elementary operation over Z has an elementary matrix representing it. An elementary matrix is a square
integer matrix, which performs an elementary operation on a matrix if multiplied from either the left or the right. Since
every elementary operation has an inverse elementary operation, all elementary matrices are invertible over Z.
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We recall that the Smith normal form of A is the unique diagonal matrix, reachable from A by elementary operations
over Z, of the form

D =



d1 · · · 0
...

. . .
...

0 · · · dn


 (1)

where di ≥ 0 and di|di+1 for all i with the convention that every integer divides zero and no positive integer divides
zero. It turns out that we can derive the Bowen-Franks group of a matrix from its Smith normal form.

Lemma 1.2. Let B be an n× n integer matrix and E an elementary matrix. Then

Zn = BZn ≃ Zn/(BEZn) ≃ Zn/(EBZn).

Proposition 1.3. If I −A has Smith normal form D written as (1), then

BF (A) ≃ Zd1 ⊕ · · · ⊕ Zdn ,

where Z0 = Z and Zn = Z/nZ, n ̸= 0.

Sadly, the Bowen-Franks group does not constitute a complete invariant for flow equivalence, so we introduce an
additional component.

Definition 1.4. The signed Bowen-Franks group is given by the pair

BF+(A) = (sgn det(I −A), BF (A)).

We write BF+(A) ≃ BF+(B) if sgn det(I −A) = sgn det(I −B) and BF (A) ≃ BF (B).

Actually, the complete invariant is given by the determinant det(I − A) and the Bowen-Franks group BF (A), but
|det(I − A)| can be extracted from BF (A) since|det(I − A)| = |det(D)|, where D is the Smith normal form of
I −A. Thus, only the sign of the determinant is necessary for the complete invariant[3, 4].

2. Main results

We say that the matrix A is irreducible if the shift space XA is irreducible. The result by Franks now reads.

Theorem 2.1. (Franks [2]). Suppose that A and B are non-negative irreducible integer matrices such that neither
XA nor XB is a single orbit. Then XA ∼FE XB if and only if BF+(A) ≃ BF+(B).

Example 2.2. Let r > 1 be an integer. The full r−shift X[r] has matrix representation Ar = (r), we have det(I −
Ar) = 1− r, and (r − 1) is the Smith normal form of I −Ar. So the signed Bowen-Franks group of Ar is

BF+(Ar) ≃ (−,Zr−1)

It follows that for two different integers r, s > 1, X[r] ≁FE X[s]. Thus, two full shifts are flow equivalent if and only
if they are conjugate.

As the above example illustrates, the signed Bowen-Franks group is a very convenient invariant as it is easily computed
given two matrices. We will now show the necessity of the invariant.

Lemma 2.3. For a non-negative integer matrix A = (aij) with akl > 0 we define

Ā =




0 0 · · · 1 · · · 0
0 a11 · · · a1l · · · a1n
...

...
...

...
1 a1k · · · akl − 1 · · · akn
...

...
...

...
0 an1 · · · anl · · · ann




(2)

Write X ∼SE Y if X = Ȳ or Y = X̄ . Flow equivalence is generated by the relations ∼SE and ≈.
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Proposition 2.4. If A,B are non-negative integer matrices with XA ∼FE XB , then BF (A) ≃ BF (B).

Lemma 2.5. (Sylvester’s theorem [5]). Let A be an m × n and B an n × m matrix. Then det(Im + AB) =
det(In +BA).

Proof. Define the block matrix

M =

(
Im −A
B In

)

and see that we can decomposeM as

M =

(
Im 0
B In

)(
Im −A
0 In +BA

)
and M =

(
Im +AB −A

0 In

)(
Im 0
B In

)

Taking determinants we get det(In +BA) = det(M) = det(Im +AB).

Theorem 2.6. If A,B are non-negative integer matrices with XA ∼FE XB then det(I −A) = det(I −B).

Proof. We show invariance separately for elementary equivalences and for symbol expansions. As seen in Lemma 2.3
these relations generate flow equivalence and the result follows. Let C andD be elementary equivalent non-negative
integer matrices with C = RS and D = RS for non-negative integer matrices S,R. Then it follows by Sylvester’s
theorem that

det(I − C) = det(I + (−R)S) = det(I + S(−R)) = det(I −D).

For symbol expansion, let A be an integer matrix. Then by adding rows, we get

det(I − Ā) = det




1 0 · · · −1 · · · 0
0 1− a11 · · · −a1l · · · −a1n
...

...
...

...
−1 −ak1 · · · −akl + 1 · · · −akn
...

...
...

...
0 −an1 · · · −anl · · · 1− ann




= det




1 0 · · · −1 · · · 0
0 1− a11 · · · −a1l · · · −a1n
...

...
...

...
0 −ak1 · · · −akl · · · −akn
...

...
...

...
0 −an1 · · · −anl · · · 1− ann




= det



1− a11 · · · −a1n

...
. . .

...
−an1 · · · 1− ann




= det(I −A)

where the last equality follows by expansion of the lth column. Note, again, that the above representations of matrices
are not accurate when k = l, but the calculation is still the same.
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Abstract

We generalize the concept of ends of finitely generated groups to all asymptotic resemblance
spaces. We show that our new notion defines a new large scale property. We also investigate
the space of ends of groups with compatible asymptotic resemblance relations and we show that
some of well know properties of the space of ends of finitely generated groups can be generalized
to groups with compatible asymptotic resemblance relations.

1. Introduction

Suppose that G is a finitely generated group and S is a finite set of generators of G such that S = S−1. The Cayley
graph of G associated to S is a graph that has all elements of G as vertices and two elements g, h ∈ G are connected
by an edge, if g−1h ∈ S. Consider each edge of the Cayley graph as an isometric copy of the interval [0, 1]. We can
define the distance between two elements g and h ofG to be equal to the infimum of lengths of all paths in the Cayley
graph joining g and h. In this way, we obtain a left invariant proper metric on G. Clearly, this metric depends on the
choice of the generating set S. Fortunately, it can be shown that associated metrics to different finite generating sets
are quasi-isometric. Those properties of metric spaces which are invariant under quasi-isometries are called large scale
properties. The main goal of geometric group theory is to study large scale properties of finitely generated groups.
The space of ends of finitely generated groups is one of the earliest large scale properties introduced by H. Freudenthal
([2]).

Definition 1.1.   Let (X, d) be a metric space. A continuous map r : [0,+∞) → X is said to be a proper ray in X if
r−1(K) is compact for all compactK ⊆ X . Two proper rays r1, r2 : [0,+∞) → X are said to have the same end if
for each compact subsetK of X there exists some N ∈ N such that r1([N,+∞)) and r2([N,+∞)) are contained in
the same path component ofX \K. This defines an equivalence relation on the family of all proper rays inX and for
each proper ray r in X we denote the equivalence class that contains r by end(r). In addition define

Ends(X) = {end(r) | r : [0,+∞) → X is a proper ray inX}
If Ends(X) has n ∈ N ∪ {0} members we say X has n ends.
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It is known that two quasi-isometric metric spaces have homeomorphic spaces of ends and hence we are facing a large
scale property of metric spaces. By the space of ends of a finitely generated groupGwe simply mean the space of ends
of its Cayley graph associated to some generating set. Clearly, the space of ends of finitely generated groups is well
defined and there exists no ambiguity here. It is known that each finitely generated group has 0, 1, 2 or infinitely many
ends. The family of all finitely generated groups with 0 ends is equal to the family of all finite groups, and a finitely
generated group has 2 ends, if and only if, it is virtually cyclic (it has a finite indexed infinite cyclic subgroup). We
recommend the reader to see  [1] for more detailed arguments. A famous result due to  Stalling completely characterizes
finitely generated groups with infinitely many ends ([7]).
There are many ways for defining large scale structures on sets. For example we can mention coarse structures ([6])
and asymptotic resemblance relations ([4]) as two known large scale structures. We can use these large scale structures
for expanding the domain of geometric group theory to much more general types of groups. Let us recall the definition
of asymptotic resemblance spaces.

Definition 1.2. Let X be a nonempty set. An equivalence relation λ on X is said to be an asymptotic resemblance
(an AS.R) on X if,
i) A1λB1 and A2λB2 then (A1 ∪A2)λ(B1 ∪B2), for all A1, A2, B1, B2 ⊆ X .
ii) Suppose thatA1, A2 ̸= ∅ and (A1∪A2)λB then there are non empty subsetsB1 andB2 ofB such thatB = B1∪B2

and AiλBi for i = 1, 2.
In this case the pair (X,λ) is called an asymptotic resemblance space (AS.R space).

Now we recall the definition of AS.R mappings.

Definition 1.3. Let (X,λ) be an AS.R space. A subset D of X is called bounded if it is empty or Dλ{x} for some
x ∈ X . An AS.R space (X,λ) is called to be connected if {x}λ{y}, for all x, y ∈ X . It can be shown that the union of
two bounded subsets of the connected AS.R space (X,λ) is bounded and each subset of a bounded set in (X,λ) is also
bounded ([4]). A map f : X → Y from the AS.R space (X,λ) to the AS.R space (Y, λ′) is called an AS.R mapping
if the inverse image of each bounded subset of Y is bounded in X and f(A)λ′f(B) if AλB, for all A,B ⊆ X . The
AS.R mapping f : X → Y is called an asymptotic equivalence if there exists an AS.R mapping g : Y → X such that
g ◦f(A)λA and f ◦ g(B)λ′B, for allA ⊆ X andB ⊆ Y . In this case g is called an asymptotic inverse of f and AS.R
spaces (X,λ) and (Y, λ′) are called asymptotically equivalent.

For defining compatible AS.Rs on groups we use the notion of generating family ([5]).

Definition 1.4. A family F of subsets of the group G is called a generating family on G if F contains a nonempty
element and for each A,B ∈ F it satisfies the following properties,
i) A−1, AB,A ∪B ∈ F ,
ii) If C ⊆ A then C ∈ F ,
where AB = {ab | a ∈ A, b ∈ B} and A−1 = {a−1 | a ∈ A}.

LetF be a generating family on the groupG. For two subsetsA andB of  G defineAλFB ifA ⊆  BK andB ⊆ AK,
for some K ∈ F . It can be shown that λF is an AS.R on G and it is compatible with the group structure of G, i.e. if
AλFB then gAλFgB, for all g ∈ G.

Example 1.5. Suppose that F denotes the family of all finite subsets of the group G. Then F is a generating family
on G. The family of all relatively compact subsets of the topological group G is a generating family on G.

The concept of a large scale continuum in an AS.R space plays the most important role in our definition of space of
ends. This concept has been first appeared and investigated in  [3]. We show that somehow this notion can fill the
place of proper ray in Definition  1.1.  

Definition 1.6. Let (X,λ) be an AS.R space. An unbounded subsetD ofX is called large scale continuum in (X,λ),
if D = D1 ∪ D2 for two asymptotically disjoint subsets D1 and D2 of X then D1 is bounded or D2 is bounded.
Recall that two subsets A and B of the AS.R space (X,λ) are called asymptotically disjoint if they do not contain
asymptotically alike unbounded subsets.
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2. Main Results

Now we can make clear what we mean by the space of ends of an AS.R space.
Definition 2.1. Let (X,λ) be an AS.R space. We say two large scale continuums D1 and D2 in X do not have the
same end, if there are asymptotically disjoint subsetsX1 andX2 ofX such thatX1 andX2 are asymptotically disjoint
fromD1 andD2 respectively andX = X1 ∪X2. We write endλ(D1) = endλ(D2), ifD1 andD2 are two large scale
continuums in (X,λ) with the same end. We denote the family of all ends of the AS.R space (X,λ) by Endsλ(X), i.e.

Endsλ(X) = {endλ(D) | D is a large scale continuum in (X,λ)}
The cardinality of the set Endsλ(X) is called the number of ends of (X,λ). If Endsλ(X) = ∅we say thatX is 0-ended.
In the following definition we show that how we can topologize the space of ends of an AS.R space.
Definition 2.2. Assume that (X,λ) is an AS.R space. Suppose that Dλ(X) denotes the family of all subsets Y of
X such that Y and Y c are asymptotically disjoint. Let endλ(D) ∈ Endsλ(X) and Γ ⊆ Endsλ(X). We say that
endλ(D) /∈ Γ if there exists some Y ∈ Dλ(X) such that,
i) D ⊆ Y ,
ii) D′ ∩ Y is bounded for all endλ(D′) ∈ Γ.

It can be shown that Definition  2.2 offers a Kuratowski closure operator and thus we have a topology on spaces of
ends of AS.R spaces.  Definitions  2.1 and  2.2 give us a large scale property for AS.R spaces.
Theorem 2.3. Two asymptotic equivalent AS.R spaces have homeomorphic spaces of ends.

 Let (X, d) be a metric space. For two subsets A andB ofX , we say AλdB if A andB have finite Hausdoff distance.
It is easy to see that λd is an AS.R relation on X .
Proposition 2.4. Let (X, d) be a proper geodesic metric space. Then the space of ends of the AS.R space (X,λd) is
homeomorphic to the space of ends of the metric space (X, d).

Let G be a group and let F denote a generating family on G. We denote the space of ends of the AS.R space (X,λF )
by EndsF (G).
Proposition 2.5.   Suppose that G is a locally compact compactly generated topological group. Let K denotes the
family of all relatively compact subsets of G. Then EndsK(G) = ∅, if and only if, G is compact.

Proof. If G is compact then each subset of G is bounded in (X,λ), so clearly it does not contain any large scale
continuums. Proving the rest of this proposition needs more technical results and we do not mention it here.

If K denotes the familly of all relatively compact subsets of the topological group G, then we call the AS.R λK, the
group compact AS.R on G.
Proposition 2.6. Let G be a locally compact topological group. Assume that λ is the group compact AS.R on G. If
(G,λ) is 0-ended then every compactly generated subgroup of G is relatively compact.

Proof. Assume that K is a compact subset of G. Since G is locally compact, there exists a relatively compact open
neighborhood U of the neutral element of G such thatK ⊆ U . Suppose that H denotes the subgroup of G generated
by U . Since U is open, H is simultaneously open and closed in G. Since H is closed and G is locally compact, H is
also locally compact. So Proposition 2.5 shows that H is compact.

Corollary 2.7. LetG be a group and suppose thatF denotes the family of all finite subsets ofG. If (G,λF ) is 0-ended
then G is locally finite.

Proof. If we consider G with the discrete topology then this corollary is a direct consequence of Proposition 2.6.

Many known results about the space of ends of finitely generated groups can be generalized to more general cases by
using our definition. Theorem  2.8 is a good example. 
Theorem 2.8. Let G be a locally compact hemicompact topological group. If K denotes the family of all relatively
compact subsets of G then EndsK(G) has 0, 1, 2 or infinitely many members.
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Abstract

Our main aim in this paper is to improve some method in classifying surfaces using Gauss map
and the sequence ofLk-operators speciallyL1 which is known as a famous Cheng-Yau operator,
for a class of surfaces of revolution in 3-Euclidean space.

1. Introduction

Giving classification of surfaces and hypersurfaces is one of the hot topics in Riemannian and differential geometry.
As an example, Lopéz has classified before all minimal translation surfaces in R3 (see [8]). Also he determined all
translation surfaces in Euclidean space with constant Gaussian curvature in [9]. Some similar works have been done
about Wingarten surfaces. Also there are some other techniques for classifying surfaces and other submanifolds.
It was studied before that associated to the eigenvalues of Laplacian which can be seen as coordinate functions of
n-dimensional submanifolds isometrically immersed into the Euclidean space Rn+m, are minimal submanifolds in
Rn+m or minimal submanifolds in a round hypersphere Sn+m−1 (r) ⊂ Rn+m of radius r (for more details see [14]).
Particularly, Takahashi theorem established that in the case of the codimension is m = 1, if x : Mn → Rn+1 is an
immersed hypersurface in Euclidean space and∆ denotes its Laplacian operator, then x satisfies

∆x+ λx = 0,

for real λ if and only if λ = 0 andM is minimal in Rn+1 or λ > 0 andM is an open piece of a round hypersphere of
radius

√
n
λ centered at the origin of Rn+1.

There are also some extensions of Takahashi theorem. Specially, Garay studied hypersurfaces in Rn+1 satisfying
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∆x = Ax, where A ∈ R(n+1)×(n+1) is a constant diagonal matrix, and he established that the only hypersurfaces
satisfying in the mentioned equality are minimal hypersurfaces in Rn+1 and open pieces of round hypersurfaces or
spherical cylinders (see [7]).
By the similar way, Dillen et al. in [6] considered surfaces in R3 whose immersion satisfies the condition

∆x = Ax+ b,

where A ∈ R3×3 is a constant matrix and b ∈ R3 is a constant vector. They established that the only surfaces which
satisfy the above equation are minimal surfaces and open pieces of round spheres and circular cylinders. These results
were extended later by Hasanis, Vlachos, Chen and Petrovic for hypersurfaces in Rn+1 (for more details see [2] and
[10]).

2. Preliminaries

Let x : Mn → Rn+1 be a connected orientable hypersurface immersed into the Euclidean space and G denotes
the Gauss map of M . For X,Y ∈ χ (M), S : χ (M) → χ (M) is the famous shape operator of M . It is known
that S defines a self-adjoint linear operator on each tangent plane TpM for arbitrary p ∈ M , also its eigenvalues
κ1 (p) , ..., κn (p) are the principal curvatures of the hypersurface. Through these eigenvalues, there are n algebraic
invariants given by

sk (p) = σk (κ1 (p) , ..., κn (p)) , 1 ≤ k ≤ n,

where σk : Rn → R is the elementary symmetric function in Rn given by

σk (x1, ..., xn) =
∑

i1<...<ik

xi1 ...xik .

The kth mean curvature Hk of the hypersurface is then defined by
(
n

k

)
Hk = sk, 0 ≤ k ≤ n.

As an example, for k = 1,

H1 =
1

n

n∑

i=1

κi =
1

n
tr (S) = H,

is the mean curvature ofM .
The classical Newton transformation

Pk : χ (M) → χ (M) ,

are defined by shape operator as

P0 = I, Pk = skI − S ◦ Pk−1 =

(
n

k

)
HkI − S ◦ Pk−1,

where I is identity in χ (M). It was known from Cayley-Hamilton theorem that Pn = 0 also Pk (p) is a self-adjoint
linear operator on each tangent plane TpM which commutes with S (p). It can be easily seen that

tr (Pk) = ckHk, tr (S ◦ Pk) = ckHk+1,

and

tr
(
S2 ◦ Pk

)
=

(
n

k + 1

)
(nH1Hk+1 − (n− k − 1)Hk+2) ,
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where

ck = (n− k)

(
n

k

)
= (k + 1)

(
n

k + 1

)
.

Respect to the Newton transformations Pk, we define the second order linear differential operator Lk : C∞ (M) →
C∞ (M) as

Lk (f) = tr
(
Pk ◦ ∇2f

)
,

where∇2f : χ (M) → χ (M) is self-adjoint linear operator given by

⟨∇2f (X) , Y ⟩ = ⟨∇X (∇f) , Y ⟩,

for X,Y ∈ χ (M). Also it can be rewrite as

Lk (f) = div (Pk (∇f)) ,

which is the divergence form differential operator onM .
The Laplace operator of a hypersurface which is immersed intoRn+1 is second order linear differential operator which
can be naturally seen as a first variation of the mean curvature. From this point of view,∆ can be seen as the first one
of the sequence of n operators L0 = ∆, L1, ..., Ln−1, where Lk stands for the linearized operator of the first variation
of the (k + 1)-th mean curvature and also L1 is known as a famous Cheng-Yau operator (see [3]).
The notion of finite type immersion of submanifolds of a Euclidean space has been used in classifying and charac-
terizing well-known Riemannian submanifolds. Chen posed the problem of classifying the finite type surfaces in the
3-dimensional Euclidean space E3. A Euclidean submanifold is said to be of Chen finite type if its coordinate func-
tions are a finite sum of eigenfunctions of its Laplacian∆ (see [4]).
Suppose thatM is a surface in the Euclidean space E3 and S2 denotes the unit sphere in E3 centered at the origin. The
map

G : M −→ S2 ⊂ E3,

which sends each point p of M to the unit normal vector G (p) to M at the point p is called the Gauss map of the
surface M . It is well-known that M has constant mean curvature if and only if ∆G = ||dG||2G (see [13]). As an
example it was proved before that the only surfaces with Gauss map G which is an eigenfunction of Laplacian, that
is, ∆G = λG for some constant λ ∈ R are the planes, circular cylinders and spheres (see [5]).
The following lemma was established by [1] which so important in this area.

Lemma 2.1. Let x : Mn → En+1 be a connected orientable hypersurface immersed into the Euclidean space with
Gauss map G. Then G satisfies

−LkG =

(
n

k + 1

)
∇Hk+1 +

(
n

k + 1

)
(nH1Hk+1 − (n− k − 1)Hk+2)G.

In a special case, for k = 1 and n = 2 we get

−L1G = ∇K + 2HKG,

where L1 is known as Cheng-Yau operator andK is the Gauss curvature of theM .
As a special example, let x : M → E3 be a translation surface in E3 whereM is parameterized by

x (t1, t2) = (t1, t2, f (t1) + g (t2)) , (t1, t2) ∈ I × J, (1)

for smooth functions f and g. Also the natural frame {xt1 , xt2} is given by

xt1 =
∂x

∂t1
= (1, 0, f ′) , xt2 =

∂x

∂t2
= (0, 1, g′) .
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This surface was studied before in [12]. They established that

K =
f ′ (t1) g′ (t2)

Q4
, 2H =

(
1 + f2

)
g′ (t2) +

(
1 + g2

)
f ′ (t1)

Q3
,

whereK and H are Gauss and mean curvatures ofM respectively, also

Q = |xt1 × xt2 | =
√
1 + f ′2 + g′2.

They classified all translation surfaces parameterized by (1) satisfying

L1G = AG,

where G is Gauss map ofM and A ∈ R3×3.

Theorem 2.2 (Kim and Kim [12]). Let M be a translation surface in the Euclidean 3-space E3. Then the only
translation surfaces with Gauss map G satisfying L1G = AG for some nonzero 3 × 3 matrix A are the cylindrical
surfaces.

Consider E3 as a Euclidean 3-space with the scalar product given by

⟨, ⟩ = di2 + dj2 + dk2,

where (i, j, k) is a rectangular coordinate system of E3, then the norm of the vector V ∈ E3 is given by

||V || =
√
⟨V, V ⟩.

It is known that if V = (v1, v2, v3) and W = (v′1, v
′
2, v

′
3) are arbitrary vectors in E3, the vector product of V and W

is given by

V ∧W = (v2v
′
3 − v3v

′
2, v3v

′
1 − v1v

′
3, v1v

′
2 − v2v

′
1) .

In this paper we are going to study a class of surfaces of revolution parametrized by

R (u, v) = (f (u) sinh v, f (u) cosh v, g (u)) , (2)

where f and g are smooth non-constant functions.
In the general case for a surface parameterized by x (u, v), the unit normal vector field can be defined by

G =
xu ∧ xv

||xu ∧ xv||
.

The first fundamental form I of the surface is

I = EIdu
2 + 2FIdudv +GIdv

2,

where

EI = ⟨xu, xu⟩, GI = ⟨xv, xv⟩, FI = ⟨xu, xv⟩,

also the second fundamental form II of the surface is given by

II = LIIdu
2 + 2MIIdudv +NIIdv

2,

with the coefficients

LII = ⟨xuu, G⟩, NII = ⟨xvv, G⟩, MII = ⟨xuv, G⟩.
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Under these parametrization, the Gaussian curvatureK and the mean curvatureH are given by

K =
LIINII −M2

II

EIGI − F 2
I

, H =
EINII +GILII − 2FIMII

2 (EIGI − F 2
I )

.

In this paper by improving the previous methods we are going to study the class of surfaces of revolution given by (2)
satisfying the condition L1G = AG, where G is the Gauss map of the surface, L1 is known Cheng-Yau operator and
A is non-zero 3× 3 matrix. We are going to prove following theorems.

Theorem 2.3. ConsiderM as a surface of revolution parametrized by (2). IfL1 andG denote the Cheng-Yau operator
and the Gauss map of the M respectively, then G satisfies L1G = AG for A ∈ R3×3 if and only if M is flat.

Theorem 2.4. Let M be a surface of revolution parametrized by (2). If L1 and G denote the known Cheng-Yau
operator and the Gauss map ofM respectively, then for a vector (a1, a2, a3) orthogonal to ker (A) and A ∈ R3×3,G
satisfies L1G = AG if and only if the following relation holds between f and g.

g (u) =

∫
C1 cosh (v) k − a3

(
d
duf (u)

)
f (u)

kf (u) cosh (v)
du+ C2,

where C1 and C2 are constants and

k =
(a2)

2 − (a1)
2

a2
.

3. Proofs and Main results

Proof of Theorem 2.3. Consider M as a surface of revolution parametrized by (2). From fundamental forms the
Gauss map of the surfaceM is given by

G =
1

Q
(−g′f sinh v, g′f cosh v, ff ′) ,

where Q =

√
(g′)2 f ′ cosh 2v + f2 (f ′)2. Also the Gaussian curvature and the mean curvature of the surface are

given respectively as

K =
1

Q2

g′f2 (g′ff ′′ + ff ′g′′)

(f ′)2 f2 + f2 (g′)2 cosh 2v
,

and

2H =
1

Q3

[
cosh 2v

(
g′f2 (f ′)

2
+ f3g′f ′′ + f3f ′g′′

)
+ (g′)

3
f2

]
.

If we put e1 = LII
∂
∂u and e2 = NII

∂
∂v , then the gradient of the Gaussian curvature∇K can be computed as

∇K = e1 (K) e1 + e2 (K) e2

= Q−6f2
[
Q2g′′ (g′ff ′′ + ff ′g′′) + 2f ′g′ (g′f ′′ + f ′g′′)

+ g′ (2g′′ff ′′ + g′f ′f ′′ + g′ff ′′′ + ff ′g′′′)

− 4 (g′ff ′′ + ff ′g′′) [cosh 2v
(
g′g′′f2 + ff ′ (g′)

2
)

+ f (f ′)
3
+ f ′f ′′f2]

]
e1

−Q−6
(
g′f2 (g′ff ′′ + ff ′g′′)

)
e2.
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The last term can be rewrite as

∇K = Q−7f2ωX (f ′) e1

−Q−7 (g′)
2
f4ωe2,

where

ω = g′ff ′′ + ff ′g′′,

and X (f ′) is the polynomial respect to f ′. These together with Lemma 2.1 conclude that

AG = Q−7f2ω
[
X (f ′)− (g′)

2
f2 + cosh 2v

(
g′f2 (f ′)

2
+ f3g′f ′′ + f3f ′g′′

)
(3)

+ (g′)
3
f2

]
g′G.

By considering on degree of f ′ from both sides of equation, we get that

0 = Q−7f2ω
[
X (f ′)− (g′)

2
f2 + cosh 2v

(
g′f2 (f ′)

2
+ f3g′f ′′ + f3f ′g′′

)

+ (g′)
3
f2

]
g′G,

it follows that ω vanishes identically, therefore M is flat. One may consider that M is non-flat and A is zero matrix
hence we have L1G = 0, which together with Lemma 2.1 implies that K = 0. This contradiction shows that M is
flat anyway.

Proof of Theorem 2.4. Suppose thatL1G = AG for some non-zero 3×3matrixA. Then from the previous theorem,
it follows that the surface M is flat, so we have L1G = AG = 0. In this case if ker (A) denotes the kernel space of
the matrix A,

ker (A) = {X ∈ E3|AX = 0},
then the image of the Gauss mapG lies in the ker (A). SinceA is non-zero ker (A) is of at most 2-dimensional. Hence
there exists a unit vector a = (a1, a2, a3) which is orthogonal to ker (A). Since

G =
1

Q
(−g′f sinh v, g′f cosh v, ff ′) ,

is the Gauss map of the surfaceM we obtain

−a1g
′f sinh v + a2g

′f cosh v + a3ff
′ = 0.

Now by taking derivative from both sides respect to u and solve the differential equation by g (u) we get what we
were looking for.
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Abstract

We generalize the Krein-Milman theorem to complete Riemannian manifolds of nonpositive
sectional curvature.

1. Introduction

Convexity is an important tool in the study of Riemannian manifolds with nonpositive sectional curvature. It is very
interesting to describe a convex subsetK of a Riemannianmanifolds by its boundary points and get global properties of
K. We are going to show that a compact convex subset of a complete Riemannian manifold with nonpositive sectional
curvature is equal to convex hull of its extreme points. LetM be a Riemannian manifold and A ⊆ M , a point p ∈ A
is called an extreme point of A, if p is not a relative interior point of any segment in A. For example, the unit circle
is the set of extreme points of the closed unit disk in the Eucledean space R2. The exterme points are important in
convex subsets. For instance Beltagy and Shenawy in [2] proved that every closed convex subset in Eucledean space
is the convex hull of its extreme points. In fact, they refined the well-known Krein-Milman theorem which asserted
every compact convex subset in a Hausdorff locally convex topological vector space is equal to the convex hull of
its extreme points. Shenawy in [6] generlized the Krien-Milman theorem to complete Riemannian manifold without
conjugate points.
In this paper, we characterize the extreme points by the second fundamental form, for a closed convex submanifold
which its boundary is an immersed submanifold. Thus we can describe the extreme points of an immersed submanifold
by an extrinsic invariant of the submanifold. We also show that the Krein-Milman theorem is valid on Riemannian
manifolds with nonpositive sectional curvature by using the properties of covering map on manifolds.
Throughout this paper, intA, A, Ac and ∂A will denote the interior, closure, complement and boundary of A and we
adopt the definition and notation used in the book [3].
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2. Result

Let (M, g) be a complete Riemannian manifold and d : M × M → R be the metric induced by g. Let p be a fixed
point ofM . Then the function f : M → R given by f(q) = d(p, q) is continuous and if A is a subset ofM , then the
restriction f|A is also continuous.

Remark 2.1. Let (M, g) be a complete Riemannianmanifold andK be a compact subsets ofM . For each p ∈ int(K),
there exists a point q ∈ ∂K, such that q is the nearest boundary point ofK to p.

Definition 2.2. A subset A of M is called (strongly) convex, if for each two arbitrary points p, q ∈ A, all points of
each (minimizing) geodesic segment joining p to q is contained in A.

If B ⊂ M , then the (strong) convex hull of B, which we denote it by (Cs(B)) C(B) is by definition the smallest
(strongly) convex set containing B.

Remark 2.3. Let B be a subset of Riemannian manifoldM . Put

C1(B) = {γ(t) | γ is a geodesic joining two points of B}
and

Ci+1(B) = C1(Ci(B)),

then C(B) = ∪i∈NCi(B).
If we replace ”geodesic” by minimizing geodesic, in the definition of C1(B), then we obtain strongly the definition of
convex hull.

Proposition 2.4. Let M be a complete Riemannian manifold. If K ⊂ M is a closed and bounded convex subset of
M such thatK has at least two points, thenK = C(∂K).

Proof. SinceK is a closed subset, ∂K ⊂ K and it impliesC(∂K) ⊂ C(K). By convexity ofK, we getC(∂K) ⊆ K.
Conversly, suppose that p is a point in K, we are now going to show that p ∈ C(∂K). If p is a point in ∂K, then
p ∈ C(∂K). Let p /∈ ∂K. By the assumption, p ∈ int(K). By Remark 2.1, there exists a q ∈ ∂K such that q is the
nearest point in ∂K to p. There exists a δ > 0 such that K ⊂ expq(Bδ(0)) (since K is bounded). If d(p, q) = r,
then we can find a v ∈ TqM such that |v| = 1 and γ : [0, r] → M with γ(t) = expq(tv) is a minimizing geodesic
segment joining q to p. We extend γ on interval [0,∞) by γ(t) = expq(tv) (where t ∈ [0,∞)), and denote it again
by γ. Consider the set

B = {t ∈ [0,∞) | γ(t) ∩K ̸= ∅}.
B has a supremum. Let sup(B) = s. We show that γ(s) ∈ ∂K. Let {tn} be a pairwise disjoint increasing sequence
of B, so that {tn} converges to s. Since γ is a continuous function and K is compact, {γ(tn)} is convergent to γ(s)
and γ(s) ∈ K. γ(s) is a boundary point ofK (because if not then there exists a ε > 0 such that γ(s− ε, s+ ε) ⊂ K
that is a contradiction by the choise of s). Thus, p ∈ C1(∂K) and therefore p ∈ C(K).

The compactness condition in this theorem is necessary. For example boundary of A = {(x, y) ∈ E2 | x2 + y2 ≥ 1}
is circle in R2, but C(S1) ̸= A.

Remark 2.5. LetM be a Riemannian manifold and A be a subset ofM . Then,
A) The set of all extreme points of A is called the extreme A and is denoted by E(A).
B) If A is a subset of a Riemannian manifoldM, then E(A) ⊆ ∂A.

Theorem 2.6. Let M̃ be a complete Riemannian manifold, M be the boundary of an open subset of M̃ . If M is an
immersed submanifold of M̃ and p ∈ M , then p ∈ M is an extreme point ofM if and only if for all x ∈ TpM and all
η ∈ (TpM)⊥,

∏
η(x) ̸= 0, where

∏
is the second fundamental form.
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Proof. Let▽ be the Riemannian connection of M̃ and▽ be the induced connection of▽ onM , and f : M → M be
the isometric immersion.
Suppose that p is an extreme point ofM and

∏
η(x) = 0, for a x ∈ TpM and η ∈ (TpM)⊥. There exists a ε > 0 such

that γ : (−ε, ε) → M is a geodesic passing through p with velocity x. LetX be a local extension of γ′(t) to a tangent
vector field on M and N be a local extension normal to M of η. By definition of the second fundamental form, we
have

∏
η(x) = Hη(x, x) =< B(x, x), η >=

< ▽XX −▽XX,N > (p) =< ▽XX,N > (p),

By the assumption
∏

η(x) = 0, then ▽XX does not have a normal component. Since γ is a geodesic on M , then
▽XX = 0. Therefore, γ is a geodesic inM such that γ(−ε, ε) ⊂ M . This is a contradiction.
Conversly, assume that p is not an extreme point which leads to a contradiction. If p is not an extreme point, then there is
a geodesic γ : (−ε, ε) → M such that passes through p and γ(−ε, ε) ⊂ M . We consider the curve α : (−ε, ε) → M ,
with the property that f ◦ α = γ. Thus, we can show that α is a geodesic in M and is also in M . Let η ∈ (TpM)⊥.
By a suitable extention of α′(0) and η, we conclude

∏
η(α

′(0)) = 0, which contradicts the hypothesis.

Remark 2.7. A geodesic loop in a Riemannian manifold M is a curve α : [0, 1] → M such that α(0) = α(1) and α
is geodesic on interior points of its domain (in (0, 1)). Note that a closed geodesic is a geodesic loop.

Lemma 2.8. Let M be a complete Riemannian manifold with nonpositive sectional curvature, M̃ be its universal
covering manifold and π : M̃ → M be the covering map. If B̃ ⊂ M̃ and π(C(B̃)) has no geodesic loop, then

π(C(B̃)) = C(π(B̃)).

Proof. By the definition of convex hull, we have

B ⊂ C1(B) ⊂ C2(B)... ⊂ C(B).

Thus

π(B) ⊂ π(C1(B)) ⊂ π(C2(B)) ⊂ ... ⊂ π(C(B)).

π(C(B)) is a convex subset containing π(B) and by the definition of convex hull, we have C(π(B)) ⊂ π(C(B)).
Conversly, we show that π(C1(B)) ⊂ C1(π(B)). Let a ∈ π(C1(B)). There is a ã ∈ C1(B) such that π(ã) = a and
also there is a geodesic α̃ in M̃ with endpoints in B such that α̃(t) = ã for some t ∈ [0, 1]. Let γ : [0, 1] → M be a
minimizing geodesic joining π(α̃(0)) to π(α̃(1)). If γ̃ is the lift of γ to the point α̃(0), then γ̃(1) = α̃(1) (since if not,
π(C(B)) has a loop). Thus γ̃ = α̃ and a ∈ C1(π(B)). We have

π(C2(B)) = π(C1(C1(B)) ⊂ C1(π(C1(B)) ⊂ C1(C1(π(B))) = C2(π(B)).

Hence, π(C2(B)) ⊂ C2(π(B)). In the similar way, for all i, we have π(Ci(B)) ⊂ Ci(π(B)). Therefore, π(C(B)) ⊂
C(π(B)).

Theorem 2.9. LetM be a complete Riemannian manifold with nonpositive sectional curvature. IfB ⊂ M is a closed
strongly convex subset without geodesic loop, then C(E(B)) = B.

Proof. Since M is a complete Riemannian manifold with nonpositive sectional curvature, then for every p ∈ B,
the exponential map expp : TpM → M is a covering map. Let a be another point in B. Consider B̃ as a convex
component in TpM containing 0 in exp−1

p (B).
We show that exp(B̃) = B.
Clearly B̃ ⊂ exp−1

p (B), so expp(B̃) ⊆ B. For every b in B, there exists a minimizing geodesic γ from p to b.
Suppose that γ̃ is the lift of γ to the point 0. Since γ̃([0, 1]) is a convex subset of exp−1

p (B), then γ̃([0, 1]) ⊆ B̃.
Therefore, B ⊆ expp(B̃).
By Gauss‘s Lemma, we can show that exppE(B̃) = E(B).
Since TpM is a vector space, then the Krien-Milman theorem is valid in TpM , thus B̃ = C(E(B̃)). We have
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B = expp(B̃) = expp(C(E(B̃))) = C(expp(E(B̃)) = C(E(B)).
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Abstract

The orbit of a point x ∈ X in a classical iterated function system (IFS) is defined as {fu(x) =
fun ◦· · ·◦fu1(x) : u = u1 · · ·un is a word of a full shift on finite symbols}. In other words, an
IFS is parameterized over the full shift. Here, we parameterize over an arbitrary shift space Σ.
We associate to σ ∈ Σ a non-autonomous system (X, fσ) where trajectory of x ∈ X is defined
as x, fσ1(x), fσ1σ2(x), . . .. we show that if I is periodic along a transitive point t ∈ Σ then I
is periodic along any orbit of Σ.

1. Introduction

In a classical dynamical system, here called conventional dynamical system, we have a phase space and a unique map
where the trajectories of points are obtained by iterating this map. However, in various problems, including applied
ones, onemay have some finite sequence of maps in place of a single map acting on the same phase space. For instance,
in Physics by two or more maps have appeared in [1, 12], Economy in [14] and Biology in [4]. In Mathematics, this
has been studied either by non-autonomous systems in many literature such as [9] or as iterated function system (IFS)
for constructing and studying some fractals in [5, 8] or for investigating dynamical properties in many places such as
[2, 3, 6, 7].
In a “classical” IFS, a compact metric space X and a set of some k finite continuous functions {f0, · · · , fk−1} on
X are assumed and the trajectory of a point x ∈ X is considered to be the action on x of the sequence of freely
combination of those maps, or action on x of combination of those maps over the words of a full shift: just write

fu = fu1
◦ · · · ◦ fum

(1)

where u = u1 · · ·um is a word of the full shift over k symbols. Hence no limitation is applied as in our aforesaid
example on the robotic arms where there words were forbidden to have 11 as a subword. The limitation applied on
the shift space would transfer to some limitations on the system. For instance, a system may be transitive in classical
IFS but not in our case, i.e., when the full shift is replaced with a more general subshift.
Thus one may look at X as a phase space and the subshift Σ as a parameter space showing how the maps must be
combined. In other words, there are some words that one cannot perform (2). This is the case where a subshift instead
of the full shift must be considered and it is of our interest.
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2. Preliminaries

2.1. Iterated function systems
Throughout the paper, X will be a compact metric space. The classical iterated function system (IFS) consists of
finitely many continuous self maps F = {f0, . . . , fk−1} on X . The forward orbit of a point x ∈ X , denoted
by O+(x), is the set of all values of finite possible combinations of fi’s at x. We need the following equivalent
statement: Let ΣF be the full shift on k symbols and let L(ΣF ) called the language of ΣF be the set of words. Define
fu(x) : X → X by

fun ◦ · · · ◦ fu1(x), u = u1 · · ·un ∈ L(ΣF ). (2)

Then O+(x) = {fu(x) : u ∈ L(ΣF )}. Such iterated function systems, here called classical IFS, have been the
subject of study for quite a long time.
Here we define an IFS to be

I = (X, F = {f0, . . . , fk−1} , Σ). (3)

where fi is continuous and Σ is an arbitrary subshift on k symbols, not necessarily the full shift ΣF as in the classical
IFS. For review of symbolic dynamics see [10]. By this setting, ΣF above will be replaced with Σ and thusO+(x) =
{fu(x) : u ∈ L(Σ)} is the forward orbit of x. In particular, fu(fv(x)) = fvu(x) whenever vu is admissible or
equivalently vu ∈ L(Σ). Let u = u1 · · ·un ∈ L(Σ) and set u−1 := un · · ·u1. Then for A ⊆ X ,

(fu)
−1(A) = (fun

◦ · · · ◦ fu1
)−1(A)

= f−1
u1

◦ · · · ◦ f−1
un

(A)

= f−1
u−1(A),

where for the last equality, we used (2). Also

f−1
u−1(f

−1
v−1(A)) = f−1

v−1u−1(A) = f−1
(uv)−1(A)

= (fuv)
−1

(A).

Thus the backward orbit and the (full) orbit of a point x ∈ X are O−(x) = {f−1
u−1(x) : u ∈ L(Σ)} and O(x) =

O+
−(x) = O+(x) ∪ O−(x) respectively.

When all fi’s are homeomorphisms, the backward, forward and full trajectory of x is defined.

2.2. Symbolic dynamics
A brief recall of the symbolic dynamics is given here. Notations are borrowed from [10] and the proofs of the claims
can be found there. Let A be a non-empty finite set and let ΣF = AZ (resp. AN) be the collection of all bi-infinite
(resp. right-infinite) sequences of symbols from A. The shift map on ΣF is the map τ where τ(σ) = σ′ is defined
by σ′

i = σi+1. The pair (ΣF , τ) is the full shift and any closed invariant subset Σ of ΣF is called a subshift or a shift
space. A word overA is a finite sequence of symbols fromA. Denote by Ln(Σ) the set of all admissible n-words and
call L(Σ) := ∪∞

n=0 Ln(Σ) the language of Σ. For u ∈ Lk(Σ), let the cylinder ℓ[u]ℓ+k−1 =ℓ[uℓ · · ·uℓ+k−1]ℓ+k−1 be
the set {σ = σ0σ1 · · · ∈ Σ : σℓ · · ·σℓ+k−1 = u}. If ℓ = 0, we drop the subscripts and we just write [u].
A shift space Σ is irreducible if for every ordered pair of words u, v ∈ L(Σ) there is a word w ∈ L(Σ) so that
uwv ∈ L(Σ). A point σ ∈ Σ is transitive if every word in Σ appears in σ infinitely many often. A subshift Σ is
irreducible iff Σ has a transitive point.
Shift spaces described by a finite set of forbidden blocks are called shifts of finite type (SFT) and their factors are called
sofic. A word w ∈ L(Σ) is called synchronizing if uwv ∈ L(Σ) whenever uw,wv ∈ L(Σ). A synchronized system
is an irreducible shift which has a synchronizing word. Any sofic is synchronized.
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3. Periodicity in IFS

The notion of a periodic point in the case of a conventional dynamical system (X, f) is very natural and intuitive.
This is not the case for an IFS or a non-autonomous system. One may check [13] where a survey of the periodic points
for a non-autonomous system is offered. It turns out that one way is to define a periodic point along an orbit in an IFS
as in the conventional dynamical system. By that we mean that x ∈ X is periodic of period p along σ ∈ Σ if there
is a word u, |u| = p such that fu(x) = x and σ = u∞ = σ1σ2 · · ·σpσp+1 · · · is periodic in Σ. Thus σℓp+i = ui for
ℓ ∈ N and

fσ1···σℓp+i
(x) = fσ1···σi

(x), 1 ≤ i < p. (4)

This is not the case for a general IFS, for if fu(x) = x, then one cannot guarantee that un is an admissible word for
n ∈ N.

Definition 3.1. Let I = (X, F , Σ) be an IFS. A point x ∈ X is periodic of period p along σ = σ1σ2 · · · ∈ Σ if for
any ℓ ∈ N, fσ1···σℓp

(x) = x.

Lemma 3.2. Let I = (X, F , Σ) be an IFS where Σ is an M -step SFT. Assume x is periodic of period ℓ along a
σ ∈ Σ which is not necessarily periodic. Then there is a periodic σ′ so that x is periodic of period ℓ′ along σ′ and
ℓ′ = qℓ for some q ∈ N.

Proposition 3.3. Let I and x ∈ X be as in Lemma 3.2, but Σ an irreducible sofic. Then the conclusion of that lemma
is valid.

Recall that SFT’s ⊊ sofics ⊊ synchronized systems.

Example 3.4. The conclusion of Proposition 3.3 is not valid for the case when Σ is a non-sofic synchronized system.

Proof. Let Σ be the synchronized subshift whose cover is presented in Figure 1. In this cover, m = m0m1 · · · is a
fixed point of the Morse substitution and thus Σm = O+(m) is a minimal subshift [11]. Let us briefly remind the
Morse substitution. Set

ϱ(v) =

{
01, if v = 0,

10, if v = 1,

to be the substitution map which means for any word u = u0 · · ·uk in {0, 1}N, ϱ(u) = ϱ(u0) · · · ϱ(uk). This gives a
primitive substitution with two fixed points

m = 0 7→ 01 7→ 0110 7→ 01101001 7→ · · ·
m′ = 1 7→ 10 7→ 1001 7→ 10010110 7→ · · ·

Now, the closure of orbits of either of these fixed points under the shift map gives a minimal subshift.
Let I = (S1, F = {f0, f1, f2}, Σ) where f0 : S1 → S1 is an irrational rotation, f1 = f−1

0 and f2 another irrational
rotation say f2 = f0 ◦ f0.

. . . . . .m0 m1 m2

2

m3 m4

2

m2n−1 m2n

2

Fig. 1. The cover for Σ. Here,m = m0m1 · · · is a fixed point of the Morse substitution.
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Theorem 3.5. Let I = (X, F , Σ) be an IFS. If x ∈ X is periodic of period p along a transitive t = t1t2 · · · ∈ Σ,
then for any σ ∈ Σ there is a 1 ≤ k < p such that x is periodic along σ′ = τk(σ) where τ is our shift map.

As an application of Proposition 3.5, consider I = (S1, {f0, f1}, ΣF ) where f0 is an irrational rotation and f1(z) =
z2 and ΣF the full shift and hence sofic. Here, I has a set of dense periodic points along σ = 1∞ ∈ Σ and no periodic
points along 0∞ ∈ Σ and so no periodic points along any transitive t ∈ Σ.
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Abstract

In this study an efficient semi-analytical method is proposed for numerical approximation of
fractional order logistic equation (FOLEs) with two constant rational delays. Due to the structure
of fractional delay differential equations (FDDEs) with non-equal delays utilizing of multi-step
methods are noticeable selection. In the proposed approach the method of steps is combined
with generalized differential transformation method (GDTM) to obtain numerical solution for
FOLE with delay. Compared to the current numerical methods the proposed algorithm seems to
be very reliable, effective and more convenient technique. Numerical application is shown with
an example.

1. Introduction

Delayed logistic equation which can be used to model the population growth was proposed and investigated by
Hutchinson [1], in the following form:

N ′ (t) = rN (t)

(
1− N (t− τ)

k

)
, (1)

where τ > 0 is a maturation time. For describing a situation where the several processes affecting the population
occur with different time delays, Gyori [2], introduced and studied equation as follows:

N ′ (t) = N (t)
(
a−

∑n

j=1
bjN (t− τj)

)
. (2)

Another form of neutral logistic equation were studied by Gyori and Ladas [3] was

N ′ (t) = N (t)

{
r

(
1− N (t− δ)

k

)
+ c

N ′(t− τ)

N(t− τ)

}
, (3)

where the term cN
′(t−τ)

N(t−τ) is related to the growth rate of the population at time t− τ. Rebenda and Smarda [4] used a
combination of the method of steps and differential transform method (DTM) to propose a numerical solution for Eq.
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(3). Delayed and natural type logistic equation with two different delays in fractional order (FOLE) can be formulated
in the following form:

c
0D

α
t u (t) = u (t)

{
r

[
1− u (t− σ)

κ

]
+ c

c
0D

α
t (u (t− τ))

u (t− τ)

}
0 < α ≤ 1, (4)

when initial function u (t) = ϕ (t) , tϵ [−γ, 0] , γ = max{σ, τ} and σ , τ are positive rational delays. Fractional
derivative in Eq. (4) is in Caputo sense [5], because Caputo fractional derivatives have the advantages of defining
integer order initial conditions for fractional order differential equations that is suitable for problems which arise
in true world physical phenomena. Ahmed M. A. et al. [5] used Adams-type predictor-corrector method to obtain
numerical solution for fractional-order logistic equation (FOLE) with two different delays [6]. N. H. Sweilam et al.
[7] applied Chebyshev approximations to obtain numerical solution for FOLE with delays.
The main idea of the present work is based on apply the method of steps and generalized differential transform method
to achieve numerical solution for Eq. (4). Comparison with the other numerical methods reveals that the proposed
technique seems to be easy and more applicable. The remaining of this paper is organized as follows. First some basic
definitions of fractional calculus are presented, then generalized differential transformmethodwith some properties are
introduced. Subsequently the implementation of fractional differential transform method to FOLE with two different
delays is investigated. Furthermore, an example is examined to show the relevancy of the proposed method.

2. Fractional calculus definitions

In this section, we mainly recall some definitions which will be used in this study.
Definition 1 Let µϵRandmϵN. A function f : R+ → R belongs to Cµ if there exists kϵR, k > µ and gϵC [0,∞) such
that f (x) = xkg (x) , ∀xϵR+.Moreover, fϵCm

µ if f (m)ϵCµ.
Definition 2 The Riemann-Liouville fractional integral operator of order α ≥ 0 of a function f (t) ϵCµ, µ ≥ −1 is
defined as:{
Jαf (t) = 1

Γ(α)

∫ t

0
(t− τ)

α−1
f (τ) dτ, α > 0,

J0f (t) = f (t) ,

where Γ (z) =
∫∞
0
e−ttz−1dt , z ∈ C . For fϵCµ, µ ≥ −1, α, β ≥ 0 and γ > −1, the operator Jα satisfies the

following properties:

(1) JαJβf (t) = Jα+βf (t) = JβJαf (t) ,

(2) Jαtγ =
Γ(1 + γ)

Γ(1 + γ + α)
tα+γ .

The Caputo fractional differentiation operatorDβ defined as:

Dβf (t) =

{
Jm−β dm

dtm f (t) ,m− 1 < β < m,
dm

dtm f (t) , β = m.

Moreover, the operator Dβ satisfies the following properties:
Letm− 1 < β ≤ m,mϵN and fϵCm

µ , µ ≥ −1, and γ > β − 1, then

1. DβJβf (t) = f (t) ,

2. Jβ
[
Dβf (t)

]
= f (t)−∑m−1

k=0 f
(k) (0) tk

k! , t > 0,

3. Dβtγ = Γ(1+γ)
Γ(1+γ−β) t

γ−β

4. Dβc = 0, where c is constant.

For more details about fractional calculus we refer the reader to [5].
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3. Overview of the generalized differential transform method (GDTM)

In this section GDTM is recalled. Suppose that u(t) is an analytic function so it can be expanded in terms of a fractional
power series in the form

u (t) =
∑∞

k=0
U (k) (t− t0)

k
θ , (5)

where θ is the order of fraction to be selected and U(k) is the fractional differential transform of u(t). Since the initial
conditions are implemented by integer-order derivatives for practical applications, the transformation of the initial
conditions is defines as follows [8].

U (k) =





1

( k
θ )!

[
d

k
θ u(t)

dt
k
θ

]

t=t0

k
θ ϵZ

+

0 k
θ /∈ Z+.

(6)

Where k = 0, 1, 2, . . . , (βθ− 1) and β is the order of the fractional differential equation being considered so θ should
be chosen such that βθ is a positive integer.
Some basic properties of GDTM are accessible in [8, 9].
Theorem 1 Let u(t), v (t) and w(t) be functions of time t and U (k) , V (k) and W (k) are their related fractional
transform, then the following relations are hold,
1. If u (t) = v (t) + w (t) , then U (k) = V (k) +W (k) .
2. If u (t) = cv (t), then U (k) = cV (k), where c is constant.
3. If u (t) = v (t)w (t) , then U (k) =

∑k
l=0V (l)W (k − l) .

4. If u (t) = (t− t0)
p where p is constant., then U (k) = δ (k − θp) , while δ (k) =

{
1 k = 0

0 k ̸= 0

5. If u (t) = Dγv (t), then U (k) =
Γ( k

θ +γ+1)
Γ( k

θ +1)
V (k + γθ) .

The method and proofs of theorem 1 well addressed in literature [10].

4. Implementation of GDTM for FOLE with two different Delays

Themain goal of this study is the combination of the generalized differential transformation method with the method of
steps [11] to find a numerical solution for fractional order logistic equations with two different delays. In this process
first the terms of involving delays are replaced with initial conditions and its derivatives, so the fractional-order delay
logistic equation is reduced to a fractional-order logistic equation. Then the generalized differential transform method
is applied to convert the fractional-order logistic equation to a system of algebraic recurrence relations. Recall Eq. (4)

c
0D

α
t u (t) = u (t)

{
r

[
1− u (t− τ1)

κ

]
+ c

c
0D

α
t (u (t− τ2))

u (t− τ2)

}
0 < α ≤ 1. (7)

Subject to the initial condition u (t) = ϕ (t) , tϵ [−γ, t0] , γ = max{τ1, τ2} such that u (t0) = ϕ (t0) ,
c
0D

α
t u (t0) =

c
0D

α
t ϕ (t0) .

The idea of how to solve Eq. (7) generally on the interval (t0, γ], γ > t0 and γ = max{ σ, τ } is as follows:
First we apply the method of steps on the interval (t0, τmin]where τmin = min {σ, τ} .We replaces the initial function
ϕ(t) and its derivatives in all places where unknown function and its derivatives in delayed form are appeared. Then
the Eq. (7) changes to the fractional logistic differential equation:

c
0D

α
t u (t) = u (t)

{
r

[
1− ϕ (t− τ1)

κ

]
+ c

c
0D

α
t (ϕ (t− τ2))

ϕ (t− τ2)

}
0 < α ≤ 1. (8)

Applying GDTM we get the recurrence relation as follows

Γ (α(k + 1) + 1)

Γ (αk + 1)
U1 (k + 1) = U1 (k)



r

[
1− ∅(k)

κ

]
+ c

Γ(α(k+1)+1)
Γ(αk+1) (ψ (k))

ψ (k)



 . (9)



494 S. Mohammadian / The 3rd National Congress on Mathematics and Statistics

While ∅(k) and ψ(k) are generalized differential transform of ϕ (t− τi) , i = 1, 2 respectively.
After calculating U1 (k) , k = 1, 2, . . . , from (9) with the inverse transformation, we find the solution of Eq. (7) on
the interval (t0, τmin] in the form of generalized Taylor series

u1 (t) =
∑∞

k=0
U1 (k) (t− t0)

k
α . (10)

When we find an approximation solution of u1(t) in the interval (t0, τmin] as aforementioned, then we need to find a
numerical solution for u2(t) in the interval (τmin, γ] . Rewrite Eq. (7) as follows

c
0D

α
t u (t) = u (t)

{
r

[
1− ϕ (t− τ1)

κ

]
+ c

c
0D

α
t (ϕ (t− τ2))

ϕ (t− τ2)

}
0 < α ≤ 1 (11)

Where ϕ (t− τi) are

{
ϕ (t− τi) = u1 (t− τi) t− τi ∈ (t0, γ] ,

ϕ (t− τi) = ϕ (t− τi) , t− τi ∈ [t0 − γ, t0].
(12)

Then we apply GDTM to Eq. (11) which leads us to the recurrence relation as

Γ (α(k + 1) + 1)

Γ (αk + 1)
U2 (k + 1) = U2 (k)



r

[
1− ∅(k)

κ

]
+ c

Γ(α(k+1)+1)
Γ(αk+1) (ψ (k))

ψ (k)



 , (13)

while ∅(k) and ψ(k) are generalized differential transform of ϕ (t− τi) , i = 1, 2 respectively. After calculation
U2 (k) k = 1, 2, . . . from (13) we obtain the solution u2 (t) using the inverse transformation in the form

u2 (t) =
∑∞

k=0
U2 (k) (t− t0)

k
α , tϵ (τmin, γ] . (14)

Thus the numerical solution of Eq. (7) on the interval [t0, γ] is achieved in the form

u (t) =

{
u1 (t) , tϵ(t0, τmin]

u2 (t) , tϵ (τmin, γ] .
(15)

5. Numerical example

In this section, an example is presented to show the effectiveness and accuracy of the proposed method.
Example : Consider the neutral type logistic equation of fractional order

c
0D

α
t u (t) = u (t)

{
r

[
1− u (t− σ)

κ

]
+ c

c
0D

α
t (u (t− τ))

u (t− τ)

}
0 < α ≤ 1, (16)

with initial function
u (t) = ϕ (t) , tϵ [−γ, t0] , γ = max {σ, τ} .

Equation (16) was studied by Rebenda and Šmarda in case α = 1 [4].
Let κ = 3, r = 0.45, σ = 2, c = 0.3, τ = 1andϕ (t) = 2.3fortϵ [−2, 0] . In this case Eq. (16) becomes

c
0D

α
t u (t) = u (t)

{
0.45

[
1− u (t− 2)

3

]
+ 0.3

c
0D

α
t (u (t− 1))

u (t− 1)

}
tϵ (0, 2] , (17)

subject to the initial condition
u (t) = ϕ (t) = 2.3, tϵ [−2, 0] .

Since there are two constant delays σ = τ1 = 2, τ = τ2 = 1, so we can follow the algorithm described in this study.
t0 = 0, γ = 2 with the aforementioned algorithm we calculate τmin=1. On the interval (0, 1] = (t0, τmin] we use the
method of steps for Eq. (17) to obtain

c
0D

α
t u1 (t) = u1 (t)

{
0.45

[
1− 2.3

3

]
+ 0.3

c
0D

α
t (2.3)

2.3

}
. (18)
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Using property (4) from Caputo fractional definition equation (18) is simplified to

c
0D

α
t u1 (t) = 0.105u1(t). (19)

With applying GDTM for Eq. (19) we have the recurrence relation as

U1 (k + 1) =
Γ (kα+ 1)

Γ (α (k + 1) + 1)
0.105U1 (k) . (20)

SinceU1 (0) = 2.3, thus we compute

U1 (1) =
Γ(1)

Γ(α+ 1)
2.3.0.105,

U1 (2) =
Γ(1)

Γ(2α+ 1)
2.3. (0.105)

2
,

U1 (3) =
Γ(1)

Γ(2α+ 1)
2.3. (0.105)

3
,

...

U1 (n) =
Γ(1)

Γ(2α+ 1)
2.3. (0.105)

n

(21)

Using the inverse GDTM the solution will be in the form of

u1 (t) =
∑∞

k=0
U1 (k) (t− t0)

kα
= 2.3+2.3.

0.105.

Γ(α+ 1)
tα+2.300.

0.1052

Γ(2α+ 1)
t2α+. . . (22) = 2.3Eα (0.105tα) t ∈ (0, 1] ,

whereEα (t) is a one-parameter Mittag Leffler function which is defined asEα (z) =
∑∞

k=0
zk

Γ(α+1) with the property
c
0D

α
t (Eα (λz)) = λc0D

α
t (Eα (z)) .

It is required to calculate u2 (t) on the interval (1, 2]. In this case Eq. (17) has the initial conditions with the form of:

u (t) =

{
2.3, tϵ[−2, 0]

2.3Eα (0.105tα) , tϵ (0, 1] ,
(23)

with this conditions and using method of steps Eq .(17) changes to

c
0D

α
t u2 (t) = u2 (t)

{
0.45

[
1− 2.3

3

]
+ 0.3

c
0D

α
t (Eα (0.105 (t− 1)

α
))

Eα (0.105(t− 1)α)

}
= 1.3.0.105u2 (t) . (24)

Now with using GDTM the recurrence relation of Eq. (24) is:

U2 (k + 1) =
Γ (kα+ 1)

Γ (α (k + 1) + 1)
1.3.0.105U2 (k) ,

U2 (0) = u1 (1) = 2.3Eα (0.105) .

(25)

It is easy to obtain

U2 (1) =
1.3.0.105

Γ(α+ 1)
2.3Eα (0.105) ,

U2 (2) =
(1.3.0.105)2

Γ(2α+ 1)
2.3Eα (0.105) ,

U2 (3) =
(1.3.0.105)3

Γ(3α+ 1)
2.3Eα (0.105) ,

...

(26)



496 S. Mohammadian / The 3rd National Congress on Mathematics and Statistics

Thus the solution is as follows:

u2 (t) =
∑∞

k=0
U2 (k) (t− 1)

kα
= 2.3Eα (0.105)

+ 2.3
1.3.0.1051

Γ(α+ 1)
Eα (0.105) (t− 1)α + 2.3

(1.3.0.1051)2

Γ(2α+ 1)
Eα (0.105) (t− 1)2α + . . .

= 2.3Eα (0.105)Eα (1.3.0.105(t− 1)α) t ∈ (1, 2] . (27)

In case α = 1 the results in (27) are similar to the results of Rebenda et al. [4].

6. Conclusion

In this study it was tried to combine two powerful and effective methods such as method of steps and generalized
differential transform method to find an approximation solution for fractional delayed logistic differential equations
with two several delays, while the fractional derivatives were in Caputo sense. The numerical result was presented
in terms of power series. The results confirmed that the described method need low calculations and it was very
convenient in calculation. The test example was proposed to illustrate the efficiency and reliability of the proposed
method.
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Abstract

In this paper, a numerical method is developed for solving the telegraph equation on an un-
bounded domain with vanishing boundary conditions. To this end, two classes of the basis
functions are introduced and employed. First, the shifted Legendre polynomials are utilized for
approximating solution of the problem in time direction. Then, a new class of basis functions
called the modified Legendre functions is generated and used for approximating solution of the
problem in unbounded space direction. The method converts the equation under consideration
into a system of algebraic equations that its numerical solution can be easily obtained. The
accuracy of the method is examined by solving a test problem.

1. Introduction

The main objective of this study is to describe an appropriate numerical scheme for numerical solution of the following
class of the telegraph equations defined over an unbounded domain:





utt(x, t) + α2ut(x, t) + 2βu(x, t) = γuxx(x, t) + f(x, t), x ∈ R, t ∈ [0, T ],

lim
|x|→∞

u(x, t) = 0,

u(x, 0) = h1(x),

ut(x, 0) = h2(x),

(1)

where α and β are given constants (with α > β > 0), f , h1 and h2 are known functions and u is the unknown solution.
This kind of linear partial differential equation is used to model the voltage on a very small piece of telegraph wire
which consists of a resistor and coil of inductance [1]. Many problems in the fields of physics and engineering lead

∗H. Azin
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to the solution of differential equations in unbounded domains. During the past decades, researchers have devoted
particular attention to solving this kind of equations on unbounded domain. Since, as far as we know, there has not
been any study dealing with the numerical solution of the telegraph equation on an unbounded domain, it motivates
our interest to develop an appropriate numerical method for solving such problems. In this paper, we use the Legendre
polynomials to generate two useful classes of the basis functions known as the shifted Legendre polynomials and the
modified Legendre functions for solving the problem introduced in Eq. (1). More precisely, the shifted Legendre
polynomials are used in the time direction, while the modified Legendre functions together with their operational
matrices of derivative are utilized in the space direction to convert the problem under consideration into an algebraic
system of equations.

2. Basis functions

2.1. The shifted Legendre polynomials (LPs)
Let Lj(τ) is the Legendre polynomial of degree j ∈ N ∪ {0} defined over [−1, 1], which satisfies the following
recurrence relation [2]:

(j + 1)Lj+1(τ) = (2j + 1)τLj(τ)− jLj−1(τ), j = 1, 2, · · · , (2)

with L0(τ) = 1 and L1(τ) = τ .
The shifted LPs can be defined over [0, T ] by using the change of variable τ = 2t

T − 1 and renaming Ln

(
2t
T − 1

)
by

Pn(t) as follows

(n+ 1)Pn+1(t) = (2n+ 1)

(
2t

T
− 1

)
Pn(t)− nPn−1(t), n = 1, 2, · · · , (3)

where P0(t) = 1 and P1(t) =
2t
T − 1. We remind that the orthogonality of these polynomials are as follows

∫ T

0

Pk(t)Pk′ (t)dt =
T

2k + 1
δkk′ .

We can use the shifted LPs for approximating an square integrable function u(t) defined over [0, T ] as follows

u(t) ≃
n∑

j=0

cjPj(t) ≜ CTΨn(t) (4)

where

cj =
2j + 1

T

∫ T

0

u(t)Pj(t)dt, Ψn(t) = [P0(t) P1(t) . . . Pn(t)]
T
. (5)

The derivative of the above vector can be written as follows [3]

dΨn(t)

dt
= D(1)

n Ψn(t), (6)

where D(1)
n is an (n+ 1)× (n+ 1) matrix with entries

[
D(1)

n

]
ij
=





2(
√

(2i− 1)(2j − 1))

T
, i = 2, · · · , n+ 1, j = 1, · · · , i− 1 and i+ j odd,

0, otherwise.

Generally, for k = 2, 3, . . ., we have
dkΨn(t)

dtk
= D(k)

n Ψn(t), (7)

where
D(k)

n = D(1)
n × D(1)

n × . . .× D(1)
n︸ ︷︷ ︸

k times

.
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2.2. The modified Legendre functions (LFs)
The modified LFs can be defined over [−1, 1] by the following formula:

P̃i(x) :=

√(
i+

1

2

)
(1− x2)Li(x), i = 0, 1, 2, . . . , (8)

where Li(x) is the ith Legendre polynomial. The set of modified LFs
{
P̃i(x)

}∞

i=0
forms an orthonormal system with

respect to the weight functionw(x) = 1
1−x2 on the domain [−1, 1]. So, an square integrable function u ∈ L2

w ([−1, 1])
with u(−1) = u(1) = 0 can be approximated by the modified LFs as follows

u(x) ≃
m∑

i=0

c̃iP̃i(x) ≜ C̃TΦm(x), (9)

where
c̃i =

∫ 1

−1

u(x)P̃j(x)w(x)dx, Φm(x) =
[
P̃0(x) P̃1(x) . . . P̃m(x)

]T
. (10)

The derivative of the above vector can be presented as follows

dΦm(x)

dx
= Q(1)

m Φm(x), (11)

where Q(1)
m is an (m+ 1)× (m+ 1) square matrix with components

[
Q(1)

m

]
ij
=

∫ 1

−1

dP̃i−1(x)

dx
P̃j−1(x)w(x)dx, i, j = 1, 2, . . . ,m+ 1. (12)

Generally, for k = 2, 3, . . ., one has
dkΦm(x)

dxk
= Q(k)

m Φm(x), (13)

where
Q(k)

m = Q(1)
m ×Q(1)

m × . . .×Q(1)
m︸ ︷︷ ︸

k times

.

Remark 2.1. The integral expressed in Eq. (12) can be numerically calculated via an M -point Gauss-Legendre
quadrature rule [2] with the nodal points ξr and the corresponding weights ωr. So, we have

[
Q(1)

m

]
ij
≃

M∑

r=1

ωrP̃
′
i−1(ξr)P̃j(ξr)w(ξr), i, j = 1, 2, . . . ,m+ 1.

Through the paper, we put M = 25 for numerical integration.

3. The proposed method

3.1. Transforming the problem into a bounded domain
Let φ : R −→ R is a two times differentiable function satisfying φ(−∞) = φ(∞) = 0. By using the change of
variable x = tanh−1(υ) where υ ∈ [−1, 1], we can define the function ϕ(υ) = φ(tanh−1(υ)) over [−1, 1] with
ϕ(−1) = ϕ(1) = 0. Moreover, for the first and second derivatives, we have

dφ(x)

dx
=

dϕ(υ)

dυ

dυ

dx
= (1− υ2)

dϕ(υ)

dυ
, (14)
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and
d2φ(x)

dx2
= (1− υ2)2

d2ϕ(υ)

dυ2
− 2υ(1− υ2)

dϕ(υ)

dυ
. (15)

Using Eqs. (14) and (15), the problem expressed in Eq. (1) can be rewritten in the following equivalent form:




wtt(υ, t) + α2wt(υ, t) + 2βw(υ, t) = γ
((

1− υ2
)2

wυυ(υ, t)− 2υ
(
1− υ2

)
wυ(υ, t)

)
+ f̃(υ, t), υ ∈ [−1, 1], t ∈ [0, T ],

w(−1, t) = w(1, t) = 0,

w(υ, 0) = h̃1(υ),

wt(υ, 0) = h̃2(υ),
(16)

wherew(υ, t) = u(tanh−1(υ), t), f̃(υ, t) = f(tanh−1(υ), t), h̃1(υ) = h1(tanh
−1(υ)) and h̃2(υ) = h2(tanh

−1(υ)).

3.2. Approximation by the basis functions
In order to solve Eq. (16), we assume

w(υ, t) ≃ Φm(υ)TWΨn(t), (17)

whereW is an (m + 1) × (n + 1) unknown matrix and Φm(υ) and Ψn(t) are already defined in Eqs. (10) and (5),
respectively. From Eq. (6), we have

wt(υ, t) ≃ Φm(υ)TWD(1)
n Ψn(t), wtt(υ, t) ≃ Φm(υ)TWD(2)

n Ψn(t). (18)

Moreover, using Eq. (11), we have

wυ(υ, t) ≃ Φm(υ)T
(
Q(1)

m

)T

WΨn(t), wυυ(υ, t) ≃ Φm(υ)T
(
Q(2)

m

)T

WΨn(t). (19)

Now, by substituting Eqs. (17)-(19) into Eq. (16), we introduce the following residual function:

R(υ, t) ≜Φm(υ)T
(
WD(2)

n + α2WD(1)
n + 2βW− γ

(
1− υ2

)2 (Q(2)
m

)T

W+ 2γυ
(
1− υ2

) (
Q(1)

m

)T

W
)
Ψn(t)

− f̃(υ, t) ≃ 0 (20)

Meanwhile, by using the initial conditions expressed in Eq. (16), we define

Λ1(υ) ≜ Φm(υ)TWΨn(0)− h̃1(υ) ≃ 0,

Λ2(υ) ≜ Φm(υ)TWD(1)
n Ψn(0)− h̃2(υ) ≃ 0.

(21)

By putting the collocation points υi = − cos
(

(2i−1)π
2(m+1)

)
and tj = T

2

(
1− cos

(
(2j−1)π
2(n+1)

))
into Eqs. (20) and (21), we

generate the following system of (m+ 1)(n+ 1) algebraic equations:
{

R(υi, tj) = 0, i = 1, 2, . . . ,m+ 1, j = 3, 4, . . . , n+ 1,
Λr(υi) = 0, r = 1, 2, i = 1, 2, . . . ,m+ 1.

(22)

By solving the above system and determiningW, an approximate solution is obtained for Eq. (16) by using Eq. (17).
Eventually, the approximate solution of Eq. (1) is computed as u(x, t) = w(tanh(x), t) for (x, t) ∈ R× [0, T ].

4. Numerical example

Example 4.1. Consider problem (1) with α =
√
2, β =

1

2
and γ = 1 which the analytic solution u(x, t) =

t3 sin(t) exp
(
−10x2

)
. The right side function (RSF) and the associated initial conditions (ICs) can be extracted

by the exact solution. The results obtained by the presented scheme are reported in Table 1 and Fig. 1. The reported
results show that the algorithm is very accuracy in solving this example.
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Table 1. Maximum absolute error in Example 4.1.

m n T=1 T=2 T=3
7 7 0.18E+00 2.31E+00 3.65E+00
13 13 1.14E-03 1.02E-02 1.32E-02
19 19 2.04E-06 1.78E-05 2.32E-05
25 25 6.86E-09 7.32E-08 1.13E-07
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Fig. 1. Numerical results in Example 4.1 with (m = 23, n = 21).

Example 4.2. Consider problem (1) withα =
√
2, β =

1

2
and γ = 1 and the analytic solution u(x, t) = t2

(1+x2)10
. The

RSF and the ICs can be computed by the exact solution. The results obtained by the presented method are numerically
and graphically reported in Table 2 and Fig. 2. These results confirm the accuracy and efficiency of the method for
this example.

Table 2. Maximum absolute error in Example 4.2.

m n T=1 T=2 T=3
7 7 0.30E+00 1.61E+00 4.18E+00
13 13 6.34E-03 2.58E-02 5.86E-02
19 19 6.07E-05 2.43E-04 5.48E-04
25 25 3.08E-07 1.24E-06 2.81E-06

Example 4.3. Consider problem (1) withα =
√
2, β =

1

2
and γ = 1 and the analytic solutionu(x, t) = cos(t) exp

(
−10x2

)
.

The RSF and the ICs can be extracted from the analytic solution. The results obtained by the expressed approach are
numerically and graphically shown in Table 3 and Fig. 3.
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Fig. 2. Numerical results in Example 4.2 with (m = 22, n = 21).

Table 3. Maximum absolute error in Example 4.3.

m n T=1 T=2 T=3
7 7 0.37E+00 0.22E+00 0.33E+00
13 13 1.76E-03 1.20E-03 3.18E-04
19 19 2.23E-06 2.38E-06 6.60E-07
25 25 1.94E-08 9.63E-08 2.30E-09
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Fig. 3. Numerical results in Example 4.1 with (m = 24, n = 20).
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Abstract

The basic idea of this paper is to construct a nonstandard finite difference scheme (NSFD) for
the numerical solutions of stochastic partial differential equations (SPDEs) of Itô type. The main
properties of the NSFD scheme, i.e., consistency, stability and convergence are proved. In order
to the efficiency and accuracy of the proposed NSFD scheme, some numerical simulations are
presented.

1. Introduction

In recent years, SPDEs arise in many branches of applied sciences, medical and engineering. Most of the SPDEs can
not be solved by well-known analytical techniques. Hence, various stochastic numerical methods have been designed
to solve such equations. In this work, we are going to construct a NSFD scheme for the following SPDE





∂u

∂t
+ a

∂2u

∂x2
+ b

∂u

∂x
+ cu+ γuẆ (t) = 0, x ∈ [0, 1], t ∈ [0, 1],

u(x, 0) = u0(x), u(0, t) = u1(t), u(1, t) = u2(t),
(1)

where a, b, c and γ are constants and ξ(t) indicates a standard Wiener process. The paper aims are organized as
follows. In Section 1 the basic properties of the NSFD schemes are given. Section 2 is devoted to analyze consistency,
stability and convergency the proposed NSFD scheme. At the end, numerical simulations are given in Section 3.

2. NSFD schemes for ordinary differential equations

The NSFD scheme was first introduced by R. Mickens. These schemes preserve properties like consistency, stability
and convergency. Moreover, these schemes can also preserve essential properties of the continuous systems, such as
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positivity and boundedness. In order to describe the characteristic NSFD schemes for an ordinary differential equations
system, consider the following autonomous form

y′(t) = f(y(t)), y(t0) = y0, t ∈ [t0, T ],

where f may be a nonlinear vector function and y is a vector function. Let tn = t0 + nh denote mesh points where h
is called stepsize, hence the discretized version of continuous differential equation (1) can be discretized as follows

Dnyn = Fn(f, yn, yn+1, . . .),

where Dnyn denotes the descritized version of y′(tn) and Fn(f, yn, yn+1, . . .) approximates f(y) at mesh points
tn, tn+1 and so on. A finite difference scheme is called a NSFD scheme if at least one of the following conditions is
achieved [3].

1. In the descritized version Dnyn, denominator function instead of h can be replaced by an increasing and non-
negative function ϕ(h) such that fulfills ϕ(h) = h+O(h2) as h → 0.

2. The nonlinear and linear terms in f(y(t)) can be approximated in a nonlocal way in several points of the mesh.
For example, the terms y and y2 can be approximated as follows

y(tk) ≈
1

2
(yk + yk+1), y2(tk) ≈

1

2
yk(yk + yk+1),

where yk+j denotes an approximation for y(tk+j).

3. A stochastic NSFD scheme

In this section, we analyze qualitative behaviour a NSFD scheme for the SPDE (1). In order to construct a NSFD
scheme, we approximate the space and time derivatives in the SPDE (1) by the following finite difference approxima-
tions

ut(k∆x, n∆t) =
un+1
k − un

k

∆t
, ux(k∆x, n∆t) ≈ un

k+1 − un
k−1

2∆x
,

uxx(k∆x, n∆t) ≈ 1

(∆x)2

(
− 1

12
un
k−2 +

4

3
un
k−1 −

5

2
un
k +

4

3
un
k+1 −

1

12
un
k+2

)
,

where un
k is an approximation for u(k∆x, n∆t), and ∆x and ∆t are considered as the space and time stepsizes,

respectively. Substituting the above approximations into (1), we can find

un+1
k =

(
1 +

5

2
r − c∆t

2

)
un
k+

r

12
un
k−2+

r

12
un
k+2+

(
s− 4

3
r

)
un
k−1−

(
4

3
r + s+

c∆t

2

)
un
k+1−γun

k+1∆Wn, (2)

where r = a∆t
∆x2 , s = b∆t

2∆x and ∆Wn = W ((n + 1)∆t) − W (n∆t) is a Gaussian distribution with zero mean and
variance ∆t [2]. In the reminder of this paper we assume that in the scheme (2), the Wiener process increments are
independent on the state un

k . Basically, the convergence of the stochastic difference scheme to the SPDE solution is
important. To do this, suppose a SPDE in the form of Lu = f is given, where L represents the differential operator.
Let the stochastic variable un

k be a solution which is approximated by a stochastic difference scheme indicated by Ln
k .

By using the stochastic difference scheme to the SPDE, we get Ln
ku

n
k = fn

k , where fn
k is the approximation of f . In

order to access the consistency, stability and convergence results, a norm is needed. Because of this, for the sequence
{un

k}k∈Z, we define the sup–norm as ∥un∥∞ =
√
sup
k∈Z

|un
k |2. For more concern in the concepts of consistency, stability

and convergence see [1].

Definition 3.1. A stochastic difference scheme Ln
ku

n
k = fn

k is said to be pointwise consistent in mean square with
SPDE Lu = f at point (x, t), if for any continuously differentiable function u = u(x, t) of this equation, we have
E∥(Lu− f)mk − (Lm

k um
k − fm

k )∥2 → 0, as (∆x,∆t) → (0, 0) and (k∆x, (m+ 1)∆t) → (x, t).
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Theorem 3.2. The numerical scheme (2) in the sense of mean square is pointwise consistent.

Proof. For the smooth function ϕ = ϕ(x, t), we have

L(ϕ)|nk = ϕ(k∆x, (n+ 1)∆t)− ϕ(k∆x, n∆t) + a

∫ (n+1)∆t

n∆t

ϕxx(k∆x, s) ds+ b

∫ (n+1)∆t

n∆t

ϕx(k∆x, s) ds

+ c

∫ (n+1)∆t

n∆t

ϕ(k∆x, s) ds+ γ

∫ (n+1)∆t

n∆t

ϕ(k∆x, s) dW (s),

Ln
kϕ = ϕ(k∆x, (n+1)∆t)−ϕ(k∆x, n∆t)+

a∆t

∆x2

(
− 1

12
ϕ((k−2)∆x, (n+1)∆t)+

4

3
ϕ((k−1)∆x, n∆t)−5

2
ϕ(k∆x, n∆t)

+
4

3
ϕ((k + 1)∆x, n∆t)− 1

12
ϕ((k + 2)∆x, n∆t)

)
+

b∆t

2∆x

(
ϕ((k + 1)∆x, n∆t)− ϕ((k − 1)∆x, n∆t)

)

+
c∆t

2

(
ϕ(k∆x, n∆t) + ϕ((k + 1)∆x, n∆t)

)
+ γϕ((k + 1)∆x, n∆t)∆Wn.

Accordingly

E
∣∣L(ϕ)|nk −Ln

kϕ
∣∣2 ≤ 2a2E

∣∣∣∣∣

∫ (n+1)∆t

n∆t

[
ϕxx(k∆x, s)− 1

∆x2

(
− 1

12
ϕ((k− 2)∆x, n∆t) +

4

3
ϕ((k− 1)∆x, n∆t)

− 5

2
ϕ(k∆x, n∆t) +

4

3
ϕ((k + 1)∆x, n∆t)− 1

12
ϕ((k + 2)∆x, n∆t)

)]
ds

∣∣∣∣∣

2

+ 4b2E

∣∣∣∣∣

∫ (n+1)∆t

n∆t

[
ϕx(k∆x, s)− 1

2∆x

(
ϕ((k + 1)∆x, n∆t)− ϕ((k − 1)∆x, n∆t)

)]
ds

∣∣∣∣∣

2

+8c2E

∣∣∣∣∣

∫ (n+1)∆t

n∆t

[
ϕ(k∆x, s)−1

2

(
ϕ((k+1)∆x, n∆t)+ϕ(k∆x, n∆t)

)]
ds

∣∣∣∣∣

2

+8γ2

∫ (n+1)∆t

n∆t

E

∣∣∣∣∣ϕ(k∆x, s)−ϕ((k+1)∆x, n∆t)

∣∣∣∣∣

2

ds.

Inasmuch as ϕ(x, t) is a deterministic function, E|L(ϕ)|nk−Ln
kϕ|2 → 0 as k, n → +∞. This shows that, the numerical

scheme (2) is consistent with the SPDE (1).

Definition 3.3. A stochastic finite difference Lm
k um

k = fm
k is said to be stable in mean square with SPDE Lu = f if

there exist some positive constants ∆x∗, ∆t∗, K and β such that E∥un+1∥2 ≤ KeβtE∥u0∥2, for all t = (n+ 1)∆t,
0 < ∆x < ∆x∗ and 0 < ∆t < ∆t∗, where un+1 = (. . . , un+1

k−2 , u
n+1
k−1 , u

n+1
k , un+1

k+1 , u
n+1
k+2 , . . .)

T .

The following stability result is important to prove the convergence of the stochastic NSFD scheme (2).

Theorem 3.4. The stochastic finite difference scheme (2) in mean square is unconditionally stable.

Proof. The stochastic finite difference scheme is given by

un+1
k =

(
1 +

5

2
r − c∆t

2

)
un
k +

r

12
un
k−2 +

r

12
un
k+2 +

(
s− 4

3
r

)
un
k−1 −

(
4

3
r + s+

c∆t

2

)
un
k+1 − γun

k+1∆Wn.

Applying E|.|2 to the above difference scheme we have

E|un+1
k |2= E

∣∣∣∣∣

(
1 +

5

2
r − c∆t

2

)
un
k +

r

12
un
k−2 +

r

12
un
k+2 +

(
s− 4

3
r

)
un
k−1 −

(
4

3
r + s+

c∆t

2

)
un
k+1

∣∣∣∣∣

2

+γ2∆tE|un
k+1|2≤

[(
1 +

5

2
r − c∆t

2

)
+

r

12
+

r

12
+

(
s− 4

3
r

)
−
(
4

3
r + s+

c∆t

2

)]2
sup
k

E|un
k |2+γ2∆t sup

k
E|un

k |2,
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and so

E|un+1
k |2 ≤

(
(1− c∆t)2 + γ2∆t

)
sup
k

E|un
k |2

≤
(
1 + γ2∆t

)
sup
k

E|un
k |2,

and the usage of supposition∆t = t
n+1 , one concludes that

E∥un+1∥2∞≤
(
1 +

γ2t

n+ 1

)n+1

E∥u0∥2∞ ≤ eγ
2tE∥u0∥2∞.

Definition 3.5. The stochastic difference scheme Ln
ku

n
k = fn

k , which approximates the SPDE Lu = f , is convergent
in mean square at time t, if E∥vn+1 − un+1∥2 → 0 as ∆x → 0 and∆t → 0, for t = (n+ 1)∆t.

Theorem 3.6. The stochastic difference scheme (2) is convergent in mean square with respect to ∥.∥∞ =
√
sup
k
|.|2

and t = (n+ 1)∆t.

Proof. From stochastic version of the Lax–Richtmyer theorem the convergence of the scheme (2) is also concluded.

4. Numerical experiments

In the present section, to demonstrate the efficiency and accuracy of the proposed scheme, one example is solved.

Example 4.1. Consider SPDE in the following form

ut(x, t) + auxx(x, t) + γu(x, t)Ẇ (t) = 0, (3)

subject to the following initial condition

u(x, 0) = exp

(
(x− 0.2)

2

a

)
, x ∈ [0, 1]

and the boundary conditions

u(0, t) =
1√

4t+ 1
exp

(
0.04

a(4t+ 1)

)
, t ∈ [0, 1],

u(1, t) =
1√

4t+ 1
exp

(
0.64

a(4t+ 1)

)
, t ∈ [0, 1].

The exact solution in the absence of stochastic term can be expressed as

u(x, t) =
1√

4t+ 1
exp

(
(x− 0.2)

2

a(4t+ 1)

)
.

The stochastic finite difference scheme is given by

un+1
k =

(
1 +

5

2
r

)
un
k +

r

12
un
k−2 +

r

12
un
k+2 −

4

3
run

k−1 −
4

3
run

k+1 − γun
k+1∆Wn, (4)

where r =
a∆t

∆x2
. LetM andN be the total numbers of grid points for the space and time discretization, respectively.

In figures 1–4 the approximation solutions of SPDE (3) for the different values of parameters using the stochastic finite
difference scheme (4) are shown.
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Fig. 1. Comparison between the deterministic and stochastic numerical
solution of (3) with a = 0.005, γ = 1, M = 100 andN = 500.

Fig. 2. Comparison between the deterministic and stochastic numerical
solution of (3) with a = 0.001, γ = 1, M = 100 andN = 500.

Fig. 3. Comparison between the deterministic and stochastic numerical
solution of (3) with a = 0.005, γ = 1 andM = N = 10.

Fig. 4. Comparison between the deterministic and stochastic numerical
solution of (3) with a = 0.005, γ = 0.5 andM = N = 10.

5. Conclusion

This paper presented a nonstandard finite difference scheme applied to the solution of SPDE.Mathematical analyses of
the proposed scheme were provided. To confirm the accuracy and efficacy of the proposed scheme, one test problem
is presented, and the associated numerical results were compared with the exact solution.
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Abstract

Lyapunov’s inequality is a powerful tool in the study of differential equations. This inequality
helps us to give a general interpretation for solutions of differential equations. Recently, the
concept of conformable fractional derivative and conformable fractional differential equations
introduced by Abdeljawad [Journal of Computational and AppliedMathematics, 279 (2015) 57–
66] and Khalil et al. [Journal of Computational and Applied Mathematics 264 (2014) 65–70].
In fractional differential equations, one thing that seems missing is Lyapunov’s inequality for
conformable fractional differential equations. In this paper, we study Lyapunov-type inequality
for conformable fractional differential equations with different types of boundary conditions.

1. Introduction

Lyapunov’s inequality is very important in the study of differential equations. This inequality was first introduced by

Lyapunov in [5]. Since then several papers have been devoted to the study of Lyapunov’s inequality, mainly due to its

applications.

Theorem 1.1. [5] If the following boundary value problem

y′′ (t) + q (t) y (t) = 0, a < t < b,

y (a) = 0 = y (b) ,
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has a nontrivial solution, where q is a real and continuous function in [a, b], then
∫ b

a

|q (s)| ds ≥ 4

b− a
. (1)

The main propose of investigate Lyapunov’s inequality was to give a general interpretation for solutions of differential

equations.

Fractional Lyapunov’s inequality based on a Riemann-Liouville fractional derivative was first studied in [2]. Then

fractional Lyapunov’s inequality with respect to a Caputo fractional derivative was first considered by Ferreira [3] in

2014. Based on these results, Ferreira also obtained the nonexistence of real zeros of a certain Mittag–Leffler function

[6].

However, Riemann-Liouville fractional derivative and the Caputo fractional derivative seemed complicated and lost

some of important algebraic properties of fractional order differentiation such as the product rule and the chain rule. For

these important reasons, a new well-behaved simple fractional derivative called “the conformable fractional deriva-

tive”, depending on the basic limit definition of the derivative, was introduced in [1, 4].

The study of conformable fractional calculus has led to interesting applications in many fields [7–13]. For example, in

2016, new conformable fractional derivative for converting fractional coupled nonlinear Schrodinger equations into

the ordinary differential equations was proposed by Eslami in [8]. In 2017, Hosseini et al. [9] suggested modified

Kudryashov method for solving the conformable time-fractional Klein-Gordon equations with quadratic and cubic

nonlinearities. In nonlinear differential equation, an existence of solution for a local fractional nonlinear differential

equation with initial condition was proposed by Bayour et al. [7]. Then Unal et al.[10] obtained an operator method

for local fractional linear differential equations. In nonlinear partial differential equations, Cenesiz et al. studied new

exact solutions of Burgers’ type equations with conformable derivative [11]. In physics and engineering, a class of new

fractional derivative named general conformable fractional derivative to describe the physical world was introduced

by Zhao and Luo [12].

One thing that seems missing is the developments of Lyapunov inequality for the conformable fractional derivative.

In this paper, we study Lyapunov-type inequalities for the conformable fractional derivative.

Let us recall some notations of conformable fractional derivative used in the subsequent section of this paper [1].

Definition 1.2. (i) The (left) fractional derivative starting from a of a function f : [a,∞) −→ R of order 0 < α ≤ 1

is defined by

(Tα
a f) (t) = lim

ϵ→0

f
(
t+ ϵ (t− a)

1−α
)
− f (t)

ϵ
.

When a = 0 we write Tα. If (Tα
a f) (t) exist on (a, b) then (Tα

a f) (a) = lim
t→a+

(Tα
af) (t).
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(ii) The (right) fractional derivative of order 0 < α ≤ 1 terminating at b of f is defined by

(αb Tf) (t) = − lim
ϵ→0

f
(
t+ ϵ (b− t)

1−α
)
− f (t)

ϵ
.

If (bTαf) (t) exist on (a, b) then (bTαf) (b) = lim
t→b−

(bT
αf) (t).

Definition 1.3. Let α ∈ (n, n+ 1] and β = α − n. Then, the (left) conformable fractional derivative of order α for

the function f : [a,+∞) → R, is defined by

(Tα
af) (t) = (T β

a f
(n))(t)

When a = 0 we write Tα. The (right) conformable fractional derivative of order α terminating at b from f is defined

by

(αb Tf) (t) = (−1)
n+1

(βb Tf
(n))(t)

Some basic properties of conformable fractional derivative were summarized in [1], we cite some of them:

Proposition 1.4. Let α ∈ (0, 1] and f(t), h(t) be conformable fractional differentiable of order α functions. Then

(1) Tα
a (kf(t) + h(t)) = kTα

a (f(t))+Tα
a (h(t)) for all k ∈ R;

(2) Tα
a (f(t) h(t)) = f(t)Tα

a (h(t))+h(t)Tα
a (f(t)) ;

(3) Tα
a (C)= 0 for all constants C ∈ R;

(4) Tα
a

(
tβ
)
= βtβ−α for all constants β ∈ R.

The problem is whether Lyapunov’s inequality can be proved for the conformable fractional derivative? Next section

answers this question.

2. Lyapunov-type inequality for conformable fractional differential equations

In this section, we give Lyapunov-type inequality for conformable fractional differential equations with different types

of boundary conditions.

Theorem 2.1. If the following boundary value problem

Tα
ay (t) + q (t) y (t) = 0, a < t < b, 1 < α ≤ 2, (2)

under the boundary conditions

y (a) = 0, y (b) = 0, (3)

or

y (a) = 0, y′ (b) = 0, (4)
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or

y′ (a) = 0, y (b) = 0, (5)

has a nontrivial solution, where q is a real and continuous function in [a, b], then for (2)-(3)
∫ b

a

|q (s)| ds ≥ αα

(α− 1)
α−1

(b− a)
α−1 ,

and for (2)-(4) ∫ b

a

|q (s)| ds ≥ (b− a)
1−α

,

also for (2)-(5) ∫ b

a

(s− a)
α−2 |q (s)| ds ≥ 1

b− a
.

Remark 2.2. If α = 2 in Theorem 2.1, then we have the classical Lyapunov inequality 1.

For proof of Theorem 2.1, we need the following lemmas.

Lemma 2.3. y ∈ C[a, b] is a solution

i) for (2)-(3) if and only if y satisfies the integral equation

y (t) =

∫ b

a

G1 (t, s) q (s) y (s) ds,

where

G1 (t, s) =

{
(s−a)α(b−t)
(b−a)(s−a) , a ≤ s ≤ t ≤ b,
(b−s)(t−a)

(b−a)(s−a)2−α , a ≤ t ≤ s ≤ b.

ii) for (2)-(4) if and only if y satisfies the integral equation

y (t) =

∫ b

a

G2 (t, s) q (s) y (s) ds,

where

G2 (t, s) =

{
(s− a)

α−1
, a ≤ s ≤ t ≤ b,

(t−a)

(s−a)2−α , a ≤ t ≤ s ≤ b.

iii) for (2)-(5) if and only if y satisfies the integral equation

y (t) =

∫ b

a

G3 (t, s) q (s) y (s) ds,

where

G3 (t, s) =

{
(b−t)

(s−a)2−α , a ≤ s ≤ t ≤ b,
(b−s)

(s−a)2−α , a ≤ t ≤ s ≤ b.
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Proof. y (t) is a solution to (2) if and only if

y (t) = y (a) + y′ (a) (t− a)− Iαa (q (t) y(t)) .

i) Since y (a) = y (b) = 0, we get

y (t) =
t− a

b− a

∫ b

a

(b− s) q (s) y (s) ds

(s− a)
2−α −

∫ t

a

(t− s) q (s) y (s) ds

(s− a)
2−α ,

ii) by y (a) = 0, y′ (b) = 0, we have

y (t) = (t− a)

∫ b

a

q (s) y (s) ds

(s− a)
2−α −

∫ t

a

(t− s) q (s) y (s) ds

(s− a)
2−α ,

iii) from y′ (a) = 0, y (b) = 0, we obtain

y (t) =

∫ b

a

(b− s) q (s) y (s) ds

(s− a)
2−α −

∫ t

a

(t− s) q (s) y (s) ds

(s− a)
2−α ,

which completes the proof (i)-(iii).

Lemma 2.4. We have the following properties:

i) max
(t,s)∈[a,b]×[a,b]

G1 (t, s) =
(α− 1)

α−1
(b− a)

α−1

αα
,

ii) max
(t,s)∈[a,b]×[a,b]

G2 (t, s) = (b− a)
α−1

,

iii) max
t∈[s,b]

G3 (t, s) =
(b− s)

(s− a)
2−α .

Proof. For (i) Define

g1 (t, s) =
(s− a)

α
(b− t)

(b− a) (s− a)
, a ≤ s ≤ t ≤ b,

g2 (t, s) =
(b− s) (t− a)

(b− a) (s− a)
2−α , a ≤ t ≤ s ≤ b.

It is easy to see that g2 (t, s) ≥ 0 and g1 (t, s) ≥ 0. Obviously, g2 (t, s) is an increasing function and g1 (t, s) is a

decreasing with respect to t for every fixed s. So,

max
t∈[s,b]

g1 (t, s) = g1 (s, s) and max
t∈[a,s]

g2 (t, s) = g2 (s, s) .

Therefore,

max
t∈[a,b]

G1 (t, s) = G1 (s, s) =
(s− a)

α−1
(b− s)

b− a
, s ∈ [a, b] .



Author / The 3rd National Congress on Mathematics and Statistics 513

Then, for s ∈ (a, b) , we have

∂

∂s
(G (s, s)) =

1

b− a
(s− a)

α−2
(a− b+ bα− sα) .

Thus,
∂
∂s (G (s, s)) > 0 if s < 1

α (a− b+ bα) ,

∂
∂s (G (s, s)) = 0 if s = 1

α (a− b+ bα) ,

∂
∂s (G (s, s)) < 0 if s > 1

α (a− b+ bα) .

So,

max
s∈[a,b]

G (s, s) =
1

b− a

(
1

α
(a− b+ bα)− a

)α−1 (
b− 1

α
(a− b+ bα)

)

=
1

αα
(α− 1)

α−1
(b− a)

α−1
.

Also for (ii) and (iii), they are clear which complete the proof. □

Proof of Theorem 2.1. Let B = C[a, b] be the Banach space endowed with norm ∥y∥ = sup
t∈[a,b]

|y (t)|. Lemma 2.3

implies that solutions for (2)-(3), (2)-(4) and (2)-(5) satisfiy the following integral equations, respectively

y (t) =

∫ b

a

Gi (t, s) q (s) y (s) ds, i = 1, 2, 3.

Hence,

∥y∥ ≤ ∥y∥
∫ b

a

|Gi (t, s) q (s)| ds, i = 1, 2, 3

=⇒ 1 ≤
∫ b

a

|Gi (t, s) q (s)| ds, i = 1, 2, 3.

Now by Lemma 2.4 the proof is completed. □

Conclusions

In this work, we have extended the Lyapunov-type inequality for conformable fractional differential equations with

different types of boundary conditions. The obtained results are so good. Also we have seen that the Lyapunov-

type inequalities with conformable fractional derivative are coincident to ones that order of derivative is equal 2, as

expected.
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Abstract

In this study, we consider a type of limit shadowing, exponential limit shadowing property, which
has been recently introduced. By giving examples, it is shown that this type of limit shadowing
is different from the other shadowings. Furthermore, we extend this type of shadowing property
to positively expansive maps with the shadowing property.

1. Introduction and Preliminaries

The shadowing property is an important subject in dynamical systems. Given δ > 0, a sequence ξ = {xi}i∈Z ⊂ X
with the property

d(f(xi), xi+1) < δ, i ∈ Z, (1)

is called a δ-pseudo-orbit. Often pseudo-orbits are obtained as result of the numerical studies of dynamical systems.
The dynamical system (X, f) has the shadowing property (or POTP, for short) on a set Y ⊂ X , if for each ϵ > 0 there
exists δ > 0 such that for a given δ-pseudo-orbit ξ = {xi}i∈Z ⊂ Y there is some points p ∈ X with the property that

d(f i(p), xi) < ϵ, i ∈ Z. (2)

If this holds on Y = X , then it is said that f has the POTP. It is well known that a diffeomorphism has the POTP on a
neighborhood of its hyperbolic set.
We say that the dynamical system f has the Lipschitz shadowing property (LpSP) onY if there exist constantsL, δ0 > 0
such that for every δ-pseudo-orbit ξ = {xi}i∈Z ⊂ Y with 0 < δ < δ0, there exists some point p ∈ X so that
d(f i(p), xi) < Lδ, i ∈ Z. Indeed, the LpSP is stronger than the POTP. Also, it is proved that the LpSP holds on
a neighborhood of hyperbolic set [5]. Note that Pilyugin et al. in [7] interestingly, showed that the LpSP implies
structural stability (and therefore, the LpSP is equivalent to structural stability). In addition, they proved that Anosov
systems are equivalent to expansive systems that have the LpSP [7, Corollary 3].
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Another kind of shadowing property is the limit shadowing property (LmSP)[2]. Precisely, we say that the dynamical
system (X, f) has the limit shadowing property if for any sequence ξ = {xi}i≥0 ⊂ X with the property

d(f(xi), xi+1) → 0, i → ∞ (3)

there is a point p ∈ X such that
d(f i(p), xi) → 0, i → ∞. (4)

From the numerical point of view, this property means that if we apply a numerical method that approximates the
orbits of f with improving accuracy so that one-step errors go to zero as time goes to infinity, then the numerically
obtained trajectories tend to the real ones.
Lee and Sakai in [4], proved that expansive systems with the shadowing property have limit shadowing property.
More recently, Kulczycki et al. considered the converse case. In [3], they proved that in compact dynamical systems,
chain transitivity together with limit shadowing property implies the shadowing property and transitivity. Therefore,
in transitive expansive systems, the shadowing and the limit shadowing are equivalent. See [3, Corollary 7.5].
Ahmadi and Molaei in [1] introduced a new type of limit shadowing such that one-step errors tend to zero with expo-
nential rate. Their definition is as follows :

Definition 1.1. [1] The dynamical system f has the strong exponential limit shadowing (SELmSP, for short) onM if
there exist constants L > 0 and λ ∈ (0, 1) such that for every sequence ξ = {xk}k≥0 with

d(f(xk), xk+1) ≤ λk, k ≥ k1, k1 ∈ N (5)

there exists a point p ∈ M and k2 ∈ N such that

d(fk(p), xk) ≤ Lλk, k ≥ k2, k2 ∈ N. (6)

In [1] the authors studied a weaker form of the strong exponential limit shadowing, named the exponential limit
shadowing property (ELmSP, for short). Indeed, their definition replaces the exponential term λk by λ k

2 in relation 6.
They proved that the ELmSP holds on a neighborhood of a hyperbolic set.

2. The SELmSP property

Note that it is easy to show that the strong exponential limit shadowing property is invariant of topological conjugacy.
In fact, suppose (X, f) and (Y, g) are two conjugate systems, i.e., hof = goh, where h is a conjugacy.
Assume that f has the SELmSPwith constantsL and λ, and ξ = {yk}k≥0 is a sequence such that dY (g(yk), (yk+1)) ≤
λ

k
2 for k ≥ k1. Fix i, k big enough (i ≥ k ≥ k1). By uniform continuity of h−1 choose δ > 0 corresponding to

ϵ = λi. Note that, if necessary, by increasing k1 we can assume that λ k
2 < δ. Now dX

(
fh−1(yk), h

−1(yk+1)
)
=

dX
(
h−1g(yk), h

−1(yk+1)
)
< λi < λk, k ≥ k1 . So, h−1(ξ) satisfies relation 5 for f . Therefore, there exists z ∈ X

and k2 ∈ N so that dX(fk(z), h−1(yk)) < Lλk, for k ≥ k2. Again, fix i, k big enough (i ≥ k ≥ k2). By uniform
continuity of h choose η > 0 corresponding to ϵ = Lλi. Note that, if necessary, by increasing k2 we can assume that
Lλk < η. By choosing η and k2 we have dY (gkh(z), yk) = dY (hf

k(z), hh−1(yk)) < Lλi < Lλ
k
2 , for k ≥ k2

hence h(z) is the required point and g has the SELmSP with constants L and λ 1
2 . The remaining part is similar.

Proposition 2.1. If f is a surjection that has the SELmSP, then so does fn for all n > 0.

Proof. Fix n > 0 and suppose λ ∈ (0, 1) and L > 0 are the constants in definition of the SELmSP for f . Let
ξ = {xi}∞i=0 be a sequence which satisfies the relation 5 with constant λn in place of λ for the map fn, define the
sequence η = {yi}∞i=0 with

yk =

{
x0 k = 0,
fk−nq−1(xq+1) nq < k ≤ n(q + 1).

Indeed,

η ={x0, x1, f(x1), f
2(x1), . . . , f

n−1(x1), x2, f(x2), f
2(x2), . . . ,

fn−1(x2), x3, f(x3), f
2(x3), . . . , f

n−1(x3), . . . }



A. Darabi / The 3rd National Congress on Mathematics and Statistics 517

then for k = nq we have

d(f(yk), yk+1) = d(fn(xq), xq+1) < (λn)q = λk. So, η = {yi}∞i=0 satisfies the relation 5 for the map f . Hence
there exists z ∈ X such that d(fk(z), yk) < Lλk. If we put k = nq − (n− 1) in the last inequality we get yk = xq ,
and d

(
(fn)q(p), xq

)
< Lλnq−(n−1) = Lλ−(n−1)(λn)q , which p = f−(n−1)(z). Therefore fn has the SELmSP with

constants λn and L0 = Lλ−(n−1)

In the following, we are going to show that the SELmSP holds for a class of non-homeomorphisms. Precisely, we
show that the SELmSP holds for positively expansive maps having the POTP. In [1, Corollary 3.1], the author deduced
that expansive homeomorphisms on a compact metric space with the POTP also have the exponential limit shadowing
property. Here, we are going to extend this result for positively expansive maps.

Theorem 2.2. Let f : X → X be a positively expansive map on compact metric space X having the LpSP. Then f
has also the SELmSP.

Proof.

It is well-known that for positively expansive maps on a compact metric space, being an open map, the standard
shadowing property, and the Lipschitz shadowing are all equivalent [8, Theorem 1]. So, readily we get the following
result.

Corollary 2.3. Suppose that f : X → X is a positively expansive map on a compact metric space. If f has the POTP
(or equivalently is an open map), then it has the SELmSP.

3. Examples

The following example shows that not every system has the SELmSP property.

Example 3.1. LetX = {0, 1, 1
2 , . . . } be a metric space with the usual metric onR, and define f(0) = 1, f( 1n ) =

1
n+1 .

Now, take (xi)i∈N = {1, 1
2 , . . . } so we have d(f(xi), xi+1) = 0. It can be easily shown that f i(z) = z

iz+1 for every
i > 0. Hence for every L > 0 and λ ∈ (0, 1), there is no points z ∈ X such that d(f i(z), xi) ≤ Lλi.

The next example, which is called permutation of two points, is clearly an open positively expansive map on a compact
metric space that does not have the two-sided limit shadowing. However, we observe that by Corollary 2.3, it has the
strong exponential limit-shadowing. Therefore, the SELmSP is different from the two-sided limit shadowing.

Example 3.2. Let X = {a, b} and define f(a) = b and f(b) = a, so f is a homeomorphism on X . Fix 0 < λ < 1,
for each exponentially-limit pseudo-orbit {xn}n≥0 (relation 5) there exists N ∈ N such that xN+k = a, if k is even
or xN+k = b, if k is odd. In other words, each exponentially limit pseudo-orbit is, by neglecting a finite beginning
terms, a periodic sequence of the form ab or ba. Then either z = a or b, exponentially limit shadows the sequence
{xn}n≥0, i.e., the relation 6 holds with constants λ ∈ (0, 1) and L = 1.

Remark 3.3. It can be easily shown that the above example is transitive, but not topologically mixing (and since it has
the POTP, so equivalently not chain mixing). Therefore, the chain mixing (and topologically mixing) is not necessary
for the SELmSP.
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Abstract

In this paper, we focus on Boubaker polynomials in optimal control problems (OCPs) with pan-
tograph delays. In fact, the functions of the problem are approximated by Boubaker polynomials
with unknown coeffcients in the constraint equations, performance index and conditions. Nu-
merical result is given for a test example to demonstrate the applicability and effciency of the
method.

1. Introduction

OCPs have an important role in some areas including engineering economics and finance. A computational strategy
for solving optimal control problem (OCP) is developed by Wu, et al. [8] which is obtained by a switched dynamical
system with time delay. Kharatishidi [4] approached this problem by extending the Pontryagin’s maximum principle
to time delay systems (TDS). The actual solution involves a two-point boundary value problem in which advances
and delays are stated. In addition, this solution does not yield a feedback controller. OCP with time delay has been
considered by Oguztoreli [7] who achieving several findings concerning bang-bang controls which are parallel to
those of LaSalle [6] for non delay systems. For a time invariant system with an infinite upper limit in the performance
measure, Krasovskii [5] developed the forms of the controller and the performance measure. An optimal regulator for
a linear system with multiple states, input delays and a quadratic criterion is presented in [1]. The optimal regulator
equations were achieving by reducing original problem to the linear quadratic regulator design for a system without
delays (see [1] and [2]).
Here, we state Boubaker polynomials for solving OCPs with pantograph delays. The outline of this paper is as follows:
In Section 2, Boubaker polynomials is introduced. an example is given in Section 3. Section 4 is dedicated the
conclusion.
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2. Boubaker polynomials

In this section, Boubaker polynomials (BPs), which are used for solving OCPs with pantograph delay, are reviewed
briefy. The BPs were established for the first time by Boubaker et al.[3] to solve heat equation inside a physical model.
The first monomial dfinition of the Boubaker polynomials on [0, 1] is as follows:

Bk(t) =

⌊i/2⌋∑

r=0

(−1)r
(
i− r

r

)
i− 4r

i− r
ti−2r, i ≥ 2,

where the ⌊.⌋ is the floor function. Also we have
B0(t) = 1,

B1(t) = t,

B2(t) = t2 + 2,

B3(t) = t3 + t,

Bm(t) = tBm−1(t)−Bm−2(t), m > 2,

In this paper, the state and cotrol variables are approximated as follows:

xn(t) =
n∑

k=0

akBk(t), n = 1, 2, 3, . . . ,

un(t) =
n∑

k=0

bkBk(t), n = 1, 2, 3, . . .

Note: For function approximation, one may approximate x(t) and u(t) by Boubaker functions, and subsititute in
OCPs. Therefore one may solve a new problem for finding the unknown variables ak and bk.

2.1. Function approximation
If Y = span{B0(t), B1(t), . . . , Bm(t)} is a finite dimensional and closed subspace of the Hilbert spcaeH = L2[0, 1],
then there is a unique best approximation out of Y such as x̃ ∈ Y for each x ∈ H , that is

∀y ∈ Y, ∥x− x̃∥ ≤ ∥x− y∥.
Since x̃ ∈ Y , there exist unique coefficients c0, c1, . . . , cn such that

x(t) ≈ x̃(t) =
n∑

j=0

cjBj(t) = CTψ(t),

C = [c0, c1, . . . , cn]
T ,

ψ(t) = [B0(t), B1(t), . . . , Bn(t)]
T .

where T indicate transposition.

3. Numerical example

Here, we solve an example for showing the validity of themethod. Also, it can be shown that if the number of Boubaker
basis functions is increased this method is convergent.
Example 3.1. Presently, consider the following OCPs with pantograph delay

min J =
1

2

∫ 4

0

x2(t) + u2(t) dt,

s.t.
dx(t)

dt
= x(0.5t) + 4u(t),

x(0) = 1,

where the obtained cost function is J = 0.181347551889203373. The Fig.1 is obtained by proposed method.
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Fig. 1. The graph of approximated solution for Example 3.1

4. Conclusions

This paper presents a numerical technique for solving OCPs with pantpgraph delays via Boubaker polynomials. Also,
we solved an example for showing the validity of the method. Also, it can be shown that if the number of Boubaker
basis functions is increased this method is convergent.
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Abstract

The travelling salesman problem one of the well-knownNP-hard problems, and there are various
models with respect to its different specifications of the travalling salesman problem. Specially,
the symmetric travelling salesman problem is one of the most studied models, which has been
applied for routingmodels. The critical node detection problem has received increasing attention
throughout the routing models. It is defined as the node its deletion from the network results in
the largest decrease of the optimal cost. The 2-opt heuristic is applied by the critical node in the
symmetric traveling salesman problem and the the iterations are reduced significantly. Then,
the pseudo-critical node is detected in the approximate solution, whose removal results in the
largest decrease of the approximate cost. So, the 2-opt heuristic is applied by the pseudo-critical
node and the optimal or nearby optimal solution is obtained.

1. Introduction

The critical node is an important issue for decision makers in the optimization models. There are various definition of
the critical node according to the applications; however, the most addressed critical (or important) node is related to
the connectivity of the network with respect to a connectivity criteria [2, 8, 10, 11]. The critical node is detected as the
node its removal results in the maximum decrease of the optimal cost. So, let C∗(n) be the optimal cost of network
G = (N,A) and C∗(n− 1) be the optimal cost of the reduced network Ḡ = (N̄ , Ā) by removing the critical node vc
from G, then Ḡ = G \ vc.
In the general case the critical node problem (CNP) is NP-complete [3] and it was shown for trees the problem is
NP-complete, too [6]. Since the present definition of the critical node is based on the optimal solution, then it remains
NP-complete, too. However, there are polynomial time algorithms for the travelling salesman problem (TSP) where
the costs are satisfying the triangle inequality [5, 7].
Jiang et al. [8] applied a nonconvex quadratically constrained quadratic programming model instead of integer linear
programming model to formulate the critical node detection problem (CNDP); they determined approximate solutions
by semidefinite programming technique semidefinite programming technique. Santos et al. [11] studied p critical
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nodes problem according to the connectivity of the network and the solution computationally were improved. Vere-
myev et al. [13] considered two deterministic and probabilistic versions of CNDP; so, they studied a mixed integer
linear programming for the deterministic one, and based on Markov chain process a scenario based formulation was
presented for the probabilistic one. Aringhieri et al. [2] studied some classes of CNP where the objective function is
impacted by the distances of the node pairs; they showed in the general cases the problem is NP-complete. Li et al.
[9] studied a bi-objective critical node detection problem based on the psychology of decision makers and the pairwise
connectivity of the network, and they proved the problem is NP-Hard in the general case.
Chen et al. [4] considered the negative CNP where the larger edge weights demonstrate the weaker relationship
between nodes; their objective was simultaneously minimization of pairwise connectivity and maximization of the
weights between the nodes. Alozie et al. [1] developed an algorithm for distance based CNDP for separating the
problem by breadth first search tree generation. Zhou et al. [14] considered node weighted critical node problem,
and they applied a local search procedure and a late acceptance strategy to find a local optimal solution. Shukla [12]
developed an algorithm to solve a three dimensional CNDP.

2. Distance critical node detection problem formulation

In this paper, the critical node is defined according to the most decreasing in the optimal cost of TSP (D-CNDP). The
network G = (N,A) is a complete network with symmetric arc costs, so cij = cji for all (i, j) ∈ A. Thus, it is
assumed the arc costs cij are satisfying the triangle inequality, and there are some approximate solution in polynomial
time [5, 7].
Consider the following TSP formulation to obtain minimum Hamiltonian path in the network

min
n∑

i=1

n∑

j ̸=i,j=1

cijxij (1)

n∑

i=1,i ̸=j

xij = 1, j = 1, 2, ..., n (2)

n∑

j=1,j ̸=i

xij = 1, i = 1, 2, ..., n (3)

∑

i∈V

∑

j ̸=i,j∈V

xij ≤ |V | − 1, ∀V ⊊ {1, 2, ..., n}, |V | ≥ 2 (4)

The objective function 1 determines a minimum length Hamiltonian cycle; the constraints 2 and 3 imply any node to
traverse exactly once, and the last constraint 4 implies any pure subset of the nodes constructs a path. To determine
the critical node in the network the following formulation is presented the above problem should be solved for any
node i ∈ N , and in the reduced network G \ {i}, in the general form.

Fig. 1. The O-SSP algorithm

Input the optimal tour P ∗

Let C∗ be the optimal cost of P ∗

Let C̄∗ = ∞
for vi = 1 to n = |P ∗| do

∆vi = cvi−1,vi
+ cvi,vi+1

− cvi−1,vi+1

Delete node vi for P ∗

C̄vi = C∗ −∆vi

if C̄vi < C̄∗ then
C̄∗ = C̄vi

v̄ = vi
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Theorem 2.1. The critical node for the original network G = (N,A) is the critical node for the optimal tour P ∗ in
G.

By Theorem 2.1, the optimal solution P ∗ contains n nodes and the D-CNDP could be solved in O(n) (see Figure 1).
let v̄ be the critical node in G, then

v̄ = argmax∀vi∈N{C∗ − (cvi−1,vi
+ cvi,vi+1

) + cvi−1,vi+1
}

Fig. 2. The instance network ulysses16 and the optimal tour

For the instance network ulysses16 (see Figure 2), there 16 nodes in the network with the symmetric and geometric
lengths for the arc lengths; the critical node is detected as node 11 and the length of the optimal tour is 6859 and the
optimal cost by the removal of the critical node 11 is obtained 5216.

Theorem 2.2. The optimal solution P ∗ of symmetric traveling salesman problem (S-TSP) in the original network
G = (N,A) is reduced to the optimal solution P̄ ∗ in the reduced network Ḡ = (N̄ , Ā), where N̄ = N \ {i} and
Ā = A \ {(v̄, i) : v̄ is the critical node in the network G}.

By Theorem 2.2, the optimal solution for networkG is transformed into the optimal solution of the reduced network Ḡ
by removal the critical node from the optimal solution P ∗. So, in the instance network ulysses16, the optimal solution
1,14,13,12,7,6,15,5,11,9,10,16,3,2,4,8 is transformed into the optimal solution 1,14,13,12,7,6,15,5,9,10,16,3,2,4,8, for
the reduced network

2.1. Pseudo critical node in the approximation solution
According to the complexity of S-TSP, the approximate solution for the problem is respected in the polynomial time.
So, the pseudo-critical node is defined similarly to the critical node, but it is related to the approximate solution. Thus,
ṽ is the pseudo-critical node with respect to the approximate solution P̃ , if its removal results the largest decrease in
the length of the approximate solution.
The 2-opt algorithm applies two point exchanges in a feasible tour for TSP, and it attempts to improve the tour lengths
alliteratively. We apply the 2-opt algorithm by the pseudo-critical node and it results in fewer iterations against the
general algorithm. For the instance network ulysses16, the obtained approximate solution by Christofides’ algorithm
[5] is shown in Figure 3. The node 11 is detected as the pseudo-critical node. After 4 iterations of the 2-opt algorithm
(iterations 3 and 4 are the same), the approximate solution 1,8,4,2,3,16,13,12,7,6,10,9,11,14,15,5 with length 7788 is
transformed into the optimal solution (see Figure 4).
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Fig. 3. The approximate solution for the instance network ulysses16

Fig. 4. The instance network ulysses16 and the iterations of the 2-opt algorithm

3. Conclution

The S-TSP is considered with the arc lengths satisfying the triangle inequality. So, a distance critical node is defined
as the node its removal results in the largest decrease in the optimal tour. It is shown, by removing the critical node
from the optimal solution, the optimal solution is obtained for the reduced network. Then, the pseudo-critical node
is detected in an approximate solution, the 2-opt algorithm is improved to find the optimal solution (nearby optimal
solution) in a fewer iterations against the general algorithm.
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Abstract

In this paper, anti fuzzy SU-subalgebra under conorms will be defined and will be investigated
their properties. Also union and direct sum of themwill be introduced and will be obtained some
new results about them. Finally, will be investigated them under SU-algebra homomorphisms.

1. Introduction

Since several years ago, the theory of fuzzy sets has advanced in a variety of ways and inmany disciplines. Applications
of this theory can be found, for example, in artificial intelligence, computer science, control engineering, decision
theory, expert systems, logic, management science, operations research, pattern recognition, and robotics. Theoretical
advances have been made in many directions. In fact it is extremely difficult for a newcomer to the field or for
somebody who wants to apply fuzzy set theory to his problems to recognize properly the present ”state of the art.”
Therefore, many applications use fuzzy set theory on a much more elementary level than appropriate and necessary.
On the other hand, theoretical publications are already so specialized and assume such a background in fuzzy set theory
that they are hard to understand. Fuzzy sets were introduced independently by Zadeh in 1965 as an extension of the
classical notion of set [34]. Keawrahun and Leerawat [3] introduced new structured algebra called SU-Algebra. The
First author by using norms, investigated some properties of fuzzy algebraic structures[5-33]. In this paper, by using
t-conorms, we define anti fuzzy SU-subalgebra and direct sum of them and obtain some results about them. Next we
define union of them and investigate their properties. Later, we consider SU-subalgebra homomorphisms over them
and prove some properties of them.
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2. Preliminaries

This section contains some basic definitions and preliminary results which will be needed in the sequal. For more
details we refer to [1-7].

Definition 2.1. A SU-algebra is a non-empty set X with a consonant 0 and a single binary operation ∗ (denoted by
(X, ∗, 0) ) satisfying the following axioms for any x, y, z ∈ X:
(1) ((x ∗ y) ∗ (x ∗ z)) ∗ (y ∗ z) = 0,
(2) x ∗ 0 = x,
(3) if x ∗ y = 0, then x = y.

Definition 2.2. A non-empty subset S of a SU-algebra X is said to be a subalgebra if x ∗ y ∈ S for all x, y ∈ S.

Definition 2.3. A function f : X → Y of SU-algebrasX and Y is called a homomorphism if f(x ∗ y) = f(x) ∗ f(y)
for all x, y ∈ X.

Definition 2.4. A function f : X → Y of SU-algebrasX and Y is called anti homomorphism if f(x∗y) = f(y)∗f(x)
for all x, y ∈ X.

Definition 2.5. A fuzzy subset of a setX , we mean a function fromX into [0, 1]. The set of all fuzzy subsets ofX is
called the [0, 1]-power set of X and is denoted [0, 1]X .

Definition 2.6. Let φ : X → Y be a function such that µ ∈ [0, 1]X and ν ∈ [0, 1]Y . For all x ∈ X, y ∈ Y, we define

φ(µ)(y) =

{
inf{µ(x) | x ∈ X,φ(x) = y} if φ−1(y) ̸= ∅

0 if φ−1(y) = ∅
also φ−1(ν)(x) = φ−1(ν)(x) = ν(φ(x)).

Definition 2.7. A t-conorm C is a function C : [0, 1]× [0, 1] → [0, 1] having the following four properties:
(C1) C(x, 0) = x
(C2) C(x, y) ≤ C(x, z) if y ≤ z
(C3) C(x, y) = C(y, x)
(C4) C(x,C(y, z)) = C(C(x, y), z) ,
for all x, y, z ∈ [0, 1].

Corollary 2.8. Let C be a C-conorm. Then for all x ∈ [0, 1]
(1) C(x, 1) = 1.
(2) C(0, 0) = 0.

Example 2.9. (1) Standard union t-conorm Cm(x, y) = max{x, y}.
(2) Bounded sum t-conorm Cb(x, y) = min{1, x+ y}.
(3) Algebraic sum t-conorm Cp(x, y) = x+ y − xy.
(4) Drastic T -conorm

CD(x, y) =





y if x = 0
x if y = 0
1 otherwise,

dual to the drastic T -norm.
(5) Nilpotent maximum T -conorm, dual to the nilpotent minimum T -norm:

CnM (x, y) =

{
max{x, y} if x+ y < 1

1 otherwise.

(6) Einstein sum (compare the velocity-addition formula under special relativity) CH2
(x, y) =

x+ y

1 + xy
is a dual

to one of the Hamacher t-norms. Note that all t-conorms are bounded by the maximum and the drastic t-conorm:
Cmax(x, y) ≤ C(x, y) ≤ CD(x, y) for any t-conorm C and all x, y ∈ [0, 1].
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Recall that t-norm T ( t-conorm C) is idempotent if for all x ∈ [0, 1], T (x, x) = x(C(x, x) = x).

Lemma 2.10. Let C be a t-conorm. Then

C(C(x, y), C(w, z)) = C(C(x,w), C(y, z)),

for all x, y, w, z ∈ [0, 1].

Definition 2.11. Let µ, ν ∈ [0, 1]X and define unon µ and νB as (µ ∪ ν)(x) = C(µ(x), ν(x)) for all x ∈ X.

Definition 2.12. Let µ ∈ [0, 1]X and ν ∈ [0, 1]Y . By using t-conorm C, define µ⊕ ν ∈ [0, 1]X⊕Y as direct sum of µ
and ν such that (µ⊕ ν)(x, y) = C(µ(x), ν(y)) for all x ∈ X and y ∈ Y.

3. Conorms over anti fuzzy SU-subalgebras

Definition 3.1. A fuzzy subset µ : (X, ∗, 0) → [0, 1] in a SU-algebra (X, ∗, 0) is said to be an anti fuzzy SU-
subalgebra of X under t-conorm C if µ(x ∗ y) ≤ C(µ(x), µ(y)) for all x, y ∈ X. We denote the set of all anti fuzzy
SU-subalgebras of X under t-conorm C by AFSUC(X).

Example 3.2. Let X = {0, 1, 2, 3} be a set with the following table:
∗ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Then (X, ∗, 0) is a SU-algebra. Define fuzzy subset µ : (X, ∗, 0) → [0, 1] as

µ(x) =





0.3 if x = 0
0.4 if x = 1
0.5 if x = 2
0.55 if x = 3

and let Cp(a, b) = a+ b− ab for all a, b ∈ [0, 1]. Then µ ∈ AFSUC(X).

Proposition 3.3. Let µ ∈ AFSUC(X). If C be idempotent, then µ(0) ≤ µ(x) for all x ∈ X.

Proof. Let x ∈ X. Then
µ(0) = µ(x ∗ x) ≤ C(µ(x), µ(x)) = µ(x)

and thus µ(0) ≤ µ(x).

Proposition 3.4. Let µ, ν ∈ AFSUC(X). Then µ ∪ ν ∈ AFSUC(X).

Proof. Let x, y ∈ X. Then
(µ ∪ ν)(x ∗ y)

= C(µ(x ∗ y), ν(x ∗ y))
≤ C(C(µ(x), µ(y)), C(ν(x), ν(y)))

= C(C(µ(x), ν(x)), C(µ(y), ν(y)))

= C((µ ∪ ν)(x), (µ ∪ ν)(y))

and then
(µ ∪ ν)(x ∗ y) ≤ C((µ ∪ ν)(x), (µ ∪ ν)(y)).

Therefore
µ ∪ ν ∈ AFSUC(X).
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Proposition 3.5. Let φ be a homomorphism from SU-algebra ofX into SU-algebra of Y and µ ∈ AFSUC(X). Then
φ(µ) ∈ AFSUC(Y ).

Proof. Let y1, y2 ∈ Y. Then

φ(µ)(y1 ∗ y2) = inf{µ(x1 ∗ x2) | x1, x2 ∈ X,φ(x1) = y1, φ(x2) = y2}

≤ inf{C(µ(x1), µ(x2)) | x1, x2 ∈ X,φ(x1) = y1, φ(x2) = y2}
≤ C(inf{µ(x1) | x1 ∈ X,φ(x1) = y1}, inf{µ(x2) | x2 ∈ X,φ(x2) = y2})

= C(φ(µ)(y1), φ(µ)(y2))

thus
φ(µ)(y1 ∗ y2) ≤ C(φ(µ)(y1), φ(µ)(y2))

then φ(µ) ∈ AFSUC(Y ).

Proposition 3.6. Let φ be an anti homomorphism from SU-algebra ofX into SU-algebra of Y and µ ∈ AFSUC(X).
Then φ(µ) ∈ AFSUC(Y ).

Proof. The proof is similar to proof of Proposition 3.5.

Proposition 3.7. Let φ be a homomorphism from SU-algebra ofX into SU-algebra of Y and ν ∈ AFSUC(Y ). Then
φ−1(ν) ∈ AFSUC(X).

Proof. Let x1, x2 ∈ X. Then

φ−1(ν)(x1 ∗ x2) = ν(φ)(x1 ∗ x2) = ν(φ(x1) ∗ φ(x2))

≤ C(ν(φ(x1)), ν(φ(x2))) = C(φ−1(ν)(x1), φ
−1(ν)(x2))

and thus
φ−1(ν)(x1 ∗ x2) ≤ C(φ−1(ν)(x1), φ

−1(ν)(x2)).

Therefore φ−1(ν) ∈ AFSUC(X).

Proposition 3.8. Let φ be an anti homomorphism from SU-algebra ofX into SU-algebra of Y and ν ∈ AFSUC(Y ).
Then φ−1(ν) ∈ AFSUC(X).

Proof. The proof is similar to proof of Proposition 3.7.

Proposition 3.9. Let µ ∈ AFSUC(X) and ν ∈ AFSUC(Y ). Then µ⊕ν ∈ AFSUC(X⊕Y ) for every SU-algebra
of X and SU-algebra of Y.

Proof. Let (x1, y1), (x2, y2) ∈ X × Y. Thus

(µ⊕ ν)((x1, y1) ∗ (x2, y2))

= (µ⊕ ν)(x1 ∗ x2, y1 ∗ y2)
= C(µ(x1 ∗ x2), ν(y1 ∗ y2))

≤ C(C(µ(x1), µ(x2)), C(ν(y1), ν(y2)))

= C(C(µ(x1), ν(y1)), C(µ(x2), ν(y2)))

= C((µ⊕ ν)(x1, y1), (µ× ν)(x2, y2))

then
(µ⊕ ν)((x1, y1) ∗ (x2, y2)) ≤ C((µ⊕ ν)(x1, y1), (µ⊕ ν)(x2, y2))

so µ⊕ ν ∈ AFSUC(X ⊕ Y ).
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Proposition 3.10. Let µ ∈ [0, 1]X and ν ∈ [0, 1]Y . If µ ⊕ ν ∈ AFSUC(X ⊕ Y ), then at least one of the following
statements hold:
(1) µ(0) ≥ ν(y) for all y ∈ Y,
(2) ν(0) ≥ µ(x) for all x ∈ X.

Proof. Let none of the statements holds, then we can find x ∈ X and y ∈ Y such that µ(0) < ν(y) and ν(0) < µ(x).
Therefore

(µ⊕ ν)(x, y) = C(µ(x), ν(y)) < C(ν(0), µ(0)) = C(µ(0), ν(0)) = (µ⊕ ν)(0, 0)

and this is contradiction with Proposition 3.3 and then at least one of the statements hold.

Proposition 3.11. Let ν ∈ [0, 1]Y . If ν⊕ν ∈ AFSUC(Y⊕Y ) and ν(x) ≥ ν(0) for allx ∈ Y. Then ν ∈ AFSUC(Y ).

Proof. Since ν(x) ≥ ν(0) for all x ∈ Y so ν(x ∗ y) ≥ ν(0) = ν(0 ∗ 0) for all x, y ∈ Y. Thus

ν(x ∗ y) = C(ν(x ∗ y), ν(0 ∗ 0))

= (ν ⊕ ν)(x ∗ y, 0 ∗ 0)
= (ν ⊕ ν)((x, 0) ∗ (y, 0))

≤ C((ν ⊕ ν)(x, 0), (ν ⊕ ν)(y, 0))

= C(C(ν(x), ν(0)), C(ν(y), ν(0)))

= C(ν(x), ν(y))

therefore
ν(x ∗ y) ≤ C(ν(x), ν(y))

and then ν ∈ AFSUC(Y ).

4. Open Problem

In this study, using t-norms, we defined and investigated fuzzy SU-Algebras. Now One can this work for B-Algebras
and TM-Algebras and this can be as an open problem.
Acknowledgment. We would like to thank the reviewers for carefully reading the manuscript and making several
helpful comments to increase the quality of the paper.
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Abstract

In this work, as using S-norms, we introduce anti fuzzy implicative ideals, anti fuzzy positive
implicative ideals in BCK-algebras. Alsowe obtain the links between them and investigate prop-
erties of them. Finally, we consider them under union, direct sum and homomorphisms(image
and pre image) and we investigate related properties.

1. Introduction

Imai and Iseki introduced the notion ofBCK-algebra[4]. The concept of uncertainty has gone through a paradigmatic
change in the last few decades and now it is not only an unavoidable plague to science and mathematics but it has, in
fact, a great utility. Zadeh[58] introduced the concept of fuzzy sets. Many authors[2, 6, 8, 9, 11, 12, 13, 16, 59] consid-
ered the fuzzification of ideals and subalgebras inBCK-algebras. S-norms are operations which generalize the logical
conjunction and logical disjunction to fuzzy logic. The First author by using norms, investigated some properties of
fuzzy algebraic structures[17-56]. In this study we define anti fuzzy implicative ideals, anti fuzzy positive implicative
ideals in BCK-algebras under s-norms. Next we link them with subalgebras, ideals, implicative ideals, positive im-
plicative ideals in BCK-algebras. Later we consider them under union, direct sum and homomorphisms(image and
pre image) and we consider related properties of them.
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2. Preliminaries

In this section we cite the fundamental definitions and results that will be used in the sequel. For more details we refer
readers to [1, 3, 5, 7, 10, 14, 15, 16, 31, 35, 57].

Definition 2.1. By a BCK-algebra we mean a nonempty setX with a binary operation ∗ and a constant 0 satisfying
the axioms:
(1) ((x ∗ y) ∗ (x ∗ z)) ≤ (z ∗ y),
(2) (x ∗ (x ∗ y)) ≤ y,
(3) x ≤ x,
(4) x ≤ y and y ≤ x imply that x = y,
(5) 0 ≤ x
for all x, y, z ∈ X.
A partial ordering ≤ on X can be defined by x ≤ y if and only if x ∗ y = 0. In any BCK-algebra X the following
holds:
(6) x ∗ 0 = x,
(7) x ∗ y ≤ x,
(8) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(9) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y,
(10) x ∗ (x ∗ (x ∗ y)) = x ∗ y,
(11) if x ≤ y, then x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x
for all x, y, z ∈ X.

Definition 2.2. A BCK-algebra X is said to be implicative if x = x ∗ (y ∗ x), for all x, y ∈ X.

Definition 2.3. ABCK-algebraX is said to be positive implicative if (x∗y)∗z = (x∗z)∗(y∗z) for all x, y, z ∈ X.

Definition 2.4. A non-empty subset I of a BCK-algebra X is called an implicative ideal ofX if
(1) 0 ∈ I,
(2) (x ∗ (y ∗ x)) ∗ z ∈ I and z ∈ I imply that x ∈ I for all x, y, z ∈ X.

Definition 2.5. A non-empty subset I of a BCK-algebra X is called a positive implicative ideal ofX if
(1) 0 ∈ I,
(2) (x ∗ y) ∗ z ∈ I and y ∗ z ∈ I imply that x ∗ z ∈ I for all x, y, z ∈ X.

Definition 2.6. A mapping f : X → Y of BCK-algebras is called a homomorphism if f(x ∗ y) = f(x) ∗ f(y), for
all x, y ∈ X.

Definition 2.7. Let X be an arbitrary set. A fuzzy subset of X , we mean a function from X into [0, 1]. The set
of all fuzzy subsets of X is called the [0, 1]-power set of X and is denoted [0, 1]X . For a fixed t ∈ [0, 1], the set
µt = {x ∈ X : µ(x) ≤ t} is called a lower level of µ.
Definition 2.8. Let φ be a function from setX into set Y such that µ ∈ [0, 1]X and ν ∈ [0, 1]Y . For all x ∈ X, y ∈ Y,
we define

φ(µ)(y) = inf{µ(x) | x ∈ X,φ(x) = y}
and

φ−1(ν)(x) = ν(φ(x)).

Definition 2.9. An S-norm S is a function S : [0, 1]× [0, 1] → [0, 1] having the following four properties:
(1) S(x, 0) = x,
(2) S(x, y) ≤ S(x, z) if y ≤ z,
(3) S(x, y) = S(y, x),
(4) S(x, S(y, z)) = S(S(x, y), z) ,
for all x, y, z ∈ [0, 1].

We say that S is idempotent if for all x ∈ [0, 1],S(x, x) = x.
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Example 2.10. The basic S-norms are Sm(x, y) = max{x, y},Sb(x, y) = min{1, x+ y} and Sp(x, y) = x+ y−xy
for all x, y ∈ [0, 1].
Sm is standard union, Sb is bounded sum, Sp is algebraic sum.

We say that S be idempotent if for all x ∈ [0, 1] we have S(x, x) = x.

Definition 2.11. Let µ, ν ∈ [0, 1]X and define the union of µ and ν is denoted by µ ∪ ν ∈ [0, 1]X as

(µ ∪ ν)(x) = S(µ(x), ν(x))

for all x ∈ X.

Definition 2.12. Let µ ∈ [0, 1]X and ν ∈ [0, 1]Y . Define the direct sum of µ and ν is denoted by µ⊕ ν ∈ [0, 1]X⊕Y

as
(µ⊕ ν)(x, y) = S(µ(x), ν(y))

for all (x, y) ∈ X ⊕ Y.

Lemma 2.13. Let S be a s-norm. Then

S(S(x, y), S(w, z)) = S(S(x,w), S(y, z))

for all x, y, w, z ∈ [0, 1].

3. S-norms over anti fuzzy: implicative ideals and positive implicative ideals inBCK-algebras

Throughout this paper, X,Y always mean two BCK-algebras unless otherwise specified.

Definition 3.1. Define µ ∈ [0, 1]X is an anti fuzzy implicative ideal ofX under s-norm S if it satisfies the following
inequalities:
(1) µ(0) ≤ µ(x),
(2) µ(x) ≤ S(µ(x ∗ (y ∗ x)), µ(z)),
for all x, y, z ∈ X.
Denote by AFIIS(X), the set of all anti fuzzy implicative ideals ofX under s-norm S.

Proposition 3.2. Let µ ∈ [0, 1]X and S be idempotent. Then µ ∈ AFIIS(X) if and only if the set µt = {x ∈ X :
µ(x) ≤ t} is either empty or an implicative ideal of X for every t ∈ [0, 1].

Proof. Let µ ∈ AFIIS(X) and x, y ∈ X. Thus µ(0) ≤ µ(x) ≤ t so 0 ∈ µt.
Also let (x ∗ (y ∗ x)) ∗ z ∈ µt and z ∈ µt. Then

µ(x) ≤ S(µ((x ∗ (y ∗ x)) ∗ z), µ(z)) ≥ S(t, t) = t

thus x ∈ µt. Then µt will be an implicative ideal ofX for every t ∈ [0, 1].
Conversely, let µt is either empty or an implicative ideal ofX for every t ∈ [0, 1].
Let t = S(µ((x ∗ (y ∗ x)) ∗ z), µ(z)) with (x ∗ (y ∗ x)) ∗ z ∈ µt and z ∈ µt. Then x ∈ µt thus

µ(x) ≤ t = S(µ((x ∗ (y ∗ x)) ∗ z), µ(z))

so µ ∈ AFIIS(X).

Definition 3.3. Define µ ∈ [0, 1]X is an anti fuzzy positive implicative ideal of X under s-norm S if it satisfies the
following inequalities:
(1) µ(0) ≤ µ(x),
(2) µ(x ∗ z) ≤ S(µ((x ∗ y) ∗ z), µ(y ∗ z)),
for all x, y, z ∈ X.
Denote by AFPIIS(X), the set of all anti fuzzy positive implicative ideals ofX under s-norm S.
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Proposition 3.4. Let µ ∈ [0, 1]X and S be idempotent. Then µ ∈ AFPIIS(X) if and only if the set

µt = {x ∈ X : µ(x) ≤ t}

is either empty or a positive implicative ideal ofX for every t ∈ [0, 1].

Proof. Let µ ∈ AFPIIS(X) and x, y ∈ X. Then µ(0) ≤ µ(x) ≥ t and and then 0 ∈ µs.
Also let (x ∗ y) ∗ z ∈ As,t and y ∗ z ∈ µs. Then

µ(x ∗ z) ≤ S(µ((x ∗ y) ∗ z), µ(y ∗ z)) ≤ S(t, t) = t

thus x ∈ µt. Then µt is a posive implicative ideal of X for every t ∈ [0, 1].
Conversely, let µt is either empty or a positive implicative ideal ofX for every t ∈ [0, 1].
Let t = S(µ((x ∗ y) ∗ z), µ(y ∗ z)) with (x ∗ y) ∗ z ∈ µt and y ∗ z ∈ µt. Then x ∈ µt thus

µ(x) ≤ t = S(µ((x ∗ (y ∗ x)) ∗ z), µ(z))

so µ ∈ AFPIIS(X).

Proposition 3.5. Let µ ∈ AFPIIS(X) and x, y, z, a, b ∈ X.
(1) If ((x ∗ y) ∗ y) ∗ a ≤ b, then

µ(x ∗ y) ≤ S(µ(a), µ(b)).

(2) If ((x ∗ y) ∗ z) ∗ a ≤ b, then
µ((x ∗ z) ∗ (y ∗ z)) ≤ S(µ(a), µ(b)).

Proof. Let µ ∈ AFPIIS(X) and x, y, z, a, b ∈ X.
(1) Let ((x ∗ y) ∗ y) ∗ a ≤ b then we get that µ((x ∗ y) ∗ y) ≤ S(µ(a), µ(b)). Thus

µ(x ∗ y) ≤ S(µ((x ∗ y) ∗ y), µ(y ∗ y)) = S(µ((x ∗ y) ∗ y), µ(0))

= µ((x ∗ y) ∗ y) ≤ S(µ(a), µ(b))

then
µ(x ∗ y) ≤ S(µ(a), µ(b)).

(2) Let ((x ∗ y) ∗ z) ∗ a ≤ b, so we get that

µ((x ∗ z) ∗ (y ∗ z)) ≤ µ((x ∗ y) ∗ z) ≤ S(µ(a), µ(b)).

Proposition 3.6. Let µ ∈ [0, 1]X and ((x ∗ y) ∗ y) ∗ a ≤ b for all x, y, a, b ∈ X. If µ(x ∗ y) ≤ S(µ(a), µ(b)), then
µ ∈ AFPIIS(X).

Proof. Let x, y, z ∈ X such that x∗y ≤ z.Definition 2.1 properties (1) gives us that ((x∗0)∗0)∗y∗z = (x∗y)∗z = 0
thus ((x ∗ 0) ∗ 0) ∗ y ≤ z. Put y = 0, a = y, b = z in hypothesis then µ(x) = µ(x ∗ 0) ≤ S(µ(y), µ(z)). Thus we get
that µ ∈ AFIS(X). As (((x ∗ y) ∗ y) ∗ ((x ∗ y) ∗ y)) ∗ 0 = 0 so (((x ∗ y) ∗ y) ∗ ((x ∗ y) ∗ y)) ≤ 0 for all x, y ∈ X.
Using hypothesis will give us µ(x ∗ y) ≤ S(µ((x ∗ y) ∗ y), µ(0)) = µ((x ∗ y) ∗ y). Therefore µ ∈ AFPIIS(X).

Proposition 3.7. Let µ ∈ [0, 1]X and ((x ∗ y) ∗ z) ∗ a ≤ b for all x, y, z, a, b ∈ X. If

µ((x ∗ y) ∗ (y ∗ z)) ≤ S(µ(a), µ(b))

then µ ∈ AFPIIS(X).

Proof. Let ((x ∗ y) ∗ z) ∗ a ≤ b for all x, y, z, a, b ∈ X. Then (((x ∗ y) ∗ z) ∗ a) ∗ b = 0. Now

µ(x ∗ y) = µ((x ∗ y) ∗ 0) = µ((x ∗ y) ∗ (y ∗ y)) ≤ S(µ(a), µ(b))

and as Proposition 3.5 we will have that µ ∈ AFPIIS(X).
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4. Union, direct sum and homomorphisms over introduced conceps

Proposition 4.1. If µ, ν ∈ AFIIS(X), then µ ∪ ν ∈ AFIIS(X).

Proof. Let x, y, z ∈ X. Then
(1)

(µ ∪ ν)(0) = S(µ(0), ν(0)) ≤ S(µ(x), ν(x)) = (µ ∪ ν)(x)

thus
(µ ∪ ν)(0) ≤ (µ ∪ ν)(x).

(2)
(µ ∪ ν)(x) = S(µ(x), νB(x)) ≤ S(S(µ((x ∗ (y ∗ x)) ∗ z), µ(z)), S(ν((x ∗ (y ∗ x)) ∗ z), ν(z)))

= S(S(µ((x ∗ (y ∗ x)) ∗ z), ν((x ∗ (y ∗ x)) ∗ z), S(µ(z), ν(z))) (Lemma 2.15)
= S((µ ∪ ν)((x ∗ (y ∗ x)) ∗ z)), (µ ∪ ν)(z))

so
(µ ∪ ν)(x) ≤ S((µ ∪ ν)((x ∗ (y ∗ x)) ∗ z)), (µ ∪ ν)(z)).

Then µ ∪ ν ∈ AFIIS(X).

Proposition 4.2. Let µ, ν ∈ AFPIIS(X). Then µ ∪ ν ∈ AFPIIS(X).

Proof. Let x, y, z ∈ X. Then
(1)

(µ ∪ ν)(0) = S(µ(0), ν(0)) ≤ S(µ(x), ν(x)) = (µ ∪ ν)(x)

thus
(µ ∪ ν)(0) ≤ (µ ∪ ν)(x).

(2)

(µ ∪ ν)(x ∗ z) = S(µ(x ∗ z), ν(x ∗ z)) ≤ S(S(µ((x ∗ y) ∗ z), µ(y ∗ z)), S(ν((x ∗ y) ∗ z), ν(y ∗ z)))

= S(S(ν((x ∗ y) ∗ z), ν((x ∗ y) ∗ z)), S(µ(y ∗ z), ν(y ∗ z))) (Lemma 2.15)
= S((µ ∪ ν)((x ∗ y) ∗ z)), (µ ∪ ν)(y ∗ z))

so
(µ ∪ ν)(x ∗ z) ≤ S((µ ∪ ν)((x ∗ y) ∗ z))), (µ ∪ ν)(y ∗ z)).

Therefore µ ∪ ν ∈ AFPIIS(X).

Proposition 4.3. Let µ ∈ AFIIS(X) and ν ∈ AFIIS(Y ). Then µ⊕ ν ∈ AFIIS(X ⊕ Y ).

Proof. Let (x, y) ∈ X ⊕ Y. Then

(µ⊕ ν)(0, 0) = S(µ(0), ν(0)) ≤ S(µ(x), ν(y)) = (µ⊕ ν)(x, y)

thus (µ⊕ ν)(0, 0) ≤ (µ⊕ ν)(x, y).
Also let xi ∈ X and yi ∈ Y for i = 1, 2, 3. Now

(µ⊕ ν)(x1, y1) = S(µ(x1), ν(y1)) ≤ S(S(µ(x1 ∗ (x2 ∗ x1)), µ(x3)), S(ν(y1 ∗ (y2 ∗ y1)), ν(y3)))

= S(S(µ(x1 ∗ (x2 ∗ x1)), ν(y1 ∗ (y2 ∗ y1))), S(µ(x3), ν(y3))) (Lemma 2.15)
= S((µ× ν)(x1 ∗ (x2 ∗ x1), y1 ∗ (y2 ∗ y1)), (µ⊕ ν)(x3, y3))

= S((µ⊕ ν)((x1, y1) ∗ ((x2, y2) ∗ (x1, y1)), (µ⊕ ν)(x3, y3))

thus
(µ⊕ ν)(x1, y1) ≤ S((µ⊕ ν)((x1, y1) ∗ ((x2, y2) ∗ (x1, y1)), (µ⊕ ν)(x3, y3)).

Then µ⊕ ν ∈ AFIIS(X ⊕ Y ).
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Proposition 4.4. Let µ ∈ AFPIIS(X) and ν ∈ AFPIIS(Y ). Then µ⊕ ν ∈ AFPIIS(X ⊕ Y ).

Proof. Let (x, y) ∈ X ⊕ Y. Then

(µ⊕ ν)(0, 0) = S(µ(0), ν(0)) ≤ S(µ(x), ν(y)) = (µ⊕ ν)(x, y)

thus (µ⊕ ν)(0, 0) ≤ (µ⊕ ν)(x, y).
Also let xi ∈ X and yi ∈ Y for i = 1, 2, 3. Then

(µ⊕ ν)((x1, y1) ∗ (x3, y3)) = (µ⊕ ν)(x1 ∗ x3, y1 ∗ y3) = S(µ(x1 ∗ x3), ν(y1 ∗ y3))

≤ S(S(µ((x1 ∗ x2) ∗ x3), µ(x2 ∗ x3)), S(ν((y1 ∗ y2) ∗ y3), ν(y2 ∗ y3)))
= S(S(µ((x1 ∗ x2) ∗ x3), ν((y1 ∗ y2) ∗ y3)), S(µ(x2 ∗ x3), ν(y2 ∗ y3))) (Lemma 2.15)

= S((µ× ν)((x1 ∗ x2) ∗ x3, (y1 ∗ y2) ∗ y3), (µ⊕ ν)(x2 ∗ x3, y2 ∗ y3))
= S((µ⊕ ν)((x1, y1) ∗ (x2, y2)) ∗ (x3, y3)), (µ× ν)((x2, y2) ∗ (x3, y3)))

and so

(µ⊕ ν)((x1, y1) ∗ (x3, y3)) ≤ S((µ⊕ ν)((x1, y1) ∗ (x2, y2)) ∗ (x3, y3)), (µ⊕ ν)((x2, y2) ∗ (x3, y3))).

Then µ⊕ ν ∈ AFPIIS(X ⊕ Y ).

Proposition 4.5. If µ ∈ AFIIS(X) and φ : X → Y be a homomorphism of BCK-algebras, then φ(µ) ∈
AFIIS(Y ).

Proof. Let x ∈ X and y ∈ Y with φ(x) = y. Now

φ(µ)(0) = inf{µ(0) | 0 ∈ X,φ(0) = 0} ≤ inf{µ(x) | x ∈ X,φ(x) = y} = φ(µ)(y)

thus φ(µ)(0) ≤ φ(µ)(y).
Also let x, x1, x2 ∈ X such that φ(x) = y, φ(x1) = y1, φ(x2) = y2. Then

φ(µ)(y) = inf{µ(x) | x ∈ X,φ(x) = y}

≤ inf{S(µ(x ∗ (x1 ∗ x)), µ(x2)) | x, x1, x2 ∈ X,φ(x) = y, φ(x1) = y1, φ(x2) = y2}
= S(inf{µ(x ∗ (x1 ∗ x)) | x, x1 ∈ X,φ(x) = y, φ(x1) = y1}, inf{µ(x2) | x2 ∈ X,φ(x2) = y2})

= S(inf{µ(x ∗ (x1 ∗ x)) | x, x1 ∈ X,φ(x ∗ (x1 ∗ x)) = y ∗ (y1 ∗ y)}, inf{µ(x2) | x2 ∈ X,φ(x2) = y2}
= S(φ(µ)(y ∗ (y1 ∗ y)), φ(µ)(y2))

therefore
φ(µ)(y) ≤ S(φ(µ)(y ∗ (y1 ∗ y)), φ(µ)(y2)).

Therefore φ(µ) ∈ AFIIS(Y ).

Proposition 4.6. If ν ∈ AFIIS(Y ) and φ : X → Y be a homomorphism of BCK-algebras, then φ−1(ν) ∈
AFIIS(X).

Proof. Let x ∈ X. Then
φ−1(ν)(0) = ν(φ(0)) ≤ ν(φ(x)) = φ−1(ν)(x)

As
φ−1(ν)(x) = ν(φ(x)) ≤ S(ν(φ(x) ∗ (φ(x1) ∗ φ(x)), ν(φ(x2)))

= S(ν(φ(x ∗ (x1 ∗ x))), ν(φ(x2))) = S(φ−1(ν)(x ∗ (x1 ∗ x)), φ−1(ν)(x2))

so
φ−1(ν)(x) ≤ S(φ−1(ν)(x ∗ (x1 ∗ x)), φ−1(ν)(x2)).

Therefore φ−1(ν) ∈ AFIIS(X).
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Proposition 4.7. If µ ∈ AFPIIS(X) and φ : X → Y be a homomorphism of BCK-algebras, then φ(µ) ∈
AFPIIS(Y ).

Proof. Let x ∈ X and y ∈ Y with φ(x) = y. Now

φ(µ)(0) = inf{µ(0) | 0 ∈ X,φ(0) = 0} ≥ inf{µ(x) | x ∈ X,φ(x) = y} = φ(µ)(y)

thus
φ(µ)(0) ≤ φ(µ)(y).

Also let x1, x2, x3 ∈ X such that φ(x1) = y1, φ(x2) = y2, φ(x3) = y3. Then

φ(µ)(y1 ∗ y3) = inf{µ(x1 ∗ x3) | x1, x3 ∈ X,φ(x1) = y1, φ(x3) = y3}

≤ inf{S(µ((x1 ∗ x2) ∗ x3), µ(x2 ∗ x3)) | x1, x2, x3 ∈ X,φ(x1) = y1, φ(x2) = y2, φ(x3) = y3}
= S(inf{µ((x1 ∗ x2) ∗ x3)) | x1, x2, x3 ∈ X,φ(x1) = y1, φ(x2) = y2, φ(x3) = y3}

, inf{µ(x2 ∗ x3) | x2, x3 ∈ X,φ(x2) = y2, φ(x3) = y3})
= S(inf{µ((x1 ∗ x2) ∗ x3)) | x1, x2, x3 ∈ X,φ((x1 ∗ x2) ∗ x3) = (y1 ∗ y2) ∗ y3}

, inf{µ(x2 ∗ x3) | x2, x3 ∈ X,φ(x2 ∗ x3) = y2 ∗ y3}
= S(φ(µ)((y1 ∗ y2) ∗ y3), φ(µA)(y2 ∗ y3))

therefore
φ(µ)(y1 ∗ y3) ≤ S(φ(µ)((y1 ∗ y2) ∗ y3), φ(µ)(y2 ∗ y3)).

Therefore φ(µ) ∈ AFPIIS(Y ).

Proposition 4.8. If ν ∈ AFPIIS(Y ) and φ : X → Y be a homomorphism of BCK-algebras, then φ−1(ν) ∈
AFPIIS(X).

Proof. Let x ∈ X. Then
φ−1(ν)(0) = ν(φ(0)) ≤ ν(φ(x)) = φ−1(ν)(x).

Let x1, x2, x3 ∈ X. As
φ−1(ν)(x1 ∗ x3) = ν(φ(x1 ∗ x3)) = ν(φ(x1) ∗ φ(x3))

≤ S(ν((φ(x1) ∗ φ(x2)) ∗ φ(x3)), ν(φ(x2) ∗ φ(x3)))

= S(ν(φ(x1 ∗ x2) ∗ x3), ν(φ(x2 ∗ x3))) = S(φ−1(ν)((x1 ∗ x2) ∗ x3), φ
−1(ν)(x2 ∗ x3))

so
φ−1(ν)(x1 ∗ x3) ≤ S(φ−1(ν)((x1 ∗ x2) ∗ x3), φ

−1(ν)(x2 ∗ x3)).

Therefore φ−1(ν) ∈ AFPIIS(X).

5. Open Problem

In this study, using s-norms, we introduced anti fuzzy subalgebras and anti fuzzy ideals in BCK-algebras. Now One
can this work for BCH-Algebras and Q-Algebras and this can be as an open proble
Acknowledgment. We would like to thank the reviewers for carefully reading the manuscript and making several
helpful comments to increase the quality of the paper.
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Abstract

Assume that A is an n× n real matrix. Then, necessary and sufficient condition for this matrix
to be a correlation matrix is that A be symmetric, positive semi-definite and all entries of A are
between −1 and 1, with 1 along the main diagonal.

1. Introduction

Problems of relations between finance andMathematics have been discussed since classical times in a some of sources
from Platoís Dialogues. Louis Bachelier who, in the year 1900, published the now famous memoir entitled ìTheorie
de la spÈculationî. Bachelierís achievements are remarkable in several respects. Before Einstein and others, he de-
veloped the first theory of Brownian motion which he used in order to quantify the evolution of stock prices. In other
word, Bachelier assumed that the stock price follows an arithmetic Brownian motion and, consequently, is distributed
normally at any given time. He derived the pricing formulas for call and put options on such stocks. so, since Bache-
lierís theory predicted that stock prices can become negative and because of the sheer complexity of its mathematical
apparatus, the theory was neglected by the mainstream economists for more than fifty years. Fundamental contribu-
tions to modern relations between finance and Mathematics were made in the 1950’s by several authors. Arrow (1953)
and Debreu (1959) extended the existing economic models by incorporating uncertainty and showed how to solve the
corresponding asset allocation problem. Modigliani and Miller (1958) proved that the financial structure of the firm,
i.e., the firmís choice between equity and debt financing, does not affect its value. The method of financial arbitrage
they used turned out to be even more useful than the theorem itself and became the method of choice for generations
of financial engineers.

A particularly interesting feature of financial markets data is the, not yet fully explored, complex interdependent dy-
namics of the prices between various assets, which is most often modeled through the empirical correlations. This
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issue has been of specific value to the econophysics community and its members have provided numerous contribu-
tions addressing the relationships between stocks, market indexes and currencies.

The currency pairs correlation matrix is one of the new mathematical tools that is widely used in the Forex financial
market. The currency pairs correlation matrix shows the statistical correlation existing between any currency pair
selected by a trader, on his chosen time-frame. Correlation is a statistical index which tells how a currency pair follows
the same movement of another currency pair and how strong this co-movement is. The currency pairs correlation
matrix is an useful tool for Forex traders who wish to detect all the possible combinations of trades and their related
risks.Correlation is measured on a scale of +100 to -100, or +1.0 percent to -1.0 percent, in a percentage scale. A value
of +1.0 percent (perfectly positive correlation) means that two currency pairs move perfectly identically. A value
of -1.0 percent (perfectly negative correlation) means the opposite. A value of 0.0 percent (absence of correlation)
means that two currency pairs have moved completely independently. When two currency pairs show a strong positive
correlation, this means that we don’t expect a high trading risk. For example, if the GBPUSD and the CADUSD show
a strong correlation, say 0.8 percent, this means that trading both pairs will have the same effects as placing one big
single trade, instead of two separate trades. If the correlation is strongly negative, say -0.8 percent, it is like not to
have trade at all. Since the currency pairs move in the opposite directions, the profit obtained on one trade is cancelled
out by the loss obtained on the other trade. In order to plan a profitable strategy, a trader should always focus on pair
combinations showing weak correlation, in order to obtain a basket of independent trades. For further reading in this
regard, dear readers, refer to the references [1], [2], [3], [4] and [5].

2. Main Results

In statistical modelling, correlation matrices representing the relationships between variables are categorized into dif-
ferent correlation structures, which are distinguished by factors such as the number of parameters required to estimate
them. For example, in an exchangeable correlation matrix, all pairs of variables are modeled as having the same
correlation, so all non-diagonal elements of the matrix are equal to each other. On the other hand, an autoregressive
matrix is often used when variables represent a time series, since correlations are likely to be greater when mea-
surements are closer in time. Other examples include independent, unstructured, M-dependent, and Toeplitz. The
correlation matrix of n random variables X1, . . . , Xn is the n × n matrix whose (i, j) entry is corr(Xi, Xj), when
corr(Xi, Xj) =

Cov(Xi,Xj)
σ(Xi)σ(Xj)

. Thus the diagonal entries are all identically unity. If the measures of correlation used are
product-moment coefficients, the correlation matrix is the same as the covariance matrix of the standardized random
variables Xi/σ(Xi) for i = 1, . . . , n. This applies both to the matrix of population correlations (in which case σ is
the population standard deviation, and to the matrix of sample correlations (in which case σ denotes the sample stan-
dard deviation. Consequently, each is necessarily a positive semi-definite matrix. Moreover, the correlation matrix is
strictly positive definite if no variable can have all its values exactly generated as a linear function of the values of the
others. The correlation matrix is symmetric because the correlation betweenXi andXj is the same as the correlation
between Xj and Xi. Based on what has been said so far, we will continue to obtain information about this matrix
using mathematical tools.We try to give a new proof for one of the theorems on correlation matrices.

Theorem. Assume that A is an n × n real matrix. Then, necessary and sufficient condition for this matrix to be a
correlation matrix is that A be symmetric, positive semi-definite and all entries of A are between −1 and 1, with 1
along the main diagonal.

Proof. First, assume that A is an n× n correlation matrix. It is clear that A be symmetric and all entries of A = [aij ]
are between -1 and 1 and for all i we have aii = 1. We must prove that A positive semi-definite. It is enough to
prove that

∑n
i=1

∑n
j=1 bibjaij ≥ 0, for any arbitrary real number bi, bj . Since A is a correlation matrix, there exist

n random variables X1, . . . , Xn such that aij = corr(Xi, Xj) =
Cov(Xi,Xj)
σ(Xi)σ(Xj)

. Therefore,
∑n

i=1

∑n
j=1 bibjaij =

∑n
i=1

∑n
j=1 bibj

Cov(Xi,Xj)
σ(Xi)σ(Xj)

= V ar(
∑n

i=1 bi
Xi

σ(Xi)
).This phrase is always non-negative. Therefore A positive semi-

definite. Now, assume that A be symmetric, positive semi-definite and all entries of A are between -1 and 1. we
prove that A is a correlation matrix. We must find n random variables X1, . . . , Xn such that aij = corr(Xi, Xj) =
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Cov(Xi,Xj)
σ(Xi)σ(Xj)

. A real matrix A is symmetric if and only if A can be diagonalized by an orthogonal matrix. Without loss
of generality, we may assume that A is a diagonal matrix with non-negative eigenvalues λ1, · · · , λn. Consider that
Y1, · · · , Yn are n arbitrary independent random variable. Set Xi =

√
λiYi, and so by a simple calculation, we obtain

the conclusion.

The purpose of this article is to get acquainted with the currency pairs correlation matrix. In the Forex market, the
relationship between different currencies is very important. Sometimes minor changes in one cause changes in other
world currencies. Especially today with the advent of digital currencies that cause huge price shocks in financial
markets, finding linear relationships between such currencies is very important. In fact, the currency pairs correlation
matrix allows us to do this. A very important point that comes to mind here is that In appearance, the type of shocks
in digital currencies such as Bitcoin is not at all comparable to currency fluctuations such as Dollars. Certainly, one
should not expect at first glance that the currency pairs correlation matrix will have a favorable result on such currency
pairs. The way it seems here is to neutralize the kind of inflationary effect of such currencies first. In fact, by changing
the graph size of a currency using moving average curves, one can somehow approach this goal.
Acknowledgement. The author thanks the Research Council of University of Garmsar for support.
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Abstract

Thiswork is devoted to a study of strongly continuous semigroups or equivalently C0-semigroups
and their associated operator known as infinitesimal generator. Here, our attention is focused
on contraction semigroups i.e. those semigroups whose norms are less than or equal to 1. We
are going to prove a theorem which gives necessary and sufficient conditions for an arbitrary
semigroup to be contranction.

1. Introduction

Control theory is a significant branch of systems theory (Brogan 1990) that has attracted considerable attention in recent
years. In order to put control theory into practice, one can consider the mathematical model of the phenomenon under
study. Mathematical modeling is a tool that puts control theory into practice. By incorporating basic physical laws
and considering interconnections and interactions between systems components a mathematically analytical model
achieves which is in the form of a partial or ordinary differential equation. Those phenomena such as electrodynamics,
chemical processes, diffusion, etc. that are modeled by partial differential equations are called infinite-dimensional
systems and other systems modeled by ordinary differential equations are called finite-dimensional systems. Most of
the studies on control theory problems have considered a finite dimensional control model which is represented by
a first order differential equation known as state space form (see (Dumont et al. 2016; Jun et al. 2015; Isfahani et
al. 2017; Jahromi et al. 2017)) and the references there in). In order to develop the achieved methods and results
to infinite dimensional systems, incorporating C0-semigroups and their associated operators is useful. To see a few
recent works that on control systems that incorporated C0-semigroups, one can refer to (Baudouin et al. 2018; Jacob
et al. 2017; Yang 2018; Raposo et al. 2019).
A strongly continious semigroup or equvalently a C0-semigroup, is a generalization of exponential function that
provids solutions of linear constant coefficient ordinary differential equations in Banach spaces [4]. Recently, the
theory of strongly continuous semigroups has been extensively developed by many scientists and achieved results are
incorporated in many branches of science and sometimes can facilitate analysis of physical engineering systems; for
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example, in the theory of control systems one faces both ”finite dimensional system” (whose mathematical model is
in the form of an ordinary differential equation) and ”infinite dimensional system” (whose mathematical model is in
the form of a partial differential equation) while most of the studies are focused on finite dimensional systems[1]. In
this case, C0-semigroups are good tools for developing achieved methods and results to infinite dimensional systems.
In this paper, after introducing some necessary concepts and preliminaries, we will prove a theorem that provides
necessary and sufficient conditions for a C0-semigroup to be contraction.

2. Main Results

Throughout this paper, we denote by X a real Hilbert space with inner product < ., . >X and norm ||.||X =√
< ., . >X .

Definition 2.1. ([2]) In a Hilbert space X , (T (t))t≥0 is called a strongly continuous semigroup or C0-semigroup if
the following holds:

• For all t ≥ 0, T (t) is a bounded linear operator on X , i.e., T (t) ∈ L(X);

• T (0) = I;

• T (t+ τ) = T (t)T (τ) for all t, τ ≥ 0;

• For all x0 ∈ X , we have that ‖T (t)x0 − x0‖X converges to zero, when t ↓ 0, i.e., t 7→ T (t) is strongly
continuous at zero.

As an example of strongly continuous semigroup, one can consider the exponential of a matrix which is the easiest
example of this concept.
We can associate an operator A to every C0-semigroup (T (t))t⩾0 as follows:

Definition 2.2. ([2]) Let (T (t))t≥0 be a C0-semigroup on the Hilbert space X, if the following limit exists:

lim
t→0

T (t)x0 − x0

t

then we say that x0 is an element of the domain of A, i.e. x0 ∈ D(A), and we define Ax0 as:

Ax0 = lim
t→0

T (t)x0 − x0

t

we call A the infinitesimal generator of the strongly continuous semigroup (T (t))t≥0.
It can be seen that for every x0 ∈ D(A) the function t ` T (t)x0 is differentiable. Actually we have the following
lemma:

Lemma 2.3. ([3]) Let (T (t))⩾t0 be a strongly continuous semigroup on aHilbert spaceX with infinitesimal generator
A. Then the following results hold:

• For x0 ∈ D(A) and t ⩾ 0 we have T (t)x0 ∈ D(A);

• d
dt (T (t)x0) = AT (t)x0 = T (t)Ax0 for x0 ∈ D(A), t ⩾ 0;

• dn

dtn (T (t)x0) = AnT (t)x0 = T (t)Anx0 for x0 ∈ D(A), t ⩾ 0.

Lemma 2.4. ([4]) Suppose that (T (t))t⩾0 be a strongly continuous semigroup on the Hilbert space X and let ω0 =
inf( 1t log ‖ T (t) ‖). Then for every ω > ω0, there exists a constantMω such that for every t ⩾ 0 we have ‖ T (t) ‖⩽
Mωe

ω .

If the upper bound of ‖ T ‖ in the above lemma equals to 1, then the smigroup is called a contraction semigroup:
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Definition 2.5. ([3]) Let (T (t))⩾t0 be a C0-semigroup on a Hilbert spaceX .(T (t))⩾t0 is called contraction semigroup
if ‖ T (t) ‖⩽ 1 for every t ⩾ 0.

Now everything is ready for proposing the main theorem of this paper:

Theorem 2.6. Let A be the infinitesimal generator of the C0-semigroup (T (t))t⩾0 on the Hilbert space X , then
(T (t))t⩾0 is a contraction semigroup if and only if:

< Ax, x > + < x,Ax >⩽ 0

for every x ∈ D(A).

Proof. Let Φ(t) =‖ T (t)x ‖2 for every x ∈ D(A). By differentiating we have:

Φ̇(t) =
d

dt
‖ T (t)x ‖2= d

dt
< T (t)x, T (t)x >=< AT (t)x, T (t)x > + < T (t)x,AT (t)x > (∗)

Now suppose that (T (t))t⩾0 is a contraction semigroup. Then Φ(t) ⩽ Φ(0) implies Φ̇(0) = 0 for every t ⩾ 0. By
choosing t = 0 and substituting in (∗) we have:

< Ax, x > + < x,Ax >⩽ 0, ∀x ∈ D(A)

conversely, suppose that:
< Ax, x > + < x,Ax >⩽ 0, ∀x ∈ D(A)

then, as T (t) is a mapping from D(A) into D(A) we can substitute x by T (t)x. Due to (∗) we have Φ̇ ⩽ 0 for every
t ⩾ 0. So, t 7−→ Φ(t) is nonincreasing which implies Φ(t) ⩽ Φ(0) and results ‖ T (t)x ‖⩽‖ x ‖, for every t ⩾ 0,
which means that (T (t))t⩾0 is a contraction semigroup.
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Abstract

Today, the basics of technical analysis are widely used to study trends that have oscillating
movements. For example, economics, financial markets, etc. are examples of these trends. One
of the most important and widely used tools in technical analysis is Fibonacci ratios. In fact,
Fibonacci ratios are used to determine the support and resistance points in predicting the future
trend of a chart. Due to the very good behaviors that have been observed from these ratios
in predicting the trend so far, we expect their application to be seen in natural and biological
processes as well. In this article, we examined the birth trend in the last one hundred years in
Iran. We tried to find the maximum and minimum points of birth in this process. We also tried
to examine how Fibonacci ratios work on the birth rate in the last hundred years in Iran. To
examine this, three main time periods were examined. 1320 to 1359, 1359 to 1379 and 1379
to 1394. Eventually as expected, It was observed that Fibonacci ratios had a significant effect
on determining the points of support and resistance in the birth chart recorded in the last one
hundred years in Iran.

1. Introduction

Population growth is also related to the Fibonacci series. In 1202, Leonardo Fibonacci investigated the question of
how fast rabbits could breed under ideal circumstances. Here is the question that he posed: Suppose a newborn pair
of rabbits, one male and one female, is put in the wild. The rabbits mate at the age of one month. At the end of its
second month, a female can produce another pair of rabbits. Suppose that the rabbits never die and that each female
always produces one new pair, with one male and one female, every month from the second month on. How many
pairs will there be in one year?
Fibonacci (c. 1170 – c. 1240–50) was an Italian mathematician from the Republic of Pisa, considered to be ”the most
talented Western mathematician of the Middle Ages”. Fibonacci popularized the Hindu–Arabic numeral system in the
Western world primarily through his composition in 1202 of Liber Abaci (Book of Calculation). He also introduced
Europe to the sequence of Fibonacci numbers, which he used as an example in Liber Abaci. In mathematics, the
Fibonacci numbers form a sequence, called the Fibonacci sequence, such that each number is the sum of the two
preceding ones, starting from 0 and 1.
The beginning of the sequence is thus 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,….
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In 1969, Parberry posed and solved an interesting problem in population growth analogous to the rabbit problem
considered by Fibonacci. Liber Abaci posed and solved a problem involving the growth of a population of rabbits
based on idealized assumptions. The solution, generation by generation, was a sequence of numbers later known as
Fibonacci numbers. Although Fibonacci’s Liber Abaci contains the earliest known description of the sequence outside
of India, the sequence had been described by Indian mathematicians as early as the sixth century.
For more result, see [1], [2]), [3], [4]), [5] and [6] .
N. Rivier and his collaborators ([10]) modelized natural phyllotaxis by the tiling by Voronoi cells of spiral lattices
formed by points placed regularly on a generative spiral. Locally, neighboring cells are organized as three whorls
or parastichies, labeled with successive Fibonacci numbers. The structure is encoded as the sequence of the shapes
(number of sides) of the successive Voronoi cells on the generative spiral. Fibonacci spiral patterns were produced
artificially ([4,5]) by manipulating the stress on inorganic microstructures made of a silver core and a silicon dioxide
shell. It was found that an elastically mismatched bi-layer structure may cause stress patterns that give rise to Fibonacci
spirals. Results suggest that plant patterns might be modeled by mutually repulsive entities for both spherical and
conical surfaces. It is conjectured that Fibonacci spirals are the least energy configuration on conical supports.

2. Main Results

Fibonacci numbers can be used to study models of population growth that always increase over time. In this model,
we start with a pair of rabbits. If we pay attention, the human population also begins with a pair of people created
by Alloh SWT, namely Adam and Eve. Both of them also always gave birth to a pair of twins, male and female.
However, the process of increasing human population is not the same as the process of increasing Fibonacci rabbits.
The last descendants of Adam and Eve were single, not twin. From these rules, a pair of rabbits will have offspring in
the third time unit. In the fourth time unit, the pair has 2 pairs of offspring. Thus, in units of time , the number of pairs
of offspring is 2 − i . The numbers on Fibonacci sequences indicate the number of rabbit pairs with a pair of rabbits
meaning male and female. It is assumed at the beginning of the experiment (the first month) we have a pair of rabbits
who are still babies. In the second month, the couple grew to become juvenils. In the third month, the rabbit has a pair
of children (male and female). Each pair of rabbits will grow in the same pattern, namely infants, juvenils and adults.
Each phase is passed in the same time interval, for example one month. By the time the couple becomes adults, each
month will give birth to a pair of children. That is, a pair of rabbits that have entered the adult phase will give birth
continuously every month. So, the baby bunny pair will give birth to a pair of children in the third, fourth, fifth month
and so on. Thus, we have a population of Fibonacci rabbits consisting of three age groups according to the phases
of rabbit growth, namely babies, juveniles and adults. The Fibonacci sequence, and its “quantum” extension, can be
found in genetic codes, including amino acids and codons ([9]). Deoxyribonucleic acid (DNA) in biological systems
replicates with the aid of proteins. However, Kim et al. ([8]) have designed a controllable self-replicating system that
does not require proteins. The self-assembly process into rings continues through two different replication pathways:
one grows exponentially, the other grows according to Fibonacci’s sequence.
Here we must mention an important point. Today, many charts are constantly growing and declining have a very
complex relationship with Fibonacci numbers. In other words, the growth and decline of these graphs follow the
Fibonacci ratios. Fibonacci ratios somehow determine the next step of a chart. There are many examples of this in
economics, biology, financial markets, and so on.
The Fibonacci “ratios” are 23.6, 38.2, 50, 61.8, and 100. These ratios show the mathematical relationship between the
number sequences and are important to check the future trend of a chart. For reasons that remain a mystery, Fibonacci
ratios often display the points at which a trend of a chart reverses its current position. Today, most of the trends that
deal with growth and decline are closely related to Fibonacci inclusions. In a movement of growth and decline, you
are always dealing with peaks and valleys. In fact, Fibonacci ratios are used to approximate these points. They can
somehow limit the process of a chart. Population growth is one of the issues is always associated with growth and
decline due to various factors. In fact, the nature of population issues has a structure of the problem of hunting and
hunter. This means that you are not always dealing with growth alone when considering the population of a species.
Various factors in nature will sometimes lead to a decrease in even your sample population. The chart below shows
the number of people infected with the corona virus in several different countries over a period of time. As shown in
the figure, due to various factors, the number of patients has never had a constant trend. Now the question is that: Is
it possible to use Fibonacci ratios that actually act as support and resistance lines on a chart to predict the future of a
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demographic trend.? For more result, see [7, 11, 12].

Here we intend to examine the birth rate chart in Iran from 1338 to 1398. The statistics in the following tables are
taken from the sites of official institutions. It is necessary to mention one point here. The official statistics on the birth
rate are up to 1338. That means we do not have official statistics for that before. Maximum and minimum numbers
are very important in examining Fibonacci ratios on a trend. It seems that the minimum birth rate in Iran is related to
before 1338. This will definitely cause some confusion in our calculations. Because moving from one minimum point
to the next maximum point will practically be the main criterion for the next calculations. However, even if you set a
minimum local point in your process, again, calculations will be largely reliable.

Here is an important point. To use Fibonacci ratios, a chart must have accurate access to the maximum and minimum
points. As can be seen from Table 1, in 1359 and 1394, the number of people born in Iran is at a maximum. Also in
1379, we have a minimum point in the chart process. But we must also be able to get the minimum number of people
born before 1338. There are no official statistics on this. But it seems that the number of people born in 1338 is not a
minimum. To find the minimum number of people born before 1338, we try to refer to historical evidence. In the last
century, the outbreak of World War II has had many negative effects on the economic situation of the Iranian people.
The living conditions of a family as well as the economic situation as well as health and treatment are very important
issues that have a great impact on the birth process. Between 1320 and 1324, Iran was involved in the aftermath of
World War II. Over these years, Iran has been plagued by famine, high inflation, and military strikes by foreign forces.
Therefore, most likely, these years can be a reference for measuring the minimum point of birth rate. Certainly, given
the military fires in Iran, one should not look for official birth census statistics. Therefore, in terms of time period, we
consider the years 1320 to 1324 as the period of the lowest birth. Even if we make a mistake in this approximation, the
mistake does notseems to make a big mistake in terms of numerical value. Life expectancy among Iranians in recent
years has been between 72 and 75 years. Now it is enough to pay attention to the death statistics in the last ten years.
According to official statistics, from 1390 to 1395, the death rate was almost constant at an average of 300,000. That
is, we can consider the lowest number of births in the last century to be about the same number. Therefore, we consider
the number of people born before 1338 to be approximately 300,000. On the other hand, the maximum number of
births between 1320 and 1359 is related to 1359. Approximately 2,450,000 people have been born this year. The
difference between the two numbers is approximately 2,150,000. On the other hand, in 1379, when the lowest birth
rate occurred in the years 1359 to 1379, the birth rate is approximately equal to 1100,000 people. As a result, the rate
of birth change between 1359 and 1379 is approximately equal to 1350000 people. According to the rules known in
technical analysis for Fibonacci ratios, there is always a major correction in an uptrend. One of the important ratios in
a corrective move is 0.618.
2150000 × 0.618 = 1330000 Therefore, the upward movement of birth in the years 1320 to 1359, has a corrective
trend with the main ratio of Fibonacci (0.618). This downward movement occurred between 1359 and 1379. Now,
if we consider the period of 1359 to 1379 as the main trend, the rate of birth change in these years has been about
1350000. After a downward movement between the years 1359 to 1379, in the years 1379 to 1394 we are facing
an upward movement. The rate of birth change in the years 1379 to 1394 is approximately equal to 490,000 people.
1350000× 0.38 = 513000.
Therefore, the birth trend in the years 1379 to 1394 with a ratio of 0.38, which is one of the main Fibo ratios, can be
considered as a correction of the downward trend from 1359 to 1379.
Now a question is formed in the mind to conclude. If we consider the years 1379 to 1394 as an upward trend in birth,
how many corrections will this move make? In fact, the minimum birth rate in recent years can be what in a year. The
birth rate change between 1379 and 1394 is about 490000 people. Given that the main Fibonacci correction ratios are
usually one of the numbers 0.38, 0.5 and 0.618, the following situations will occur.
490000× 0.38 = 186000. 490000× 0.50 = 245000. 490000× 0.618 = 303000.
But according to official statistics, the birth rate in 1399 was approximately equal to 1,100,000 people. Therefore, in
terms of technical analysis, all three Fibonacci ratios are broken as trend support numbers. nd now we are at the 100
Fibo support point, which is usually one of the most important support factors in Fibonacci ratios. It seems to be a
little hard to break. In this article, we tried to show how the basics of technical analysis, which are widely used in the
world of economics and financial markets today, can affect biological phenomena and nature.
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Abstract

For matrices with large positive integer elements with a small determinant is an interesting ques-
tion in a linear algebra course. In this paper, we investigatematrices of order 3with large positive
integer elements and having a small determinant.

1. Introduction

In this paper, we consider a kind of finding conditional matrices, under certain given conditions. Obtaining such
conditional matrices seem to be useful in specific problems when we wish to get expected results.
A linear Diophantine equation (in three variables) is an equation of the general form ax + by + cz = d where a, b, c
are given integers and x, y, z are unknown integers. This Diophantine equation has a solution (where x , y, and z are
integers) if and only if d is a multiple of the greatest common divisor of a, b, and c (refer to[1] for more detail).
In [2], the author explains the method for finding an infinite family of matrices with a large positive integer of order 2
with having a small determinant. In this paper, we investigate matrices of order 3 with large positive integer elements
and having a small determinant. typical example is

A =




6103159677781 6103159677782 19785404578332
6103159677782 6103159677783 19785404578687
12206319355563 12206319355563 2186407090190941


 , det(A) = 1.

Theorem 1.1. Given positive integers d and M , there exists many infinitely matrices A = [aij ]1≤i,j≤3 with integer
elements satisfying aij ≥ M and det(A) = d.

2. Proof of Theorem 1.1

Assume that

A =




a11 a12 a13
a21 a22 a23
a31 a32 a33


 .
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Now, assume that

a11 = M, a12 = M + 1, a21 = M + 1, a22 = M + 2, a31 = 2M + 1 and a32 = 2M+ 2.

Also, suppose that a13 = x, a23 = y and a33 = z. By the above assumption det(A) = −Mx+ (M + 1)y − z. Then
we have the following linear Diophantine equation in three variables

−Mx+ (M + 1)y − z = d. (1)

Since gcd (M,M + 1, 1) = 1, then equation (1) has infinitely many solutions, and anyone’s solution can be used to
generate all the other ones. we can solve equation (1) by reducing it to a tow variable equation. Let

(M + 1)y − z = W.

By (1) we have the following linear Diophantine equation in two variables

−Mx+W = d (2)
(M + 1)y − z = W (3)

We observe that x0 = 0,W0 = d is a particular integer solution of (2). Then all integer solutions, of the equation (2),
are of the form

x = t, W = d+Mt, t ∈ Z. (4)

From (3) and (4) we have
(M + 1)y − z = d+Mt.

Since gcd (M+ 1, 1) = 1, then this equation has infinitely solutions for all integersM . It is easy to check that y0 = t
and z0 = t− d is a particular integer solution and so all integer solutions to the equation are of the form

y = t− k, z = t− d− (M + 1)k, t, k ∈ Z.

Finally, we obtain
x = t, y = t− k, z = t− d− (M + 1)k, t, k ∈ Z

as a general solution of (1). Let t be a fixed arbitrary integer number. For obtaining conditional matrices of the theorem,
It sufficient k < ⌊ t−d−M

M+1 ⌋.

Remark 2.1. Let p, q and r be different prime numbers greater thanM . Now, Assume that

a11 = p, a12 = p, a21 = q, a22 = q + 1, a31 = r and a32 = r.

Also, suppose that a13 = x, a23 = y and a33 = z. Then, the equality det(A) = d reads as the following Diophantine
equation:

pz − rx = d (5)

Since gcd(p, r) = 1, to make sure that existing many infinite solutions for the related Diophantine equation (5).
Therefore, the problem can be investigated with several Diophantine equations.

Example 2.2. Consider three prime numbers 15485863, 32452843, and 49979687 greater than 15000000. Let

a11 = a12 = 15485863

a21 = a22 − 1 = 32452843

a31 = a32 = 49979687
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By Remark 2.1, we obtain

15485863z − 49979687x = 2 with M = 15000000 and d = 2.

It is easy to check that
x0 = 13228138 and z0 = 42693016

is a particular integer solution and so all integer solutions to the equation are of the form

x = 13228138 + 15485863t, y = k, z = 42693016 + 49979687t, t, k ∈ Z.

We take k = 160481183, which is a prime number, and t = 1 then

A =




15485863 15485863 28714001
32452843 32452844 160481183
49979687 49979687 92672703


 , det(A) = 2.
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Abstract

In this paper, by reviewing the concept of semicovering map and subsemicovering map, we
present the properties of subsemicovering map. Also we define strong unique path lifting prop-
erty and we prove every subsemicovering map has strong unique path lifting property.

1. Introduction

Assume thatX and X̃ are topological spaces and that p : X̃ → X is a continuous map. Let f : (Y, y0) → (X,x0) be
a continuous map and let x̃0 ∈ p−1(x0). If there exists a continuous map f̃ : (Y, y0) → (X̃, x̃0) such that p ◦ f̃ = f ,
then f̃ is called a lifting of f . The map p has path lifting property (PLP for short) if for every path f inX , there exists
a lifting f̃ : (I, 0) → (X̃, x̃0) of f . Also, the map p has unique path lifting property (UPLP for short) if for every path
f in X , there is at most one lifting f̃ : (I, 0) → (X̃, x̃0) of f (see [5]).
Brazas [1, Definition 3.1] generalized the concept of covering map by the phrase “A semicovering map is a local
homeomorphism with continuous lifting of paths and homotopies”. Note that a map p : Y → X has continuous
lifting of paths if ρp : (ρY )y → (ρX)p(y) defined by ρp(α) = p ◦ α is a homeomorphism, for all y ∈ Y, where
(ρY )y = {α : I = [0, 1] → Y |α(0) = y}. Also, a map p : Y → X has continuous lifting of homotopies if
Φp : (ΦY )y → (ΦX)p(y) defined by Φp(φ) = p ◦ φ is a homeomorphism, for all y ∈ Y , where elements of (ΦY )y
are endpoint preserving homotopies of paths starting at y. He also simplified the definition of semicovering maps by
showing that having continuous lifting of paths implies having continuous lifting of homotopies ( see [2, Remark 2.5]).

Definition 1.1. ([5]). Let X̃ and X be topological spaces and let p : X̃ → X be continuous. An open set U in
X is evenly covered by p if p−1(U) is a disjoint union of open sets Si in X̃ , called sheets, with p|Si : Si → U a
homeomorphism for every i.
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Definition 1.2. ([5]). If X is a topological space, then an ordered pair (X̃, p) is a covering space of X if:

1. X̃ is a path connected topological space;
2. p : X̃ → X is continuous;
3. each x ∈ X has an open neighborhood U = Ux that is evenly covered by p.

The following theorem can be concluded from [4, Theorem 2.4].

Theorem 1.3. A map p : X̃ → X is a semicovering map if and only if it is a local homeomorphism with UPLP and
PLP.

Lemma 1.4. (see [4, Lemma 3.2]).
Let p : X̃ → X be a local homeomorphism with UPLP, let f be an arbitrary path in X and let x̃0 ∈ p−1(f(0)) such
that there is no lifting of f starting at x̃0. Then, using notation of the previous lemma, there exists a unique continuous
map f̃α : Af = [0, α) → X̃ such that p ◦ f̃α = f |[0,α). We call f̃α the incomplete lifting of f by p starting at x̃0.

2. Main results

Let p : X̃ → X be a local homeomorphism. We are interested in finding some conditions on p or X̃ under which
the map p can be extended to a semicovering map q : Ỹ → X . We recall that Steinberg [6, Section 4.2] defined a
map p : X̃ → X of locally path connected and semilocally simply connected spaces as a subcovering map (and X̃ a
subcover) if there exist a covering map p′ : Ỹ → X and a topological embedding i : X̃ → Ỹ such that p′ ◦ i = p. We
are going to extend this definition as follows.

Definition 2.1. Let p : X̃ → X be a local homeomorphism. We say that p can be extended to a local homeomorphism
q : Ỹ → X , if there exists an embedding map ϕ : X̃ ↪→ Ỹ such that q ◦ ϕ = p. In particular, if q is a covering
map, then p is called a subcovering map (see [6, Section 4.2]) and if q is a semicovering map, then we call the map p a
subsemicovering map. Moreover, if p∗(π1(X̃, x̃0)) = q∗(π1(Ỹ , ỹ0)), then we call the map p full subcovering and full
subsemicovering, respectively.

Note that since every covering map is a semicovering map, every subcovering map is a subsemicovering map. Also,
if p : (X̃, x̃0) → (X,x0) can be extended to q : (Ỹ , ỹ0) → (X,x0) via ϕ : (X̃, x̃0) → (Ỹ , ỹ0), then p∗(π1(X̃, x̃0))
is a subgroup of q∗(π1(Ỹ , ỹ0)).
The following example shows that there exists a subsemicovering map that is not a full subsemicovering map.

Example 2.2. LetX =
⋃

n∈N{(x, y) ∈ R2|(x− 1
n )

2+y2 = 1
n2 } be the Hawaiian Earring space. Brazas [1, Example

3.8] introduced a connected semicovering p : X̃ → X with discrete fibers, which is not a covering map. Put X̂ =
p−1(X \ ((0, 1])×{0}), then X̂ is path connected. It is easy to see that every loop in X̂ is null homotopic. Also, q =
p|X̂ : X̂ → X is a local homeomorphism with q∗(π1(X̂, x̂0)) = {1} ≤ π1(X). Calcut and McCarthy [3, Theorem 1]
proved that for a connected and locally path connected spaceX , semilocally simply connectedness ofX is equivalent
to openness of the trivial subgroup in πqtop

1 (X). Hence the trivial subgroup is not open in πqtop
1 (HE) since HE is not

semilocally simply connected at the point (0, 0). This implies that q∗(π1(X̂, x̂0)) is not open in πqtop
1 (HE). Since q can

be extended to the semicovering map p, q is a subsemicovering map. Note that q is not a full subsemicovering map since
otherwise there exists a semicovering map r : Ỹ → HE such that r∗(π1(Ỹ , ỹ0)) = q∗(π1(X̂, x̂0)). r∗(π1(Ỹ , ỹ0)) is
open in πqtop

1 (HE) but q∗(π1(X̂, x̂0)) is not open in πqtop
1 (HE), which is a contradiction.

In the following, we define a strong version of the unique path lifting property in order to find a necessary condition
for a local homeomorphism to be subsemicovering.

Definition 2.3. Let p : X̃ → X be a local homeomorphism, let f : [0, α) → X be an arbitrary continuous map, and
let f̃ : [0, α) → X̃ be the incomplete lifting of f defined in Lemma 1.4 with starting point x̃0 ∈ p−1(f(0)). Then,
we say that p has the strong unique path lifting property (strong UPLP for short) if there exist ε(f,x̃0) > 0 and an open
set U(f,x̃0) ⊆ X̃ such that f̃(α − ε(f,x̃0), α) ⊆ U(f,x̃0) and p|U(f,x̃0)

: U(f,x̃0) → p(U(f,x̃0)) is one-to-one. Note that
p|U(f,x̃0)

is a homeomorphism since it is open. We call U(f,x̃0) a strong neighborhood.
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In the following lemma, we show that every local homeomorphism with strong UPLP has UPLP.

Lemma 2.4. If a local homeomorphism has strong UPLP, then it has UPLP.

There exists a local homeomorphism with UPLP that does not have strong UPLP.

Fig. 1. X̃

Example 2.5. Let X = HE =
⋃

n∈N{(x, y) ∈ R2|(x − 1
n )

2 + y2 = 1
n2 } be the Hawaiian Earring space. Put

Wi =
⋃

n∈{N\{i,i+1}}{(y, z) ∈ R2|(y− 1
n )

2 + z2 = 1
n2 } and

Si ={(y, z)|(y − (1− 1

i
))2 + z2 = (

1

i
)2, z > 0}

⋃
{(y, z)|(y − (1− 1

i+ 1
))2 + z2 = (

1

(i+ 1)
)2, z < 0}

for every i ∈ N. Let X̃ = ((0, 1) × {0} × {0})⋃∞
i=1({1 − 1

i+1} × (Wi ∪ Si)) be a subset of R3 (see Figure 1). We
define p : X̃ → X by

p(x, y, z) =





(y, z), x = 1− 1
i+1 , i ∈ N,

1
i (1 + cos( 2π

1−x ), sin(
2π
1−x )), 1− 1

i < x < 1− 1
i+1 , i ∈ N.

It is routine to check that p is a local homeomorphism that has UPLP. Let α : I → X be a loop defined by

α(t) =

{
(0, 0), t ∈ [0, 1

2 ] ∪ {1},
1
i (1 + cos( 2π

1−t ), sin(
2π
1−t )), 1− 1

i ≤ t ≤ 1− 1
i+1 , i ∈ N \ {1}.

The loop α has no lifting with starting point ( 12 , 0, 0) and the incomplete lifting of α with starting point ( 12 , 0, 0) is
α̃ : [0, 1) → X̃ defined by

α̃(t) =

{
( 12 , 0, 0), t ∈ [0, 1

2 ],

(t, 0, 0), t ∈ [ 12 , 1).

Thus α̃ does not have any strong neighborhood. Therefore p does not have strong UPLP.

In the following theorem, we show that the strong UPLP is a necessary condition for a local homeomorphism to be a
subsemicovering map.
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Theorem 2.6. If p is a subsemicovering map, then p has strong UPLP.

Proof. If p : X̃ → X is a semicovering map, then it is easy to check that p has strong UPLP. Suppose that p is
subsemicovering which is not a semicovering map. So there exists a semicovering map q : Ỹ → X with an embedding
map ϕ : X̃ → Ỹ such that q ◦ ϕ = p. Since p is not semicovering, there exists a path f in X with no lifting. By
Lemma 1.4, there exists f̃ : [0, α) → X̃ with starting point x̃0 ∈ p−1(f(0)) such that p ◦ f̃ = f . Also, since
q is a semicovering map, the map q has PLP. Thus there exists a lifting f̂ of f in Ỹ with starting point ϕ(x̃0) and
ϕ(f̃([0, α))) = f̂ |[0,α). Since q is a semicovering map, there exists an open neighborhood U at f̂(α) such that p|U :

U → p(U) is a homeomorphism. Put U(f,x̃) = ϕ−1(U) ∩ X̃ , then there exists ε > 0 such that f̃(α− ε, α) ⊆ U(f,x̃).
Also, p : U(f,x̃) → p(U(f,x̃)) is one-to-one since q : U → q(U) is a homeomorphism.
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Abstract

In this paper, first, we consider the variational formulas of p-biharmonic maps with some new
techniques. Then, some properties of this type of biharmonic maps are investigated and an
example is presented.

1. introduction

Harmonic maps between Riemannian manifolds were introduced by Eells and Sampson in 1964. They showed that any
map from a Riemannian manifold into a Riemannian manifold with non-positive sectional curvature can be deformed
into a harmonic map. This result is known as fundamental existence thorem for harmonic maps. Harmonic maps play
a key role in mathematical physics, [3].
A smooth map ψ : (P, ℓ) −→ (K, ρ) between two Riemannian manifolds is considered. The function

E(ψ) =
1

2

∫

U

| dψ |2 dVℓ, (1)

where U ⊂ M is a compact subset ofM , is said to be the energy functional of ψ. Noting that ψ is harmonic if it is a
critical point of the energy functional E(ψ) for all compact subsetsU ⊂M . Setting τ(ψ) = Trg∇dψ which is called
the tension field of ψ. According to the definition of tension field of ψ, the Euler-Lagrange equation associated to (1)
is obtained by the vanishing of the tension field of ψ

τ(ψ) = Trg∇dψ = 0, (2)

more details are given in [4, 5].
p-harmonic maps are considered as an extension of harmonic maps. In mathematical physics and robatics, p-harmonic
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maps are invesigated in image processing for denoising color images. Furtheremore this type of harmonic maps have
been extensively investigated by scholars who have done research on image processing [6]. Moreover, p-harmonic
maps, play a key role in physical cosmology for depicting the phenomenon of the quintessence, [1].
In 1983, Eells and Lemaire introduced biharmonic maps. They are critical points of the bi-energy functional, E2,
which is defined as follows

E2(ψ) =

∫

P

| τ(ψ) |2 dVℓ. (3)

Since the tension field of harmonic maps vanishes, it can be shown that harmonic maps are biharmonic maps and even
more, minimal points of the bi-energy functional. The first and second variation formulas of the bienergy functional
E2 were first calculated by Jiang, [2]. Recently, many authors have done research on these type of harmonic maps
extensively,[1, 2, 6].
For any real number p > 2, the notion of p-biharmonic maps, as an extension of biharmonic maps have an important
role in depicting of reproducing the inflation in physical cosmology, [1]. For any smooth map ψ, the p−bienergy
functional is defined as follows,

Ep,2(ψ) =

∫

P

| τ(ψ) | p2 dVℓ. (4)

The Euler-Lagrange equation associated to Ep,2 is obtained as follows

0 = 4p | τ(ψ) |p−2 τ2(ψ) + (p(p− 2)(p− 4) | τ(ψ) |p−6| grad | τ(ψ) |2|2

− 2p(p− 2) | τ(ψ) |p−4 ∆ | τ(ψ) |2)τ(ψ) + 4p(p− 2) | τ(ψ) |p−4 ∇ψ
grad|τ(ψ)|2τ(ψ) (5)

where τ2(ψ) is the bi-tension field of E2. In this paper, first, we compute the second variational formula of Ep,2
with the new techniques. Then the stability of p-biharmonic maps between Riemannian manifolds is studied and an
example is given.

2. Main Results

A smooth map ψ : (P, ℓ) −→ (K, ρ) between Riemannian manifolds are considered. Choose an arbitrary smooth
variation {ψt}t=0 of ψ0 = ψ. The second variation formula of E

p,2
is calculated as follows

d2

dt2

∣∣∣∣
t=0

Ep,2(ψt)

=

∫

P

ρ

(
W, 4p(p− 1)Hψ(τ) +Kp,ψ(W )τ2(ψ)− 2p(p− 2)∆ | τ(ψ) |p−2 Jψ(W )−∆Kp,ψ(W )τ(ψ)

+2∇ψ
grad (Kp,ψ(W ))τ(ψ) +RK(dψ(grad | τ(ψ) |p−4,W )τ(ψ)

)
dVℓ (6)

whereW = ∂ψt
∂t |t=0,Kp,ψ(W ) = p(p− 2) ddt t=0

| τ(ψt) |p−4 and

Hψ(τ) =

∫

P

p | τ(ψ) |p−2

∣∣∣∣−∆ψW − tracegR
K(dψ,W )dψ

∣∣∣∣
2

dVℓ (7)

Definition 2.1. A smooth map ψ : (P, ℓ) −→ (K, ρ) between Riemannian manifolds are considered. Choose an
arbitrary smooth variation {ψt}t=0 of ψ0 = ψ. Suppose that V = dψt

dt |t=0. Setting

I(V ) =
d2

dt2

∣∣∣∣
t=0

Ep,2(ψt). (8)

the smooth map ψ is stable p−biharmonic map if I(V ) > 0 for any vector field V along ψ.
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Example 2.2. Let (Sm, g) be the standard unit m-dimensional sphere. Consider a Riemannain metric ρ on K =
Sm×R3−{0} as follows ρ = geucl+L

2g where L ∈ C∞(R3−{0}) is defined by L(y) =
√

| y | for y ∈ R3−{0}.
It can be shown that | gradL2 |2= 1. For any y0 ∈ R3 − {0} the tension and bitension field of

ψ : Sm −→ K

x −→ (x, y0) (9)

is obtained as follows

τ(ψ) = −m
2
(0, gradL2) ◦ ψ τ2(ψ) = − m3

m+ 4
(0, grad | gradL2 |2) ◦ ψ (10)

By (6), it can shown that ψ is a stable p-biharmonic map.

According to (6), the following theorem can be obtained.

Theorem 2.3. Let ψ : (P, ℓ) −→ (K, ρ) be a non-trivial p-biharmonic map from a constant scalar curvature (P, ℓ)
to a constant positive Ricci curvature (K, ρ). Suppose that div(| grad | dψ |2|2 ℓ) ̸= 0. Then ψ is unstable if
grad(| ∇dψ |2) is constant.
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Abstract

In the present paper, exponential harmonic maps with potential from a complete Riemannian
manifold of constant sectional curvature to a non-negative Ricci curvature manifold are inves-
tigated. First, the variational formulas for this type of harmonic maps are obtained. Then, a
Liouville-type theorem for exponential harmonic maps with potential is given .

1. introduction

In 1964, Eells and Sampson introduced Harmonic maps between Riemannian manifolds. They proved that any map
ψ : (P, ℓ) −→ (K, ϱ) from any compact Riemannian manifold (P, ℓ) into a Riemannian manifold (K, ϱ) with non-
positive sectional curvature can be deformed into a harmonic maps. This is well-known as the fundamental existence
theorem for harmonic maps. In view of mechanics, these maps have been studied in many branch of mechanics, such
as liquid crystal, ferromagnetic material, super conductor, etc., [6].
The notion of harmonic maps with potential, was initially studied by Ratto in [4]. Recently, these type of harmonic
maps was developed by several authors :Y. Chu [1], A. Fardoun and all [2], V. Branding [5] and others.
Let ψ : (P, ℓ) −→ (K, ϱ) be a smooth map, and let H be a smooth function on K. The H−energy function of ψ is
defined as follows

EH(ψ) =

∫

P

[e(ψ)−H(ψ)]dVℓ, (1)

where dVℓ is the volume element of (P, ℓ) and e(ψ) is the energy density of ψ which is defined by e(ψ) :=
1

2
| dψ |2.

A smooth map ψ is said to be harmonic with potentialH if ψ is a critical point of the energy functional of EH .
Eells and Lemaire [3] extended the concept of harmonic maps to exponential harmonic maps, and considered the
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instability of these maps. The exponential energy functional of a smooth map ψ : (P, ℓ) −→ (K, ϱ) is defined as
follows:

E
e
(ψ) =

∫

P

exp(
| dψ |2

2
)dVℓ. (2)

A smooth map ψ is said to be a exponential harmonic map if ψ is a critical point of the exponential energy functional.
In terms of the Euler-Lagrange equation, ψ is exponential harmonic if ϕ satisfies the following equation

τe(ψ) = τ(ψ) + dψ(grad exp(e(ψ))) = 0. (3)

The section τ
e
(ψ) ∈ Γ(ψ−1TK) is said to be the exponential tension field of ψ, [3].

In this manuscript, first, the variational formulas for exponential harmonic maps with potential are derived. Then,
a Liouville-type theorem for exponential harmonic maps with potential from a complete Riemannian manifold of
constant sectional curvature to a non-negative Ricci curvature manifold is given.

2. Main Results

In this part, the variation formulas of exponential energy functional with potential H is calculated. Then a Liouville-
type theorem for exponential harmonic maps with potential is given.

Let ψ : (P, ℓ) −→ (K, ϱ) be a C3 map. Denote the Levi-Civita connection of P,K and ψ−1TK by P∇,K ∇
and ∇̂, respectively. consider that the induced connection ∇̂ on ψ−1TK defined by ∇̂WT =K ∇dψ(W )T , where
W ∈ χ(M) and T ∈ Γ(ψ−1TK).

Definition 2.1. Let ψ : (P, ℓ) −→ (K, ϱ) be a smooth map, and let H be a smooth function on K. The exponential
energy functional of ψ with potential H is defined as follows

Ee,H(ψ) =

∫

P

[e(ψ)−H(ψ)]dVℓ, (4)

where dVℓ is the volume element of (P, ℓ) and e(ψ) is defined as follows e(ψ) :=
1

2
| dψ |2. The smooth map ψ

is said to be an exponential harmonic with potentialH if ψ is a critical point of the exponential energy functionalEe,H .

By considering a local orthonormal frame field {ei} onP , the exponential tension field ofψ with potentialH , τe,H(ψ),
is defined as follows

τe,H(ψ) = exp(
| dψ |2

2
)τ(ψ) + dψ(grad exp(

| dψ |2
2

)) +K ∇H ◦ ψ, (5)

here τ(ψ) =
∑m
i=1{∇̂eidψ(ei)− dψ(P∇eiei)} is the tension field of ψ. Based on the above notations we have

Lemma 2.2. Letψ : (P, ℓ) −→ (K, ϱ) be a smooth map. Then

d

dt
Ee,H(ψt) |t=0= −

∫

P

h(τe,H(ψ), V )dVℓ, (6)

where V = dψt

dt |t=0 .

A smooth map ψ is called an exponential harmonic with potentialH if τe,H(ψ) = 0.

Definition 2.3. Let ψ : (P, ℓ) −→ (K, ϱ) be an exponetial harmonic map with potential H , and let {ψt : P −→ K}
be a variation of ψ such that ψ0 = ψ and V =

dψt
dt

|t=0. Setting

I(V ) =
d2

dt2
Ee,H(ψt) |t=0

The smooth map ψ is said to be stable if I(V ) ≥ 0 for any vector field V along ψ.



564 Kazemi & Babayi / The 3rd National Congress on Mathematics and Statistics

Let Y, Z ∈ χ(P ) such that

ℓ(Y,W ) = exp(
| dψ |2

2
) < ∇̂V, dψ > .ϱ(dϕ(W ), V ),

ℓ(Z,W ) = exp(
| dψ |2

2
)ϱ(∇̂WV, V ), (7)

for every vector fields W on P , respectively. By (6), Green’s Theorem and noting the divergence of X and Z, the
following theorem is obtained.

Theorem 2.4. Let ψ : (P, ℓ) −→ (K, ϱ) be an exponential harmonic map with potential H, and let {ψt : P −→ K}
be a variation of ψ such that ψ0 = ψ. Then

I(V ) =

∫

P

exp(
| dψ |2

2
)⟨∇̂V, dψ⟩2 − ϱ(traceℓ

KR(V, dψ)dψ − (K∇V grad
KH) ◦ ψ, V )

}
dVℓ (8)

where | ∇̂V | denotes the Hilbert-Schmidt norm of the ∇̂V ∈ Γ(T ∗M × ϕ−1TN) and V =
∂ϕt
∂t

|t=0 .

Theorem 2.5. Let ψ : (P, ℓ) −→ (K, ϱ) be a p-harmonic map with potentialH from a complete Riemannian manifold
of constant sectional curvature to a non-negative Ricci curvature manifold. Assume that

∆grad | e|dψ|2 |2 +∇grad | e|dψ|2 |2= 0, grad |K ∇H |2= 0. (9)

Then ψ is a harmonic map.
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Abstract

The ultimate goals of this perform study is to provide a proposed scheme for solving the time-
fractional stochastic advection-diffusion equation (TFSADE) of order 𝛼(0 ≤ 𝛼 < 1). In this
proposed scheme, we utilize an approach based on cubic trigonometric B-spline collocation
methods (CTBSCM). In this study, we replace the existing fractional derivative with the frac-
tional Caputo derivative for time discretization and then replace the first and second derivatives
of the equation using cubic trigonometric B-spline functions for spatial discretization. Applying
this proposed scheme to TFSADE causes the equation to reduce to the linear system. In the end,
the examples show that the order of convergence of the proposed method is 𝑂(𝜏2 + ℎ2) where
ℎ and 𝜏 are the spatial and time step lengths, respectively.

1. Introduction

Recently, finding a solution for a class of fractional differential equations involving Brawnian motion is highly im-
portant, because this type of equation is rarely be solved due to randomness, and the analysis of differential equations
involving random coefficients gives us more details of the phenomenon behavior. Mathematical models play a key role
in the fields of science and industry. As a result, most scientists deal with stochastic differential equations. Mathemat-
ical models in most fields include coefficients that are not completely known and have types of random environmental
disturbances and noise.
We originally intend to obtain the numerical solution of the following stochastic equation:

𝐷𝛼
𝑡 𝑢(𝑥, 𝑡) + 𝐿𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), 𝑥 ∈ (𝑎, 𝑏), 𝑡 ∈ (0, 𝑇 ],

𝐿𝑢(𝑥, 𝑡) = 𝜎1
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥 − (𝜎2 + 𝜎3�̇�(𝑡))𝜕2𝑢(𝑥, 𝑡)
𝜕𝑥2 ,

(1)

with the following initial and boundary conditions

𝑢(𝑥, 0) = 𝑔(𝑥), 𝑥 ∈ [𝑎, 𝑏], (2)
𝑢(𝑎, 𝑡) = 𝑢(𝑏, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ], (3)
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where 𝜎1 is the coefficient of advection, and 𝜎2 and 𝜎3 are the coefficients of diffusion terms. 𝑔(𝑥) is a continuous
function. The source function 𝑓(𝑥, 𝑡) is a sufficiently smooth function. Here, 𝐿is a linier spatial derivative operator
and 0 ≤ 𝛼 < 1 is order fractional coefficient of the equation. Also, the phrase �̇�(𝑡) = 𝑑𝐵(𝑡)

𝑑𝑡 is white noise where
𝐵(𝑡) is a Brawnian motion. For discretization of 𝐵(𝑡), we set 𝑡 = 𝑡𝑗 and let 𝐵𝑗 = 𝐵(𝑡𝑗). 𝐵(𝑡) definition on the full
probability space (Ω, 𝐹 , 𝑃 ) with the filter {𝐹𝑡}𝑡≥0 where   Ω as a summary of possible events of an experiment with
the member 𝜔 ∈ Ω, and 𝐹 family is a subset of Ω that has the following properties:
1. 𝜙 ∈ 𝐹 , Where 𝜙 is an empty set.
2. If 𝐴 ∈ 𝐹 , then 𝐴𝑐 ∈ 𝐹 where 𝐴𝑐 = Ω − 𝐴 is the same as the 𝐴 supplement in Ω.
3. If {𝐴𝑖}𝑖≥1 ⊆ 𝐹 , then ⋃+∞

𝑖=1 𝐴𝑖 ⊆ 𝐹 and 𝑃 ∶ 𝐹 → [0, 1] is a probability function such that
1. 𝑃(Ω) = 1.
2. For each sequence {𝐴𝑖}𝑖≥1 ⊂ 𝐹 that for each 𝑖 ≠ 𝑗, 𝐴𝑖 ∩ 𝐴𝑗 = 𝜙 we have:

𝑃(
∞
⋂
𝑖=1

𝐴𝑖) =
∞
∑
𝑖=1

𝑃(𝐴𝑖).

The classical books by Professor Mao; including Stability of Stochastic Differential Equations with Quasi-Martingale
Ratio [8], Exponential Stability of Stochastic Differential Equations [9], Stochastic Differential Equations, and Ap-
plications first edited [10]. And the book Stochastic Differential Equations with Markov Motion [11] are excellent
references for stochastic equations as well as in-depth presentations of various techniques and applications in com-
putational. In 2000, Metzler et al. focused on the random walk’s guide to anomalous diffusion [1]. In 2006, Kilbas
worked on the theory and applications of fractional differential equations [7]. The article by Guang-an Zou (2018)
concentrated on a Galerkin finite element method for time-fractional stochastic heat equation [12] and in 2019, Huang
et al. prove Carleman estimates for the generalized time-fractional advection-diffusion equations [4] and Amirat et al.
worked on Asymptotic analysis of an advection-diffusion equation and application [5]. The article by Babaei and et al.
(2020) focused on the Chebyshev collocation methods on time-fractional stochastic heat equation [13] and Mirzaee et
al. provide the Cubic B-spline approximation for the linear stochastic integrodifferential equation of fractional order
[14]. In this work, in section 2, Our main focus is to provide the numerical scheme for solving TFSADEs. The con-
vergence analysis of this numerical approach investigated in section 3. In section 4, we present some examples related
to solving fractional stochastic equations.

2. Numerical Scheme

First we consider two arbitrary constants 𝑀, 𝑁 ∈ ℕ. We assume

𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑀 = 𝑏, 𝑥𝑖 = 𝑎 + 𝑖(𝑏 − 𝑎
𝑀 ), (𝑖 = 0, 1, 2, ⋯ ,𝑀)

0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑇 , 𝑡𝑘 = 𝑘( 𝑇
𝑁 ), (𝑘 = 0, 1, 2, ⋯ ,𝑁).

are uniform partition in the solution domain [𝑎, 𝑏] and [0, 𝑇 ], respectively. Now let 𝑇𝐵𝑚(𝑥) for 𝑚 = −1, ⋯ , 𝑀 + 1
be the cubic trigonometric B-spline function in the uniform partition on [𝑎, 𝑏] that can be defined as follows

𝑇𝐵3
𝑚(𝑥) = 1

𝑤

⎧{{{{{
⎨{{{{{⎩

𝑝3(𝑥𝑚), 𝑥 ∈ [𝑥𝑚−2, 𝑥𝑚−1],
𝑝(𝑥𝑚)[𝑝(𝑥𝑚)𝑞(𝑥𝑚+2) + 𝑞(𝑥𝑚+3)𝑝(𝑥𝑚+1)]
+𝑞(𝑥𝑚+4)𝑝2(𝑥𝑚+1), 𝑥 ∈ [𝑥𝑚−1, 𝑥𝑚],
𝑞(𝑥𝑚+4)[𝑝(𝑥𝑚+1)𝑞(𝑥𝑚+3) + 𝑞(𝑥𝑚+4)𝑝(𝑥𝑚+2)]
+𝑝(𝑥𝑚)𝑞2(𝑥𝑚+3), 𝑥 ∈ [𝑥𝑚, 𝑥𝑚+1],
𝑞3(𝑥𝑚+4), 𝑥 ∈ [𝑥𝑚+1, 𝑥𝑚+2],
0, 𝑜.𝑤.

(4)
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where

𝑝(𝑥𝑚) = sin(𝑥 − 𝑥𝑚
2 ) , 𝑝(𝑥𝑚) = sin(𝑥𝑚 − 𝑥

2 ) ,

𝑤 = sin(ℎ
2) . sin(ℎ). sin(3ℎ

2 ) ,

It is obvious that the support of the cubic trigonometric B-spline 𝑇𝐵𝑚(𝑥) and its derivative is [𝑥𝑚−2, 𝑥𝑚+2]. Let
𝑢(𝑥, 𝑡) and 𝑈(𝑥, 𝑡) are the analytical and numerical solutions of the differential equation (1), respectively. According
to the collocation method, the numerical solution can be approximated as

𝑢(𝑥, 𝑡) ≃ 𝑈(𝑥, 𝑡) =
𝑀+1
∑

𝑚=−1
Υ𝑚(𝑡)𝑇𝐵3

𝑚(𝑥), (5)

and the coefficients Υ𝑚(𝑡) are to be determined by the numerical scheme proposed in this paper.
Given the bases of cubic trigonometric B-spline (4) and the numerical solution in (5), we present an approximation
for the discretization of the first and second derivatives of equation (1) as follows

⎧{
⎨{⎩

𝑈(𝑥𝑚, 𝑡) = 𝑎1Υ𝑚−1(𝑡) + 𝑎2Υ𝑚(𝑡) + 𝑎1Υ𝑚+1(𝑡),
𝜕𝑈(𝑥𝑚,𝑡)

𝜕𝑥 = −𝑎3Υ𝑚−1(𝑡) + 𝑎3Υ𝑚+1(𝑡),
𝜕2𝑈(𝑥𝑚,𝑡)

𝜕𝑥2 = 𝑎4Υ𝑚−1(𝑡) − 𝑎5Υ𝑚(𝑡) + 𝑎4Υ𝑚+1(𝑡),
(6)

where

𝑎1 = 𝑐𝑠𝑐(ℎ).𝑐𝑠𝑐 (3ℎ
2 ) . sin2 (ℎ

2) ,

𝑎2 = 2
1 + 2 cos(ℎ) ,

𝑎3 = 3
4𝑐𝑠𝑐 (3ℎ

2 ) ,

𝑎4 = 3 + 9 cos(ℎ)
4 cos (ℎ

2 ) − 4 cos ( 5ℎ
2 ) ,

𝑎5 = − 3𝑐𝑜𝑡2 (ℎ
2 )

2 + 4 cos(ℎ) .

The Caputo’s time fractional derivative of order 𝛼 ∈ (0, 1] is given by [15]

𝜕𝛼𝑢(𝑥, 𝑡)
𝜕𝑡𝛼 = 1

Γ(1 − 𝛼) ∫
𝑡

0

𝜕𝑢
𝜕𝜏 (𝑥, 𝜏) 𝑑𝜏

(𝑡 − 𝜏)𝛼 . (7)

where Γ is the Gamma function.
Using forward difference formulation, for 𝑘 = 0, ⋯ , 𝑁 − 1 the equation (7) can be reshaped as follows

𝜕𝛼𝑢
𝜕𝑡𝛼 (𝑥, 𝑡𝑘+1) = 1

Γ(1 − 𝛼)
𝑘

∑
𝑗=0

∫
𝑡𝑗+1

𝑡𝑗

(𝑡𝑘+1 − 𝜏)−𝛼𝑢𝜏(𝑥, 𝜏)𝑑𝜏

= 1
Γ(1 − 𝛼)

𝑘
∑
𝑗=0

𝑢𝑗+1 − 𝑢𝑗

𝜏 ∫
𝑡𝑗+1

𝑡𝑗

(𝑡𝑘+1 − 𝜏)−𝛼𝑑𝜏 + 𝑂(𝜏2)

= 𝜏−𝛼

Γ(2 − 𝛼)
𝑘

∑
𝑗=0

[(𝑘 − 𝑗 + 1)1−𝛼 − (𝑘 − 𝑗)1−𝛼](𝑢𝑗+1 − 𝑢𝑗) + 𝑂(𝜏2)

= 𝜏−𝛼

Γ(2 − 𝛼)
𝑘

∑
𝑗=1

[(𝑗 + 1)1−𝛼 − 𝑗1−𝛼](𝑢𝑘−𝑗+1 − 𝑢𝑘−𝑗) + 𝑂(𝜏2), (8)
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where 𝜏 = 𝑇
𝑁 .

By applying the difference form of the time derivative in (8), the fractional advection-diffusion equation (1), for
𝑖 = 1, ⋯ , 𝑀 − 1, 𝑘 = 0, ⋯ 𝑁 − 1 can be written as

𝜏−𝛼

Γ(2 − 𝛼)
𝑘

∑
𝑗=1

𝑏𝑗[𝑈𝑘−𝑗+1
𝑖 − 𝑈𝑘−𝑗

𝑖 ] + 𝜎1(𝑈𝑥)𝑘+1
𝑖 = 𝜃𝑗(𝑈𝑥𝑥)𝑘+1

𝑖 + 𝑓𝑘+1
𝑖 (9)

where 𝑈(𝑥𝑗, 𝑡𝑘) ∶= 𝑈𝑘
𝑗 , and 𝑓(𝑥𝑗, 𝑡𝑘) ∶= 𝑓𝑘

𝑗 , and �̇� ≃ 𝐵(𝑡𝑗)−𝐵(𝑡𝑗−1)
𝜏 ∶= 𝜁𝑗 for 𝑗 = 1,⋯ , 𝑁 , and 𝜎2 + 𝜎3𝜁𝑗 ∶= 𝜃𝑗.

Then using the collocation method and substituting (6) in (9) for 𝑖 = 1,⋯ , 𝑀 − 1 and 𝑘 = 1, ⋯ , 𝑁 , leads to the
following recurrence difference formula corresponding to the parameters Υ𝑘

𝑚,

𝒵1Υ𝑘+1
𝑖−1 + 𝒵2Υ𝑘+1

𝑖 + 𝒵3Υ𝑘+1
𝑖+1 = 𝑓𝑘+1

𝑖 + 𝑟(Υ𝑘
𝑖 −

𝑘−1
∑
𝑗=0

𝑏𝑗[Υ𝑘−𝑗+1
𝑖 − Υ𝑘−𝑗

𝑖 ]), (10)

Note that 𝑏0 = 1 and

𝑟 = 𝜏−𝛼

Γ(2 − 𝛼) ,

𝒵1 = −𝑎3𝜎1 − 𝑎4𝜃𝑗,
𝒵2 = 𝑎5𝜃𝑗 + 𝑟𝑏0,
𝒵3 = 𝑎3𝜎1 − 𝑎4𝜃𝑗.

and the matrix 𝒵 is

𝒵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝒵2 𝒵3
𝒵1 𝒵2 𝒵3

𝒵1 𝒵2 𝒵3
⋱ ⋱ ⋱
𝒵1 𝒵2 𝒵3

𝒵1 𝒵2 𝒵3
𝒵1 𝒵2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where Υ𝑘
𝑚 = Υ𝑚(𝑡𝑘). The matrix form of Equation (10) is as follows

𝒵Υ𝑘+1 = 𝑓𝑘+1
𝑖 + 𝑟(𝑏0Υ𝑘

𝑖 −
𝑘−1
∑
𝑗=0

𝑏𝑗[Υ𝑘−𝑗+1
𝑖 − Υ𝑘−𝑗

𝑖 ]), 𝑘 = 1,⋯ , 𝑁, (11)

For 𝑘 = 1 we have

{Υ𝑘+1 = 𝒵−1(𝑓𝑘+1
𝑖 + 𝑟Υ𝑘

𝑖 ), 𝑘 = 1,
Υ𝑘+1 = 𝒵−1(𝑓𝑘+1

𝑖 + 𝑟(Υ𝑘
𝑖 − ∑𝑘−1

𝑗=0 𝑏𝑗[Υ𝑘−𝑗+1
𝑖 − Υ𝑘−𝑗

𝑖 ])), 𝑘 = 2, ⋯ , 𝑁. (12)

Note tha Υ𝑘 = [Υ𝑘
−1, Υ𝑘

0, Υ𝑘
1, ⋯ ,Υ𝑘

𝑀 , Υ𝑘
𝑁+1]𝑇 is the unknown parameters, 𝐴 is the coefficients matrices and 𝑓𝑘 =

[𝑓𝑘
0 , ⋯ , 𝑓𝑘

𝑀 ]𝑇 . For solve the system (12) with matrix in (𝑁 + 1) × (𝑁 + 3) dimensions, by using the boundary
conditions of problem (2), the unknown parameters Υ𝑘

−1 and Υ𝑘
𝑀+1 may be eliminated from the system as follows;

Let 𝑖 = 0 and 𝑖 = 𝑀 , by using the conditions (3) and relation (6) we have

{𝑈(𝑥0 = 𝑎, 𝑡) = 𝑎1Υ−1(𝑡) + 𝑎2Υ0(𝑡) + 𝑎1Υ1(𝑡) = 0,
𝑈(𝑥𝑀 = 𝑏, 𝑡) = 𝑎1Υ𝑀−1(𝑡) + 𝑎2Υ𝑀(𝑡) + 𝑎1Υ𝑀+1(𝑡) = 0.

Thus, for every 𝑘:
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{Υ𝑘
−1 = −𝑎2Υ𝑘

0 − 𝑎1Υ𝑘
1,

Υ𝑘
𝑀+1 = −𝑎2Υ𝑘

𝑀 − 𝑎1Υ𝑘
𝑀−1.

(13)

𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
𝑎1𝑟 𝑎2𝑟 𝑎1 0
0 𝑎1𝑟 𝑎2𝑟 𝑎1𝑟

⋱ ⋱ ⋱
𝑎1𝑟 𝑎2𝑟 𝑎1𝑟 0
0 𝑎1𝑟 𝑎2𝑟 𝑎1𝑟
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑓𝑘+1 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0
⋮

𝑓𝑘+1

⋮
0

⎞⎟⎟⎟⎟⎟⎟
⎠

.

Having the initial vector Υ0, the system (12) has a unique solution. The starting vector Υ0 = [Υ0
−1, Υ0

0, ⋯ , Υ0
𝑀+1]𝑇

can be determined by (6) and initial conditions of the problem, as the following forms

𝑈(𝑥𝑚, 0) = 𝑎1Υ0
𝑖−1 + 𝑎2Υ0

𝑖 + 𝑎1Υ0
𝑖+1 = 𝑔(𝑥𝑚), 𝑖 = 0, 1, ⋯ , 𝑀,

Therefore, the initial vector Υ0 is determined from the following matrix equation;

⎛⎜⎜⎜⎜⎜
⎝

𝑎1 𝑎2 𝑎1
𝑎1 𝑎2 𝑎1

⋱ ⋱ ⋱
𝑎1 𝑎2 𝑎1

𝑎1 𝑎2 𝑎1

⎞⎟⎟⎟⎟⎟
⎠(𝑀+1)×(𝑀+3)

⎛⎜⎜⎜⎜⎜⎜
⎝

Υ0
−1

Υ0
0
⋮

Υ0
𝑀

Υ0
𝑀+1

⎞⎟⎟⎟⎟⎟⎟
⎠(𝑀+3)×1

=
⎛⎜⎜⎜⎜⎜
⎝

𝑔(𝑥0)
𝑔(𝑥1)

⋮
𝑔(𝑥𝑀−1)
𝑔(𝑥𝑀 )

⎞⎟⎟⎟⎟⎟
⎠(𝑀+1)×1

Corresponding to the time fractional derivative discretization, and as regards the matrix 𝒵 is positive definite, then the
proposed numerical scheme (12) is consistent to the differential equation (1)-(2) [16].

3. Numerical examples

To check the accuracy of the present scheme (12), numerical study of test examples is presented. The error norm 𝐿2
and rate are calculated. The numerical results obtained from CBSCM are compared with given exact solutions and the
numerical methods available in literature. Here, an example have been considered to verify the validity of proposed
numerical algorithm (12).
Example 1: Consider the following time-fractional stochastic advection-diffusion equation:

⎧{
⎨{⎩

𝑢(𝛼)
𝑡 (𝑥, 𝑡) + 𝜎1𝑢𝑥(𝑥, 𝑡) = (𝜎2 + 𝜎3�̇�(𝑡)𝑢𝑥𝑥(𝑥, 𝑡) + 𝑓(𝑥, 𝑡), 0 < 𝑥 < 1, 𝑡 > 0,

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, 𝑡 > 0,
𝑢(𝑥, 0) = 0, 0 ≤ 𝑥 ≤ 1,

(14)

where 0 < 𝛼 ≤ 1. Let 𝜎3 = 𝜎1 = 1 and 𝜎 = 1
𝜋2 the exact solution is 𝑢(𝑥, 𝑡) = 𝑡2 sin(𝜋𝑥), is the exact solution of the

equation (15). So we have

𝑓(𝑥, 𝑡) = 2𝑡2−𝛼 sin(𝜋𝑥)
Γ(3 − 𝛼) + ( 1

𝜋2 + 1)𝜋2𝑡2𝑠𝑖𝑛(𝜋𝑥) − 𝜋𝑡2 cos(𝜋𝑥).

In Table ??, we show the result of applying scheme (12) for solving the equation (15)
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Table 1. Absolute error 𝐿2 and experimental order of convergence of time-fractional stochastic advection-diffusion equations for Example 1 and
𝑀 = 𝑁 = 1000

Exact solution Scheme (12)
(𝑥𝑖, 𝑡𝑖) 𝛼 = 0.25 𝛼 = 0.5 𝛼 = 0.75

(0.0, 0.0) 0.000000000 0.000000000 0.000000000 0.000000000
(0.1, 0.1) 0.003090169 0.003083545 0.003057546 0.002911341
(0.2, 0.2) 0.023511410 0.023504785 0.023478786 0.023332581
(0.3, 0.3) 0.072811529 0.072804905 0.072778905 0.072632700
(0.4, 0.4) 0.152169042 0.152162416 0.152136418 0.151990213
(0.5, 0.5) 0.250000000 0.249993375 0.249967376 0.249821171
(0.6, 0.6) 0.342380345 0.342373721 0.342347722 0.342201517
(0.7, 0.7) 0.396418327 0.396411702 0.396385703 0.396239498
(0.8, 0.8) 0.376182561 0.376175937 0.376149937 0.376003732
(0.9, 0.9) 0.250303765 0.250297141 0.250271141 0.250124936
(1.0, 1.0) 0.000000000 0.000000000 0.000000000 0.0000000000

The Brawian code in python is the following

class Brawnian():
"""
A Brawnian motion class constructor
"""
def __init__(self,x0=0):

"""
Init class
"""
assert (type(x0)==float or type(x0)==int or x0 is None),

"Expect a float or None for the initial value"

self.x0 = float(x0)

def gen_random_walk(self,n_step=100):
"""
Generate motion by random walk

Arguments:
n_step: Number of steps

Returns:
A NumPy array with `n_steps` points

"""
# Warning about the small number of steps
if n_step < 1:

print("WARNING! The number of steps is small.
It may not generate a good
stochastic process sequence!")

w = np.ones(n_step)*self.x0

for i in range(1,n_step):
# Sampling from the Normal distribution
with probability 1/2
yi = np.random.choice([1,-1])
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# Weiner process
w[i] = w[i-1]+(yi/np.sqrt(n_step))

return w

M=100
b = Brawnian()

mybrawnian = list(b.gen_random_walk(M+2))

plt.plot(np.linspace(0,1,M+2),mybrawnian,marker = '*')
plt.show()

As a result of executing the above code, the random process will be as follows

Fig. 1. points in Brawnian

In Figure 2, as you can see, for the different𝑀 and𝑁 , proportional to the random process obtained as shown in Figure
1, we provide an exact and approximate answer. It is clear from the figure that as we increase 𝑀 and 𝑁 , the answer
obtained by using Scheme (12) on the numerical example 1, the approximate answer gets closer and closer to the exact
answer.



572 A. B. Yazdani Cherati & Z. Azimi / The 3rd National Congress on Mathematics and Statistics

(a) 𝑀 = 𝑁 = 2 and 𝑡 = 0.4 at different time level (b) 𝑀 = 𝑁 = 4 and 𝑡 = 0.6 at different time level

(c) 𝑀 = 𝑁 = 8 and 𝑡 = 0.4 at different time level (d) 𝑀 = 𝑁 = 16 and 𝑡 = 0.6 at different time level

Fig. 2. Exact and numerical solutions in example 1 for 𝛼 = 1.05.

Example 2: Consider the following time-fractional stochastic advection-diffusion equation:

⎧{
⎨{⎩

𝑢(𝛼)
𝑡 (𝑥, 𝑡) + 𝜎1𝑢𝑥(𝑥, 𝑡) = (𝜎2 + 𝜎3�̇�(𝑡)𝑢𝑥𝑥(𝑥, 𝑡) + 𝑓(𝑥, 𝑡), 0 < 𝑥 < 1, 𝑡 > 0,

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, 𝑡 > 0,
𝑢(𝑥, 0) = 0, 0 ≤ 𝑥 ≤ 1,

(15)

where 0 < 𝛼 ≤ 1 Let 𝜎3 = 1, 𝜎1 = −3 and 𝜎2 = 1 the exact solution is 𝑢(𝑥, 𝑡) = 𝑒2𝑥−2𝑡, is the exact solution of the
equation (15). So

𝑓(𝑥, 𝑡) = −2𝑒2𝑥−2𝑡[1 + 2(1 + �̇�(𝑡)) − 3].
By re-executing the Python code, the random points from the random process are as follows
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Fig. 3. points in Brawnian for exp

In Table 2, we consider the 𝑀 to be constant and equal to 100, and for the various values of 𝑁 , we find the order of
convergence obtained using Method (12) on the equation of Example 2. Once, we set the 𝑁 constant and equal to 100
and present the order of convergence in Table 3. As shown in Tables 2 and 3, the concordance order is 2.

𝛼 𝑁 𝜏 𝐿2 − 𝑛𝑜𝑟𝑚 𝐿∞ − 𝑛𝑜𝑟𝑚 𝑅𝑎𝑡𝑒
𝛼 = 0.25 2 0.5 0.8582072 0.198029 –

4 0.25 0.2145514 0.049507 1.99
8 0.125 0.0536379 0.0123768 2.00
16 0.0625 0.0134094 0.0030942 2.00
32 0.03125 0.0033523 0.0007735 2.00
64 0.015625 0.0008380 0.0008381 2.00

𝛼 = 0.5 2 0.5 0.9121994 0.1732758 –
4 0.25 0.2280498 0.0433189 1.99
8 0.125 0.0570124 0.0108297 2.00
16 0.0625 0.0014253 0.0027074 2.00
32 0.03125 0.0035632 0.0006768 2.00
64 0.015625 0.0008908 0.0001692 2.00

𝛼 = 0.75 2 0.5 0.9121994 0.1732758 –
4 0.25 0.2280498 0.0433189 1.99
8 0.125 0.0570124 0.0108297 2.00
16 0.0625 0.0014253 0.0027074 2.00
32 0.03125 0.0035632 0.0006768 2.00
64 0.015625 0.0008908 0.0001692 2.00

Table 2. Comparison of the errors of approximate solutionsand rate when ℎ = 0.01 and 𝑡 = 1.

𝑀 ℎ 𝐿2 − 𝑛𝑜𝑟𝑚 𝐿∞ − 𝑛𝑜𝑟𝑚 𝑅𝑎𝑡𝑒
2 0.5 0.8582072 0.198029 –
4 0.25 0.2145514 0.049507 1.99
8 0.125 0.0536379 0.0123768 2.00
16 0.0625 0.0134094 0.0030942 2.00
32 0.03125 0.0033523 0.0007735 2.00
64 0.015625 0.0008380 0.0008381 2.00

Table 3. Comparison of the errors of approximate solutionsand rate when 𝜏 = 0.01 and 𝑡 = 1.
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(a) 𝑀 = 𝑁 = 2 and 𝑡 = 0.4 at different time level (b) 𝑀 = 𝑁 = 4 and 𝑡 = 0.6 at different time level

(c) 𝑀 = 𝑁 = 8 and 𝑡 = 0.4 at different time level (d) 𝑀 = 𝑁 = 16 and 𝑡 = 0.6 at different time level

Fig. 4. Exact and numerical solutions in example 2 for 𝛼 = 1.05.

4. Results and Discussion

This article included four sections as follows: In section 1, we have described the problem statements. The numerical
relations spline technique are developed for time-fractional stochastic advection-diffusion equations in Section 2 and
the matrix representation for the numerical solution is also developed in this section. In this numerical scheme, we
utilized the Caputo sense and a backward difference formula for discretization in time. Finally, two examples were
provided to clearly demonstrate the applicability of the method. In Section 3 the 𝑂(ℎ2 + 𝜏2) order convergence of
the presented algorithm has been discussed. The numerical investigations and discussion is given in Section 4 and the
computational outcomes are found to be conformable with theoretical expectations.
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Abstract

In this paper we state some basic properties of submodules of multiplication modules. Then,
since any submodule of a multiplication module is form of IM where I is an ideal of R, we
state some results about ideals of ring R. Also, after recalling the definitions of prime and
semiprime submodules, we state some results of these submodules for multiplication modules.

1. Introduction

In this paper all rings are commutative with identity and all modules over rings are unitary. LetM be anR-module. If
K andN are submodules of anR-moduleM , we recall that (N :R K) = (N : K) = {r ∈ R | rK ⊆ N}, which is an
ideal ofR. A proper submoduleN of anR-moduleM is said to be prime if for every r ∈ R , x ∈ M ; rx ∈ N implies
that x ∈ N or r ∈ (N : M). In such a case p = (N : M) is a prime ideal of R andN is said to be p-prime. The set of
all prime submodules of M is denoted by Spec(M) and for a submodule N of M , rad(N) =

∩
L∈Spec(M),N⊆L L.

If no prime submodule of M contains N , we write rad(N) = M . Also the set of all maximal submodules of M is
denoted by Max(M) and RadM =

∩
P∈Max(M) P . Also we recall that if I is an ideal of a ring R, then radical of

I , i.e., rad(I) = r(I) is defined as {r ∈ R | ∃k ∈ N ; rk ∈ I}. Now, let a be an ideal of a ring R and a =
∩l

i=1 qi,
where rad(qi) = pi, is a normal primary decomposition of a, then ass(a) = {p1, ..., pl}.

2. Definitions and Results

Definition 2.1. An R-moduleM is called a multiplication module, if for any submoduleN ofM we haveN = IM ,
where I is an ideal of R.
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Proposition 2.2. Let M be a multiplication R-module. Then for every submodule IM of M , if IM ⊆ pM where
p ∈ Spec(R), then I ⊆ p.

Proof. Let IM ⊆ pM for I ⊴ R and p ∈ Spec(R). Since I ⊆ (IM : M) ⊆ (pM : M), then by Lemma 2.2 of [5],
I ⊆ p.

Lemma 2.3. Let M be a Noetherian multiplication R-module. Then R satisfies the ascending chain condition on
prime ideals.

Proof. Let p1 ⊆ p2 ⊆ p3 ⊆ ... be an ascending chain of prime ideals of R. Then p1M ⊆ p2M ⊆ p3M ⊆ ....
But, M is a Noetherian R-module, hence there exists submodule by Theorem 2.5 part (i) of [2], specially a maximal
submodule N of M such that p1M ⊆ p2M ⊆ p3M ⊆ ... ⊆ N . But M is a multiplication R-module, hence by
Theorem 2.5 part (ii) of [2], there exists a maximal ideal m of R such that N = mM . So we have p1M ⊆ p2M ⊆
p3M ⊆ ... ⊆ mM and hence (p1M : M) ⊆ (p2M : M) ⊆ (p3M : M) ⊆ ... ⊆ (mM : M). Now by Lemma 2.2 of
[5], p1 ⊆ p2 ⊆ p3 ⊆ ... ⊆ m. The proof is now completed.

Corollary 2.4. Let R be an arbitrary ring and let M be a multiplication R-module. Then AnnR(M) ⊆ p for each
(0) ̸= p ∈ Spec(R).

Proof. By the Lemma 2.2 of [5], pM ∈ Spec(M) for every (0) ̸= p ∈ Spec(R). Therefore by Corollary 2.11 part
(i), (iii) of [2], AnnR(M) ⊆ p.

Lemma 2.5. Let R be a ring and M a multiplication R-module. Then
∩

λ∈Λ(pλM) = (
∩

λ∈Λ pλ)M for any non-
empty collection of non-zero prime ideals pλ (λ ∈ Λ) of R. Also if R is a ring which is not an integral domain then∩

0 ̸=P∈Spec(M) P = nRM and RadM = J(R)M .

Proof. LetM be a multiplicationR-module and let pλ (λ ∈ Λ) be any non-empty collection of non-zero prime ideals
of R. By Corollary 1.7 of [2],

∩
λ∈Λ(pλM) = (

∩
λ∈Λ[pλ + AnnR(M)])M . But by Corollary 2.4,

∩
λ∈Λ(pλM) =

(
∩

λ∈Λ pλ)M .
By Lemma 2.2 of [5],

∩
0 ̸=P∈Spec(M) P =

∩
(0) ̸=p∈Spec(R)(pM) and also by above we have

∩
(0) ̸=p∈Spec(R)(pM) =

nRM . So
∩

0 ̸=P∈Spec(M) P = nRM . Also by Lemma 2.2 of [5], RadM =
∩

m∈Max(R)(mM) and by above∩
m∈Max(R) mM = J(R)M . Hence RadM = J(R)M .

Lemma 2.6. Let R be a ring andM a multiplication R-module. Let IM be an arbitrary non-zero proper submodule
ofM for some ideal I of R. Then rad(IM) = (radI)M and (rad(IM) : M) = radI , where radI = r(I).

Proof. It is easy to show that rad(IM) =
∩

p∈v(I)(pM) (we recall that v(I) = {p ∈ Spec(R)| I ⊆ p}). By Lemma
2.5, rad(IM) = (radI)M and consequently (rad(IM) : M) = radI .

We recall the following definition from [4].

Definition 2.7. A proper submoduleN of anR-moduleM is said to be semiprime inM , if for every ideal I ofR and
every submodule K of M , I2K ⊆ N implies that IK ⊆ N . Note that since the ring R is an R-module by itself, a
proper ideal I of R is semiprime if for every ideals J andK of R, J2K ⊆ I implies that JK ⊆ I .

Definition 2.8. There exists another definition of semiprime submodules in [3] as follows:
A proper submoduleN of theR-moduleM is semiprime if whenever rkm ∈ N for some r ∈ R, m ∈ M and positive
integer k, then rm ∈ N .

By Remark 2.6 of [6], we see that this definition is equivalent to Definition 2.7.

Definition 2.9. LetM be anR-module andN ≤ M . The envelope of the submoduleN is denoted byEM (N) or sim-
ply byE(N) and is defined asE(N) = {x ∈ M | ∃r ∈ R, a ∈ M ; x = ra and rna ∈ N for some positive integer n}.
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The envelope of a submodule is not a submodule in general.
Let M be an R-module and N ≤ M . If there exists a semiprime submodule of M which contains N , then the in-
tersection of all semiprime submodules containing N is called semi-radical of N and is denoted by S − radMN , or
simply S − radN . If there is no semiprime submodule containing N , then we define S − radN = M , in particular
S − radM = M .
We say thatM satisfies the radical formula, orM (s.t.r.f) if for everyN ≤ M , radN = ⟨E(N)⟩. Also we say thatM
satisfies the semi-radical formula, orM (s.t.s.r.f) if for everyN ≤ M , S− radN = ⟨E(N)⟩. Now let x ∈ E(N) and
P be a semiprime submodule ofM containingN . Then x = ra for some r ∈ R, a ∈ M and for some positive integer
n, rna ∈ N . But rna ∈ P and since P is semiprime we have ra ∈ P . Hence E(N) ⊆ P . We see that E(N) ⊆ ∩

P
(P is a semiprime submodule containing N ). So ⟨E(N)⟩ ⊆ S − radN . On the other hand, since every prime sub-
module ofM is clearly semiprime, we have S − radN ⊆ radN . We conclude that ⟨E(N)⟩ ⊆ S − radN ⊆ radN
and as a result ifM (s.t.r.f) then it is also (s.t.s.r.f).

Lemma 2.10. Let R be a ring and let M be a multiplication R-module. Then every proper submodule of M is a
radical submodule, i.e., radN = N .

Proof. By Theorem 2.12 of [2], radN = rad(N : M)M . But rad(N : M)M ⊆ ⟨E(N)⟩ ⊆ radN , henceM (s.t.r.f)
and so (s.t.s.r.f). Then ⟨E(N)⟩ = S − radN = radN for every proper submodule N ofM . But by Proposition 4.1
of [4], S − radN = N and therefore radN = N .

Corollary 2.11. Let R andM and IM be as in Lemma 2.6. Then IM = (radI)M .

Proof. LetM be a multiplicationR-module and IM be an arbitrary non-zero proper submodule ofM for some ideal I
ofR. By Lemma 2.6, rad(IM) = (radI)M and by Lemma 2.10, rad(IM) = IM . Therefore IM = (radI)M .

Theorem 2.12. Let R be a ring and let M be a multiplication R-module. Then N is a primary submodule of M if
and only if it is a prime submodule ofM .

Proof. ⇐=. It is clear.
=⇒. LetM be a multiplication R-module and letN be an arbitrary primary submodule ofM . Then by Corollary 2 of
[1], there exists a primary ideal q (radq = p) of R such that N = qM .
But by Lemma 2.10 and Corollary 2.11, qM = (radq)M = pM . Therefore the proof is now completed.

Theorem 2.13. Let R be a ring which satisfies ascending chain condition on semiprime ideals and letM be a multi-
plication R-module. ThenM is a Noetherian R-module.

Proof. LetM be amultiplicationR-module. ThenM (s.t.r.f) and hence (s.t.s.r.f). Thus by Proposition 4.1 of [4], every
proper submodule ofM is a semiprime submodule ofM . Now, let I1M ⊆ I2M ⊆ I3M ⊆ ... where Ii are ideals of
R be ascending chain of submodules ofM . Then (I1M : M) ⊆ (I2M : M) ⊆ (I3M : M) ⊆ .... But by Proposition
2.3(ii) of [4], (N : M) is a semiprime ideal of R for any semiprime submodule N of M , hence by assumption there
exists n ∈ N such that (InM : M) = (In+kM : M) for each k ∈ N. But then (InM : M)M = (In+kM : M)M
and so InM = In+kM . ThereforeM is a Noetherian R-module.

Acknowledgement: I wish to sincerely thank the referee for reviwing this paper.
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Abstract

LetR be a commutative ring andM be a unitaryR-module. In this work we recall definitions of
multiplication and weak multiplication modules. Then we consider some basic properties such
as prime and maximal submodules of weak multiplication modules in some different conditions.

1. Introduction

For the first time, in 1995, Abu-Saymeh in [1], defined the weak multiplication modules and discussed the properties
of these modules. Then in 2000, Azizi in [2], examined the more properties of these modules. Throughout this paper
all rings are commutative with identity and all modules over rings are unitary. Let M be an R-module. If K and N
are submodules of an R-moduleM , we recall that (N :R K) = (N : K) = {r ∈ R | rK ⊆ N}, which is an ideal of
R. A proper submodule N of an R-moduleM is said to be prime if for every r ∈ R , x ∈ M ; rx ∈ N implies that
x ∈ N or r ∈ (N : M). In such a case p = (N : M) is a prime ideal of R and N is said to be p-prime. The set of all
prime submodules ofM is denoted by Spec(M). Also we recall that if I is an ideal of a ring R, then radical of I , i.e.,
r(I) is defined as {r ∈ R | ∃k ∈ N ; rk ∈ I}. Now, let a be an ideal of a ring R and a =

∩l
i=1 qi, where r(qi) = pi,

is a normal primary decomposition of a, then ass(a) = {p1, ..., pl}.
An R-module M is called a multiplication module if for every submodule N of M there exists an ideal I of R such
that N = IM . It can be shown that N = (N : M)M .

2. Definitions and Results

Definition 2.1. An R-module M is called weak multiplication if Spec(M) = ∅ or for every prime submodule N of
M we have N = IM , where I is an ideal of R.
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It is clear that every multiplication module is weak multiplication. Also if N is a p-prime submodule of a weak
multiplication moduleM it can be shown that N = pM .

Lemma 2.2. Let M be a weak multiplication R-module such that for every p ∈ Spec(R), pM is a prime submodule
of M and (pM : M) = p and N = p1M , K = p2M be prime submodules of M , where p1, p2 ∈ Spec(R). Then
(N : K)M = (p1 : p2)M .

Proof. Let y ∈ (p1 : p2)M be an arbitrary element. Then y =
∑

f.s. simi, where si ∈ (p1 : p2) and mi ∈ M . So
sip2 ⊆ p1 which implies (sip2)M ⊆ p1M , that is, siK ⊆ N . Hence si ∈ (N : K) and then y ∈ (N : K)M .
Now, let x ∈ (N : K)M be arbitrary, then x =

∑
f.s. limi, where li ∈ (N : K) = (p1M : p2M) and mi ∈ M .

Since li ∈ (p1M : p2M), then li(p2M) ⊆ p1M and so (lip2)M ⊆ p1M . Therefore lip2 ⊆ (p1M : M) = p1, and
hence li ∈ (p1 : p2). Therefore x =

∑
f.s. limi ∈ (p1 : p2)M and so (N : K)M ⊆ (p1 : p2)M . We conclude that,

(N : K)M = (p1 : p2)M .

Proposition 2.3. Let M be a weak multiplication R-module, where R is a Noetherian ring. Also, let for every p ∈
Spec(R), pM is a prime submodule of M and (pM : M) = p. Then the number of minimal prime submodule of M
is finite.

Proof. Let 0 = Q1∩...∩Qn be a normal primary decomposition of the zero ideal, whereQi is pi-primary (1 ≤ i ≤ n).
Then all the minimal prime ideals of R can be found in the set {p1, p2, ..., pn}. Let {p1, p2, ..., pk}, where k ≤ n, be
the set of minimal prime ideals ofR. We know that there is a one-to-one inclusion preserving correspondence between
prime ideals of R and prime submodules ofM in such a way that if p ∈ Spec(R) corresponds toN ∈ Spec(M) then
N = pM and p = (N : M). This implies that {p1M, ..., pkM} is the set of all minimal prime submodules ofM .

Proposition 2.4. Let R be a non-trivial ring and M ̸= 0 be an weak multiplication R-module. Also, let for every
p ∈ Spec(R), pM is a prime submodule of M and (pM : M) = p. Then M has a maximal submodule.

Proof. We know that R has a maximal ideal m-say. But m ∈ Spec(R) implies that mM ∈ Spec(M) and (mM :
M) = m. Let a submodule H of M be such that mM ⊆ H ⫋ M . By Proposition 3 of [4], H is an m-prime
submodule ofM . Now, by the construction ofM , H = mM and somM is a maximal submodule ofM .

Lemma 2.5. LetM andR be as in above proposition. Now, let I⊴R such that I ⊆ J(R), where J(R) is the Jacobson
radical of R. IfM = IM thenM = 0.

Proof. Let M ̸= 0, then by the above proposition M has a maximal submodule L-say. Hence there exists an ideal
h ∈ Max(R) such that L = hM . So M = IM ⊆ hM and hence M = hM , a contradiction. Therefore we have
M = 0.

In the above lemma we can remove the condition that I ⊆ J(R), as it is seen in the following.

Corollary 2.6. LetM and R be as in above lemma and let I be a proper ideal of a ring R. If IM = M thenM = 0.

Proof. clear.

Lemma 2.7. LetR be a integral domain andM be an weak multiplicationR-module. Also, let for every p ∈ Spec(R),
pM is a prime submodule of M and (pM : M) = p. ThenM is torsion-free.

Proof. Let T (M) ̸= 0 so there exists a non-zero element x ∈ T (M). Since Ann(x) ̸= 0 there exists c ∈ R,
c ̸= 0 such that cx = 0. We know that (0) ∈ Spec(R) and so (0)M = 0 ∈ Spec(M). Now cx = 0 implies that
x ∈ (0)M = 0 or c ∈ ((0)M : M) = AnnR(M) = (0). But c ̸= 0, x ̸= 0, a contradiction. Therefore T (M) = 0,
that is,M is torsion-free.

Corollary 2.8. Let R be a integral domain and M be an weak multiplication R-module. Also, let for every p ∈
Spec(R), pM is a prime submodule ofM and (pM : M) = p. Then every direct summand ofM is prime. HenceM
is indecomposable.

Proof. By the preceding proposition M is torsion-free and by Result of [4], every direct summand of M is a prime
submodule.
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Lemma 2.9. LetR be a non-trivial ring andM be a weak multiplicationR-module. Also, let for every p ∈ Spec(R),
pM is a prime submodule ofM and (pM : M) = p. Also, let every prime submodule ofM is finitely generated. Then
M is a Noetherian module.

Proof. We assume that M ̸= 0. By Proposition 2.4, M has a maximal submodule L-say. Since L ⫋ M there exists
x ∈ M \L and by the maximal property of L we haveM = L+Rx. By Proposition 4 of [4], L is a prime submodule
of M and as a result finitely generated. Therefore M = L + Rx is also finitely generated. Now by Theorem 2.7 of
[2],M is a multiplication R-module. The result follows by Theorem 3.2 of [3].

Theorem2.10. LetR be a non-trivial ring andM be aweakmultiplicationR-module. Also, let for every p ∈ Spec(R),
pM is a prime submodule ofM and (pM : M) = p and letM ′ be anR-module. Letϕ : M −→ M ′ be an epimorphism
such that kerϕ is contained in every prime submodules ofM . ThenM ′ is an weak multiplication R-module such that
for every p ∈ Spec(R), pM ′ is a prime submodule ofM ′ and (pM ′ : M ′) = p.

Proof. First, let L′ be an arbitrary prime submodules of M ′. Then there exists a prime submodule L of M such that
ϕ(L) = L′ and so ϕ−1(L′) = L. By the hypothesis of the theorem, thus there exists an ideal p ∈ Spec(R) such that
pM = L. Hence L = pM = ϕ−1(L′) implies that ϕ(pM) = L′, that is, pϕ(M) = L′ which means pM ′ = L′.
ThereforeM ′ is a weak multiplication R-module.
Second, let p ∈ Spec(R) be an arbitrary prime ideal, we must prove that pM ′ ∈ Spec(M ′) and (pM ′ : M ′) = p. But
pM ′ = pϕ(M) = ϕ(pM) ≤ M ′, then pM ∈ Spec(M) and so pM ′ = ϕ(pM) ∈ Spec(M ′). Now we must prove
that (pM ′ : M ′) = p. Obviously, p ⊆ (pM ′ : M ′) (1).
We show that (pM ′ : M ′) ⊆ p. But (pM ′ : M ′) = (pϕ(M) : ϕ(M)) = (ϕ(pM) : ϕ(M)). Let r ∈ (pM ′ : M ′) =
(ϕ(pM) : ϕ(M)), so rϕ(M) ⊆ ϕ(pM), that is, ϕ(rM) ⊆ ϕ(pM). Since rM ⊆ ϕ−1(ϕ(rM)) = ϕ−1(ϕ(pM)) =
ϕ−1(pϕ(M)) = ϕ−1(pM ′) = pϕ−1(M ′) = pM , then rM ⊆ pM and so r ∈ (pM : M) = p. Therefore
(pM ′ : M ′) ⊆ p (2).
By (1) and (2), (pM ′ : M ′) = p and soM ′ is a weak multiplication R-module such for every p ∈ Spec(R), pM ′ is a
prime submodule ofM ′ and (pM ′ : M ′) = p.

Corollary 2.11. Let R be a non-trivial ring and M be a weak multiplication R-module. Also, let for every p ∈
Spec(R), pM is a prime submodule ofM and (pM : M) = p and N be a submodule ofM such that N is contained
in every prime submodule ofM . Then M

N is a weak multiplication R-module such that for every p ∈ Spec(R), pM
N is

a prime submodule of M
N and (pM

N : M
N ) = p.

Proof. The proof is clear by the above theorem.

Corollary 2.12. LetMλ(λ ∈ Λ) be a collection ofR-modules. IfM =
⊕

λ∈Λ Mλ is a weak multiplicationR-module,
then for every λ ∈ Λ,Mλ is a weak multiplication R-module.

Proof. We define the map ϕ as follows:

ϕ : M =
n⊕

i=1

Mi −→ Mi , (∀i = 1, ..., n) by

ϕ(m1, . . . ,mn) = mi , ∀(m1, . . . ,mn) ∈
n⊕

i=1

Mi.

Since ϕ is an epimorphism, the result follows by the first part of the proof of Theorem 2.10.
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Abstract

Let R be a commutative ring and M be a unitary R-module. In this work we recall definitions
of multiplication and weak multiplication modules and then we state some results about prime
and maximal submodules of weak multiplication modules in some different conditions. Also,
we study some properties of radical submodules of some weak multiplication modules and we
study the correctness of the radical formula for some weak multiplication modules.

1. Some Basic Definitions

Throughout this paper, all rings are commutative with identity and all modules over rings are unitary.

Definition 1.1. By [4], A proper submodule N of an R-module M is said to be prime if for every r ∈ R , x ∈
M ; rx ∈ N implies that x ∈ N or r ∈ (N :M). In such a case p = (N :M) is a prime ideal of R and N is said to
be p-prime. The set of all prime submodules ofM is denoted by Spec(M).

By [2], we recall that ifM is an R-module andK andN are submodules of an R-moduleM , then (N :R K) = (N :
K) = {r ∈ R | rK ⊆ N}, which is an ideal of R.

We have the following remark by [5]:

Remark 1.2. LetM be an R-module and N be a submodule ofM . Then the radical of N is denoted by rad(N) =∩
L∈Spec(M),N⊆L L. If no prime submodule of M contains N , we write rad(N) = M . Also the set of all maximal

submodules ofM is denoted byMax(M) and RadM =
∩

P∈Max(M) P .
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Remark 1.3. We recall that if I is an ideal of a ringR, then radical of I , i.e., r(I) is defined as {r ∈ R | ∃k ∈ N ; rk ∈
I}. Now, let a be an ideal of a ring R and a =

∩l
i=1 qi, where r(qi) = pi, is a normal primary decomposition of a,

then ass(a) = {p1, ..., pl}.
Definition 1.4. An R-module M is called a multiplication module if for every submodule N of M there exists an
ideal I of R such that N = IM . It can be shown that N = (N :M)M .

Definition 1.5. By [1], AnR-moduleM is called weak multiplication if Spec(M) = ∅ or for every prime submodule
N ofM we have N = IM , where I is an ideal of R.

It is clear that every multiplication module is weak multiplication. Also if N is a p-prime submodule of a weak mul-
tiplication moduleM it can be shown that N = pM .

Definition 1.6. LetM be an R-module and N be a submodule ofM . We recall that the envelope of N , denoted by
EM (N) or simply E(N), is defined as

E(N) = {x ∈M | ∃r ∈ R, a ∈M such that x = ra and rna ∈ N for some n ∈ Z+}.

In general, E(N) is not a submodule of M but there are some special cases that E(N) can be a submodule of M ,
for example if N is a prime or semiprime submodule ofM . Also we recall that an R-moduleM satisfies the radical
formula if for every submodule N ofM , radN = 〈E(N)〉, that is, the radical of N is equal to the submodule ofM
generated by E(N). We can easily prove that for any submodule N ofM

(rad(N :M))M ⊆ 〈E(N)〉 ⊆ radN.

In Theorem 2.12 of [3], it is proved that for any proper submodule N of a multiplication R-module M , radN =
(rad(N : M))M . Therefore radN = 〈E(N)〉 and we conclude thatM satisfies the radical formula wheneverM is
a multiplication module.

2. Main Results

Lemma 2.1. LetM be a free weak multiplication R-module. Then
∩

P∈Spec(M) P = (
∩

p∈Spec(R) p)M.

Proof. Let P ∈ Spec(M) then P = pM , where p = (P :M) ∈ Spec(R).Hence

(
∩

p∈Spec(R)

p)M ⊆
∩

p∈Spec(R)

pM =
∩

P∈SpecM

P.

Next we show that
∩

p∈Spec(R) pM ⊆ (
∩

p∈Spec(R) p)M . Let B = {bi}i∈I be a basis for M , and Spec(R) =

{pλ}λ∈Λ. Let x ∈ ∩
λ∈Λ(pλM). Thus for an arbitrary λ ∈ Λ, x =

∑
f.s. sibi, where si ∈ pλ, bi ∈ B.

But for every other λ′ ∈ Λ, x =
∑

f.s. sibi ∈ pλ′M and since the representation of an element inM is unique we
have si ∈ pλ′ . Therefore x =

∑
f.s. sibi ∈ (

∩
λ∈Λ pλ)M and the result follows.

Corollary 2.2. LetM be a free weak multiplication R-module, then:
∩

L∈Max(M)

L = RadM = J(R)M,

where J(R) is the Jacobson radical of R.

Proof. It is easy to see that every maximal submoduleN ofM is a prime submodule andm = (N :M) is a maximal
ideal of R. Hence by the preceding lemma,

RadM =
∩

L∈Max(M)

L =
∩

m∈Max(R)

(mM) = (
∩

m∈Max(R)

m)M = J(R)M.
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Proposition 2.3. LetM be a weak multiplicationR-module and let for every p ∈ Spec(R), pM is a prime submodule
ofM and (pM :M) = p. Then there exists a bijection between Spec(R) and Spec(M).

Proof. We define ψ as follows:

ψ : Spec(M) −→ Spec(R), P 7−→ (P :M)

Obviously ψ is a surjection. Let P1, P2 ∈ Spec(M) and ψ(P1) = ψ(P2). We have P1 = p1M and P2 = p2M , where
p1, p2 ∈ Spec(R) and (p1M : M) = p1, (p2M : M) = p2. But ψ(P1) = ψ(P2) means (P1 : M) = (P2 : M), that
is, p1 = p2 and this implies that P1 = p1M = p2M = P2. Therefore ψ is a bijection.

Proposition 2.4. LetM be an R-module and let I be an ideal of R. Then rad(IM) =
∩

p∈V (I) pM in the following
cases:
(i) M is a weak multiplication R-module such that for every p ∈ Spec(R), pM is a prime submodule of M and
(pM :M) = p ;
(ii)M is a free weak multiplication R-module.

Proof. clear.

Remark 2.5. We recall that if I is any ideal of R then V (I) is the set of all prime ideals containing I .

Lemma 2.6. LetM be an R-module and I be an ideal of R, then:
(1) (rad(IM) :M) = radI in each of the following cases:
(i) M is a weak multiplication R-module such that for every p ∈ Spec(R), pM is a prime submodule of M and
(pM :M) = p;
(ii)M is a free weak multiplication R-module.
Also ifM is a free weak multiplication R-module then:
(2) rad(IM) = (radI)M ;
(3) (rad(IM) :M)M = rad(IM).

Proof. (1). By Proposition 2.4, rad(IM) =
∩

p∈V (I) pM and since (rad(IM) : M) = (
∩

p∈V (I) pM : M) =∩
p∈V (I)(pM :M) =

∩
p∈V (I) p, we have (rad(IM) :M) = radI .

(2). SinceM is freeweakmultiplication rad(IM) =
∩

p∈V (I) pM and by Lemma 2.1,
∩

p∈V (I) pM = (
∩

p∈V (I) p)M =

(radI)M , hence rad(IM) = (radI)M .
(3). This clearly follows from (1) and (2).

Proposition 2.7. Let M be an R-module and let N be a submodule of M . If radN 6= M then (rad(N) : M) =
rad(N :M) in the following cases:
(i) M is a weak multiplication R-module such that for every p ∈ Spec(R), pM is a prime submodule of M and
(pM :M) = p;
(ii)M is a free weak multiplication R-module.

Proof. We have

(rad(N) :M) = (
∩

P∈Spec(M),N⊆P

P :M) = (
∩

p∈Spec(R),N⊆pM

pM :M) =
∩

p∈Spec(R),N⊆pM

(pM :M).

Now (pM :M) = p for every p ∈ V ((N :M)) and therefore (rad(N) :M) = rad(N :M).

Corollary 2.8. LetM be a free weak multiplicationR-module and letN be a submodule ofM such that radN 6=M .
Then radN = (rad(N :M))M .

Proof. clear.
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Proposition 2.9. LetM be a free weak multiplication R-module and let N be a primary submodule ofM such that
radN 6=M . Then radN is a prime submodule ofM .

Proof. Since N is a primary submodule, (N : M) is a primary ideal of R and hence rad(N : M) is prime. By
Corollary 2.8, radN = (rad(N :M))M is a prime submodule ofM .

Proposition 2.10. LetM be a free weak multiplication R-module. ThenM satisfies the radical formula.

Proof. We know that for every R-moduleM and any submodule N ≤M

(rad(N :M))M ⊆ 〈E(N)〉 ⊆ radN.

By Corollary 2.8, radN = (rad(N : M))M and so radN = 〈E(N)〉. Since the submodule N was taken arbitrary
we find thatM satisfies the radical formula.

Acknowledgement: I wish to sincerely thank the referee for reviwing this paper.
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Abstract

A right congruence θ is called pseudo-finite with respect to H if there exists n ∈ N such that
for any (a, b) ∈ θ, there is anH-sequence from a to b of length at most n. An S-act A is called
pseudo-finite with respect to a finite subsetH ⊆ A×A if A×A is pseudo-finite with respect
to H . Also θ is said to be pseudo-finite, if it is pseudo-finite with respect to some finite subset
H of A×A. An S-act A is called pseudo-finite, if A×A is pseudo-finite.
In this manuscript we investigate some relationship between pseudo finite and finitely generated
S-acts.

1. finiteness condition

A finitary condition for a class of algebras is a condition that is satisfied by at least all finite members of the class.
Finitary conditions was introduced and developed by Noether and Artin in their seminal work. Subsequently, fini-
tary conditions have been of enormous importance in understanding the structure and behaviour of rings, groups,
semigroups and many other kinds of algebras. Algebras with Ascending(descending) chain condition on congruences
or ideals are commonly known as Noetherian(Artinian) algebras, have closely related by finitely generation of con-
gruences or ideals. It is clear that all of these properties are finiteness conditions. The study of right Noetherian
semigroups was initiated by Hotzel in [2]. He showed that if a semigroup S is right Noetherian, then it contains only
finitely many right ideals and are finitely generated. Dandan. Y et.all in [1], introduced another related notion is that
when the universal right congruence being finitely generated. The stronger condition that every right congruence of
finite index is finitely generated (where index means the number of classes) was introduced and studied in [6]. Also
some authors such as [4, 5, 7, 8] work on another finitness conditions with respect to semigroups.
Another finiteness condition is the pseudo-finite, whichwe consider it for the semigroups andS-acts. EveryNoetherian
S-act is pseudo-finite and each pseudo-finite S-act is finitly generated. So it is important to fined some relationships
between them. Here we give some conditions under which the finitely generated S-acts and pseudo-finite S-acts are
equal. The notion of being pseudo-finite was introduced in [9] in the language of ancestry. Theorem 1.7 of [9] shows
that for a monoidM the augmentation ideal l10(M) is finitely generated if and only ifM is pseudo-finite. The work in
[9] was motivated by the Dales-Zelazko conjecture, which states that a unital Banach algebra in which every maximal
left ideal is finitely generated is necessarily finite dimensional.
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Throughout the paper S will be denoted by the semigroup with or without identity. We take A = Act-S to be the
category of right acts over a semigroup and S-act homomorphisms between them. Let us first recall the definition and
some ingredients of the category Act-S needed in the sequel. For more information and the notions not mentioned
here see [3].
A set A is said to be an S-act if there is a, so called, action µ : A × S → A such that, denoting µ(a, s) := as,
a(st) = (as)t and if S is a monoid with 1, a1 = a. Each semigroup S can be considered as an S-act with the action
given by its multiplication. Notice that, adjoining an external left identity 1 to a semigroup S an S-act S1 := S ∪ {1}
is obtained.

The definitions of a homomorphism of S-acts or S-maps, subact A of B, written as A ≤ B, an extension of A are all
clear. An element a ∈ A is called fixed element if as = a for all s ∈ S. All fixed elements of an S-act A is a subact
of A and denoted by Fix(A). The S-act A ∪ {0} with a fixed adjoined to A is denoted by A0. A fixed element of a
Semigroup S is called a left zero element. All left zero elements of a Semigroup S is a right ideal of S and denoted
by Z(S).

An equivalence relation θ on A is called a congruence on A, if asθbs whenever aθb, for each a, b ∈ A and s ∈ S. For
H ⊆ A × A we use the notation H̄ = H ∪ {(x, y) | (y, x) ∈ H}. For a, b ∈ A, an H-sequence connecting a and b
is any sequence a = p1s1, q1s1 = p2s2, q2s2 = p3s3, ..., qnsn = b where (pi, qi) ∈ H̄ and si ∈ S for 1 ≤ i ≤ n.
For H ⊆ A × A, the congruence generated by H , that is the smallest congruence on A containing H , is denoted by
ρ(H). Let H ⊆ A × A and ρ = ρ(H). Then, for a, b ∈ A, one has aρb if and only if either a = b or there exist an
H-sequence connecting a and b.

Definition 1.1. Let θ ∈ Con(A) being generated by a finite subsetH ⊆ θ. We say that θ is pseudo-finite with respect
to H if there exists n ∈ N such that for any (a, b) ∈ θ, there is an H-sequence from a to b of length at most n. An
S-act A is called pseudo-finite with respect to a finite subset H ⊆ A × A(X ⊆ A) if A × A is pseudo-finite with
respect toH(X2 = X ×X). Also θ is said to be pseudo-finite, if it is pseudo-finite with respect to some finite subset
H of A×A. An S-act A is called pseudo-finite, if A×A is pseudo-finite.

Clearly θ ∈ Con(A) is a finitely generated sub S-act of A×A, then it is pseudo-finite of length 1.

Remark 1.2. Since each congruence θ on A is a subact of A × A, there is a subset X ⊆ θ such that X generates
θ as a subact of A × A which is denoted as usual by θ = XS. Now consider (x, y) ∈ θ. So there exists s ∈ S and
(a, b) ∈ X such that (x, y) = (a, b)s, which means θ is pseudo-finite of length 1 and (x, y) ∈ ρ(a, b) ⊆ ρ(X). Thus
X ⊆ θ ⊆ ρ(X) and since ρ(X) is the smallest congruence containing X , θ = ρ(X).
In particular if θ is finitely generated as a subact of A×A, then θ is finitely generated congruence and if θ = (a, b)S
is a cyclic subact of A×A, then θ = ρ(a, b) is a monogenic congruence. In the following we show that, the converse
of this fact is not in generally true.

Lemma 1.3. An S-act A is pseudo-finite of length 1 if and only if A×A is a finitely generated S-act.

Lemma 1.4. For an S-act A, (i) ⇒ (ii) and (ii) ⇒ (iii).
(i) A×A is a finitely generated S-act.
(ii) A×A is a finitely generated congruence.
(iii) A is a finitely generated S-act.

Proof. (i) ⇒ (ii) By Remark 1.2.
(ii) ⇒ (iii) Let A× A = ρ(H) in which H = {(a1, b1), · · · , (an, bn)}. Consider X = {a1, · · · , an, b1, · · · , bn}. It
is not difficult to check that A = XS.

The converse of the implications in the above lemma does not generally holds. Indeed,
(ii)⇒/ (i) Consider the monoid S = T ∪ {1, 0} in which T is an infinite left zero semigroup, 1 an identity element and
0 a zero element. Then S × S is not finitely generated S-act. But S × S = ρ({(0, 1)}) is a monogenic congruence.
Indeed, for each (a, b) ∈ S, we have a = 1.a, 0.a = 0 = 0.b, 1.b = b.
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(iii) ⇒/ (ii) The monoid S = (N,max) is a cyclic S-act which generates by 1. Let S × S = ρ(H) in which H =
{(a1, b1), (a2, b2), · · · , (ak, bk)} andm = max{a1, a2, · · · , ak, b1, b2, · · · , bk}. Since (1,m+ 1) ∈ A×A, there is
a chain 1 = p1s1, q1s1 = p2s2, · · · , qnsn = m + 1. Thus 1 = p1 = s1 ≤ m and hence q1, p2, s2 ≤ m. Inductively
we infer that for each 1 ≤ i ≤ n, pi, qi ≤ m and in particular qnsn ≤ m < m + 1 which is a contradiction. Thus
S × S is not finitely generated congruence.
For the converse of Lemma 1.4 we have,

Lemma 1.5. Let A be an S-act with a fixed element {0} and θ ∈ Con(A). The following are equivalent:
(i) θ is pseudo-finite.
(ii) θ is a finitely generated congruence.

Proof. (ii) ⇒ (i) Let θ be a finitely generated congruence which generates by a finite subset H ⊆ A× A. Consider
CH = {x : ∃y ∈ A s.t (x, y) ∈ H ∪ H−1}. Now it is not difficult to check that θ is pseudo-finite of length 2 with
respect to the finite set {0} × CH .

Corollary 1.6. For an S-act A with a fixed element {0}, the following are equivalent:
(i) A is pseudo-finite.
(ii) A×A is a finitely generated congruence.
(iii) A is a finitely generated S-act.

Proof. (iii) ⇒ (i) Let A be a finitely generated S-act which generates by a finite subset X of A. For each a, b ∈ A
there exist p, q ∈ X and s, t ∈ S such that (a, b) = (ps, qt). Thus a = ps, 0s = 0t, qt = b. So A is pseudo-finite of
length 2 with respect to the finite set {0} ×X .

Lemma 1.7. (i) LetB be a finitely generated subact of an S-actA which generates by a subset Y = {y1, y2, · · · , yn}.
If X ⊆ A in which B = Y S = XS, then there is a finite subset X ′ of X such that B = X ′S and | X ′ |≤| Y |.
(ii) Let Y = {(a1, b1), (a2, b2), · · · , (an, bn)} and X be two subsets of an S-act A× A in which θ = ρ(Y ) = ρ(X).
Then there is a finite subset X ′ of X such that θ = ρ(X ′).
Also, if θ is pseudo-finite with respect to Y of length n ∈ N, then it is pseudo-finite with respect toX ′ of lengthm ∈ N.

Proof. (i) We are done using the fact that, for each yi ∈ Y , there exists xi ∈ X and si ∈ S such that yi = xisi.
(ii) For each 1 ≤ i ≤ n, there is a sequence ai = pi1si1, qi1si1 = pi2si2, · · · , qinisini = bi such that (pij , qij) ∈
X ∪X−1 and si ∈ S. This implies
θ = ρ(∪n

i=1{(pi1, qi1), · · · , (pin1
, qin1

)}) which X ′ = ∪n
i=1{(pi1, qi1), · · · , (pin1

, qin1
)} is a finite subset of X .

For the second part, consider (a, b) ∈ θ. Then there exists a Y -sequence from a to b of length at most n, such as,

a = p1s1, q1s1 = p2s2, · · · , qksk = b

, where (pi, qi) ∈ Y ∪ Y −1, si ∈ S and k ≤ n. Since θ = ρ(X ′), for each (pi, qi) ∈ Y ∪ Y −1, there exists an
X ′-sequence of length at most ni connecting pisi to qisi. Consider m = n × max{ni | 1 ≤ i ≤ k}. So there is an
X ′-sequence from a to b of length at mostm.

Lemma 1.8. Let A be a right S-act and θ ∈ Con(A). The following are equivalent:
(i) There exists a finite subset B of A such that θ = ρ(B2).
(ii) There exists a finite subset B of A such that for any b ∈ B, θ = ρ({b} ×B).

Proof. (i)⇒ (ii) Let a, b ∈ A such that b ∈ B and aθb. By (i), there exist s1, · · · , sn ∈ S and (p1, q1), · · · , (pn, qn) ∈
B2 such that a = p1s1, q1s1 = p2s2, · · · , qnsn = b and hence a = p1s1, bs1 = bs1, q1s1 = p2s2, bs2 =
bs2, · · · , qnsn = b in which (pi, b) ∈ B × {b} and (b, qi) ∈ {b} ×B.
(ii)⇒(i) For each c1, c2 ∈ C, we have c1 = c1.1, c.1 = c = c.1, c2.1 = c2. So (c1, c2) ∈ θ and hence θ = ρ(C2).

Proposition 1.9. Let A be a right S-act. The following are equivalent:
(i) A×A is a finitely generated congruence on A.
(ii) There exists a finite subset B of A such that A×A = ρ(B2).
(iii) There exists a finite subset B of A such that for any b ∈ B,A×A = ρ({b} ×B).
(iv) For each c ∈ A there exists a finite subset C of A such that c ∈ C and A×A = ({c}×C)S × S = ρ({c}×C).
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Proof. (i)⇒ (ii) By (i), A×A = ρ({(a1, b1), · · · , (an, bn)}). Consider B = {a1, · · · , an, b1, · · · , bn}, so
{(a1, b1), · · · , (an, bn)} ⊆ B2 and hence A×A ⊆ ρ(B2) ⊆ A×A.
(ii)⇔ (iii) By Lemma 1.8.
(iii)⇒(iv) Consider C = B∪{c}. By (iii), for each x, y ∈ A, there exist s1, · · · , sn ∈ S and (p1, q1), · · · , (pn, qn) ∈
({b}×B)∪ (B×{b}) such that x = p1s1, q1s1 = p2s2, · · · , qnsn = y. So x = p1s1, cs1 = cs1, q1s1 = p2s2, cs2 =
cs2, · · · , qnsn = y in which (pi, c) ∈ C × {c} and (c, qi) ∈ {c} × C. Thus A×A = ρ({c} ×B).
(iv)⇒(i) Is clear.
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Abstract

Vertex covering have been well-studied concepts in graph theory .These concepts have also been
defined in cubic fuzzy graph . In this paper we discuss the concept of vertex covering in cubic
bipolar fuzzy graph . In the present study we introduced the strong vertex covering in cubic
bipolar fuzzy and described about cardinarity vertex covering and the number of α− set in this
graph.

1. Introduction

In 1965, Zadeh introduced the notion of a fuzzy subset of a set. In 1994, Zhang initiated the concept of bipolar
fuzzy sets as a generalization of fuzzy sets. The study of cubic set (CS) has been started in 2012 when Jun et al
proposed this concept. Basically, CS is a combination of a fuzzy set (FS) and an interval-valued fuzzy set (IVFS).
The recent developments in FSs have shown some good improvements among which the concept of bipolar fuzzy set
(BFS) is a prominent one. A BFS improved the concept of FS by enlarging its range.The concept of BFS leads to the
development of bipolar fuzzy graph (BFG) . Motivated by the developments of FGs, IVFGs and BFGs, this article
aims to provide the concept of cubic bipolar fuzzy graphs(CBFGs) and covering vertex in CBFGs. The article is based
on three sections. In section one, some history is recalled and some remarkable work on FG, IVFG, BFG and CFG
have been discussed. In section two, some basic definitions are presented. In section three, we introduce a new notion,
called a vertex covering in cubic bipolar fuzzy graph . The covering vertex in CBFG is introduced as a generalization
of FG, IVFG and BFG and related terms are discussed.

2. Preliminaries

In this section, we present some preliminary results which will be used throughout the paper.
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Definition 2.1. A graph is an ordered pair G∗ = (V,E) where V is the set of vertices of G∗ and E is the set of edges
of G∗.

Definition 2.2. A fuzzy graph with an underlying set V is defined to be a pairG = (µ, ν) where µ is a fuzzy function
in V and ν is a fuzzy function in V × V ,such that ν(xy) ≤ min {µ(x), µ(y)} for all xy ∈ V × V .

Definition 2.3. A pair G = (A,B) of graph G = (V,E) is said to be interval value fuzzy graph ( IVFG ) where
A =

{
[µl

A, µ
u
A]
}
is an IVFS and B =

{
[µl

B , µ
u
B ]
}
is the IVF relation on E satisfying the following condition:

1)V = {v1, v2, ..., vn} such that µl
A : V → [0, 1]

µu
A : V → [0, 1] , represents the degree of membership of the element v ∈ V .

2)The function µl
B : V × V → [0, 1] , µu

B : V × V → [0, 1]

such that µl
B ≤ min

{
(µl

A(x), µ
l
A(y))

}

µu
B ≤ min {(µu

A(x), µ
u
A(y))} for all xy ∈ E.

Definition 2.4. Let X be a non-empty set .Then mapping A = (µP
A, µ

N
A ) : X ×X → [0, 1]× [−1, 0]

is a bipolar fuzzy relation on X , such that µP
A(x, y) ∈ [0, 1] , µN

A (x, y) ∈ [−1, 0] .

Definition 2.5. A pairG = (A,B)with underlying graphG∗ = (V,E) is said to be bipolar fuzzy graph (BFG) where
A =

{
[µP

A, µ
N
A ]

}
is a bipolar fuzzy set ( BFS) on V and B =

{
[µP

B , µ
N
B ]

}
is a bipolar fuzzy relation on E ,such that

µP
B(xy) ≤ min

{
(µP

A(x), µ
P
A(y))

}

µN
B (xy) ≥ max

{
(µN

A (x), µN
A (y))

}
for all xy ∈ E.

Definition 2.6. A cubic set(CS) in V is a structural as A =
{
[µl(x), µu(x)], σ(x)|x ∈ V

}
where [µl(x), µu(x)] is an

interval-valued fuzzy membership degree and σ(x) is fuzzy membership degree of x in A.

Definition 2.7. A pair G = (A,B) of a graph G = (V,E) is said to cubic fuzzy graph (CFG) where
A =

{
[µl

A(x), µ
u
A(x)], σA(x)|x ∈ V

}
is a CFS and B =

{
[µl

B(x), µ
u
B(x)], σB(x)

}
is the cubic fuzzy relation on E

satisfying the following condithion:

1) V = {v1, v2, ..., vn} such that µl
A : V → [0, 1] , µu

A : V → [0, 1] and σA : V → [0, 1] , represents the degree of
membership of the element v ∈ V .

2)The function µl
B : V × V → [0, 1] , µu

B : V × V → [0, 1] and
σB : V × V → [0, 1]
are such that µl

B(xy) ≤ min
{
(µl

A(x), µ
l
A(y))

}

µu
B(xy) ≤ min {(µu

A(x), µ
u
A(y))} and

σB(xy) ≤ min {(σA(x), σA(y))} for all xy ∈ E

the underlying graph of a CG is G∗ = (V ∗, E∗) where V ∗ =
{
x|[µl

A(x), µ
u
A(x)] > 0, σA(x) > 0

}
,

E∗ =
{
xy|[µl

B(xy), µ
u
B(xy)] > 0, σB(xy) > 0

}
, for all xy ∈ V ∗.

Definition 2.8. A pair G = (A,B) with underlying graph G∗ = (V,E) is said to be an IVBFG where A ={
[µPl

A , µPu
A ][µNl

A , µNu
A ]

}
is an IVBFS and B =

{
[µPl

B , µPu
B ][µNl

B , µNu
B ]

}
is an interval-value bipolar fuzzy relation

on E such that
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Fig. 1. cubic fuzzy graph

µPl
B (xy) ≤ min

{
(µPl

A (x), µPl
A (y))

}
and µPu

B (xy) ≤ min
{
(µPu

A (x), µPu
A (y))

}

µNl
B (xy) ≥ max

{
(µNl

A (x), µNl
A (y))

}
and µNu

B (xy) ≥ max
{
(µNu

A (x), µNu
A (y))

}

Definition 2.9. A pair G = (A,B) with underlying graph G∗ = (V,E) is said to be an CBFG where A ={
[µPl

A , µPu
A ][µNl

A , µNu
A ], σP

A , σ
N
A

}
CBFS and B =

{
[µPl

B , µPu
B ][µNl

B , µNu
B ], σP

B , σ
N
B

}
is a cubic bipolar fuzzy relation

on E such that
µPl
B (xy) ≤ min

{
(µPl

A (x), µPl
A (y))

}
and µPu

B (xy) ≤ min
{
(µPu

A (x), µPu
A (y))

}

µNl
B (xy) ≥ max

{
(µNl

A (x), µNl
A (y))

}
and µNu

B (xy) ≥ max
{
(µNu

A (x), µNu
A (y))

}

σP
B(xy) ≤ min

{
(σP

A(x), σ
P
A(y))

}
and σN

B (xy) ≥ max
{
(σN

A (x), σN
A (y))

}
for all xy ∈ E.

Definition 2.10. An edge xy in CBFG is named cubic bipolar strong edge if

[µPl
B (xy), µPu

B (xy)] ≥ [µ∞Pl
B (xy), µ∞Pu

B (xy)]

[µNl
B (xy), µNu

B (xy)] ≤ [µ∞Nl
B (xy), µ∞Nu

B (xy)]

σP
B(xy) ≥ σ∞P

B (xy) , σN
B (xy) ≤ σ∞N

B (xy)

Definition 2.11. The strength of connectedness between x and y is shown by
{
[µ∞Pl

B (xy), µ∞Pu
B (xy)][µ∞Nl

B (xy), µ∞Nu
B (xy)], σ∞P

B (xy), σ∞N
B (xy)

}

and it is the maximum of the strengths of all cubic bipolar paths between x, y.

Definition 2.12. The degree of a vertex in a CBFG G∗ = (V,E) is denoted and defined by

deg(x) = ([dPl(x), dPu(x)][dNl(x), dNu(x)], dP (x), dN (x))

where ,
dPl(x) =

∑
µPl
B (xy), dPu(x) =

∑
µPu
B (xy)

dNu(x) =
∑

µNu
B (xy), dNl(x) =

∑
µNl
B (xy)

dP (x) =
∑

µP
B(xy), d

N (x) =
∑

µN
B (xy)

Definition 2.13. If S ⊆ V in CBG is called

S = (µP
ul, µ

N
ul) = (

∑
x∈S

1− µPl + µPu + σP

3
,
∑

x∈S

−1− µNl + µNu + σN

3
)
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Definition 2.14. The cardinality of S ⊆ V in CBG is described as

|S| = 1 + µP
ul + µN

ul

2

Theorem 2.15. Cubic bipolar fuzzy graph generalizes bipolar fuzzy graph and interval valued bipolar fuzzy graph.

3. Vertex covering in cubic bipolar fuzzy graph

In this section the vertex covering is discussed in the cubic bipolar fuzzy graph and some of its properties is studied.

Definition 3.1. A vertex covering of a graph G is a set S ⊂ V (G) that contains at least one endpoint of every edge.
The vertices in S cover E(G). A vertex covering set with minimum cardinality is called α− set of G. The cardinality
of a minimum vertex covering set of G is called the vertex covering number of G and it is denoted as α(G) .

Definition 3.2. Let G = (A,B) has cubic bipolar fuzzy graph, a vertex and a cubic bipolar strong edge incident to it
are named strong cover each other.

Definition 3.3. A strong vertex covering set in G is the set of vertices so that each cubic bipolar strong edge in G is
incident with at least one vertex in C. The subset C is called the minimal strong vertex covering set of the cubic bipolar
fuzzy graph whenever C − {v} is not an strong vertex covering set. The minimum cardinality among all the minimal
strong vertex covering sets of G is named the strong vertex covering set number of G and it is shown by α. A strong
vertex covering set with minimum cardinality in cubic bipolar fuzzy graph G is named the minimum strong vertex
covering set and it is denoted as α− set .

Example 3.4. LetG = (V,E) be a cubic bipolar fuzzy graph in figure (2) . the cubic bipolar set edge are v1v4, v3v5, v2v6
the minimal strong vertex covering set in figure (2) are as follows:

C1 = {v1, v2, v3} , C2 = {v1, v2, v5} , C3 = {v1, v3, v6}

C4 = {v1, v5, v6} , C5 = {v2, v3, v4} , C6 = {v2, v4, v5}

C7 = {v3, v4, v6} , C8 = {v4, v5, v6}
From above strong vertex covering set , we have :

C1 = (1.46,−1.29) , C2 = (1.52,−1.22) , C3 = (1.5,−1.23)

C4 = (1.56,−1.16) , C5 = (1.46,−1.29) , C6 = (1.52,−1.29)

C7 = (1.5,−1.23) , C8 = (1.56,−1.16)

With definition 2.12 the cardinarity of the above strong vertex covering set, we have:

|C1| = 0.585 , |C2| = 0.65 , |C3| = 0.635 , |C4| = 0.7

|C5| = 0.585 , |C6| = 0.615 , |C7| = 0.635 , |C8| = 0.7

This clear thatC1 andC5 have the minimum cardinality among other strong vertex covering set. Therefore , α = 0.585
, so C1 and C5 are the α− set of G.

Theorem 3.5. If G be a cubic bipolar fuzzy graph and v ∈ V then α(G− v) ≤ α(G)

Theorem 3.6. If G be a cubic bipolar fuzzy graph and complete , and x be a vertex with the maximum cardinality of
the vertices in G ,then α(G) = n− |{x}|.
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Fig. 2. cubic bipolar fuzzy graph

Theorem 3.7. If G = (A,B) is a cubic bipolar fuzzy graph without isolated vertex , then , α(G) ≤ p

2
.

Theorem 3.8. In a cubic bipolar fuzzy graph G, α(G) ≥ δ(G).

Corollary 3.9. The above results show that in cubic bipolar fuzzy graph , it should be δ(G) ≤ α(G) ≤ p

2
.
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Abstract

In this paper, we construct an exact model structure on certain exact category which has as its
homotopy category is the Gorenstein derived category of R-modules.

1. Introduction and Preliminaries

A model category (sometimes called a Quillen model category) is a context for doing homotopy theory. Quillen in [6]
developed the definition of a model category to formalize the similarities between homotopy theory and homological
algebra: the key examples which motivated his definition were the category of topological spaces, the category of
simplicial sets, and the category of chain complexes. The basic problem that model categories solve is the following.
Given a category, one often has certain maps (weak equivalences) that are not isomorphisms, but one would like to
consider them to be isomorphisms. One can always formally invert the weak equivalences, but in this case one loses
control of the morphisms in the quotient category. If the weak equivalences are part of a model structure, however,
then the morphisms in the quotient category from X to Y are simply homotopy classes of maps from a cofibrant
replacement of X to a fibrant replacement of Y . Because this idea of inverting weak equivalences is so central in
mathematics, model categories are extremely important.
In this section we introduce the concept of a model category, and derived some basic results.
Definition 1.1. Suppose A is a category. An object X of a category A is said to be a retract of an object Y if there
exist morphism i : X → Y and r : Y → X such that ri = idX . A map f in C is a retract of a map g if f is a retract
of g as objects of Mor(C). That is, f is retract of g if and only if there is a commutative diagram of the form

A //

f

��

C //

g

��

A

f

��
B // D // B
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where the horizontal composites are identities.

Definition 1.2. Suppose i : A → B and p : X → Y are morphisms in a category A. Then we say that i has the left
lifting property with respect to p and p has the right lifting property with respect to i if, for every commutative diagram

A
f //

i

��

X

p

��
B

g // Y

there is a lift h : B → X such that hi = f and ph = g.

Definition 1.3. Amodel structure on categoryA is three subcategories of Mor(A) called weak equivalences, cofibra-
tions, and fibrations, satisfying the following properties:
1. (2-out-of-3) If f and g are morphisms of C such that gf is defined and two of f and g are weak equivalences, then
so is the third.
2. (Retract) If f and g are morphisms of A such that f is a retract of g and g is a weak equivalence,cofibration, or
fibration, then so is f .
3. (Lifting) Define a map to be a trivial cofibration if it is both a cofibration and weak equivalence . Similarly, define
a map to be trivial fibration if it is both a fibration and weak equivalence. Then trivial cofibrations have the left lifting
property with respect to fibrations, and trivial fibrations have the right lifting property with respect to cofibrations.
4. (Factorization) Any morphism f can be factored in two ways: (i)f = pi, where i is a cofibration and p is a trivial
fibration, and (ii)f = pi, where i is a trivial cofibration and p is a fibration.

Definition 1.4. A model category is a category C with all small limits and colimits together with a model structure on
C.

If C is a model category, then it has an initial object ∅, the colimit of empty diagram, and terminal object ∗, the limit
of the empty diagram. the initial and terminal object allows us to define cofibrant and fibrant objects of C.

Definition 1.5. An object A ∈ C is said to be a cofibrant(trivially cofibrant) if ∅ → A is a cofibration(trivially
fibration, resp.)Dually B ∈ C is fibrant(trivially fibrant) if B → ∗ is fibration(trivial fibration,resp.)
An object X ∈ C is trivial if the map ∅ → X is a weak equivalence.

Hovey’s correspondence. Hovey defines an abelian model categories and characterizes them in terms of cotorsion
pairs as we now describe. So in fact one could even take the cotorsion pairs given in the correspondence below as the
definition of an abelian model category. First, we need some definitions.

Definition 1.6. An abelian model category is an complete and cocomplete abelian category A equipped with a model
structure such that
(1) A map is a cofibration if and only if it is a monomorphism with cofibrantn cokernel.
(2) A map is a fibration if and only if it is an epimorphism with fibrant kernel.

Definition 1.7. A thick subcategory of an abelian category A is a class of objects W which is closed under direct
summands and such that if two out of three of the terms in a short exact sequence are inW , then so is the third.

Theorem 1.8. LetA be an abelian category with an abelian model structure. Let C be the class of cofibrant objects,F
the class of fibrant objects andW the class of trivial objects. thenW is a thick subcategory ofA and both (C,W∩F)
and (C ∩ W ,F) are complete cotorsion pairs in A. Conversely, given a thick subcategory W and classes C and F
making (C,W ∩ F) and (C ∩ W ,F) each complete cotorsion pairs, then there is an abelian model structure on A
where C are the cofibrant objects, F are the fibrant objects and W are the trivial objects.

Proof. See [5, Theorem 2.2].
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We point out that the abelian model structure on A is then completely determined by the classes C,W and F . Indeed
the cofibrations(resp. trivial cofibrations) are the monomorphisms with cokernel in C(resp. C ∩W) and the fibrations
(resp. trivial fibration) are the epimorphisms with kernel in F(resp. W ∩ F ). The weak equivalences are he maps
which factor as a trivial cofibration followed by a trivial fibration. We call (C,W,F) a Hovey triple.

Definition 1.9. An exact category is a pair (A, E) where A is an additive category and E is a distinguished class of
diagrams of the form A

i−→ B
d−→ C. such that i is a kernel of d ( called inflation) and d is cokernel of i( called

deflation) which is closed under isomorphism and satisfies the certain axioms, see [3]

A map such as i is necessarily a monomorphism and in the language of exact categories is called admissible monomor-
phism(or inflation) while d is called an admissible epimorphism(or deflation).
Cotorsion pairs in exact categories. Let (A, E) be an exact category. The Yoneda bifunctor Ext1E(X,Y ) is the abelian
group of equivalence classes of short exact sequences Y → Z → X . In particular, we get that Ext1E(X,Y ) = 0 if and
only if every short exact sequence Y → Z → X isomorphic to the split exact sequence Y → Y ⊕X → X .

Definition 1.10. Let (A, E) be an exact category. For a class S of objects of A we define

S⊥ = {B ∈ A | Ext1E(S,B) = 0 for all S ∈ S}
⊥S = {A ∈ A | Ext1E(A,S) = 0 for all S ∈ S}

A pair (F , C) of full subcategory of A is called a cotorsion pair provided that

F = ⊥C and F⊥ = C

A cotorsion pair is said to have enough projective if for any X ∈ A there is a short exact sequence C → F → X
where C ∈ C and F ∈ F . We say that it has enough injective if it satisfies the dual statement. If both of these hold we
say the cotorsion pair is complete. If the cotorsion pair has enough projectives in a way that is functorial with respect
to X then we say the cotorsion pair has enough functorial projective. Similarly, we have the terms enough functorial
injective and functorial complete.
Gillespie followed Hovey’s theorem and focused on exact categories with model structure compatible with the exact
structure. He saw that Hovey’s correspondence between abelian model structures and cotorsion pairs naturally carries
over to a correspondence between exact model structures and cotorsion pairs.

Theorem 1.11. Let (A, E) be an exact category with an exact model structure. Let C be the class of cofibrant objects,F
the class of fibrant objects andW the class of trivial objects. thenW is a thick subcategory ofA and both (C,W∩F)
and (C ∩ W ,F) are complete cotorsion pairs in A. If we assume (A, E) is weakly idempotent complete then the
converse holds. That is, given two compatible cotorsion pairs (C,W∩F) and (C∩W ,F), each complete and withW
a thick subcategory, then there is an exact model structure on A where C are the cofibrant objects, F are the fibrant
objects and W are the trivial objects.

Proof. See [4, Theorem 3.3]

2. Model structure and Gorenstein derived category

In this section we consider an exact category on Ch(R), and then we construct a cotorsion pair on it. With some
condition on R this cotorsion pair cogenerate by a set, and hence it is complete. We Then construct an exact model
structure on Ch(R) such that its homotopy category is Gorenstein drived category.

Definition 2.1. A short exact sequence S• : 0 → X → Y → Z → 0 is called GP-proper if Hom(G, S•) is exact for
all G ∈ GPrj-R.

Now let EGP be a class of short exact sequence 0 → X → Y → Z → 0 in Ch(R) such that 0 → Xi → Yi → Zi → 0
is GP-proper,for all i ∈ Z. Then (Ch(R), EGP) is a weakly idempotent complete exact category.
It is shown in [2] that (GP ,GP⊥) is a complete cotorsion pair, wheneverR is a Gorenstein ring or it is a (left)coherent
ring in which all flat modules have finite projective dimension.
Throughout, we always suppose that R is a ring such that (GP ,GP⊥) is a complete cotorsion pair.
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Definition 2.2. DefineWGP a class of GP-proper complexes in Ch(R), that is

X ∈ WGP , whenever Hom(G,X) is an exact complex, for all G ∈ GPrj-R

Definition 2.3. A complex G ∈ C(GPrj-R) is called DG-Gorenstein projective if Hom(G,W) is exact for all W ∈
WGP . We will use the symbol DG-GP to denote the class of DG-Gorenstein projective complexes.

Proposition 2.4. (DG-GP ∩WGP ,Ch(R)) is a complete cotorsion pair in (Ch(R), EGP).

Proof. The proof is in the same manner of the proof of Proposition 3.3 of [1]

Nowwe want to show that (DG-GP ,WGP) is a cotorsion pair in exact category (Ch(R), EGP). We have the following
useful lemma.

Lemma 2.5. SupposeW ∈ GP⊥. Then for any X ∈ Mod(R), we have

Ext1R(X,W ) = Ext1EGP (X,W )

Proof. ” ⊇ ” is trivial. To prove the reverse inclusion let 0 → W → Y → X → 0 be in Ext1R(X,W ). Applying
Hom(G,−) to the above short exact sequence we have

0 → Hom(G,W ) → Hom(G,Y ) → Hom(G,X) → Ext1R(G,W ) → · · ·

But Ext1R(G,W ) = 0, sinceW ∈ GP⊥. Therefore 0 →W → Y → X → 0 is a GP-proper in each degree.

Proposition 2.6. ⊥WGP is the class of DG-Gorenstein projective complexes.

Proof. Let X ∈ ⊥WGP andW ∈ GP⊥. By previous lemma we have

Ext1R(Xi,W ) = Ext1EGP (Xi,W ) = Ext1EGP (X, e
i
ρ(W )) for all i ∈ Z

But eiρ(W ) ∈ WGP , hence Ext1EGP (X, e
i
ρ(W )) = 0, since X ∈ ⊥WGP . Therefore Ext1R(Xi,W ) = 0, and hence

Xi ∈ GPrj-R, since (GP ,GP⊥) is a cotorsion pair.
Now it remains to show that Hom(X,Y) is an exact complex for any Y ∈ WGP . We know that

Hom(X,Y) is exact ⇐⇒ HiHom(X,Y) ⇐⇒ HomK(R)(X,Y[i]) = 0

But f : X → Y[i] is homotopic to 0 if and only if the exact sequence 0 → Y[i] →M(f) → X[1] → 0 associated with
the mapping coneM(f) splits in Ch(R). So it is enough to show that Ext1EGP (X[1],Y[i]) = 0, and it is clear, since
WGP is closed under shifting.

Proposition 2.7. (⊥WGP)⊥ = WGP

Proof. Clearly WGP ⊆ (⊥WGP)⊥. So let W ∈ (⊥WGP)⊥. We show that W is a GP-proper complex. Suppose
G ∈ GPrj-R, and let G be a complex of Gorenstein projective module concentrated at 0, i.e. Gn = 0 if n 6= 0. Then
clearly G (and so also any G[n], n ∈ Z) is DG- Gorenstein projective. But by proof of the previous proposition,
Hom(G, textbfW ) is exact, since Ext1EGP (G,W) = 0.

Our intention now is to show that (DG-GP ,WGP) is a complete cotorsion pair, whenever K(GPrj-R) is compactly
generated.

Proposition 2.8. Suppose X ∈ Ch(R). Then we have

Ext1EGP (G[i],X) = HiHom(G,X) for all G ∈ GPrj-R
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Proof. Suppose G ∈ GPrj-R. Let G be the complex

· · · // 0 // G
id // G // 0 // · · ·

with two G’s in the 1st and 0th places. We let G be the complex with G in the 0th places. Then G is a subcomplex
of G, and we have G/G = G[1]. So we have short exact sequence S• : 0 → G → G → G[1] → 0. Applying
Hom(−,X) to the S•, we have

Hom(G,X)
φ // Hom(G,X)

ψ // Ext1EGP (G[1],X) // Ext1EGP (G,X)

But Ext1EGP (G,X) = 0, since every 0 → X → Y → G→ 0 is split. Therefore we can say that

Ext1EGP (G[1],X) ∼=
Hom(G,X)

Kerψ = Imφ

Now consider

· · · // Hom(G,X1)
d∗1 // Hom(G,X0)

d∗0 // Hom(G,X−1) // · · ·
We have a map

η : Hom(G,X) −→ Kerd∗0
Imd∗1

defined by the formula f 7−→ f0 for f = (fn)n∈Z ∈ Hom(G,X). clearly, Kerη = Imφ. This gives thatExt1EGP (G[1],X) ∼=
H0(Hom(G,X)).
More generally we have that

Ext1EGP (G[k + 1],X) ∼= Hk(Hom(G,X)) for any k ∈ Z

Proposition 2.9. (DG-GP ,WGP) is a complete cotorsion pair, whenever K(GPrj-R) is compactly generated.

Proof. It is well known that if B = GPrj-R, then the following are equivalent:

K(GPrj-R) is well generated ⇐⇒ GPrj-R ⊆ AddS for some set S ⊆ GPrj-R
By proposition 2.8

Ext1EGP (G[i],X) = HiHom(G,X) for all G ∈ GPrj-R

Hence a complex textbfX is GP-proper if and only if Ext1EGP (G[i],X) = 0. On the other hand K(GPrj-R) is a
well generated, since it is compactly generated. Thus K(GPrj-R) ⊆ AddS whenever S ⊆ GPrj-R. Now if consider
T = {G[i]|G ∈ S} then T is a set and T⊥ = WGP .

Now we find a Hovey pair so we can use Theorem 1.11 and construct a model structure on the category of complexes
which its homotopy is exactly Gorenstein derive category.

Theorem2.10. According to the above assumptions, there is an exact model structure on the exact category (Ch(R), EGP).
In this model structure,DG-GP is the class of cofibrant objects, Ch(R) is the class of fibrant objects andWGP is the
class of trivial objects. As usual, we denote this model structure by the triple (DG-GP ;WGP ;Ch(R)). The homotopy
category HoCh(R) is equivalent to DGP(R) as triangulated categories.
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