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Abstract

In this study, we use certain mathematical tools to analyze the solutions of a system of fractional
q-differential equation CDσi

q [℘](t) = wi(t, ℘(t),
CDiνj

q [℘](t), Iiνjq [℘](t)), i = 1whenever t ∈
[0, t0], and i = 2whenever t ∈ [t0, 1], for j = 1, 2, such as fixed point theorem of Krasnoselskii
and Banach contraction principle, under simultaneous Dirichlet boundary conditions. Here,
we use standard definitions of the Liouville-Caputo fractional type q−derivative and Riemann-
Liouville q−integral. Some illustrative examples with numerical results are discussed, too.

1. Introduction: Problem’s formulation

Mathematical subjects in the analysis of the problems of today’s world are really welcomed by researchers. Among
others, the study of newmathematical models have been a growing filed of study due to its importance and applications
in diverse discipline of science and engineering. In this respect, using factional or non-integer derivatives provides
more insight for the description of natural phenomena in the language of mathematical modeling [16, 17]. Many
interesting real-life models with fractional derivatives have been proposed and analyzed mathematically. Among
others, we can refer to the ppopulation models [11, 13], the blood ethanol system [18], the viscolastic models [9],
the Layla and Mojnun’s love story [14], the HBV, HIV and SEIR infection models [10, 20, 29], and the human liver
model [25], to name a few. For definitions of fractional derivatives and integrals and some related special functions we
refer to the recently published papers on the subject [27, 28]. In the meantime, fractional differential and q-differential
equations (FDE, FqDE) are significant, see [1, 3, 5, 15, 21, 30, 31].

∗Talker
Email addresses: mesamei@basu.ac.ir, mesamei@gmail.com (Mohammad Esmael Samei), izadi@uk.ac.ir (Mohammad
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The following FDE investigated by Ahmad et al. in 2014 as{
cDβ

q (
cDγ

q + λ)u(t) = pf(t, u(t)) + kIξq g(t, u(t)), 0 < β, γ ≤ 1,

α1u(0)− β1(t
(1−γ)Dqu(0))

∣∣
t=0

= σ1u(η1), α2u(1) + β2Dqu(1) = σ2u(η2),

where t, q ∈ [0, 1] and cDβ
q is the fractional Liouville-Caputo q-derivative. Moreover, the symbol Iξq (.) stands for

the Riemann-Liouville integral for ξ ∈ (0, 1) and the functions f and g are two continuous functions. Finally, the
parameters λ, p, k are real numbers. Similarly, we have αℓ, βℓ, σℓ ∈ R and ηℓ ∈ (0, 1) for ℓ = 1, 2 ([4]). Further-
more, Abdeljawad et al., considered (with proof) a novel discrete q−fractional version of the well-known Grönwall
inequality: (qCα

a f)(t) = T (t, f(t)) and f(a) = γ in a way that α ∈ (0, 1], a ∈ Tq = {qn : n ∈ Z}, t belongs to
Ta = [0,∞)q = {q−ℓa : ℓ = 0, 1, 2, . . .}. Here, the notation qC

α
a shows the Liouville-Caputo fractional difference of

order α and a Lipschitz condition for the function T (t, x) holds for all t and x ([1]). Later in 2017, Zhou et al. provided
the existence criteria for the solutions of p-Laplacian Langevin FDE Dβ

0+ϕp[(D
α
0+ + λ)x(t)] = f(t, x(t), Dα

0+x(t)),
qD

β
0+ϕp[(D

α
0++λ)x(t)] = g(t, x(t), qD

α
0+x(t)) under anti-periodic boundary conditionsx(0) = −x(1), qDα

0+x(0) =
−qD

α
0+x(1), in the whole domain 0 ≤ t ≤ 1. Here, ϕp(s) = |s|p−2s, with p ∈ (1, 2]. Also, we have 0 < α, β ≤ 1,

0 ≤ λ, 1 < α+ β < 2, and q ∈ (0, 1) [31]. For more instance, see [7, 22–24]

In this work, some basic and fundamental results related to q-calculus are recalled in Sec. 2. Motivated by these
achievements, in Sec. 3, we examine the positive solutions of FqDE in two consecutive segments

cDσ
q [k](t) =

{
f
(
t, k(t), cDα1

q [k](t), Iβ1
q [k](t)

)
, t ∈ [0, t0),

g
(
t, k(t), cDα2

q [k](t), Iβ2
q [k](t)

)
, t ∈ [t0, 1],

(1)

under simultaneous Dirichlet boundary conditions

k(0) = h1
(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)
, k(1) = h2

(
t0, k(t0),

cDα4
q [k](t0), Iβ4

q [k](t0)
)
, (2)

where Iβ
q and cDσ

q stand for the Riemann-Liouville q−integral and the Liouville-Caputo fractional q−derivative of
order β and 1 < σ ≤ 2 respectively, t ∈ J = [0, 1], t0 ∈ J = (0, 1), 0 < αℓ < 1 with ℓ = 1, 2, 3, 4, βℓ > 0 with
ℓ = 1, 2, 3, 4, and the functions f, g, h1 and h2 map J × R3 to R with f(t0, ·, ·, ·) = g(t0, ·, ·, ·). Finally in Sec. 4
we consider two illustrated examples associated to the obtained results for the above model problems are provided in
detail.

2. Essential preliminaries

Throughout the context, we shall apply the notations of time scales calculus [8]. Let us assume that t0 ∈ R and q ∈ I.
Next, we define the time scale Tt0 = {0} ∪ {t : t = t0q

n, ∀n ∈ N}. However, for simplicity we sometimes drop
the subscript t0 and denote Tt0 by T if there is no confusion about t0. For a given s ∈ R, let us define the symbol
[s]q = (1− qs)/(1− q) [15]. The next aim is to define the notation (y − z)

(n)
q for the q-factorial function. It is given

by (y−z)(n)q =
∏n−1

k=0(y−zqk), n ∈ N0 := {0}∪N, y, z ∈ R, and with (y−z)(0)q = 1, see ([2]). One can also show
that (y−z)(σ)q = yσ

∏∞
k=0

y−zqk

y−zqσ+k , σ ∈ R, s ̸= 0. It should be stressed that for z = 0, we have obviously y(σ) = yσ .
The next symbol is used for the q-Gamma function. It has the following definition Γq(y) = (1− q)1−y(1− q)

(y−1)
q ,

(y ∈ R\{· · · ,−2,−1, 0}) [15]. To proceed, let us σ and ν be two positive numbers. Let a function y : T → R is
given. We define the q-derivative of y in the formDq[y](t) =

( d
dt
)
q
y(t) = y(qt)−y(t)

t(1−q) , for all t ∈ T\{0} and for t = 0

we have Dq[y](0) = limt→0 Dq[y](t) [2]. One can also define the higher-order q-derivative of y recursivly through
the relation Dn

q [y](t) = Dq[D
n−1
q [y]](t) for all n ≥ 1. Here, for n = 0 we get D0

q[y](t) = y(t) [2].

Iq[y](t) =

∫ t

0

y(ξ) dqξ = t(1− q)

∞∑
k=0

qky(tqk), (3)
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for 0 ≤ t ≤ b and under condition that the involved series is absolutely convergent, see [2]. From this we can conclude
the next identity for s in [0, b] as∫ b

s

y(ξ) dqξ = Iq[y](b)− Iq[y](s) = (1− q)
∞∑
k=0

qk
[
by(bqk)− sy(sqk)

]
,

based upon the existence of the series. Suppose that y ∈ C([0, b]). For n = 0, the integral operator Inq is defined
as I0q[y](t) = y(t) and for for n ≥ 1 we have Inq [y](t) = Iq[I

n−1
q [y]](t), see [2]. If the function y be continuous at

t = 0 one can assert that Dq[Iq[y]](t) = y(t) and Iq[Dq[y]](t) = y(t) − y(0) [2]. For the function y, the next is the
definition of fractional Riemann–Liouville type q-integral in the form

Iσq [y](t) =

∫ t

0

(t− ξ)(σ−1)
q

y(ξ)
Γq(σ)

dqξ, I0q[y](t) = y(t), (4)

where σ > 0 and for all t ∈ [0, 1] [6, 12]. Similarly for this function, the concept of Liouville-Caputo fractional
q-derivative is given next as

CDσ
q [y](t) = I[σ]−σ

q

[
D[σ]

q [y]
]
(t) =

∫ t

0

(t− ξ)([σ]−σ−1)
q

D[σ]
q [y](ξ)

Γq([σ]−σ) dqξ, (5)

where σ > 0 and for all t ∈ [0, 1] [12, 19]. For σ, ν ≥ 0, we can prove that Iνq [Iσq [y]](t) = Iσ+ν
q [y](t), and

CDσ
q [I

σ
q [y]](t) = y(t), see [12].

Lemma 2.1 ([17]). Let y ∈ ACn[t1, t2]. Then for n − 1 < σ ≤ n, n ∈ N one has Iσ[CDσ
q [y]](t) = y(t) +∑n−1

i=0 ci(t− t1)
i, c0, c1, . . . , cn−1 ∈ R.

Lemma 2.2 ([17]). Let suppose that σ ∈ (0, 1). Then for each y ∈ AC[0, 1] we have Iσ[Dσ[y]](t) = y(t) for a.e.
t ∈ [0, 1]. Here, we have Dσ[y](t) = d

dt
∫ t

0
(t− ξ)−σ y(ξ)

Γ(1−σ) dξ.

Theorem 2.3 ([26] Banach contraction principle). Let assume that the spaceX is a Banach space and letA : X → X
be a contraction map. Then, there exists an x ∈ X such that Ax = x.

Theorem 2.4 ([26] Krasnoselskii’s fixed point theorem). Consider a nonempty subset S of a Banach space X such
that be a closed and convex and two maps A and B of S into X such that A[k] + B[l] ∈ S for k, l ∈ S. Let suppose
that B is a contraction map and let A is also compact and continuous map. Then, there exists a k ∈ S such that
k = A[k] +B[k].

3. Main and basic results

Themain aim of this section is to investigate the existence of the solutions for the FqDE (1)-(2) by considering the fixed
point theorems. We consider the set X = C1(J,R) endowed with the norm ∥k∥∗ = supt∈J |k(t)|+ supt∈J |k′(t)|.

Lemma 3.1. Assume that we have v ∈ L1(J,R). Assume further that the FqDE cDσ
q [k](t) = v(t) under the conditions

k(0) = h1
(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)
, k(1) = h2

(
t0, k(t0),

cDα4
q [x](t0), Iβ4

q [k](t0)
)
,

is given. Then, the unique solution is obtained as

k(t) = Iσ
q [v](t) + h1

(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)

+ t
[
h2

(
t0, k(t0),

cDα4
q [k](t0), Iβ4

q [k](t0)
)
− Iσ

q [v](1)− h1
(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
) ]
.

(6)
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Proof. We assume that k(t) satisfies in the equation cDσ
q [k](t) = v(t). Lemma 2.2 implies that k(t) = Iσ

q [v](t)+c0+

c1t, where c0, c1 ∈ R. Considering the boundary conditions, we conclude that c0 = h1
(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)

and

c1 = h2
(
t0, k(t0),

cDα4
q [k](t0), Iβ4

q [k](t0)
)
− Iσ

q [v](1)− h1
(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)
.

Clearly Eq. (6) satisfies on the boundary conditions

k(0) = h1
(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)

k(1) = h2
(
t0, k(t0),

cDα4
q [k](t0), I

β4
q [k](t0)

)
.

On the other hand, Lemmas 2.1 and 2.2 imply that
cDσ

q [k](t) = I2−σ
q k′′(t) = I2−σ

q

[
I−2+σ
q [v]

]
(t) = I2−σ

q

[
cD2−σ

q [v]
]
(t) = v(t).

Now, our proof is complete.

Corollary 3.2. A given function k ∈ X is called a solution of FqDE (1)-(2) iff

k(t) = Iσ
q f

(
t, k(t), cDα1

q [k](t), Iβ1
q [k](t)

)
+ h1

(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)

+

[
h2

(
t0, k(t0),

cDα4
q [k](t0), Iβ4

q [k](t0)
)
−

∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

−
∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDα2

q [k](s), Iβ2
q [k](s)

)
dqs− h1

(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)]
t,

whenever 0 ≤ t ≤ t0, and

k(t) =

∫ t0

0

(t−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q )[k](s), Iβ1
q [k](s)

)
dqs+

∫ t

t0

(t−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDα2

q [k](s), Iβ2
q [k](s)

)
dqs

+ h1
(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)
+

[
h2

(
t0, k(t0),

cDα4
q [k](t0), Iβ4

q [k](t0)
)

−
∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs−

∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDβ1

q [k](s), Iβ1
q [k](s)

)
dqs

−h1
(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)]
t,

whenever t0 ≤ t ≤ 1.

Theorem 3.3. Let suppose that there exist ℓ ∈ (0, σ − 1) and L1, L2 ∈ L
1
ℓ (J, (0,∞)) and L3, L4 ∈ C(J, (0,∞))

s.t
∣∣f (t, k1, k2, k3)−f (t, k′1, k′2, k′3) ∣∣ ≤ L1(t)

∑3
i=1 |ki−k′i|,

∣∣g (t, k1, k2, k3)−g (t, k′1, k′2, k′3) ∣∣ ≤ L2(t)
∑3

i=1 |ki−
k′i|,

∣∣h1 (t, k1, k2, k3)−h1 (t, k′1, k′2, k′3) ∣∣ ≤ L3(t)
∑3

i=1 |ki−k′i|,
∣∣h2 (t, k1, k2, k3)−h2 (t, k′1, k′2, k′3) ∣∣ ≤ L4(t)

∑3
i=1 |ki−

k′i|, for all t ∈ J and kℓ, k′ℓ, with ℓ = 1, 2, 3. Then FqDE (1)-(2) has a unique solution if

Λ1 =
3∥L1∥ 1

ℓ
η1

Γq(σ)

[
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

]
+

3∥L2∥ 1
ℓ
η1

Γq(σ)

[
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

]
+ 3∥L3∥

[
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

]
+ 2∥L4∥

[
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

]
+

∥L1∥ 1
ℓ
η2

Γq(σ−1)

[
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

]
+

∥L2∥ 1
ℓ
η2

Γq(σ−1)

[
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

]
< 1, (7)

where η1 =
(

1−ℓ
σ−ℓ

)1−ℓ

, η2 =
(

1−ℓ
σ−ℓ+1

)1−ℓ

, and ∥L∥p =
(∫ 1

0
|L(s)|p ds

) 1
p , for each L ∈ Lp(J,R).

Proof. Define the operator T on X by

T [k](t) = Iσ
q f

(
t, k(t), cDα1

q [k](t), Iβ1
q [k](t)

)
+ h1

(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)

+

[
h2

(
t0, k(t0),

cDα4
q [k](t0), Iβ4

q [k](t0)
)
−

∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

−
∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDα2

q k(s), Iβ2
q k(s)

)
dqs− h1

(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)]
t,
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for 0 ≤ t ≤ t0, and

T [k](t) =

∫ t0

0

(t−qs)(σ−1)

Γq(α)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs+

∫ t

t0

(t−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDα2

q [k](s), Iβ2
q [k](s)

)
dqs

+ h1
(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)
+

[
h2

(
t0, k(t0),

cDα4
q [k](t0), Iβ4

q [k](t0)
)

−
∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

−
∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs− h1

(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)]
t,

for t0 ≤ t ≤ 1. Clearly, FqDE (1)-(2) admits a solution iff the relation T [k] = k has a fixed point. Let k, l ∈ X . We
then for 0 ≤ t ≤ t0 have

|T [k](t)− T [l](t)| =
∣∣Iσ

q f
(
t, k(t), cDα1

q [k](t), Iβ1
q [k](t)

)
+ h1

(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)

+
[
h2

(
t0, k(t0),

cDα4
q [k](t0), Iβ4

q [k](t0)
)
−

∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

−
∫ 1

t0

(1−qs)(α−1)

Γq(α)
g
(
s, k(s), cDα2

q [k](s), Iβ2
q [k](s)

)
dqs

−h1
(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)]
t− Iα

q f
(
t, l(t), cDα1

q [l](t), Iβ1
q l(t)

)
− h1

(
t0, l(t0),

cDα3
q [l](t0), Iβ3

q [l](t0)
)
−
[
h2

(
t0, l(t0),

cDα4
q [l](t0), Iβ4

q [l](t0)
)

−
∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, l(s), cDα1

q [l](s), Iβ1
q [l](s)

)
dqs

−
∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
g
(
s, l(s), cDα2

q [l](s), Iβ2
q [l](s)

)
dqs −h1

(
t0, l(t0),

cDα3
q [l](t0), Iβ3

q [l](t0)
)]
t
∣∣

≤ Iσ
q

∣∣f (t, k(t), cDα1
q [k](t), Iβ1

q [k](t)
)
− f

(
t, l(t), cDα1

q [l](t), Iβ1
q [l](t)

) ∣∣
+ 2

∣∣h1 (t0, k(t0), cDα3
q [k](t0), Iβ3

q [k](t0)
)
− h1

(
t0, l(t0),

cDα3
q [l](t0), Iβ3

q [l](t0)
) ∣∣

+
∣∣h2 (t0, k(t0), cDα4

q [k](t0), Iβ4
q [k](t0)

)
− h2

(
t0, l(t0),

cDα4
q [l](t0), Iβ4

q [l](t0)
) ∣∣

+

∫ t0

0

(1−qs)(σ−1)

Γq(σ)

∣∣f (s, k(s), cDα1
q [k](s), Iβ1

q [k](s)
)
− f

(
s, l(s), cDα1

q [l](s), Iβ1
q [l](s)

) ∣∣ dqs
+

∫ 1

t0

(1−qs)(σ−1)

Γq(σ)

∣∣g (s, k(s), cDα2
q [k](s), Iβ2

q [k](s)
)
− g

(
s, l(s), cDα2

q [l](s), Iβ2
q [l](s)

) ∣∣ dqs
≤ Iσ

q L1(t)
(
|k(t)− l(t)|+ |cDα1

q [k](t)− cDα1
q [l](s)|+ |Iβ1

q [k](t)− Iβ1
q [l](t)|

)
+ 2L3(t0)

(
|k(t0)− l(t0)|+ |cDα3

q [k](t0)− cDα3
q [l](t0)|+ |Iβ3

q [k](t0)− Iβ3 [l](t0)|
)

+ L4(t0)
(
|k(t0)− l(t0)|+ |cDα4

q [k](t0)− cDα4
q [l](t0)|+ |Iβ4

q [k](t0)− Iβ4
q [l](t0)|

)
+

∫ t0

0

(1−qs)(σ−1)

Γq(σ)
L1(s) (|k(s)− l(s)|

+|cDα1
q [k](s)− cDα1

q [l](s)|+ |Iβ1
q [k](s)− Iβ1

q [l](s)|
)
dqs

+

∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
L2(s)

(
|k(s)− l(s)|+ |cDα2

q [k](s)− cDα2
q [l](s)|+ |Iβ1

q [k](s)− Iβ2
q [l](s)|

)
dqs

≤ Iσ
q L1(t)

(
|k(t)− l(t)|+ I1−α1

q |k′(s)− l′(w)|+ Iβ1
q |k(s)− l(s)|

)
+ 2L3(t0)

(
|k(t0)− l(t0)|+ I1−α3

q |k′(t0)− l′(t0)|+ Iβ3
q |k(t0)− l(t0)|

)
+ L4(t0)

(
|k(t0)− l(t0)|+ I1−α4

q |k′(t0)− l′(t0)|+ Iβ4
q |k(t0)− l(t0)|

)
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+

∫ t0

0

(1− qs)(σ−1) L1(s)
Γq(σ)

(
|k(s)− l(s)|+ I1−α1

q |k′(s)− l′(s)|+ Iβ1
q |k(s)− l(s)|

)
+

∫ 1

t0

(1− qs)(σ−1) L2(s)
Γq(σ)

(
|k(s)− l(s)|+

∫ s

0

(s− u)−α2 |k′(u)−l′(u)|
Γq(1−α2)

du

+

∫ s

0

(s− u)β2−1 |k(u)−l(u)|
Γq(β2)

du
)

ds

≤ Iσ
q L1(t)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
∥k − l∥∗ + 2L3(t0)

(
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

)
∥k − l∥∗

+ L4(t0)
(
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

)
∥k − l∥∗

+

∫ t0

0

(1−s)σ−1

Γq(σ)
L1(s)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
∥k − l∥∗ds

+

∫ 1

t0

(1−s)σ−1

Γq(σ)
L2(s)

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)
∥k − l∥∗ ds

≤ ∥k−l∥∗
Γq(σ)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)[∫ t

0

(
(t− s)σ−1

) 1
1−k

ds

]1−k [∫ t

0

(
L1(s)

) 1
k

ds

]ℓ

+
[
2∥L3∥

(
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

)
+ ∥L4∥

(
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

)]
∥k − l∥∗

+ ∥k−l∥∗
Γq(σ)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)[∫ t0

0

(
(1− s)σ−1

) 1
1−ℓ ds

]1−ℓ [∫ t0

0

(
L1(s)

) 1
ℓ ds

]ℓ

+ ∥k−l∥∗
Γq(σ)

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)[∫ 1

t0

(
(1− s)σ−1

) 1
1−ℓ

ds

]1−ℓ [∫ 1

t0

(
L2(s)

) 1
ℓ ds

]ℓ
≤

[ 2∥L1∥ 1
ℓ

Γq(σ)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

) [
1−ℓ
σ−ℓ

]1−ℓ

+
∥L2∥ 1

ℓ

Γq(σ)

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

) [
1−ℓ
σ−ℓ

]1−ℓ

+ 2∥L3∥
(
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

)
+ ∥L4∥

(
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

)]
∥k − l∥∗, (8)

and

|(T [k])′(t)− (T [l])′(t)| =
∣∣Iσ−1

q f
(
t, k(t), cDα1

q [k](t), Iβ1
q [k](t)

)
+ h2

(
t0, k(t0),

cDα4
q [k](t0), Iβ4 [k](t0)

)
−

∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

−
∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cD(α2)

q [k](s), Iβ2
q [k](s)

)
dqs

− h1
(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)
− Iσ−1

q f
(
t, l(t), cDα1

q l(t), Iβ1
q [l](t)

)
− h2

(
t0, l(t0),

cDα4
q [l](t0), Iβ4

q [l](t0)
)
+

∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, l(s), cDα1

q [l](s), Iβ1
q [l](s)

)
dqs

+

∫ 1

t0

(1−qs)σ−1

Γq(σ)
g
(
s, l(s), cDα2

q [l](s), Iβ2
q [l](s)

)
dqs+ h1

(
t0, l(t0),

cDα3
q [l](t0), Iβ3

q [l](t0)
) ∣∣∣∣

≤
[
∥L1∥ 1

ℓ
η2

Γq(σ−1)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+

∥L1∥ 1
ℓ
η1

Γq(σ)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+

∥L2∥ 1
ℓ
η1

Γq(σ)

(
1 + 1

Γq(2−α2)

+ 1
Γq(1+β2)

)
+ ∥L3∥

(
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

)
+ ∥L4∥

(
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

)]
∥k − l∥∗,

(9)
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where η1 =
(

1−ℓ
σ−ℓ

)1−ℓ

and η2 =
(

1−ℓ
σ−ℓ+1

)1−ℓ

. Similarly, for t0 ≤ t ≤ 1 we get

|T [k](t)− T [l](t)| =
∣∣∣∣∫ t0

0

(t−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

+

∫ t

t0

(t−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDα2

q [k](s), Iβ2
q [k](s)

)
dqs

+ h1
(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)
+
[
h2

(
t0, k(t0),

cDα4
q [k](t0), Iβ4

q [k](t0)
)

−
∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

−
∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDα2

q [k](s), Iβ2
q [k](s)

)
dqs

−h1
(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q x)(t0)
)]
t−

∫ t0

0

(t−qs)(σ−1)

Γq(σ)
f
(
s, l(s), cDα1

q [l](s), Iβ1
q [l](s)

)
dqs

−
∫ t

t0

(t−qs)(σ−1)

Γq(σ)
g
(
s, l(s), cDα2

q [l](s), Iβ2
q [l](s)

)
dqs

− h1
(
t0, l(t0),

cDα3
q [l](t0), Iβ3

q [l](t0)
)
−

[
h2

(
t0, l(t0),

cDα4 [l](t0), Iβ4
q l[y](t0)

)
−
∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, l(s), cDα1

q [l](s), Iβ1
q [l](s)

)
dqs

−
∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
g
(
s, l(s), cDα2

q [l](s), Iβ2
q [l](s)

)
dqs −h1

(
t0, l(t0),

cDα3
q [l](t0), Iβ3

q [l](t0)
)]
t
∣∣

≤
[
2∥L1∥ 1

ℓ
η1

Γq(σ)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+

2∥L2∥ 1
ℓ
η1

Γq(σ)

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)
+2∥L3∥

(
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

)
+ ∥L4∥

(
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

)]
∥k − l∥∗, (10)

and

|(T [k])′(t)− (T [l])′(t)| =
∣∣∣∣∫ t0

0

(t−qs)(σ−2)

Γq(σ−1) f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

+

∫ t

t0

(t−qs)(σ−2)

Γq(σ−1) g
(
s, k(s), cDαg

q [k](s), Iβg
q [k](s)

)
dqs+ h2

(
t0, k(t0),

cDα4
q [k](t0), Iβ4

q [k](t0)
)

−
∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

−
∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDα2

q [k](s), Iβ2
q [k](s)

)
dqs− h1

(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)

−
∫ t0

0

(t−qs)(σ−2)

Γq(σ−1) f
(
s, l(s), cDα1

q [l](s), Iβ1
q [l](s)

)
dqs

−
∫ t

t0

(t−qs)(σ−2)

Γq(σ−1) g
(
s, l(s), cDαg

q [l](s), Iβg
q [l](s)

)
dqs− h2

(
t0, l(t0),

cDα4
q [l](t0), Iβ4

q [l](t0)
)

+

∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, l(s), cDα1

q [l](s), Iβ1
q [l](s)

)
dqs

+

∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
g
(
s, l(s), cDα2

q [l](s), Iβ2
q [l](s)

)
dqs+ h1

(
t0, l(t0),

cDα3
q [l](t0), Iβ3

q [l](t0)
)∣∣∣∣

≤
[
∥L1∥ 1

k
k2

Γq(σ−1)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+

∥L2∥ 1
ℓ
η2

Γq(σ−1)

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)
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+
∥L1∥ 1

ℓ
η1

Γq(σ)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+

∥L2∥ 1
ℓ
η1

Γq(σ)

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)
+∥L3∥

(
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

)
+ ∥L4∥

(
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

)]
∥k − l∥∗, (11)

where η1 =
(

1−ℓ
σ−ℓ

)1−ℓ

and η2 =
(

1−ℓ
σ−ℓ+1

)1−ℓ

. By utilizing relations (8), (9), (10), and (11) we have

∥T [k]− T [l]∥∗ = ∥T [k]− T [l]∥+ ∥(T [k])′ − (T [l])′∥

≤
[
3∥L1∥ 1

ℓ
η1

Γq(σ)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+

3∥L2∥ 1
ℓ
η1

Γq(σ)

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)
+ 3∥L3∥

(
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

)
+ 2∥L4∥

(
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

)
+

∥L1∥ 1
ℓ

η2

Γq(σ−1)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+

∥L2∥ 1
ℓ
η2

Γq(σ−1)

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)]
∥k − l∥∗ = Λ1∥k − l∥∗.

Thus T is a contraction mapping due to the fact that Λ1 < 1. Therefore, by using the Banach contraction principle
we conclude that T has a unique fixed point. This fixed point is the unique solution of the model problem (1)-(2) by
using Corollary 3.2.

Corollary 3.4. Assume that there exist L1, L2, L3 and L4 ∈ R+ such that

∣∣f (t, k1, k2, k3)− f (t, k′1, k
′
2, k

′
3)

∣∣ ≤ L1(t)
3∑

i=1

|ki − k′i|,
∣∣g (t, k1, k2, k3)− g (t, k′1, k

′
2, k

′
3)

∣∣ ≤ L2(t)
3∑

i=1

|ki − k′i|,

∣∣h1 (t, k1, k2, k3)− h1 (t, k
′
1, k

′
2, k

′
3)

∣∣ ≤ L3(t)

3∑
i=1

|ki − k′i|,
∣∣h2 (t, k1, k2, k3)− h2 (t, k

′
1, k

′
2, k

′
3)

∣∣ ≤ L4(t)

3∑
i=1

|ki − k′i|,

for all t ∈ J and kℓ, k′ℓ with ℓ = 1, 2, 3. Then the FqDE (1)-(2) has a unique solution whenever

3L1

Γq(σ+1)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+ 3L2

Γq(σ+1)

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)
+ 3L3

(
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

)
+ 2L4

(
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

)
+ L1

Γq(σ)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+ L2

Γq(σ)

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)
< 1.

By the aid of the Krasnoselskii’s fixed-point theorem, we state our next existence result.

Theorem 3.5. Suppose that there exist L1, L2, µ1 and µ2 ∈ C(J, [0,∞)) and two nondecreasing self-functions ψ1

and ψ2 defined on R+ s.t |f (t, k1, k2, k3)− f (t, k′1, k
′
2, k

′
3)| and |g (t, k1, k2, k3)− g (t, k′1, k

′
2, k

′
3)|, are less than or

equal to L1(t)
∑3

i=1 |ki − k′i|, L2(t)
∑3

i=1 |ki − k′i| respectively, and |h1 (t, k1, k2, k3)| ≤ µ1(t)ψ1

∑3
i=1 |ki|, and

|h2 (t, k1, k2, k3)| ≤ µ2(t)ψ1

∑3
i=1 |ki|, for each t ∈ J and kℓ, k′ℓ with ℓ = 1, 2, 3. If

Λ2 =
[

∥L1∥
Γq(σ)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+ ∥L2∥

Γq(σ)

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)] (
1
σ + 1

)
< 1, (12)

then, the model problem (1) admits a solution on J .

Proof. Consider S = {k ∈ X : ∥k∥ ≤ r} where

3∥µ1∥ψ1

((
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

)
r
)
+ 2∥µ2∥ψ2

((
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

)
r
)
+ r

Γq(σ)

(
2
σ + σ + 1

) [
∥L1∥

(
1

+ 1
Γq(2−α1)

+ 1
Γq(1+β1)

)
+ F0

]
+ r

Γq(σ)

(
2
σ + σ + 1

) [
∥L2∥

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)
+G0

]
≤ r.
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Clearly the set S is an nonempty subset of the Banach space X , closed and convex. Now, we define two operators A
and B on S by

A[k](t) = h1
(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)
+
[
h2

(
t0, k(t0),

cDα4
q [k](t0), Iβ4

q [k](t0)
)

−
∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

−
∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDα2

q [k](s), Iβ2
q [k](s)

)
dqs− h1

(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
) ]
t,

for each 0 ≤ t ≤ 1, and B[k](t) = Iσ
q f)

(
t, k(t), cDα1

q [k](t), Iβ1
q [k](t)

)
, whenever 0 ≤ t ≤ t0, and

B[k](t) =

∫ t0

0

(t−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs+

∫ t

t0

(t−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDα2

q [k](s), Iβ2
q [k](s)

)
dqs,

whenever t0 ≤ t ≤ 1. Let k, l ∈ S. On the interval 0 ≤ t ≤ t0 we get

|A[k](t) +B[l](t)| =
∣∣h1 (t0, k(t0), cDα3

q [k](t0), Iβ3
q [k](t0)

)
+

[
h2

(
t0, k(t0),

cDα4
q [k](t0), Iβ4

q [k](t0)
)

−
∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

−
∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDα2

q [k](s), Iβ2
q [k](s)

)
dqs

−h1
(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)]
t+ Iσ

q f
(
t, l(t), cDα1

q [l](t), Iβ1
q [l](t)

)∣∣
≤ 2µ1(t0)ψ1

(
|k(t0)|+ |cDα3

q [k](t0)|+ |Iβ3
q [k](t0)|

)
+ µ2(t0)ψ2

(
|k(t0)|+ |cDα4

q [k](t0)|+ |Iβ4
q [k](t0)|

)
+

∫ t0

0

(1−qs)(σ−1)

Γq(σ)

(
L1(s)|k(s) + cDα1

q [k](s) + Iβ1
q [k](s)|+ F0

)
dqs

+

∫ 1

t0

(1−qs)(σ−1)

Γq(σ)

(
L2(s)|k(s) + cDα2

q [k](s) + Iβ2
q [k](s)|+G0

)
dqs

+

∫ t

0

(t−qs)(σ−1)

Γq(σ)

(
L1(s)|l(s) + cDα1

q [l](s) + Iβ1
q [l](s)|+ F0

)
dqs

≤ 2∥µ1∥ψ1

([
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

]
r
)
+ ∥µ2∥ψ2

([
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

]
r
)

+ r
Γq(σ+1)

[
2∥L1∥

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+ 2F0 + ∥L2∥

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)
+G0

]
,

|(A[k])′(t) + (B[l])′(t)| =
∣∣∣h2 (t0, k(t0), cDα4

q [k](t0), Iβ4
q [k](t0)

)
−

∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

−
∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDα2

q [k](s), Iβ2
q [k](s)

)
dqs− h1

(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)

+ Iσ−1
q f

(
t, l(t), cDα1

q [l](t), Iβ1
q [l](t)

) ∣∣∣
≤ ∥µ2∥ψ2

((
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

)
r
)
+ ∥µ1∥ψ1

((
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

)
r
)

+ r(σ+1)
Γq(σ)

[
∥L1∥

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+ F0

]
+ r

Γq(σ+1)

[
∥L2∥

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)
+G0

]
.



10 M.E. Samei, M. Izadi & M.K.A. Kaabar / The 4th National Congress on Mathematics and Statistics

Similarly, on the interval t0 ≤ t ≤ 1 one gets

|A[k](t) +B[l](t)| =
∣∣∣h1 (t0, k(t0), cDα3

q [k](t0), Iβ3
q [k](t0)

)
+
[
h2

(
t0, k(t0),

cDα4
q [k](t0), Iβ4

q [k](t0)
)

−
∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

−
∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDα2

q [k](s), Iβ2
q [k](s)

)
dqs− h1

(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
) ]
t

+

∫ t0

0

(t−qs)(σ−1)

Γq(σ)
f
(
s, l(s), cDα1

q [l](s), Iβ1
q [l](s)

)
dqs

+

∫ t

t0

(t−qs)(σ−1)

Γq(σ)
g
(
s, l(s), cDα2

q [l](s), Iβ2
q [l](s)

)
dqs

∣∣∣
≤ 2µ1(t0)ψ1

(
|k(t0)|+ |cDα3

q [k](t0)|+ |Iβ3
q [k](t0)|

)
+ µ2(t0)ψ2

(
|k(t0)|+ |cDα4

q [k](t0)|+ |Iβ4
q [k](t0)|

)
+

∫ t0

0

(1−qs)(σ−1)

Γq(σ)

(
L1(s)|k(s) + cDα1

q [k](s) + Iβ1
q [k](s)|+ F0

)
dqs

+

∫ 1

t0

(1−qs)(σ−1)

Γq(σ)

(
L2(s)|k(s) + cDα2

q [k](s) + Iβ2
q [k](s)|+G0

)
dqs

+

∫ t0

0

(t−qs)(σ−1)

Γq(σ)

(
L1(s)|l(s) + cDα1

q [l](s) + Iβ1
q [l](s)|+ F0

)
dqs

+

∫ t

t0

(t−qs)(σ−1)

Γq(σ)

(
L2(s)|l(s) + cDα2

q [l](s) + Iβ2
q [l](s)|+G0

)
dqs

≤ 2∥µ1∥ψ1

((
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

)
r
)
+ ∥µ2∥ψ2

((
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

)
r
)

+ 2r
Γq(σ+1)

[
∥L1∥

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+ F0 + ∥L2∥

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)
+G0

]
,

|(A[k])′(t) + (B[l])′(t)| =
∣∣∣h2 (t0, k(t0), cDα4

q [k](t0), Iβ4
q [k](t0)

)
−

∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

−
∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDα2

q [k](s), Iβ2
q [k](s)

)
dqs− h1

(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
)

+

∫ t0

0

(t−qs)(σ−2)

Γq(σ−1) f
(
s, l(s), cDα1

q [l](s), Iβ1
q [l](s)

)
dqs

+

∫ t

t0

(t−qs)(σ−2)

Γq(σ−1) g
(
s, l(s), cDα2

q [l](s), Iβ2
q [l](s)

)
dqs

∣∣∣∣
≤ ∥µ2∥ψ2

((
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

)
r
)
+ ∥µ1∥ψ1

((
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

)
r
)

+ r(σ+1)
Γq(σ)

[
∥L1∥

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+ F0

]
+ r(σ+1)

Γq(σ)

[
∥L2∥

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)
+G0

]
,

where F0 = supt∈J |f(t, 0, 0, 0)| and G0 = supt∈J |g(t, 0, 0, 0)|. Thus

∥A[k] +B[l]∥∗ = ∥A[k] +B[l]∥+ ∥(A[k])′ + (B[l])′∥ ≤ 2∥µ1∥ψ1

((
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

)
r
)

+ ∥µ2∥ψ2

((
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

)
r
)
+ 2r

Γq(σ+1)

[
∥L1∥

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+ F0

+ ∥L2∥
(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)
+G0

]
+ ∥µ2∥ψ2

((
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

)
r
)
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+ ∥µ1∥ψ1

((
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

)
r
)
+ r(σ+1)

Γq(σ)

[
∥L1∥

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+ F0

]
+ r(σ+1)

Γq(σ)

[
∥L2∥

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)
+G0

]
= 3∥µ1∥ψ1

((
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

)
r
)
+ 2∥µ2∥ψ2

((
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

)
r
)

+ r
Γq(σ)

(
2
σ + σ + 1

) [
∥L1∥

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+ F0

]
+ r

Γq(σ)

(
2
σ + σ + 1

) [
∥L2∥

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)
+G0

]
≤ r.

Hence for each k and l ∈ S, A[k] +B[l] ∈ S. For each k ∈ S, we have

∥A[k]∥∗ ≤ 3∥µ1∥ψ1

((
1 + 1

Γq(2−α3)
+ 1

Γq(1+β3)

)
r
)
+ 2∥µ2∥ψ2

((
1 + 1

Γq(2−α4)
+ 1

Γq(1+β4)

)
r
)

+ 2r
Γq(σ+1)

[
∥L1∥

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+ F0 + ∥L2∥

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)
+G0

]
.

Thus, we conclude the uniformly boundedness of the operator A on S. For any k ∈ S and t < τ ∈ J , we also have

|A[k](τ)−A[k](t)| = (τ − t)

[
h2

(
t0, k(t0),

cDα4
q [k](t0), Iβ4

q [k](t0)
)
−

∫ t0

0

(1−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

−
∫ 1

t0

(1−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDα2

q [k](s), Iβ2
q [k](s)

)
dqs− h1

(
t0, k(t0),

cDα3
q [k](t0), Iβ3

q [k](t0)
) ]
,

which is not dependent on k and approaches to 0 as t→ τ . Indeed, the operatorA is equicontinuous. Consequently, by
invoking the Arzelá-Ascoli theorem we asserted that the operator A is compact on S. We now consider two elements
k and l belonging to S. Then, we get

|B[k](t)−B[l](t)| =
∣∣Iσ

q f
(
t, k(t), cDα1

q [k](t), Iβ1
q [k](t)

)
− Iσ

q f
(
t, l(t), cDα1

q [l](t), Iβ1
q [l](t)

)∣∣
≤ ∥L1∥

Γq(σ+1)

[
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

]
∥k − l∥∗,

|(B[k])′(t)− (B[l])′(t)| =
∣∣Iσ−1

q f
(
t, k(t), cDα1

q [k](t), Iβ1
q [k](t)

)
− Iσ−1

q f
(
t, l(t), cDα1

q [l](t), Iβ1
q [l](t)

)∣∣
≤ ∥L1∥

Γq(σ)

[
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

]
∥k − l∥∗,

whenever 0 ≤ t ≤ t0. Also, we have

|B[k](t)−B[l](t)| =
∣∣∣ ∫ t0

0

(t−qs)(σ−1)

Γq(σ)
f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

+

∫ t

t0

(t−qs)(σ−1)

Γq(σ)
g
(
s, k(s), cDα2

q [k](s), Iβ2
q [k](s)

)
dqs−

∫ t0

0

(t−qs)(σ−1)

Γq(σ)
f
(
s, l(s), cDα1

q [l](s), Iβ1
q [l](s)

)
dqs

−
∫ t

t0

(t−qs)(σ−1)

Γq(σ)
g
(
s, l(s), cDα2

q [l](s), Iβ2
q [l](s)

)
dqs

∣∣∣
≤ ∥x− y∥∗

[
∥L1∥

Γq(σ+1)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+ ∥L2∥

Γq(σ+1)

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)]
,

|(B[k])′(t)− (B[l])′(t)| =
∣∣∣ 1
Γq(σ−1)

∫ t0

0

(t− qs)(σ−2)f
(
s, k(s), cDα1

q [k](s), Iβ1
q [k](s)

)
dqs

+

∫ t

t0

(t−qs)(σ−2)

Γq(σ−1) g
(
s, k(s), cDα2

q [k](s), Iβ2
q [k](s)

)
dqs−

∫ t0

0

(t−qs)(σ−2)

Γq(σ−1) f
(
s, l(s), cDα1

q [l](s), Iβ1
q [l](s)

)
dqs

−
∫ t

t0

(t−qs)(σ−2)

Γq(σ−1) g
(
s, l(s), cDα2

q [l](s), Iβ2
q [l](s)

)
dqs

∣∣∣
≤ ∥k − l∥∗

[
∥L1∥
Γq(σ)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+ ∥L2∥

Γq(σ)

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)]
,
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whenever t0 ≤ t ≤ 1. Therefore,

∥B[k]−B[l]∥∗ ≤
[

∥L1∥
Γq(σ)

(
1 + 1

Γq(2−α1)
+ 1

Γq(1+β1)

)
+ ∥L2∥

Γq(σ)

(
1 + 1

Γq(2−α2)
+ 1

Γq(1+β2)

)] (
1
σ + 1

)
∥k − l∥∗ ≤ Λ2∥k − l∥∗.

Since Λ2 < 1. Indeed, operator B is contraction. In the other words, all conditions of Theorem 2.3 are fulfilled. This
indicates that there exists a k belonging to S such that A[k] + B[k] = k. So, we conclude that equation (1) has a
solution, which is in J . This finishes the validation.

4. Applications

At present, we provide two examples for illustrating our main results which their numerical results are presented
using the required algorithms. In this way, some computational results are carried out to check the feasibility of the
theoretical findings for FqDE (1)-(2).

Example 4.1. As the first test example, let us pay attention to the boundary value differential q−fractional problem
in the form

cD
3
2
q [k](t) =


1

100

(
t2 + 1

2 t−
1
2

) [
k(t) + tan−1

(
cD

1
3
q [k](t)

)
+ sin

(
I
√
2

q [k](t)
)]
, 0 ≤ t ≤ 3

7 ,

1
100

(
t2 + (

√
2−1)
2 t−

√
2
4

) |k(t)|
1+|k(t)| +

∣∣∣∣cD 1
4
q [k](t)+I

√
3

q [k](t)

∣∣∣∣
1+

∣∣∣∣cD 1
4
q [k](t)+I

√
3

q [k](t)

∣∣∣∣
 , 3

7 ≤ t ≤ 1.
(13)

The prescribed boundary conditions are

k(0) = e
3
7

100

 ∣∣∣∣k( 3
7

)
+cD

1
5
q [k]

(
3
7

)
+I

√
5

q [k]
(
3
7

)∣∣∣∣
1+

∣∣∣∣k( 3
7

)
+cD

1
5
q [k]

(
3
7

)
+I

√
5

q [k]
(
3
7

)∣∣∣∣
 , (14)

and

k(1) = 1
100 sin

(
3
7

) [
cos

(
k
(
3
7

))
+ sin

((
cD

1
6
q k

) (
3
7

))
+ tan−1

((
I
√
6

q k
) (

3
7

))]
. (15)

Here, σ = 3
2 , α1 = 1

3 , α2 = 1
4 , α3 = 1

5 , α4 = 1
6 , β1 =

√
2, β2 =

√
3, β3 =

√
5, β4 =

√
6, t0 = 1

2 ,

f (t, k1, k2, k3) =
1

100

[
t2 + 1

2 t−
1
2

] (
k1 + tan−1(k2) + sin(k3)

)
,

g (t, k1, k2, k3) =
1

100

[
t2 + (

√
2−1)
2 t−

√
2
4

] (
|k1|

1+|k1| +
|k2+k3|

1+|k2+k3|

)
,

andh1 (t, k1, k2, k3) = et

100

(
|k1+k2+k3|

1+|k1+k2+k3|

)
, h2 (t, k1, k2, k3) = 1

100 sin(t)
[
cos(k1) + sin(k2) + tan−1(k3)

]
.Clearly

|f(t, k1, k2, k3)− f(t, k′1, k
′
2, k

′
3)| ≤ 1

100 (|k1 − k′1|+ |k2 − k′2|+ |k3 − k′3|),

|g(t, k1, k2, k3)− g(t, k′1, k
′
2, k

′
3)| ≤ 2+

√
2

400 (|k1 − k′1|+ |k2 − k′2|+ |k3 − k′3|),
|h1(t, k1, k2, k3)− h1(t, k

′
1, k

′
2, k

′
3)| ≤ 1

100e(|k1 − k′1|+ |k2 − k′2|+ |k3 − k′3|),

and |h2(t, k1, k2, k3)−h2(t, k′1, k′2, k′3)| ≤ 1
100 sin(1)(|k1−k

′
1|+|k2−k′2|+|k3−k′3|), for t ∈ J and k1, k′1, k2, k′2, k3, k′3 ∈

R. Hence, L1 = 1
100 , L2 = 2+

√
2

400 , L3 = 1
100e, L4 = 1

100 , and by using Eq. (7), we obtain Λ1 ≈ 0.35919, 0.32314,
0.30295 for q = 1

10 ,
1
2 ,

8
9 , respectively. These results show in Tables 1 such that they emphasize with underline.

Hence, all conditions of Corollary 3.4 are hold. This indicates that the differential q−fractional equation (13) has an
unique solution under the Dirichlet boundary conditions (14) and (15), here the unique solution is in J . We also note
that, L1, L2, L3, and L4 are maximum of functions f, g, h1, and h2, respectively.
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n

0 5 10 15 20 25 30 35

Λ
1

0.1

0.15

0.2

0.25

0.3

0.35

0.4

q=1/10
q=1/2
q=8/9

Fig. 1. Numerical evaluations of Λ1 for various q = 1
10
, 1
2
, 8
9
in Example 4.1

Table 1. Numerical evaluations of Λ1 for various q = 1
10

, 1
2
, and 8

9
in Example 4.1.

Λ1

n q = 1
10 q = 1

2 q = 8
9

1 0.35874 0.27282 0.10052
2 0.35915 0.29729 0.11569
3 0.35919 0.31004 0.13043
4 0.35919 0.31655 0.14462

...
...

...
...

12 0.35919 0.32312 0.23091
13 0.35919 0.32313 0.23821
14 0.35919 0.32314 0.24485
15 0.35919 0.32314 0.25087

...
...

...
...

75 0.35919 0.32314 0.30293
76 0.35919 0.32314 0.30293
77 0.35919 0.32314 0.30294
78 0.35919 0.32314 0.30294
79 0.35919 0.32314 0.30294
80 0.35919 0.32314 0.30295
81 0.35919 0.32314 0.30295
82 0.35919 0.32314 0.30295

Example 4.2. The second test example devoted to the following boundary value differential q−fractional problem

cD
4
3
q [k](t) =


ln
(
t+

7
8

)
3t+π2+3

 ∣∣∣∣k(t)+cD
1
6
q [k](t)+I

4
5
q [k](t)

∣∣∣∣
1+

∣∣∣∣k(t)+cD
1
6
q [k](t)+I

4
5
q [k](t)

∣∣∣∣
 , 0 ≤ t ≤ 2

5 ,

1
e3+1

[
t− 2

6

]2 [
k(t) + cos

(
cD

3
7
q [k](t)

)
+ sin

(
I

3
4
q [k](t)

)]
, 2

5 ≤ t ≤ 1,

(16)

subjected to the boundary conditions

k(0) = e
2
5

[
k
(
2
5

)
+ cD

3
8
q [k]

(
2
5

)
+ I

9
7
q [k]

(
2
5

)]
(17)

and k(1) = sin
(
2
5

) [
k
(
2
5

)
+ cD

5
8
q [k]

(
2
5

)
+ I

10
7

q [k]
(
2
5

)] 1
2

. Here, σ = 4
3 , α1 = 1

6 , α2 = 3
7 , α3 = 3

8 , α4 = 5
8 , β1 = 4

5 ,
β2 = 3

4 , β3 = 9
7 , β4 = 10

7 , t0 = 2
5 ,

f(t, k + 1, k2, k3) =
ln
(
t+

7
8

)
3t+π2+3

[
|k1+k2+k3|

1+|k1+k2+k3|

]
, g(t, k1, k2, k3) =

1
e3+1

(
t− 2

5

)2
(k1 + k2 + k3) ,
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and h1(t, k1, k2, k3) = et (k1 + k2 + k3), h2(t, k1, k2, k3) = sin(t) (k1 + k2 + k3)
1
2 .

n

0 5 10 15 20 25 30 35

Λ
2

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

q=1/8
q=1/2
q=12/13

Fig. 2. Numerical evaluations of Λ2 for various q = 1
8
, 1
2
, 12
13

in Example 4.2

Clearly

|f(t, k1, k2, k3)− f(t, k′1, k
′
2, k

′
3) ≤

ln
(
t+

7
8

)
3t+π2+3 (|k1 − k′1|+ |k2 − k′2|+ |k3 − k′3|) ,

|g(t, k1, k2, k3)− g(t, k′1, k
′
2, k

′
3) ≤ 1

e3+1

(
t− 2

5

)2
(|k1 − k′1|+ |k2 − k′2|+ |k3 − k′3|) ,

and |h1(t, k1, k2, k3)| ≤ et(|k1| + |k2| + |k3|), |h2(t, k1, k2, k3)| ≤ sin(t)(|k1| + |k2| + |k3|)
1
2 , for all t ∈ J and

k1, k2, k3, k′1, k′2 and k′3 ∈ R. Choose L1(t) = 1
3t+π2+3 ln(t +

7
8 ), L2(t) = 1

e3+1 (t −
2
5 )

2, µ1(t) = et, µ2(t) =

sin(t), ψ1(t) = t, and ψ2(t) = t
1
2 . Eq. (12) yields Λ2 ≈ 0.19790, 0.21190 and 0.0.22194 for q = 1

8 ,
1
2 and

Table 2. Numerical evaluations of Λ2 for various q = 1
8
, 1
2
, and 12

13
in Example 4.2.

Λ2

n q = 1
8 q = 1

2 q = 12
13

1 0.19745 0.18656 0.06811
2 0.19785 0.19924 0.081
3 0.1979 0.20557 0.0925
4 0.1979 0.20874 0.10289
5 0.1979 0.21032 0.11235

...
...

...
...

11 0.1979 0.21188 0.15468
12 0.1979 0.21189 0.1599
13 0.1979 0.2119 0.1647
14 0.1979 0.2119 0.16913

...
...

...
...

112 0.1979 0.2119 0.22193
113 0.1979 0.2119 0.22193
114 0.1979 0.2119 0.22193
115 0.1979 0.2119 0.22194
116 0.1979 0.2119 0.22194
117 0.1979 0.2119 0.22194

12
13 , respectively. These values show in Tables 2 such that they emphasize with underline. Consequently, all the
assumptions of Theorem 3.5 hold. This implies that the given fractional q−differential equation (16) admits at least
one solution under the given Dirichlet boundary conditions.
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5. Conclusion

In this paper, we first gave some properties of the fractional q–derivative and integral, and then using the proposed
properties we have established the existence of solutions for the single and multi-dimensional fractional neutral func-
tional q–differential equation (1) with Dirichlet boundary conditions (2) on a time scale. By numerical evaluations
we confirmed our theoretical finding for the underlying model problem. Compared to existing published outcomes in
the literature, this results of the current work are new form point of theoretical and numerical computational point of
views.
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Abstract

This study concerns the existence of a positive solution for the following nonlinear boundary
value problem{

−M
(∫

Ω
|∇u|p dx

)
∆pu = am(x)up−1 − bu2 − c uγ

uγ+1
−K in Ω,

u = 0 on ∂Ω.

Here, ∆pu := div(|∇u|p−2∇u) is the p-Laplacian operator, p > 1, a, b, c, γ,K are positive
constants with γ ≥ 2 ,M : R+

0 → R+ is a continuous and increasing function andΩ is a smooth
bounded region with ∂Ω belonging to C2. The weight function m(x) satisfies m(x) ∈ C(Ω)
and m(x) ≥ m0 > 0 for x ∈ Ω, also ∥m∥∞ = l < ∞. We prove the existence of a positive
solution under certain conditions.

1. Introduction

In this paper, we consider the following reaction-diffusion equation{
−M

(∫
Ω
|∇u|p dx

)
∆pu = am(x)up−1 − bu2 − c uγ

uγ+1 −K in Ω,
u = 0 on ∂Ω, (1)

where ∆pu := div(|∇u|p−2∇u) is the p-Laplacian operator, p > 1, a, b, c, γ,K are positive constants with γ ≥ 2 ,
M : R+

0 → R+ is a continuous and increasing function and Ω is a smooth bounded region with ∂Ω belonging to C2.
The weight functionm(x) satisfiesm(x) ∈ C(Ω) andm(x) ≥ m0 > 0 for x ∈ Ω, also ∥m∥∞ = l <∞. We denote
by λ1 the first eigenvalue of {

−∆pϕ = λm(x)|ϕ|p−2ϕ x ∈ Ω,
ϕ = 0 x ∈ ∂Ω,

(2)

with positive principal eigenfunction ϕ1 satisfying ∥ϕ1∥∞ = 1 (see [10]).
Here u is the population density and am(x)up−1 − bu2 represents logistics growth. This model describes grazing of
a fixed number of grazers on a logistically growing species (see [12, 14]). The herbivore density is assumed to be a
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constant which is a valid assumption for managed grazing systems and the rate of grazing is given by cuγ

1+uγ . At high
levels of vegetation density this term saturates to c as the grazing population is a constant. This model has also been
applied to describe the dynamics of fish populations (see [12]). The diffusive logistic equation with constant yield
harvesting, in the absence of grazing was studied in [15]. Recently, in the case when m(x) = 1 and p = 2, problem
(1) has been studied by Shivaji et al. (see [8]).
The purpose of this paper is to extend this study to the p-Laplacian case with the weight function . Our result in this
note improves the previous one [4] in whichM(t) ≡ 1. In recent years, problems involving Kirchhoff type operators
have been studied in many papers, we refer to [1–3, 5, 6] in which the authors have used variational method and
topological method to get the existence of solutions for (1).
We shall establish our existence results via the method of sub- and supersolutions. The concepts of sub- and superso-
lution were introduced by Nagumo [13] in 1937 who proved, using also the shooting method, the existence of at least
one solution for a class of nonlinear Sturm-Liouville problems. In fact, the premises of the sub- and super-solution
method can be traced back to Picard. He applied, in the early 1880s, the method of successive approximations to
argue the existence of solutions for nonlinear elliptic equations that are suitable perturbations of uniquely solvable
linear problems. This is the starting point of the use of sub- and supersolutions in connection with monotone methods.
Picard’s techniques were applied later by Poincaré [16] in connection with problems arising in astrophysics. We refer
to [17].
Here and in what follows,W 1,p

0 (Ω), p > 1, denotes the usual Sobolev space.

Definition 1.1. we say that ψ (resp. z) inW 1,p
0 (Ω) ∩ C(Ω) is called a subsolution (resp. supersolution) of (1), if ψ

(resp. z) satisfies{
M
(∫

Ω
|∇ψ|p dx

) ∫
Ω
|∇ψ|p−2∇ψ.∇wdx ≤

∫
Ω

(
am(x)ψp−1 − bψ2 − c ψγ

ψγ+1 −K
)
wdx,

ψ ≤ 0
(3)

(
resp.

{
M
(∫

Ω
|∇z|p dx

) ∫
Ω
|∇z|p−2∇z∇wdx ≥

∫
Ω

(
am(x)zp−1 − bz2 − c zγ

zγ+1 −K
)
wdx,

z ≥ 0

)
(4)

for all non-negative test functions w ∈W 1,p
0 (Ω).

Then, the following lemma holds (see [7]).

Lemma 1.2 (see [7]). If there exist sub-supersolutions ψ and z, respectively, such that ψ ≤ z on Ω, then (1) has a
positive solution u such that ψ ≤ u ≤ z in Ω.

Proposition 1.3. If a ≤ λ1

M0
, then (1) has no positive solution.

Proof. Suppose not, i.e., assume that there exists a positive solution u of (1), then u satisfies

M

(∫
Ω

|∇u|p dx
)∫

Ω

|∇u|pdx ≥M0

∫
Ω

|∇u|pdx =M0

∫
Ω

[
am(x)up−1 − bu2 − c

uγ

uγ + 1
−K

]
udx.

But
M0

∫
Ω

|∇u|pdx ≥ λ1

∫
Ω

am(x)updx.

Thus, we have
M0

∫
Ω

[am(x)up−1 − bu2 − c
uγ

uγ + 1
−K]udx ≥ λ1

∫
Ω

am(x)updx,

and hence
(a− λ1

M0
)

∫
Ω

m(x)updx ≥
∫
Ω

[
bu2 + c

uγ

uγ + 1
+K

]
udx ≥ 0.

Since u > 0,m(x) ≥ m0 > 0, this requires a > λ1

M0
, which is a contradiction. Hence (1) has no positive solution.
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2. Existence of solution

In this section we prove the existence of solution for problem (1) by comparison method (see [11]). It is easy to see
that any subsolution of{

−M
(∫

Ω
|∇u|p dx

)
∆pu = am0u

p−1 − bu2 − c uγ

uγ+1 −K in Ω,
u = 0 on ∂Ω, (5)

is a subsolution of (1). Also any supersolution of{
−M

(∫
Ω
|∇u|p dx

)
∆pu = alup−1 − bu2 − c uγ

uγ+1 −K in Ω,
u = 0 on ∂Ω, (6)

is a supersolution of (1), where l is defined as above.
We denote by λ′1 the first eigenvalue of {

−∆pϕ = λ′|ϕ|p−2ϕ x ∈ Ω,
ϕ = 0 x ∈ ∂Ω,

(7)

with positive principal eigenfunction ϕ′1 satisfying ∥ϕ′1∥∞ = 1.

Theorem 2.1. Assume thatM : R+
0 → R+ is a continuous and increasing function satisfying

M(t) ≥M0 for all t ∈ R+
0 , (8)

where M0 is a positive constant. If a >
λ′
1M0

m0
, b > 0, c > 0, then there exists a K0(a, b, c,m0, γ) such that for

K < K0, (1) has a positive solution.

Proof. We use the method of sub-supersolutions. We recall the anti-maximum principle (see [9]) in the following
form. Let λ′ is defined as above, then there exists σ(Ω) > 0 and a solution zλ′ of{

−∆pz − λ′zp−1 = −1 in Ω,
z = 0 on ∂Ω, (9)

for λ′ ∈ (λ′1, λ
′
1 + σ), that zλ′ is positive in Ω and is such that ∂zλ′

∂ν < 0 on ∂Ω, where ν is outward normal vector at
∂Ω. Fix

′λ′∗ ∈ (λ′1,min {λ′1 + σ,m0α}) .
Let zλ′

∗
> 0 be the solution of (9) when λ′ = λ′∗ and α = ∥zλ′

∗
∥∞. Define

ψ := µK
1

p−1 zλ′
∗
,

where µ ≥ 1 is to be determined later. We will choose µ and K > 0 properly so that ψ is a subsolution. Let
w ∈W 1,p

0 (Ω). Then

−M
(∫

Ω

|∇ψ|p dx
)∫

Ω

|∇ψ|p−2∇ψ∇wdx+

∫
Ω

[
am0ψ

p−1 − bψ2 − c
ψγ

ψγ + 1
−K

]
wdx

≥M0

∫
Ω

|∇ψ|p−2∇ψ∇wdx+

∫
Ω

[
am0ψ

p−1 − bψ2 − c
ψγ

ψγ + 1
−K

]
wdx

=

∫
Ω

[
−KM0µ

p−1(λ′∗z
p−1
λ′
∗

− 1) + am0K(µzλ′
∗
)p−1 − b(µK

1
p−1 zλ′

∗
)2

− c
(µK

1
p−1 zλ′

∗
)γ

(µK
1

p−1 zλ′
∗
)γ + 1

−K
]
wdx

≥
∫
Ω

[
(am0 − λ′∗M0)(µzλ′

∗
)p−1 − bK

3−p
p−1 (µzλ′

∗
)2 − c(µK574

1
p−1 zλ′

∗
)γ

+ (µp−1 − 1)
]
Kwdx.
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Define
H(x) := (am0 − λ′∗M0)x

p−1 − bK
3−p
p−1x2 − cK

γ−p+1
p−1 xγ + (µp−1 − 1).

So, if we can findK and µ such that H(x) ≥ 0 for all x ∈ [0, µα], then ψ will be a subsolution.
Notice thatH(0) = (µp−1 − 1) ≥ 0 since µ ≥ 1, and

H ′(x) = xp−2
[
(p− 1)(am0 − λ′∗M0)− 2bK

3−p
p−1x3−p − cγK

γ−p+1
p−1 xp−γ+3

]
.

This means thatH(x) ≥ 0 if H(µα) ≥ 0, i.e.,

(am0 − λ′∗M0)(µα)
p−1 − bK

3−p
p−1 (µα)2 − cK

γ−p+1
p−1 (µα)γ + µp−1 − 1 ≥ 0.

Let
G(K) := (am0 − λ′∗M0)(µα)

p−1 − bK
3−p
p−1 (µα)2 − cK

γ−p+1
p−1 (µα)γ + µp−1 − 1.

Then G(0) = (am0 − λ′∗M0)(µα)
p−1 + (µp−1 − 1) > 0, since µ ≥ 1 and am0 > λ′∗. Also we have

G′(K) = −b
(3− p

p− 1

)
(µα)2K

4−2p
p−1 − c

(γ − p+ 1

p− 1

)
K

γ−2p+2
p−1 (µα)γ < 0.

Hence given µ and γ there exists a unique K∗ = K∗(a, b, c, µ, γ,m0) > 0 with G(K∗) = 0. Since G(K) ≤
(am0 − λ′∗M0)(µα)

p−1 − b(µα)2K
3−p
p−1 + (µp−1 − 1) = G̃(K), we see that

K∗ ≤
[
(am0 − λ′∗M0)(µα)

p−1 + (µp−1 − 1)

bµ2α2

] 3−p
p−1

:= K1(a, b, µ,m0).

Note thatK1(a, b, µ,m0) is bounded for µ ∈ [1,∞). HenceK∗ is bounded for µ ∈ [1,∞). LetK0(a, b, c,m0, γ) =

supµ≥1K
∗(a, b, c, µ,m0, γ) > 0. Now let K̃ < K0(a, b, c,m0, γ). By definition there will exist a µ̃ ≥ 1 such that

K̃ < K∗(a, b, c, µ̃,m0, γ) < K0(a, b, c,m0, γ). Choose ψ = µ̃K̃
1

p−1 zλ′
∗
with µ = µ̃. We have G(K̃) ≥ 0 and

(am0 − λ′∗)(µ̃α)
p−1 − bK̃

3−p
p−1 (µ̃α)2 − cK̃

γ−p+1
p−1 (µ̃α)γ + (µ̃p−1 − 1) ≥ 0.

Hence ψ turns out to be a sub-solution to (1).
We next construct the supersolution z for (1) such that z ≥ ψ. Let z =Mep,whereM > 0 is such that alu

p−1−bu2−c uγ

uγ+1−K
M0

≤
M for all u ≥ 0 and ep is the unique positive solution of{

−∆pep = 1 in Ω,
ep = 0 on ∂Ω.

Then for w ∈W 1,p
0 (Ω),

M

(∫
Ω

|∇z|p dx
)∫

Ω

|∇z|p−2∇z∇wdx =M

(∫
Ω

|∇z|p dx
)∫

Ω

Mwdx

≥
∫
Ω

[
alzp−1 − bz2 − c

zγ

zγ + 1
−K

]
wdx.

Thus z is a supersolution of (6). Therefore z is a supersolution of (1), since we can choose M ≫ 1 so that z ≥ ψ.
Hence, by Lemma 1.2, problem (1) has a positive solution for allK < K0(a, b, c,m0, γ).
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Abstract

In this article, we extend Darbo’s fixed point theorem via the concept of the class of operators
A(f ; .) in Banach space and prove some Prešić type fixed point theorems. We apply the tech-
nique of measure of noncompactness in the presentation of our proofs. We handle our obtained
results to inquiry existence of solution for a system of integral equations.

1. Introduction and preliminaries

Fixed point theory is an essential tool applied in analysis to investigate the solvability for a system of integral equations.
The notion of measure of noncompactness, for shortly (MNC), was introduced by Kuratowski [10] which plays a
fundamental role in the study of a system of integral equations. Darbo’s fixed point theorem [8] is an important
application of this measure, which it generalizes both Banach contraction principle and Schauder fixed point theorem.
Up to now, many authors and researchers such as in [4, 5, 9, 12, 14] studied solvability of integral and differential
equations. The aim of this paper is to present some Darbo type fixed point theorems associated with a (MNC) via
the concept of operators A(f ; .). Moreover, in order to show the applicability of our results, we discuss the existence
of solution for a system of integral equations. Now, we remember some concepts and definitions that are used in this
article.
Suppose E is a real Banach space with norm ||.|| and X be a nonempty subset of E . Let X and Conv(X) the closure
and the closed convex hull of X , respectively. We mark by M(E) the family of all nonempty and bounded subsets
of E and N (E) be the collection of all relatively compact subsets of E . Moreover, let R indicates the set of all real
numbers andR+ = [0,+∞). In addition, letB(ϵ, r) be the closed ball with center ϵ and radius r. Also, letBr denotes
the ball B(0, r).

Definition 1.1. [6] We say that a mapping α : M(E) −→ R+ is a (MNC) in the Banach space E if:

1◦ The family kerα = {X ∈ M(E) : α(X) = 0} is nonempty and kerα ⊂ N (E);
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2◦ X ⊂ Y =⇒ α(X) ≤ α(Y );

3◦ α(X) = α(X);

4◦ α(ConvX) = α(X);

5◦ α(λX + (1− λ)Y ) ≤ λα(X) + (1− λ)α(Y ) for all λ ∈ [0, 1];

6◦ If {Xn} is a sequence of closed sets fromM(E) such thatXn+1 ⊂ Xn forn = 1, 2, · · · , and if lim
n→∞

α(Xn) = 0,
then X∞ = ∩∞

n=1Xn ̸= ∅.

Wardowski [15] introduced a significant extension of the Banach contraction principle. He presented a new class
of control functions K which provide many contractions. Similar [11, 15], Σ indicates the set of all functions V :
(0,∞) → (1,∞) such that
V1. V is increasing and continuous,
V2. lim

n→∞
αn = 0 if and only if lim

n→∞
V (αn) = 1, for all sequence {αn} ⊆ (0,∞).

Suppose Φ be set of all functions φ : (1,∞) → (1,∞)
so that

φ1. φ is a continuous and increasing function;

φ2. lim
n→∞

φn(t) = 1 for all t ∈ (1,∞).

The following concept of A(f ; .) was given by Altun and Turkoglu [3].
Let F ([0,∞)) be the class of all functions f : [0,∞) → [0,∞) and let F be the class of all operators
A(•; ·) : F ([0,∞)) → F ([0,∞)), f → A(f ; ·)
satisfying the following conditions:
(1) A(f ; p) > 0 for p > 0 and A(f ; 0) = 0.
(2) A(f ; p) ≤ A(f ; q) for p ≤ q.
(3) limn→∞ A(f ; pn) = A(f ; limn→∞ pn).
(4) A(f ;max{p, q}) = max{A(f ; p), A(f ; q)} for some f ∈ F ([0,∞)).

Now we remember some theorems used in the schedule.

Theorem 1.2. (Schauder) [2] Let C be a nonempty, bounded, closed and convex subset of a Banach space E . Then
each continuous and compact mapping T : C → C has at least one fixed point in the set C.

Theorem 1.3. [8] Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let T : C → C
be a continuous mapping. Assume that there exists a constant κ ∈ [0, 1) such that µ(TΛ) ≤ κµ(Λ) for any nonempty
subset Λ of C, where µ is a MNC defined in E . Then T has at least a fixed point in C.

Theorem 1.4. [1] Suppose that α1, α2, . . . , αn are (MNC) in Banach spaces E1, E2, . . . , En, respectively, the func-
tion ω : [0,∞)n −→ [0,∞) is a convex function and ω(p1, · · · , pn) = 0 if and only if pi = 0 for all i = 1, 2, · · · , n.
Then

α̃(X) = ω(α1(X1), α2(X2), . . . , αn(Xn)),

is a (MNC) in E1 × E2 × . . .× En, where Xi denote the natural projection of X into Ei, for all i = 1, 2, . . . , n.

2. Main Results

In this section, we want to extend the Darbo’s fixed point theorem [8] by applying the concept of the class of operators
A(f ; .).
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Theorem 2.1. Let C be a nonempty, closed, bounded and convex (NCBC) subset of a Banach space E and let
Υ : C → C be a continuous mapping such that

A
(
f ; α(ΥX)

)
≤ V

(
A(f ; α(X))

)
− V

(
A(f ; α(ΥX))

)
, (1)

for all X ⊆ C, where V : [0,∞) → [0, 1] is such that lim
u→0+

V(u) = 0, V(0) = 0, A(•; ·) ∈ F and α is an arbitrary
MNC. Then Υ has at least one fixed point.

Proof. Define a sequence {Cn} as follows,
C0 = C and Cn+1 = Conv(Υ(Cn)) for all n ∈ N.
If there exists an integer n ∈ N such that α(Cn) = 0, then Cn is relatively compact and by applying Theorem 1.2, we
get Υ has a fixed point. So, we can assume that α(Cn) > 0 for each n ∈ N.
Obviously {Cn}n∈N is a (NCBC) sequence such that

C0 ⊇ C1 ⊇ · · · ⊇ Cn ⊇ Cn+1.

Therefore, the sequence {V(α(Cn))} is decreasing. On the other hand V is bounded below. Thus, there exists r ∈ R+

such that lim
n→∞

V(α(Cn)) = r. Moreover, we get,

A(f ; α(Cn+1)) = A(f ; α(ΥCn))

≤ V(A(f ; α(Cn)))− V(A(f ; α(ΥCn)))

= V(A(f ; α(Cn)))− V(A(f ; α(Cn+1))). (2)

Using the property of A(•; ·) and taking limsup in inequality 2, we get

lim sup
n→∞

A
(
f ; α(Cn+1)

)
≤ lim sup

n→∞
V
(
A
(
f ; α(Cn)

))
− lim inf

n→∞
V
(
A
(
f ; α(Cn+1)

))
.

Thus,
lim

n→∞
A
(
f ; α(Cn+1)

)
= 0

In view of properties A(•; ·) , we have
A
(
f ; lim

n→∞
α(Cn+1)

)
= 0.

Property (1) of A(•; ·) implies that

lim
n→∞

α(Cn) = 0.

we can deduce that α(Cn) → 0 as n → ∞. Since Cn is a nested sequence, in view of (6◦) of Definition 1.1 we infer

that the set C∞ =
∞⋂

n=1

Cn is a nonempty, closed and convex set and belongs to kerα. Then, according the Schauder

fixed point theorem we deduce that Υ has a fixed point.

Remark 2.2. Theorem 2.1 is an extension of Darbo’s fixed point theorem.

Suppose Υ : X → X be a Darbo mapping, then there exists a constant k ∈ [0, 1) such that

α(ΥX) ≤ kα(X)

for all X ⊆ C. Thus,
α(ΥX) ≤ kα(X) ≤ k

1−
√
k + k

α(X)

Therefore,
kα(ΥX) + (1−

√
k)α(ΥX) ≤ kα(X),
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and
(1−

√
k)α(ΥX) ≤ kα(X)− kα(ΥX)

Thus,
α(ΥX) ≤ k

1−
√
k
α(X)− k

1−
√
k
α(ΥX)

and
A
(
f ; α(ΥX)

)
≤ k

1−
√
k
A
(
f ; α(X)

)
− k

1−
√
k
A
(
f ; α(ΥX)

)
By taking V(x) = k

1−
√
k
x, we get

A
(
f ; α(ΥX)

)
≤ V

(
A
(
f ; α(X)

))
− V

(
A
(
f ; α(ΥX)

))

Therefore, the inequality of Darbo’s fixed point Theorem [8] is a special case of Theorem 2.1.

Definition 2.3. [7] We say that (p, q, r) ∈ E3 is a tripled fixed point of a mappingΥ : E×E×E → E ifΥ(p, q, r) = p
, Υ(q, p, r) = q and Υ(r, q, p) = r

Theorem 2.4. Let C be a nonempty, closed, bounded and convex (NCBC) subset of a Banach space E and let
Υ : C × C × C → C be a continuous mapping such that

A
(
f ; α

(
Υ(X1 ×X2 ×X3))

)
≤ 1

3
[V(
(
A(f ; α(X1) + α(X2) + α(X3)))

)
]

−V
(
A(f ; α(Υ(X1 ×X2 ×X3)))

)
(3)

for any X1, X2 and X3 of C, where V is a subadditive mapping, A(•; ·) ∈ F , α and V are as in Theorem 2.1. Then
Υ has tripled fixed point.

Proof. Define the mapping Υ̃ : C3 → C3 by

Υ̃(p, q, r) = (Υ(p, q, r),Υ(q, p, r),Υ(r, p, q)).

Obviously, Υ̃ is continuous. We prove that Υ̃ satisfies all the conditions of Theorem 2.1. LetX ⊂ C3 be a nonempty
subset. We know that α̃(X) = α(X1) + α(X2) + α(X3) is a (MNC) [1] , whereX1,X2 andX3 denote the natural
projections of X into E . From (5) we get
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V
(
A(f ; α̃(Υ̃(X)))

)
= V

(
A(f ; α̃(Υ(X1 ×X2 ×X3)×Υ(X2 ×X1 ×X3)

×Υ(X3 ×X1 ×X2)
)

= V
(
A(f ; α(Υ(X1 ×X2 ×X3))) + α(Υ(X2 ×X1 ×X3))

+ α(Υ(X3 ×X1 ×X2))
)

≤ 1

3
[V(
(
A(f ; α(X1) + α(X2) + α(X3)))

)
]

− V
(
A(f ; α(ΥX1 ×X2 ×X3))

)
+

1

3
[V(
(
A(f ; α(X2) + α(X1) + α(X3)))

)
]

− V
(
A(f ; α(ΥX2 ×X1 ×X3))

)
+

1

3
[V(
(
A(f ; α(X3) + α(X2) + α(X2)))

)
]

− V
(
A(f ; α(ΥX3 ×X1 ×X2))

)
≤ V(

(
A(f ; α(X1) + α(X2) + α(X3)))

)
− V

(
A(f ; α̃(Υ(X1 ×X2 ×X3))

)
= V(A(f ; α̃(X)))− V

(
A(f ; α̃(Υ̃(X)))

)
. (4)

From Theorem 2.1 we infer that Υ̃ has at least a fixed point which implies that Υ has a tripled fixed point.

By taking A(f ; p) = p, f = I (identity map) and V = 1 in Theorem 2.4, we infer the following corollary.

Corollary 2.5. Let C be a nonempty, closed, bounded and convex (NCBC) subset of a Banach space E and let
Υ : C × C × C → C be a continuous mapping such that

α
(
Υ(X1 ×X2 ×X3)

)
≤ 1

6

(
α(X1) + α(X2) + α(X3)

)
for any X1, X2 and X3 of C, where α is an arbitrary MNC . Then Υ has tripled fixed point.

Theorem 2.6. Let C be a (NCBC) subset of a Banach space E and let Υ : C → C be a continuous mapping such
that

V
(
A(f ; α(ΥX))

)
≤ φ

(
V (A(f ; α(X)))

)
, (5)

for all X ⊆ C, where V ∈ Σ, φ ∈ Φ, A(•; ·) ∈ F and α is an arbitrary MNC. Then Υ has at least one fixed point.

Proof. Let sequence {Cn} be such that
C0 = C and Cn+1 = Conv(Υ(Cn)) for all n ∈ N.
If for an integer n ∈ N one has α(Cn) = 0, then Cn is relatively compact and so Schauder Theorem 1.2 guarantees a
fixed point for Υ. So, we can assume that α(Cn) > 0 for each n ∈ N.
Evidently, {Cn}n∈N is a (NCBC) sequence such that

C0 ⊇ C1 ⊇ · · · ⊇ Cn ⊇ Cn+1.

On the other hand

V
(
A(f ; α(Cn+1))

)
= V

(
A(f ; α(ΥCn))

)
≤ φ

(
V (A(f ; α(Cn)))

)
...
≤ φn+1

(
V (A(f ; α(C0)))

)
. (6)
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Therefore, α(Cn+1) is a convergent sequence. Suppose that lim
n→∞

α(Cn+1) = r. Now, we show that r = 0.
Using the property of A(•; ·) and Passing limit through in inequality 6, we get

lim
n→∞

V
(
A(f ; α(Cn+1))

)
= 1.

Thus, we have
lim

n→∞

(
A(f ; α(Cn+1))

)
= 0.

In view of properties A(•; ·) , we have
A
(
f ; lim

n→∞
α(Cn+1)

)
= 0.

Property (i) of A(•; ·) implies that

lim
n→∞

α(Cn) = 0.

we can deduce that α(Cn) → 0 as n → ∞. Since Cn is a nested sequence, in view of (6◦) of Definition 1.1 we infer

that the set C∞ =

∞⋂
n=1

Cn is a nonempty, closed and convex set and belongs to kerµ. Then, according the Schauder

fixed point theorem we deduce that Υ has a fixed point.

Taking A(f ; p) = p, f = I (identity map) and φ(x) = xk k ∈ (0, 1) in Theorem 2.6 we get the following Corollary.

Corollary 2.7. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let Υ : C → C be
a continuous operator such that

V
(
α(ΥX)

)
≤ V

(
α(X)

)k (7)

for all X ⊆ C, where V ∈ Σ and α is an arbitrary MNC. Then Υ has at least one fixed point in C.

Remark 2.8. If we take V (x) = ex in the above Corollary, then we get the Darbo’s fixed point theorem.

3. Prešić type fixed point

In this part, we state and prove Prešić type fixed point theorem.
Prešić in [13] presented the following theorem as an extension of Banach contraction principle.

Theorem 3.1. Suppose (X, d) be a complete metric space and let Υ : Xk → X (k is a positive integer). Let,

d
(
Υ(ξ1, . . . , ξk),Υ(ξ2, . . . , ξk+1)

)
≤

k∑
i=1

µid(ξi, ξi+1)

for all ξ1, . . . , ξk+1 in X , where µi ≥ 0 and
∑k

i=1 µi ∈ [0, 1). Then, Υ has a unique fixed point ξ∗ (that is
Υ(ξ∗, . . . , ξ∗) = ξ∗ and now we say Prešić type fixed point ).

Theorem 3.2. Let C ⊆ E be a nonempty,closed, bounded and convex subset and let Υ : Cn → C be a continuous
function such that

V
(
A(f ; αΥ(X1 × . . .×Xn))

)
≤ 1

n
φ
(
[V (A(f ; α(X1) + . . .+ α(Xn)))]

)
(8)

for all X1, . . . , Xn ⊆ C, where V ∈ Σ is a subadditive mapping, φ ∈ Φ and α is an arbitrary MNC, then Υ has a
Prešić type fixed point.
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Proof. Define the mapping Υ̃ : Cn → Cn by

Υ̃(ξ1, . . . , ξn) =
(
Υ(ξ1, . . . , ξn), . . . (ξ1, . . . , ξn)

)
.

Obviously, Υ̃ is continuous. We prove that Υ̃ satisfies all the conditions of Theorem 2.6. Suppose X ⊂ Cn be a
nonempty subset. We know that α̃(X) = α(X1) + α(X2) + . . . + α(Xn) is a (MNC) [1] , where X1, X2 . . . Xn

denote the natural projections ofX into E . From (8) we get

V
(
A(f ; α̃(Υ̃(X)))

)
= V

(
A(f ; α̃(Υ(X1 × . . .×Xn)× . . .×Υ(X1 × . . .×Xn)

)
= V

(
A(f ; nα(Υ(X1 × . . .×Xn)

≤ n V
(
A(f ; α(Υ(X1 × . . .×Xn)

≤ φ
(
[V (A(f ; α(X1) + . . .+ α(Xn)))]

)
= φ

(
V (A(f ; α̃(X)))

)
. (9)

From Theorem 2.6 we infer that Υ̃ has at least a fixed point which implies that there exists ξ1, . . . , ξn such that
Υ(ξ1, . . . , ξn) = ξ1 = . . . = ξn that is, Υ has a Prešić type fixed point.

4. Application

In this section of the paper we investigate the existence of solutions for the following system of equations:

u1(x) = h(x, u1(ϱ(x)), u2(ϱ(x)), u3(ϱ(x)),∫ ρ(x)

0

k (x, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y)))dy)

u2(x) = h(x, u2(ϱ(x)), u1(ϱ(x)), u3(ϱ(x)),∫ ρ(x)

0

k (x, y, u2(ϱ(y)), u1(ϱ(y)), u3(ϱ(y))) dy)

u3(x) = h(x, u3(ϱ(x)), u2(ϱ(x)), u1(ϱ(x)),∫ ρ(x)

0

k (x, y, u3(ϱ(y)), u2(ϱ(y)), u1(ϱ(y))) dy.)

(10)

where x ∈ [0, T ].
Suppose C[0, T ] be the space of all real functions which are bounded and continuous on the interval [0, T ] with the
norm

∥p∥ = sup{|p(r)| : r ∈ [0, T ]}.

The modulus of continuity of a function p ∈ C[0, T ] is as

ω(p, ϵ) = sup{|p(r)− p(s)| : r, s ∈ [0, T ], |r − s| ≤ ϵ}.

Let ω(X, ε) = sup{ω(p, ε) : p ∈ X}. The Hausdorff (MNC) for all bounded sets X of C[0, T ] is as follows:

µ(X) = ω(X) = lim
ϵ→0

{
sup
p∈X

ω(p, ϵ)
}
.

( For more details see [2]).
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Theorem 4.1. Suppose that the following conditions are satisfies.

(i) Let ϱ, ρ : [0, T ] −→ [0, T ] are continuous functions.

(ii) The function h : [0, T ]× R4 −→ R is continuous and there exists function γ so that

A
(
f ; h

(
x, u1, u2, u3, p

)
− h
(
x, v1, v2, v3, q

))
≤ 1

6
γ
(
A(f ;

∣∣∣u1 − v1

∣∣∣+ ∣∣∣u2 − v2

∣∣∣+ ∣∣∣u3 − v3

∣∣∣)+ ∣∣∣p− q
∣∣∣, (11)

where γ : [0,∞) → [0,∞) is a subadditive increasing mapping such that lim
n→∞

γn(t) = 0 and γ(0) = 0, for
t > 0.

(iii) M := sup{A(f ;
∣∣∣h(x, 0, 0, 0, 0)∣∣∣ < ∞, x ∈ [0, T ]} and A(f, ϵ) < ϵ.

(iv) k : [0, T ]× [0, T ]× R3 −→ R is continuous and

Γ := sup
{∫ ρ(x)

0

k(x, y, u1, u2, u3)dy : x, y ∈ [0, T ], u1, u2, u3 ∈ C([0, T ])
}
.

(v) The inequality
1

6

(
A(f ; 3r0)

)
+ Γ +M ≤ r0

has a positive solution r0.

Then the system of integral equations (10) has at least one solution in the space (C[0, T ])3.

Proof. Suppose that Υ : C[0, T ]× C[0, T ]× C[0, T ] −→ C[0, T ] defined by

Υ(u1, u2, u3)(x) = h
(
x, u1(ϱ(x)), u2(ϱ(x)), u3(ϱ(x))

,

∫ ρ(x)

0

k (x, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y))) dy).

In view of given assumptions, we deduce that the function Υ(u1, u2, u3) is continuous for arbitrarily u1, u2, u3 ∈
C[0, T ]. Also, we obtain that

A
(
f ; Υ(u1, u2, u3)(x)

)
= A

(
f ; h

(
x, u1(ϱ(x)), u2(ϱ(x)), u3(ϱ(x))

,

∫ ρ(x)

0

k (x, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y))) dy)
)

≤ A
(
f ; h

(
x, u1(ϱ(x)), u2(ϱ(x)), u3(ϱ(x)),∫ ρ(x)

0

k (x, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y))) dy)− h(x, 0, 0, 0, 0)
)

+A
(
f ; (x, 0, 0, 0, 0)

)
≤ 1

6
γ
(
A(f ;

∣∣∣u1(ϱ(x))
∣∣∣+ ∣∣∣u2(ϱ(x))

∣∣∣+ ∣∣∣u3(ϱ(x))
∣∣∣)

+
∣∣∣ ∫ ρ(x)

0

k (x, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y))) dy
∣∣∣

+A
(
f ; (x, 0, 0, 0, 0)

)
≤ 1

6
γ
(
A(f ;

∣∣∣u1(ϱ(x))
∣∣∣+ ∣∣∣u2(ϱ(x))

∣∣∣+ ∣∣∣u3(ϱ(x))
∣∣∣)+ Γ +M
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Thus, we have

A
(
f ; |Υ(u1, u2, u3)|

)
≤ 1

6
γ
(
A(f ; ∥u1∥+ ∥u2∥+ ∥u3∥)

∣∣∣+ Γ +M (12)

Therefore,
In view of assumption (v) and inequality (12), we conclude that the function Υ maps (B̄r0)

3 into B̄r0 .
In this stage , we prove the continuity of map Υ on (B̄r0)

3.
Fix ε > 0 and choose (u1, u2, u3) and (v1, v2, v3) ∈ (B̄r0)

3 arbitrarily such that max{∥ui−vi∥} ≤ ε for all i = 1, 2, 3.
Then, for all x ∈ [0, T ], we have

A
(
f ; Υ(u1, u2, u3)(x)−Υ(v1, v2, v3)(x)

)
=

A
(
f ; h

(
x, u1, u2, u3,

∫ ρ(x)

0

k (x, y, u1, u2, u3) dy)

− h
(
x, v1, v2, v3,

∫ ρ(x)

0

k (x, y, v1, v2, v3) dy)
)

≤ 1

6
γ
(
A(f ;

∣∣∣u1(ϱ(x))− v1(ϱ(x))
∣∣∣+ ∣∣∣u2(ϱ(x))− v2(ϱ(x))

∣∣∣
+
∣∣∣u3(ϱ(x))− v3(ϱ(x))

∣∣∣))
+
∣∣∣ ∫ ρ(x)

0

k (x, y, u1, u2, u3)− k (x, y, v1, v2, v3) dy
∣∣∣

≤ 1

6
γ
(
A(f ; 3ε)

)
+ ρ(T )ωT (k, ε),

where

ωT (k, ε) = sup{|k(x, y, u1, u2, u3)− k(x, y, v1, v2, v3)| : x, y ∈ [0, ρ(T )],

ui, vi ∈ [−r0, r0], i = 1, 2, 3,max |ui − vi| ≤ ε}.

ρ(T ) = sup{ρ(x) : x ∈ [0, T ]}.

From the continuity of k on the compact set [0, T ] × [0, ρ(T )] × [−r0, r0]
3, we infer ωT (k, ε) −→ 0 as ε −→ 0.

Therefore, from the above calculation, we get Υ is a continuous map on (B̄r0)
3. Now, we check that Υ satisfies all

the assumptions of Theorem 2.4. Suppose X1, X2 and X3 be nonempty and bounded subsets of B̄r0 . Let ε > 0 is
an arbitrary constant. Also, we choose p1, p2 ∈ [0, T ], with |p2 − p1| ≤ ε, |ϱ(p2) − ϱ(p1)| ≤ ε and uj ∈ Xj for all
j = 1, 2, 3. Then, we have
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A(f ;
∣∣∣Υ(u1, u2, u3)(p1)−Υ(u1, u2, u3)(p2)

∣∣∣)
≤ A(f ;

∣∣∣h(p1, u1(ϱ(p1)), u2(ϱ(p1)), u3(ϱ(p1)))

,

∫ ρ(p1)

0

k(p1, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y))dy)

− h(p2, u1(ϱ(p2)), u2(ϱ(p2)), u3(ϱ(p2)))

,

∫ ϱ(p2)

0

k(p2, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y))dy)
∣∣∣)

+A(f ;
∣∣∣h(p2, u1(ϱ(p1)), u2(ϱ(p1)), u3(ϱ(p1)))

,

∫ ρ(p1)

0

k(p1, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y))dy)

− h(p2, u1(ϱ(p2)), u2(ϱ(p2)), u3(ϱ(p2)))

,

∫ ρ(p1)

0

k(p1, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y))dy)
∣∣∣)

+A(f ;
∣∣∣h(p2, u1(ϱ(p2))u2(ϱ(p2)), u3(ϱ(p2)))

,

∫ ρ(p1)

0

k(p1, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y))dy)

− h(p2, u1(ϱ(p2)), u2(ϱ(p2)), u3(ϱ(p2)))

,

∫ ρ(p2)

0

k(p1, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y))dy)
∣∣∣)

+A(f ;
∣∣∣h(p2, u1(ϱ(p2)), u2(ϱ(p2)), u3(ϱ(p2)))

,

∫ ρ(p2)

0

k(p1, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y))dy)

− h(p2, u1(ϱ(p2)), u2(ϱ(p2)), u3(ϱ(p2)))

,

∫ ρ(p2)

0

k(p2, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y)))dy)
∣∣∣).



32 Sh. Banaei / The 4th National Congress on Mathematics and Statistics

Using condition (11) we have

A(f ;
∣∣∣Υ(u1, u2, u3)(p1)−Υ(v1, v2, v3)(p2)

∣∣∣)
≤ ωr0(h, ε)

+
1

6
A(f ; {|u1(ϱ(p1))− u1(ϱ(p2))|+ |u2(ϱ(p1))− u2(ϱ(p2))|

+ |u3(ϱ(p1))− u3(ϱ(p2))|})

+A(f ;
∣∣∣ ∫ ρ(p1)

0

k(p1, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y)))dy)

−
∫ ρ(p2)

0

k(p1, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y)))dy
∣∣∣

+A(f ;
∣∣∣ ∫ ρ(p2)

0

k(p1, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y)))dy

−
∫ ρ(p2)

0

k(p2, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y)))dy
∣∣∣)

≤ ωr0(h, ε)

+
1

6
A(f ; {ω(u1, ε) + ω(u2, ε) + ω(u3, ε)})

+A(f ;
∣∣∣ ∫ ρ(p2)

ρ(p1)

k(p1, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y)))dy
∣∣∣)

+A(f ;

∫ ρ(p2)

0

∣∣k(p1, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y)))

− k(p2, y, u1(ϱ(y)), u2(ϱ(y)), u3(ϱ(y)))dy
∣∣)

≤ ωr0(h, ε) +
1

6
A(f ; {ω(u1, ε) + ω(u2, ε) + ω(u3, ε)})

+A(f ; ω(ρ, ε)Ur0) +A(f ; Tωr0(k, ε)
)

(13)

where

ωr0(h, ε) = sup{|h(p1, s, t, z, w)− h(p2, s, t, z, w)| : p1, p2 ∈ [0, T ],

|p2 − p1| ≤ ε, ||s||, ||t||, ||z|| ≤ r0, |w| ≤ Γ},
ωr0(k, ε) = sup{|k(p1, q, s, t, z)− k(p2, q, s, t, z)| : p1, p2, q ∈ [0, T ],

|p2 − p1| ≤ ε, ||s||, ||t||, ||z|| ≤ r0},
Ur0 = sup{|k(p, q, s, t, z)| : p, q ∈ [0, T ] s, t, z ∈ [−r0, r0]}.

Since in (13), ui was an arbitrary element of Xi for i = 1, 2, 3 we conclude that

A
(
f ; α(Υ(X1 ×X2 ×X3), ε)

)
≤ A

(
f ; ωr0(h, ε)

)
+A(f ; {α(X1, ε) + α(X2, ε) + α(X3, ε)})
+A(f ; ω(ρ, ε)Ur0)

+A(f ; Tωr0(k, ε)).

The uniform continuity of h, ρ and g on the compact sets [0, T ] × [−r0, r0]
3 × [−Mr0 ,Mr0 ], [0, T ] and [0, T ]2 ×

[−r0, r0]
2 respectively, yields that ωr0(h, ε) −→ 0, ω(ρ, ε) −→ 0 and ωr0(k, ε) −→ 0 as ε −→ 0. Therefore, by

taking A(f ; t) = t, f = I , we have
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α(Υ(X1 ×X2 ×X3)) ≤
1

6

(
α(X1) + α(X2) + α(X3)

)
Therefore, Corollary 2.5 infers that the operatorΥ has a tripled fixed point. Therefore, the system of functional integral
equations (10) has at least one solution in (C[0, T ])3.

5. Example

Example 5.1. Suppose that the following system of integral equations is given:

p(t) = 1
3e

−t2 + tan−1 p(t)+sinh−1 q(t)+tan−1 r(t)
6π+t10

+
1

6

∫ t

0

s(|cosp(s)|+
√
(1 + p2(s))(1 + sin2q(s))(1 + cos2r(s)))

et(1 + p2(s))(1 + sin2q(s))(1 + cos2r(s))
ds

q(t) = 1
3e

−t2 + tan−1 q(t)+sinh−1 p(t)+tan−1 r(t)
6π+t10

+
1

6

∫ t

0

s(| cos q(s)|+
√
(1 + q2(s))(1 + sin2p(s))(1 + cos2r(s)))

et(1 + q2(s))(1 + sin2p(s))(1 + cos2r(s))
ds.

r(t) = 1
3e

−t2 + tan−1 r(t)+sinh−1 q(t)+tan−1 p(t)
6π+t10

+
1

6

∫ t

0

s(|cosr(s)|+
√

(1 + r2(s))(1 + sin2q(s))(1 + cos2p(s)))

et(1 + r2(s))(1 + sin2q(s))(1 + cos2p(s))
ds

(14)

It is clear that this system of integral equations (14) is a special case of the system (10) with

ϱ(t) = ρ(t) = t, t ∈ [0, 1],

h(t, p, q, r, λ) =
1

3
e−t2 +

tan−1 p+ sinh−1 q + tan−1 r

6π + t10
+

λ

6
,

and

k(t, s, p, q, r) =
s(|cosp|+

√
(1 + p2)(1 + sin2q)(1 + cos2r))

et(1 + p2)(1 + sin2q)(1 + cos2r)
.

To show that the above system has a solution, we should verify the conditions (i)-(iv) of Theorem 4.1.

We observe that condition (i) is evident. We define γ(t) = t and A(f ;x) = x,
Now, we have

A
(
f ;
∣∣∣h(t, p, q, r,m)− h(t, u, v, w, n)

∣∣∣)
≤ | tan−1 p− tan−1 u|+ | sinh−1 q − sinh−1 v|+ | tan−1 r − tan−1 w|

6π + t10
+

|m− n|
6

≤ tan−1 |p− u|
6π

+
sinh−1 |q − v|

6π
+
tan−1 |r − w|

6π
+

|m− n|
6

≤ 1

6
{|p− u|+ |q − v|+ |r − w|}+ |m− n|.
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Therefore, f satisfies condition (ii) of Theorem 4.1. Also,

M = sup
{
A(f ; |h(p, 0, 0, 0, 0)|) : p ∈ [0, T ]

}
= sup{1

3
e−t2 : t ∈ [0, 1]} ≤ 0.5

Clearly, condition (iii) of Theorem 4.1 is satisfy, that is, k is continuous on [0, T ]× [0, T ]× R3, and

Γ = sup

{
|
∫ ρ(p)

0

k(p, q, u1, u2, u3)dy|

}

= sup

{
|
∫ t

0

s(|cosp(s)|+
√

(1 + p2(s))(1 + sin2q(s))(1 + cos2r(s)))

et(1 + p2(s))(1 + sin2q(s))(1 + cos2r(s))
ds|

: t, s ∈ [0, 1], p, q ∈ [−r, r]

}

≤ sup
t2

et
≤ 1.

Moreover, obviously every r ≥ 3 satisfies inequality in condition (iv), i.e.,

1

6

(
A(f, 3r)

)
+ Γ +M ≤ 1

6

(
3r
)
+ 0.5 + 1 ≤ r.

Therefore, all of the assumptions Theorem 4.1 are fulfilled. Consequently, the above system of integral equations has
at least one solution in {C[0, T ]}3.
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Abstract

In this paper, we give some common fixed point results for self-mappings on a complete gener-
alized metric apace. To show the usability of our results, we present some examples.

1. First Section

Fixed point theory plays an important role for solving problems in various branches of mathematical, such as nonlinear
analysis, integral and differential equations (see [3, 12, 21, 23]). There exist many interesting generalizations of metric
spaces (see for example [2, 4, 5, 9, 15, 19]). In 1964, Perov [16] introduced the concept of of vector-valued metric
space and gave a generalization of the Banach contraction principle.(see e.g. [6–8, 10, 11, 13, 14, 16–18, 20, 22] and
references therein). We give below some definitions and results which will help in proving our main results.
LetX be a nonempty set. A functionD : X ×X → Rm

+ is said to be a vector-valued metric if for all x, y, z ∈ X the
following properties are satisfied:
1) D(x, y) ≻ θ for all x, y ∈ X; D(x, y) = θ if and only if x = y;
2) D(x, y) = D(y, x) for all x, y ∈ X;
3) D(x, y) ⪯ D(x, z) +D(z, y) for all x, y, z ∈ X .
A nonempty setX endowed with a vector-valued metricD is called a generalized metric space and it will be denoted
by (X,D).

Remark 1.1. If α, β ∈ Rm with α = (α1, ..., αm), β = (β1, ..., βm), then by α ⪯ β (respectively α ≺ β), we mean
that αi ≤ βi (respectively αi < βi), for all i = 1, ...,m.

Throughout this paper we denote by Mm×m(R+) the set of all m×m matrixs with positive elements, by 0 the zero
m×mmatrix and by I the identitym×mmatrix. A matrixA ∈ Mm×m(R+) is said to be matrix convergent to zero
if An → 0 as n → +∞.

∗Talker
Email address: hf.math.ac@gmail.com (Hamid Faraji*)
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Theorem 1.2. [6] Let A ∈ Mm×m(R+). Then following assertions are equivalent:
1. A is convergent towards zero.
2. An → 0 as n → +∞.
3.The matrix (I −A) is non-singular and

(I −A)−1 = I +A+A2 + ...+An + ....

4.The matrix (I −A) is non-singular and (I −A)−1 has non-negative elements.
5. Anq → 0 and qAn → 0 as n → +∞, for each q ∈ Rm.

Example 1.3. [6] The given below matrices are convergent to a zero matrix.

1. Any matrix A =

[
a a
b b

]
, where a, b ∈ R+ and a+ b < 1.

2. Any matrix A =

[
a b
a b

]
, where a, b ∈ R+ and a+ b < 1.

3. A =

[
1
4

1
2

0 1
4

]
.

In 1964 Perov [16] proved the following result.

Theorem 1.4. Let (X,D) be a complete generalized metric space and T : X → X be an self-mapping. Suppose
there exists a matrix A ∈ Mm×m(R+) convergent to zero such that

D(T (x), T (y)) ⪯ AD(x, y).

Then the following statements hold:
1. T has a unique fixed point x∗.
2. The Picard iterative sequence xn = Tn(x0), n ∈ N converges to x∗ for all x0 ∈ X .
3. D(xn, x

∗) ⪯ An(I −A)−1d(x0, x1), for all n ∈ N. where A ∈ Mm×m(R+) is a matrix convergent to zero.

Definition 1.5. [1] Let X be a nonempty set and T, S : X → X . Two self-mappings T and S are said to be weakly
compatible if they commute at their coincidence points; i.e., if T (x) = S(x) for some x ∈ X , then T (S(x)) =
S(T (x)).

Proposition 1.6. [1] Let T and S be weakly compatible self maps of a set X . If T and S have a unique point of
coincidence w = Tx = Sx, then w is the unique common fixed point of T and S.

2. Second Section

In this section of the paper, we will give some common fixed point results of Perov type contractive mappings in
generalized metric spaces.

Theorem 2.1. Let (X,D) be a generalized metric apace and let T, S : X → X be self-mappings which satisfy,

D(Sx, Sy) ⪯ B(D(Sy, Sx) +D(Sy, Ty)), (1)

for all x, y ∈ X , where B ∈ Mm×m(R+) and B be a nonzero matrix convergent to zero. Moreover if T and S are
weakly compatible, S(X) ⊆ T (X) and T (X) be a complete subspace of X , then T and S have a unique common
fixed point in X .

Proof. We choose elements x0, x1 ∈ X such that Tx1 = Sx0. Since S(X) ⊆ T (X), we can define a sequence {xn}
such that Txn = Sxn−1 for each n ∈ N. From (1), we have

D(Txn+1, Txn) = D(Sxn, Sxn−1)

⪯ B(D(Sxn−1, Txn) +D(Sxn−1, Txn−1))

= B(D(Txn, Txn) +D(Txn, Txn−1)),
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for all n ∈ N. Inductively, we get

D(Txn+1, Txn) ⪯ BnD(Tx1, Tx0), (2)

for all n ∈ N. Suppose thatmleqn. Using (2), we can write

D(Txm, Txn) ⪯ D(Txm, Txm−1) + ...+D(Txn+1, Txn)

⪯ (Bm−1 + ...+Bn)D(Tx1, Tx0)

= Bn(I +B + ...Bm−n−1)D(Tx1, Tx0)

⪯ Bn(I −B)−1D(Tx1, Tx0).

Then, limn→+∞ D(Txm, Txn) = θ. Hence, {Txn} is a Cauchy sequence in T (X). Since T (X) is complete, there
exists x∗ ∈ X such that D(Txn, Tx

∗) → θ as n → +∞. We show that Sx∗ = Tx∗. Using (1), we have

D(Sx∗, Tx∗) ⪯ D(Sx∗, Txn) +D(Txn, Tx
∗)

⪯ D(Sx∗, Sxn−1) +D(Txn, Tx
∗))

⪯ B(D(Sxn−1, Tx
∗) +D(Txn, Txn−1)) +D(Txn, Tx

∗)

= B(D(Txn, Tx
∗) +D(Txn, Txn−1)) +D(Txn, Tx

∗) → θ, as n → +∞.

Then, D(Sx∗, Tx∗) = θ, i.e Tx∗ = Sx∗. Now we show that T and S have a unique point of coincidence. For this,
assume that there exists another point z∗ in X such that Tz∗ = Sz∗. Using (1), we obtain

D(Sx∗, Sz∗) ⪯ B(D(Sz∗, Tx∗) +D(Sz∗, T z∗))

= BD(Sz∗, Sx∗).

Thuse, (I −B)D(Sz∗, Sx∗) ⪯ θ. Since I −B ̸= θ, we haveD(Sz∗, Sx∗) = θ, i.e Sz∗ = Sx∗. Therefore, T and S
have a unique point of coincidence. Then by Proposition 1.6, T and S have a unique common fixed point.

Corollary 2.2. Let (X,D) be a complete generalized metric apace and let S : X → X be a self-mapping satisfying:

D(Sx, Sy) ⪯ B(D(Sy, x) +D(Sy, y)),

for all x, y ∈ X , where B ∈ Mm×m(R+) and B be a nonzero matrix convergent to zero. Then S has a unique fixed
point in X .

Example 2.3. Let X = [0,+∞)2 and vector valued-metric D : X ×X → R2 be defined as follows:

D((x1, x2), (y1, y2)) = (|x1 − y1|, |x2 − y2|).

Define T, S : X → X by T (x1, x2) = (4x1, x2) and S(x1, x2) = (x1

3 , 0). Suppose that B =

[
3
4

1
2

0 3
4

]
. Thus,

Theorem 2.1 implies that T and S have a unique common fixed point inX . Note that (0, 0) is common fixed point of
T and S.

Theorem 2.4. Let (X,D) be a complete generalized metric apace and let T, S : X → X be self-mappings which
satisfy,

D(Sx, Ty) ⪯ AD(x, Sx) +BD(x, y), (3)

for all x, y ∈ X , where A,B ∈ Mm×m(R+) and A+B be a nonzero matrix convergent to zero. Then T and S have
a unique common fixed point in X .
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Proof. Let x0 be an arbitrary point inX . We can define a sequence {xn} inX by x2k+1 = Sx2k and x2k+2 = Tx2k+1

for each k ∈ N ∪ {0}. If D(x2k, x2k+1) = θ for some k0 ∈ N, we have x2k0 = x2k0+1 = Sx2k0 . Then x2k0 is a
point of S. From (3), we obtain

D(x2k0
, Tx2k0

) = D(Sx2k0
, Tx2k0

)

⪯ AD(x2k0
, Sx2k0

) +BD(x2k0
, x2k0

) = θ.

Consequently, x2k0
= Tx2k0

= Sx2k0
, then x2k0

is a common fixed point of T and S and the proof is finished.
Assume that x2k ̸= x2k+1 for all k ∈ N ∪ {0}. From (3), we have

D(x2k+1, x2k+2) = D(Sx2k, Tx2k+1)

⪯ AD(x2k, Sx2k) +BD(x2k, x2k+1)

= (A+B)D(x2k, x2k+1),

for all k ∈ N ∪ {0}. Then, we obtain

D(x2k+1, x2k+2) ⪯ (A+B)2k+1D(x1, x0). (4)

By a similar method, we can show that

D(x2k+2, x2k+3) ⪯ (A+B)2k+2D(x1, x0). (5)

From (4) and (5), we get

D(xn, xn+1) ⪯ (A+B)nD(x1, x0). (6)

for all n ∈ N. Suppose thatm ≥ n. Using (6), we can write

D(xm, xn) ⪯ D(xm, xm−1) + ...+D(xn+1, xn)

⪯ ((A+B)m−1 + ...+ (A+B)n)D(x1, x0)

= (A+B)n(I + (A+B) + (A+B)2 + ...+ (A+B)m−n−1)D(x1, x0)

⪯ (A+B)n(I −A−B)−1D(x1, x0).

Then, D(xm, xn) → θ as n → +∞. Hence, {xn} is a Cauchy sequence in X . Since X is complete, there exists
x∗ ∈ X such that

lim
n→+∞

xn = x∗. (7)

From (3), we have

D(Sx∗, x∗) ⪯ D(Sx∗, Tx2n+1) +D(Tx2n+1, x
∗)

⪯ AD(x∗, Sx∗) +BD(x∗, x2n+1) +D(x2n+2, x
∗),

for all n ∈ N. From (7), we have (I − A)D(Sx∗, x∗) ⪯ θ. Since I ̸= A, we have Sx∗ = x∗. Now we show that x∗

is a common fixed point of T and S. From (3), we obtain

D(Sx∗, Tx∗) ⪯ AD(x∗, Sx∗) +BD(x∗, x∗).

Thuse D(Sx∗, Tx∗) = θ i.e Sx∗ = Tx∗ = x∗. Now, we show that T and S have a unique common fixed point. For
this, assume that there exists another common fixed point z∗ in X such that Sz∗ = Tz∗ = z∗. From (3), we have

D(z∗, x∗) = D(Sz∗, Tx∗)

⪯ AD(z∗, Sz∗) +BD(z∗, x∗).

Then, (I − B)D(z∗, x∗) ⪯ θ. Since I ̸= B, we have D(z∗, x∗) = θ i.e z∗ = x∗. Then, T and S have a unique
common fixed point.
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Corollary 2.5. In the case that T = S and A = 0, we obtain Perov Theorem ??.

Corollary 2.6. Let (X,D) be a complete generalized metric apace and let T : X → X be self-mapping which satisfy,

D(Tx, Ty) ⪯ AD(x, Tx) +BD(x, y),

for all x, y ∈ X , whereA,B ∈ Mm×m(R+) andA+B be a nonzero matrix convergent to zero. Then T has a unique
fixed point in X .

Example 2.7. Let X = [0,+∞)2 and vector valued- metric D : X ×X → R2 be defined as follows:

D((x1, x2), (y1, y2)) = (|x1 − y1|, |x2 − y2|).

Define T, S : X → X by T (x1, x2) = (Arccotx1,
2 , x2

10 ) and S(y1, y2) = (Arccot y1

2 , y2

20 ). Suppose thatB =

[
3
4

3
4

0 3
4

]
and B =

[
3
4 0
0 3

4

]
Thus, Theorem 2.4 implies that T and S have a unique common fixed point in X . Note that (0, 0)

is common fixed point of T and S.
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Abstract

In this paper, we generalize the definitions of partly decomposable and fully indecomposable
matrices to tensors. We obtain a relation between partly decomposable and reducible tensors.
Furthermore, we present a sufficient condition for block tensors to be fully indecomposable. We
study the relations between fully indecomposable and irreducible tensors.

1. Introduction

A tensor A = (ai1...id)n1×···×nd
of order d and dimension (n1, . . . , nd) is a multi-array of entries ai1...id ∈ F, where

ij = 1, . . . , nj for j = 1, . . . , d and F is a field. When n1 = n2 = · · · = nd = n, we say that A is a square tensor of
order d and dimension n. A tensorA is called non-negative if all its entries are non-negative [3]. Many combinatorial
properties of non-negative matrices have been studied by using partly decomposable, fully indecomposable, nearly
decomposable, and nearly reducible matrices [6]. Fully indecomposable matrices have played an interesting role in
various topics of research. For example, using fully indecomposable matrices, one may find a necessary condition for
a matrix to have a positive inverse [5]. In recent years, many researchers such as Lim, Chang, Pearson, and Zhang
generalized the concepts of non-negative matrices to tensors [4],[2]. In this paper, we generalize the concepts partly
decomposable and fully indecomposable from non-negative matrices to tensors.
This paper is organized as follows. In Section 2, we review some definitions that will use in other sections. In section
3, we give some theorems about non-negative tensors. We conclude the paper with a brief conclusion in Section 4.

2. Preliminary

In this section, we first give some definitions that will be used in the proofs of our theorems.
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Definition 2.1 ([9]). Let A = (ai1...id) be a tensor of order d and dimension n1 × n2 × · · · × nd. The permanent of
A is defined by

per(A ) :=
∑
σk

n1∏
i=1

aiσ2(i)...σd(i),

where the summation runs over all one-to-one functions σk from {1, . . . , n1} to {1, . . . , nk} and k = 2, . . . , d, with
per(A ) = 0 if n1 > nk for some k.

Definition 2.2 ([3]). Let A be a tensor of order d and dimension n. We say that A is reducible if there exists a
nonempty proper index subset J ⊂ [n] such that

ai1...id = 0, ∀i1 ∈ J, ∀i2, . . . , id /∈ J.

The following definition generalizes block matrices to the setting of tensors.

Definition 2.3 ([7]). A block tensor is a tensor whose entries themselves are tensors.

Definition 2.4 ([1]). Let A be a tensor of order d and dimension n and, n1, n2, . . . , nr (r ≥ 2) be positive integers
with n = n1 + n2 + · · ·+ nr. Write S0 = 0 and

Sj = n1 + n2 + · · ·+ nj , Ij = {Sj−1 + 1, . . . , Sj}, j = 1, . . . , r.

If for any j ∈ {2, . . . , r},

aii2...id = 0, ∀i ∈ Ij , and max{i2, . . . , id} ≤ Sj−1,

then we say that A is a third-type (n1, . . . , nr)-upper triangular block tensor (or a 3rdUTB tensor).

Definition 2.5 ([8]). Let A (respectively, B) be a tensor of order d ≥ 2 (respectively, k ≥ 1) and dimension n.
Define the product A B to be the following tensor C of order (d− 1)(k − 1) + 1 and dimension n.

ciα1...αd−1
=

n∑
i2,...,id=1

aii2...idbi2α1
. . . bidαd−1

, (i ∈ [n], α1, . . . , αd−1 ∈ [n]k−1).

Definition 2.6 ([8]). Let A be a tensor of order d and dimension n. If P and Q are n× n matrices, then

(PA Q)i1...id =
n∑

j1,...,jd=1

aj1...jdpi1j1qj2i2 . . . qjdid .

Definition 2.7 ([8]). Let A and B be tensors of order d and dimension n. If there exists a permutation matrix P such
that B = PA PT , then we say that A and B are permutation-similar.

Remark 2.8 ([1]). A tensor A of order d and dimension n is reducible if and only if there exists an integer k with
1 ≤ k ≤ n− 1 such that A is permutation-similar to some (k, n− k)-3rdUTB tensor.

3. Partly decomposable and fully indecomposable tensors

In this section, by according to Definition 2.7 and Remark 2.8, we define permutation-equivalent and partly decom-
posable tensors. Also, we compare these concepts to the matrix case.

Definition 3.1. Let A and B be tensors of order d and dimension n. If there exist n×n permutation matrices P and
Q such that B = PA Q, then we say that A and B are permutation-equivalent.

Definition 3.2. Let A be a tensor of order d and dimension n. We say that A is partly decomposable if there exists
an integer k with 1 ≤ k ≤ n − 1 such that A is permutation-equivalent to some (k, n − k)-3rdUTB tensor. A fully
indecomposable tensor is one which is not partly decomposable.
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Example 3.3. Let A be the matrix

A =

[
0 1
2 3

]
.

It is clear that A is permutation-equivalent to a (1, 1)-3rdUTB matrix with the following P and Q.

P =

[
0 1
1 0

]
, Q =

[
1 0
0 1

]
.

PAQ =

[
2 3
0 1

]
.

Since PAQ is a (1, 1)-3rdUTB tensor (tensor with d = 2), A is a partly decomposable matrix [6].

The following theorem present a necessary and sufficient condition for a tensor to be partly decomposable.

Theorem 3.4. LetA be a tensor of order d and dimension n. The tensor A is partly decomposable if and only if there
exist sequences λ ∈ Qn−k,n and µ ∈ Qk,n, where Qk,n is the set of non-decreasing subsequences with cardinality k
of {1, 2, 3, . . . , n}, such that A [λ|µ|µ| . . . |µ] is a zero subtensor of order d and dimension n− k × k × k × · · · × k
(or A [λ|µ|µ| . . . |µ] = 0).

Proof. Let A be a partly decomposable tensor. Then, there exists an integer k with 1 ≤ k ≤ n − 1 such that A
is permutation-equivalent to some (k, n − k)-3rdUTB tensor. Let G = PA Q, where P and Q are permutation
matrices of order n, and G is a (k, n − k)-3rdUTB tensor. Define two sequences λ1 = {k + 1, k + 2, . . . , n} and
µ1 = {1, 2, . . . , k}. Let τ and τ ′ be the permutation functions corresponding to the permutation matrices P and Q,
respectively. Define

λ = τ(λ1) = {τ(k + 1), τ(k + 2), τ(k + 3), . . . , τ (n)}

and

µ = τ ′(µ1) = {τ ′(1), τ ′(2), τ ′(3), . . . , τ ′(k)}.

It is clear that A [λ|µ|µ| . . . |µ] is a tensor of order d and dimension n− k × k × k × · · · × k. Clearly,

A [λ|µ|µ| . . . |µ] = A [τ(k + 1) . . . τ (n)|τ ′(1) . . . τ ′(k)|τ ′(1) . . . τ ′(k)| . . . |τ ′(1) . . . τ ′(k)].

Let i ∈ {k + 1, k + 2, k + 3, . . . , n} and j ∈ {1, 2, . . . , k}. In what follows, we calculate the entry of the tensor
A [λ|µ|µ| . . . |µ] with index (i, j, j, . . . , j).

A [λ|µ|µ| . . . |µ](i, j, j, . . . , j) = A (τ(i), τ ′(j), τ ′(j), . . . , τ ′(j))

= PTGQT (τ(i), τ ′(j), τ ′(j), . . . , τ ′(j))

=
n∑

j1,j2,...,jd=1

Gj1j2...jdP
T
τ(i)j1

QT
j2τ ′(j)Q

T
j3τ ′(j) . . . Q

T
jdτ ′(j)

= Gijj...jP
T
τ(i)iQ

T
jτ ′(j)Q

T
jτ ′(j) . . . Q

T
jτ ′(j)

= Gijj...j

= 0.

This completes the proof.
Conversely, suppose that λ, µ are subsets of {1, 2, . . . , n} such that λ ∈ Qn−k,n, µ ∈ Qk,n and A [λ|µ|µ| . . . |µ] = 0.
Let

λ = {ik+1, ik+2, . . . , in}, µ = {i1, i2, . . . , ik},
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where the subsets λ and µ are not necessarily disjoint. Let τ be a permutation function such that τ(il) = l for all
l = 1, 2, . . . , k. Let τ ′ be a permutation function such that τ ′(j) = ij for all j = k + 1, k + 2, . . . , n. Also, let Q and
P be the corresponding permutation matrices of τ and τ ′, respectively. If k + 1 ≤ s ≤ n and 1 ≤ t ≤ k, then

(PA Q)stt...t =
n∑

j1,j2,...,jd=1

aj1j2...jdPsj1Qj2tQj3t . . . Qjdt

= aτ ′(s)τ−1(t)...τ−1(t)

= aisitit...it

= 0.

Thus, PA Q = G , where G is a (k, n− k)3rdUTB tensor.

Example 3.5. Let A be a non-negative tensor of order 3 and dimension 3 with positive entries

a111, a311, a122, a222, a233, a333

whose all other entries are equal to 0. It follows from Theorem 3.4 that A is a fully indecomposable tensor.

Clearly, the zero tensor of order d and dimension 1 is partly decomposable, while a nonzero tensor of order d and
dimension 1 is fully indecomposable by Theorem 3.4.

Proposition 3.6. Let A be a non-negative tensor of order d and dimension n. If A is reducible, then it is partly
decomposable.

Proof. This follows from Remark 2.8 and Definition 3.2.

We show in the following remark that it is not true that a non-negative fully indecomposable tensor satisfies in the
below property and converse

per(A (i1| . . . |id)), ∀i1, . . . , id = 1, . . . , n. (1)

Remark 3.7. LetA be a tensor of order 3 and dimension 2with positive entries a111, a211, a212, a121, a122, a221, a222
and a112 = 0. Clearly, A is a fully indecomposable tensor. But, since per(A (2|2|1)) = a112 = 0, it does not satisfy
(1). Also, let A be a non-negative tensor of order 3 and dimension 3 whose all entries, except of a211 and a311, are
positive numbers (that is, a211 = a311 = 0). It is clear that A satisfies (1), but it is a partly decomposable tensor. We
know that in the case d = 2, A is a fully indecomposable matrix if and only if per(A(i|j)) > 0 for all i, j = 1, . . . , n
[6].

Theorem 3.8. Let A be a non-negative block tensor of order d and dimension n. Let n = n1 + · · · + nr, where
ni > 0 and r ≥ 2. Suppose that 1 : n has exactly one partition of the form below for the index ij = 1, . . . , n, for each
j = 1, 2, . . . , d.

1 : n = [1, . . . , n1|n1 + 1, . . . , n1 + n2| . . . . . . |n1 + · · ·+ nr−1 + 1, . . . , n1 + · · ·+ nr].

For each i ∈ {1, . . . , r}, we denote the block Ai...i of A by Ai. Also, for each i ∈ {1, . . . , r − 1}, we denote the
block Aii+1...i+1 of A by Bi. Finally, we use Br to denote the block Ar1...1 of A . Let Ai be a tensor of order d and
dimension ni, Bi be a tensor of order d and dimension ni × ni+1 × ni+1 × · · · × ni+1, where i = 1, . . . , r − 1, and
Br be a tensor of order d and dimension nr × n1 × n1 × · · · × n1. In other words,

Ai = Ai . . . i︸ ︷︷ ︸
d

, i = 1, . . . , r,

Bi = Ai i+ 1 . . . i+ 1︸ ︷︷ ︸
d−1

, i = 1, . . . , r − 1,

Br = Ar 1 . . . 1︸ ︷︷ ︸
d−1

.

If Ai is a fully indecomposable tensor and Bi ̸= 0 for all i = 1, . . . , r, then A is a fully indecomposable tensor.
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Proof. Let A be a partly decomposable tensor. Then, there exists an integer k with 1 ≤ k ≤ n − 1 such that A is
permutation-equivalent to some (k, n− k)-3rdUTB tensor. Thus, A [α|β| . . . |β] = 0 for s+ t = n, where α ∈ Qs,n

and β ∈ Qt,n. Suppose that sj entries of α and tj entries of β intersect the subtensor Aj , where j = 1, . . . , r (that is,
Aj [αs1 , . . . , αsj |βt1 , . . . , βtj | . . . |βt1 , . . . , βtj ] = 0). Since Aj is fully indecomposable, we must have sj + tj ≤ nj ,
where sj + tj = nj if sj = 0 or tj = 0. Now,

n = s+ t

=
r∑

j=1

sj + tj

≤
r∑

j=1

nj

= n.

Thus, sj + tj = nj for j = 1, . . . , r. Since Aj is fully indecomposable, sj = 0 or tj = 0 for all j = 1, . . . , r. It
is clear that at least one of the sj’s and at least one of the tj’s must be positive, because s1 + . . . , sr = s ≥ 1 and
t1 + . . . , tr = t ≥ 1. Thus, there exists at least one integer k such that sk = nk and tk+1 = nk+1 (Since otherwise,
t1 = · · · = tr = 0 and hence t = 0, which contradicts t ≥ 1.) Thus, there exists a zero subtensor that contains the
subtensor Bk. Hence, Bk = 0 and this contradicts our hypothesis.

Theorem 3.9. A non-negative, irreducible tensor with a positive main diagonal is fully indecomposable tensor.

Proof. Let A be a non-negative, irreducible tensor with a positive main diagonal. If A is partly decomposable, then
A [α|β| . . . |β] = 0, where α ∈ Qn−k,n and β ∈ Qk,n. Since the entries of the main diagonal of A are positive, the
sets α and β should be disjoint. Hence, A is a non-negative reducible tensor. But, this contradicts our hypothesis.

It is not true that a non-negative, fully indecomposable tensor is permutation-equivalent to an irreducible tensor with
a positive main diagonal.

Remark 3.10. Let A be a non-negative tensor with positive entries

a111, a211, a312, a313, a122, a222, a133, a233, a332

whose all other entries are equal to 0. Then,A is a non-negative, fully indecomposable tensorwhich is not permutation-
equivalent to an irreducible tensor with a positive main diagonal.

4. Conclusion

We defined partly decomposable and fully indecomposable tensors, and we proposed a necessary and sufficient con-
dition for a tensor to be partly decomposable. We obtained a sufficient condition for block tensors to be fully inde-
composable, and we found some relations between fully indecomposable and irreducible tensors. We compared the
relations between fully indecomposable and irreducible tensors with the case of matrices using a counterexample.
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Abstract

In this paper we extend the notion of quasi-multipliers to the dual of a Banach algebra A which
second dual has a mixed identity. We consider algebras satisfying weaker condition than Arens
regularity. Among others we prove that for an Arens regular Banach algebra with a b.a.i.,
QM(A∗) is isometrically isomorphic to A∗∗ and apply our results to the space of trace class
operators and the group algebra of a compact group.

1. Introduction

2. Main results

Definition 2.1. A bilinear mapm : A∗ ×A∗∗ → A∗ is a right quasi-multiplier of A∗ if

m(F · ξ,G) = F ·m(ξ,G) and m(ξ,G ◦ F ) = m(ξ,G) · F (1)

hold for arbitrary ξ ∈ A∗ and F, G ∈ A∗∗.
Similarly, a bilinear mapm′ : A∗∗ ×A∗ → A∗ is a left quasi-multiplier of A∗ if

m′(F ◦G, ξ) = F ·m′(G, ξ) and m′(G, ξ · F ) = m′(G, ξ) · F

hold for arbitrary ξ ∈ A∗ and F, G ∈ A∗∗.

Although in our investigation we do not assume that Arens regularity, we usually have to assume that the given algebra
satisfies the following weaker condition. A Banach algebra A satisfies condition (K) if

(F · ξ) ·G = F · (ξ ·G) (F, G ∈ A∗∗, ξ ∈ A∗).
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Let QMr(A
∗) be the set of all separately continuous right quasi-multipliers of A∗. It is obvious that QMr(A

∗) is a
linear space. Moreover, it is a Banach space with respect to the norm

||m|| = sup{||m(ξ, F )||; ξ ∈ A∗, F ∈ A∗∗, ||ξ|| ≤ 1, ||F || ≤ 1}.

Of course, the same holds for QMl(A
∗), the set of all separately continuous left quasi-multipliers of A∗.

Let A be a Banach algebra. Recall that a map T : A∗ → A∗ is called a right multiplier of A∗ if

T (F · ξ) = F · T (ξ),

for all ξ ∈ A∗, F ∈ A∗∗.WithMr(A
∗) we denote the space of all bounded linear right multipliers on A∗.

Theorem 2.2. Assume that A is a Banach algebra satisfying condition (K) and A∗∗ has a mixed identity. Then

ρT (ξ, F ) = (Tξ) · F (T ∈Mr(A
∗), ξ ∈ A∗, F ∈ A∗∗)

defines an injective linear map ρ : Mr(A
∗) → QMr(A

∗) with norm ∥ρ∥ ≤ 1. Moreover, ρ is onto if A∗∗ has an
identity. If A∗∗ has a mixed identity with norm one, then ρ is an isometry.

Proof. Let T ∈Mr(A
∗) be arbitrary. It is obvious that ρT is a bilinear map fromA∗×A∗∗ toA∗ and that it is bounded

with ∥T∥. For a ∈ A, ξ ∈ A∗, and F, G ∈ A∗∗, we have

ρT (F · ξ,G) = T (F · ξ) ·G = (F · Tξ) ·G = F · (Tξ ·G) = F · ρT (ξ,G)

and
ρT (ξ,G ◦ F ) = (Tξ) · (G ◦ F ) = (Tξ ·G) · F = ρT (ξ,G) · F.

Thus, ρT ∈ QMr(A
∗). It follows from the definition that ρ : Mr(A

∗) → QMr(A
∗) is linear. Obviously, ∥ρT ∥ ≤

∥T∥, which gives ∥ρ∥ ≤ 1. Let E ∈ A∗∗ be a mixed identity. If ρT = 0, then we have (Tξ) · E = 0 for every
ξ ∈ A∗ and consequently T = 0. Assume that E is an identity for A∗∗. Let m ∈ QMr(A

∗) be arbitrary. It is easily
seen that Tξ = m(ξ, E) (ξ ∈ A∗) defines a bounded right multiplier of A∗. Since equalities ρT (ξ, F ) = (Tξ) · F =
m(ξ, E) · F = m(ξ, E ◦ F ) = m(ξ, F ) hold for all ξ ∈ A∗ and F ∈ A∗∗ we conclude that ρ is onto.
At the end assume that E is mixed identity for A∗∗ of norm one. Let T ∈ Mr(A

∗) and ε > 0 be arbitrary. If ξ ∈ A∗

is such that ∥ξ∥ ≤ 1 and ∥T∥ − ε < ∥Tξ∥, then

∥ρT ∥ ≥ ∥ρT (ξ, E)∥ = ∥Tξ∥ > ∥T∥ − ε.

Thus, ρ is an isometry.

Corollary 2.3. If A is a C∗-algebra, then ρ is an isometrical isomorphism fromMr(A
∗) onto QMr(A

∗).

Proof. It is well known that every C∗-algebra is Arens regular and has b.a.i. Thus, A satisfies condition (K) and its
dual A∗∗ is unital.

IfA is a Banach algebra satisfying condition (K) andA∗∗ has an identity, then Theorem 2.2 allows a natural definition
of multiplication in QMr(A

∗). Namely, for arbitrary m1, m2 ∈ QMr(A
∗), let T1, T2 ∈ Mr(A

∗) be uniquely
determined multipliers satisfyingm1 = ρ(T1) andm2 = ρ(T2). Then

m1 ◦ρ m2 = ρ(T1) ◦ρ ρ(T2) := ρ(T2T1)

gives a well defined multiplication. It is easy to see that QMr(A
∗) is a unital Banach algebra.

Note thatQMl(A
∗) as well has a natural multiplication ifA is a Banach algebra satisfying condition (K) andA∗∗ has

a mixed identity. Indeed, letMl(A
∗) be the space of all bounded left multipliers on A∗, i.e., bounded linear operators

T on A∗ satisfying T (ξ · F ) = Tξ · F , for all ξ ∈ A∗ and F ∈ A∗∗. A similar reasoning as in Theorem 2.2 shows
that the mapping λ : Ml(A

∗) → QMl(A
∗), which is defined by

λS(F, ξ) = F · Sξ (S ∈Ml(A
∗), ξ ∈ A∗, F ∈ A∗∗),

is a linear bijection. Thus, a natural multiplication on QMl(A
∗) is given by λ(S1) ◦λ λ(S2) := λ(S1S2).
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Theorem 2.4. Let A be a Banach algebra such that A∗∗ has an identity E and hypothesis (K) is valid in A. Assume
A∗ factors on the right. Then there exist an isomorphism of A∗∗ onto QMr(A

∗).

Proof. Define a map ψ : A∗∗ → QMr(A
∗) by ψ(H) = ρ(RH), where RH is the right multiplication operator on A∗

determined byH ∈ A∗∗. Then, for arbitrary ξ ∈ A∗, F ∈ A∗∗,

ψ(H)(ξ, F ) := (ξ ·H) ◦ F.

It is evident that ψ is linear and continuous. We check the multiplicativity of ψ. LetH1,H2 ∈ A∗∗. By Theorem 2.2,
there exist T1, T2 ∈ Mr(A

∗) such that ψ(H1) = ρ(T1) and ψ(H2) = ρ(T2). Hence, for arbitrary ξ ∈ A∗, F ∈ A∗∗,
we have

T1(ξ) · F = (ξ ·H1) ◦ F and T2(ξ) · F = (ξ ·H2) ◦ F ).
It follows

(ψ(H1) ◦ρ ψ(H2))(ξ, F ) = (ρ(T1) ◦ρ ρ(T2))(ξ, F ) = ρ(T2T1)(ξ, F )

= T2(T1(ξ)) ◦ F = T1ξ · (H2 ◦ F )
= ξ · (H1 ◦H2 ◦ F ) = ψ(H1 ◦H2)(ξ, F ),

which means ψ is a homomorphism.
Assume that ψ(H) = 0 for H ∈ A∗∗. Since the mapping ρ is one to one RH = 0. Hence, for each ξ ∈ A∗, one has
ξ ◦H = 0. By the assumption, A∗ factors on the right, which impliesH = 0. Thus, ψ is one to one. Homomorphism
ψ is onto as well. If m ∈ QMr(A

∗), then there exist T ∈ Mr(A
∗) such that m = ρ(T ) = ρ(RT∗(E)). This means

that ψ is onto.

Corollary 2.5. Let H be a Hilbert space and let A = K(H), the algebra of all compact operators on H. The dual of
the space of compact operators is the space of trace-class operators, C1(H). The second dual of A is B(H). Since
K(H) is a C∗-algebra we have QMr(C1(H)) ∼= B(H).

At the end we consider the group algebra of a compact group G. By [6], L1(G) is Arens regular if and only if G is
finite. However, since L1(G) is a two-sided ideal in its second dual ([5]), it satisfies condition (K). Note that the dual
L1(G)

∗ can be identified with L∞(G).
LetM(G) be the convolution algebra of all bounded regular measures on G. Recall that the convolution product of
f ∈ L1(G) and µ ∈M(G) is given by

f ∗ µ(x) =
∫
G

f(xy−1) dµ(y).

Of course,L∞(G) is a BanachL1(G)
∗∗-bimodule. However, the spaceL∞(G) has also a natural structure of a Banach

M(G)-bimodule. The same holds for L∞(G)∗ = L1(G)
∗∗. We will denote all these module multiplications by ∗.

Proposition 2.6. Let G be a compact group and A = L1(G). Then the equation

(θµ(ξ, F ) := (ξ ∗ µ) ∗ F (µ ∈M(G), ξ ∈ L∞(G), F ∈ L1(G)
∗∗).

defines a linear isomorphism betweenM(G) and a subspace of QMr(A
∗).

Proof. Note that by definition of module action (ξ ∗ µ) ∗ F = ξ ∗ (µ ∗ F ). From this and condition (K) we conclude
that θµ ∈ QMr(L1(G)

∗). Of course, θ : M(G) → QMr(L1(G)
∗) is a bounded linear map. We claim that θ is

injective. Indeed, suppose that θµ = 0. Then (ξ ∗ µ) ∗ F = 0 for all ξ ∈ L∞(G) and F ∈ (L∞(G))∗. Since L1(G)
has a b.a.i. it follows ξ ◦ µ = 0.
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Abstract

Using the fixed point and direct method, we prove the generalized Hyers-Ulam stability in Ran-
dom Normed Spaces of the following Cauchy linear functional equation

f(x+ y + a) = f(x) + f(y)

where f : X −→ Y and a is an arbitrary element inX .

1. First Section

2. Introduction

The stability problem of functional equations originated from a quationn of Ulam [18] concerning the stability of group
homomorphisms.Hyers [8] gave a first affirmative answer to the question of Ulam for Banach spaces. Aoki[1] and
Th.M.Rassias [14] proved a generalization of the Hyer’s theorem for additive and linear mapping, respectively, by
allowing the Cauchy di erence to be un- bounded. P.Gavruta [6] proved a further generalization of the Th.M.Rassias’
theorem by using a general control function.The Cauchy linear functional equation.
The functional equation

f(x+ y + a) = f(x) + f(y), x, y ∈ X (1)

A particular case of this linear functional equation is

f(x+ y) = f(x) + f(y), x, y ∈ X (2)

If f is a solution of (1.2) it is said to be additive or satis es the Cauchy equation, In [17] S.M.Ulam posed the question of
the stability of Cauchy equation: If a function f approximately statis es Cauchy’s functional equation (1.2) when dose
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there exists an exact solution of (1.2) which f approximates. The priblem has been consider for many di erent types of
writers including D. H. Hyers[9,10,11], Th.M.Rassias [11,14], Z. Gajda [5] and P. Gaveruta [7]. The interested reader
should refer to the book by D. H. Hyers G. Isac and Th. M. Rassias[11]. B.Belaid and E.Elhoucien [3], introduced the
Cauchy linear functional equation (1.1) and they established the general solution and provided a proof of functional
stability in the spirit of Hyers-Ulam, Th.M.Rassias and P.Gavruta. In the section 2, we use direct method to prove the
generalized Hyers-Ulam stability of general functional equations (1.1) in random normed spaces and in the section 3,
we use Fixed point method to prove the generalized Hyers- Ulam stability of general functional equations (1.1) random
normed spaces. Throughout this paper, the spaces of all probability distribution function is denoted by ∆+. Elements
of ∆+ are functions F : R �[1; +1] ! [0; 1], such that F is left continuous and nondecreasing on R and F (0) = 0; F (+1)
= 1. It’s clear that the subset. Throughout this paper, the spaces of all probability distribution function is denoted by
∆+. Elements of∆+ are functions F : R

∪
[−∞,+∞] → [0, 1], such that F is left continuous and nondecreasing on

R and F (0) = 0, F (+∞) = 1. It’s clear that the subset

D+ = {F ∈ ∆+ : l−F (−∞) = 1},

where l−f(x) = limt→x− f(t). is a subset of∆+ . The spaces∆+ is partially ordered by the usual pointwise ordering
of functions, that is for all t ∈ R, F ≤ G if and onaly if F (t) ≤ G(t).For every a ≥ 0, Ha(t) is the element of D+

defined by

Ha(t) =

{
0

1

t ≤ a

t > a

On can easily show that the maximal element for∆+ in this order is the distribution functionalH0(t).

Definition 2.1. A faction T : [0, 1] × [0, 1] → [0, 1] is a continuous triangular norm (briefly a t-norm) if T satisfies
the following conditions:

(1) T is commutative and associative;
(2) T is continuous;
(3) T (x, 1) = x for all x ∈ [0, 1];
(4) T (x, y) ≤ T (z, w) whenever x ≤ z and y ≤ w for all x, y, z, w ∈ [0, 1].

Three typical examples of continuous t-norms are T (x, y) = xy, T (x, y) = max{a+b−1} and T (x, y) = min(a, b).
Recall that, if T is a t-norm and {xn} is a given of numbers in [0, 1], Tn

i=1xi is defined recursively by T 1
i=1x1 and

Tn
i=1xi = T (Tn−1

i=1 xi, xn) for n ≥ 2.

Definition 2.2. A random normed spaces(briefly RN-space) is a triple (X,Φ, T ), where X is a vector space, T is a
continuous t-norm and Φ : X → D+ is a maping such that the following conditions hold:

(1) Φx(t) = H0(t) for all t > 0 if and only if x = 0.
(2) Φαx(t) = Φx(

t
|α| ) for all α ∈ R, α ̸= 0, x ∈ X and t ≥ 0.

(3) Φx+y(t+ s) ≥ T (Φx(t),Φy(s)), for all x, y ∈ X and t, s ≥ 0.

Example 2.3. Every normed spaces (X, ∥.∥) defines a random normed space (X,Φ, TM ) where for every t > 0,

Φu(t) =
t

t+ ∥u∥

and TM is the minimum t-norm. This space is called the induced random normed space.

Example 2.4. Let (X, ∥.∥) be a normed linear space and α, β > 0, and

Fx(t) =

{ αt
αt+β∥x∥

0

x ∈ X, t > 0

x ∈ X.t ≤ 0

Then (X,F, TM ) is a random normed space.
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Definition 2.5. Let (X,Φ, T ) be an RN-space.
(1) A sequence xn ∈ X is said to be convergent to x ∈ X if for all t > 0, limn→∞Φxn−x(t) = 1.
(2) A sequence {xn} in X is said to be Cauchy sequence in X if for all t > 0,limn→∞Φxn−x(t) = 1.
(3) The RN-space (X,Φ, T ) is said to be complete if every Cauchy sequence inX is convergent.

Theorem 2.6. If (X,Φ, T ) is RN-space and {xn} is a sequence such that xn → x, then limn→∞Φxn
(t) = Φx(t).

Definition 2.7. Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric onX if d satisfies
(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x) for all x, y ∈ X ,
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Theorem 2.8. Let (X, d) be a complete generalized metric space and let J : X → X be a strictly contractive mapping
with Lipschitz constant L < 1. Then for each given element x ∈ X , either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) < ∞ for all n ≥ n0;
(2) the sequence {Jnx}converges to a fixed point y∗ of J;
(3) y∗ is the uniqe fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

3. RN-stability of the functional equation (1): direct method

In this section, we use direct method to prove the generalized Hyers-Ulam stability of general quadratic functional
equations (1).

Theorem 3.1. Let X be a real linear space, (Z,Ψ,min) be an RN-space, φ : X2 → Z be a function such that for
some 0 < α < 2,

Ψφ(2x+a,2y+a)(t) ≥ Ψαφ(x,y)(t) ∀x ∈ X, t > 0, (3)

for all x, y ∈ X and t > 0
lim

n→∞
Ψφ(2nx+(2n−1)a,2ny+(2n−1)a)(2

nt) = 1.

Let (Y, µ,min) be a complete RN-space. If f : X → Y is a mapping such that for all x, y ∈ X and t > 0,

µf(x+y+a)−f(x)−f(y)(t) ≥ Ψφ(x,y)(t), (4)

then there is a unique additive mapping R : X → Y such that

R(x) := lim
n→∞

1

2n
f(2nx+ (2n − 1)a),

and
µf(x)−A(x)(t) ≥ Ψφ(x,x) ((2− α)t) . (5)

Proof. Puting y = x in(4) we see that for all x ∈ X and t > 0,

µ f(2x+a)
2 −f(x)

(t) ≥ Ψφ(x,x)(2t). (6)

Replacing x by 2nx+ (2n − 1)a in (6) and using (3), we obtain

µ 1
2n+1

f(2n+1x+ (2n+1 − 1)a)− 1

2n
f(2nx+ (2n − 1)a)(t)

≥ Ψφ(2nx+(2n−1)a),(2nx+(2n−1)a))(2× 2nt) ≥ Ψφ(x,x)(
2× rn

αn
t).

(7)
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so

µ f(rnx)

r2n
−f(x)

(
n−1∑
k=0

tαk

r2 × r2k

)
= µ∑n−1

k=0
f(rk+1x)

r2k+2 − f(rkx)

r2k

(
n−1∑
k=0

tαk

r2 × r2k

)
(8)

≥ Tn−1
k=0 µ f(rk+1x)

r2k+2 − f(rkx)

r2k

(
tαk

r2 × r2k

)
≥ Tn−1

k=0

(
Ψφ(x,0)(t)

)
= Ψφ(x,0)(t).

(9)

This implies that

µ f(rnx)

r2n
−f(x)

(t) ≥ Ψφ(x,0)

(
t∑n−1

k=0
αk

r2k+2

)
. (10)

Replacing x by rpx in (8), we obtain

µ f(rn+px)

r2n+2p − f(rpx)

r2p

(t) (11)

nonumber ≥ Ψφ(rpx,0)

(
t∑n−1

k=0
αk

r2×r2k+2p

)
(12)

nonumber ≥ Ψφ(x,0)

(
t∑n−1

k=0
αk+p

r2×r2k+2p

)
(13)

= Ψφ(x,0)

(
t∑n+p−1

k=p
αk

r2×r2k+2p

)
.

As

lim
p,n→∞

Ψφ(x,0)

(
t∑n+p−1

k=p
αk

r2k+2

)
= 1,

then { f(rnx)
r2n }∞n=1 is a Cauchy sequence in complete RN-space (Y, µ,min),so there exist some point R(x) ∈ Y such

that
lim

n→∞
r−2nf(rnx) = R(x).

Fix x ∈ X and put p = 0 in (11). Then we obtain

µ f(rnx)

r2n
−f(x)

(t) ≥ Ψφ(x,0)

(
t∑n−1

k=0
αk

r2k+2

)
, (14)

and so, for every ϵ > 0, we have

µf(x)−R(x)(t+ ϵ) ≥ T
(
µ
R(x)− f(rnx)

r2n
(ϵ), µ f(rnx)

r2n
−f(x)

(t)
)

(15)

≥ T

(
µ
R(x)− f(rnx)

r2n
(ϵ),Ψφ(x,0)

(
t∑n−1

k=0
αk

r2k+2

))
.

Taking the Limit as n → ∞ and using (15), we get

µR(x)−f(x)(t+ ϵ) ≥ Ψφ(x)((r
2 − α)t). (16)

Since ϵ was arbitrary by taking ϵ → 0 in (17), we get

µR(x)−f(x)(t) ≥ Ψφ(x,0)((r
2 − α)t). (17)
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Replacing x and y by rnx and rny, respectively, in (4), we get for all x, y ∈ X and for all t > 0,

µ 1
r2n

[f(rn+1x+rnsy)−r2f(rnx)−s2f(rny)− rs
2 [f(rn(x+y))−f(rn(x−y))]](t) ≥ Ψφ(rnx,rny)(r

2nt), (18)

Since limn→∞ Ψφ(rnx,rny)(r
nt) = 1., we conclude that

f(rx+ sy) = r2f(x) + s2f(y) +
rs

2
[f(x+ y)− f(x− y)]

To prove the uniqueness of the quadratic mapping R, assume that there exist another quadratic mapping S : X → Y
which satisfies (5). By induction one can easily show that for all n ∈ N and every x ∈ X , R(rnx) = r2nR(x) and
S(rnx) = r2nS(x). So

µR(x)−S(x)(t) = lim
n→∞

µR(rnx)

r2n
−S(rnx)

r2n
(t) (19)

≥ lim
n→∞

min

{
µR(rnx)

r2n
− f(rnx)

r2n

(
t

2

)
, µS(rnx)

r2n
− f(rnx)

r2n

(
t

2

)}
≥ lim

n→∞
Ψφ(rnx,0)

(
r2n(r2 − α)t

2rαn

)
.

Since limn→∞
r2n(r2−α)t

2rαn = ∞, we get

lim
n→∞

Ψφ(x,0)

(
r2n(r2 − α)t

2rαn

)
= 1.

Therefore, it follows that for all t > 0, µR(x)−S(x)(t) = 1 and so R(x) = S(x). This complete the proof.
□

Corollary 3.2. Let X be real linear space, (Z,Ψ,min) be an RN-space, and (Y, µ,min) a complete RN-space. Let
0 < p < 1 and y0 ∈ Z. If f : X → Y is a mapping that for all x, y ∈ X and t > 0,

µf(rx+sy)−r2f(x)−s2f(y)− rs
2 [f(x+y)−f(x−y)](t) ≥ Ψ∥x∥px0

(t), (20)

then there is a unique additive mapping R : X → Y such that

R(x) = lim
n→∞

r−2nf(rnx) (21)

and
µf(x)−R(x)(t) ≥ Ψ∥x∥px0

(r − r2p−1). (22)

Proof. Let α = r2p and φ : X2 → Z be defined by φ(x, y) = ∥x∥px0. □

Corollary 3.3. Let X be real linear space, (Z,Ψ,min) be an RN-space, and (Y, µ,min) a complete RN-space. Let
0 < p < 1 and y0 ∈ Z. If f : X → Y is a mapping that for all x, y ∈ X and t > 0,

µf(rx+sy)−r2f(x)−s2f(y)− rs
2 [f(x+y)−f(x−y)](t) ≥ Ψ(∥x∥p+∥y∥p)y0

(t), (23)

then there is a unique additive mapping R : X → Y such that

R(x) = lim
n→∞

r−2nf(rnx) (24)

and
µf(x)−R(x)(t) ≥ Ψ∥x∥py0

(r1−p − rp−1). (25)

Proof. Let α = r2p and φ : X2 → Z be defined by φ(x, y) = (∥x∥p + ∥y∥p)y0. □
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4. RN-stability of functional equation(1): fixed point method

Theorem 4.1. LetX be linear space, (Y, µ, TM ) be a complete RN-space andΦ be amapping fromX2 toD+ (Φ(x, y)
is denoted by Φx,y) such that, for some 0 < α < 1

r2 ,

Φrx,ry(t) ≤ Φx,y(αt) (26)

for all x, y ∈ X and all t > 0. Let f : X → Y be a function with f(0) = 0, such that

µf(rx+sy)−r2f(x)−s2f(y)− rs
2 [f(x+y)−f(x−y)](t) ≥ Φx,y(t) (27)

for all x, y ∈ X and all t > 0. Then
A(x) := lim

n→∞
r2nf

( x

rn

)
(28)

exists for each x ∈ X and defines a unique additive A : X → Y such that

µf(x)−A(x)(t) ≥ Φ(x,0)

(
(1− r2α)

α
t

)
. (29)

for all x, y ∈ X and t > 0.

Proof. Putting y = 0 (27), we have
µf(rx)−r2f(x)(t) ≥ Φ(x,0)(t). (30)

for all x ∈ X and all t > 0. Consider the set S := {g : X → Y, g(0) = 0} and introduce the generalized metric on S:

d(f, g) = inf{u ∈ R+ : µg(x)−h(x)(ut) ≥ Φ(x,0)(t), ∀x ∈ X, ∀t > 0} (31)

where, as usual, inf∅ = +∞. It is easy to show that (S, d) is complete. Now we consider the linear mapping
J : S → S such that

Jh(x) := r2h
(x
r

)
(32)

for all x ∈ X and we prove that J is a strictly contractive mapping with the Lipschitz constant r2α. Let g, h ∈ S be
given such that d(g, h) < ϵ. Then

µg(x)−h(x)(ϵt) ≥ Φ(x,0)(t) (33)

for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(r
2αϵt) = µr2g( x

r )−r2h( x
r )
(r2αϵt) (34)

= µg( x
r )−h( x

r )
(αϵt)

≥ Φ x
r
(αt)

≥ Φ(x,0)(t)

for all x ∈ X and all t > 0. So d(g, h) < ϵ implies that d(Jg, Jh) < r2αϵ. This means that

d(Jg, Jh) ≤ r2αd(g, h) (35)

for all g, h ∈ S. It follows from (30) that

µf(x)−r2f( x
r )
(αt) ≥ Φ(x,0)(t) (36)

for all x ∈ X and all t > 0. So
d(g, Jg) ≤ α < 1. (37)

By Theorem (??), there exists a mapping A : X → Y satisfying the following:
(1) A is a fixed point of J , the is

A
(x
r

)
=

1

r2
A(x) (38)
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for all x ∈ X . The mapping A is a unique fixed point of J in the set

Ω = {h ∈ S : d(g, h) < ∞}. (39)

This implies that A is a unique mapping satisfying (38) such that there exists a u ∈ (0,∞) satisfying

µg(x)−A(x)(ut) ≥ Φx,0(t) (40)

for all x ∈ X and all t > 0;
(2) d(Jng,A) → 0 as n → ∞. This implies the equality

lim
n→∞

r2nf
( x

rn

)
= A(x) (41)

for all x ∈ X .
(3) d(f,A) ≤ d(g.Jg)

1−r2α with g ∈ Ω, which implies the inequality

d(g,A) ≤ α

1− 2α
(42)

from which it follows
µf(x)−A(x)(t) ≥ Φx,0

(
αt

1− r2α

)
(43)

for all x ∈ X and all t > 0. This implies that the inequality (29) holds. Replacing x and y by rnx and rny, respectively
in (27), we obtain

µ
r2n[f( rx

rn + sy
rn )−r2f( x

rn )−s2f( y
rn )− rs

2 [f(
(x+y)
rn )−f(

(x−y)
rn )]](t) ≥ Φx,y

(
(

1

αr2
)nt

)
(44)

for all x, y ∈ X , all t > 0 and all n ∈ N. Since limn→∞ Φx

((
1

r2α

)n
t
)
= 1 for all x, y ∈ X , all t > 0, then we

deduce that
µA(rx+sy)−r2A(x)−s2A(y)− rs

2 [A(x+y)−A(x−y)](t) = 1, (45)

for all x, y ∈ X , all t > 0. Thus the mapping A : X → Y is additive. To prove the uniqueness of the additive
mapping A is as Theorem (3.1). □

Corollary 4.2. Let θ ≥ and let p be a real number with p > 1. Let X be a normed vector space with norm ∥.∥. Let
A : X → Y be a mapping satisfying

µf(rx+sy)−r2f(x)−s2f(y)− rs
2 [f(x+y)−f(x−y)](t) ≥

t

t+ θ(∥x∥p + ∥y∥p)
(46)

for all x, y ∈ X and t > 0. Then
A(x) := lim

n→∞
r2nf

( x

rn
)
)

(47)

exists for each x ∈ X and defines a unique additive mapping A : X → Y such that

µf(x)−A(x)(t) ≥
(rp − r2)t

(rp − r2)t+ θ∥x∥p
(48)

Proof. The proof follows from Theorem (4.1) by takig

Φx,y(t) =
t

t+ θ(∥x∥p + ∥y∥p)
(49)

for allx, y ∈ X and all t > 0. Thenwe can chooseα = r−p andwe get the desired result. □
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Theorem 4.3. LetX be linear space, (Y, µ, TM ) be a complete RN-space andΦ be amapping fromX2 toD+ (Φ(x, y)
is denoted by Φx,y) such that, for some 0 < α < r2,

Φ x
r ,

y
r
(t) ≤ Φx,y(αt) (50)

for all x, y ∈ X and all t > 0. Let f : X → Y be a function with f(0) = 0, such that

µf(rx+sy)−r2f(x)−s2f(y)− rs
2 [f(x+y)−f(x−y)](t) ≥ Φx,y(t) (51)

for all x, y ∈ X and all t > 0. Then

A(x) := lim
n→∞

f(rnx)

r2n
(52)

exists for each x ∈ X and defines a unique additive A : X → Y such that

µf(x)−A(x)(t) ≥ Φ(x,0)(
(r2 − α)t

r
). (53)

for all x, y ∈ X and t > 0.

Corollary 4.4. Let θ ≥ 0 and let p be a real number with 0 < p < 1. LetX be a normed vector space with norm ∥.∥.
Let f : X → Y be a mapping satisfying

µf(rx+sy)−r2f(x)−s2f(y)− rs
2 [f(x+y)−f(x−y)](t) ≥

t

t+ θ(∥x∥p + ∥y∥p)
(54)

for all x, y ∈ X and t > 0. Then

A(x) := lim
n→∞

f(rnx)

r2n
(55)

exists for each x ∈ X and defines a unique additive mapping A : X → Y such that

µf(x)−A(x)(t) ≥
(r2 − r2p)t

(r2 − r2p)t+ θ∥x∥p
(56)

Proof. The proof follows from Theorem (4.3) by takig

Φx,y(t) =
t

t+ θ(∥x∥p + ∥y∥p)
(57)

for allx, y ∈ X and all t > 0. Thenwe can chooseα = r2p andwe get the desired result. □
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Abstract

In this paper, we state and prove an extension of the inequalities obtained by Moradi et al. for
sector matrices and perspective of two means. Among them Let A,B ∈

∏α
n and f, g ∈ m.

Then

Df,g(ℜA|ℜB) + (cos2 α− 1)ℜ(AσgB)

≤ ℜDf,g(A|B)

≤ Df,g(ℜA|ℜB) + (1− cos2 α)ℜ(AσfB).

1. Introduction

LetMn be the class of all n×n complex matrices. Inequalities among elements ofMn has been an active research area
due to its applications in various fields, not to mention its role in understanding the algebra Mn. However, the order
among elements in Mn is restricted to the so-called Hermitian matrices. A matrix A ∈ Mn is said to be Hermitian if
A∗ = A, where A∗ is the conjugate transpose of A. Recall that a matrix A ∈ Mn is said to be accretive if ℜA > 0,
where ℜA is the real part of A defined by ℜA = A+A∗

2 and ℑA = A−A∗
2i . The class of accretive matrices inMn will

be denoted by
∏

n. It is clear that Pn ⊂
∏

n. Since elements of
∏

n are not Hermitian, the predefined order does not
apply to

∏
n. This is why inequalities among accretive matrices are usually stated in terms of their real parts. We must

introduce sectorial matrices to deal with inequalities in
∏

n. If 0 ≤ α < π
2 , and if A ∈ Mn is such that

{⟨Ax, x⟩ : x ∈ Cn, ∥x∥ = 1} ⊂ {z ∈ C : ℜz > 0, |ℑz| ≤ (tanα)ℜz},

then A will be called a sectorial matrix and we simply write A ∈
∏

n, where ℑz denotes the imaginary part of z. We
emphasize here that whenever we use the notation

∏
n in this paper, we implicitly understand that 0 ≤ α < π

2 . We
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also remark that a matrix is accretive if and only if it is sectorial [4]. The study of accretive matrices differs from that
of Hermitian matrices because a partial order among members of

∏
n is not as well established as that in Hn. So, in

studying inequalities among members of
∏

n, we usually refer to the real parts of these elements, noting that the real
part of any matrix is in Hn. Our target in this paper is to further study possible inequalities among matrices in

∏
n,

where we extend some of the well-established inequalities in Pn or M+
n to the class

∏
n. For simplicity, we will use

the notation:
m = {f : (0,∞) → (0,∞); f is a matrix monotone function with f(1) = 1}. We will use the following lemma in
our main results proof:

Lemma 1.1. ([2]), Let A,B ∈
∏α

n . Then AσB ∈
∏α

n and

ℜAσℜB ≤ ℜ(AσB) ≤ sec2(α) (ℜAσℜB).

Malekinejad et al. [10] were able to prove the general condition of the above inequalities. For example, they gave the
following inequality.

Lemma 1.2. ([10]), If σ1 and σ2 are two means with σ1 ≤ σ2 and A,B ∈
∏α

n , then

ℜ(Aσ1B) ≤ sec2 α ℜ (Aσ2B) .

In particular
cos2 α ℜ(A!tB) ≤ ℜ(A♯tB) ≤ sec2 α ℜ(A∇tB). (1)

We refer the reader to [2–6, 8–11, 14] for an almost comprehensive overview of the progress that has been made in
studying inequalities in

∏
n. If A, B are two strictly positive operators, and 0 ≤ t ≤ 1 is a real number, then the

relative operator entropy S(A|B) is defined by

S(A|B) = A
1
2 log(A− 1

2BA− 1
2 )A

1
2

Moreover, the Tsallis relative operator entropy is defined by

Tt(A|B) :=
A♯tB −A

t
.

It is known that [13, Theorem 5.18]
lim
t→0

Tt(A|B) = S(A|B).

For more details, we refer the reader to[15].

Definition 1.3. Letσf be amatrixmean related tomatrixmonotone function f ∈ m. ThenAσfB := A
1
2 f(A− 1

2BA− 1
2 )A

1
2

is often sometimes called a perspective [1]. We may define a difference between two perspectives as Df,g(A|B) =
AσfB −AσgB, for f, g ∈ m.

For two operator means σf and σg with representing functions f and g, we write σ ≤ τ if AσB ≤ AτB for every
two positive operators A and B or equivalently if f(t) ≤ g(t) for all positive t ∈ R. Moradi et al. [12] proved the
following relation between ℜ Df,g(A|B) and Df,g(ℜA|ℜB).

Lemma 1.4. [12] Let A,B ∈
∏α

n and f, g ∈ m. Then

Df,g(ℜA|ℜB) + (1− sec2 α)(ℜAσgℜB) (2)
≤ ℜ Df,g(A|B)

≤ Df,g(ℜA|ℜB) + (sec2 α− 1)(ℜAσgℜB).

Finally, they have the following double inequality, which bounds Df,g(A|B) between certain differences between the
harmonic mean !t and the arithmetic mean∇t.
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Lemma 1.5. [12] Let A,B ∈
∏α

n and f, g ∈ m be such that f ′(1) = g′(1) = t. Then

cos2 α ℜ(A!tB)− sec2 α ℜ(A∇tB) ≤ ℜ (Df,g(A|B)) ≤ sec2 α ℜ(A∇tB)− cos2 α ℜ(A!tB). (3)

If we take f(x) := xt−1
t + 1, (0 < t ≤ 1) and g(x) := 1 in (2), then we have

Tt(ℜA|ℜB) + (1− sec2 α)ℜA ≤ ℜ (Tt(A|B)) ≤ sec2 αTt(ℜA|ℜB) + (sec2 α− 1)ℜA.

Since it is known the relation Tt(ℜA|ℜB) ≤ ℜ(Tt(A|B)) for accretive matrices A, B and 0 < t < 1 in [14], the
lower bound of ℜ(Tt(A|B)) in the inequalities above does not give a refined bound. However, we obtain the upper
bound of ℜ(Tt(A|B)).
Ghazanfari and Malekinejad [7, Theorem 2.1] obtained the upper bound of ℜ(Tt(A|B)) as follows:

Lemma 1.6. Let A,B ∈
∏α

n and 0 < t ≤ 1. If there exists a m > 1 such that mℜA ≤ ℜB, then there is a
β > 1 + tan2 α

t such that
(β − 1)t

(β − 1)t− tan2 α
≤ m,

and
ℜ(Tt(A | B)) ≤ βTt(ℜA | ℜB),

consequently
ℜ(S(A | B)) ≤ βS(ℜA | ℜB).

2. Main Result

In this section, we present our results. We studyDf,g(A|B) for accretive matricesA,B; as a new track in this research
field. The following theorem is an extension of [12, Theorem 3.2].

Theorem 2.1. Let A,B ∈
∏α

n and f, g ∈ m. Then

Df,g(ℜA|ℜB) + (cos2 α− 1)ℜ(AσgB) (4)
≤ ℜDf,g(A|B)

≤ Df,g(ℜA|ℜB) + (1− cos2 α)ℜ(AσfB).

Proof. By Lemma 1.1, we have

Df,g(ℜA|ℜB) = ℜAσfℜB −ℜAσgℜB
≤ ℜ(AσfB)− cos2 α ℜ(AσgB)

= ℜ(AσfB)−ℜ(AσgB) + ℜ(AσgB)− cos2 α ℜ(AσgB)

= ℜ(AσfB)−ℜ(AσgB) + (1− cos2 α)ℜ(AσgB)

= ℜDf,g(A|B) + (1− cos2 α)ℜ(AσgB),

and

Df,g(ℜA|ℜB) = ℜAσfℜB −ℜAσgB

≥ cos2 α ℜ(AσfB)−ℜ(AσgB)

= ℜ(AσfB)−ℜ(AσfB) + cos2 α ℜ(AσfB)−ℜ(AσgB)

= ℜDf,g(A|B) + (cos2 α− 1)ℜ(AσfB).
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Remark 2.2. By Lemma 1.1 inequality (2) equivalent to

Df,g(ℜA|ℜB) + (1− sec2 α)ℜ(AσgB)

≤ ℜDf,g(A|B)

≤ Df,g(ℜA|ℜB) + (sec2 α− 1)ℜ(AσfB).

Since sec2 α− 1 ≥ 1− cos2 α, therefore Inequalities (4) are stronger than Inequalities (2).

The following theorem is an extension of [12, Theorem 3.3].

Theorem 2.3. Let A,B ∈
∏α

n and f, g ∈ m such that σf ≤ σg . Then

ℜDf,g(A|B) ≤ (1− cos2 α)ℜ(AσfB) ≤ (sec2 α− 1)ℜ(AσgB). (5)

Proof. By Lemmas 1.1 and 1.2, we have

ℜDf,g(A|B) = ℜ(AσfB)−ℜ(AσgB)

≤ ℜ(AσfB)− cos2 α ℜ(AσfB)

= (1− cos2 α)ℜ(AσfB)

≤ sec2 α(1− cos2 α)ℜ(AσgB)

= (sec2 α− 1)ℜ(AσgB).

Remark 2.4. If we take f(x) := (1− t) + tx and g(x) := xt in Lemma 1.5, then we obtain

(1− sec2 α) ℜ(A∇tB) + cos2 α ℜ(A!tB) ≤ ℜ(A♯tB) ≤ (1 + sec2 α)ℜ(A∇tB)− cos2 α ℜ(A!tB), (6)

and if we take f(x) := xt and g(x) :=
(
(1− t) + tx−1

)−1 in Lemma 1.5, then we obtain

(1 + cos2 α) ℜ(A!tB)− sec2 α ℜ(A∇tB) ≤ ℜ(A♯tB) ≤ sec2 α ℜ(A∇tB) + (1− cos2 α) ℜ(A!tB). (7)

However, we find from the inequality cos2 α ℜ(A!tB) ≤ ℜ(A∇tB) that both inequalities above do not improve the
known inequalities (1).
On the other hand if we take f(x) :=

(
(1− t) + tx−1

)−1 and g(x) := xt in Theorem 2.3, then we obtain

cos2 α ℜ(A!tB) ≤ ℜ(A♯tB)

and if we take f(x) := xt and g(x) := (1− t) + tx in Theorem 2.3, then we obtain

ℜ(A♯tB) ≤ sec2 α ℜ(A∇tB).

Therefore inequalities (5) are stronger than inequalities (3).

References

[1] Kubo, F. and Ando, T. (1980), “Means of positive linear operators,” Math. Ann., 246 , 205–224.
[2] Bedrani, Y. Kittaneh, F. and Sababeh, M. (2021), “From positive to accretive matrices,” Positivity.,https:// doi.org

/10.1007/ s 11117-021-00831-8.
[3] Y. Bedrani, F. Kittaneh, and M. Sababheh, (2021), “Numerical radii of accretive matrices,” Linear Multilinear Algebra., 69(5) , 957–970.
[4] Bedrani, Y. Kittaneh, F. and Sababheh, M. (2022), “matrices and matrix convex functions,” Results Math., 77, 52 .

https://doi.org/10.1007/s00025-021-01590-4.
[5] Lin, M. (2014), “Singular value inequalities for matrices with numberical ranges in a sector,” J. Oper. Matrices., 8 , 1143-1148.
[6] Ghazanfari, A. andMalekinejad, S. (2021), “ Heronmeans and Pólya inequality for sector matrices,” J. Bull. Math. Soc. Sci. Math. Roumanie.

Tome., 64 , 329-339.



60 S. Malekinejad and H. Mohammadzadehkan / The 4th National Congress on Mathematics and Statistics

[7] Ghazanfari, A. and Malekinejad, S. (2021), “New inequalities for entropy and Tsallis entropy of two accretive operators,” in 52nd Annual
Iranian Mathematics Conference, Kerman, IR.Iran.

[8] Lin, M.(2016), “Some inequalities for sector matrices,” J. Oper. Matrices., 10, 915-921.
[9] Liu, J. T. and Wang, Q. W. (2017) “ More inequalities for sector matrices,” J. Bull. Iran. Math. Soc., https://doi.org/10.

1007/s41980 -018- 0069-y.
[10] Malekinejad, S. Khosravi, M. and Sheikhhosseini, A. (2022), “Mean inequalities for sector matrices involving positive linear maps, ” Posi-

tivity., 26 ,1-17.
[11] Mao, Y. (2020), “Inequalities for the Hienz Mean of Sector Matrices,” Bull. Iran. Math. Soc., https://doi.org /10.1007/s 41980-020-00357-x.
[12] Moradi, H. R. Furuichi, S. and Sababheh, M. “Further properties of accretive matrices,” https://arxiv.org/abs/2210

.08678.
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Abstract

In this paper, we investigate the properties of the direct sum of subspace-diskcyclic operators.
We prove that subspace-diskcyclicity of two operators implies subspace-diskcyclicity of any of
them. Also, we show that the direct sum of two subspace-diskcyclic operators are subspace-
diskcyclic. Especially, the direct sum of a subspace-diskcyclic operator with itself is subspace-
diskcyclic.

1. Introduction

Let X be a complex Banach space and let B(X) be the set of linear continuous operators from X to X . Suppose
T ∈ B(X). By orb(T, x) we mean:

orb(T, x) = {x, Tx, T 2x, ...}.

An operator T is hypercyclic if there exists some vector x such that orb(T, x) be dense in X [3]. If M is a closed
subspace of X , T is calledM -hypercyclic if there is x ∈ X such that orb(T, x) ∩M is dense inM [4].
Some other types of operators are also defined. For example diskcyclic operators are defined in [6] as follows.

Definition 1.1. An operator T ∈ B(X) is called diskcyclic if there is a vector x ∈ X such that the disk orbit

Dorb(T, x) = {λTn(x);λ ∈ C, |λ| ≤ 1, n ∈ N0},

is dense in X and X is called a diskcyclic vector for T .

Recall that D = {x ∈ C : |x| ≤ 1} is the closed unit disk.
By the definition, that the set of hypercyclic operators is a subset of the set of diskcyclic operators. Authors in [2]
charactrized diskcyclic forward weighted shifts. Recall that a forward weighted shift with respect to the canonical
basis {en : n ∈ Z} if T (en) = wnen+1, where the weight sequence {wn : n ∈ Z} is a bounded subset of C \ {0}.
Also, they stated a diskcyclicity criterion as follows.
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Theorem 1.2. ([2]) Let T ∈ B(X). If there exists an increasing sequence of integers {nk} ∈ N and two dense sets
D1, D2 ∈ X such that:

(a) For each y ∈ D2, there exists a sequence {xk} in X such that xk → 0, and Tnk(xk) → y.

(b) ||Tnk(x)||||xk|| → 0 for all x ∈ D1.

The concept of subspace-diskcyclicity is defined in [1] as follows.

Definition 1.3. Let T ∈ B(X) and let M be a closed subspace of X . Then T is called an M -diskcyclic operator if
there exists a vector x ∈ X such thatDorb(T, x)∩M is dense inM . Such a vector x is called anM -diskcyclic vector
for T .

Authors stated in [1] that there are subspace-diskcyclic operators that are not subspace-hypercyclic. Also, they stated
some sufficient conditions for subspace-diskcyclicity. One can see more about subspace-diskcyclic operators in [5].
It is proved in [5] that any diskcyclic operator is subspace-diskcyclic.

Theorem 1.4. If T ∈ B(X) is a diskcyclic operator, then there is a non-trivial closed subspace M of X such that T
is M -diskcyclic.

In this paper, we investigate properties of the subspace-diskcyclicity operators and their direct sum. We show that
subspace-diskcyclicity of any power of an operator implies subspace-diskcyclicity of the operator. Also, we prove
that subspace-diskcyclicity of two operators implies subspace-diskcyclicity of any of them. Moreover, the direct sum
of two subspace-diskcyclic operators leads to subspace-diskcyclicity of any of them.

2. Main results

We begin with proving a primarily property of subspace-diskcyclic operators.

Theorem 2.1. Let T ∈ B(X) and M be a closed subspace of X . If Tn is M -diskcyclic for some n ∈ N, then T is
M -diskcyclic.

Proof. Suppose Tn is M -diskcyclic for some n ∈ N. Hence, there is x ∈ X such that Dorb(Tn, x) ∩M is dense in
M . But

Dorb(Tn, x) ∩M ⊆ Dorb(T, x) ∩M ⊆ M.

Hence, orb(T, x) ∩M is dense inM . So, T isM -diskcyclic.

In the next theorem, we prove that subspace-diskcyclicity of an operator implies some multiples of it.

Theorem 2.2. Let T ∈ B(X) and M be a closed subspace of X . If T is M -diskcyclic, then µT is M -diskcyclic for
any µ ∈ C with |µ| = 1.

Proof. Let µ ∈ C with |µ| = 1. T isM -diskcyclic. Hence, there is x ∈ X such that Dorb(T, x) ∩M is dense inM .
Let U be a nonempty open set. So, there are n ∈ N and λ ∈ D such that λTnx ∈ U . But

λTnx = (
λ

µn
)µnTnx

and | λ
µn | = |λ|

|µn| ≤ 1. So, for any nonempty open set U there are κ ∈ C and n ∈ N such that |κ| ≤ 1 and
κ(µnTn)x ∈ U . Hence, µT isM -diskcyclic.

Now, we begin to investigate the properties of the direct sum of the subspace-diskcyclic operators. First, we prove
that subspace-diskcyclicity of the direct sum of two operators, implies subspace-diskcyclicity of any of them. In the
following Y denotes a Banach space.
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Theorem 2.3. Let T ∈ B(X) and S ∈ B(Y ). Let M be a closed subspace of X and N be a closed subspace of Y .
If T ⊕ S is M ⊕N -diskcyclic, then T is M -diskcyclic and S is N -diskcyclic.

Proof. T ⊕S isM ⊕N -diskcyclic. So, there is x ∈ X and y ∈ Y such that Dorb(T ⊕S, x⊕ y)∩ (M ⊕N) is dense
in M ⊕N . Let m ∈ M and n ∈ N . Hence, m⊕ n ∈ M ⊕N . By M ⊕N -diskcyclicity of T ⊕ S, there are λ ∈ C
with |λ| ≤ 1 and k ∈ N such that

∥λ(T ⊕ S)k(x⊕ y)− (m⊕ n)∥M⊕N ≤ ε.

On the oter hand

∥λT kx−m∥M ≤ ∥λ(T ⊕ S)k(x⊕ y)− (m⊕ n)∥M⊕N ,

∥λSky − n∥N ≤ ∥λ(T ⊕ S)k(x⊕ y)− (m⊕ n)∥M⊕N .

So,

∥λT kx−m∥M ≤ ε and ∥λSky − n∥N ≤ ε.

Hence, we can conclude that Dorb(T, x) ∩M is dense inM and Dorb(S, y) ∩N is dense in N .

By Theorem 2.1, Theorem 2.2 and Theorem 2.3 we can state the following corollaries.

Corollary 2.4. Let T ∈ B(X) and S ∈ B(Y ). Let M be a closed subspace of X and N be a closed subspace of
Y . If Tn ⊕ Sm is M ⊕ N -diskcyclic for some m,n ∈ N, then µT is M -diskcyclic and λS is N -diskcyclic for any
µ, λ ∈ C with |µ| = |λ| = 1.

Proof. ByTheorem 2.3, Tn isM -diskcyclic andSm isN -diskcyclic. Now, Theorem 2.1 asserts thatT isM -diskcyclic
and S is N -diskcyclic.
Hence, for any µ, λ ∈ C with |µ| = |λ| = 1, µT isM -diskcyclic and λS is N -diskcyclic by Theorem 2.2.

Corollary 2.5. Let T ∈ B(X). Let M be a closed subspace of X . If T ⊕ T is M ⊕ M -diskcyclic, then T is
M -diskcyclic.

Proof. It is sufficient to consider S := T and N := M in Theorem 2.3.

We also can generalize Theorem 2.3 to a finite number of operators as follows. the proof is similar to the proof of
Theorem 2.3

Lemma 2.6. Suppose Xi, 1 ≤ i ≤ n, are Banach spaces. Let Mi, 1 ≤ i ≤ n, be a closed subspace of Xi. Let
Ti ∈ B(Xi). If T1 ⊕ T2 ⊕ ...⊕ Tn isM1 ⊕M2 ⊕ ...⊕Mn-diskcyclic then for any 1 ≤ i ≤ n, Ti is anMi-diskcyclic
operator.

Now, we prove that subspace-diskcyclicity of two operators implies subspace-diskcyclicity of their direct sum.

Theorem 2.7. Let T ∈ B(X) and S ∈ B(Y ). Let M be a closed subspace of X and N be a closed subspace of Y .
If T is M -diskcyclic and S is N -diskcyclic, then T ⊕ S is M ⊕ {0}-diskcyclic and {0} ⊕N -diskcyclic.

Proof. By hypothesis T isM -diskcyclic. So, there is x ∈ X such that Dorb(T, x) ∩M is dense inM .
Supposem ∈ M . Hence, there are λ ∈ D and k ∈ N such that

∥λT kx−m∥M ≤ ε.

Hence,

∥λ(T ⊕ S)k(x⊕ 0)− (m⊕ 0)∥M⊕{0} ≤ ε.
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That means T ⊕ S isM ⊕ {0}-diskcyclic.
Similarly, S is N -diskcyclic. So, there is y ∈ Y such that Dorb(T, y) ∩ N is dense in N . Suppose n ∈ N . Hence,
there are µ ∈ D and p ∈ N such that

∥µSpy − n∥N ≤ ε.

Hence,

∥µ(T ⊕ S)p(0⊕ y)− (0⊕ n)∥{0}⊕N ≤ ε.

That means T ⊕ S is {0} ⊕N -diskcyclic.

We show in Theorem 2.7 that if T and S are subspace-diskcyclic, then T ⊕ S is subspace-diskcyclic with respect to
at least two subspaces. Now, this question arises that can we conclude M ⊕ N -diskcyclicity of T ⊕ S, when T is
M -diskcyclic and S is N -diskcyclic?
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Abstract

In this paper, we introduce and investigate multi subspace-supercyclic operators. We prove that
any subspace-hypercyclic operator andmulti-supercyclic operator aremulti subspace-supercyclic.
Also, we prove that an operator is multi subsace-supercyclic if and only if any powers of it is
multi subspace-supercyclic.

1. Introduction and Preliminaries

LetH be an infinite-dimensional and separable Hilbert space. We denote the set of all linear continuous operators on
H by B(H). An operator T ∈ B(H) is called hypercyclic, if there is h ∈ H such that orb(T, h) is dense inH , where

orb(T, h) = {h, Th, T 2h, ...}.

If for some h ∈ H ,

Corb(T, h) = {λTnh, λ ∈ C and n ∈ N0}

is dense in H , then T is called a supercyclic operator [2]. Hypercyclicity, supercyclicity and related topics are con-
sidered for decades. One can see more about them in [2].
We say that T is multi-supercyclic, if there is {x1, x2, ..., xn} ⊆ H such that

∪n
i=1 Corb(T, xi) is dense in H [5].

Subspace-hypercyclic operators were defined by Madore and Martinez-Avendano in [3]. We say an operator T ∈
B(H) is subspace-hypercyclic with respect to a closed subspace M of H if there is x ∈ H such that orb(T, x) ∩M
is dense in M . Bamerni, Kadets and Kilicman in [1] answered to a question that is mentioned in [3] by stating the
following theorem.

Theorem 1.1. ([1]) Let A be a dense subset of a Hilbert spaceH . Then there exists a non-trivial closed subspaceM
of H such that A ∩M is dense in M .

∗Talker
Email address: m.mosapour@cfu.ac.ir; mosapor110@gmail.com (Mansooreh Moosapoor)



66 Mansooreh Moosapoor / The 4th National Congress on Mathematics and Statistics

By Theorem 1.1, they stated in [1] that any hypercyclic operator is subspace-hypercyclic.
Subspace-supercyclic operators are introduced in [7] as follows.

Definition 1.2. An operator T ∈ B(H) is called subspace-supercyclic with respect to a closed subspace M of H if
there is x ∈ H such that Corb(T, x) ∩M is dense inM .

Authors in [7] constructed some examples of this type of operators. They also proved several theorems about them.
Zhang and Zhou in [6] stated a subspace-supercyclicity criterion and some criteria equivalent to it.
In [4] one can see some examples of operators that are subspace-supercyclic but they are not subspace-hypercyclic.
Also, it is proved that subspace-supercyclic operators exists on finite-dimensional spaces. Moreover, we have the
following theorem in [4]

Theorem 1.3. Let T ∈ B(H) be an invertible operator. If T is subspace-supercyclic, then Tn and T−n are subspace-
supercyclic for any n ∈ N.

Now it is natural to define multi subspace-supercyclic operators as follows.

Definition 1.4. Let T ∈ B(H) and letM be a closed and non-zero subspace of H . We say that T is multi subspace-
supercyclic with respect toM or multiM -supercyclic if there exists {x1, x2, ..., xn} ⊆ H such that

n∪
i=1

(Corb(T, xi) ∩M) = M.

We say F = {x1, x2, ..., xn} ⊆ H is a minimal set for multi M -supercyclicity for T ∈ B(H) if for any E ⊂ F we
have ∪

xi∈E

(Corb(T, xi) ∩M) ̸= M.

It is clear by the definition that subspace-supercyclic operators are multi subspace-supercyclic.
In this paper, we investigate multi subspace-supercyclic operators. We prove that any multi-supercyclic operator is
multi subspace-supercyclic. Also, we prove that multi subsace-supercyclicity of an operator implies multi subspace-
supercyclicity of any powers of it and vice versa.

2. Properties of Multi Subspace-supercyclic Operators

We start this section by proving that multi-supercyclic operators are multi subspace-supercyclic.

Theorem 2.1. Suppose T ∈ B(H) is a multi-supercyclic operator. Then there is a closed and non-trivial subspace
M of H such that T is multi subspace-supercyclic.

Proof. Let x1, x2, ..., xn ∈ H such that
∪

1≤i≤n Corb(T, xi) = H . By Theorem 1.1, there exists a closed and non-
trivial subspaceM of H such that (

∪
1≤i≤n Corb(T, xi)) ∩M is dense inM . On the other hand,∪

1≤i≤n

(Corb(T, xi) ∩M) = (
∪

1≤i≤n

Corb(T, xi)) ∩M.

So, T is multi subspace-supercyclic with respect toM .

In the next theorem, we prove that multi subspace-supercyclicity of Tn can be concluded from multi subspace-
supercyclicity of T for any n ∈ N.

Theorem 2.2. Let T ∈ B(H). If T is multi subspace-supercyclic with respect to M , then for every n ∈ N, Tn is a
multi subspace-supercyclic operator with respect to M .
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Proof. For n = 1 the proof is clear. Suppose n ≥ 2. By multi M -supercyclicity of T , there are x1, x2, ..., xm in H
such that

∪
1≤i≤m(Corb(T, xi)∩M) is dense inM . Let yi,j = T jxi, where 1 ≤ i ≤ m and 1 ≤ j ≤ n−1. Consider

that ∪
1≤i≤m

(Corb(T, xi) ∩M) =
∪

1≤i≤m
0≤j≤n−1

(Corb(Tn, yi,j) ∩M). (1)

The left side of (1) is dense in M . So, the right is dense in M too. Therefore, Tn is multi subspace-supercyclic with
respect toM .

Now by Theorem 2.1 and Theorem 2.2, we can conclude the following corollary.

Corollary 2.3. Suppose T ∈ B(H) is a multi-supercyclic operator. Then there is a closed and non-trivial subspace
M of H such that Tn is multi subspace-supercyclic for any n ∈ N.

Also, we can state the following theorem.

Theorem 2.4. Let T ∈ B(H). Suppose that there exists n ∈ N such that Tn is multi subspace-supercyclic with
respect to M . Then T is multi subspace-supercyclic with respect to M .

Proof. Let n be a positive integer greater than or equal to 2 such that Tn is multi subspace-supercyclic with respect
toM . So there are x1, x2, ..., xm ∈ H such that∪

1≤i≤m

(Corb(Tn, xi) ∩M) = M. (2)

But

Corb(Tn, xi) ∩M ⊆ Corb(T, xi) ∩M. (3)

Now by (2) and (3), we conclude that
∪

1≤i≤m(Corb(T, xi)∩M) is dense inM . Therefore T is multiM -supercyclic.

By Theorem 2.2 and Theorem 2.4 we can conclude the following corollary.

Corollary 2.5. Let T ∈ B(H). Then T is multi subspace-supercyclic with respect to M if and only if Tn is multi
subspace-supercyclic with respect to M for any n ∈ N.

In the next theorem, we show that if T is subspace-supercyclic, then any power of it is multi subspace-supercyclic.

Theorem 2.6. Let T ∈ B(H) be an M -supercyclic operator. Then Tn is multi M -supercyclic for any n ∈ N.

Proof. It is clear when n = 1. Now let n ≥ 2. Let y be an M -supercyclic vector for T . So, Corb(T, y) ∩M = M .
Let x1 := x, x2 := Tx, ..., xn := Tn−1x. Hence,

n∪
j=1

(Corb(Tn, T j−1y) ∩M)

= (Corb(Tn, y) ∪ Corb(Tn, T y) ∪ ... ∪ Corb(Tn, Tn−1y)) ∩M

= C{y, Ty, ..., Tn−1y, Tny, Tn+1y, ...} ∩M

= Corb(T, y) ∩M.

Therefore Tn is multiM -supercyclic.

By using Theorem 2.6, we can make the following example.
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Example 2.7. Let T be a supercyclic operator on a Hilbert space H . If we consider T ⊕ I : H ⊕ H → H ⊕ H ,
then T ⊕ I is subspace-supercyclic with respect to M := H ⊕ {0}. Now by Theorem 2.6, we can deduce that
(T ⊕ I)n = Tn ⊕ I is multiM -supercyclic for any n ∈ N.

Corollary 2.8. Let T ∈ B(H), whereH is an infinite-dimensional Hilbert space. If Tn = I for some n ∈ N, then T
can not be subspace-supercyclic.

Proof. Consider that Tn = I for some n ∈ N. Without loss of generality, we can assume that n ≥ 2. Suppose
on contrary that T is subspace-supercyclic. By Theorem 2.6, Tn must be multi subspace-supercyclic. But this is
impossible since the identity operator can not be multi subspace-supercyclic.
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Abstract

The Leray-Lions operators accept many attentions because they are flexible enough to be spec-
ified to different elliptic operators. The goal of this paper is to obtain the existence of at least
three distinct weak solutions for a Leray-Lions problem of r(x)-Kirchhoff type and nonexis-
tence result in the exponent constant case. The technique is constructed on variational methods.

1. Introduction

The study of Leray-Lions type operator is a new subject for investigation, because they happen in some field, like as
electrorheological fluids [12], image processing [14] and etc. Recently, some fourth order Leray-Lions type problems
have been investigated. For instance, in [10] by using critical point theorem of [2], the authors ensured multiplicity
of weak solutions for a nonlocal biharmonic system including Hardy potential and Leray-Lions operator. In [9], a
multiplicity theorem for a fourth-order Leray Lions equation including indefinite weights, was established.
Relatively speaking, biharmonic r(x)−Kirchhoff type problems consisting of Leray-Lions operators have rarely been
considered. In [13], by applying critical point theory and variational approach, some multiplicity results for a Leray-
Lions r(x)-Kirchhoff type problem was obtained. Besides, the study of bi-nonlocal problems including Kirchhoff
type operator together with the extermal force term with a nonlocal coefficient can better qualify multiple biological
and physical systems (see [5]).
Here, we consider the following form of binonlocal r(x)−Kirchhoff type problems including Leray-Lions operator:{

M1

(
Hr(x)(u)

)
∆

(
a(x,∆u) + |u|r(x)−2u

)
= λM2

(
K(u)

)
f(x, u(x)) in Ω,

u = ∆u = 0 on ∂Ω,
(1)
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in which
Hr(x)(u) =

∫
Ω

[
A(x,∆u) +

1

r(x)
|u|r(x)

]
dx, K(u) =

∫
Ω

F (x, u(x))dx, (2)

and Ω ⊂ RN (N ≥ 2) represents a bounded domain with smooth boundary, F (x, t) =
∫ t

0
f(x, γ)dγ, a : Ω×R → R

denotes a Carathéodory function obeying the subsequent assumptions:

(A1) a(x, 0) = 0, for a.e. x ∈ Ω.

(A2) a verifies the growth condition

|a(x, t)| ≤ c
(
|t|r(x)−1 + g(x)

)
, ∀t ∈ R, a.e. x ∈ Ω,

in which c > 0 denotes some constant, g ∈ L
r(x)

r(x)−1 (Ω), denotes a nonnegative function and r ∈ C(Ω) denotes
a Log-Holder continuous function obeying the relationship

1 < r− := inf
x∈Ω

r(x) ≤ r(x) ≤ r+ := sup
x∈Ω

r(x) <
N

2
. (3)

(A3) For every t, s ∈ R, (
a(x, s)− a(x, t)

)
(s− t) ≥ 0 for a.e. x ∈ Ω.

(A4) There is 0 < c̄ < 3min{c, 1}, obeying the following relationship

c̄|t|r(x) ≤ min{r(x)A(x, t), a(x, t)t} ∀t ∈ R, a.e. x ∈ Ω,

in which A : Ω× R → R denotes the primitive function of a, in other words,

A(x, t) =

∫ t

0

a(x, γ)dγ,

the operators ∆
(
a(x,∆u)

)
represents the fourth order Leray-Lions. If we consider

a(x, t) = %(x)|t|r(x)−2t, (4)

in which r ∈ C+(Ω), r
+ < +∞, and select % ∈ L∞(Ω) obeying the relationship

∃%0 > 0 ; %(x) ≥ %0 > 0, for a.e. x ∈ Ω,

so, (4) satisfies conditions (A1)− (A4) and we achieve the following operator

%(.)∆
(
|∆u|r(.)−2∆u

)
.

Whenever % ≡ 1, the upper operator becomes the well-known r(x)−biharmonic operator∆2
r(.), [8].

Now, we give the hypothesis concerning the functionsM1,M2 and f :

(M) M1 : R+ → R+ andM2 : R+ → R+ denote continuous functions and there exist three constantsm1,m2,m
′
2 >

0 with 0 < m2 ≤ m′
2 and two constants β, α > 1 obeying the relationship

M1(t) ≥ m1t
α−1, m2t

β−1 ≤ M2(t) ≤ m′
2t

β−1, ∀t ≥ 0.

f : Ω× R → R denotes a function described as

f(x, t) =

{
f1(x, t) |t| ≥ 1,

f2(x, t) |t| < 1,
(5)

and verifies the following assumption:
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(F) There are oi ∈ C(Ω) and ci > 0, i = 1, 2, obeying the relationship

|fi(x, t)| ≤ ci|t|oi(x)−1, 1 < o−1 ≤ o1(x) ≤ o+1 <
αr−

β
<

αr+

β
< o−2 ≤ o2(x) < r∗2(x), (6)

in which r∗2(x) will be defined by (8) withm = 2.

The paper contains four sections as follows: Section 2 gives some background and notations related to the function
space. The multiplicity and nonexistence theorems are presented in Section 3, whereas the proofs of this theorems are
stated in subsections 4.1 and 4.2, respectively.

2. Background

We begin by recalling some essential notions of the generalized Sobolev spaces that will be applied in the next sections.
For any r ∈ C(Ω) obeying the relationship (3), we describe the Lebesgue variable exponent space as

Lr(x)(Ω) :=

u : Ω → R measurable :
∫
Ω

|u(x)|r(x)dx < +∞

 ,

including the norm

|u|r(x) := inf

ν > 0 :

∫
Ω

∣∣∣∣u(x)ν

∣∣∣∣r(x) dx ≤ 1

 ,

and the Holder-type inequality∣∣∣ ∫
Ω

uvdx
∣∣∣ ≤ ( 1

r−
+

1

( r
r−1 )

−

)
|u|r(x)|v| r(x)

r(x)−1

, ∀u ∈ Lr(x)(Ω), v ∈ L
r(x)

r(x)−1 (Ω), (7)

keeps true.

Proposition 2.1 (see [7, Proposition 2.7]). If u ∈ Lr(x)(Ω), then

min
{
|u|r

−

r(x), |u|
r+

r(x)

}
≤

∫
Ω

|u(x)|r(x)dx ≤ max
{
|u|r

−

r(x), |u|
r+

r(x)

}
.

Form = 1, 2, the variable exponent Sobolev space is described as

Wm,r(x)(Ω) :=
{
u ∈ Lr(x)(Ω) : Dδu ∈ Lr(x)(Ω), |δ| ≤ m

}
,

in which δ = (δ1, . . . , δN ) denotes a multi-index, |δ| =
N∑
j=1

δj and Dδu = ∂|δ|

∂x
δ1
1 ...∂x

δN
N

u.

The norm of this space is characterized by

∥u∥m,r(x) := inf
{
ν > 0 : Br(x)(

u

ν
) ≤ 1

}
,

in which the modular Br(x) : W
m,r(x)(Ω) → R, is described as

Br(x)(u) =

∫
Ω

(|∆u(x)|r(x) + |u|r(x))dx.
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LetW 1,r(x)
0 (Ω) = C∞

0 (Ω)
inW 1,r(x)(Ω)

. Our workspace Z is described as

Z := W 2,r(x)(Ω) ∩W
1,r(x)
0 (Ω),

with
∥u∥Z = ∥u∥m,r(x),

which displays separable and reflexive Banach space (see [4, 11]). Furthermore, the next embedding proposition take
place.

Proposition 2.2 (see [6, Theorem 2.3]). If h ∈ C(Ω) obeying the relationship 1 < h− ≤ h+ ≤ ∞ and h(x) ≤
r∗m(x), ∀x ∈ Ω, in which

r∗m(x) =

{
Nr(x)

N−mr(x) r(x) < N
m ,

+∞ r(x) ≥ N
m .

(8)

Then the embeddingZ ↪→ Lh(x)(Ω) is continuous. If h(x) < r∗m(x) for each x ∈ Ω, the embedding becomes compact.

By Proposition 2.1, We arrive at the subsequent Proposition.

Proposition 2.3. For every u ∈ Z, we get

(i) ∥u∥Z < 1(> 1;= 1) ⇔ Br(x)(u) < 1((> 1;= 1);

(ii) min
{
∥u∥r−Z , ∥u∥r+Z

}
≤ Br(x)(u) ≤ max

{
∥u∥r−Z , ∥u∥r+Z

}
.

Remark 2.4. From conditions (A1) − (A4), we conclude that the function A(x, t) is C1-Carathéodory and there is
c̃ > 0, obeying the following relation

c̄

r(x)
|t|r(x) ≤ |A(x, t)| ≤ c̃

(
|t|r(x) + g(x)|t|

)
, ∀t ∈ R and a.e. x ∈ Ω, (9)

in which the constants c̄, is as in condition (A4).

Note that if Z∗ represents the dual space of Z, then a mapping G : Z → Z∗ is of (S+) type if uj ⇀ u and
lim supj→∞⟨G(uj), uj − u⟩ ≤ 0, imply uj → u over Z.
A functionalB : Z → R is sequentiallyweakly lower semicontinous ifuj ⇀ u overZ impliesB(u) ≤ lim infj→∞ B(uj).

Proposition 2.5 (see [3]). Suppose that (A1)− (A4) are fulfilled and the functionalHr(x) : Z → R characterized by
(2). Then we get

(i) Hr(x) ∈ C1(Z,R) with derivative denoted by

⟨H ′
r(x)(u), η⟩ =

∫
Ω

a(x,∆u)∆ηdx+

∫
Ω

|u|r(x)−2uηdx, (10)

for all η ∈ Z.

(ii) Hr(x) is sequentially weakly lower semicontinuous.
(iii) H ′

r(x) : Z → Z ′ denotes a mapping of (S+) type .

Proposition 2.6. Suppose that (F) is fulfilled. Consider the functionalK : Z → R by (2). Then we get

(i) K ∈ C1(Z,R) together with derivative denoted by

⟨K ′(u), η⟩ =
∫
Ω

f(x, u)ηdx, (11)

for all η ∈ Z.
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(ii) K is sequentially weakly continuous over Z, that is, uj ⇀ u implies that K(uj) → K(u).

Proof. By (F), the proof of statement (i) is immediate. Now let {uj} be any sequence with uj ⇀ u over Z. By using
(F) and (7), we arrive at

|K(uj)−K(u)| ≤ c1

∫
Ω

|u+ µj(uj − u)|o1(x)−1|uj − u|dx+ c2

∫
Ω

|u+ µj(uj − u)|o2(x)−1|uj − u|dx

≤ 2c1

∣∣∣|u+ µj(uj − u)|o1(x)−1
∣∣∣

o1(x)

o1(x)−1

|uj − u|o1(x)

+ 2c2

∣∣∣|u+ µj(uj − u)|o2(x)−1
∣∣∣

o2(x)

o2(x)−1

|uj − u|o2(x)

(12)

in which ∀x ∈ Ω; 0 ≤ µj(x) ≤ 1. Besides, since Z ↪→ Loi(x)(Ω) is compact for i = 1, 2, uj → u in Loi(x)(Ω). So,
it follows from (12) that (ii) holds true .

Now, we will express the subsequent theorem that will be indispensable to prove the multiplicity result of this paper.

Proposition 2.7 (see [1, Theorem 2.1]). Assume that J, I : Z → R denote two continuously Gâteaux differentiable
functionals over reflexive and separable real Banach space Z. If I(z) ≥ 0 for each z ∈ Z and there is z0 ∈ Z
together with I(z0) = J(z0) = 0 and there are η0 > 0, z1 ∈ Z so that

(i) η0 < I(z1);

(ii) supI(z)<η0
J(z) < η0

J(z1)
I(z1)

.
Moreover, put

ξ =
ση0

η0
J(z1)
I(z1)

− supI(z)<η0
J(z)

,

with σ > 1, and if I − λJ denotes a sequentially weakly lower semicontinuous functional, verifies the (PS)
condition and

(iii) lim∥z∥→+∞(I(z)− λJ(z)) = +∞ for all λ ∈ [0, ξ].

Then there is a number µ > 0 and an open interval L ⊂ [0, ξ], so that for all λ ∈ L, the equation

I ′(z)− λJ ′(z) = 0,

possesses at least 3 distinct solutions over Z whose norms are smaller than µ.

3. Main results

We consider two functionals J, I : Z → R as

I(u) = M̂1

(
Hr(x)(u)

)
, J(u) = M̂2

(
K(u)

)
∀u ∈ Z, (13)

in which M̂i(t) =
∫ t

0
Mi(γ)dγ for i = 1, 2 and Hr(x)(u) andK(u) are defined as (2).

By Propositions 2.5 and 2.6, J, I ∈ C1(Z,R) and

⟨I ′(u), η⟩ = M1

(
Hr(x)(u)

)
⟨H ′

r(x)(u), η⟩, ⟨J ′(u), η⟩ = M2

(
K(u)

)
⟨K ′(u), η⟩, ,

for all η, u ∈ Z, in which H ′
r(x) andK

′ as defined in (10) and (11), respectively.
Any function u ∈ Z is named a weak solution of problem (1), if the following relationship is verified:

⟨I ′(u), η⟩ − λ⟨J ′(u), η⟩ = 0, ∀η ∈ Z. (14)

The multiplicity result can be described by the following theorems.
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Theorem 3.1. (Multiplicity result) Suppose that (A1) − (A4), (M) and (F) are fulfilled. Furthermore, there exist
t̄ > 0 with F (x, t̄) > 0 for all x ∈ Ω. Then, there is an open interval L ⊂ [0, ξ] and a number µ > 0 so that for each
λ ∈ L problem (1) possesses at least 3 weak solutions whose norms are smaller than µ, in which ξ will given later
one.

In the special case, when r(x) ≡ r be a constant, problem (1) reduces to the following r-Kirchhoff type problem{
M1

(
Hr(u)

)
∆

(
a(x,∆u) + |u|r−2u

)
= λM2

(
K(u)

)
f(x, u(x)) in Ω,

u = ∆u = 0 on ∂Ω,
(15)

and the nonexistence result are stated by the subsequent theorem.

Theorem 3.2. (Nonexistence result in the exponent constant case) Suppose that (A4) is fulfilled. In case that r(x) ≡ r,
the conditions (M) and (F) change as follow, respectively:

(M′) M1,M2 : R+ → R+ denote two continuous functions and there are two numbersm1,m
′
2 > 0 and two constant

β, α > 1 verifying
M1(t) ≥ m1t

α−1, M2(t) ≤ m′
2t

β−1.

(F′) There is c3 > 0 so that

|f(x, t)| ≤ c3|t|
αr
β −1, 1 <

αr

β
< r∗, ∀t ∈ R and ∀ a.e. x ∈ Ω.

Then there is λ0 > 0 so that, problem (15) hasn’t any nontrivial weak solution over Z for any λ < λ0.

4. Proof the of the main results

4.1. Proof of Theorem 3.1
We will use Proposition 2.7 to prove Theorem 3.1. So, it is necessary to check all conditions of Proposition 2.7.

Lemma 4.1. The functional I − λJ is sequentially weakly lower semicontinuous over Z for each λ > 0.

Proof. Assume that {uj} is a sequence that uj ⇀ u over Z. By (ii) in Proposition 2.5, we get

lim inf
j→∞

Hr(x)(uj) ≥ Hr(x)(u).

Besides, the function t → M̂1(t) is monotone. So, we deduce that

lim inf
j→∞

I(uj) = lim inf
j→∞

M̂1

(
Hr(x)(uj)

)
≥ M̂1

(
lim inf
j→∞

Hr(x)(uj)
)
≥ M̂1

(
Hr(x)(u)

)
= I(u).

So, I is sequentially weakly lower semicontinuous over Z. By (ii) in Proposition 2.6, we arrive at

lim
j→∞

K(uj) = K(u).

Besides, since the function t → M̂2(t) is continuous, we arrive at

lim
j→∞

J(uj) = lim
j→∞

M̂2

(
K(uj)

)
= M̂2

(
lim
j→∞

K(uj)
)
= M̂2

(
K(u)

)
= J(u).

Hence, J is sequentially weakly continuous and hence I − λJ is sequentially weakly lower semicontinuous.

Lemma 4.2. I − λJ represents a coercive functional, that is, lim∥u∥→+∞[I(u)− λJ(u)] = +∞ .
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Proof. Let u ∈ Z with ∥u∥Z > 1. Put

Ω1 = {x ∈ Ω; |u(x)| ≥ 1}, Ω2 = {x ∈ Ω; |u(x)| < 1}.

By (M), (F) and (9), we arrive at

(I − λJ)(u) ≥ m1(min{1, c̄})α

α(r+)α

(
Br(x)(u)

)α

− λ
m′

2

β

( c1

o−1

∫
Ω1

|u|o1(x)dx+
c2

o−2

∫
Ω2

|u|o2(x)dx
)β

.

By (6), we infer that

(I − λJ)(u) ≥ m1(min{1, c̄})α

α(r+)α

(
Br(x)(u)

)α

− λ
m′

2

β

( c1

o−1

∫
Ω1

|u|o1(x)dx+
c2

o−2

∫
Ω2

|u|o1(x)dx
)β

≥ m1(min{1, c̄})α

α(r+)α

(
Br(x)(u)

)α

− λ
m′

2

βo−1

(
max{c1, c2}

)β(∫
Ω

|u(x)|o1(x)dx
)β

.

Now, since the embedding Z ↪→ Lo1(x)(Ω) is continuous, we infer that

∃ e1 > 0; e1|u|o1(x) ≤ ∥u∥Z .

Since ∥u∥Z > 1, by Proposition 2.1, we arrive at∫
Ω

|u|o1(x)dx ≤ max
{ 1

e
o+1
1

,
1

e
o−1
1

}
∥u∥o

+
1

Z .

So, by using (ii) in proposition 2.3, we infer that

(I − λJ)(u) ≥ m1(min{1, c̄})α

α(r+)α
∥u∥αr

−

Z − λ
m′

2

βo−1

(
max{c1, c2}

)β(
max

{ 1

e
o+1
1

,
1

e
o−1
1

})β

∥u∥βo
+
1

Z .

By (6), we have αr− > βo+1 and so I − λJ is coercive.

Lemma 4.3. For each λ > 0, I − λJ verifies the (PS) condition, that is, each sequence {uj} obeying the following
condition ∣∣∣(I − λJ)(uj)

∣∣∣ ≤ c, (I ′ − λJ ′)(uj) → 0 over Z∗ as j → ∞, (16)

admits a convergent subsequence in Z.

Proof. Let {uj} be a (PS) sequence for I − λJ . By Lemma 4.2, I − λJ is coercive on Z, so by the first relation
in (16), the sequence {uj} is bounded over Z. Via the reflexivity of Z, there is a subsequence indicated by {uj} and
some u ∈ Z with uj ⇀ u. We will prove that {uj} → u. Indeed, since uj ⇀ u over Z, we deduce that

M1(Hr(x)(uj))⟨H ′
r(x)(uj), (uj − u)⟩ − λM2(K(uj))⟨K ′(uj), (uj − u)⟩ → 0. (17)

By (F), we infer that∣∣∣⟨K ′(uj), uj − u⟩
∣∣∣ ≤ c1

∫
Ω1

|uj |o1(x)−1|uj − u|dx+ c2

∫
Ω2

|uj |o2(x)−1|uj − u|dx.

Since the embedding Z ↪→ Lo1(x) is compact, by (6) and (7), we deduce that∣∣∣⟨K ′(uj), uj − u⟩
∣∣∣ ≤c1

∫
Ω1

|uj |o1(x)−1|uj − u|dx+ c2

∫
Ω2

|uj |o1(x)−1|uj − u|dx

≤ max{c1, c2}
∫
Ω

|uj |o1(x)−1|uj − u|dx

≤ 2max{c1, c2}
∣∣∣|uj |o1(x)−1

∣∣∣
o1(x)

o1(x)−1

|uj − u|o1(x) → 0. (18)
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Combining (18) with the continuity of the functionM2 and (ii) in Proposition 2.6, we arrive at

M2

(
K(uj)

)
⟨K ′(uj), (uj − u)⟩ → 0. (19)

Hence by (17) and (19), we arrive at

M1(Hr(x)(uj))⟨H ′
r(x)(uj), (uj − u)⟩ → 0.

Besides, by (ii) in Proposition 2.3 and (M), we arrive at∣∣∣M1

(
Hr(x)(uj)

)
⟨H ′

r(x)(uj), (uj − u)⟩
∣∣∣ ≥ ∣∣∣m1(min{1, c̄})α−1

(r+)α−1

(
Br(x)(u)

)α−1∣∣∣× ∣∣∣⟨H ′
r(x)(uj), (uj − u)⟩

∣∣∣
≥

∣∣∣m1(min{1, c̄})α−1

(r+)α−1
min

{
∥uj∥(α−1)r−

Z , ∥uj∥(α−1)r+

Z

}∣∣∣
×

∣∣∣⟨H ′
r(x)(uj), (uj − u)⟩

∣∣∣ ≥ 0.

If ∥uj∥Z → 0 then uj → 0 over Z. Otherwise, ∥uj∥Z is bounded in Z. So

lim
j→∞

⟨H ′
r(x)(uj), (uj − u)⟩ = 0.

By (iii) in Proposition 2.5, we obtain uj → u over Z and this ends the proof.

Here, we are prepare to prove Theorem 3.1.
Proof of Theorem 3.1 Obviously,

I(u) ≥ 0 ∀u ∈ Z, I(0) = J(0) = 0 (20)

Given t̄ as in Theorem 3.1. If Ω̃ ⊂ Ω denotes a sufficiently large compact subset and ū ∈ C∞
0 (Ω), so that 0 ≤ ū(x) ≤ t̄

over Ω\Ω̃, ū(x) = t̄ over Ω̃. Then by (M) and (F), we arrive at

J(ū) ≥ m2

β
(K(ū))β ≥ m2

β

(∫
Ω̃

F (x, t̄)dx− c1

o−1

∫
(Ω\Ω̃)∩Ω1

|ū|o1(x)dx− c2

o−2

∫
(Ω\Ω̃)∩Ω2

|ū|o2(x)dx
)β

≥ m2

β

(∫
Ω̃

F (x, t̄)dx− c1

o−1
max

{
|t̄|o

+
1 , |t̄|o

−
1

})∣∣∣(Ω\Ω̃) ∩ Ω1

∣∣∣− c2

o−2
max

{
|t̄|o

+
2 , |t̄|o

−
2

})∣∣∣(Ω\Ω̃) ∩ Ω2

∣∣∣)β

> 0,

while |Ω\Ω̃| is small enough. Besides, we have

I(ū) = M̂1

(
Hr(x)(ū)

)
≥ m1(min{1, c̄})α

α(r+)α
min

{
|t̄|αr

+

, |t̄|αr
−
}
|Ω̃|α > 0.

Hence
0 <

J(ū)

I(ū)
. (21)

Now, choose 0 < η0 < min
{

m1(min{1,c̄})α
α(r+)α , I(ū)

}
. So, (i) in Proposition 2.7 is achieved with z1 = ū. Whenever

I(u) < η0, we arrive at

m1(min{1, c̄})α

α(r+)α

(
Br(x)(u)

)α

≤ I(u) < η0 <
m1(min{1, c̄})α

α(r+)α
. (22)

So
Br(x)(u) < 1,
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and by (i) in Proposition 2.3, ∥u∥Z < 1 which implies by (22) that

∥u∥r
+

Z = min{∥u∥r
+

Z , ∥u∥r
−

Z } ≤ Br(x)(u) ≤
( η0α(r

+)α

m1(min{1, c̄})α
) 1

α

= (η0c4)
1
α .

So, we get
∥u∥Z ≤ (η0c4)

1

αr+ . (23)

By (F) and (6), we arrive at

J(u) ≤ m′
2

β
(K(u))β ≤ m′

2

β

( c1

o−1

∫
Ω1

|u|o1(x)dx+
c2

o−2

∫
Ω2

|u|o2(x)dx
)β

≤ m′
2

β

( c1

o−1

∫
Ω1

|u|o2(x)dx+
c2

o−2

∫
Ω2

|u|o2(x)dx
)β

≤ m′
2

βo−1

(
max{c1, c2}

)β(∫
Ω

|u|o2(x)dx
)β

,

Now, by the continuous embedding Z ↪→ Lo2(x)(Ω), we infer that

∃ e2 > 0; e2|u|o2(x) ≤ ∥u∥Z .

Since ∥u∥Z < 1, by Proposition 2.1, we have∫
Ω

|u|o2(x)dx ≤ max
{ 1

e
o+2
2

,
1

e
o−2
2

}
∥u∥o

−
2

Z .

By (23), we arrive at

J(u) ≤ m′
2

βo−1

(
max{c1, c2}

)β(
max

{ 1

e
o+2
2

,
1

e
o−2
2

})β

∥u∥βo
−
2

Z

≤ m′
2

βo−1

(
max{c1, c2}

)β(
max

{ 1

e
o+2
2

,
1

e
o−2
2

})β

(η0c4)
βo

−
2

αr+ = c5η
βo

−
2

αr+

0 .

Note that by (6), we obtain αr+ < βo−2 . Therefore, relation (21) permits us to select η0 small enough so that

supI(u)<η0
J(u)

η0
<

J(ū)

I(ū)
, (24)

and (ii) in Proposition 2.7 is achieved. Lemmas 4.1-4.3 and relations (20),(21) and (24) permits us to apply Proposition
2.7 with z0 = 0, z1 = ū. Thus there exists a number µ > 0 and an open interval L ⊂ [0, ξ], in which

ξ =
ση0

η0
J(û)
I(û) − supI(u)<η0

J(u)
,

with σ > 1, so that for all λ ∈ L problem (1) possesses at the minimum 3 distinct solutions over Z whose norms are
smaller than µ.

4.2. Proof of Theorem 3.2
Note that we consider the exponent constant case r(x) ≡ r be a constant. So, our work space will be Z = W 2,r ∩
W 1,r

0 (Ω) with

∥u∥Z0
=

(
Br(u)

) 1
r

=
(∫

Ω

(|∆u|r + |u|r)dx
) 1

r

.
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Since 1 < αr
β < r∗, the embedding Z ↪→ L

αr
β (Ω) is continuous. Let e3 > 0 be the best Sobolev constants for that

embedding, that is,

e3 = inf
0 ̸=u∈Z

∥u∥Z
|u|αr

β

.

Now, if u denotes any weak solution for the problem (1). By (M′), (A4) and (F′), there is a number c6 > 0 so that

m1(min{1, c̄})α

(r)α−1
∥u∥αrZ0

≤ M1

(
Hr(x)(u)

)
⟨H ′

r(x)(u), u⟩ = λM2

(
K(u)

)
⟨K ′(u), u⟩ ≤ λc6m

′
2|u|αrαr

β
.

By taking λ0 = m1(min{1,c̄})α
(r)α−1

eαr
3

m′
2c6

, Theorem 3.2 is proved.
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Abstract

A characterization of multiplicative linear functionals in Banach algebras was given by Gleason-
Kahane-Zelazko. A version of the Gleason-Kahane-Zelazko theoremwas also proved for certain
algebras. In this paper, we investigate a characterization of multiplicative linear mappings, in
particular, multiplicative linear functionals in continuous inverse Fréchet algebras.

1. Introduction

Throughout this paper, all algebras are complex and unital. The identity element of an algebra A is denoted by e.
Multiplicative linear mappings, in particular, multiplicative linear functionals play a crucial role in functional analysis
and topological algebras. One of the famous results in this direction is the classical Gleason-Kahane-Zelazko theo-
rem [3], which states that every unital, invertibility-preserving, linear functional on a Banach algebra is necessarily
multiplicative. Kowalski and Slodkowski [5] gave a characterization of multiplicative linear functionals on a Banach
algera A without the linearity assumption. The characterization is:
Let f : A → C satisfying f(0) = 0 and f(x) − f(y) ∈ spA(x − y) for each x, y ∈ A. Then f is multiplicative and
linear. In fact, they generalized the classical Gleason-Kahane-Zelazko theorem on Banach algeras for not necessary
linear functionals. In this paper, We try to generalize the Kowalski-Slodkowski theorem for continuous inverse Fréchet
algebras.

2. Preliminaries

In this section, we present a collection of definitions and known results.

∗Talker
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Definition 2.1. For an algebra A, the spectrum spA(x) of an element x ∈ A is the set of all λ ∈ C such that λe − x
is not invertible in A. The spectral radius rA(x) of an element x ∈ A is defined by rA(x) = sup{|λ| : λ ∈ spA(x)}.
Also, the set of all invertible elements of A is denoted by Inv(A).

Definition 2.2. Definition 1.1. Let X and Y be metric spaces with metrics dX and dX respectively. A mapping
f : X → Y is called Lipschitz iff there exists an 0 ≤ M such that

dY (f(x), f(y)) ≤ MdX(x, y) for all x, y ∈ X.

Definition 2.3. A topological algebra A is called a Q-algebra if the set of all invertible elements of A is open.

Definition 2.4. [2] An F -algebra is a complete metrizable topological algebra. A locally m-convex F -algebra is
called a Frechet algebra.

Definition 2.5. [2] A continuous inverse algebra is a locally convex algebra in which the set of invertible elements is
a neighbourhood of e and inversion is continuous at e.

Proposition 2.6. [2, 1.2] Let A be a continuous inverse algebra. Then Inv(A) is an open subset of A, and inversion
is a continuous map from Inv(A) into itself.

Theorem 2.7. [7, 4.1] Let A be a continuous inverse algebra and φ : A −→ C be a linear functional on A. If
φ(x) ∈ spA(x), for all x ∈ A, then φ is multiplicative.

Definition 2.8. (Gateaux derivative). Suppose that X and Y are locally convex topological vector spaces, U ⊂ X
is open, and f : X → Y is a function. The Gateaux differential of f at a ∈ U in the direction x ∈ X , denoted by
(Df)a(x), is defined as

(Df)a(x) = lim
r→0

f(a+ rx)− f(a)

r
.

If the limit exists for every x ∈ X , then the function f is called Gateaux differentiable at a [1].

Definition 2.9. [5] Let X be a vector space. We say that a mapping φ : X → C is complex (real) linear (shortly
C-linear or R-linear ) if it is additive and homogeneous with respect to complex (real) scalars.

Definition 2.10. [5] We say that a mapping in a Frechet space has a real differential at a point if it has a Gateaux
differential with respect to real scalars which, in addition, is continuous.

Lemma 2.11. [6, 3.1] Let X be a real or complex topological vector space. If a functional f : X → C is additive
and continuous, then it is R-linear.

3. Multiplicative linear mappings

A characterization of multiplicative linear functionals in Banach algebras was given by Gleason-Kahane-Zelazko [4].
A version of the Gleason-Kahane-Zelazko theorem is also generalized for continuous inverse algebras [7]. Now, we
weaken the assumption of this theorem and prove it for continuous inverse Fréchet algebras without linearity. Before
giving the main theorem, we need the following lemmas.

Lemma 3.1. Let f : C → C be an entire function. If f is a Lipschitz function, then it is an affine mapping.

Proof. Let f be holomorphic in an convex open set U . If f is Lipschitz, then for every distinc z1 and z2 in U , there
exists a constantm > 0 such that ∣∣∣∣f(z2)− f(z1)

z2 − z1

∣∣∣∣ ≤ m.

Keeping z1 fixed and letting z2 → z1, we have | f ′(z1)| ≤ m. Since z1 is arbitrary, f’ is bounded in U . Now, if f
is entire and Lipschitz, then f ′ is bounded in U = C. Since derivatives of entire functions are themselves entire, it
follows from Liouville’s theorem that f ′ is constant. This implies that f is an affine mapping, i.e., for all z ∈ C ,
f(z)=mz+n , wherem,n are complex constants.
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Lemma 3.2. LetA be a continuous inverse algebra and φ be R-linear onA such that φ(x) ∈ spA(x) for each x ∈ A,
then φ is C-linear.

Proof. The proof of this lemma follows by the same reasoning as in [5, 2.1].

Now, we prove the main result.

Theorem 3.3. Let (A, (pn)) be a continuous inverse Fréchet algebra and let f : A → C satisfy f(0) = 0 and
f(x)− f(y) ∈ spA(x− y) for each x, y ∈ A. Then f is multiplicative and linear.

Proof. We use the same way as in the proof of Theorem1.2 in [5]. First we may assume that A is separable. Suppose
that f has a differential at a point a ∈ A. We have

f(a+ rx)− f(a)

r
∈ spA(a+ rx− a)

r
= spA(x), r ∈ R, r ̸= 0, x ∈ A.

So,

(Df)a(x) = lim
r→0

f(a+ rx)− f(a)

r
∈ spA(x).

Thus, by Lemma 2.11, the differential is R-linear, and by Lemma 3.2, it is C-linear. On the other hand, since A is a
Q-algebra, by [4, 6.18], we have rA(x) ≤ pm(x), for somem ∈ N and for all x ∈ A. Hence, we get

|f(x)− f(y)| ∈ |spA(x− y)| ≤ pm(x− y).

Thus, f is a Lipschitz function. By [5, 2.3] and [5, 2.4], we obtain that f is an entire function. We define the function
fa,b : C → C by fa,b(z) = f(az + b) , for a, b ∈ A. Therefore, fa,b is Lipschitz and entire. By Lemma 3.1, it is
affine. By the same reasoning as in [5, 1.2], and the Gleason-Kahane-Zelazko theorem for continuous inverse algebras
[7, 4.1], we conclude that f is linear and multiplicative, when A is separable. Now, we consider the general case. Let
a, b ∈ A. Clearly, [e,a,b] (the subalgebra of A generated by e,a,b in A) is continuous inverse Fréchet subalgebra of
A. The function f of Theorem 3.3, restricted to subalgebra [e,a,b] of A satisfies conditions of the theorem. As [e,a,b]
is separable, from the preceding part of the proof, it follows that f

∣∣
[e,a,b] is multiplicative and linear. Since a and b is

arbitrary, we deduce that f is multiplicative and linear in the whole of A.

It is well known that every Banach algebra is a continuous inverse Fréchet algebra, but the following example shows
that the converse may be false in general.

Example 3.4. [7, 3.1] Consider the algebra A = C∞[0, 1] of all C∞- functions on [0, 1] with topology τ defined by
the algebra seminorms

pn(f) = sup
0≤t≤1

[
n∑

k=0

|f (k)(t)|
k!

].

Then (A, τ) is a Frechet algebra whose the set of invertible elements is open. So A is a continuous inverse algebra,
but not a Banach algebra.

In the following, we present several results of Theorem 3.3.

Theorem 3.5. LetA be a continuous inverse Fréchet algebra and letB be a semisimple and commutative continuous
inverse Fréchet algebra. Suppose that f is a mapping from A into B such that

spB(f(x) + f(y)) ⊆ spA(x+ y), for all x, y ∈ A.

Then f is linear and multiplicative.
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Theorem 3.6. Let A be a continuous inverse Fréchet algebra and let f : A → C be a functional such that

f(a) ∈ spA(a), for all a ∈ A.

If the Real differentials of f are constant, then f is linear and multiplicative.

Theorem 3.7. Let A and B be a continuous inverse Fréchet algebras such that B is commutative and semisimple.
Let f : A → C be a functional such that

spB(f(a)) ⊆ spA(a), for all a ∈ A.

If the Real differentials of f are constant, then f is linear and multiplicative.

Theorem 3.8. Let A and B be continuous inverse Fréchet algebras and let B be commutative and semisimple. If
f : A → B is a linear mapping such that f(eA) = eB and f(a) ∈ Inv(B) for a ∈ Inv(A), then f is multiplicative.

Theorem 3.9. LetA be a continuous inverse Fréchet algebra and letB be a semisimple and commutative continuous
inverse Fréchet algebra and p(u, v) = λu+µv (λµ ̸= 0) be two-variable polynomials. Suppose that T is a mapping
from A into B such that

spB(p(Tf, Tg)) ⊆ spA(p(f, g)), for all f, g ∈ A.

If λ+ µ ̸= 0, then T is linear and multiplicative.

Corollary 3.10. If λ+ µ = 0, in the above theorem, then T − T (0) is linear and multiplicative.

4. Conclusion

In this paper, we investigated some charactrizations of multiplicative linear mappings, in particular, multiplicative
linear functionals in continuous inverse Fréchet algebras.
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Abstract

In this paper, first we present some nonempty intersection theorems without the compactness
of the domain of the set-valued maps. Then, by using these results, some variational relation
problems are investigated under new conditions.

1. Introduction and preliminaries

There are some different problems in nonlinear analysis such as optimization, equilibrium problem and variational
inclusion problem which have a similarity in their structure and it is useful to have a unified model to investigate them.
In [6], Luc introduced a general framework for these problems as variational relation problem.
Let A,B, Y are nonempty sets. Consider nonempty-valued set-valued maps S1 : A ⇒ A,S2 : A ⇒ B and T :
A × B ⇒ Y and let R(a, b, y) be a relation for a ∈ A, b ∈ B and y ∈ Y. Then the variational relation problem was
defined in [6] as follows:
Find ā ∈ A such that ā ∈ S1(ā) and R(ā, b, y) holds for each b ∈ S2(ā), y ∈ T (ā, b).
After that, many studies have been done to solve this problem in different spaces and different versions of variational
relation problems were introduced; see for example [1, 2].
Let X,Y, Z be nonempty sets, P : Y ⇒ Z be a nonempty-valued map and R(x, y, z) be a relation for x ∈ X, y ∈ Y
and z ∈ Z. In this paper, we study the following variational relation problem [1]:

(VRP) Find ȳ ∈ Y such that for each x ∈ X there exists z ∈ P (ȳ) such that R(x, ȳ, z) holds.

Here, first by using a KKM result, we obtain an intersection theorem for generalized KKM maps and then the varia-
tional relation problem (VRP) will be investigated.
Through this paper, all nonempty finite subsets of a set K is denoted by ⟨K⟩ and for each A ∈ ⟨K⟩, the convex hull
of A is denoted by convA.
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Let X,Y be topological spaces. A set-valued map F : X ⇒ Y is said to be upper semicontinuous, if for any closed
subset B of Y the set {x ∈ X : F (x) ∩B ̸= ∅} is closed. Let X be a subset of a vector space E, then the set-valued
map F : X ⇒ E is called to be a KKM map if

convA ⊆
∪
x∈A

F (x), for each A ∈ ⟨X⟩.

Let T, S : X ⇒ Y be set-valued maps. The set-valued map S is said to be a generalized KKM map with respect to
(w.r.t.) T if for each A ∈ ⟨X⟩,

T (convA) ⊆ S(A)

where S(A) = ∪x∈AS(x). The set-valued map F is said to be topological pseudomonotone [3] if

cl(
∩

u∈[a,b]

F (u)) ∩ [a, b] =
∩

u∈[a,b]

F (u) ∩ [a, b], ∀a, b ∈ X

and F is said to be intersectionally closed on A ⊆ X , if∩
x∈A

cl(F (x)) = cl(
∩
x∈A

F (x)).

2. Main results

In [4], Ky Fan extended the well-knownKKMLemma [5] to infinite dimensional topological vector spaces and showed
some applications of this result. Since then, it has become a useful tool for solving many other problems such as
game theory and equilibrium problems. In [3], several new KKM-type theorems under new coercivity and closedness
conditions were obtained. Here, in view of this theorem and studying some intersection theorems, we investigate a
variational relation problem which includes many other problems such as variational and equilibrium problems.

Theorem 2.1. ([3])LetK be a nonempty and convex subset of a Hausdorff topological vector space E and F : K ⇒
K. Suppose that the following conditions hold:

(A1) F is a KKM map;

(A2) for each A ∈ ⟨K⟩, the set-valued map F ∩ convA is intersectionally closed on convA;

(A3) F is topological pseudomonotone;

(A4) there exist a nonempty subsetB ofK and a nonempty compact subsetD ofK such that conv(A∪B) is compact,
for any A ∈ ⟨K⟩, and for each y ∈ K \D there exists x ∈ conv(B ∪ {y}) such that y /∈ F (x).

Then,
∩

x∈K F (x) ̸= ∅.

Lemma 2.2. Suppose that S, T : X ⇒ Z be set-valued maps with nonempty values such that S is generalized KKM
map w.r.t. T. Then the map H : X ⇒ X such that H(x) := {y ∈ X : T (y) ∩ S(x) ̸= ∅} is a KKM map.

Theorem 2.3. Let X be a nonempty convex subset of a Hausdorff topological vector space E, Z be a nonempty set
and S, T : X ⇒ Z be set-valued maps with nonempty values such that

(I) S is generalized KKM map w.r.t. T ;

(II) for each x ∈ X and for each A ∈ ⟨X⟩, the set {y ∈ X : T (y) ∩ S(x) ̸= ∅} ∩ convA is intersectionally closed
on convA;

(III) for each x ∈ X, the set {y ∈ Y : T (y) ∩ S(x) ̸= ∅} is topological pseudomonotone;

(IV) there exist a nonempty subsetB ofX and a nonempty compact subsetD ofX such that conv(A∪B) is compact,
for any A ∈ ⟨X⟩, and for each y ∈ X \D there exists x ∈ conv(B ∪ {y}) such that T (y) ∩ S(x) = ∅.
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Then, there exists a point x̄ ∈ X such that for each x ∈ X,

T (x̄) ∩ S(x) ̸= ∅.

Corollary 2.4. Let X be a nonempty convex subset of a Hausdorff topological vector space E, Z be a nonempty set
and S, T : X ⇒ Z be set-valued maps with nonempty values such that

(I) S is generalized KKM map w.r.t. T ;

(II) for each x ∈ X, the set {y ∈ Y : T (y) ∩ S(x) ̸= ∅} is closed;

(III) there exist a nonempty subsetB ofX and a nonempty compact subsetD ofX such that conv(A∪B) is compact,
for any A ∈ ⟨X⟩, and for each y ∈ X \D there exists x ∈ conv(B ∪ {y}) such that T (y) ∩ S(x) = ∅.

Then, there exists a point x̄ ∈ X such that for each x ∈ X,

T (x̄) ∩ S(x) ̸= ∅.

Theorem 2.5. Let X be a nonempty convex subset of a Hausdorff topological vector space E, Z be a topological
space. Suppose that P : X ⇒ Z is an upper semicontinuous set-valued map with nonempty values and R(x, y, z) is
a relation such that

(i) for each x ∈ X, the set {(y, z) ∈ X × Z : R(x, y, z) holds} is closed in X × Z;

(ii) for each K ∈ ⟨X⟩, y ∈ convK and z ∈ P (y), we have R(x, y, z) holds for some x ∈ K;

(iii) there exist a nonempty subsetB ofX and a nonempty compact subsetD ofX such that conv(A∪B) is compact,
for any A ∈ ⟨X⟩, and for each y ∈ X \D there exists x ∈ conv(B ∪ {y}) such that R(x, y, z) does not hold,
for each z ∈ P (y).

Then, the variational relation problem (VRP) has a solution.
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Abstract

Let B(H) denote the algebra of all bounded linear operators on a Hilbert spaces H . For a fix
nonzero vector h0 ∈ H , we show that if two surjective maps φ1 and φ2 from B(H) into itself
satisfies

σφ1(A)φ2(B)∗(h0) = σAB∗(h0)

for all A,B ∈ B(H), then φ2(I) is invertible and there exists a bijective linear map P : H →
H such that φ1(A) = PA(φ2(I)

∗P )−1 and φ2(A) = P−1AP ∗φ2(I) for all A ∈ B(H).

1. Introduction

The problem of characterizing linear or additive maps onB(X), the algebra of all bounded linear operators on a com-
plex Banach space X , preserving local spectra was initiated by A. Bourhim and T. Ransford in [5], and continued by
several authors; see for instance [3] and the references therein. In [7], J. Bračič and V. Müller characterized surjective
linear and continuous mappings on B(X) preserving the local spectrum and local spectral radius at a fixed nonzero
vector x0 ofX , and thus extending the main results of [6, 8] to infinite-dimensional Banach spaces. In [4], A. Bourhim
and J. Mashreghi showed that surjective map φ on B(X) preserving the local spectrum of product of operators at a
fixed nonzero vector x0 ∈ X if and only if φ is a positive or negative multiple automorphism and x0 is an eigenvector
of the intertwining operator. Abdelali et al. [2] characterized maps φ that preserve the local spectrum at fixed nonzero
vector of the skew-product operators. In this paper, we investigate the form of all maps φ1 and φ2 of B(H) onto
B(H) such that, for every A andB inB(H), the local spectrum of AB∗ and φ1(A)φ2(B)∗ are the same at a nonzero
fixed vector.

2. Preliminaries

The first lemma summarizes some known basic properties of the local spectrum.
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Lemma 2.1. [1] Let X be a Banach space and T ∈ B(X). For every x, y ∈ X and a scalar α ∈ C the following
statements hold.
(a) σT (αx) = σT (x) if α ̸= 0, and σαT (x) = ασT (x).
(b) If Tx = λx for some λ ∈ C, then σT (x) ⊆ {λ}. Further, if x ̸= 0 and T has SVEP, then σT (x) = {λ}.

For a nonzero h ∈ H and T ∈ B(H), we use a useful notation defined by A. Bourhim and J. Mashreghi in [4] by

σ∗
T (h) :=

{
{0} if σT (h) = {0},

σT (h) \ {0} if σT (h) ̸= {0}.

For any x, y ∈ H , let x⊗ y denote the operator of rank at most one onH defined by

(x⊗ y)z = ⟨z, y⟩x, ∀ z ∈ H.

The following lemma is an elementary observation that gives the nonzero local spectrum of any rank one operator.

Lemma 2.2. (See [4, Lemma 2.2]) Let h0 be a nonzero vector in H . For every vectors x, y ∈ H , the following
statements hold.
(a)

σ∗
x⊗y(h0) :=

{
{0} if ⟨h0, y⟩ = 0,
⟨x, y⟩ if ⟨h0, y⟩ ̸= 0.

(b) For all rank one operators R ∈ B(H) and all T, S ∈ B(H), we have

σ∗
(T+S)R(h0) = σ∗

TR(h0) + σ∗
SR(h0)

The following theorem, which may be of independent interest, gives a spectral characterization of rank one operators
in term of local spectrum.

Theorem 2.3. (See [4, Theorem 4.1]) For a nonzero vector h ∈ H and a nonzero operator R ∈ B(H), the following
statements are equivalent.
(a) R has rank one.
(b) σ∗

RT (h) contains at most one element for all T ∈ B(H).
(c) σ∗

RT (h) contains at most one element for all T ∈ F2(H).

The following result characterizes in term of the local spectrum when two operators are the same.

Lemma 2.4. (See [4, Theorem 3.2]) For a nonzero vector h inH and two operators A and B in B(H), the following
statements are equivalent.
(a) A = B.
(b) σAT (h) = σBT (h) for all operators T ∈ B(H).
(c) σAT (h) = σBT (h) for all rank one operators T ∈ B(H).
(d) σ∗

AT (h) = σ∗
BT (h) for all rank one operators T ∈ B(H).

3. Main Results

Throughout this paper, H is an infinite-dimensional complex Hilbert spaces and B(H) denote the algebra of all
bounded linear operators on a Hilbert space H , and its unit will be denoted by I . For an operator T ∈ B(H,K),
let T ∗ denote as usual its adjoint. The local resolvent set, ρT (x), of an operator T ∈ B(H) at a point x ∈ H is the
union of all open subsets U of the complex plane C for which there is an analytic function f : U −→ H such that
(µI − T )f(µ) = x for all µ ∈ U . The complement of local resolvent set is called the local spectrum of T at x, de-
noted by σT (x), and is obviously a closed subset (possibly empty) of σ(T ), the spectrum of T . Recall that an operator
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T ∈ B(H) is said to have the single-valued extension property (henceforth abbreviated to SVEP) if, for every open
subset U of C, there exists no nonzero analytic solution, f : U −→ H , of the equation

(µI − T )f(µ) = 0, ∀ µ ∈ U.

For more information about these notions one can see the books [1].

We begin with the following identity principal.

Lemma 3.1. For a nonzero vector h in H and two operators A and B in B(H), the following statements are equiv-
alent.
(a) A = B.
(b) σTA(h) = σTB(h) for all operators T ∈ B(H).
(c) σTA(h) = σTB(h) for all rank one operators T ∈ B(H).
(d) σ∗

TA(h) = σ∗
TB(h) for all rank one operators T ∈ B(H).

The followig theorem is the main result of this paper.

Theorem 3.2. Let h0 ∈ H be a nonzero vector. Suppose that φ1 and φ2 be surjective maps from B(H) into B(H)
which satisfy

σφ1(A)φ2(B)∗(h0) = σAB∗(h0), (A,B ∈ B(H)). (1)

Then φ2(I) is invertible and there exists a bijective linear map P : H → H such that φ1(A) = PA(φ2(I)
∗P )−1 and

φ2(A) = P−1AP ∗φ2(I) for all A ∈ B(H).

Proof. The proof is long and we break it into several claims.

Claim 1. φ1 and φ2 are injective, and φ1(0) = 0, φ2(0) = 0.

Claim 2. φ1 preserves rank one operators in both directions.

Claim 3. φ1 is linear.

Claim 4. There exist bijective linear operators C : H → H andD : H → H such that φ1(x⊗ y) = Cx⊗Dy for all
x, y ∈ H .

Claim 5. φ2(I) is invertible.

Claim 6. The result in the theorem holds.
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Abstract

For a locally compact group G, let L∞
0 (G) be the Banach space of all essentially bounded mea-

surable functions on G vanishing at infinity. Here, we deal with a derivation problem for the
Banach algebraL∞

0 (G)∗ equipped with a multiplication of Arens type; in particular, our interest
to us here are some identifications on this subject in term of abelian groups. For instance, we
show that G is abelian if and only if every weak∗-weak∗-continuous derivation on L∞

0 (G)∗ is
zero. Also, it’s known the Singer-Wermer conjecture for L∞

0 (G)∗ is true if G is abelian. We
show that the Singer-Wermer conjecture for L∞

0 (G)∗ is valid only this case.

1. Introduction and Preliminaries

Let G be a locally compact group with a fixed left Haar measure dt, and let L1(G) be the usual group algebra; i.e.,
the set of all measurable functions on G equipped with the convolution product ∗ and the norm ∥.∥1. Let also L∞(G)
denote the Lebesgue space, consisting of all locally essentially bounded measurable functions on G equipped with the
essential supremum norm ∥.∥∞. Then L∞(G) is the dual of L1(G) for the pairing

⟨f, ϕ⟩ =
∫
G
f(t) ϕ(t) dt.

for all f ∈ L∞(G) and ϕ ∈ L1(G); see for example [2]. Suppose that L∞
0 (G) is the subspace of L∞(G) consisting

of all elements f ∈ L∞(G) that vanish at infinity; it means that for each ε > 0, there is a compact subset K of G for
which ∥f χG\K∥∞ < ε, where χG\K denotes characteristic function of G \ K on G. For every n ∈ L∞

0 (G)∗ and
g ∈ L∞

0 (G), we denote by ng the function in L∞(G) defined by

⟨ng, ϕ⟩ = ⟨n, g · ϕ⟩ (ϕ ∈ L1(G)),
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where

g · ϕ =
1

∆
ϕ̃ ∗ g,

ϕ̃(s) = ϕ(s−1) and∆ denotes the modular function of G. The space L∞
0 (G) is left introverted in L∞(G); i.e., for each

n ∈ L∞
0 (G)∗ and g ∈ L∞

0 (G), we have ng ∈ L∞
0 (G). This lets us to endow L∞

0 (G)∗ with the first Arens product ⋄
defined by

⟨m ⋄ n, g⟩ = ⟨m,ng⟩

for allm,n ∈ L∞
0 (G)∗ and g ∈ L∞

0 (G). Then L∞
0 (G)∗ with this product is a Banach algebra which is in relevance to

the group algebra L1(G) of G. For each ϕ ∈ L1(G), let ϕ also denote the functional in L∞
0 (G)∗ defined by

⟨ϕ, g⟩ :=
∫
G
ϕ(s) g(s) d(s)

for all g ∈ L∞
0 (G). Note that this duality defines a linear isometric embedding of L1(G) into L∞

0 (G)∗, and that
L1(G) = L∞

0 (G)∗ if and only if G is discrete. Moreover, observe that ϕ ⋄ ψ = ϕ ∗ ψ for all ϕ, ψ ∈ L1(G), and that
L1(G) is a closed ideal in L∞

0 (G)∗; see Lau and Pym [4] as the survey article for details.
Let us recall that an element u ∈ L∞

0 (G)∗ is called a mixed identity if ϕ ⋄ u = u ⋄ ϕ = ϕ for all ϕ ∈ L1(G). Denote
by Λ0(G) the nonempty set of all mixed identities u with norm one in L∞

0 (G)∗, and recall from Ghahramani, Lau and
Losert [1] that u ∈ Λ0(G) if and only if it is a weak∗-cluster point of an approximate identity in L1(G) bounded by
one; or equivalently, it is a right identity of L∞

0 (G)∗ with norm one. Moreover, L∞
0 (G)∗ has an identity if and only if

G is discrete.
Suppose that A is a Banach algebra. By a derivation D : A → A, we shall mean a linear map satisfying D(ab) =
D(a)b+ aD(b) for all a, b ∈ A. Moreover, a derivationD is called inner if there is x ∈ A such thatD = adx, where
the derivation adx : A −→ A is defined by adx(a) = ax− xa for all a ∈ A.
The study of the range of derivations on Banach algebras was initiated by Singer and Wermer [9], since 1955. Having
shown that the range of a continuous derivation on a commutative Banach algebra is contained within the radical of
algebra, they conjectured that continuity could be ignored. More than thirty years later, Thomas [10] has proved it.
So far, there have been several generalizations of Singer-Wermer conjecture presented to non-commutative Banach
algebras. Conditions have been investigated under which every derivation on a Banach algebra maps into the radical.
Our aim in this paper is to study derivations on L∞

0 (G)∗. From this point of view, Theorem 2.1 states some charac-
terizations for abelian groups. Also, we show that the Singer-Wermer conjecture is valid only on the case where G is
abelian.

2. The results

Mehdipour and Saeedi [8] have recently studied derivations on L∞
0 (G)∗ for locally compact groups G. They have

proved that the zero map is the only weak∗-weak∗-continuous derivation on L∞
0 (G)∗ when G is an abelian locally

compact group. Our first result is in fact a more general result for all locally compact groups.
Before stating, let us recall that the measure algebraM(G) of G is the Banach algebra of all complex Radon measures
on G endowed with convolution product ∗ and total variation norm as defined in [2].

Theorem 2.1. Let G be a locally compact group. Then every weak∗-weak∗-continuous derivation on L∞
0 (G)∗ is inner.

Also, G is abelian if and only if either of the following statements holds.
(a) Every weak∗-weak∗-continuous derivation on L∞

0 (G)∗ is zero.
(b) Every derivation from L∞

0 (G)∗ into L1(G) is zero.

Proof. Suppose that D : L∞
0 (G)∗ −→ L∞

0 (G)∗ is a weak∗-weak∗-continuous derivation. On the one hand, since
L1(G) ∗ L1(G) = L1(G) and

D(ϕ ∗ ψ) = D(ϕ) ⋄ ψ + ϕ ⋄D(ψ) ∈ L1(G) (ϕ, ψ ∈ L1(G)),
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the range of the derivationD|L1(G) is containing in L1(G). So, there exists a measure µ ∈M(G) such thatD|L1(G) =
adµ by Corollary 1.2 of [5].
On the other hand, the restriction map defines a continuous epimorphism τ : L∞

0 (G)∗ −→M(G) and so, there exists
an elementm ∈ L∞

0 (G)∗ such that τ(m) = µ. Now, note that

ϕ ⋄ n = ϕ ∗ τ(n), n ⋄ ϕ = τ(n) ∗ ϕ,

for all n ∈ L∞
0 (G)∗ and, ϕ ∈ L1(G). So, we can regard the M(G)-bimodule L1(G) is even an L∞

0 (G)∗-bimodule.
Hence,

D(ϕ) = ϕ ⋄m−m ⋄ ϕ (ϕ ∈ L1(G)).

So, the result will follow when G is discrete; otherwise,

M(G)∗ = L1(G)∗ ⊕Md(G)∗ ⊕Ms(G)∗

and so, for each f ∈ M(G)∗, we have f = fa + fd + fs, where fa ∈ L1(G)∗, fd ∈ Md(G)∗ and fs ∈ Ms(G)∗.
Now, let k ∈ L∞

0 (G)∗. Then there exists a net (ϕi) ⊆ L1(G) such that ϕi −→ k with respect to the weak∗-topology
in L1(G)∗∗. It follows that

lim
i
⟨ϕi, f⟩ = lim

i
⟨ϕi, fa + fd + fs⟩

= lim
i
⟨ϕi, fa⟩

−→ ⟨k, fa⟩
= ⟨k, f⟩.

Therefore, ϕi −→ k with respect to the weak∗-topology in M(G)∗∗. On the other hand, Zt(M(G)∗∗) = M(G) by
[6]. It follows that

m ⋄ ϕi = µ ∗ ϕi −→ m ⋄ k

with respect to weak∗-topology inM(G)∗∗ and so, L∞
0 (G)∗. Whence,

k ⋄m−m ⋄ k = weak∗ − lim
i
(ϕi ⋄m−m ⋄ ϕi)

= weak∗ − lim
i
D(ϕi)

= D(k).

That is, D = adm. So, every weak∗-weak∗-continuous derivation on L∞
0 (G)∗ is inner.

As noted earlier, every weak∗-weak∗-continuous derivation on L∞
0 (G)∗ is zero if G is abelian; see Corollary 2 of [8].

For converse, suppose that G is not abelian. Then adϕ is a non-zero weak∗-weak∗-continuous derivation on L∞
0 (G)∗

for some ϕ ∈ L1(G) \ Z(L1(G)).
To complete the proof, let D : L∞

0 (G)∗ −→ L1(G) be a derivation. Then D|L1(G) = adµ, for some µ ∈ M(G). So,
if G is abelian, then D|L1(G) = 0. Moreover, for each n ∈ L∞

0 (G)∗, we have

D(n) = lim
α
eα ∗D(n) = lim

α
[D(eα ⋄ n)−D(eα) ⋄ n] = 0,

where (eα) is a bounded approximate identity of L1(G). The converse is clear.

Mehdipour and Saeedi [8] have shown that the Singer-Wermer conjecture is true for L∞
0 (G)∗ if G is abelian; here, we

show that this is an “if and only if” statement.

Proposition 2.2. Let G be a locally compact group. Then the image of every derivation on L∞
0 (G)∗ is contained in

the radical of L∞
0 (G)∗ if and only if G is abelian.
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Proof. Suppose that the image of every derivation on L∞
0 (G)∗ is contained in the radical of L∞

0 (G)∗. Then for each
ϕ ∈ L1(G) and n ∈ L∞

0 (G)∗, we have

adϕ(n) ∈ rad(L∞
0 (G)∗) ∩ L1(G).

But the right annihilator of L∞
0 (G)∗ and its radical coincide with C0(G)⊥; refer to Theorem 2.1 and Corollary 2.2 of

[7]. So,

adϕ(n) ∈ ran(L∞
0 (G)∗) ∩ L1(G) = {0}.

It follows that L1(G) is commutative, whence G is abelian. As we have mentioned above the converse is Corollary 1
of [8].

The end result of this note follows immediately from Proposition 2.2.

Corollary 2.3. Let G be a locally compact group. Then every derivation on L∞
0 (G)∗ is zero if and only if G is discrete

and abelian.
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Abstract

In this talk, among the other things, we prove a variety of characterizations of amenable hy-
pergroups. We give sufficient conditions and some necessary conditions for H to have a left
invariant mean. We know that every topologically left invariant mean on L∞(H) is also left
invariant mean. Sufficient conditions on a left invariant mean to be a topologically left invariant
mean are given.

1. Preliminaries and notations

The theory of hypergroups was initiated by Dunkl, Jewett and Spector and has received a good deal of attention from
harmonic analysts. A hypergroup is a locally compact space with a convolution product mapping each pair of points to
a probability measure with compact support [9]. Hypergroups are a generalization of locally compact groups wherein
the convolution of two points corresponds to the point evaluation measure at their product, for more details see [1],
[2] and [3]. There are a lot of results in abstract harmonic analysis on amenability of a locally compact group. A good
deal of attention was paid to the study of amenable hypergroups. The study of amenable hypergroups was initiated by
Skantharajah [11] and pursued by Wilson [13], see also [7] and [12].
Throughout, H will denote a hypergroup with a left Haar measure λ. It is still unknown if an arbitrary hypergroup
admits a left Haar measure, but all the known examples such as commutative hypergroups and central hypergroups
do, for more information see [4] and [14]. In [8] Lau introduced and studied a class of Banach algebras which include
L1(H). He called such algebras F -algebras. He extended several important characterizations of amenable locally
compact groups to left amenable F -algebras. The F -algebra L1(H) is amenable if and only ifH is amenable [8].
For the sake of convenience for the readers we bring in our notations here. Let H be a locally compact hypergroup
with a left Haar measure λ. All of the Lebesgue spaces Lp(H) 1 ≤ p ≤ ∞, are taken with respect to left Haar
measure λ on H . If H is compact, we normalize λ; so that λ(H) = 1. Duality between Banach spaces is denoted
by 〈 〉; thus for f ∈ L∞(H) and φ ∈ L1(H), we have 〈f, φ〉 =

∫
f(x)φ(x)dx. Let Cb(H) and Cc(H) denote the

Banach space of all continuous bounded (complex-valued) functions onH , and the subspace of all members ofCb(H)
with compact supports, respectively. We denote by C0(H) the uniform closure of Cc(H) in Cb(H). Thus the dual
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of C0(H) may be identified with the convolution measure algebraM(H) of H . For each f ∈ L∞(H) and x ∈ H ,
define Lxf ∈ L∞(H) by setting

Lxf(y) = f(x ∗ y) =
∫
f(t)dδx ∗ δy(t)

where δx denote the unit point-measure at x. Thus we have 〈f, δx ∗ φ〉 = 〈Lxf, φ〉 for f ∈ L∞(H) and φ ∈ L1(H)
[4]. A function f ∈ Cb(H) is called left uniformly continuous if the map x 7→ Lxf from H to Cb(H) is continuous.
Let LUC(H) denote the subspace of Cb(H) consisting of all left uniformly continuous functions. Skantharajah [11]
showed that for hypergroups with left Haar measure, LUC(H) = L1(H) ∗L∞(H). As far as possible, we follow [4]
in our notation and refer to [10] for basic functional analysis and to [5] for basic harmonic analysis.

2. Existence of invariant means

We start by recalling the following definition.

Definition 2.1. LetH be a hypergroup with a left Haar measure λ, and letX be one of the spacesLUC(H) orL∞(H).
A linear functionalM on X is called a mean if:

(i) 〈M, f〉 = 〈M, f〉 for all f ∈ X;

(ii) f ≥ 0 implies 〈M, f〉 ≥ 0 and 〈M, 1〉 = 1.

It is easy to see that a linear functionalM onX is a mean if and only if 〈M, 1〉 = ‖M‖ = 1 and thus the setM(X) of
all means onX is a non-empty weak∗ compact convex set inX∗ [5]. A meanM onX is called a left invariant mean
if 〈M,Lxf〉 = 〈M, f〉 for all f ∈ X , x ∈ H . The convex set of left invariant means on X is denoted by LIM(X).
A hypergroup H is called amenable if there is a left invariant mean on L∞(H) [6]. The amenability of H can be
characterized by the existence of nets of positive, norm one functions in L1(H) which tend to left invariance in any
of several ways [13]. Skantharajah [11] showed that if H is a hypergroup which admits a left Haar measure, then the
function spaces of LUC(H), Cb(H), and L∞(H) all either admit a left invariant mean (if H is amenable) or all do
not. Let

P 1(H) = {φ ∈ L1(H);φ ≥ 0 and ‖φ‖1 = 1}.

AmeanM onX is said to be a topological left invariant mean if 〈M,φ ∗ f〉 = 〈M, f〉 for all φ ∈ P 1(H) and f ∈ X .
Every topological left invariant mean on X is a left invariant mean [6]. If X = LUC(H), then every left invariant
mean on X is also a topological left invariant mean.
LetH be a non compact amenable locally compact hypergroup, and let TLIM(L∞(H)) be the set of all topological
left invariant means on L∞(H). Skantharajah proved in [11] that |TLIM(L∞(H))| = 22

d , where d is the smallest
cardinality of a cover ofH by compact sets.

Theorem 2.2. A necessary and sufficient condition for the amenability of a locally compact hypergroup H is given
by each of the following properties:

(i) For every f ∈ L∞(H), there exists a mean Mf on L∞(H) such that 〈Mf , φ ∗ f〉 = 〈Mf , ψ ∗ f〉 whenever
φ,ψ ∈ P 1(H);

(ii) There exists a net {φα} in P 1(H) such that, for every weakly compact subset S of P 1(H),

lim
α

‖φ ∗ φα − φα‖1 = 0

uniformly for every φ ∈ S.

Proposition 2.3. If H is a locally compact hypergroup, the following properties are equivalent:

(i) H is amenable,
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(ii) For every ψ ∈ L1(H);

Dψ := inf{‖ψ ∗ φ‖1;φ ∈ P 1(H)} ≤
∣∣∣ ∫ ψ(xdx

∣∣∣.
Let X be a locally convex Hausdorff topological vector space and let C be a compact convex subset of X . The pair
(L1(H), C) is called a semiflow, if;

(1) There exists a map (φ, x) → φ.x from L1(K) × X into X such that for every x ∈ C, the map φ → φ.x is
continuous from L1(H) into X and linear where L1(H) has the weak topology;

(2) P 1(H).C ⊆ C;

(3) For any φ,ψ ∈ L1(H) and x ∈ X , φ.(ψ.x) = (φ ∗ ψ).x.

Theorem 2.4. If H is a locally compact hypergroup. The following statements are equivalent:

(i) H is amenable;

(ii) for any semiflow (L1(H), C), there is some x ∈ C such that φ.x = x for all φ ∈ P 1(H).

Theorem 2.5. Let H be a hypergroup with a left Haar measure λ. Then the following statements are equivalent:

(i) H is amenable;

(ii) for all f ∈ LUC(H), n ∈ N and µ1, ..., µn ∈M(H),

inf{sup{|〈f, µi ∗ φ〉|; 1 ≤ i ≤ n};φ ∈ P 1(H)} ≤ sup{|µi(H)|; 1 ≤ i ≤ n}‖f‖.

3. Relation between left invariant means and topological left invariant means

Recall that L1(H)∗∗, the second conjugate space of L1(H), is a Banach algebra with the first Arens product [5]. More
specifically, let F,G ∈ L1(H)∗∗, f ∈ L1(H)∗ and φ,ψ ∈ L1(H); we definefφ, Ff ∈ L1(H)∗, GF ∈ L1(H)∗∗ by
the equations

〈fφ, ψ〉 = 〈f, φ ∗ ψ〉, 〈Ff, φ〉 = 〈F, fφ〉 and 〈GF, f〉 = 〈G,Ff〉.

Theorem 3.1. Let H be an amenable hypergroup. The following conditions are equivalent:

(i) LIM(L∞(G)) ∩ P 1(H) 6= ∅.

(ii) H is compact.

(iii) TLIM(L∞(H)) ⊆ P 1(H).

For each φ in L1(H) define ρφ : L∞(H) → [0,∞) by ρφ(f) = ‖fφ||. Then ρφ is a seminorm. If f 6= 0, then select
some φ ∈ L1(H) with 〈f, φ〉 6= 0. For a bounded approximate identity {φα} in P 1(H) [4], we have

0 6= |〈f, φ〉| = lim
α

|〈f, φ ∗ φα〉| = |〈fφ, φα〉| ≤ ‖fφ‖.

This implies that {ρφ;φ ∈ L1(H)} separates the points of L1(H)∗ and makes L1(H)∗ into a locally convex space.
The topology defined by these seminorms is denoted by τ .

Proposition 3.2. Let H be an amenable hypergroup. A left invariant mean M on L∞(H) is a topologically left
invariant mean if and only ifM is τ -continuous.

Proposition 3.3. Let H be an amenable hypergroup. IfM ∈ LIM(L∞(H)) and there exists φ ∈ P 1(H) such that
〈M,φ ∗ f〉 = 〈M, f〉 whenever f ∈ L∞(H), then alsoM ∈ TLIM(L∞(H)).

We close this section with the following remark. Let H be a hypergroup with a left Haar measure. Suppose that
{x} ∗ {y} is finite for all x, y ∈ H . Let H have a nondiscrete normal subgroup of finite index. If Hd is amenable,
then τ ⫋ τ∥.∥. Indeed, Skantharajah [11] has shown that there is an M ∈ LIM(L∞(H)) \ TLIM(L∞(H)). By
Theorem 3.1,M is not τ -contniuous and so τ ⫋ τ∥.∥.



96 A. Ghaffari / The 4th National Congress on Mathematics and Statistics

References

[1] M. Amini and C.H. Chu, Harmonic functions on hypergroups, Journal of Functional Analysis, 261 (2011), 1835–1864.
[2] M. Amini, H. Nikpey and S.M. Tabatabaie, Crossed product of C∗-algebras by hypergroups, Mathematische Nachrichten, 292 (2019),

1897–1910.
[3] A. Bagheri Salec, V. Kumar and S. Mohammad Tabatabaie, Convolution properties of Orlicz spaces on hypergroups, Proceeding of the

American Mathematical Society, 150 (2022), 1685–1696.
[4] W.R. Bloom and H. Heyer, Harmonic analysis of probability measures on hypergroups, vol. 20, de Gruyter Studies in Mathematics, Walter

de Gruyter & Co., Berlin, 1995.
[5] H.G. Dales, Banach algebra and automatic continuity, London Math. Soc. Monogr. Ser. Clarendon Press, 2000.
[6] A. Ghaffari and M.B. Sahabi, Characterizations of amenable hypergroups, Wavelets and Linear Algebra, 4 (2017), 1– 9.
[7] A. Ghaffari, T. Haddadi, S. Javadi and M. Sheybani, On the structure of hypergroups with respect to the induced topology, Rocky Mountain

Journal of Mathematics, 52 (2022), 519–533.
[8] A.T. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups, Fundamenta Mathe-

maticae, 118 (1983), 161–175.
[9] S. Mohammad Tabatabaie, M. Amini and A.A. Amjadi, Property A for hypergroups, Semigroup Forum, 104 (2022), 464–479.
[10] W. Rudin, Functional analysis, McGraw Hill, New York, 1991.
[11] M. Skantharajah, Amenable hypergroups, Illinois Journal of Mathematics, 36 (1992), 15–46.
[12] N. Tahmasebi, Fixed point properties, invariant means and invariant projections related to hypergroups, Journal of Mathematical Analysis

and Applications, 437 (2016), 526–544.
[13] B. Willson, Configurations and invariant nets for amenable hypergroups and related algebras, Transactions of the American Mathematical

Society, 366 (2014), 5087–5112.
[14] B. Willson, A fixed point theorem and the existence of a Haar measure for hypergroups satisfying conditions related to amenability, Canadian

Mathematical Bulletin, 58 (2015), 415–422.



Gonbad Kavous University

The 4th National Congress on Mathematics and StatisticsThe 4th National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1402

The 4th National Congress on Mathematics and Statistics, AN–192, pp. 97–99

Fixed point results for noncyclic φ-contractions in metric spaces
equipped with a transitive relationR

Akram Safari-Hafshejani

Department of Pure Mathematics, Payame Noor University (PNU), P. O. Box: 19395-3697, Tehran, Iran.

Article Info

Keywords:
Fixed point
Noncyclic φ-contraction
Metric space
Transitive relation

2020 MSC:
47H10
54H25

Abstract

In this work, we first introduce a new class of maps, called noncyclic φ-contraction in metric
spaces equipped with a transitive relationR. Then, we study the existence, uniqueness and con-
vergence of fixed points for suchmappings. Also, iterative algorithms are furnished to determine
fixed points. Presented results extend and improve some recent results in the literature.

1. Introduction and Preliminaries

Let A and B be two nonempty subsets of a metric space (X, d). If self mapping T : A ∪B → A ∪B be a noncyclic
map , i.e., T (A) ⊆ A and T (B) ⊆ B; then x∗ ∈ A ∪B is called a fixed point of T provided that Tx∗ = x∗. We say
that (x∗, y∗) ∈ A×B is an optimal pair of fixed points of the noncyclic mapping T provided that

Tx∗ = x∗, T y∗ = y∗ and d(x∗, y∗) = d(A,B),

where d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.
In 2013, the class of noncyclic contractions was first introduced by Espínola and Gabeleh [3]. For these mappings,
the authors presented the following existence theorem.

Theorem 1.1. Let A and B be nonempty convex subsets of a uniformly convex Banach spaceX such that A is closed
and let T : A ∪B → A ∪B be a noncyclic contraction map that is, there exists λ ∈ [0, 1) such that

d(Tx, Ty) ≤ λd(x, y) + (1− λ)d(A,B), (1)

for all x ∈ A and y ∈ B. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0. Then there exists a unique fixed point
x ∈ A such that xn → x.
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Since then, the problems of the existence of a fixed pointof noncyclic mappings, have been extensively studied by
many authors; see for instance [1, 4–6] and references therein.
In this article, we want to achieve more general results from [3] by using a function φ : [0,+∞) → [0,+∞) instead
of the constant value λ in relation (1) and equipping the metric space (X, d) with a transitive relation R. For this
purpose, we introduce the concept of noncyclic φ-contraction. We study the existence, uniqueness and convergence
of fixed points for such mappings in metric spaces equipped with a transitive relation R. Also, iterative algorithms
are furnished to determine such fixed points.
Here, we recall the definitions of UC and WUC property.

Definition 1.2. [2, 7] Let A and B be nonempty subsets of the metric space (X, d). Then (A,B) is said to satisfies

(i) property UC, if {xn} and {x′
n} are sequences in A and {yn} is a sequence in B such that limn d(xn, yn) =

limn d(x
′
n, yn) = d(A,B), then limn d(xn, x

′
n) = 0;

(ii) property WUC, if for any {xn} ⊆ A such that for every ϵ > 0 there exists y ∈ B satisfying that d(xn, y) ≤
d(A,B) + ϵ for n ≥ n0, then it is the case that {xn} is Cauchy.

It was announced in [7] that if A and B are nonempty subsets of a uniformly convex Banach space X such that A is
convex, then (A,B) has the property UC. Moreover, if A and B are nonempty subsets of a metric space (X, d) such
that A is complete and the pair (A,B) has the property UC, then (A,B) has the propertyWUC (see [2]).

2. Noncyclic φ-contractions

We begin our main conclusions of this section with the following lemma.

Lemma 2.1. Let φ : [0,+∞) → [0,+∞) be a strictly increasing function and I be an identity function defined on
[0,+∞). If I − φ is a strictly increasing function, then

(a) φ(t) > 0, for all t > 0;

(b) (I − φ)(t) < t for all t > 0;

(c) φ is continuous.

From now on for the strictly increasing function φ : [0,+∞) → [0,+∞) we assume that I − φ is also strictly
increasing. Also, for given a nonempty subsets A and B of a metric space (X, d) we set

d∗(x, y) := d(x, y)− d(A,B), ∀(x, y) ∈ A×B.

Definition 2.2. Let A and B be nonempty subsets of a metric space (X, d) and ”R” be a transitive relation on A. Let
T be a noncyclic mapping on A ∪B

(i) we say that T is R-continuous at x ∈ A if for every sequence {xn} in A with xn → x and xn Rxn+1 for all
n ∈ N, we have Txn → Tx;

(ii) we say that T preserves ”R” on A if TuRTv for every u, v ∈ A with uR v;

(iii) we say that ”R” has property (∗) on A, if for any sequence {xn} in A with xn → x ∈ A and xn Rxn+1 for all
n ∈ N, we have xn Rx for all n ∈ N.

Now, with these prerequisites and inspired by the findings of the study about noncyclic Fisher quasi-contractions
[6], we introduce the concept of a noncyclic φ-enriched quasi-contraction in the metric space (X, d) equipped with a
transitive relation ”R” as follows:

Definition 2.3. Let A and B be nonempty subsets of the metric space (X, d) equipped with a transitive relation ”R”.
Let T be a noncyclic mapping on A ∪B, then, T is said to be a noncyclic φ-contraction if

d∗(Tx, Ty) ≤(I − φ)(d∗(x, y)), (2)

for all x ∈ A and y ∈ B that are comparable with respect to ”R”.
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Example 2.4. Let A and B be nonempty subsets of a metric space (X, d) and T : A ∪ B → A ∪ B be a noncyclic
contraction, Then T is a noncyclic φ-contraction with R := X ×X and φ(t) := (1− λ)t for t ≥ 0 and λ ∈ [0, 1).

Lemma 2.5. Let A and B be nonempty subsets of the metric space (X, d) equipped with a transitive relation ”R”.
Let (A,B) has the property WUC and T be a noncyclic φ–contraction mapping on A ∪B. Let x0 ∈ A and y0 ∈ B
be such that x0 R y0 RTx0. Define xn+1 := Txn for each n ≥ 0, then {xn} is Cauchy.

The next theorem is our main result in this section which is an extension of Theorem 2.4 in [6].

Theorem 2.6. Let A and B be nonempty and complete subsets of the metric space (X, d) equipped with a transitive
relation ”R”. Let T is a noncyclic φ-contraction mapping on A ∪B such that T preserves ”R” on A ∪B, then

(i) if the pair (A,B) satisfies the property WUC, x0 R y0 RTx0 and T |A: A → A is R-continuous on A, then
there exists x∗ ∈ A such that Tx∗ = x∗;

(ii) if the pair (B,A) satisfies the property WUC, x0 R y0 RTx0 and T |B : B → B is R-continuous on B, then
there exists y∗ ∈ B such that Ty∗ = y∗ ;

(iii) d(x∗, y∗) = d(A,B);

(iv) if both pairs (A,B) and (B,A) have property WUC and every pair of elements x ∈ A and y ∈ B are
comparable with respect to ”R”, then the optimal pair of fixed points of T obtained in (i) and (ii) is unique.

From Theorem 2.6, we obtain the following common fixed point result, immediately.

Corollary 2.7. Let (X, d) be a complete metric space and let T : X → X and S : X → X be two continuous
mappings satisfying

d(Tx, Sy) ≤ (I − φ) (d(x, y)) ,

for all x, y ∈ X . Then S and T have a unique common fixed point in X .
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Abstract

One of the most fundamental theorems in fixed point theory is Banach’s fixed point theorem,
which has been generalized by many researchers in different metric type spaces. In this article,
a generalization of the Banach contraction principle is presented, which will be of interest to
researchers in the field of fixed point theory and numerical analysis and other branches related
to the theory of fixed point theory. To clarify the benefits of this theorem, we will present some
corollaries which doubles the interest of the subject.

1. Introduction and Preliminaries

Banach contractive principle or Banach fixed point theorem is the most celebrated result in fixed point theory which
illustrates that in a complete metric space, each contractive mapping has a unique fixed point. There is a great number
of generalizations of this principle by using different forms of contractive conditions in various spaces. Recently,
Wardowski [6] introduced a new contraction called F-contraction and proved a fixed point result as a generalization of
the Banach contraction principle. Abbas et al. [4], as well as Wardowski and Van Dung [11] generalized the concept
of F-contraction and proved certain fixed and common fixed point results.
One of the interesting results which also generalizes the Banach contraction principle was given by Samet et al. [9]
by defining α-ψ-contractive and α-admissible mappings.

Definition 1.1. [1] Let T be a self-mapping on a set X and let α : X ×X → [0,∞) be a function. We say that T is
an α-admissible mapping if

x, y ∈ X, α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1.

Hussain et al. [7], as well as Karapınar et al. [10] extended this result as follows (see also [4, 8]).

Definition 1.2. [11] Let (X, d) be a metric space. Let α : X ×X → [0,∞) and T : X → X be mappings. We say
that T is an α-continuous mapping on (X, d), if, for given x ∈ X and sequence {xn},

xn → x as n→ ∞ and α(xn, xn+1) ≥ 1 for all n ∈ N =⇒ Txn → Tx.

∗Talker
Email addresses: zynab- izadi@pnu.ac.ir (Zynab Izadi), zam.dalahoo@gmail.com (Vahid Parvaneh)



Izadi & Parvaneh / The 4th National Congress on Mathematics and Statistics 101

Definition 1.3. [4] Let f : X → X and α : X ×X → [0,+∞). We say that f is a triangular α-admissible mapping
if

(T1) α(x, y) ≥ 1 implies α(fx, fy) ≥ 1, x, y ∈ X;

(T2)

{
α(x, z) ≥ 1

α(z, y) ≥ 1
implies α(x, y) ≥ 1, x, y, z ∈ X .

Lemma 1.4. [4] Let f be a triangularα-admissible mapping. Assume that there exists x0 ∈ X such thatα(x0, fx0) ≥
1. Define sequence {xn} by xn = fnx0. Then

α(xm, xn) ≥ 1 for all m,n ∈ N with m < n.

Bakhtin in [1] and Czerwik in [2, 3] introduced the concept of a b-metric space. Since then, several papers dealt with
fixed point theory for single-valued and multi-valued operators in b-metric spaces (see, e.g., [5, 7]).
Let s ≥ 1 be a fixed real number. We will consider the following class of functions.
∆ will denote the set of all functions Γ : [0,∞) → [1,∞) such that

(∆1) Γ is continuous and strictly increasing;

(∆2) for each sequence {tn} ⊆ R+, lim
n→∞

tn = 0 if and only if lim
n→∞

F (tn) = 1.

Example 1.5. If Γ1(t) = cosh t and Γ2(t) = et, then Γ1,Γ2 ∈ ∆.

Definition 1.6. [13] LetX be a (nonempty) set and s ≥ 1 be a given real number. A function d : X ×X → R+ is an
exponential metric if, for all x, y, z ∈ X , the following conditions are satisfied:

(b1) d(x, y) = 0 iff x = y,

(b2) d(x, y) = d(y, x),

(b3) Γ[d(x, z)] ≤ [Γ[d(x, y)]Γ[d(y, z)]]s.

In this case, the pair (X, d) is called an exponential metric space.

Definition 1.7. [8] Let (X, d) be an exponential metric space.
(a) A sequence {xn} inX is called convergent if there exists x ∈ X such that d(xn, x) → 0, as n→ ∞. In this case,
we write lim

n→∞
xn = x.

(b) {xn} in X is said to be Cauchy if d(xn, xm) → 0, as n,m→ ∞.
(c) The exponential metric space (X, d) is complete if every Cauchy sequence in X be convergent.

Note that an exponential metric need not be to a continuous function. It is also an interesting generalization of the
concept of b-metric.

Lemma 1.8. Let (X, d) be an exponential metric space with parameter s ≥ 1, and suppose that {xn} and {yn} are
convergent to x and y, respectively. Then we have:

s2
√
Γ[d(x, y)] ≤ Γ[lim inf

n→∞
d(xn, yn)] ≤ Γ[lim sup

n→∞
d(xn, yn)] ≤ Γ[d(x, y)]s

2

.

In particular, if x = y, then we have lim
n→∞

d(xn, yn) = 0. Moreover, for each z ∈ X , we have,

s
√
Γ[d(x, y)] ≤ Γ[lim inf

n→∞
d(xn, yn)] ≤ Γ[lim sup

n→∞
d(xn, yn)] ≤ Γ[d(x, y)]s.
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Proof. The reader can follow the following inequalities:

Γ[d(xn, yn)] ≤ [Γ[d(xn, x)]Γ[d(x, yn)]]
s

≤

[
Γ[d(xn, x)]

[
Γ[d(x, y)]Γ[d(y, yn)]

]s]s

,

and

Γ[d(x, y)] ≤ [Γ[d(x, xn)]Γ[d(xn, y)]]
s

≤

[
Γ[d(x, xn)]

[
Γ[d(xn, yn)]Γ[d(yn, y)]

]s]s

.

Also,

Γ[d(xn, y)] ≤ [Γ[d(xn, x)]Γ[d(x, y)]]
s,

and

Γ[d(x, y)] ≤ [Γ[d(x, xn)]Γ[d(xn, y)]]
s.

In this paper, we introduce the concept of α-Γ-contraction and obtain some fixed point results in exponential metric
spaces.

2. Fixed point results for α-admissible-Γ-contractions

Definition 2.1. Let (X, d) be an exponential metric space with parameter s ≥ 1 and let T be a self-mapping on X .
Also, suppose that α : X ×X → [0,∞) is a function. We say that T is an α-Γ-contraction if for all x, y ∈ X with
1 ≤ α(x, y) and d(Tx, Ty) > 0 we have

[Γ[d(Tx, Ty)]]s ≤ K ·Ms(x, y), (1)

where Γ ∈ ∆, 0 < K < 1 and

Ms(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty),Γ−1[ 2s

√
Γ[d(x, Ty)]Γ[d(y, Tx)]]

}
. (2)

Now we state and prove our main result of this section.

Theorem 2.2. Let (X, d) be a complete exponential metric space with parameter s ≥ 1. Let T : X → X be a
self-mapping satisfying the following assertions:

(i) T is a triangular α-admissible mapping;

(ii) T is an α-Γ-contraction;

(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iv) T is α-continuous.

Then T has a fixed point. Moreover, T has a unique fixed point if α(x, y) ≥ 1 for all x, y ∈ Fix(T ).
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Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. We define the sequence {xn} by xn = Tnx0 = Txn−1. Now
since, T is an α-admissible mapping then α(x0, x1) = α(x0, Tx0) ≥ 1. By continuing this process we have

α(xn−1, xn) ≥ 1

for all n ∈ N. Also, let there exists n0 ∈ N such that xn0
= xn0+1. Then xn0

is a fixed point of T and we have
nothing to prove. Hence, we assume that xn ̸= xn+1, i.e., d(Txn−1, Txn) > 0 for all n ∈ N ∪ {0}. Since, T is an
α-Γ-contraction, so we derive

[Γ[d(Txn−1, Txn)]]
s = [Γ[d(xn, xn+1)]]

s ≤ K ·Ms(xn−1, xn),

where

Ms(xn−1, xn)

= max
{
d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn),Γ

−1[ 2s
√
Γ[d(xn−1, Txn)]Γ[d(xn, Txn−1)]]

}
= max

{
d(xn−1, xn), d(xn, xn+1),Γ

−1[ 2s
√

Γ[d(xn−1, Txn)]]

}
≤ max

{
d(xn−1, xn), d(xn, xn+1),Γ

−1[
√

Γ[d(xn−1, xn)]Γ[d(xn, xn+1)]]

}
= max

{
d(xn−1, xn), d(xn, xn+1)

}
,

which implies

[Γ(d(xn, xn+1))]
s ≤ K ·max

{
d(xn−1, xn), d(xn, xn+1)

}
.

If
max

{
d(xn−1, xn), d(xn, xn+1)

}
= d(xn, xn+1),

then we have
[Γ(d(xn, xn+1))]

s ≤ K · d(xn, xn+1),

a contradiction. Therefore, max
{
d(xn−1, xn), d(xn, xn+1)

}
= d(xn−1, xn), and we have

d(xn, xn+1) ≤ K · d(xn−1, xn).

Consequently, we deduce that
d(xn, xn+1) ≤ Kn · d(x0, x1).

By taking the limit as n→ ∞ in (??), we have

lim
n→∞

d(xn, xn+1) = 0. (3)

Next, we show that {xn} is a Cauchy sequence in X .
Suppose to the contrary, that is, {xn} is not a Cauchy sequence. Then there exists ε > 0 for which we can find two
subsequences {xmi

} and {xni
} of {xn} such that ni is the smallest index for which

ni > mi > i and d(xmi
, xni

) ≥ ε. (4)

This means that
d(xmi

, xni−1) < ε. (5)

From (4) and using the triangular inequality, we get

Γ(ε) ≤ Γ(d(xmi
, xni

)) ≤ Γ[d(xmi
, xmi+1)]

sΓ[d(xmi+1, xni
)]s.
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Taking the upper limit as i→ ∞, we get

Γ−1( s
√
Γ(ε)) ≤ lim sup

i→∞
d(xmi+1, xni). (6)

Also, from (5),
lim sup
i→∞

d(xmi
, xni−1) ≤ ε. (7)

On the other hand, we have

Γ[d(xmi
, xni

)] ≤ Γ[d(xmi
, xni−1)]

sΓ[d(xni−1, xni
)]s.

Using (3) and (5) and taking the upper limit as i→ ∞, we get

Γ[lim sup
i→∞

d(xmi , xni)] ≤ Γ(ε)s. (8)

Again, using the triangular inequality, we have

Γ[d(xmi+1, xni−1)] ≤ Γ[d(xmi+1, xmi)]
sΓ[d(xmi , xni−1)]

s.

Taking the upper limit as i→ ∞ in the above inequality and using (3) and (5), we get

Γ[lim sup
i→∞

d(xmi+1, xni−1)] ≤ Γ(ε)s. (9)

Since T is a triangular α-admissible mapping, we have that α(xmi
, xni

) ≥ 1, and so we can apply (1) to conclude that

[Γ
(
d(xmi+1, xni

)
)
]s = [Γ

(
d(Txmi

, Txni−1)
)
]s

≤ K.Ms(xmi
, xni−1), (10)

where,

Ms(xmi , xni−1)

= max
{
d(xmi

, xni−1), d(xmi
, Txmi

), d(xni−1, Txni−1),Γ
−1[ 2s

√
Γ[d(xmi

, Txni−1)]Γ[d(Txmi
, xni−1)]]

}
= max

{
d(xmi

, xni−1), d(xmi
, xmi+1), d(xni−1, xni

),Γ−1[ 2s
√
Γ[d(xmi

, xni
)]Γ[d(xmi+1, xni−1)]]

}
. (11)

Now, taking the upper limit as i→ ∞ in (10) and using (6), (7), (9) and (11), we have

Γ(ε) =

[
Γ(Γ−1( s

√
Γ(ε)))

]s

≤ [Γ[lim sup
i→∞

d(xmi+1, xni
)]]s

≤ K. lim sup
i→∞

Ms(xmi
, xni−1) ≤ K.max{ε, ε}

= K.ε,

which is impossible.
Thus, we have proved that {xn} is a Cauchy sequence in the exponential metric space (X, d). Since (X, d) is complete,
the sequence {xn} converges to some z ∈ X , that is, lim

n→∞
d(xn, z) = 0.

Suppose that z ̸= Tz. Then, from Lemma ??, as T is α-continuous,

s
√
Γ[d(z, Tz)] ≤ Γ(lim inf

n→∞
d(xn, Txn)) ≤ Γ(lim sup

n→∞
d(xn, Txn)) = lim sup

n→∞
d(xn, xn+1) = 0.

Hence, we have d(Tz, z) = 0 and so Tz = z. Thus, z is a fixed point of T .
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Let x, y ∈ Fix(T ) where x ̸= y. Then from

d(Tx, Ty) ≤ [Γ
(
d(Tx, Ty)

)
]s ≤ K.Ms(x, y),

where

Ms(x, y) = max
{
d(x, y), d(x, fx), d(y, fy),Γ−1 2s

√
Γ[d(x, fy)]Γ[d(fx, y)]

}
= d(x, y).

So, we get
d(x, y) ≤ K.d(x, y),

so d(x, y) = 0, a contradiction. Hence, x = y.
Therefore, T has a unique fixed point.

Taking Γ(t) = et in the above theorem, we obtain the Banach contraction principle in the setup of b-metric spaces.
Taking s = 1, we obtain the Banach contraction principle in a metric space.
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Abstract

In this paper, for a non-differentiable multiobjective generalized semi-infinite programming
problem, where the objective and constraint functions are convex, the lower-level Basic and
Slater constraint qualifications are given. Then, some necessary optimality conditions are de-
rived at properly efficient solutions of the considered problem, under these constraint qualifica-
tions and using convex subdifferential.

1. Introduction

Generalized semi-infinite programming problem (GSIP, in brief) is a field of active research, because of not only
its surprising structural aspects, but also its numerous applications. Stein in [7] lists a number of problems from
engineering and economics which give rise to GSIP models, including reverse Chebyshev approximation, minimax
problems, robust optimization, design centering, and disjunctive programming. These problems have the form

GSIP : infφ(x) s.t. ψ(x, y) ≥ 0, ∀y ∈ A(x),

where φ : Rn → R is a given function and the upper-level index set A(x) is defined as

A(x) :=
{
y ∈ Rm | ϕi(x, y) ≤ 0, i ∈ P

}
,

in which the lower-level index set P is finite, and the functions ψ and ϕi as i ∈ P are real-valued on Rn+m.
In almost all existing literature on GSIP theory, the continuously differentiable (smoothness) assumption on the emerg-
ing functions φ, ψ, and ϕi as i ∈ P , is principle and restrictive. In order to establish optimality conditions for smooth
GSIP, several kinds of lower-level constraint qualifications are studied. Extensive references to optimality conditions
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and constraint qualifications for smooth GSIPs, and their historical notes, can be found in [7, 9] and their references.
Kanzi and his coauthors extend these optimality conditions to nonsmooth GSIPs with DC (difference of convex) func-
tions [4] and locally Lipschitz functions [5].
Recently, GSIP is considered when φ := (φ1, . . . , φq) : Rn → Rq is a vector-valued function, and this problem
is named multiobjective generalized semi-infinite programming problem (MGSIP in short). In the case when all
appearing functions of MGSIP are continuously differentiable, some necessary first-order optimality conditions have
been given in [8]. More recently, some optimality conditions for MGSIPs with nondifferentiable convex functions are
presented by Soroush [6] and by Edalat et. al. [2]. In these articles, the results are stated on upper-level Mangasarian-
Fromovitz constraint qualification.
Since in all of the references cited above (except for [4]), the uniform boundedness on the set-valued map x 7→ A(x)
is a standard assumption, and this assumption is very restrictive, one of the goal of this article is to free the problem
from this condition. Another goal of this article is to introduce two lower-level constraint qualification in Slater and
Basic types for convex MGSIPs. In order to these aims, in this paper we consider the following MGSIP:

GMGSIP : infF (x) :=
(
f1(x), . . . , fq(x)

)
, s.t. x ∈ S,

with the feasible set
S := {x ∈ Rn | g(x, y) ≥ 0, y ∈ Y (x)},

and the index set,
Y (x) := {y ∈ Rm | hi(x, y) ≤ 0, i ∈ P},

where P := {1, . . . , p}, and all the appearing functions f, g and hi (as i ∈ P ) are real-valued convex on Rn and
Rn+m, respectively.
The organization of the paper is as follows. In Section 2, basic notations and results of convex analysis are reviewed.
Section 3 contains the main results of the paper, which includes the introduction of constraint qualifications and proof
of main theorems.

2. Notations and Preliminaries

In this section we describe our notation and present preliminary results. Throughout the paper, the inner product of
two vectors u and v in the n-dimensional al space Rn will be denoted by

〈
u, v
〉
, and the null vector in Rn will be

denoted by 0n. The closure of A ⊆ Rn is denoted by A.
• For a set A ⊆ Rn we shall denote

1. the convex hull of A by conv(A), that is defined by

conv(A) :=

{ k∑
j=1

λjaj | aj ∈ A, k ∈ N, λj ∈ [0, 1],

k∑
j=1

λj = 1

}
.

2. the convex cone of A by cone(A), that is defined by

cone(A) :=
⋃
α≥0

αconv(A).

3. the negative polar cone of A by A⊖, that is defined by

A⊖ := {x ∈ Rn |
〈
x, a
〉
≤ 0, ∀ a ∈ A}.

4. the strictly negative polar of A by As, that is defined by

As := {x ∈ Rn |
〈
x, a
〉
< 0, ∀ a ∈ A}.

It is easy to check As =
(
conv(A)

)s for all A ⊆ Rn. Also, if As 6= ∅, we can see A⊖ = As.
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Theorem 2.1. ([3]) Suppose that A ⊆ Rn is given. Then,

• conv(A) is closed provided A is closed.

• cone(A) is closed provided A is compact and 0n /∈ conv(A).

•
(
A⊖)⊖ = cone(A).

Theorem 2.2. ([3]) Let C1, . . . , Ck be nonempty convex sets in Rn. Then, every non-zero vector of conv
( k⋃
i=1

Ci

)
can be expressed as a convex combination of vectors, each belonging to a different Ci.

• For a convex set C ⊆ Rn, we shall denote

1. the tangent cone of C at ĉ ∈ C by TC(ĉ), that is defined by

TC(ĉ) := cone(C − {x̂}).

2. the normal cone of C at ĉ ∈ C by NC(ĉ), that is defined by

NC(ĉ) :=
{
x ∈ Rn |

〈
x, c− ĉ

〉
≤ 0 for all c ∈ C

}
.

We can see the negative polar cone of NC(ĉ) is TC(ĉ), and the negative polar cone of TC(ĉ) is NC(ĉ).
• Let φ : Rn → R be a locally Lipschitz function.

1. The generalized Clarke directional derivative of φ at x̂ ∈ Rn in the direction d ∈ Rn is defined by

φ0(x̂; d) := lim sup
y→x̂, t↓0

φ(y + td)− φ(y)

t
.

2. The Clarke subdifferential of φ at x̂ is defined by

∂cφ(x̂) :=
{
ξ ∈ Rn | φ0(x̂; d) ≥ 〈ξ, d〉, ∀d ∈ Rn

}
.

It is known ([1]) that the Clarke subdifferential of a locally Lipschitz function at each point of its domain is always a
non-empty convex compact set. Moreover, ∂cφ(x̂) = {∇φ(x̂)} when the function φ(·) is continuously differentiable
at x̂ (as always,∇φ(x̂) denotes the gradient of φ at x̂). Also, if φ : Rn → R is a convex function, we have

∂cφ(x̂) = ∂φ(x̂) :=
{
ξ ∈ Rn | φ(x)− φ(x̂) ≥ 〈ξ, x− x̂〉, ∀x ∈ Rn

}
,

and φ0(x̂; d) = φ′(x̂; d), where the standard directional derivative of φ at x̂ in the direction d is denoted by φ′(x̂; d).
We will use the following important relations for two locally Lipschitz functions φ1, φ2 : Rn → R hereafter:

φ0
i (x̂; d) = max{〈ξ, d〉 | ξ ∈ ∂cφ(x̂)}, (1)

∂c
(
max{φ1, φ2}

)
(x̂) ⊆ conv

(
∂cφ1(x̂) ∪ ∂cφ2(x̂)

)
, (2)

∂c
(
α1φ1 + α2φ2

)
(x̂) ⊆ α1∂

cφ1(x̂) + α2∂
cφ2(x̂), ∀α1, α2 ∈ R. (3)

The last inclusion increases to equality for convex functions φ1 and φ2 and non-negative scalars α1 and α2.

Theorem 2.3. ([1]) If the locally Lipschitz function φ : Rn → R attains its minimum on convex setC ⊆ Rn at ĉ ∈ C,
we have

0n ∈ ∂cφ(ĉ) +NC(ĉ).

For a locally Lipschitz function ϕ : Rn×Rm → R and a point (x̂, ŷ) ∈ Rn×Rm, let ∂cxϕ(x̂, ŷ) and ∂cyϕ(x̂, ŷ) denote
the partial Clarke subdifferential of ϕ(·, ·) at (x̂, ŷ), which are defined as ∂cϕ(·, ŷ)(x̂) and ∂cϕ(x̂, ·)(ŷ), respectively.
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3. Main Results

We start this section by recalling the following definition.

Definition 3.1. A feasible point x0 ∈ S is called a properly efficient solution toMGSIP when there exist some positive
scalars γ1, . . . , γq such that

q∑
j=1

γjfj(x0) ≤
q∑

j=1

γjfj(x), ∀x ∈ S.

The lower level problem of MGSIP at x̂ ∈ S (which depends on the parameter x̂) is defined as

inf g(x̂, y) s.t. y ∈ Y (x). (4)

We associate with MGSIP the Lagrangian

$ : Rn × Rm × R× Rp −→ R

$(x, y, α, β) = αg(x, y) +

p∑
i=1

βihi(x, y).

Given x̂ ∈ S, set of active constraints at x̂ is denoted by Y0(x̂), i.e.,

Y0(x̂) :=
{
y ∈ Y (x̂) | g(x̂, y) = 0

}
.

Note that Y0(x̂) is just the set of minimizers of the lower-level problem (4). For each ŷ ∈ Y0(x̂), we define the set
(maybe empty) of Karush-Kahn-Tucker (KKT) multiplier of the lower-level problem (4) at ŷ as

K(x̂, ŷ) :=
{
β ∈ Rp

+ | 0m ∈ ∂y$x̂, ŷ, 1, β), βihi(x̂, ŷ) = 0, ∀ i ∈ P
}
.

Definition 3.2. We say that

(i): the Basic constraint qualification (BCQ) satisfies at (x0, y0) ∈ Λ if

NΛ(x0, y0) ⊆ cone
( p⋃

i=1

∂hi(x0, y0)
)
,

where
Λ :=

{
(x, y) ∈ Rn × Rm | hi(x, y) ≤ 0 ∀i ∈ P

}
.

(ii): the Slater constraint qualification (SCQ) satisfies if there exists a (x∗, y∗) ∈ Λ such that hi(x∗, y∗) < 0 for all
i ∈ P .

Now, we can formulate our first main result.

Theorem 3.3. Suppose that x̂ is a properly efficient solution for convex MGSIP.

(i): If Y (x0) = ∅, there exist some positive coefficients λ1, . . . , λq > 0 such that

0n ∈
q∑

j=1

λj∂fj(x̂).

(ii): If Y (x0) 6= ∅ and for all ŷ ∈ Y0(x̂) the BCQ holds at (x̂, ŷ), there exist some non-negative coefficients
λ1, . . . , λq ≥ 0, as well as some non-negative scalars µ ≥ 0 and β̂ ∈ K(x̂, ŷ), such that

0n ∈
q∑

j=1

λj∂fj(x̂)− µ∂x$(x̂, ŷ, 1, β̂) and µ+

q∑
j=1

λj > 0.
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Proof. Since x̂ is a properly efficient solution for MGSIP, there exist some positive numbers λ1, . . . , λq > 0 such that

q∑
j=1

γjfj(x)−
q∑

j=1

γjfj(x̂) ≥ 0, ∀x ∈ S. (5)

The value function of lower-level problem (4) is defined as

ϑ(x0) :=

 inf
{
g(x0, y) | y ∈ Y (x0)

}
, if Y (x0) 6= ∅,

+∞, if Y (x0) = ∅.
(6)

Consider the following function

θ(x) := max
{ q∑

j=1

γjfj(x)−
q∑

j=1

γjfj(x̂) , −µ(x)
}
.

Note that θ is a locally Lipschitz function because that it is maximum of a convex function and a concave function.
If x ∈ S, then θ(x) ≥ 0 by (5). Also, if x /∈ S, there is a y0 ∈ Y (x) with g(x̂, y0) < 0 and so −ϑ(x) > 0 by (6).
Hence, θ(x) ≥ 0 for all x ∈ Rn, and since θ(x̂) = 0, we conclude that x̂ is a minimizer of θ on Rn. Now, Theorem
2.3 implies that

0n ∈ ∂cθ(x̂) +NRn(x̂) = ∂cθ(x̂). (7)

If Y (x0) = ∅, then θ(x) =
q∑

j=1

γjfj(x)−
q∑

j=1

γjfj(x̂), and so

0n ∈
q∑

j=1

γj∂fj(x̂),

by (7). Thus, (i) is proved. From now we suppose that Y (x0) 6= ∅. Employing (7), we have

0n ∈ ∂cθ(x̂) ⊆ conv

( q∑
j=1

γj∂fj(x̂) ∪
(
− ∂ϑ(x̂)

))
,

and hence, there exists some τ ∈ [0, 1] such that

0n ∈ τ

q∑
j=1

γj∂fj(x̂)− (1− τ)∂ϑ(x̂). (8)

Given ŷ ∈ Y0(x̂) and ξ ∈ ∂ϑ(x̂), we have ϑ(x̂) = g(x̂, ŷ) and

ϑ(x)− ϑ(x̂) ≥ 〈ξ, x− x̂〉 , ∀ x ∈ Rn,

by the definition of the convex subdifferential. This inequality and

ϑ(x) ≤ g(x, y), ∀ (x, y) ∈ S × Y (x),

conclude that
g(x, y)− g(x̂, ŷ) ≥ 〈ξ, x〉 − 〈ξ, x̂〉 , ∀ (x, y) ∈ S × Y (x).

This means that (x̂, ŷ) is a solution to the following convex optimization problem:

min g(x, y)− 〈ξ, x〉
s.t. hi(x, y) ≤ 0, i = 1, 2, . . . , p.
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Since the BCQ holds at (x̂, ŷ) for the above problem, by KKT necessary condition [3, VII Prop. 2.2.1] there is a
β := (β1, β2, . . . , βp) ∈ Rp

+, such that

(0n, 0m) ∈ ∂
(
g(x, y)− 〈ξ.x〉

)
(x̂, ŷ) +

p∑
i=1

βi∂hi(x̂, ŷ)

= ∂g(x̂, ŷ)− (ξ, 0m) +

p∑
i=1

βi∂hi(x̂, ŷ), (9)

and
βihi(x̂, ŷ) = 0, ∀ i = 1, 2, . . . , p.

Now, we use the following important relationship between the full and partial subdifferentials of convex functions
Ψ(x, y) that holds by, e.g., [1, Prop. 2.3.15]:

∂Ψ(x, y) ⊆ ∂xΨ(x, y)× ∂yΨ(x, y). (10)

According to (10) and (9), we deduce that

0n ∈ ∂xg(x̂, ŷ)− ξ +

p∑
i=1

βi∂xhi(x̂, ŷ),

0m ∈ ∂yg(x̂, ŷ) +

p∑
i=1

βi∂yhi(x̂, ŷ),

βihi(x̂, ŷ) = 0, ∀ i ∈ P.

⇐⇒



ξ ∈ ∂xg(x̂, ŷ) +

p∑
i=1

βi∂xhi(x̂, ŷ),

0m ∈ ∂yg(x̂, ŷ) +

p∑
i=1

βi∂yhi(x̂, ŷ),

βihi(x̂, ŷ) = 0, ∀ i ∈ P.

⇐⇒



ξ ∈ ∂x

(
g +

p∑
i=1

βihi

)
(x̂, ŷ),

0m ∈ ∂y

(
g +

p∑
i=1

βihi

)
(x̂, ŷ),

βihi(x̂, ŷ) = 0, ∀ i ∈ P.

⇐⇒


ξ ∈ ∂x$(x̂, ŷ, 1, β),

0m ∈ ∂y$(x̂, ŷ, 1, β),

βihi(x̂, ŷ) = 0, ∀ i ∈ P.

⇐⇒ ξ ∈
⋃

β∈K(x̂,ŷ)

∂x$(x̂, ŷ, 1, β).

Since ξ was an arbitrary element of ϑ(x̂), we thus proved

∂ϑ(x̂) ⊆
⋃

β∈K(x̂,ŷ)

∂x$(x̂, ŷ, 1, β). (11)

Owning to (8) and (11), we find some β̂ ∈ K(x̂, ŷ) such that

0n ∈
q∑

j=1

τγj∂fj(x̂)− (1− τ)∂x$(x̂, ŷ, 1, β̂).

Taking λj := τγj as j = 1, . . . , q and µ := 1− τ in above inclusion, the result is proved.
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It is known that if the hi functions as i ∈ P are affine, then BCQ holds at each (x̂, ŷ) ∈ Λ (see [3]). Therefore, the
following corollary is immediate by Theorem 3.3.

Corollary 3.4. Let x̂ be a properly efficient solution for MGSIP and Y0(x̂) 6= ∅. Suppose that the functions f and
g are convex, and that hi as i ∈ P are sffine on Rn × Rm. Then, for all ŷ ∈ Y0(x̂) there exist some non-negative
coefficients λ1, . . . , λq > 0, as well as some non-negative scalars µ ≥ 0 and β̂ ∈ K(x̂, ŷ), such that

0n ∈
q∑

j=1

λj∂fj(x̂)− µ∂x$(x̂, ŷ, 1, β̂) and µ+

q∑
j=1

λj > 0.

Note that the above necessary optimality condition for MGSIPs with linear lower-level constraint is very appealing
since no uniform boundedness assumption and no constraint qualification are required.
Observe that the necessary optimality condition in Theorem 3.3 can be stated for one y0 ∈ Y0(x0) only. Since the Slater
condition does not depend on (x0, y0), we have the following necessary optimality condition for all (x0, y0) ∈ gphY0.

Theorem 3.5. Suppose that x̂ is a properly efficient solution for convex MGSIP with Y0(x̂) 6= ∅. If SCQ holds, then
for each ŷ ∈ Y0(x̂), there exist some non-negative coefficients λ1, . . . , λq ≥ 0, as well as some non-negative scalars
µ ≥ 0 and β̂ ∈ K(x̂, ŷ), such that

0n ∈
q∑

j=1

λj∂fj(x̂)− µ∂x$(x̂, ŷ, 1, β̂) and µ+

q∑
j=1

λj > 0.

Proof. By the definition of SCQ, there is an (x∗, y∗) ∈ Λ such that hi(x∗, y∗) < 0 for all i ∈ P . Let ŷ ∈ Y0(x̂) and
i ∈ P are given, arbitrarily. For each ξ ∈ ∂hi(x̂, ŷ), we have

〈ξ, (x∗, y∗)− (x̂, ŷ)〉 ≤
<0︷ ︸︸ ︷

hi(x
∗, y∗)−

=0︷ ︸︸ ︷
hi(x̂, ŷ) < 0.

Hence, (x∗, y∗)− (x̂, ŷ) ∈
(
∂hi(x̂, ŷ)

)s for all i ∈ P , and so(
conv

( ⋃
i∈P

∂hi(x̂, ŷ)
))s

=

( ⋃
i∈P

∂hi(x̂, ŷ)

)s

=
⋂
i∈P

(
∂hi(x̂, ŷ)

)s 6= ∅. (12)

Thus, 0n+m /∈
(
conv

( ⋃
i∈P

∂hi(x̂, ŷ)
))s

, and since
⋃
i∈P

∂hi(x̂, ŷ) is a compact set, Theorem 2.1 concludes that

cone
( ⋃

i∈P

∂hi(x̂, ŷ)
)
is a closed set.

On the other hand, for each

ζ ∈
( ⋃

i∈P

∂hi(x̂, ŷ)

)s

=

(
conv

( ⋃
i∈P

∂hi(x̂, ŷ)
))s

. (13)

Taking
G(x, y) := max{hi(x, y) | i ∈ P}, ∀(x, y) ∈ Λ,

we conclude by (??) that

∂cG(x̂, ŷ) ⊆ conv
( ⋃

i∈P

∂hi(x̂, ŷ)
)
=⇒

(
conv

( ⋃
i∈P

∂hi(x̂, ŷ)
))s

⊆
(
∂cG(x̂, ŷ)

)s
.

This inclusion and (1) deduce that G
(
(x̂, ŷ); ζ

)
< 0 for all ζ ∈ Rn × Rm. So, the definition of Clarke directional

derivative implies that there exists a ε > 0 such that

G
(
(x̂, ŷ) + δζ

)
−

≤0︷ ︸︸ ︷
G(x̂, ŷ) < 0, ∀ δ ∈ (0, ε].
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Consequently, G
(
(x̂, ŷ) + δζ

)
< 0, and so hi

(
(x̂, ŷ) + δζ

)
< 0 for all i ∈ P and all δ ∈ (0, ε]. This means that

(x̂, ŷ) + δζ ∈ Λ for all δ ∈ (0, ε], which concludes subdifferential ∈ TΛ(x̂, ŷ). Since ζ was chosen arbitrarily, we
proved that ( ⋃

i∈P

∂hi(x̂, ŷ)

)s

⊆ TΛ(x̂, ŷ),

and so ( ⋃
i∈P

∂hi(x̂, ŷ)

)⊖

=

( ⋃
i∈P

∂hi(x̂, ŷ)

)s

⊆ TΛ(x̂, ŷ) = TΛ(x̂, ŷ).

Consequently,

NΛ(x̂, ŷ) =
(
TΛ(x̂, ŷ)

)⊖
⊆

(( ⋃
i∈P

∂hi(x̂, ŷ)

)⊖
)⊖

= cone

( ⋃
i∈P

∂hi(x̂, ŷ)

)
.

Since we proved that cone
( ⋃

i∈P

∂hi(x̂, ŷ)
)
is a closed set, the above inclusion implies that BCQ holds at (x̂, ŷ). Now,

Employing Theorem 3.3, the proof is complete,

Note that SCQ is weaker than the Slater condition, introduced in [7], which requires the existence of y∗ ∈ Y0(x̂) such
that hi(x̂, y∗) < 0 as i ∈ P . Thus, Theorem 3.5 is a generalization of [7, Theorem 4.3.5], that the required Slater
condition is weaker and the uniform boundedness assumption is not needed.
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Abstract

In this paper, first, we define and solve the generalized orthogonally additive ρ−functional
equation between orthogonally Banach algebras and we investigate it is an orthogonally addi-
tive mapping. After that, explain generalized orthogonally additive ρ−functional equation can
be C−linear mapping. In the following, we prove the Hyers-Ulam stability and Hyers-Ulam-
Rassias stability of generalized orthogonally additive ρ−functional equation between orthogo-
nally Banach algebras. Finally, by using orthogonally fixed point, we investigate generalized
orthogonally additive ρ−functional equation can be hyperstable.

1. Introduction and Preliminaries

The concept of stability of functional equations is of great importance in mathematics and has wide-ranging impli-
cations. It was first introduced by Ulam [23] in 1940, when he raised the fundamental question of when a function
that approximately satisfies a functional equation must be close to an exact solution of the equation. This question
was further developed by Hyers [12] in the context of Banach spaces the following year, representing a significant
advancement in the analysis of functional equation stability.In 1978, Rassias [21] introduced generalized Hyers-Ulam
stability, which incorporated a new stability concept involving a control function ε(∥a∥r + ∥b∥r), where ε > 0 and
r < 1, for additive mappings. Gǎvruta [10] later replaced Rassias’s control function with φ(a, b) and demonstrated
its stability in 1994.

Hyers-Ulam stability is characterized by the property of a functional equation where a small approximation in the equa-
tion’s solutions results in only a minor approximation in the solutions themselves. This concept finds applications in
various branches of mathematics, including functional analysis, dynamic equations, and other pure and applied math-
ematical areas. Such that in 1993, M. Obloza [19] extended the concept of stability to linear differential equations by
focusing on the concept of Hyers-Ulam stability, generating substantial interest in stability for fractional differential
equations. This interest led to extensive research, with researchers extending the concept of Hyers-Ulam stability to
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fractional differential equations and fractional calculus. These developments have significantly expanded the under-
standing and application of stability concepts in various mathematical contexts. For more information see [17, 22, 24].

After that, Miura et al. [18] expanded the reach and significance of Hyers-Ulam stability by establishing its applica-
bility to stability for linear operators. This extension represents a significant development in the field, broadening the
understanding of stability concepts beyond the realm of functional equations. Additionally, researchers have delved
into the exploration of this concept within a variety of Hilbert spaces, including Hardy spaces, weighted Hardy spaces,
and Fock spaces, indicating the versatility and wide-ranging implications of the stability framework. The investigation
of stability in the context of linear operators and various Hilbert spaces offers valuable insights into the behavior and
properties of mathematical structures in these settings, contributing to a deeper understanding of stability phenomena
in diverse mathematical contexts. For further in-depth information on these advancements, interested readers are en-
couraged to consult the sources [3, 11, 13], which provide comprehensive details and analysis on the topic.

The concept of hyperstability was initially introduced in [6], focusing on specific ring homomorphisms. Hyperstability
refers to a functional equation being considered hyperstable when every approximate solution of the equation is also
an exact solution. This notion represents a significant advancement in the study of stability in functional equations. In
other words, hyperstability pertains to functional equations where every approximate solution is also an exact solution,
representing a significant advancement in the study of stability. Many researchers worked in this field further details
are available in [4, 8, 16].

There are several notions of orthogonality in a real normed space, including Birkhoff-James, Boussouis, (semi–)inner
product, Singer, Carlsson, unitary–Boussouis, Roberts, Pythagorean, and Diminnie (see, [1, 2]). The concept of or-
thogonal sets and related notions was introduced by Eshaghi Gordji and colleagues. They provide definitions and
properties related to these sets such that, these definitions and concepts lay the groundwork for studying metric spaces
and mappings in the context of orthogonality, providing a broader framework for understanding convergence, continu-
ity, and contraction properties in these spaces [14, 15]. In 2017, the set of orthogonal on normed spaces was introduced
by M. Eshaghi Gordji et al. [9] as follows.

Definition 1.1. [9] (i) Suppose X ̸= ∅ and ⊥ ⊆ X ×X is a binary relation. If ⊥ satisfies the following condition

∃x0; (∀y; y⊥x0) or (∀y;x0⊥y),

then (X,⊥) is termed an orthogonal set (abbreviated as O-set).
(ii)Given an O-set (X,⊥), a sequence {xn}n∈N is referred to as an orthogonal sequence (abbreviated as O-sequence)
if

(∀n;xn⊥xn+1) or (∀n;xn+1⊥xn).

(iii) If (X,⊥) is an O-set and (X, d) is a metric space, then (X,⊥, d) forms an orthogonally metric space. A mapping
f : X → X is considered ⊥−continuous at x ∈ X if for each O-sequence {xn}n∈N in X with xn → x, f(xn) →
f(x). It is evident that every continuous mapping is also ⊥−continuous.
(iv) A Cauchy sequence {xn} inX is called a Cauchy orthogonally sequence (abbreviated as Cauchy O-sequence) if
for all n ∈ A, xn⊥xn+1 or xn+1⊥xn. An orthogonally metric space (X,⊥, d) is orthogonally complete (abbreviated
as O-complete) if every Cauchy O-sequence converges.
(v) : Let (X,⊥, d) be an orthogonally metric space and 0 < λ < 1. A mapping f : X → X is considered an
orthogonality contraction with Lipschitz constant λ if for any x, y with x⊥y

d(f(x), f(y)) ≤ λd(x, y).

By using the concept of orthogonal sets, Bahraini et al. as follows proved the fixed point theorem of Diaz-Margolis
for these sets. They showed states the conditions under which a function on an O-complete generalized metric space
has a unique fixed point.

Theorem 1.2. [5] Assume that (X, d,⊥) is an O-complete generalized metric space. Let T : X → X be a ⊥-
preserving, ⊥-continuous, and ⊥-λ-contraction. Let x0 ∈ X satisfy for all y ∈ X , x0 ⊥ y or for all y ∈ X ,
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y ⊥ x0, and consider the O-sequence of successive approximations with initial element x0; x0, T (x0), T 2(x0), ...,
Tn(x0), ... . Then, either d(Tn(x0), T

n+1(x0)) = ∞ for all n ≥ 0, or there exists a positive integer n0 such that
d(Tn(x0), T

n+1(x0)) < ∞ for all n > n0. If the second alternative holds, then
(i): the O-sequence of {Tn(x0)} is convergent to a fixed point x∗ of T ,
(ii): x∗ is the unique fixed point of T in

X∗ = {y ∈ X : d(Tn(x0), y) < ∞}.

(iii): if y ∈ X , then
d(y, x∗) ≤ 1

1− λ
d(y, T (y)).

In 2015, Park [20], introduced additive ρ-functional inequalities and demonstrated the Hyers-Ulam stability of these
inequalities in both Banach spaces and non-Archimedean Banach spaces. In the following, we mention the definition
of orthogonally generalized additive ρ−functional equation between orthogonally normed spaces, a more expand of
the study of additive ρ-functional equations in the context of orthogonality and normed spaces.
Let X and Y are orthogonally normed spaces. The mapping T : X → Y , called orthogonally additive mapping if
it satisfies T (x + y) = T (x) + T (y), for all x, y ∈ X with x⊥y. By attention to concept of orthogonally additive
mapping, in the next, we explain about orthogonally generalized additive ρ−functional equation where ρ ̸= 0,±1.
The mapping T called orthogonally generalized additive ρ−functional equation on orthogonally normed spaces for
all x, y, z ∈ X, with x⊥y, x⊥z and y⊥z, if satisfies

T (x+ y + z) + T (x)− T (x+ y)− T (x+ z) = ρ
(
T (x− y) + T (y − z)− T (x− z)

)
. (1)

In this paper, we solve orthogonally generalized additive ρ−functional equation such that we show it is an orthogonally
additive mappings. After that, we can investigate it is an orthogonally C-linearity. In the next, by using orthogonally
fixed point, we prove the Hyers-Ulam stability of orthogonally generalized additive ρ−functional equation using
control functions of Gǎvruta and Rassias. Finally, we can show of orthogonally generalized additive ρ−functional
equation can be hyperstable with both of control functions of Gǎvruta and Rassias.

2. Stability and Hyperstability

In this section, let ρ ̸= 0,±1, and X and Y be orthogonally normed spaces, and A and B be orthogonally Banach
algebras. Firstly, wewill prove a lemma for the orthogonally generalized additive ρ-functional equation, demonstrating
that it is an additive mapping.

Lemma 2.1. Let X and Y are orthogonally normed spaces. If the mapping T : X → Y satisfies

T (x+ y + z) + T (x)− T (x+ y)− T (x+ z) = ρ
(
T (x− y) + T (y − z)− T (x− z)

)
(2)

for all x, y, z ∈ X, with x⊥y, x⊥z and y⊥z, then T is an orthogonally additive mapping.

Proof. The mapping T satisfies the equation (2). By setting x = y = z = 0 in (2), we find that T (0) = 0. Then,
setting x = z = 0 in (2), we obtain the following equation

T (−y) = −T (y). (3)

In the following step, we use equation (3) and substitute x = 0 and y = z into equation (2), resulting in the following
expression

T (2y) = 2T (y). (4)

Lastly, once more substituting x = 0 and utilizing equations (3) and (4) in equation (2), we obtain

T (x+ y) = T (x) + T (y).

This statement means that the function T from X to Y preserves orthogonally addition.
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In the continue of section, we define α as a member of the set T 1
1
n0

:= {eiθ; 0 ≤ θ ≤ 2π
n0

}. This set consists of

complex numbers that lie on the unit circle in the complex plane, with their angles ranging from 0 to 2π
n0

radians.
In the next lemma, we incorporate the element α into the orthogonally generalized additive ρ-functional equation. By
doing so, we proceed to verify that T , the function in question, is a C-linear mapping. This means that T satisfies
in above lemma and it is homogeneous over the complex numbers (i.e., for any complex number α and any element
x ∈ X ,

T (αu) = αT (u).

Lemma 2.2. If X and Y are two orthogonally normed spaces, and the mapping T : X → Y satisfies the equation

αT (x+ y + z) + αT (x)− T (αx+ αy)− T (αx+ αz) = ρ
(
T (αx− αy) + αT (y − z)− T (αx− αz)

)
(5)

then T is an orthogonally C-linear mapping.

Proof. Using lemma 2.1, we conclude that T is a additive mapping. Setting x = z = 0 in (2), we obtain the following

T (αx) = αT (x) (6)

The mapping T is an orthogonally C−linear mapping for complex numbers, based on the reasoning used in the proof
of Theorem 3.2 in [7].

In the next theorem, we will use Theorem 1.2 to establish the Hyers-Ulam stability of the orthogonally generalized
additive ρ-functional equation with the control function of Gǎvruta.

Theorem 2.3. Let the mappings σ : A3 → [0,∞), satisfy the inequality

σ
(x
2
,
y

2
,
z

2

)
≤ β

2
σ(x, y, z). (7)

for some 0 < β < 1. And if f : A → B satisfies a following inequality∥∥∥∥∥αf(x+y+z)+αf(x)−f(αx+αy)−f(αx+αz)−ρ
(
f(αx−αy)+αf(y−z)−f(αx−αz)

)∥∥∥∥∥ ≤ σ(x, y, z), (8)

then there exists an orthogonally unique C−linear mapping T : A → B such that

∥f(x)− T (x)∥ ≤ β

1− β
σ(0, x, x)

for all x ∈ A.

In the next theorem, the goal is to investigate whether the orthogonally generalized additive ρ-functional equation can
exhibit hyperstability with Gǎvruta’s control function.

Theorem 2.4. Suppose there is a function σ : A3 → [0,∞) such that:

lim
n→∞

1

2n
σ (0, 2ny, 2nz) = 0,

Additionally, if an orthogonally mapping f : A → B satisfies a following inequality∥∥∥∥∥αf(x+y+z)+αf(x)−f(αx+αy)−f(αx+αz)−ρ
(
f(αx−αy)+αf(y−z)−f(αx−αz)

)∥∥∥∥∥ ≤ σ(0, y, z). (9)

Then f : A → B is an orthogonally C−linear mapping.
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Based on the theorems 2.3 and 2.4, the following corollaries, we investigate the stability and hyperstability of the or-
thogonally generalized additive ρ-functional equation between orthogonally algebras, considering the control function
of Rassias.

Corollary 2.5. Let t < 1 and θ be nonegative real numbers. If an orthogonally mapping f : A → B satisfies∥∥∥∥∥αf(x+y+z)+αf(x)−f(αx+αy)−f(αx+αz)−ρ
(
f(αx−αy)+αf(y−z)−f(αx−αz)

)∥∥∥∥∥ ≤ θ(∥x∥t+∥y∥t+∥z∥t).

(10)
Then there is an unique orthogonally C−linear mapping T : A → B such that

∥f(x)− T (x)∥ ≤ 2α

2− 2t
∥x∥t.

Now, we investigate the hyperstability for orthogonally generalized additive ρ-functional equation.

Corollary 2.6. Let t < 1 and θ be nonegative real numbers. If an orthogonally mapping f : A → B satisfies∥∥∥∥∥αf(x+y+z)+αf(x)−f(αx+αy)−f(αx+αz)−ρ
(
f(αx−αy)+αf(y−z)−f(αx−αz)

)∥∥∥∥∥ ≤ θ(∥y∥t+∥z∥t).

Then f : A → B is an orthogonally C−linear mapping.

3. Conclusions

First, a new orthogonally generalized additive ρ-functional equation is introduced, with the condition that ρ is not
equal to 0,±1, and this equation is defined on orthogonally normed spaces. Next, the equation is solved within a class
of additive functions. Then, we demonstrated that the solution satisfies the condition of being a C-linear mapping.
Finally, by utilizing the orthogonally fixed point theorem, we investigated is conducted to determine whether the
orthogonally generalized additive ρ-functional equation, where ρ is not equal to 0,±1, can be both Hyers-Ulam stable
and hyper stable using the control functions of Gǎvruta and Rassias.
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Abstract

S. S. Renani and R. Nasr Isfahani in [7] introduced the notion of ϕ-injectivity. Essmaili et al. in
[5] continued the investigations of this outstanding work and obtain some results on semigroup
algebras. In this paper, we aim to draw your attention to an open problem that arose when the
authors of [5] were working on this topic.

1. Introduction and Basic Definitions

The aim of this work is not to present some new findings. Here, we just want to repeat some definitions and ground
breaking works in the world of Horological algebras. Then, give the definitions of some new adoption of injectivity
which is related to characters. Finally, we present an open problem which we believe plays a fundamental role in the
Harmonic Analysis world. So, let’s get started.
Suppose that A is a Banach algebra. We denote by A-mod and mod-A the categories of Banach left A-modules and
Banach right A-modules, respectively. In the case where A is unital, we also denote by A-unmod the categories of
unital Banach left A-modules. For each E,F ∈ A-mod, let AB(E,F ) be the closed subspace of B(E,F ) consist-
ing of the left A-module morphisms. An operator T ∈ B(E,F ) is called admissible if kerT and ImT are closed
complemented subspaces of E and F , respectively. It is easy to verify that T is admissible if and only if there exists
S ∈ B(F,E) such that T ◦ S ◦ T = T.
A Banach left A-module E is called injective if for each F,K ∈ A-mod and admissible monomorphism T ∈A

B(F,K), the induced map AB(K,E) −→AB(F,E) is onto. We also say E ∈ mod-A is flat if the dual module of
E∗ ∈ A-mod is injective with the following left module action:

(a · f)(x) = f(x · a) (a ∈ A, x ∈ E).

The notions of injectivity and flatness of Banach algebras were introduced by A. Ya. Helemskii. These notions have
been studied for various classes of Banachmodules; see [3], [4], [9] and [10] for more details. Recently, Ramsden in [9]
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studied injectivity and flatness of Banach modules over semigroup algebras. It is well known that if A is amenable,
then every Banach A-modules is flat but the converse is a long standing open problem. We recall that the answer
is positive for some classes of Banach algebras associated with locally compact groups such as, the class of group
algebras and measure algebras; see [3] and [8].
Kaniuth, Lau and Pym introduced and studied in [1] and [2] the notion of ϕ-amenability for Banach algebras, where
ϕ : A −→ C is a character, i.e., a non-zero homomorphism onA. Afterwards, Monfared introduced and studied in [6]
the notion of character amenability for Banach algebras. Let ∆(A) be the set of all characters of the Banach algebra
A, and let ϕ ∈ ∆(A). The Banach algebra A is called left ϕ-amenable if for all Banach A-bimodules E for which the
left module action is given by

a · x = ϕ(a)x (a ∈ A, x ∈ E),

every derivation D : A −→ E∗ is inner. It is clear that amenability of A implies ϕ-amenability for all ϕ ∈ ∆(A).
Recently, Nasr-Isfahani and Soltani Renani in [7] introduced and studied the notion of ϕ-injectivity and ϕ-flatness for
Banach modules (see Definition 2.1). As an important result, it is shown in [7, Proposition 3.1] that the Banach algebra
A is left ϕ-amenable if and only if every Banach leftA-modulesE is ϕ-flat. Indeed, this result gives a positive answer
to the above open problem arises by A. Ya. Helemskii in this homology setting based on character ϕ. Furthermore,
they obtained some necessary and sufficient conditions for ϕ-injectivity and characterized ϕ-injectivity of Banach
modules in terms of a coretraction problem; see [7, Theorem 2.4].

2. Definition of Character Injectivity

First, we recall some standard notations that we shall use and define the notions of ϕ-injectivity and ϕ-flatness of
Banach modules.
Let A be a Banach algebra and E ∈ A-mod. Throughout the paper, we regard E as a Banach left A♯-module (the
unitization of A) with the following left module action:

(a, λ) · x = a · x+ λx (a ∈ A, λ ∈ C, x ∈ E).

Moreover, the space B(A,E) is a Banach A-bimodule with the following module actions:

(a · T )(b) = T (ba), (T · a)(b) = T (ab) (T ∈ B(A,E), a, b ∈ A).

Suppose that A is a Banach algebra and ϕ ∈ ∆(A). For each E ∈ A-mod we define,

I(ϕ,E) = span{a · x− ϕ(a)x : a ∈ A, x ∈ E}.

Following [7], we also consider

ϕB(A♯, E) = {T ∈ B(A♯, E) : T (ab− ϕ(b)a) = a · T (b− ϕ(b)e♯) for all a, b ∈ A},

where e♯ = (0, 1) denotes the unite of A♯. It is straightforward to check that ϕB(A♯, E) is a closed A-submodule of
B(A♯, E).Moreover, we define the canonical morphism ϕΠ

♯ : E −→ϕ B(A♯, E) as follows:

ϕΠ
♯(x)(a) = a · x (x ∈ E, a ∈ A♯).

Definition 2.1. Let A be a Banach algebra, ϕ ∈ ∆(A) and E ∈ A-mod. We say that E is ϕ-injective if, for each
F,K ∈ A-mod and admissible monomorphism T : F −→ K with I(ϕ,K) ⊆ Im(T ), the induced map TE :

AB(K,E) −→ AB(F,E) defined by TE(R) = R ◦ T is onto.

The following theorem gives a characterization of ϕ-injectivity in terms of a coretraction problem.

Theorem 2.2. ([7, Theorem 2.4]) Let A be a Banach algebra and ϕ ∈ ∆(A). For E ∈ A-mod the following
statements are equivalent.

(i) E is ϕ-injective.
(ii) ϕΠ

♯ ∈AB(E,ϕ B(A♯, E)) is a coretraction, (that is there exists ϕρ
♯ ∈ AB(ϕB(A♯, E), E) such that is a left

inverse for ϕΠ
♯).

A Banach right (left) A-module E is ϕ-flat if E∗ is ϕ-injective as a left (right) A-module. It is shown that Banach
algebra A is left ϕ-amenable if and only if each Banach left A-module E is ϕ-flat [7, Proposition 3.1].
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3. Main Point of This Paper

Fasten your seat belt and put on your perfectionism glasses. Now, we want to take a deep dive in the mysterious world
of Groups in Harmonic Analysis.
Let G be a locally compact group. It is shown in [3, Theorem 4.9] that L1(G) ∈ L1(G)-mod is injective if and only
if G is amenable and discrete. Now, suppose that L1(G) ∈ L1(G)-mod is character injective.

Open problem: Are the following statements equivalent?

(i) L1(G) ∈ L1(G)-mod is character injective.
(ii) G is amenable and discrete.

Up to our knowledge this problem has not been solved yet. This question is one of the fundamental piece in the realm
of Harmonic Analysis. If you can give a partial answer to it, you can open a new and fundamental door for other
mathematicians. We take this great opportunity of conference to bring into your precious attention this question and
hope you can solve it.
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Abstract

In this work, first, we define generalized 3D Jensen ρ−functional equation on 3-Lie algebras
and solve it belongs to a class of additive mappings, accompanied by its C-linearity. In the
next, by the fixed point theorem, we will inquire into the stability of the generalized 3D Jensen
ρ−functional equation with Gǎvruta’s control function within the framework of Hyers-Ulam
stability. After that, the confirmation of the stability of relation (1), we will investigate the
concurrent Hyers-Ulam stability of 3-Lie derivations and 3-Lie homomorphisms. Finally, we
will discuss the results of the theorem of Rassias for the generalized 3D Jensen ρ−functional
equation and 3-Lie derivations and 3-Lie homomorphisms on 3-Lie algebras.

1. Introduction and Preliminaries

In the 1800s, Cayley played a pioneering role in introducing 3-ary operations involving cubic matrices. This break-
through paved the way for the emergence of n-ary algebraic structures spanning various fields. N-ary algebras, with a
focus on ternary algebraic structures, have been extensively researched. In 2008, J. Bagger and N. Lambert conducted
a study on gauge symmetry, proposing a supersymmetric theory for multiple M2-branes. This theory involves an alge-
bra incorporating ternary operations, now recognized as Bagger-Lambert algebras. This idea transcends the realm of
mathematics, as n-ary and ternary algebras represent generalizations of algebraic structures that surpass conventional
binary operations. These structures adhere to properties like associativity and linearity, enabling the definition of al-
gebraic systems that extend beyond the confines of binary operations. For example, Both ternary algebra and n-ary
algebra have applications in various areas of quantum mechanics, coding theory, physics, computer science, and the
domain of Nambu mechanics. For more information see [1, 5, 6, 15].
In the year 2008, the concept of ternary algebras was introduced by M. Amyari and M. S. Moslehian [2]. They defined
a ternary algebra A as a complex space equipped with a ternary product (x1, x2, x3) → [x1, x2, x3] mapping from A3

to A. This product is stipulated to be C-linear in the outer variables, conjugate C-linear in the middle variable, and
associative. Furthermore, it must satisfy specific norm properties, including ∥[x1, x2, x3]∥ ≤ ∥x1∥.∥x2∥.∥x3∥ and

∗Talker
Email addresses: zohrekefayati68@gmail.com (Zohreh Kefayati), esnaraghirad@yu.ac.ir (Eskandar Naraghirad)



124 Kefayati & Naraghirad / The 4th National Congress on Mathematics and Statistics

∥[x, x, x]∥ = ∥x∥3. When a ternary algebra A is also a Banach space, it earns the designation of a ternary Banach
algebra.
The stability problem of functional equations holds a fundamental place in mathematics, bearing significant implica-
tions for their study. In 1940, Ulam [22] introduced this concept, posing the question, ”Under what conditions does a
function that approximately satisfies a functional equation have to be close to an exact solution of the equation?” The
following year, Hyers [10] addressed this query in the context of Banach spaces, representing a crucial advancement in
the analysis of functional equation stability. Subsequently, in 1978, Rassias [21] introduced generalized Hyers-Ulam
stability, incorporating a novel stability concept with a control function ε(∥x1∥r+∥x2∥r), where ε > 0 and r < 1, for
additive mappings. Later in 1994, Gǎvruta [8] replaced Rassias’s control function with φ(x1, x2) and demonstrated
its stability. Hyers-Ulam stability essentially denotes the property of a functional equation, where a slight perturba-
tion in the equation’s solutions results in only a minor perturbation in the solutions themselves. This concept finds
applications in various branches of mathematics, including functional analysis, dynamic equations, and other pure and
applied mathematical areas. Focusing on the concept of Hyers-Ulam stability, M. Obloza introduced stability for linear
differential equations in 1994 [16, 17], generating substantial interest in stability for fractional differential equations.
This interest led to extensive research, with researchers extending the concept of Hyers-Ulam stability to fractional
differential equations and fractional calculus [4, 7, 11, 18].

Expanding the scope of Hyers-Ulam stability and its significance, Miura et al. established stability for linear operators.
Additionally, researchers have explored this concept within various Hilbert spaces, including Hardy spaces, weighted
Hardy spaces, and Fock spaces. Further information can be found in [3, 9, 12].

Lie algebras are attributed to Professor Sophus Lie, and in 1893, Scheffers [19] compiled much of the original formu-
lation from Lie’s lecture notes in Leipzig. An Banach algebra X equipped with the product [x1, x2] :=

(x1x2−x2x1)
2

for all x1, x2 ∈ X forms an Lie algebra and similarly for 3-Lie algebra X endowed with the bracket
[
[x1, x2], x3

]
:=

[x1,x2]x3−x3[x1,x2]
2 , for all x1, x2, x3 ∈ X (see [13]).

In the following, we define generalized 3D Jensen ρ−functional equation and 3-Lie homomorphism-derivation be-
tween 3-Lie algebras. The mapping J from X to X called 3D Jensen ρ−functional equation on 3-Lie algebras if
satisfies

ΛJ(xi) = J
(x1 + x2

2
+ x3

)
+ J

(x1 + x3

2
+ x2

)
+ J

(x2 + x3

2
+ x1

)
− 2J(x1)− 2J(x2)− 2J(x3)

− ρ

(
3J
(x1 + x2 + x3

3

)
+ J(x1) + J(x2) + J(x3)− 2J

(x1 + x2

2

)
− 2J

(x1 + x3

2

)
− 2J

(x2 + x3

2

)) (1)

where ρ ̸= 0,±1 and xi ∈ X where is i = 1, 2, 3 such that we will solve above equation is a type of additive mapping.
In the next part in this section, we have the concepts of 3-Lie derivations and 3-Lie homomorphisms.
A mapping ζ : X → X is called a 3-Lie homomorphism, if ζ satisfies (1) and

ζ([[x1, x2], x3]) = [[ζ(x1), ζ(x2)], ζ(x3)] ∀ x1, x2, x3 ∈ X .

And mapping D : X → X is called a 3-Lie derivation if D satisfies (1) and

D([[x1, x2], x3]) = [[D(x1), x2], x3] + [[x1, D(x2)], x3] + [[x1, x2], D(x3)]

for all xi ∈ X where xi ∈ {1, 3}.

In the following section, first, we solve that a function satisfying (1) belongs to a category of additive mappings, ac-
companied by itsC-linearity. Subsequently, employing below theorem, we will inquire into the stability of the relation
(1) using Gǎvruta’s control function within the framework of Hyers-Ulam stability. Following the confirmation of the
stability of relation (1), we will investigate the concurrent Hyers-Ulam stability of 3-Lie derivations and 3-Lie homo-
morphisms. Lastly, we will engage in an explanation concerning the outcomes of Rassias’ theorem for the presented
concepts.
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Theorem 1.1. [14] Let a complete generalized metric space (S, d), and supposeG : S → S is a strictly contractive
mapping with a Lipschitz constant 0 < ι < 1. Then, for any given element x1 ∈ S, we have either

d(Gjx1, G
j+1x1) = ∞

for all nonnegative integers j, or there exists a positive integer j0 such that:
(1) d(Gjx1, G

j+1x1) < ∞, ∀j ≥ j0;
(2) the sequence {Gjx1} converges to a fixed point x∗

2 of G;
(3) x∗

2 is the unique fixed point of G in the set B = {x1 ∈ S | d(Gj0x1, x2) < ∞};
(4) d(x2, x

∗
2) ≤ 1

1−ιd(x2, Gx2) for all x2 ∈ B.

2. Main Results

In this section, First, for ease of work, we will introduce some concepts as follows and then we will prove a lemma
for the relation (1), so as to show that the relation (1), is an additive mapping.
let X be a 3-Lie algebras, ρ ̸= 0,±1, γ ∈ T1 := {γ ∈ C : |γ| = 1} and Lipschitz constant 0 < ι < 1.

Lemma 2.1. If A and B be two normed spaces, and the mapping J from A to B satisfies equation (1), in fact J is a
additive mapping.

Proof. Let J satisfies (1), with putting xi = 0 where i = 1, 2, 3 in (1), we have J(0) = 0. After that, xi are equal in
(1) where i = 1, 2, 3, we have

J(2x1) = 2J(x1). (2)

In the continue, by using (2) and putting xi = 0 where i = 2, 3 in (1), we get

J(3x1) = 3J(x1). (3)

Again putting x1 := −x2, x3 = 0 and by using (2) and (3) in (1), we have

J(−x2) = −J(x2). (4)

By attention to relations (2) and (4) and putting x3 := x2 in (1), we get

J
(x1 − x2

2

)
+ J

(x1 + x2

2

)
− J(x1) = −2ρ

(
J
(x1 − x2

2

)
+ J

(x1 + x2

2

)
− J(x1)

)
(5)

Finally, putting x := x1 + x2 and y := x1 + x2 in (5), we get

J(x+ y) = J(x) + J(y).

i.e., J from A to B is additive.

In the next lemma, by adding γ ∈ T1 to relation (1), we check that J is a C-linear mapping.

ΛJγ
(xi) =J

(γx1 + γx2

2
+ γx3

)
+ J

(γx1 + γx3

2
+ γx2

)
+ J

(γx2 + γx3

2
+ γx1

)
− 2γJ(x1)

− 2γJ(x2)− 2γJ(x3)− ρ

(
3J
(γx1 + γx2 + γx3

3

)
+ γJ(x1) + γJ(x2) + γJ(x3)

− 2γJ
(x1 + x2

2

)
− 2J

(vx1 + γx3

2

)
− 2γJ

(x2 + x3

2

)) (6)

for all xi ∈ X where i ∈ {1, 3}.
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Lemma 2.2. If A and B be two normed spaces, and the mapping J from A to B satisfies equation (6), in fact J is a
C-linear mapping.

Proof. Using lemma 2.1, we conclude that J is a additive mapping. xi are equal in (6) where i = 1, 2, 3, we have

J(γx1) = γJ(x1) (7)

for all x1 ∈ X . Using the same reasoning as in the proof of [20, Theorem 2.1], we can deduce that J is a C−linear
mapping.

In the next theorem, by using theorem 1.1, we will obtain the Hyers-Ulam stability of relation (6) with the control
function of Gǎvruta. Before stating the main theorem, we check conditions of Gǎvruta’s control function for relation
(6), 3-Lie homomorphism and 3-Lie derivation.
Let the mappings θ, π from X 3 to [0,∞), satisfying

θ
(x1

2
,
x2

2
,
x3

2

)
≤ ι

2
θ(x1, x2, x3). (8)

and
π
(x1

2
,
x2

2
,
x3

2

)
≤ ι

23
π(x1, x2, x3). (9)

If we put with putting xi = 0 where i = 1, 2, 3 in (8) and (9), then we have θ(0, 0, 0) = π(0, 0, 0) = 0. After that, in
view of (7) and (9), we get

lim
n→∞

2nθ
(x1

2n
,
x2

2n
,
x3

2n

)
= 0 (10)

and
lim

n→∞
23nπ

(x1

2n
,
x2

2n
,
x3

2n

)
= 0 (11)

for all xi ∈ X where i ∈ {1, 3}. Now, by using theorem 1.1, we can investigate the stability of relation (6), 3-Lie
homomorphism and 3-Lie derivation on 3-Lie algebras with the control function of Gǎvruta.

Theorem 2.3. Let the mappings θ, π from X 3 to [0,∞), satisfying (8) and (9), respectively. And let Jj from X to X
are mappings. In fact
(i) Suppose that Jj satisfies

∥ΛJj ,γ(xi)∥ ≤ θ(x1, x2, x3), (12)

for all xi ∈ X where i ∈ {1, 3} and j = 1, 2. Then there is a unique C−linear mapping T on X such that

∥Jj(x1)− T(x1)∥ ≤ ι

1− ι
θ(x1, x1, x1)

for all x1 ∈ X and j = 1, 2.
(ii) Suppose that Jj satisfying (12) and∥∥∥J1([[x1, x2], x3])− [[J1(x1), J1(x2)], J1(x3)]

∥∥∥
+
∥∥∥J2([[x1, x2], x3])− [[J2(x1), x2], x3]− [[x1, J2(x2)], x3]− [[x1, x2], J2(x3)]

∥∥∥ ≤ π(x1, x2, x3),
(13)

for all xi ∈ X where i ∈ {1, 3}. Then there are two unique 3-Lie homomorphism ζ and 3-Lie derivation D on X ,
respectively, such that:

∥J1(x1)− ζ(x1)∥ ≤ ι

1− ι
π(x1, x1, x1),

and
∥J2(x1)−D(x1)∥ ≤ ι

1− ι
π(x1, x1, x1)

for all x1 ∈ X .
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In the following corollary, by attention to theorem 2.3, we can investigate the Hyers-Ulam-Rassia stability of relation
(6), 3-Lie homomorphism and 3-Lie derivation on 3-Lie algebras with the control function of Rassias. Before stating
the corollary, we check conditions of the control function of Rassias for relation (6), 3-Lie homomorphism and 3-Lie
derivation. For this work, it is enough to change control functions of theorem (2.3), θ(x1, x2, x3) and π(x1, x2, x3),
to α(∥x1∥r + ∥x2∥r + ∥x3∥r), where r ̸= 1 and α are nonegative real numbers.

Corollary 2.4. Let Jj from X to X are mappings. In fact
(i) Suppose that Jj satisfies

∥ΛJj ,γ(xi)∥ ≤ α(∥x1∥r + ∥x2∥r + ∥x3∥r), (14)

for all xi ∈ X where i ∈ {1, 3} and j = 1, 2. Then there is a unique C−linear mapping T on X such that

∥Jj(x1)− T(x1)∥ ≤ 2α

2r − 2
∥x1∥r, r > 1

and
∥Jj(x1)− T(x1)∥ ≤ 2α

2− 2r
∥x1∥r, r < 1,

for all x1 ∈ X and j = 1, 2.
(ii) Suppose that Jj satisfying (14) and∥∥∥J1([[x1, x2], x3])− [[J1(x1), J1(x2)], J1(x3)]

∥∥∥+ ∥∥∥J2([[x1, x2], x3])− [[J2(x1), x2], x3]

− [[x1, J2(x2)], x3]− [[x1, x2], J2(x3)]
∥∥∥ ≤ α(∥x1∥r + ∥x2∥r + ∥x3∥r),

(15)

for all xi ∈ X where i ∈ {1, 3}. Then there are two unique 3-Lie homomorphism ζ and 3-Lie derivation D on X ,
respectively, such that:

∥J1(x1)− ζ(x1)∥ ≤ 2α

2r − 2
∥x1∥r, r > 1

∥J1(x1)− ζ(x1)∥ ≤ 2α

2− 2r
∥x1∥r, r < 1

∥J2(x1)−D(x1)∥ ≤ 2α

2r − 2
∥x1∥r, r > 1

and
∥J2(x1)−D(x1)∥ ≤ 2α

2− 2r
∥x1∥r, r < 1,

for all x1 ∈ X .

3. Conclusions

Due to the importance and applications of 3-Lie algebras and 3-Lie homomorphisms and 3-Lie derivations in math-
ematical physics and quantum mechanics. By using the concept of Jensen mapping we defined the new concept of
generalized 3D Jensen ρ−functional equation where ρ ̸= 0,±1 on normed spaces. After that, we solved it was a class
of additively. Also, we solved it was a C−linear mapping between normed spaces. Finally, by using the fixed point
theorem, we investigated generalized 3D Jensen ρ−functional equation where ρ ̸= 0,±1 and 3-Lie homomorphisms
and 3-Lie derivations can be Hyers-Ulam stable with two control functions of Gǎvruta and Rassias between 3-Lie
algebras.
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Abstract

In this talk, we introduce a concept of the bi-additive s-functional inequality, where s is a fixed
nonzero complex number with |s| < 1, on algebras. Subsequently, we demonstrate the solution
to the above relation, showing that it is a bi-additive mapping. Then, we explore the bi-additive
s-functional inequality, which can be bi C−linear between algebras. Finally, we establish the
Hyers–Ulam stability of the bi-additive s-functional inequality, where s is a fixed nonzero com-
plex number with |s| < 1.

1. Introduction

In 1940, S.M. Ulam [20] proposed what is now known as the stability problem. This problem deals with mappings
between groups and metric groups, specifically focusing on the existence of certain conditions for these mappings, he
introduced the stability problem in the following question.
Given a small positive value ε, is there a small positive value δ such that if a mapping h : G1 → G2 satisfies the
inequality d(h(xy), h(x)h(y)) < δ for all elements x, y ∈ G1, then there exists a homomorphismH : G1 → G2 with
the property that d(h(x),H(x)) < ε for all x ∈ G1? In 1941, this problem was successfully resolved by D.H. Hyers
[3] in the case of Banach spaces, which are complete normed vector spaces. This achievement marked a significant
advancement in the understanding of stability in mathematical structures. Building upon D.H. Hyers’ work, in 1978,
Th.M. Rassias [17] introduced the concept of generalized Hyers-Ulam stability, which extended the scope of stability
considerations to a broader class of mathematical structures. Th.M. Rassias’ work introduced a novel approach to
stability, incorporating a control function characterized by the expression ε(∥a∥r + ∥b∥r), where ε > 0 and r < 1.
After that, J.M. Rassias [16] followed the innovative approach of the Th.M. Rassias theorem in which he replaced the
factor ∥a∥r + ∥b∥r by ∥a∥r.∥b∥r for r ∈ R with r ̸= 1 refers to a significant advancement in the study of stability
problems for functional equations. The stability of various functional equations has been extensively investigated by
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numerous researchers for different equations on various spaces such as Banach algebras, orthogonally algebras, and
various types of Hilbert space (for example, see [5, 7, 8, 19]).

C. Park [12] defined a class of mathematical inequalities as additive ρ-functional inequalities, and demonstrated the
Hyers-Ulam stability of additive ρ-functional inequalities within the framework of both Banach spaces and non-
Archimedean Banach spaces. This concept brought researchers towards this type of equation, leading to the intro-
duction of various forms of such equations that in recent years, their stability being proven. For more information see
[6, 11, 15].

In 1980, G. Maksa [9] introduced the concept of bi-additive mapping, after seven years he introduced the concept of
bi-derivations [10]. So that many researchers worked on stability for these concepts, including ternary bi-derivations,
ternary bi-homomorphisms, etc. For more information, refer to [2, 4, 13, 18]. In the next, busing concept of additive
s-functional inequality and bi-additive mapping, we explain about the bi-additive s-functional inequality on algebras,
where s is a fixed nonzero complex number with |s| < 1.
LetB be an algebra and let f : B×B → B be a mapping. If f satisfies∥∥∥f(x+ y, z − w) + f(x− y, z + w)− 2f(x, z) + 2f(y, w)

∥∥∥
≤

∥∥∥∥∥s(f(x− y, z + w) + f(x+ y, z − w)− 2f(x, z) + 2f(−y,−w)
)∥∥∥∥∥

then we called f is the bi-additive s-functional inequality where s is a fixed nonzero complex number with |s| < 1.
In this paper, we demonstrate the solution to bi-additive s-functional inequality and showing that bi-additive s-
functional inequality can be a bi-additive mapping. After that, we investigate the bi-additive s-functional inequality,
which can be bi C−linear between algebras. In the end, by using the control function of Th.M. Rassias and J.M. Ras-
sias, we prove the Hyers–Ulam stability of the bi-additive s-functional inequality, where s is a fixed nonzero complex
number with |s| < 1.

2. Hyers–Ulam stability of the bi-additive s-functional inequality

In this section, Let B be algebra and s is a fixed nonzero complex number with |s| < 1, and κ1, κ2 ∈ T 1
1
n0

:=

{eiθ; 0 ≤ θ ≤ 2π
n0

}.
In the next lemma, we solve the bi-additive s-functional inequality and show it is a bi-additive mapping.
Lemma 2.1. If the mapping f : B×B → B satisfies∥∥∥f(x+ y, z − w) + f(x− y, z + w)− 2f(x, z) + 2f(y, w))

∥∥∥
≤

∥∥∥∥∥s(f(x− y, z + w) + f(x+ y, z − w)− 2f(x, z) + 2f(−y,−w)
)∥∥∥∥∥ (1)

for all x, y, z, w ∈ B, then f is a bi-additive mapping.
Proof. The mapping f satisfies the equation (1), in fact, by putting x = y = z = w = 0 in (1), we have f(0) = 0.
Then, by putting y = −y and w = −w in (1), we have

∥f(x− y, z + w) + f(x+ y, z − w)− 2f(x, z) + 2f(−y,−w)∥

≤

∥∥∥∥∥(f(x+ y, z − w) + f(x− y, z + w)− 2f(x, z)− 2f(y, w)
)∥∥∥∥∥ (2)

By attention to, (1) and (2), we get
∥f(x+ y, z − w) + f(x− y, z + w)− 2f(x, z)− 2f(y, w)∥

≤

∥∥∥∥∥s2(f(x+ y, z − w) + f(x− y, z + w)− 2f(x, z) + 2f(y, w)
)∥∥∥∥∥ (3)
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So, f(x + y, z − w) + f(x − y, z + w) − 2f(x, z) − 2f(y, w) = 0, for all x, y, z, w ∈ B. By following the same
reasoning as in the proof of Theorem 2.1 in [14], f is a bi-additive mapping.

In the following lemma, if κ1, κ2 ∈ T 1
1
n0

, we investigate the mapping f is a bi C-linear mapping.

Lemma 2.2. If the mapping f : B×B → B satisfies

∥f(κ1x+ κ1y, κ2z − κ2w) + f(κ1x− κ1y, κ2z + κ2w)− 2κ1κ2f(x, z) + 2κ1κ2f(y, w))∥

≤

∥∥∥∥∥s(f(κ1x− κ1y, κ2z + κ2w) + f(κ1x+ κ1y, κ2z − κ2w)− 2κ1κ2f(x, z) + 2κ1κ2f(−y,−w)
)∥∥∥∥∥ (4)

for all x, y, z, w ∈ B, then f is a bi C-linear mapping.

Proof. By attention to, lemma 2.1, the mapping f is a bi-additive mapping. Now, by putting y = w = 0 (4), we get

f(κ1x, κ2z) = κ1κ2f(x, z), ∀ x, z ∈ B. (5)

By following the same reasoning as in the proof of Theorem 2.2 in [14] and Theorem 3.2 in [1], f is a C−linear
mapping.

In the following of this section, let f is odd mapping.
In the next, by using the control function of Th. M. Rassias, we investigate the stability of the bi-additive s-functional
inequality on algebras.

Theorem 2.3. Let r < 2 and ε are nonegative real numbers. If the mapping f : B×B → B satisfies∥∥∥f(κ1x+ κ1y, κ2z − κ2w) + f(κ1x− κ1y, κ2z + κ2w)− 2κ1κ2f(x, z) + 2κ1κ2f(y, w)
∥∥∥

≤

∥∥∥∥∥s(f(κ1x− κ1y, κ2z + κ2w) + f(κ1x+ κ1y, κ2z − κ2w)− 2κ1κ2f(x, z) + 2κ1κ2f(−y,−w)
)∥∥∥∥∥

+ ε(∥x∥r + ∥y∥r + ∥z∥r + ∥w∥r), ∀ x, y, z, w ∈ B.

(6)

Then there is a unique bi-additive mapping J : B×B → B such that

∥f(x, y)− J(x, y)∥ ≤ 6ε(1− s)

4− 2r
(∥x∥r + ∥y∥r) + 4

3
∥f(0, 0)∥,

where s is a fixed nonzero complex number with |s| < 1. The mapping J is given by

J(x, y) := lim
n→∞

1

4n
f (2nx, 2ny) .

In the following two theorems, by using the control function of J. M. Rassias, we prove the stability of the bi-additive
s-functional inequality on algebras.

Theorem 2.4. Let r and ε be positive real numbers with r < 1
2 , and let the mapping f : B×B → B satisfies∥∥∥f(κ1x+ κ1y, κ2z − κ2w) + f(κ1x− κ1y, κ2z + κ2w)− 2κ1κ2f(x, z) + 2κ1κ2f(y, w)

∥∥∥
≤

∥∥∥∥∥s(f(κ1x− κ1y, κ2z + κ2w) + f(κ1x+ κ1y, κ2z − κ2w)− 2κ1κ2f(x, z) + 2κ1κ2f(−y,−w)
)∥∥∥∥∥

+ ε(∥x∥r · ∥y∥r · ∥z∥r · ∥w∥r), ∀ x, y, z, w ∈ B.

(7)

Then there is a unique bi-additive mapping J : B×B → B such that

∥f(x, y)− J(x, y)∥ ≤ 2ε(1− s)

4− 24r
∥x∥2r · ∥y∥2r + 4

3
∥f(0, 0)∥, ∀ x, y ∈ B.
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Theorem 2.5. Let r and ε be positive real numbers with r > 3
2 , and let f : B × B → B be a mapping satisfying

f(0, 0) = 0 and (7). Then there is a unique bi-additive mapping J : B×B → B such that

∥f(x, y)− J(x, y)∥ ≤ 2ε(1− s)

24r − 4
∥x∥2r · ∥y∥2r, ∀ x, y ∈ B.

In the next corollary, we investigate Hyers-Ulam stability of the bi-additive s-functional inequality on algebras.
Corollary 2.6. If the mapping f : B×B → B satisfies∥∥∥f(κ1x+ κ1y, κ2z − κ2w) + f(κ1x− κ1y, κ2z + κ2w)− 2κ1κ2f(x, z) + 2κ1κ2f(y, w)

∥∥∥
≤

∥∥∥∥∥s(f(κ1x− κ1y, κ2z + κ2w) + f(κ1x+ κ1y, κ2z − κ2w)− 2κ1κ2f(x, z) + 2κ1κ2f(−y,−w)
)∥∥∥∥∥+ ε,

(8)

for all x, y, z, w ∈ B, Then there is a unique bi-additive mapping J : B×B → B such that

∥f(x, y)− J(x, y)∥ ≤ 2(1− s)ε+ ∥f(0, 0)∥

where s is a fixed nonzero complex number with |s| < 1 and for all x, y ∈ B.

3. Conclusions

In this paper, we introduced a concept of the bi-additive s-functional inequality, where s is a fixed nonzero complex
number with |s| < 1, on algebras such that we showed the bi-additive s-functional inequality is a bi-additive mapping.
After that, we proved the bi-additive s-functional inequality is a bi C−linear between algebras. Finally, by using the
control function of Th. M. Rassias, J. M. Rassias and Hyers, we investigated the stability of the bi-additive s-functional
inequality, where s is a fixed nonzero complex number with |s| < 1.
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Abstract

In this paper, we study the following Kirchhoff type problem with Navier boundary conditions

M
(∫

Ω

1

p(x)
|∆u|p(x)dx

)
∆(|∆u|p(x)−2∆u) = λ|u|q(x)−2u+ µ|u|γ(x)−2u in Ω,

u = ∆u = 0 on ∂Ω.

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ≥ 1. M : R+ → R+ is a
continuous function, p(x), q(x) and γ(x) are continuous functions onΩ, λ andµ are parameters.
Using variational methods, we establish some existence and non-existence results of solutions
for this problem.

1. Introduction

In recent years, the study of differential equations and variational problems with p(x)-growth conditions was an inter-
esting topic, which arises from nonlinear electrorheological fluids and elastic mechanics. In that context we refer the
reader to Ruzicka [24], Zhikov [31] and the reference therein and also see [13, 15, 16, 18].
Fourth order equations appears in many context. Some of theses problems come from different areas of applied
mathematics and physics such as Micro Electro-Mechanical systems, surface diffusion on solids, flow in Hele-Shaw
cells (see [19]). In addition, this type of equations can describe the static from change of beam or the sport of rigid
body.
El Amrouss et al. [12] studied a class of p(x)-biharmonic of the form

∆(|∆u|p(x)−2∆u) = λ|u|p(x)−2u+ f(x, u) in Ω,
u = ∆u = 0 on ∂Ω,

where Ω is a bounded domains in RN , with smooth boundary ∂Ω, N ≥ 1, λ ≤ 0 and some assumptions on the
Caratheodory function f : Ω× R → R. They obtained the existence and multiplicity of solutions.

∗Talker
Email address: m.mirzapour@cfu.ac.ir (Maryam Mirzapour)
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In [1] G.A. Afrouzi et al. have considered problem{
M
(∫

Ω
1

p(x) |∆u|
p(x) dx

)
∆(|∆u|p(x)−2∆u) = f(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

in two cases when the Carathéodory function f(x, u) having special structure. Using variational methods, they have
established the existence and multiplicity of solutions of the problem. Moreover, we refer the reader to [2, 25, 27], in
which, by variational approaches some existence results are given.
The aim of the present paper is to study the existence and multiplicity of weak solutions of the following fourth order
elliptic equation with Navier boundary conditions{

M
( ∫

Ω
1

p(x) |∆u|
p(x)dx

)
∆(|∆u|p(x)−2∆u) = λ|u|q(x)−2u+ µ|u|γ(x)−2u in Ω,

u = ∆u = 0 on ∂Ω.
(1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ≥ 1, M : R+ → R+, p(x), q(x) and γ(x) are
continuous functions on Ω with infx∈Ω p(x) > 1, infx∈Ω q(x) > 1, infx∈Ω γ(x) > 1 and λ and µ are parameters.
Throughout the paper, we assume that λ2 + µ2 ̸= 0.
(1) is called a nonlocal problem because of the presence of the termM , which implies that the equation in (1) is no
longer pointwise identities. This provokes some mathematical difficulties which make the study of such a problem
particularly interesting. Nonlocal differential equations are also called Kirchhoff-type equations because Kirchhoff
[20] has investigated an equation of the form

ρ
∂2u

∂t2
−

(
ρ0
h

+
E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2 dx) ∂2u

∂x2
= 0, (2)

which extends the classical D’Alembert’s wave equation, by considering the effect of the changing in the length of
the string during the vibration. A distinguishing feature of Eq. (2) is that the equation contains a nonlocal coefficient
ρ0

h + E
2L

∫ L

0

∣∣∣∂u∂x ∣∣∣2 dx which depends on the average 1
2L

∫ L

0

∣∣∣∂u∂x ∣∣∣2 dx, and hence the equation is no longer a pointwise
identity. The parameters in (2) have the following meanings: L is the length of the string, h is the area of the cross-
section, E is the Young modulus of the material, ρ is the mass density and P0 is the initial tension. Lions [22] has
proposed an abstract framework for the Kirchhoff-type equations. After the work of Lions [22], various equations of
Kirchhoff-type have been studied extensively, see e.g. [4]-[11].

2. Notations and preliminaries

To study p(x)-Laplacian problems, we need some results on the spaces Lp(x)(Ω) andW k,p(x)(Ω), and properties of
p(x)-Laplacian, which we use later.
Let Ω be a bounded domain of RN , denote

C+(Ω) = {h(x); h(x) ∈ C(Ω), h(x) > 1, ∀x ∈ Ω};

For any h ∈ C+(Ω), we define

h+ = max{h(x); x ∈ Ω}, h− = min{h(x); x ∈ Ω};

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =
{
u; u is a measurable real-valued function such that

∫
Ω

|u(x)|p(x)dx <∞
}
,

endowed with the so-called Luxemburg norm

|u|p(x) = inf
{
µ > 0;

∫
Ω

|u(x)
µ

|p(x)dx ≤ 1
}
,

and (Lp(x)(Ω), | · |p(x)) becomes a Banach space.
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Proposition 2.1 (See Fan and Zhao [17]). The space (Lp(x)(Ω), | · |p(x)) is separable, uniformly convex, reflexive and
its conjugate space is Lq(x)(Ω) where q(x) is the conjugate function of p(x), i.e.,

1

p(x)
+

1

q(x)
= 1,

for all x ∈ Ω. For u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have∣∣∣ ∫
Ω

uvdx
∣∣∣ ≤ ( 1

p−
+

1

q−

)
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

The Sobolev space with variable exponentW k,p(x)(Ω) is defined as

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},

whereDαu = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂x

αN
N

u, withα = (α1, . . . , αN ) is a multi-index and |α| =
∑N

i=1 αi. The spaceW k,p(x)(Ω)

equipped with the norm

∥u∥k,p(x) =
∑
|α|≤k

|Dαu|p(x),

also becomes a separable and reflexive Banach space. For more details, we refer the reader to [14, 17, 23, 28]. Denote

p∗k(x) =

{
Np(x)

N−kp(x) if kp(x) < N,

+∞ if kp(x) ≥ N

for any x ∈ Ω, k ≥ 1.

Proposition 2.2 (See Fan and Zhao [17]). For p, r ∈ C+(Ω) such that r(x) ≤ p∗k(x) for all x ∈ Ω, there is a
continuous embedding

W k,p(x)(Ω) ↪→ Lr(x)(Ω).

If we replace ≤ with <, the embedding is compact.

We denote by W k,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W k,p(x)(Ω). Note that the weak solutions of problem (1) are
considered in the generalized Sobolev space

X =W 2,p(x)(Ω) ∩W k,p(x)
0 (Ω)

equipped with the norm

∥u∥ = inf
{
µ > 0 :

∫
Ω

∣∣∣∆u(x)
µ

∣∣∣p(x) dx ≤ 1
}
.

Remark 2.3. According to [29], the norm ∥ · ∥2,p(x) is equivalent to the norm |∆ · |p(x) in the spaceX . Consequently,
the norms ∥ · ∥2,p(x), ∥ · ∥ and |∆ · |p(x) are equivalent.

Proposition 2.4 (See El Amrouss et al. [12]). If we denote ρ(u) =
∫
Ω
|∆u|p(x) dx, then for u, un ∈ X , we have

(1)∥u∥ < 1(respectively = 1;> 1) ⇐⇒ ρ(u) < 1(respectively = 1;> 1);

(2)∥u∥ ≤ 1 ⇒ ∥u∥p
+

≤ ρ(u) ≤ ∥u∥p
−
;

(3)∥u∥ ≥ 1 ⇒ ∥u∥p
−
≤ ρ(u) ≤ ∥u∥p

+

;

(4)∥u∥ → 0 (respectively → ∞) ⇐⇒ ρ(u) → 0 (respectively → ∞).



136 Maryam Mirzapour / The 4th National Congress on Mathematics and Statistics

It is clear that the energy functional associated to (1) is defined by

Iλ,µ(u) = M̂
(∫

Ω

1

p(x)
|∆u|p(x) dx

)
− λ

∫
Ω

1

q(x)
|u|q(x) dx− µ

∫
Ω

1

γ(x)
|u|γ(x) dx.

where M̂(t) =
∫ t

0
M(τ)dτ. Let us define the functional

J(u) =

∫
Ω

1

p(x)
|∆u|p(x) dx.

It is well known that J is well defined, even and C1 in X . Moreover, the operator L = J ′ : X → X∗ defined as

⟨L(u), v⟩ =
∫
Ω

|∆u|p(x)−2∆u∆v dx

for all u, v ∈ X satisfies the following assertions.

Proposition 2.5 (See El Amrouss et al. [12]).

(1) L is continuous, bounded and strictly monotone.
(2)L is a mapping of (S+) type, namely

un ⇀ u and lim sup
n→+∞

L(un)(un − u) ≤ 0, implies un → u.

(3) L is a homeomorphism.

We assume throughout this paper that the Kirchhoff functionM satisfies the following hypotheses:

(M1) There existm2 ≥ m1 > 0 and β ≥ α > 1 such that for all t ∈ R+,m1t
α−1 ≤M(t) ≤ m2t

β−1.
(M2) For all t ∈ R+, M̂(t) ≥M(t)t.

3. Main results and proofs

In this section, we study the existence and non-existence of weak solutions for problem (1). We use the letter ci in
order to denote a positive constant.

Theorem 3.1. Assume that q(x), γ(x) ∈ C+(Ω), (p+)α < q− ≤ q(x) < p∗2(x), γ+ < αp− and βp+ < q− for any
x ∈ Ω. Then we have

(i) For every λ > 0, µ ∈ R, (1) has a sequence of weak solutions (±uk) such that Iλ,µ(±uk) → +∞ as k → +∞.
(ii) For every µ > 0, λ ∈ R, (1) has a sequence of weak solutions (±vk) such that Iλ,µ(±vk) < 0 and Iλ,µ(±vk) →

0 as k → +∞.
(iii) For every λ < 0, µ < 0, (1) has no nontrivial weak solution.

We will use the following Fountain theorem to prove (i) and the Dual of the Fountain theorem to prove (ii).

Lemma 3.2 (See Zhao [30]). Let X be a reflexive and separable Banach space, then there exist {ej} ⊂ X and
{e∗j} ⊂ X∗ such that

X = span {ej : j = 1, 2, . . . }, X∗ = span {e∗j : j = 1, 2, . . . },

and
⟨ei, e∗j ⟩ =

{
1 if i = j,
0 if i ̸= j,
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We define

Xj = span {ej}, Yk =

k⊕
j=1

Xj , Zk =

∞⊕
j=k

Xj . (3)

Then we have the following Lemma.

Lemma 3.3 (See El Amrouss et al. [12]). If q(x), γ(x) ∈ C+(Ω), q(x) < p∗2(x), and γ(x) < p∗2(x) for all x ∈ Ω,
denote

βk = sup{|u|q(x); ∥u∥ = 1, u ∈ Zk}
θk = sup{|u|γ(x); ∥u∥ = 1, u ∈ Zk},

then limk→∞ βk = 0, limk→∞ θk = 0.

Lemma 3.4. (Fountain Theorem, see Willem [26]). Let

(A1) I ∈ C1(X,R) be an even functional, where (X, ∥ · ∥) is a separable and reflexive Banach space, the subspaces
Xk, Yk and Zk are defined by (3.2).
If for each k ∈ N, there exist ρk > rk > 0 such that

(A2) inf{I(u) : u ∈ Zk, ∥u∥ = rk} → +∞ as k → +∞.
(A3) max{I(u) : u ∈ Yk, ∥u∥ = ρk} ≤ 0.
(A4) I satisfies the (PS) condition for every c > 0.

Then I has an unbounded sequence of critical points.

Lemma 3.5. (Dual Fountain Theorem, see Willem [26]). Assume (A1) is satisfied and there is k0 > 0 so that, for
each k ≥ k0, there exist ρk > rk > 0 such that

(B1) ak = inf{I(u) : u ∈ Zk, ∥u∥ = ρk} ≥ 0.
(B2) bk = max{I(u) : u ∈ Yk, ∥u∥ = rk} < 0.
(B3) dk = inf{I(u) : u ∈ Zk, ∥u∥ ≤ ρk} → 0 as k → +∞.
(B4) I satisfies the (PS)∗c condition for every c ∈ [dk0

, 0).

Then I has a sequence of negative critical values converging to 0.

Definition 3.6. We say that Iλ,µ satisfies the (PS)∗c condition (with respect to (Yn)), if any sequence {unj
} ⊂ X

such that nj → +∞, unj
∈ Ynj

, Iλ,µ(unj
) → c and (Iλ,µ|Ynj

)′(unj
) → 0, contains a subsequence converging to a

critical point of Iλ,µ.

Proof of Theorem 3.1
(i) First we verify Iλ,µ satisfies the (PS) condition. Suppose that (un) ⊂ X is (PS) sequence, i.e.,

|Iλ,µ(un)| ≤ c9, I ′λ,µ(un) → 0 as n→ ∞.

By Propositions 2.2 and 2.1, we know that if we denote

φ(u) = −λ
∫
Ω

1

q(x)
|u|q(x) dx, ψ(u) = −µ

∫
Ω

1

γ(x)
|u|γ(x) dx,

then they are both weakly continuous and their derivative operators are compact. By Proposition 2.5, we deduce that
I ′λ,µ = L + φ′ + ψ′ is also of type (S+). Thus it is sufficient to verify that (un) is bounded. Assume ∥un∥ > 1 for
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convenience. For n large enough, we have

c9 + 1 + ∥un∥ ≥ Iλ,µ(un)−
1

q−
⟨I ′λ,µ(un), un⟩

=
[
M̂
(∫

Ω

1

p(x)
|∆un|p(x) dx

)
− λ

∫
Ω

1

q(x)
|un|q(x) dx− µ

∫
Ω

1

γ(x)
|un|γ(x) dx

]
− 1

q−

[
M
(∫

Ω

1

p(x)
|∆un|p(x)dx

)∫
Ω

1

p(x)
|∆un|p(x) dx− λ

∫
Ω

|un|q(x) dx

− µ

∫
Ω

|un|γ(x) dx
]

≥
( 1

p+
− 1

q−

)
M
(∫

Ω

1

p(x)
|∆un|p(x) dx

)∫
Ω

|∆un|p(x) dx− λ

∫
Ω

|un|q(x) dx

− µ

∫
Ω

|un|γ(x) dx
]

≥
( 1

p+
− 1

q−

) m1

(p+)α−1

(∫
Ω

|∆un|p(x) dx
)α

− λ

∫
Ω

|un|q(x) dx− µ

∫
Ω

|un|γ(x) dx

≥
( 1

p+
− 1

q−

) m1

(p+)α−1
∥un∥αp

−
− c10∥un∥γ

+

.

(4)

Since q− > p+ and αp− > γ+, we know that {un} is bounded inX . In the following we will prove that if k is large
enough, then there exist ρk > rk > 0 such that (A2) and (A3) hold.
(A2) For any u ∈ Zk, ∥u∥ = rk > 1 (rk will be specified below), we have

Iλ,µ(u) = M̂
(∫

Ω

1

p(x)
|∆un|p(x) dx

)
− λ

∫
Ω

1

q(x)
|u|q(x) dx− µ

∫
Ω

1

γ(x)
|u|γ(x) dx

≥ m1

α(p+)α

(∫
Ω

|∆u|p(x) dx
)α

− λ

q−

∫
Ω

|u|q(x) dx− c11|µ|
γ−

∥u∥γ
+

≥ m1

α(p+)α
∥u∥αp

−
− λ

q−

∫
Ω

|u|q(x) dx− c11|µ|
γ−

∥u∥γ
+

Since αp− > γ+, there exists r0 > 0 large enough such that c11|µ|
γ− ∥u∥γ+ ≤ m1

2(p+)α ∥u∥
αp− as r = ∥u∥ ≥ r0. If

|u|q(x) ≤ 1 then
∫
Ω
|u|q(x)dx ≤ |u|q

−

q(x) ≤ 1. However, if |u|q(x) > 1 then
∫
Ω
|u|q(x) dx ≤ |u|q

+

q(x) ≤ (βk∥u∥)q
+ . So,

we conclude that

Iλ,µ(u) ≥

{
m1

2(p+)α ∥u∥
αp− − λc12

q− if |u|q(x) ≤ 1,
m1

2(p+)α ∥u∥
αp− − λ

q− (βk∥u∥)q
+ if |u|q(x) > 1.

≥ m1

2(p+)α
∥u∥αp

−
− λ

q−
(βk∥u∥)q

+

− c13,

choose rk =
(

2λ
m1q−

q+βq+

k

) 1

αp−−q+ , we have

Iλ,µ(u) =
m1

2

( 1

(p+)α
− 1

q+

)
rαp

−

k − c13 → ∞ as k → ∞,

because of (p+)α < q− ≤ q+ and βk → 0.
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(A3) Let u ∈ Yk such that ∥u∥ = ρk > rk > 1. Then

Iλ,µ(u) = M̂
(∫

Ω

1

p(x)
|∆u|p(x) dx

)
− λ

∫
Ω

1

q(x)
|u|q(x) dx− µ

∫
Ω

1

γ(x)
|u|γ(x) dx

≤ m2

β

(∫
Ω

1

p(x)
|∆u|p(x) dx

)β
− λ

q+

∫
Ω

|u|q(x) dx+
|µ|
γ−

∫
Ω

|u|γ(x) dx

≤ m2

β(p−)β
∥u∥βp

+

− λ

q+

∫
Ω

|u|q(x) dx+
|µ|
γ−

∫
Ω

|u|γ(x) dx.

Since dimYk <∞, all norms are equivalent in Yk, we obtain

Iλ,µ(u) ≤
m2

β(p−)β
∥u∥βp

+

− λ

q+
∥u∥q

−
+

|µ|
γ−

∥u∥γ
+

.

We get that: Iλ,µ(u) → −∞ as ∥u∥ → +∞ since q− > βp+ and γ+ < αp−. So (A2) holds. From the proof of (A2)
and (A3), we can choose ρk > rk > 0. Obviously Iλ,µ is even and the proof of (i) is completed.
(ii)We use the Dual Fountain theorem to prove conclusion (ii). Now we prove that there exist ρk > rk > 0 such that
if k is large enough (B1), (B2) and (B3) are satisfied.
(B1) For any u ∈ Zk we have

Iλ,µ(u) = M̂
(∫

Ω

1

p(x)
|∆u|p(x) dx

)
− λ

∫
Ω

1

q(x)
|u|q(x) dx− µ

∫
Ω

1

γ(x)
|u|γ(x) dx

≥ m1

α(p+)α

(∫
Ω

|∆u|p(x) dx
)α

− |λ|
q−

∫
Ω

|u|q(x) dx− µ

γ−

∫
Ω

|u|γ(x) dx

≥ m1

α(p+)α
∥u∥αp

+

− c14|λ|
q−

∥u∥q
−
− µ

γ−

∫
Ω

|u|γ(x) dx

Since q− > αp+, there exists ρ0 > 0 small enough such that c14|λ|
q− ∥u∥q− ≤ m1

2α(p+)α ∥u∥
αp+ as 0 < ρ = ∥u∥ ≤ ρ0.

Then from the proof above, we have

Iλ,µ(u) ≥

{
m1

α(p+)α ∥u∥
αp+ − µc15

γ− if |u|γ(x) ≤ 1,
m1

α(p+)α ∥u∥
p+ − µ

γ− (θk∥u∥)γ
+ if |u|γ(x) > 1.

(5)

Choose ρk =
(

2µ
m1γ− (p+)αθγ

+

k

) 1

αp+−γ+

, then

Iλ,µ(u) =
m1

2(p+)α
(ρk)

αp+

− m1

2(p+)α
(ρk)

αp+

= 0.

Since αp− > γ+, θk → 0, we know ρk → 0 as k → ∞.
(B2) For u ∈ Yk with ∥u∥ ≤ 1, we have

Iλ,µ(u)M̂
(∫

Ω

1

p(x)
|∆u|p(x) dx

)
− λ

∫
Ω

1

q(x)
|u|q(x) dx− µ

∫
Ω

1

γ(x)
|u|γ(x) dx

≤ m2

β(p−)β

( 1

p(x)
|∆u|p(x) dx

)β
+

|λ|
q−

∫
Ω

|u|q(x)dx− µ

γ+

∫
Ω

|u|γ(x) dx

≤ m2

β(p−)β
∥u∥βp

−
+

|λ|
q−

∫
Ω

|u|q(x) dx− µ

γ+

∫
Ω

|u|γ(x) dx.

Since dimYk = k, conditions γ+ < αp− < βp− < β(p−)β and βp+ < q− imply that there exists a rk ∈ (0, ρk) such
that Iλ,µ(un) < 0 when ∥u∥ = rk. So we obtain

max
u∈Yk, ∥u∥=rk

Iλ,µ(u) < 0,
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i.e., (B2) is satisfied.
(B3) Because Yk ∩ Zk ̸= ∅ and rk < ρk, we have

dk = inf
u∈Zk,∥u∥≤ρk

Iλ,µ(u) ≤ bk = max
u∈Yk,∥u∥=rk

Iλ,µ(u) < 0.

From (5) , for u ∈ Zk, ∥u∥ ≤ ρk small enough we can write

Iλ,µ(u) ≥
m1

2(p+)α
∥u∥αp

+

− µ

γ−
θγ

+

k ∥u∥γ
+

≥ − µ

γ−
θγ

+

k ∥u∥γ
+

,

Since θk → 0 and ρk → 0 as k → ∞, (B3) holds. Finally we verify the (PS)∗c condition. Suppose {unj} ⊂ X such
that

nj → +∞, unj
∈ Ynj

, Iλ,µ(unj
) → c16 and (Iλ,µ|Ynj

)′(unj
) → 0.

If λ ≥ 0, similar to (4), we can get the boundedness of ∥unj∥. Assume ∥unj∥ ≥ 1 for convenience. If λ < 0, for
n > 0 large enough we have

c16 + 1 + ∥unj
∥ ≥ Iλ,µ(unj

)− 1

q+
⟨I ′λ,µ(unj

), unj
⟩

=
[
M̂
(∫

Ω

1

p(x)
|∆unj

|p(x) dx
)
− λ

∫
Ω

1

q(x)
|unj

|q(x) dx− µ

∫
Ω

1

γ(x)
|unj

|γ(x) dx
]

− 1

q+

[
M
(∫

Ω

1

p(x)
|∆unj

|p(x)dx
)∫

Ω

1

p(x)
|∆unj

|p(x) dx− λ

∫
Ω

|unj
|q(x) dx

− µ

∫
Ω

|unj |γ(x) dx
]

≥
( 1

p+
− 1

q+

) m1

(p+)α−1

(∫
Ω

|∆unj
|p(x) dx

)α
− λ

∫
Ω

|unj
|q(x) dx

− µ

∫
Ω

|unj
|γ(x) dx

]
≥
( 1

p+
− 1

q+

) m1

(p+)α−1
∥unj∥αp

−
− c17∥unj∥γ

+

.

Since αp− > γ+ and p+ < (p+)α < q−, we know that {unj
} is bounded in X . Hence there exists u ∈ X such that

unj → u in x. Observe now that X = ∪njYnj , then we can find vnj ∈ Ynj such that vnj → u. We have

⟨I ′λ,µ(unj
), unj

− u⟩ = ⟨I ′λ,µ(unj
), unj

− vnj
⟩+ ⟨I ′λ,µ(unj

), vnj
− u⟩.

Having in mind that (unj
− vnj

) ∈ Ynj
, it yields

⟨I ′λ,µ(unj
), unj

− u⟩ = ⟨(Iλ,µ|Ynj
)′(unj

), unj
− vnj

⟩+ ⟨I ′λ,µ(unj
), vnj

− u⟩ → o as n→ ∞. (6)

By Proposition 2.5, the operator I ′λ,µ is obviously of (S+) type. Using this fact with (6), we deduce that unj → u in
X , furthermore I ′λ,µ(unj ) → I ′λ,µ(u).
We claim now that u is in fact a critical point of Iλ,µ. Taking ωk ∈ Yk, notice that when nj ≥ k we have

⟨I ′λ,µ(u), ωk⟩ = ⟨I ′λ,µ(u)− I ′λ,µ(unj
), ωk⟩+ ⟨I ′λ,µ(unj

), ωk⟩

= ⟨I ′λ,µ(u)− I ′λ,µ(unj
), ωk⟩+

〈
(Iλ,µ|Ynj

)′(unj
), ωk

〉
.

Going to the limit on the right side of the above equation reaches

⟨I ′λ,µ(u), ωk⟩ = 0, ∀ωk ∈ Yk,
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so I ′λ,µ(u) = 0, this show that Iλ,µ satisfies the (PS)∗c condition for every c ∈ R.
(iii) Assume for the sake of contradiction, u ∈ X\{0} is a weak solution of problem (1). Then multiplying the
equation in (1) by u, integrating by parts we get

M
(∫

Ω

1

p(x)
|∆u|p(x) dx

)∫
Ω

|∆u|p(x) dx = λ

∫
Ω

|u|q(x) dx+ µ

∫
Ω

|u|γ(x) dx.

This leads to contradiction and the proof is complete.
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Abstract

In this article, inspired by the concepts of G-metric spaces, we introduce the notion of F -
contractive type fuzzy mappings in G-metric spaces. Using this new idea, some fixed point
theorems are proved.

1. Introduction

Throughout this article, denoted by R, R+ and N are the set of all real numbers, positive real numbers and natural
numbers, respectively. Also, (F ; d), (F for short), represents a metric space with the metric d. Fixed point theory is
a renowned and huge field of research in mathematical sciences. This field is known as the combination of analysis
which includes topology, geometry and algebra. The first most well known result in fixed point theory with metric
space structure is the Banach fixed point theorem (which is also called the contraction map- ping principle). In the
literature, there are several extensions of the Banach contraction principle, which states that every self mapping S
defined on a complete metric space (F ; d) satisfying for all τ, σ ∈ F , d(Sτ, Sσ) ≤ Kd(τ, σ); where K ∈ (0, 1);
has a unique fixed point. Some improvements of the Banach fixed point theorem concern the contrac- tive inequality
while others deal with generalizing the space. A particular extension of metric space is the so-called G-metric space
initiated by Mustafa and Sims [1] in 2006. In the first paper on G-metric spaces, Sims and Mustafa [1] introduced
some propertiesofG-metric spaces and also discussed its topology, compactness, completeness, product and the criteria
regarding the convergence and continuity of sequences inG-metric space. Some theorems concerning these properties
were also proved. Another famous general- ization of the contraction mapping principle due to Banach was presented
byWardowski [2], the concept of which is calledF -contraction. The idea ofF -contractions has been extended both for
single-valued and set-valuedmappings For some comprehensive surveys in this direction, we refer the interested reader
to the work of Taskovic or Rhoades. As a natural extension of crisp sets, fuzzy sets was introduced initially by Zadeh.
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After the introduction of this concept, several researches were conducted on various applications and improvements
of fuzzy sets in different directions. Along this trend, Heilpern introduced the concept of fuzzy mapping and proved
a fixed point theorem for fuzzy contraction mappings which is a generalization of the fixed point theorem for multi-
valued mappings of Nadler. Thereafter, other authors have studied the existence of fixed point of fuzzy mappings.
The aim of this paper is to establish fixed point theorems, common fixed point theorems for F -contraction type fuzzy
mappings in G-metric spaces. Our results generalize and extend a few known results in the comparable literature.
In this following, we recall some basic concepts that are necessary in the establishment of our main results. Most of
these preliminaries are recorded from [1, 4].

Definition 1.1. Let F ≠ ∅; and G : F ×F ×F → R+ be a function such that the following conditions are satisfied:

G1 G(τ, σ, υ) = 0 if τ = σ = υ,

G2 G(τ, τ, σ) > 0 for all τ, σ ∈ F with τ ̸= σ,

G3 G(τ, τ, σ) ≤ G(τ, σ, υ) for all τ, σ, υ ∈ F with υ ̸= σ,

G4 G(τ, σ, υ) = G(τ, υ, σ) = G(σ, υ, τ) = ... (symmetric with respect to τ, σ, υ),

G5 G(τ, σ, υ) ≤ G(τ, a, a) +G(σ, σ, υ) for all τ, σ, υ, a ∈ F (rectangular prop- erty).

Then G is called a G−M function and (F ,G) is said to be a G-metric space.

Definition 1.2. Let (F ;G) be a G-metric space. A sequence {τe} in F is G-Convergent sequence if, for any δ > 0;
there exists τ ∈ F , O(δ) ∈ N such that G(τ, τe, τρ) < δ, for all e, ρ ≥ O(δ). We call the limit of the sequence and
write τe → τ or lime→∞ τe = τ .

Definition 1.3. Let (F ;G) be aG-metric space. A sequence feg in {τe} is calledG-Cauchy sequence if, for any δ > 0;
there exists O(δ) ∈ N such that G(τζ , τe, τρ) < δ for each e, ρ ≥ O(δ), that is, G(τζ , τe, τρ) → o as ⌉, ρ, ζ → ∞ .

Definition 1.4. Let (F ;G) be a G-metric space. A sequence {τe} in F is called G-Complete if every G-Cauchy
sequence in (F ;G) is convergent in F .

Lemma 1.5. Let (F ;G) be a G-metric space and {τe} be a sequence in F . Then the following statements are equiv-
alent:

(i) {τe} is G- convergent to τ .

(ii) G(τe, τe, τ) → 0 as e approaches infinity.

(iii) G(τe, τ, τ) → 0 as e approaches infinity.

(iv) G(τe, τρ, τ) → 0 as e, ρ approaches infinity.

Definition 1.6. Kaewcharoen and Kaewkhao introduced the concept of Hausdorff G-distance as follows: Let F be a
G-metric space and CB(F) be the family of all non empty closed and bounded subsets of F . Then, the Hausdorff G-
distance function is defined as follows:

HG(Z1,Z2,Z3) = max{supτ∈Z1
G(τ,Z2,Z3), supτ∈Z2

G(τ,Z1,Z3), supτ∈Z3
G(τ,Z1,Z2)},

where
G(τ,Z2,Z3) = µG(τ,Z2) +G(Z2,Z3) + µG(τ,Z3),

G(τ,Z2) = infσ∈Z2µG(τ, σ),

G(Z1,Z2) = infτ∈Z1,σ∈Z2µG(τ, σ).
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Definition 1.7. [3]. Let (F ; d be a metric space and Z1,Z2 ∈ Z(F) such that [Z1]α and [Z2]α are compact subsets
of F , the following identities are defined as,

Pα(Z1,Z2) = infτ∈[Z1],σ∈[Z2
]αµ(τ, σ),

P (Z1,Z2) = supαPα(Z1,Z2),

Dα(Z1,Z2) = µH([Z1]α, [Z2]α).

Definition 1.8. [3]. Let (F ; d) be a metric space. The distance functionD∞ : Z(F)× Z(F) → R is defined as:

D∞(Z1,Z2) = supαPα(Z1,Z2).

Definition 1.9. Let (F ; d) be a metric space, T : F → IF and Q : F → IF be two fuzzy mappings. A point ν ∈ F
is called

(i) fuzzy fixed point of T if ν ∈ [Tν ]α for some α ∈ [0, 1]:

(ii) common fuzzy fixed point if ν ∈ [Tν ]α ∩ [Qυ]α.

Definition 1.10. Let F : R+ → R be a mapping satisfying:

(F1) F is strictly increasing, i.e. for all β, γ ∈ R+ such that β < γ, F (β) < F (γ).

(F2) For each sequence {βn}n∈N of positive numbers limn→∞ βn = 0 if and only if limn→∞ F (βn) = −∞.

(F3) There exists k ∈ (0, 1) such that limβ→0+ βkF (β) = 0. Subsequently, Altun et al. [4] modified the above
definition by adding comprehensive condition (F4) which is stated as:

(F4) F (infA) = infF (A) for all A ⊂ (0,∞) with infA > 0.

We denote the set of all functions satisfying properties (F1) - (F4) by X .

Definition 1.11. [5]Let (F ;G) be a G-metric space. A mapping T : F → F is said to be an F-contraction if there
exists ω > 0 such that for all τ, σ, υ ∈ F ,

G(T τ, T σ, T υ) > 0 ⇒ ω + F (G(T τ, T σ, T υ)) ≤ F (G(τ, σ, υ)).

Lemma 1.12. [4] Let (F ;G) be a G-metric space and Z1,Z2 ∈ CB(F), then for each τ ∈ Z1, we have

G(τ,Z2,Z2) ≤ HG(Z1,Z2,Z2).

Lemma 1.13. [4] Let (F ;G) be a G− metric space. If Z1,Z2 ∈ CB(F) and τ ∈ Z1, then for each ϵ > 0 there
existsσ ∈ Z2 s.t.

G(τ, σ, σ) ≤ HG(Z1,Z2,Z2) + ϵ.

Lemma 1.14. Let V be a metric linear space, T : F → W(V) and τ0 ∈ V . Then there exists τ1 ∈ V such that
{τ1} ⊂ T (τ0).

2. Main Result

We begin this section with some auxiliary concepts as follows.

Definition 2.1. Let (F ;G) be a G-metric space, F ∈ X and T : F → IF be a fuzzy mapping. Then T is said to be
an F-contractive type fuzzy mapping if there exists ω > 0 such that

ω +HG(|TT |λ, |Tσ|λ, |Tυ|λ) ≤ F (G(τ, σ, υ)),

for all τ, σ, υ ∈ F withHG(|TT |λ, |Tσ|λ, |Tυ|λ) > 0 and λ ∈ [0; 1].
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Theorem 2.2. Let (F ;G) be a G-complete metric space and let S, T : F → IF IF be fuzzy mapping such that for
each τ, σ ∈ F , there exist α ∈ (0; 1] with |ST |λ, |TT |λ ∈ C(F). Assume there exist some F ∈ X and τ > 0 such that

ω + F (HG(|ST |λ, |Tσ|λ, |Tυ|λ)) ≤ F (G(τ, σ, υ)),

for all τ, σ, υ ∈ F with HG(|ST |λ, |Tσ|λ, |Tυ|λ) > 0 and λ ∈ [0; 1]. Then S and T have a common fixed point.

Corollary 2.3. Let (F ;G) be aG-complete metric space and let S : F → IF for each τ, σ ∈ F , there exist λ ∈ (0; 1]
such that [Sτ ]λ ∈ C(F): Assume there exist some F ∈ X and τ > 0 such that

ω + F (HG(|ST |λ, |Sσ|λ, |Sυ|λ)) ≤ F (G(τ, σ, υ)),

for all τ, σ, υ ∈ F with HG(|ST |λ, |Sσ|λ, |Sυ|λ) > 0. Then S has a fixed point.

Corollary 2.4. Let (F ;G) be a G-complete metric space and let P1,P2 : F → C(F). Suppose that there exist some
F ∈ X and τ > 0 such that

F (HG(P1T ,P2σ ,P2υ)) ≤ F (G(τ, σ, υ)),

for all τ, σ, υ ∈ F with HG(P1T ,P2σ ,P2λ)) > 0. Then P1 and P2 have a common fixed point.

Corollary 2.5. Let (F ;G) be a G-complete metric space and let P : F → C(F). Suppose that there exist some
F ∈ X and τ > 0 such that

F (HG(PT ,Pσ ,Pλ)) ≤ F (G(τ, σ, υ)),

for all τ, σ, υ ∈ F with HG(PT ,Pσ ,Pλ) > 0. Then P has a common fixed point.

Corollary 2.6. Let (F ;G) be aG-complete metric linear space and S, T : F → W(F) Suppose that there exist some
F ∈ X and τ > 0 such that

ω + F (G∞(|ST |λ, |Tσ|λ, |Tυ|λ)) ≤ F (G(τ, σ, υ)),

for all τ, σ, υ ∈ F with G∞(|ST |λ, |Tσ|λ, |Tυ|λ) > 0. There exists u ∈ F such that {u} ⊂ |Su|λ and {u} ⊂ |Tu|λ.
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Abstract

In this paper we introduce two new classes of generalized nonexpansive mapping and we study
both the existence of fixed points and their asymptotic behavior.

1. Introduction

LetC be a nonempty subset of a Banach spaceX . It is well known that amapping T: C → X is said to be nonexpansive
whenever ∥Tx−Ty∥ ≤ ∥x− y∥ for all x, y ∈ C. Among the most important features of nonexpansive mappings are
the following facts.

i) If C is closed convex and bounded and T : C → C is nonexpansive, then there exists a sequence (xn) in C
such that ∥xn − Txn∥ → 0. Such a sequence is called almost fixed point sequence for T (a.f.p.s. in short).

ii) Even when C is a weakly compact convex subset ofX , a nonexpansive self-mapping of C need not have fixed
points. Nevertheless, if the norm of X has suitable geometric properties (as for instance uniform convexity,
among many others), every nonexpansive self-mapping of every weakly compact convex subset of X has a
fixed point. In this case X is said to have the weak fixed point property (WFPP in short).

In a recent paper [1], Suzuki defined a class of generalized nonexpansive mappings as follows.

Definition 1.1. Let C be a nonempty subset of a Banach space X . We say that a mapping T : C → X satisfy
condition (C) on C if for all x, y ∈ C,
1

2
∥x− Tx∥ ≤ ∥x− y∥ implies ∥Tx− Ty∥ ≤ ∥x− y∥.
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Of course, every nonexpansive mapping T : C → X satisfies condition (C) on C, but in [1] some examples of non
continuous mappings satisfying condition (C) are given.
In spite that the class of mapping satisfying condition (C) is broader than the class of nonexpansive mappings, whenC
is a convex bounded subset ofX , every mapping T : C → C which satisfies condition (C) on C has a.f.p. sequences,
thatis, it shares (i) with nonexpansive mappings (see [1]), as well as (ii), because for some Banach spaces (see [1])
mappings satisfying (C) leaving invariant weakly compact convex subsets have fixed points. (See also [4])
In this paper we define two kind of generalizations of condition (C). This will lead us to some classes of mappings
which are wider than those which satisfy condition (C) but preserving their fixed point properties.

2. Notations and preliminaries

Throughout this note we assume that (X, ∥.∥) is a real Banach space whose zero vector is 0X . As it is usual, we will
denote by B[x, r] and S[x, r] the closed ball and the sphere of the Banach space(X, ∥.∥) with radius r and center
x ∈ X , respectively. In particular we will write BX := B[0X , 1]and SX := S[0X , 1].
We will use xn → x to denote that the sequence (xn) in X is weakly convergent to x ∈ X .
Let C be a nonempty closed and convex subset of X , and let (xn) be a bounded sequence in X . For x ∈ X the
asymptotic radius of (xn) at x is the number r(x, (xn)) := limn→∞ sup∥x− xn∥.
The real number r(C, (xn)) := inf{r(x, (xn)) : x ∈ C} is called the asymptotic radius of (xn) relative to C and
finally the set A(C, (xn)) = {x ∈ C : r(x, (xn)) = r(C, (xn))}, is called the asymptotic center of (xn) relative to
C.
It is well known that A(C, (xn)) consists of exactly one point whenever the space X is uniformly convex in every
direction (UCED), and that A(C, (xn)) is nonempty and convex when C is weakly compact and convex.

3. A class more general than type (C) mappings

We generalize condition (C) as follows.

Definition 3.1. Let C be a nonempty subset of a Banach space X . For µ ≥ 1 we say that a mapping T : C → X
satisfy condition (Eµ) on C if there exists µ ≥ 1 such that for all x, y ∈ C,

∥x− Ty∥ ≤ µ∥x− Tx∥+ ∥x− y∥

We say that T satisfies condition (E) on C whenever T satisfies (Eµ) for some µ ≥ 1.

3.1 It is obvious that if T : C → X is nonexpansive, then it satisfies condition (E1).
The converse is not true.

3.2 From Lemma 7 in [1] we know that if T : C → C satisfies condition (C) on C, then is satisfies condition (E3).

Then, the following result is also obvious.

Proposition 3.2. Let T : C → X be a mapping which satisfies condition (E) on C. If T has some fixed point, then
T is quasi-nonexpansive. The converse is not true.

Proposition 3.3. Let T : C → X be a mapping which satisfies condition (E) on C. Then the following statements
hold.

a) If TC ⊂ C then for all x ∈ C, ∥x− T 2x∥ ≤ (α+ 1)∥x− Tx∥.

b) If TC ⊂ C then for all x, y ∈ C, ∥Tx− Ty∥ ≤ α∥Tx− T 2x∥+ ∥Tx− y∥.

c) If r ∈ (0, 1) then the mappings Tr : C → X defined as Tr = rT + (1− r)I (where I is the identity mapping),
satisfy the condition (Eα) on C.
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Proposition 3.4. (Alternative principle). Let C be a bounded subset of X. Let T : C → C be an arbitrary mapping.
Then one at least of the following statements hold.

a) There exists an a.f.p.s. for T in C.

b) T satisfies condition (E)on C.

Theorem 3.5. Let C be a nonempty subset of a Banach space X . Let T : C → X be a mapping. If

a) There exists an a.f.p.s. (xn) for T in C such that xn → z ∈ C,

b) T satisfies condition (E) on C, and

c) (X, ∥.∥) satisfies the Opial condition.

Then,Tz = z.

Corollary 3.6. Let C be a nonempty weakly compact subset of a Banach spaceX . Suppose that (X, ∥.∥) satisfies the
Opial condition. Let T : C → X be a mapping which satisfies condition (E) on C. Then T has a fixed point in C if
and only if T admits an a.f.p.s.

Theorem 3.7. Let C be a nonempty compact subset of a Banach space X. Let T : C → X be a mapping which
satisfies condition (E) on C. Then T has a fixed point in C if and only if T admits an a.f.p.s.

Theorem 3.8. Let C be a nonempty weakly compact convex subset of a (UCED) Banach space X. Let T : C → X be
a mapping. If

a) T satisfies condition (E) on C, and

b) inf{∥x− Tx∥ : x ∈ C} = 0.

Then, T has a fixed point.

4. A direct generalization of condition (C)

Definition 4.1. For λ ∈ (0, 1) we say that a mapping T : C → X satisfy condition (Cλ) on C if for all x, y ∈ C
with λ∥x− Tx∥ ≤ ∥x− y∥. one has that∥Tx− Ty∥ ≤ ∥x− y∥.

Of course, if λ =
1

2
we recapture the class of mappings satisfying condition (C). Notice that if 0 < λ1 < λ2 < 1

then the condition (Cλ1) implies condition (Cλ2).

Proposition 4.2. Let C be a subset of a Banach space X . If T : C → X satisfies the condition (Cλ) for some
λ ∈ (0, 1), then for every r ∈ (λ, 1) the mapping Tr : C → X defined by Tr(x) = rTx + (1 − r)x satisfy the
condition (Cλ/r).

The class of mappings satisfying condition (C) on a convex bounded subset C of X shares with the class of nonex-
pansive mappings the existence of almost fixed point sequences.

Theorem 4.3. Let C be a bounded convex subset of a Banach space X. Assume that T : C → C satisfies condition
(Cλ) on C for some λ ∈ (0, 1). For r ∈ (λ, 1) define a sequence (xn) in C by tacking x1 ∈ C and xn+1 =
rT (xn) + (1−r)xn for n ≥ 1. Then (xn) is an a.f.p.s. for T , that is, the mappings Tr are asymptotically regular.

Lemma 4.4. Let C be a subset of a Banach space X . Let T : C → X be a mapping satisfying condition (Cλ) for
some λ ∈ (0, 1). Let (xn) be a bounded a.f.p.s. for T . Then limn→∞ sup∥xn − Ty∥ ≤ limn→∞ sup∥xn − y∥ holds
for all y ∈ C with lim infn ∥xn − y∥ > 0.

Proposition 4.5. Let T : C → X be a Lipschitzian mapping with Lipschitz constant Lip(T ) satisfying condition
(Cλ) for some λ ∈ (0, 1). Then, T satisfies condition (Eµ) for µ = max{1, 1 + λ(Lip(T )− 1)}.



P. Heiatian Naeini / The 4th National Congress on Mathematics and Statistics 149

Definition 4.6. Given a mapping T : C → X , we say that I − T is strongly demiclosed at 0X if for every sequence
(xn) in C strongly convergent to z ∈ C and such that xn − Txn → 0X e have that z = Tz.

This is a weaker version of the well-known demiclosedness principle, in which the weak convergence has been replaced
by the strong convergence. Notice that for every continuous mapping (in particular for every Lipschitzian mapping)
T : C → X , I − T is strongly demiclosed at 0X .

Proposition 4.7. Let C be a nonempty subset of a Banach space X. If T : C → X satisfies condition (E) on C, then
I − T is strongly demiclosed at 0X .

Theorem 4.8. Let C be a nonempty weakly compact convex subset of a Banach space X . Let T : C → C be a
mapping. If

a) T satisfies condition (Cλ) on C,

) (X, ∥.∥) satisfies the Opial condition, and

c) I − T is strongly demiclosed at 0X .

Then, Tz = z = µTxn + (1 − µ)xn for n ∈ N, where µ is a real number belonging to [λ, 1). Then (xn) converges
weakly to a fixed point of T .

Theorem 4.9. Let C be a nonempty weakly compact convex subset of a (UCED) Banach space X . Let T : C → C
be a mapping. If

a) T satisfies condition (Cλ) on C, and

b) I−T is strongly demiclosed at 0X .

Then, T has a fixed point.

Theorem 4.10. Let C be a convex subset of a Banach space X . Let T : C → C be a mapping satisfying (E) and
(Cλ) for some λ ∈ (0, 1). Assume either of the following holds.

a) C is weakly compact and (X, ∥.∥) satisfies the Opial condition.

b) C is compact.

c) C is weakly compact and X is (UCED).

Theorem 4.11. Let T be a mapping on a locally weakly compact convex subset C of a Banach space X . Assume
that X satisfies the Opial condition, T satisfies condition (Cλ) for some λ ∈ (0, 1) and T has a fixed point. Define a
sequence (xn) in C by x1 ∈ C and xn+1ze Then, T has a fixed point.

The following theorem tells that if C is a closed interval of R and T satisfies (Cλ) for some λ ∈ [0, 3/4], then T has
a fixed point.

Theorem 4.12. Let C be a closed interval of R. Let T be a mapping on C satisfying condition (C3/4). Then T has a
fixed point.
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Abstract

In this paper we consider bounded 3× 3 operator matrixA and obtain an approximation of the
cubic numerical range, that may give a better localization of the spectrum than the numerical
range.

1. Introduction

The notion of the numerical range has been defined in various ways in the literatures [1, 2, 7]. The concept of the
quadratic numerical range of a 2 × 2 block operator matrix A in a Hilbert space H with respect to a decomposition
H = H1 × H2 (W 2(A)) has been introduced in [3] and further investigated in[4, 5, 8]. In particular, it has been
shown that it is a subset of the numerical range and that its closure still contains the spectrum A. The notion of
the cubic numerical range of a 3 × 3 block operator matrix A in a Hilbert space H with respect to a decomposition
H = H1 ×H2 ×H3 has been defined in [9] and further investigated in [6]. It is contained in the quadratic numerical
range for bounded block operator matrix and, like the numerical range and quadratic numerical range, it contains the
spectrum of A in its closure.

2. The definition and preliminaries

If the complex Hilbert spaceH is the product of three Hilbert spacesH1,H2 andH3,H = H1⊕H2⊕H3, then every
bounded linear operator A ∈ L(H) has a block operator matrix representation

A :=

A11 A12 A13

A21 A22 A23

A31 A32 A33

 (1)
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with bounded linear operatorsAij ∈ L(Hj ,Hi), i, j = 1, 2, 3. For unit vectors x, y, z inH1,H2 andH3 respectively,
define Ax,y,z ∈M3(C) by

Ax,y,z :=

< A11x, x > < A12y, x > < A13z, x >
< A21x, y > < A22y, y > < A23z, y >
< A31x, z > < A32y, z > < A33z, z >

 . (2)

Trettre introduced the cubic numerical range of operatorA (with respecting to the block operator representation 1) by

W 3(A) := {λ ∈ C : λ ∈ σ(Ax,y,z), ∥ x ∥=∥ y ∥=∥ z ∥= 1, x ∈ H1, y ∈ H2, z ∈ H3}.

Theorem 2.1. [9] Let A be a block operator matrix on H with respect to the block operator representation 1 .The
following properties hold:
1) σp(A) ⊆W 3(A),
2)σ(A) ⊆W 3(A),
3)W 3(A) ⊆W (A),
4)W 3(A∗) := {λ : λ ∈W 3(A)}.

3. main result

Theorem 3.1. Let A be as in 1 and (Uk)
∞
k=1, (Vk)∞k=1 and (Wk)

∞
k=1 be nested families of spaces in H1 , H2 and H3

respectively, given by Uk = span{φ1, ..., φk}, Vk = span{ψ1, ..., ψk} andWk = span{ξ1, ..., ξk} where (φk)
∞
k=1,

(ψk)
∞
k=1 and (ξk)

∞
k=1 are orthonormal. Consider

Ai,j,τ :=

(A11)i×i (A12)i×j (A13)i×τ

(A21)j×i (A22)j×j (A23)j×τ

(A31)τ×i (A32)τ×j (A33)τ×τ

 (3)

where ((A11)i×i)pq :=< A11φp, φq >, p, q = 1, . . . , i , ((A12)i×j)pq :=< A12ψp, φq >, p = 1, . . . , i, q = 1, . . . , j
, ((A13)i×τ )pq :=< A13ξp, φq >, p = 1, . . . , i, q = 1, . . . , τ , ((A21)j×i)pq :=< A21φq, ψp >, p = 1, . . . , j, q =
1, . . . , i , ((A22)j×j)

:
pq =< A22ψp, ψq >, p, q = 1, . . . , j , ((A23)j×τ )pq :=< A23ξp, ψq >, p = 1, . . . , j, q =

1, . . . , τ , ((A31)τ×i)pq :=< A31φq, ξp >, p = 1, . . . , τ, q = 1, . . . , i , ((A32)τ×j)pq :=< A32ψq, ξp >, p =
1, . . . , τ, q = 1, . . . , j , ((A33)τ×τ )pq :=< A33ξp, ξq >, p, q = 1, . . . , τ thenW 3(Ai,j,τ ) ⊆W 3(A).

Proof. First we consider λ ∈W 3(Ai,j,τ ). Then for some α ∈ Ci, β ∈ Cj and γ ∈ Cτ with ∥ α ∥=∥ β ∥=∥ γ ∥= 1,
λ is an eigenvalue of

(Ai,j,τ )α,β,γ :=

< (A11)i×iα, α > < (A12)i×jβ, α > < (A13)i×τγ, α >
< (A21)j×iα, β > < (A22)j×jβ, β > < (A23)j×τγ, β >
< (A31)τ×iα, γ > < (A32)τ×jβ, γ > < (A33)τ×τγ, γ >

 (4)

Define isometries f : Ui → Ci, g : Vj → Cj and h : Wτ → Cτ by f(α1φ1 + · · · + αiφi) := (α1, · · · , αi),
g(β1ψ1 + · · ·+ βjψj) := (β1, · · · , βj) and h(γ1ξ1 + · · ·+ γτ ξτ ) := (γ1, · · · , γτ ).
Choose x ∈ Ui, y ∈ Vj , z ∈Wτ such that f(x) = α, g(y) = β, h(z) = γ and ∥ x ∥=∥ y ∥=∥ z ∥= 1.
A simple calculation shows that

(Ai,j,τ )α,β,γ = Ax,y,z =

< A11)x, x > < A12y, x > < A13z, x >
< A21x, y > < A22y, y > < A23z, y >
< A31x, z > < A32y, z > < A33z, z >

 (5)

So λ ∈W 3(A)

Lemma 3.2. Let (Uk)
∞
k=1, (Vk)∞k=1, (Wk)

∞
k=1 and Ai,j,τ be as in 3.1. Hence W 3(Ai,j,τ ) ⊆ W 3(Aµ,ν,ω) for µ ≥

i, ν ≥ j, ω ≥ τ .
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Proof. This result is an immediate consequence of the fact that Cτ is a subspace of Cω for τ ≤ ω. In detail: suppose
τ ≤ ω and suppose λ ∈ W 3(Ai,j,τ ). Then there exist α ∈ Ci, β ∈ Cj and γ ∈ Cτ with ∥ α ∥=∥ β ∥=∥ γ ∥= 1
such that in the notation of 4, λ is an eigenvalue of (Ai,j,τ )α,β,γ . Choose ζ1 ∈ Cµ, ζ2 ∈ Cν , ζ3 ∈ Cω by setting
ζ1 = (α1, · · · , αi, 0, · · · , 0)T , ζ2 = (β1, · · · , βj , 0, · · · , 0)T and ζ3 = (γ1, · · · , γτ , 0, · · · , 0)T .
A simple calculation shows that (Ai,j,τ )α,β,γ = (Aµ,ν,ω)ζ1,ζ2,ζ3 and so λ ∈W 3(Aµ,ν,ω).

Theorem 3.3. Let A and Ai,j,τ be as in theorem 3.1 Suppose that A31 is A11− bounded, A12 is A22− bounded
and A13 is A33− bounded that C1 := span((φk)

∞
k=1) is a core of A11, C2 := span((ψk)

∞
k=1) is a core of A22 and

C3 := span((ξk)
∞
k=1) is a core of A33. HenceW 3A = ∪i,j,τ∈NW 3(Ai,j,τ ) = ∪i∈NW 3(Ai,i,i).

Proof. First we observe that by lemma 3.2 W 3(Ai,j,τ ) ⊆ W 3(Al,l) where l = max{i, j, τ}; this establishes
that ∪i,j,τ∈NW 3(Ai,j,τ ) = ∪i∈NW 3(Ai,i,i). In view of theorem 3.1 it therefore now suffices to show W 3(A) ⊆
∪i,j,τ∈NW 3(Ai,j,τ ).
Suppose λ ∈ W 3(A). Choose x ∈ H1, y ∈ H2 and z ∈ H3 such that λ is an eigenvalue of Ax,y,z as defined in 2.
Since C1 is a core of A11 there axists a sequence (xk)∞k=1, with each xk ∈ span{φ1, · · · , φsk} for some sk > 0 such
that ∥ x−xk ∥→ 0 and ∥ A11x−A11xk ∥→ 0. BecauseA31 isA11− bounded then ∥ A31x−A31xk ∥→ 0. Since C2 is
a core ofA22 andA12 isA22− bounded, in a similar way, a sequence (yk)∞k=1 with each yk ∈ span{ψ1, · · · , ψtk} for
some tk > 0 such that ∥ y−yk ∥→ 0, ∥ A22y−A22yk ∥→ 0 and ∥ A12y−A12yk ∥→ 0. Also since C3 is a core ofA33

andA13 isA33− bounded. We may also find, in a similar way, a sequence (zk)∞k=1 with each zk ∈ span{ξ1, · · · , ξuk
}

for some uk > 0 such that ∥ z−zk ∥→ 0, ∥ A33z−A33zk ∥→ 0 and ∥ A13z−A13zk ∥→ 0. In particular this means
that in the notation of 2, ∥ Axk,yk,zk −Ax,y,z ∥→ 0 as k → 0.
Fix k > 0. Let f : span{φ1, · · · , φsk} → Csk , g : span{ψ1, · · · , ψtk} → Ctk and h : span{ξ1, · · · , ξuk

} → Cuk

are the isometries in the proof of theorem 3.1. Define α̃k ∈ Csk , β̃k ∈ Ctk and γ̃k ∈ Cuk by α̃k := f(xk),
β̃k := g(yk) and γ̃k := h(zk).
Consider the matrix

Ak :=



< (A11)sk×sk α̃k, α̃k >

(∥ α̃k ∥)2
< (A12)tk×sk β̃k, α̃k >

∥ α̃k ∥∥ β̃k ∥
< (A13)uk×sk γ̃k, α̃k >

∥ α̃k ∥∥ γ̃k ∥
< (A21)sk×kk

α̃k, β̃k >

∥ α̃k ∥∥ β̃k ∥
< (A22)tk×tk β̃k, β̃k >

(∥ β̃k ∥)2
< (A23)uk×tk γ̃k, β̃k >

∥ β̃k ∥∥ γ̃k ∥
< (A31)sk×uk

α̃k, γ̃k >

∥ αk ∥∥ γ̃k ∥
< (A32)tk×uk

βk, γ̃k >

∥ β̃k ∥∥ γ̃k ∥
< (A33)uk×uk

γ̃k, γ̃k >

(∥ γ̃k ∥)2


(6)

A simple calculation shows that Ak = Axk,yk,zk . Since ∥ Axk,yk,zk − Ax,y,z ∥→ 0 as k → ∞. We have ∥
Ak−Ax,y,z ∥→ 0. The eigenvalues ofAk are elements ofW 3(Ask,tk,uk

) by definition ofAsk,tk,uk
and 6. Hence there

exists λk ∈W 3(Ask,tk,uk
) such that λk → λ. In view of lemma 3.2 this immediately gives λ ∈ ∪i,j,τ∈NW 3(Ai,j,τ ).

Remark 3.4. Let Pk, Qk and Rk denote orthogonal projection onto Uk, Vk and Wk respectively. If A is bounded,
then the hypotheses that C1, C2 and C3 are cores of A11 , A22 and A33 respectively, are equivalent to the statements
Pk → I , Qk → I , Rk → I strongly as k → ∞. The following example shows that these are necessary.

Example 3.5. Let

A :=

A11 A12 A13

A21 A22 A23

A31 A32 A33

 (7)

is a block operator matrix in H = l2(N) × l2(N) × l2(N) where A11 = diag{ 1
n
}∞n=1 and A12 = A13 = A21 =

A22 = A23 = A31 = A32 = A33 = 0. Let (Uk)k∈N, (Vk)k∈N are nested families of subspaces in l2(N) with
Uk = span{e2, · · · , ek+1} where ej = jth standard basis vector and Vk = span{ψ1, · · · , ψk} where (ψk)

∞
k=1 is any

orthonormal sequence. Hence performing an analysis analogous to theorem 3.3. We see that the top left-hand corner
of Ak in 6 is not convergent to < A11x, x > unless x is orthogonal to e1.



Maryam Fazlollahi / The 4th National Congress on Mathematics and Statistics 153

References

[1] K. E. Gustafson, and D. K. M. Rao. Numerical Range. Springer-Verlag, Berlin, Heidelberg. New York, 1997.
[2] R. A. Horn, and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1991.
[3] H. Langer, and C. Tretter. Spectral decomposition of some nonselfadjoint block operator matrices. J. Operator Theory 39(2), 339-359, 1998.
[4] H. Langer, A. Markus, V. Mastaev, and C. Tretter. A new concept for block operator matrices: The quadratic numerical range. Linear Algebra

and Appl., 330 (1-3), 89-112, 2001.
[5] H. Langer, A. Markus, and C. Tretter. Corners of numerical ranges. Operator Theory. Adv. Appl., 385-400, 2001.
[6] M.Sharipova. Usual, quadratic and cubic numerical renges corresponding to a 3 × 3 operator matrices. Bulletin of National Univ. of Uzbek,

no. 5(4), 242-249, 2022.
[7] T. Rasulov, and E. Dilmurodov. Investigations of the numerical range of a operator matrix. J. Samara State Tech. Univ., Ser. Phys. and Math.

Sci. 35:2, 50-63, 2014.
[8] T. Rasulov, and E. Dilmurodov. Estimates for quadratic numerical range of a operator matrix. Uzbek Mathematical Journal, no. 1, 64-74, 2015.
[9] C. Tretter. Spectral theory of block operator matrices and applications. Imperial College Press, London, 2008.



Gonbad Kavous University

The 4th National Congress on Mathematics and StatisticsThe 4th National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1402

The 4th National Congress on Mathematics and Statistics, AN–271, pp. 154–156

Maps preserving the pseudo spectrum of operator products

Rohollah Parvinianzadeha,∗, Morad Ali Peyvandb
aDepartment of Mathematics, University of Yasouj, Yasouj 75918, Iran
bDepartment of Mathematics, University of Yasouj, Yasouj 75918, Iran

Article Info

Keywords:
Local spectrum
Rank-one operators
the single-valued extension
property

2020 MSC:
47A11
47A15

Abstract

Let A be a standard operator algebra on complex Hilbert spaces H . Fix ϵ > 0 and T ∈ A, let
σϵ(T ) denote the ϵ-pseudo spectrum of T . In this paper, we prove if the bijective map φ on A
satisfies

σϵ(T
∗S + ST ∗) = σϵ(φ(T )

∗φ(S) + φ(S)φ(T )∗), (T, S ∈ A),

then there exists a unitary operator on H such that φ(T ) = λUTU∗ for every T ∈ A, where
λ ∈ {−1, 1}.

1. Introduction and Preliminaries

Throughout this paper, B(H) stands for the algebra of all bounded linear operators acting on an infinite dimensional
complex Hilbert space H and its unit will be denoted by I . For an operator T ∈ B(H), the adjoint, the spectrum
and the spectral radius of T are denoted by T ∗, σ(T ) and r(T ), respectively. The peripheral spectrum of an element
T ∈ B(H) is defined by

σπ(T ) = {λ ∈ σ(T ) : r(T ) = ∥T∥}.

Note that σπ(T ) ⊆ σ(T ). For ϵ > 0, the ϵ-pseudo spectrum of T , σϵ(T ), is defined by σϵ(T ) = {λ ∈ C :
∥(λI − T )−1∥ ≥ ϵ−1 with the convention that ∥(λI − T )−1∥ = ∞ if λ ∈ σ(T ). It is a compact subset of C and
contains σ(T ), the spectrum of T . Unlike the spectrum, which is a purely algebraic concept, the ϵ-pseudo spectrum
depends on the norm. Pseudo spectra are a useful tool for analyzing operators, furnishing a lot of information about the
algebraic and geometric properties of operators and matrices. They play a very natural role in numerical computations,
especially in those involving spectral perturbations. The book [6] gives an extensive account of the pseudo spectra, as
well as investigations and applications in numerous fields.
Linear preserver problems, in the most general setting, demands the characterization of maps between algebras that
leave a certain property, a particular relation, or even a subset invariant. In all cases that have been studied by now, the
maps are either supposed to be linear, or proved to be so. This subject is very old and goes back well over a century
to the so-called first linear preserver problem, due to Frobenius [5], who characterized linear maps that preserve the
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determinant of matrices. The study of nonlinear pseudo spectrum preserver problems attracted the attention of a
number of authors. Cui et al. [2, Theorem 3.3] characterized maps onMn(C) that preserve the ϵ-pseudo spectrum of
the usual product of matrices. They proved that a map φ onMn(C) satisfies

σϵ(φ(T )φ(S)) = σϵ(TS) (T, S ∈ Mn(C))

if and only if there exist a scalar c = ±1 and a unitary matrix U ∈ Mn(C) such that φ(T ) = cUTU∗ for all
T ∈ Mn(C). This result was extended to the infinite dimensional case by Cui et al. [4, Theorem 4.1], where the
authors showed that a surjective map φ on B(H) preserves the ϵ-pseudo spectrum of the product of operators if and
only if it is a unitary similarity transform up to a scalar c = ±1. The aim of this note is to characterize mappings on
B(H) that preserve the ϵ-pseudo spectral of the product “TS − ST ∗” of operators. For two nonzero vectors x and y
in H , let x⊗ y stands for the operator of rank at most one defined by

(x⊗ y)z = ⟨z, y⟩x, ∀ z ∈ H.

Note that every rank one operator in B(H) can be written in this form, and that every finite rank operator T ∈ B(H)
can be written as a finite sum of rank one operators; i.e., T =

∑n
i=1 xi ⊗ yi for some xi, yi ∈ H and i = 1, 2, ..., n.

We denote by F (H) the set of all finite rank operators in B(H) and Fn(H) the set of all operators of rank at most n,
n is a positive integer.
In the following proposition, we collects some known properties of the ϵ-pseudo spectrum which are needed in the
proof of the main result.
Let ϵ > 0 be arbitrary and D(0, ϵ) = {µ ∈ C : |µ− a| < ϵ}, where a ∈ C.

Proposition 1.1. (See [4, 6].)
Let α > 0 and let T ∈ B(H).
(1) σ(T ) +D(0, ϵ) ⊆ σϵ(T ).
(2) If T is normal, then σϵ(T ) = σ(T ) +D(0, ϵ).
(3) For any α ∈ C, σϵ(T + αI) = α+ σϵ(T ).
(4) For any nonzero α ∈ C, σϵ(αT ) = ασ ϵ

|α|
(T ).

(5) For any α ∈ C, we have σϵ(T ) = D(α, ϵ) if and only if T = αI .

Theorem 1.2. (See [3, Theorem 3.1].) Let A and B be standard operator algebras on complex Hilbert spacesH and
K, respectively. Assume that φ : A → B is a map of which range contains all operators with rank at most two. Then
φ satisfies that

σπ(T
∗S + ST ∗) = σπ(φ(T )

∗φ(S) + φ(S)φ(T )∗),

for all T, S ∈ A, if and only if there exist a scalar λ with |λ| = 1 and a unitary operator ofH intoK such that either
φ(T ) = λUTU∗ for every T ∈ A, or φ(T ) = λUT tU∗ for every T ∈ A, where T t is the transpose of T for an
arbitrarily but fixed orthonormal basis of H .

2. Main Results

The following lemma is a key tool for the proof of main result and describes the spectrum of the skew Lie product
(x⊗ y)T − T (x⊗ y)∗ for any nonzero vectors x, y ∈ H and operator T ∈ B(H).

Lemma 2.1. (See [1, Lemma 2.1].) For any nonzero vectors x, y ∈ H and T ∈ B(H), set

∆T (x, y) = (⟨Tx, y⟩+ ⟨Ty, x⟩)2 − 4∥x∥2
⟨
T 2y, y

⟩
and

ΛT (x, y) = (⟨x, Ty⟩+ ⟨Tx, y⟩)2 − 4∥x∥2 ⟨Tx, Ty⟩
Then
(1) σ((x⊗ y)T − T (x⊗ y)∗) = 1

2{0, ⟨Tx, y⟩ − ⟨Ty, x⟩ ±
√

∆T (x, y) },
(2) σ(T (x⊗ y)− (x⊗ y)T ∗) = 1

2{0, ⟨Tx, y⟩ − ⟨x, Ty⟩ ±
√

ΛT (x, y) }.
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Corollary 2.2. (See [1, Lemma 2.1].) For any x ∈ H and T ∈ B(H), we have

σ(T (x⊗ x) + (x⊗ x)T ) = {0, ⟨Tx, x⟩ ±
√
⟨T 2x, x⟩ }.

Lemma 2.3. Let φ : A → A be a bijective map, where A is a standard operator algebra on complex Hilbert spaces
H . If

σ(φ(T )∗φ(S) + φ(S)φ(T )∗) = σ(T ∗S + ST ∗)

for every T, S ∈ A, then
σπ(φ(T )

∗φ(S) + φ(S)φ(T )∗) = σπ(T
∗S + ST ∗)

for every T, S ∈ A.

Proof. Assume that relation σ(T ∗S + ST ∗) = σ(φ(T )∗φ(S) + φ(S)φ(T )∗) holds for every T, S ∈ A. Let λ ∈
σπ(T

∗S + ST ∗) then r(T ∗S + ST ∗) = |λ| and λ ∈ σ(T ∗S + ST ∗). Since σ(T ∗S + ST ∗) = σ(φ(T )∗φ(S) +
φ(S)φ(T )∗) then λ ∈ σ(φ(T )∗φ(S) + φ(S)φ(T )∗). But from r(T ∗S + ST ∗) = r(φ(T )∗φ(S) + φ(S)φ(T )∗)
we have r(φ(T )∗φ(S) + φ(S)φ(T )∗) = |λ| and therefore λ ∈ σπ(φ(T )

∗φ(S) + φ(S)φ(T )∗). Thus σπ(T
∗S +

ST ∗) ⊆ σπ(φ(T )
∗φ(S) + φ(S)φ(T )∗). Since φ is a bijection, easy computation shows that σ(T ∗S + ST ∗) =

σ(φ−1(T )∗φ−1(S) + φ−1(S)φ−1(T )∗) for every operators T, S ∈ A. By a similar reasoning one can easily shows
that σπ(T

∗S + ST ∗) ⊇ σπ(φ(T )
∗φ(S) + φ(S)φ(T )∗) for every operators T, S ∈ A.

The followig theorem is our main result.

Theorem 2.4. Let A be a standard operator algebras on complex Hilbert spaces H . Assume that a bijective map
φ : A → A satisfies

σϵ(T
∗S + ST ∗) = σϵ(φ(T )

∗φ(S) + φ(S)φ(T )∗), (T, S ∈ A).

Then there exists a unitary operator U on H such that φ(T ) = λUTU∗ for every T ∈ A, where λ ∈ {−1, 1}.

Proof. The proof of it will be completed after checking several claims.

Claim 1. φ preserves self-adjoint and anti-self adjoint operators in both directions.

Claim 2. There exists a unitary or conjugate unitary operatorU onH such thatφ(T ) = UTU∗ for every projectionP .

Claim 3. There exists a unitary operator U on H such that φ(iT ) = λU(iT )U∗ for every self-adjoint operator T ,
where λ ∈ {−1, 1}.

Claim 4. The result in the theorem holds.
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Abstract

Let H be a Hilbert space and B(H) the algebra of all bounded linear operators on H .suppose
Φ : B(H) → B(H) is a surjective map that satisfying the following property:

Fix(A−B) = Fix(Φ(A)− Φ(B)), A,B ∈ B(H)

then we characterized the form of Φ, that Fix(A) is the set of all fixed point of an opereatorA.

1. Introduction

Recently non-linear Preserver problems have been investigated by many authors, see for instance [1–3, 6]. Among
them, in [4], Oudghiri and Souilah characterized all surjective maps Φ : B(H) → B(H) that preserve operator pairs
whose their difference is a non-invertible algebraic operator.

They proved that if Φ(I) = I + Φ(0), then there exists an invertible either linear or conjugate linear operator
A : H → H such that

Φ(T ) = ATA−1 +Φ(0)

or

Φ(T ) = AT ∗A−1 +Φ(0), T ∈ B(H).

In this paper, we are interested to determine the general structure ofΦwhen it restricts to the real Jordan algebra S(H).

Now we recall some notions and definitions that will be used in the sequel. Through out this paper H stands for an
infinite dimensional separable complex Hilbert space. We denote by B(H) the algebra of all bounded linear operators
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onH and its self-adjoint part by S(H).

The set of all finite rank operators in S(H) will be denoted by F(H). For g, h ∈ H, < g, h > stands for the inner
product of g and h. For every T ∈ B(H), we use the notations rank(T ), ker(T ), ran(T ) and σ(T ) for the rank,
kernel, range and the spectrum of T , respectively.

for all x, y ∈ H. The identity operator on H will be denoted by I . x ∈ H is a fixed point of an operator A ∈ B(H),
whenever we have Ax = x. The set of all fixed point ofA is denote by Fix(A). in [5] the form of product preserving
maps in banach space has been investigate.

We denote byA(H),NIA(H) and IA(H), the set of all algebraic, non-invertible algebraic and invertible algebraic
operators in S(H), respectively. A surjective map Λ : S(H) −→ S(H) is said to preserves fixed point of difference
of operators if for every S, T ∈ S(H)

Fix(S − T ) = Fix(Λ(S)− Λ(T )).

For every nonzero h ∈ H and f ∈ H symbol h ⊗ f stands for the rank-one linear operator on H defined by
(x⊗ f)y = f(y)x for any y ∈ H.

every rank one operator in B(H) can be written in this way.the rank one operator h ⊗ f is idempotent if and only if
f(x) = 1 and is nilpotent if and only if f(x) = 0. the set of all rank one operator and the set of all rank one idempotent
operators in B(H) denote by F1(H) and P1(H) respectively.

the linear preserving maps fined characteristics of a map which preserves some properties under some sutable con-
ditions. for example the maps preserving the spectrum, invertibly, numerical rang and minimum moduli. Molnar
considered the product of two operators as the theorem below.

Theorem 1.1. Let X be a Banach space and let Φ : B(X) → B(X) be a serjective function with the property that

σp(ϕ(A)ϕ(B)) = σp(AB) (A,B ∈ B(X))

where σp(A) = {λ ∈ C : (A− λI)X ̸= X}
if X is infinite dimensional, then there is an invertible linear operator T ∈ B(X) such that either

ϕ(A) = TAT−1 (A ∈ B(X))

or

ϕ(A) = TAT−1 (A ∈ B(X))

in this paper we characterize the form of surjective maps on B(H) such that preserve the fixed point of difference of
operators.

2. Main results

Lemma 2.1. Let S, T ∈ S(H). Then S = T , under any of the following conditions.

(i) For every N ∈ S(H), S −N ∈ NIA(H) if and only if T −N ∈ NIA(H).

(ii) For every N ∈ IA(H), S −N ∈ IA(H) if and only if T −N ∈ IA(H).
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(ii) For every N,S ∈ B(H), Fix(ST)=Fix(NT), for all T ∈ F1(H)

Lemma 2.2. let A,B ∈ B(H) be non scalar operators. if Fix(AR) = Fix(BR) for every R ∈ P1(H), then
B = λI + (1− λ)A for some λ ∈ C \ {1}.

Lemma 2.3. let A,B ∈ B(H). Then A ∈ C∗I if and only if Fix(AR) = {0}, for every R ∈ P1(H)

Now we state the main result of this paper. The main idea for proving this theorem is taken from [4] (see Theorem B),
however a lot of new phenomena takes place.

Theorem 2.4. Let H be a complex Banach space with dim H ≥ 3 suppose Φ : B(H) → B(H) is a surjective map
with the property that

Fix(Φ(S)− Φ(T )) = Fix(S − T ), (S ∈ B(H), T ∈ F1(H))

then Φ(S) = k(S)S, where K : B(H) → C is a function such that for any non - scalar operator S ∈ B(H) we have
k(A) = 1or − 1 and for any scalar operator λI we have k(λI) = γ(λ)I , where γ : C → C is a bijective map.

Proof. step1: Φ(I) = 0,Φ(0) = 0, and Φ is injective
step2 Φ preserves idempotent operators.
step3: Φ(I − T ) = I − Φ(T ) for any T ∈ H.
step4: Φ( 12S) =

1
2Φ(S), for any idempotent operator S.

step5: Φ preserves the order og idempotent operator.
step6: Φ preserves rank one idempotents . by step 2 and 5 and [7] we find that Φ preserves rank one idempotent.
step7: Φ(S − T ) = Φ(S)− Φ(T ) for any S, T ∈ H.
step8: there exists an invertible bounded linear or conjugate linear operator T : H → H such that
Φ(P ) = k(P )P for any non scalar operator P ∈ H and Φ(λI) = λI .
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Abstract

In this article, we extend some recent fixed point theorems in the setting of G-fuzzy metric
spaces. We introduce some new concepts of contractions called γ-contractions and γ-weak
contractions. We prove some fixed point theorems for mappings providing γ-contractions and
γ-weak contractions. On the other hand, we consider a more general class of auxiliary functions
in the contractivity condition.

1. Introduction

Fixed point theory is a very important concept in mathematics. In 1922, Banach created a famous result called Banach
contraction principle in the concept of the fixed point theory which states sufficient conditions for the existence and
uniqueness of a fixed point[1].

There are two well-known extensions of the notion of metric space in which imprecise models are considered: fuzzy
metric spaces (see [7]) and probabilistic metric spaces [3, 8, 9]. The two concepts are very similar, but they are different
in nature. The concept of a fuzzy metric space was introduced in different ways by some authors (see [2, 4]). Gregori
and Sapena [4] introduced the notion of fuzzy contractive mappings and gave some fixed point theorems for complete
fuzzy metric spaces in the sense of George and Veeramani, and also for Kramosil and Michalek’s fuzzy metric spaces
which are complete in Grabiec’s sense. Mihet [6] developed the class of fuzzy contractive mappings of Gregori and
Sapena, considered these mappings in non-Archimedean fuzzy metric spaces in the sense of Kramosil and Michalek,
and obtained a fixed point theorem for fuzzy contractive mappings. Lots of different types of fixed point theorems has
been presented by many authors by expanding the Banach’s result, simultaneously (see [10, 11]).

In this work, using a mapping γ : [0, 1) → R we introduce some new types of contractions called γ-contractions and
γ-weak contractions. Later, we prove some fixed point theorems for mappings providing γ-contractions and γ-weak
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contractions in non-Archimedean G-fuzzy metric spaces. Also, some examples are supplied in order to support the
usability of our results. On the other hand, we consider a more general class of auxiliary functions which generate
some contractive conditions, and we show that the function t → 1/t− 1 (which appears in many fixed point theorems
in the fuzzy context) can be replaced by more appropriate and general functions.

Before proving our main results, we recall some basic definitions and facts which will be used later in this paper.

Definition 1.1. [8] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a continuous triangular norm (in short,
continuous t-norm) if it satisfies the following conditions:

(TN-1) ∗ is commutative and associative,
(TN-2) ∗ is continuous,
(TN-3) ∗(a, 1) = a for every a ∈ [0, 1],
(TN-4) ∗(a, b) ≤ ∗(c, d) whenever a ≤ c, b ≤ d and a, b, c, d ∈ [0, 1].

Definition 1.2. [11] A G-fuzzy metric space is an ordered triple (X,G, ∗) such that X is a nonempty set, ∗ is a con-
tinuous t-norm, and G is a fuzzy set on X3 × (0,∞), satisfying the following conditions, for all s, t > 0:

(GF-1) G(x, x, y, t) < 1 for all x, y ∈ X with x ̸= y,
(GF-2) G(x, x, y, t) ≤ G(x, y, z, t) for all x, y, z ∈ X with y ̸= z,
(GF-3) G(x, y, z, t) = 1, then x = y = z,
(GF-4) G(x, y, z, t) = G(p(x, y, z), t), where p is a permutation function,
(GF-5) G(x, y, z, t+ s) ≥ G(x, a, a, s) ∗G(a, y, z, t) for all x, y, z, a ∈ X ,
(GF-6) G(x, y, z, .) : (0,∞) → [0, 1] is continuous.

If, in the above definition, the triangular inequality (GF-5) is replaced by

G(x, y, z,max{s, t}) ≥ G(x, a, a, s) ∗G(a, y, z, t)

for all x, y, z, a ∈ X and s, t > 0, or equivalently,

G(x, y, z, t) ≥ G(x, a, a, t) ∗G(a, y, z, t) (1)

the triple (X,G, ∗) is called a non-Archimedean G-fuzzy metric space [5].

Example 1.3. Let X be a nonempty set and let G be a G-metric on X . Denote ∗(a, b) = ab for all a, b ∈ [0, 1]. For
each t > 0, G(x, y, z, t) = t/(t+G(x, y, z)) is a G-fuzzy metric on X .

Definition 1.4. Let {xn} be a sequence in a G-fuzzy metric space (X,G, ∗). We will say that:

• {xn} converges to x if and only if lim
n→∞

G(xn, xn, x, t) = 1; i.e., for all t > 0 and all λ ∈ (0, 1), there exists
n0 ∈ N such that G(xn, xn, x, t) > 1− λ for all n ≥ n0 (in such a case, we will write {xn} → x);

• {xn} is a Cauchy sequence if and only if for all t > 0 and all λ ∈ (0, 1), there exists n0 ∈ N such that
G(xn, xn, xm, t) > 1 − λ for all n,m ≥ n0. {xn} is a G-Cauchy sequence if and only if for all t > 0 and all
λ ∈ (0, 1), there exists n0 ∈ N such that G(xn, xn, xn+p, t) > 1− λ for all n ≥ n0 and p > 0; in other words,
lim

n→∞
G(xn, xn, xn+p, t) = 1.

• The G-fuzzy metric space (X,G, ∗) is called complete (G-complete) if every Cauchy (G-Cauchy) sequence is
convergent.

Lemma 1.5. (see [11]) Let (X,G, ∗) be a G-fuzzy metric space. Then, G(x, y, z, t) is nondecreasing with respect to
t for all x, y, z ∈ X .
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Lemma 1.6. (see [11]) Let (X,G, ∗) be a G-fuzzy metric space. Then, G is a continuous function on X3 × (0,∞).

It is easy to prove that aG(x, y, z, t) in a non-ArchimedeanG-fuzzy metric space (X,G, ∗) is also nondecreasing with
respect to t and a continuous function for all x, y, z ∈ X .

2. New types of contractive mappings

Definition 2.1. Let γ : [0, 1) → R be a strictly increasing continuous mapping and for each sequence {an}n∈N of
positive numbers lim

n→∞
an = 1 if and only if lim

n→∞
γ(an) = ∞. Let Γ be the family of all γ functions.

Let (X,G, ∗) be a non-Archimedean G-fuzzy metric space. A mapping T : X → X is said to be a γ-contraction if
there exists a δ > 0 such that

G(Tx, Ty, Tz, t) < 1 ⇒ γ(G(Tx, Ty, Tz, t)) ≥ γ(G(x, y, z, t)) + δ (2)

for all x, y, z ∈ X, t > 0 and γ ∈ Γ.

When we consider in (2) the different types of the mapping γ, then we obtain a variety of contractions, some of them
are of a type known in the literature. See the following example:

Example 2.2. The different types of the mapping γ ∈ Γ are as follows:

γ1 =
1

(1− x)
, γ2 = ln

1

(1− x)
, γ3 =

1

(1− x)
+ x, γ4 =

1

(1− x2)
, γ5 =

1√
1− x

.

If γ = ln 1
(1−x) . Then each mapping T : X → X satisfying (2) is a γ-contraction such that

G(Tx, Ty, Tz, t) ≥ k(δ)G(x, y, z, t),

for all x, y, z ∈ X, t > 0 and G(Tx, Ty, Tz, t) < 1, in which k(δ) = G(x,y,z,t)−1+eδ

eδG(x,y,z,t)
≥ 1.

Note that from γ and (2) it is easy to conclude that every γ-contraction T is a contractive mapping, that is,

G(Tx, Ty, Tz, t) > G(x, y, z, t) (3)

for all x, y, z ∈ X , such that Tx ̸= Ty ̸= Tz. Thus every γ-contraction is a continuous mapping.

Now we state one of the main results of the present manuscript.

Theorem 2.3. Let G(X,G, ∗) be a complete non-Archimedean G-fuzzy metric space and let T : X → X be a
γ-contraction. Then T has a unique fixed point in X .

Proof. Let x0 ∈ X be arbitrary and fixed. Define sequence {xn} by

Txn = xn+1, for all n ∈ N. (4)

If xn = xn+1, then xn+1 is the fixed point of T ; then the proof is finished. Suppose that xn ̸= xn+1 for all n ∈ N.
Therefore by (2), we get

γ(G(Txn−1, Txn−1, Txn, t)) ≥ γ(G(xn−1, xn−1, xn, t)) + δ. (5)

Repeating this process, we have

γ(G(Txn−1, Txn−1, Txn, t)) ≥ γ(G(xn−1, xn−1, xn, t)) + δ

= γ(G(Txn−2, Txn−2, Txn−1, t)) + δ

≥ γ(G(xn−2, xn−2, xn−1, t)) + 2δ...

≥ γ(G(x0, x0, x1, t)) + nδ.

(6)
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Letting n → ∞, from (6) we get

lim
n→∞

γ(G(Txn−1, Txn−1, Txn, t)) = +∞. (7)

Then, we have
lim

n→∞
G(Txn−1, Txn−1, Txn, t) = 1. (8)

With the same process, we have
lim

n→∞
G(Txn−1, Txn, Txn, t) = 1.

Now, we want to show that {xn} is a Cauchy sequence. Suppose to the contrary, we assume that {xn} is not a
Cauchy sequence. Then there are λ ∈ (0, 1) and t0 > 0 such that for all k ∈ N there exist n(k),m(k) ∈ N with
n(k) > m(k) > k and

G(xn(k), xn(k), xm(k), t0) ≤ 1− λ. (9)

Assume thatm(k) is the least integer exceeding n(k) satisfying inequality (9). Then, we have

G(xn(k), xn(k), xm(k)−1, t0) > 1− λ, (10)

and so, for all k ∈ N and from (1), we get

1− λ ≥ G(xn(k), xn(k), xm(k), t0)

= G(xm(k), xn(k), xn(k), t0)

≥ G(xm(k), xm(k)−1, xm(k)−1, t0) ∗G(xm(k)−1, xn(k), xn(k), t0)

≥ G(xm(k), xm(k)−1, xm(k)−1, t0) ∗ (1− λ).

(11)

Letting k → ∞ in (11) and using (8), we obtain

lim
k→∞

G(xn(k), xn(k), xm(k), t0) = 1− λ. (12)

From (1), we get

G(xm(k)+1,xn(k)+1, xn(k)+1, t0) ≥ G(xm(k)+1, xm(k), xm(k), t0)

∗G(xm(k), xn(k), xn(k), t0) ∗G(xn(k), xn(k)+1, xn(k)+1, t0),

so, letting k → ∞ and using (8), we have

lim
k→∞

G(xm(k)+1, xn(k)+1, xn(k)+1, t0) ≥ 1− λ. (13)

From (9), we obtain

1− λ ≥ G(xm(k), xn(k), xn(k), t0)

≥ G(xm(k), xm(k)+1, xm(k)+1, t0) ∗G(xm(k)+1, xn(k)+1, xn(k)+1, t0)∗
G(xn(k)+1, xn(k), xn(k), t0),

(14)

and so by taking the limit as k → ∞ in (14) and from (8) and (13), we have

lim
k→∞

G(xm(k)+1, xn(k)+1, xn(k)+1, t0) = 1− λ. (15)

By applying inequality (2) with x = y = xn(k) and z = xm(k)

γ(G(xn(k)+1, xn(k)+1, xm(k)+1, t0)) ≥ γ(G(xn(k), xn(k), xm(k), t0)) + δ. (16)

Taking the limit k → ∞ in (16), applying (2), from (12), (15), and the continuity of γ, we obtain

γ(1− λ) ≥ γ(1− λ) + δ,
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which is a contradiction. Thus {xn} is a Cauchy sequence in X . From the completeness of (X,G, ∗) there exists
x ∈ X such that

lim
n→∞

xn = x.

Finally, the continuity of T and G yields

G(Tx, Tx, x, t) = lim
n→∞

G(Txn, Txn, xn, t) = lim
n→∞

G(xn+1, xn+1, xn, t) = 1.

Now, we show that T has a unique fixed point. Suppose that x and y are two fixed points of T . Indeed, if for x, y ∈ X ,
Tx = x ̸= y = Ty, then we get

γ(G(x, x, y, t)) ≥ γ(G(x, x, y, t)) + δ,

which is a contradiction. Thus, T has a unique fixed point. Hence, the proof is completed.

Example 2.4. Let X = [0, 1), ∗(a, b) = min{a, b}, and

G(x, y, z, t) =

{
1, if x = y = z,

1
1+max{x,y,z} , otherwise.

(17)

for all t > 0. Let γ : [0, 1) → R such that γ(x) = 1/1− x for all x ∈ [0, 1) and define T : X → X by T (x) = 2x2/5
for all x ∈ X . Clearly, (X,G, ∗) is a complete non-Archimedean G-fuzzy metric space.
Case 1. We assume that x, y, z ∈ (0, 1). Since x2 < x, y2 < y and z2 < z, thenmax{x, y, z} > max{Tx, Ty, Tz}.
So, there exists a δ > 0 such that

1

max{Tx, Ty, Tz}
+ 1 ≥ 1

max{x, y, z}
+ 1 + δ.

It is easy to see that
γ(G(Tx, Ty, Tz, t)) ≥ γ(G(x, y, z)) + δ.

Case 2. Let x = 0 and y, z ∈ (0, 1). Since x2 = 0, y2 < y and z2 < z, then max{x, y, z} = max{y, z} >
max{Tx, Ty, Tz} = max{Ty, Tz}. Hence, we have

G(Tx, Ty, Tz, t) =
1

1 +max{Tx, Ty, Tz}
>

1

1 +max{x, y, z}
= G(x, y, z, t).

So, there exists a δ > 0 such that

γ(G(Tx, Ty, Tz, t)) ≥ γ(G(x, y, z, t)) + δ.

Case 3. Let x = y = 0 and z ∈ (0, 1), it is easy to see that,

γ(G(Tx, Ty, Tz, t)) ≥ γ(G(x, y, z, t)) + δ.

Therefore, T is a γ-contraction. Then all the conditions of Theorem (2.3) hold and T has the unique fixed point x = 0.

Definition 2.5. Let (X,G, ∗) be a non-Archimedean G-fuzzy metric space. A mapping T : X → X is said to be a
γ-weak contraction if there exists a δ > 0 such that

G(Tx, Ty,Tz, t) < 1 ⇒
γ(G(Tx,Ty, Tz, t)) ≥

γ(min{G(x, y, z, t), G(x, x, Tx, t),G(y, y, Ty, t), G(z, z, Tz, t)}) + δ, (18)

for all x, y, z ∈ X and γ ∈ Γ.

Note that every γ-contraction is a γ-weak contraction. But the converse is not true.
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Example 2.6. LetX = A∪B, where A = {1/10, 1/2, 1, 2, 3}, B = [4, 5]. ∗(a, b) = min{a, b} and G(x, y, x, t) =
min{x, y, z}/max{x, y, z} for all t > 0. Clearly, (X,G, ∗) is a complete non-Archimedean G-fuzzy metric space.
Let γ : [0, 1) → R such that γ(x) = 1/

√
1− x for all x ∈ [0, 1) and define T : X → X by{

1
10 , if x ∈ A,
1
2 , if x ∈ B.

Since T is not continuous, T is not γ-contraction by (3).

Now, we show that T is a γ-weak contraction for all x ∈ X .
Case 1. Let x = 1 and y, z ∈ B,

G(Tx, Ty, Tx, t) =
1

5
>

1

10
= min{ 1

max{y, z}
,
1

10
,
1

2y
,
1

2z
} =

min{G(x, y, x, t), G(x, x, Tx, t), G(y, y, Ty, t), G(z, z, Tz, t)}.

So, there exists a δ > 0 such that

γ(G(Tx, Ty, Tz, t)) ≥
γ(min{G(x, y, z, t), G(x, x, Tx, t), G(y, y, Ty, t), G(z, z, Tz, t)}) + δ.

Case 2. Let x ∈ {2, 3} and y, z ∈ B,

G(Tx, Ty, Tx, t) =
1

5
>

1

10x
= min{ x

max{y, z}
,

1

10x
,
1

2y
,
1

2z
} =

min{G(x, y, x, t), G(x, x, Tx, t), G(y, y, Ty, t), G(z, z, Tz, t)}.

So, there exists a δ > 0 such that

γ(G(Tx, Ty, Tz, t)) ≥
γ(min{G(x, y, z, t), G(x, x, Tx, t), G(y, y, Ty, t), G(z, z, Tz, t)}) + δ.

Case 3. Let x ∈ {1/10, 1/2} and y, z ∈ B,

G(Tx, Ty, Tx, t) =
1

5
>

x

max{y, z}
= min{ x

max{y, z}
,
1

10
,
1

2y
,
1

2z
} =

min{G(x, y, x, t), G(x, x, Tx, t), G(y, y, Ty, t), G(z, z, Tz, t)}.

So, there exists a δ > 0 such that

γ(G(Tx, Ty, Tz, t)) ≥
γ(min{G(x, y, z, t), G(x, x, Tx, t), G(y, y, Ty, t), G(z, z, Tz, t)}) + δ.

By proving the rest of cases, we get T is a γ-weak contraction.

Theorem 2.7. Let (X,G, ∗) be a complete non-Archimedean G-fuzzy metric space and let T : X → X be a γ-weak
contraction. Then T has a unique fixed point in X .

Example 2.8. Let (X,G, ∗) be the non-ArchimedeanG-fuzzy metric space and let T be considered in Example (2.6).
Let γ : [0, 1) → R such that γ(x) = 1/(1−x2) for all x ∈ [0, 1). So, T is a γ-weak contraction. Therefore, Theorem
(2.7) can be applicable to T and the unique fixed point of T is 1/10.
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Abstract

In this paper, a novel algorithm based on new modified Homotopy Perturbation Method, called
NHPM, for fractional fisher equations was proposed. The solution process is elucidated includ-
ing how to construct a suitable homotopy equation and how to choose an initial solution. Some
examples are given to reveal the effectiveness and convenience of the method.

1. Introduction

In recent years, considerable research and interest in fractional differential equations has been stimulated due to their
numerous applications in many areas like physics, and engineering [1]. Many important phenomena in electromag-
netics, acoustics, viscoelasticity, electrochemistry, corrosion and material science are well described by differential
equations of fractional order [2, 3].
Many new numerical techniques have been widely applied to fractional differential equations. Based on homotopy,
which is a basic concept in topology, general analytical method namely the homotopy perturbation method (HPM) was
established by He [4–7] in the year 1998, to obtain a series of solutions to the nonlinear differential equations. This
simple method has been applied to solve Blasius equation [8], fluid mechanics equations [9], fractional KdV-Burgers
equation [10], some boundary value problems, and many other equations in subjects of different disciplines [11–20].
In this study, a new version of the HPM, which efficiently solves fractional differential equations, is being introduced.

2. Basic definitions

In this section some basic definitions and properties of the fractional calculus theory used in this work will be discussed
[21, 22].

Definition 2.1. A real function f(x), x > 0, in the space Cµ, µ ∈ R if there exists a real number p > µ, such that
f(x) = xpf1(x) where f1(x) ∈ C[0,∞] and it is said to be in the space Cm

µ if f (m) ∈ Cµ,m ∈ N .

∗Talker
Email address: mostafa.eslami@umz.ac.ir (M. Eslami)
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Definition 2.2. The Riemann–Liouville fractional integral operator of order α ≥ 0, of a function f ∈ Cµ, µ ≥ −1, is
defined as:

Jαf (x) =
1

Γ (α)

∫ x

0

(x− t)
α−1

f (t) dt, α > 0, x > 0, J0f (x) = f (x) .

The general and detailed properties of the operator Jα can be found in reference [22]. For this study, where f ∈ Cµ

,µ ≥ −1,α, β ≥ 0 and γ > −1:

(1) JαJβf (x) = Jα+βf (x) ,

(2) JαJβf (x) = JβJαf (x) ,

(3) Jαxγ =
Γ (γ + 1)

Γ (α+ γ + 1)
xα+γ .

It is worthmentioning here that, the Riemann–Liouville derivativemethod has some disadvantages when used tomodel
real-world phenomena with fractional differential equations. Therefore, a modified fractional differential operator,Dα

∗
, should be introduced to overcome those weaknesses in the previous models. Such modified fractional differential
operators, Dα

∗ , were first proposed by Caputo [22], in his work on the theory of viscoelasticity.

Definition 2.3. The fractional derivative of f(x) according to Caputo [22], is defined as:

Dα
∗ f (x) = Jm−αDmf (x) =

1

Γ (m− α)

∫ x

0

(x− t)
m−α−1

f (m) (t) dt,

for: m− 1 < α ≤ m,m ∈ N, x > 0, f ∈ Cm
−1.

The following two properties of this operator will be used in what comes next.

Lemma 2.4. If m− 1 < α ≤ m and f ∈ Cm
µ , µ ≥ −1, then Dα

∗ J
αf(x) = f(x), and

JαDα
∗ f(x) = f(x)− Σm−1

k=0 f(0+)x
k

k! , x > 0.

Definition 2.5. Form as the smallest integer that exceeds α , the Caputo time-fractional derivative operator of order
α > 0, is defined as:

Dα
∗tu(x, t) =

∂αu(x, t)

∂tα
=


1

Γ(m−α)

∫ t

0
(t− τ)

m−α−1 ∂mu(x,τ)
∂τm dτ, m− 1 < α < m,

∂mu(x,t)
∂tm , α = m ∈ N.

For more information on the mathematical properties of fractional derivatives and integrals, one can consult the above
mentioned references.

3. Theory of the Method

To illustrate the application and methodology of using the proposed new method, the following fractional differential
equation will be considered:

A (u (X, t)− f (r)) = 0, r ∈ Ω, (1)

B

(
u (X, t) ,

∂u

∂n

)
= 0, r ∈ Γ, (2)

where A is a general differential operator, f(r) is a known analytic function, B is a boundary condition, Γ is the
boundary of the domain Ω , and X = (x1, x2,…, xn).
In general, the operator A can be divided into two operators, L and N , where L is a linear operator, while N is a
non-linear operator.
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In this case, equation 1 can be re-written as follows:

L (u) +N (u)− f (r) = 0 (3)

Using the homotopy technique, a homotopy U(r, p) : Ω × [0, 1] → R could be constructed, which satisfies: In this
case, equation 1 can be re-written as follows:

H (U, p) = (1− p) [L (U)− L (u0)] + p[A (U)− f (r)] = 0, p ∈ [0, 1], r ∈ Ω, (4)

or

H (U, p) = L (U)− L (u0) + pL (u0) + p[N (U)− f (r)] = 0. (5)
Where p ∈ [0, 1], is called homotopy parameter, and u0 is an initial approximation for the solution of Eq.1, which
satisfies the boundary conditions.
Obviously from Eq.4 and Eq.5, Eq.6 and Eq.7 could be derived and written as:

H (U, 0) = L (U)− L (u0) = 0, (6)

H (U, 1) = A (U)− f (r) = 0. (7)
It is assumed that the solution of Eq.6 or Eq.7 could be expressed as a series in p, as follows:

U = U0 + pU1 + p2U2 + . . . (8)

Setting p = 1, produces the approximate solution of Eq.1, which could be written in the following form:

u = lim
p→1

U = U0 + U1 + U2 +K

Now Eq.5 will be written in the following form:

L (U (X, t)) = u0 (X, t) + p [f (r (X, t))− u0 (X, t)−N (U (X, t))] . (9)
By applying the inverse operator, L1, to both sides of Eq.9, Eq.10 could be derived:

U(X, t) = L−1(u0(X, t)) + p(L−1(f(r))− L−1(u0(X, t)− L−1 (N(U(X, t))) . (10)

Suppose that the initial approximation of Eq.1 has the form:

u0 (X, t) = Σ∞
n=0an (X)Pn (t) (11)

where a1(X),a2(X),a3(X),. . . are unknown coefficients, and P0(t),P1(t),P2(t),. . . are specific functions dependent
on the problem. Now by substituting Eq.8 and Eq.11 into Eq.10, we get:

Σ∞
n=0Un (X, t) = U (X, t) = L−1 (Σ∞

n=0an (X)Pn (t))+

p
(
L−1 (f (r))− L−1 (Σ∞

n=0an (X)Pn (t))− L−1 (NΣ∞
n=0p

nUn (X, t))
)
. (12)

Comparing the coefficients of terms with the identical powers of p, leads to:

p0 : U0(X, t) = L−1(Σ∞
n=0an(X)Pn(t)),

p1 : U1(X, t) = L−1(f(r))− L−1(Σ∞
n=0an(X)Pn(t))− L−1N(U0(X, t)),

p2 : U2(X, t) = −L−1N(U0(X, t), U1(X, t)),

p3 : U3(X, t) = −L−1N(U0(X, t), U1(X, t), U2(X, t)),

M

pj : Uj(X, t) = −L−1N(U0(X, t), U1(X, t), U2(X, t),K, Uj−1(X, t)),

M

(13)
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Now, if the above equations are solved in such a way that U1(X, t) = 0, then Eq.13 results in:

U1(X, t) = U2(X, t) = · · · = 0,

Therefore, the exact solution may be obtained as follows:

u(X, t) = U0(X, t) = L−1 (Σ∞
n=0an(X)Pn(t)) ,

To show the capability of this method, it will be applied to some examples in the next section.

4. Illustrative examples

Example
Consider the following fractional Fisher equation:

∂αu

∂tα
=

∂2u

∂x2
+ u(1− u), 0 < α ≤ 1. (14)

with a constant initial condition:

u(x, 0) = λ.

For solving Eq.??, the following homotopy should be constructed:

∂αU

∂tα
(x, t) = u0(x, t)− p

(
u0(x, t) +

∂αU

∂tα
− ∂2U

∂x2
− U(1− U)

)
, (15)

Applying the inverse operator, Jα
t to both sides of the above equation, results in:

U(x, t) = U(x, 0) + Jα
t u0(x, t)− Jα

t

(
u0(x, t) +

∂αU

∂tα
− ∂2U

∂x2
− U(1− U)

)
, (16)

Suppose the solution of Eq.16 have the form shown in Eq.8, then substituting Eq.8 into Eq.16 and equating the coef-
ficients of p with the same power, leads to:

p0 : U0(x, t) = U(x, t) + Jα
t u0(x, t),

p1 : U1(x, t) =,

p2 : U2(x, t) =,

M

pj : Uj(x, t) =,

M

Assuming u0(x, t) = Σ∞
n=0an(x)t

αk , U(x, 0) = u(x, 0), and solving the above equation for U1(x, t), leads to the
following result:

U1(x, t) =

(
− 1

Γ(α+ 1)
a0(x) +

λ

Γ(α+ 1)
− λ2

Γ(α+ 1)

)
tα

+

(
− Γ(α+ 1)

Γ(2α+ 1)
a1(x) +

1

Γ(2α+ 1)
a′′0(x) +

1

Γ(2α+ 1)
a0(x)− 2λ

1

Γ(2α+ 1)
a0(x)

)
t2α

+

(
−Γ(2α+1)

Γ(3α+1)a2(x) +
Γ(α+1)
Γ(3α+1)a

′′
1(x) +

Γ(α+1)
Γ(3α+1)a1(x)

−2λ Γ(α+1)
Γ(3α+1)a1(x)−

Γ(2α+1)
Γ(α+1)Γ(3α+1)Γ(α+1)a

2
0(x)

)
t3α

+ . . .
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Furthermore, if it is assumed that U1(x, t) = 0, then:

a0(x) = λ(1− λ), a1(x) =
λ(1− λ)(1− 2λ)

Γ(α+ 1)
, a2(x) = −λ(1− λ)(1− 2λ)2

Γ(2α+ 1)
+

(λ− 2λ)2

(Γ(α+ 1))2
, . . .

Therefore, the solution of the fractional differential equation can be expressed as follows:

u(x, t) = U0(x, t) =
λ(1− λ)

Γ(α+ 1)
tα +

λ(1− λ)(1− 2λ)

Γ(2α+ 1)
t2α

+

(
−λ(1− λ)(1− 2λ)2

Γ(2α+ 1)
+

(λ− 2λ)2

(Γ(α+ 1))2

)
Γ(2α+ 1)

Γ(3α+ 1)
t3α + . . . ,

For the special case α = 1, the solution will be as follows:

u(x, t) = λ(1− λ)tα +
λ(1− λ)(1− 2λ)

2
t2

+

(
−λ(1− λ)(1− 2λ)(1− 6λ+ 6λ2)

6

)
t3 + . . .

=
λet

1− λ+ λet′

which is an exact solution.

5. Results and discussion

In this manuscript, a novel algorithm for solving fractional differential equations was successfully developed and
tested. The proposed method is simple and it finds exact solution to all equations using initial condition only. This
method is also very powerful in finding solutions to various types of physical problems in many important practical
applications. One of the other main advantages of this method is its fast convergence to the solution.

6. Conclusion

We note that novel algoritm solutions were computed via a simple algorithm and without any need for perturbation
techniques, special transformations, linearization, or discretization. Thus, it can be concluded that the new method is
an effective numerical tool for solving functional equations. All computations are performed by using Maple 15.
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Abstract

In this paper, we propose an efficient matrix method based on B-spline scaling functions (in short
B-splines) for the numerical solution of linear fractional Volterra integral equations. B-splines
are preferred for function approximation due to their regularity, symmetry, compact support,
and the best approximation properties in comparison to wavelets of the same order. By deriving
the fractional integration operational matrix and employing a matrix-vector representation, we
reduce the linear integral equation to a linear system of algebraic equations. Numerical experi-
ments are included to demonstrate the effectiveness and accuracy of the method.

1. Introduction

Fractional calculus is a branch of mathematics that studies integral and derivatives of non-integer order. Integral and
differential equations of fractional order have received lots of attention frommathematicians, physicians and engineers
over recent years. The main reason is that these equations appear in a large number of physical and engineering
phenomena like electric transmission lines [9], propagation of sound waves [10], viscoelasticity theory [5, 30], fluid
mechanics [12, 16, 21] statistical mechanics [19], polymer [20] and water movement in soils [31]. Moreover, some
initial and boundary value problems associated with both ODEs and PDEs can be converted into integral equations.
Volterra was the first person who worked systematically on the theory of integral equations [1]. The general form of
linear Volterra integral equations is as follows:

w(x)f(x) = g(x) + λ

∫ x

0

K(x, t)f(t)dt,

where w(x) and g(x) are known functions, λ is a constant andK(x, t) is the kernel. If the kernelK(x, t) is infinite at
some points of the integration domain, then the integral equation is called singular. The Riemann–Liouville fractional
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integral of order α of a function f(x) is defined as

Iαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt,

where α > 0 and Γ is the Gamma function. In view of this definition, the following form of integral equations is
called fractional Volterra integral equation which is a singular integral equation:

f(x) = g(x) + µ(x)Iα (k(x, t)f(x)) = g(x) +
µ(x)

Γ(α)

∫ x

0

(x− t)α−1k(x, t)f(t)dt. (1)

As it is very difficult or sometimes impossible to analytically solve fractional differential and integral equations,
various numerical methods have been developed in the literature for solving these equations. The authors in [28],
considered Legendre multi-wavelet functions as a basis for approximating the solution of a parabolic differential
equation with an unknown time-dependent coefficient in an inverse problem. In [38], temperature variations in a
two-dimensional field is simulated using three distinct deep learning-based methods including a convolutional neural
network (CNN)-based model, a model utilizing convolutional kernels that capture the desired pattern of the phe-
nomenon, and a reduced-dimension model employing the autoencoder technique. In [23], the authors introduce a
highly effective numerical approach for solving first-order nonlinear singularly perturbed differential equations. They
utilize a hybrid block scheme with four hybrid points on a non-uniform mesh. In addition, among the methods sug-
gested to numerically solve fractional differential and integral equations are a method based on operational matrix
of triangular functions [25], B-spline operational matrix method [13], Haar wavelet operational matrix [24], block-
pulse operational matrix method [32], linear B-spline scaling function operational matrix method [26], operational
matrix of Legendre functions [2], finite element methods of high-order [14], sinc-Legendre collocation method [22],
Jacobi-Gauss-Lobatto collection method [6], cubic B-spline wavelet collocation method [18], semi-analytical Ado-
main decomposition method (ADM) [8, 29], iterative methods [7, 12], sumudu decomposition method [4], Bernstein
approximation method [33], Bernoulli wavelet least squares support vector regression [34], Genocchi wavelet neural
networks and least squares support vector regression [35], orthonormal Bernoulli wavelets neural network method
[36] and an improved composite collocation method based on fractional Chelyshkov wavelets [37]. B-spline scaling
functions have explicit formulae and they have the properties of regularity, symmetry and compact support. These
special properties encouraged us to examine their application in numerically solving the fractional Volterra integral
equation (1). Indeed, we construct a linear B-spline wavelet-based operational method based on the linear B-spline
wavelet operational matrix of fractional integration (OMFI). We then derive a matrix technique to convert the original
linear problem into a linear system of algebraic equations. Finally, we propose another approach that converts the
original fractional integral equation to an optimization problem. This paper is organized as follows: In Section 2,
the linear B-spline scaling functions and wavelets, as well as their relationship are presented and an error analysis for
function approximation using B-splies wavelets is given. By obtaining the linear B-spline wavelet operational method
(LBWOM) in Section 3, we solve a class of fractional Volterra integral equations. In Section 4, the efficiency and
accuracy of the proposed method are verified by presenting some examples. Finally, Section 5 is devoted to some
conclusions.

2. Preliminaries

This section is devoted to B-splines and wavelets, function approximation and its convergence analysis.

2.1. B-splines and wavelets
Wavelet families arise from expansion as well as transfer of a function ψ, call mother wavelet. As a result of the
continuous change of the expansion and transfer parameters, the following continuous wavelet families are raised:

ψa,b(t) = |a|−1/2ψ

(
t− b

a

)
, a, b ∈ R, a ̸= 0,
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in which, a and b are respectively expansion and transfer parameters. If the parameters a and b are limited to the
discrete values, i.e. a0 > 1, b0 > 0, a = a−j

0 , b = kb0a
−j
0 , where k is a positive integer number, then we can write

ψa,b(t) := ψj,k(t) = |a0|j/2ψ
(
aj0t− kb0

)
. (2)

Note that ψj,k(t) is a basis wavelet for L2(R).
Now, according to [11], by constructing semi-orthogonal wavelets from m-order B-splines, the lowest octave level
j = j0 is as follows:

2j0 ≥ 2m− 1, (3)

which gives a minimum of a complete wavelet set on the range [0, 1]. In the current research, we utilize a wavelet
constructed by linear splines, i.e., cardinal B-spline basis functions of second order. Using (3), the lowest-level B-
spline of second order that should be an integer, is calculated for j0 = 2, which limits all octave levels to j ≥ 2. As it
is also true about semi-orthogonal wavelets, the B-splines of second-order can also act as scaling functions. Equations
(4)–(6) below give the B-spline/scaling functions of second-order as:

ϕj,k(x) =

{
2− (xj − k), 0 ≤ xj ≤ 1, k = −1,
0, otherwise.

(4)

ϕj,k(x) =

 xj − k, k ≤ xj ≤ k + 1,
2− (xj − k), k + 1 ≤ xj ≤ k + 2, k = 0, · · · , 2j − 2,
0, otherwise.

(5)

ϕj,k(x) =

{
xj − k, k ≤ xj ≤ k + 1, k = 2j − 1,
0, otherwise.

(6)

Note that, by setting xj = 2jx the actual coordinate position x is associatedwith xj . Moreover, the following equations
give the B-spline wavelets of second-order:

ψj,k(x) =
1

6


−6 + 23xj , 0 ≤ xj ≤ 1

2 ,
14− 17xj ,

1
2 ≤ xj ≤ 1,

−10 + 7xj , 1 ≤ xj ≤ 3
2 , k = −1,

2− xj ,
3
2 ≤ xj ≤ 2,

0, otherwise.

(7)

ψj,k(x) =



xj − k, k ≤ xj ≤ k + 1
2 ,

4− 7(xj − k), k + 1
2 ≤ xj ≤ k + 1,

−19 + 16(xj − k), k + 1 ≤ xj ≤ k + 3
2 ,

29− 16(xj − k), k + 3
2 ≤ xj ≤ k + 2, k = 0, · · · , 2j − 3,

−17 + 7(xj − k), k + 2 ≤ xj ≤ k + 5
2 ,

3− (xj − k), k + 5
2 ≤ xj ≤ k + 3,

0, otherwise.

(8)

ψj,k(x) =


2− (k + 2− xj), k ≤ xj ≤ k + 1

2 ,
−10 + 7(k + 2− xj), k + 1

2 ≤ xj ≤ k + 1,
14− 17(k + 2− xj), k + 1 ≤ xj ≤ k + 3

2 , k = 2j − 2,
−6 + 23(k + 2− xj), k + 3

2 ≤ xj ≤ k + 2,
0, otherwise.

(9)

2.2. Function approximation
Using B-spline wavelets, a function f(x) may be expanded as [15]

f(x) =
3∑

k=−1

ckϕ2,k +
∞∑
i=2

2i−2∑
j=−1

di,jψi,j , (10)
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where ϕ2,k are scaling functions and ψi,j are wavelets functions. By truncating the infinite series in (10), f(x) can be
approximated as follows:

f(x) ≈
3∑

k=−1

ckϕ2,k +

M∑
i=2

2i−2∑
j=−1

di,jψi,j = CTΨ, (11)

where C and Ψ indicate (2(M+1) + 1)× 1 vectors given by

C =
[
c−1, c0, · · · , c3, d2,−1, · · · , d2,2, d3,−1, · · · , d3,6, · · · , dM,−1, · · · , dM,2M−2

]T
, (12)

Ψ =
[
ϕ2,−1, ϕ2,0, · · · , ϕ2,3, ψ2,−1, · · · , ψ2,2, ψ3,−1, · · · , ψ3,6, · · · , ψM,−1, · · · , ψM,2M−2

]T
, (13)

with
ck =

∫ 1

0

f(x)
∼
ϕ2,k (x)dx, k = −1, 0, · · · , 3, (14)

di,j =

∫ 1

0

f(x)
∼
ψi,j (x)dx, i = 2, 3, · · · ,M, j = −1, 0, · · · , 2M − 2. (15)

Also,
∼
ϕ2,k (x) and

∼
ψi,j (x) are dual functions of ϕ2,k(x) and ψi,j(x), respectively, which are defined in the following

lemma.

Lemma 2.1 ([15]). The dual functions
∼
ϕ2,k (x) and

∼
ψi,j (x) can be obtained by linear combinations of ϕ2,k, k =

−1, · · · , 3 and ψi,j , i = 2, · · · ,M, j = −1, · · · , 2M − 2, as follows

∼
Φ (x) = P−1

1 Φ(x),
∼
Ψ̄ (x) = P−1

2 Ψ̄(x),

whereΦ(x) is a 5-vector and Ψ̄(x) denotes an (2(M+1)+1)×1-vector and P1 and P2 are appropriate matrices given
below.

Now, suppose that
Φ = [ϕ2,−1(x), ϕ2,0(x), ϕ2,1(x), ϕ2,2(x), ϕ2,3(x)]

T
, (16)

Ψ̄ =
[
ψ2,−1(x), ψ2,0(x), · · · , ψM,2M−2(x)

]T
, (17)

then for j = 2 and using (4)–(9), and (16)–(17) we get

∫ 1

0

ΦΦT dx = P1 =


1
12

1
24 0 0 0

1
24

1
6

1
24 0 0

0 1
24

1
6

1
24 0

0 0 1
24

1
6

1
24

0 0 0 1
24

1
12

 , (18)

and ∫ 1

0

Ψ̄Ψ̄T dx = P2 =


N4×4

1
2N8×8

. . .
1

2M−2N2M×2M

 , (19)

where P1 is a 5× 5matrix and P2 is a (2M+1− 4)× (2M+1− 4)matrix, andN denotes a 5-diagonal matrix given by

N =



2
27

1
96 − 1

864 0 0 · · · 0
1
96

1
16

5
432 − 1

864 0 · · · 0
− 1

864
5

432
1
16

5
432 − 1

864 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · − 1
864

5
432

1
16

5
432 − 1

864
0 · · · 0 − 1

864
5

432
1
16

1
96

0 · · · 0 0 − 1
864

1
96

2
27


. (20)
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Next, let
∼
Φ and

∼
Ψ̄ are the dual functions of Φ and Ψ̄, respectively, given by

∼
Φ=

[
∼
ϕ2,−1 (x),

∼
ϕ2,0 (x),

∼
ϕ2,1 (x),

∼
ϕ2,2 (x),

∼
ϕ2,3 (x)

]T
, (21)

∼
Ψ̄=

[
∼
ψ2,−1 (x),

∼
ψ2,0 (x), · · · ,

∼
ψM,2M−2 (x)

]T
. (22)

Using (14)-(17) and (21)–22 we have∫ 1

0

∼
Φ ΦT dx = I1,

∫ 1

0

∼
Ψ̄ Ψ̄T dx = I2, (23)

where I1 and I2 are 5× 5 and (2(M+1) − 4)× (2(M+1) − 4) identity matrices, respectively. Then (18),(19) and (23)
imply that

∼
Φ (x) = P−1

1 Φ(x),
∼
Ψ̄ (x) = P−1

2 Ψ̄(x). (24)

2.3. Convergence analysis
Theorem 2.2. Suppose that the representation (10) of B-spline wavelets is utilized for f ∈ C2[0, 1], where Ψ has 2
universality moments. Then we have

|dj,k| ≤ αβη2 2−3j

2! ,

where α = max|f ′′(t)|t∈[0,1], β =

∫ 2j−k

−k

ψ̃(x)dx and η ∈ (−k, 2j − k).

Theorem 2.3. Let ej(x) be the error in approximating f . With the assumptions of Theorem 2.2, we have

|eM (x)| = O(2−2M ).

3. Methodology

3.1. Problem statement
As stated before, we utilize B-spline wavelets to numerically solve the fractional Volterra integral equation (1) with
µ(x) = 1, i.e.,

f(x)− 1
Γ(α)

∫ x

0

(x− t)α−1k(x, t)f(t)dt = g(x), (25)

where f denotes an unknown function and α > 0. To this end, we first use (11) to approximate the unknown function
f and the known functions g(x) and k(x, t) as follows:

f(x) = CTΨ(x), g(x) = GTΨ(x), k(x, t) = ΨT (x)KΨ(t), (26)

whereK is a (2M+1 + 1)× (2M+1 + 1) matrix as

K =

[
SS SW
WS WW

]
,

in which

SS = [(ss)i,j ]5×5,

SW = [(sw)i,l]5×(2M+1+1),

WS = [(ws)l,i](2M+1+1)×5,

WW = [(ww)l,n](2M+1+1)×(2M+1+1),
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are matrices whose entries are as follows (see (24)):

(ss)i,j =

∫ 1

0

∫ 1

0

k(x, t)
∼
ϕ2,i (x)

∼
ϕ2,j (t)dxdt, −1 ≤ i, j ≤ 3,

(sw)i,l =

∫ 1

0

∫ 1

0

k(x, t)
∼
ϕ2,i (x)

∼
ψl (t)dxdt, −1 ≤ i ≤ 3, −1 ≤ l ≤ 2M+1 − 6,

(ws)l,i =

∫ 1

0

∫ 1

0

k(x, t)
∼
ψl (x)

∼
ϕ2,i (t)dxdt, −1 ≤ i ≤ 3, −1 ≤ l ≤ 2M+1 − 6,

(ww)l,n =

∫ 1

0

∫ 1

0

k(x, t)
∼
ψl (x)

∼
ψn (t)dxdt, −1 ≤ l, n ≤ 2M+1 − 6.

3.2. Linear B-spline wavelets OMFI
Definition 3.1. Suppose that

IαΦ(x) ≃ Qα
ΦΦ(x), IαΨ(x) ≃ Qα

ΨΨ(x), (27)

then (2M+1 + 1)× (2M+1 + 1)-matrices Qα
Φ and Qα

Ψ are called OMFIs for the linear B-spline scaling functions and
wavelets, respectively.

Theorem 3.2. [15, 27] The OMFI of B-spline scaling functions is shown as follows:

Qα
Φ =



0 ζ1 ζ2 ζ3 · · · ζ2M+1

0 η1 η2 η3 · · · η2M+1

0 0 η1 η2 · · · η2M+1−1
...

. . . . . . . . . . . .
...

0 · · · · · · 0 η1 η2
0 · · · · · · 0 0 η1


,

where

ζi =
1

2(M+1)αΓ(α+ 2)

(
iα(i+ α+ 1) + (i− 1)α−1

)
, i = 1, 2, · · · , 2M+1,

η1 =
1

2(M+1)αΓ(α+ 2)
,

ηi =
1

2(M+1)αΓ(α+ 2)

(
iα+1 − 2(i− 1)α+1 + (i− 2)α+1

)
, i = 2, 3, · · · , 2M+1.

Moreover, the vector Ψ(x) is expressed by scaling functions as

Ψ(x) = HΦ(x),

where H is a (2M+1 + 1)× (2M+1 + 1) matrix as follows [17]:

H =



β2 × β3 × · · · × βM
L2 × β3 × · · · × βM

...
LM−2 × βM−1 × βM

LM−1 × βM
LM


,
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in which βj and Lj , j = 2, 3, · · · ,M are respectively (2j + 1)× (2j+1 + 1) and 2j × (2j+1 + 1) matrices given by

βj =



1 1
2
1
2 1 1

2
1
2 1 1

2
. . . . . . . . .

1
2 1 1

2
1
2 1 1

2
1
2 1


,

Lj =



−1 11
12

−1
2

1
12

1
12

−1
2

5
6

−1
2

1
12

1
12

−1
2

5
6

−1
2

1
12

. . . . . . . . . . . . . . .
1
12

−1
2

5
6

−1
2

1
12

1
12

−1
2

5
6

−1
2

1
12

1
12

−1
2

11
12 −1


.

Theorem 3.3. The OMFI of B-spline wavelets is shown in the following [15]:

Qα
Ψ = HQα

ΦH
−1. (28)

3.3. The solution method
Using (27) and (28), the following relation is obtained:

IαΨ(x) =
1

Γ(α)

∫ x

0

(x− t)α−1Ψ(x) ≃ Qα
ΨΨ(x) = HQα

ΦH
−1Ψ(x). (29)

Furthermore, if we write
Ψ(t)ΨT (t)C = UTΨ(t) (30)

then we would have
UT =

∫ 1

0

Ψ(t)ΨT (t)C
∼
Ψ

T

(t)dt (31)

In addition, suppose that we write

1

Γ(α)

∫ x

0

(x− t)α−1k(x, t)f(t)dt = V TΨ(x), (32)

where
V T =

[
v−1, v0, · · · , v3, w2,−1, · · · , w2,2, w3,−1, · · · , w3,6, · · · , wM,−1, · · · , wM,2M−2

]
.

Then we have

vn =

∫ 1

0

(
1

Γ(α)

∫ x

0

(x− t)α−1k(x, t)f(t)dt

)
∼
ϕ2,n (x)dx, n = −1, 0, 1, 2, 3, (33)

and

wi,j =

∫ 1

0

(
1

Γ(α)

∫ x

0

(x− t)α−1k(x, t)f(t)dt

)
∼
ψi,j (x)dx,

i = 2, 3, · · · ,M, j = −1, 0, · · · , 2M − 2.

(34)
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Now, using (26), (27) and by (31), can rewrite (33) as follows

vn =

∫ 1

0

ΨT (x)KUT

(
1

Γ(α)

∫ x

0

(x− t)α−1Ψ(t)dt

)
∼
ϕ2,n (x)dx.

Further, by (29), we get

vn =

∫ 1

0

ΨT (x)KUTQα
ΨΨ(x)

∼
ϕ2,n (x)dx.

This implies that

vn = KUTQα
Ψ

∫ 1

0

ΨT (x)Ψ(x)
∼
ϕ2,n (x)dx,

and
wi,j = KUTQα

Ψ

∫ 1

0

ΨT (x)Ψ(x)
∼
ψi,j (x)dx.

In conclusion, we deduce that

V = KUTQα
Ψ

∫ 1

0

ΨT (x)Ψ(x)
∼
Ψ (x)dx.

Finally, equation (25) is reduced to a linear system of algebraic equations as follows:

CTΨ− V TΨ = GTΨ =⇒ C − V = G.

Solving this linear algebraic system using an appropriate solver, the vector C of unknowns is obtained. Substituting it
into (26) provides an approximation for f(x).

4. Numerical Examples

We examined the proposed method by solving some fractional Volterra integral equations to demonstrate the applica-
bility and accuracy of the method. Let the error be measured by

∥ eM (x) ∥2=

 1∫
0

e2M (x)dx


1
2

=

 1∫
0

(f(x)− fM (x))2dx


1
2

,

where f(x) and fM (x) are the exact solution and approximate solutions, respectively.

Example 4.1. Consider the following fractional Volterra integral equation:

f(x)− 1
Γ( 3

2 )

x∫
0

(x− t)
1
2
1

t
f(t)dt = x3 − 0.172x

7
2 .

The exact solution to this problem is f(x) = x3. The L2-norm of error function of B-spline wavelets approximation
of the problem (4.1) for some values of M is shown in Table 1. Moreover, a comparison between the exact and
approximate solutions is given in Fig. 1.

Table 1. ∥ eM ∥2 for some values ofM in Example 4.1.

M = 2 M = 3 M = 4 M = 5 M = 6 M = 7

2.39× 10−2 1.08× 10−2 7.65× 10−3 3.75× 10−3 1.87× 10−3 8.13× 10−4
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Fig. 1. Comparison of exact solution with approximate solution for problem 4.1.

5. Conclusions

In this research, we successfully obtained a solution for fractional Volterra integral equations using an effective method
based on B-splines. By deriving the operational matrix of fractional integration (OMFI), we were able to transform
the original equations into a system of linear algebraic equations. Through numerical example, we demonstrated the
applicability and effectiveness of the proposed technique. The error analysis of the suggested function approximation
revealed its efficiency in solving problems within the realm of applied science and engineering that are modeled as
fractional Volterra integral equations (FVIEs). Looking ahead, we are going to extend the proposed method to tackle
two-dimensional fractional Fredholm-Volterra integro-differential equations, as well as systems of nonlinear Volterra
integro-differential equations. Another direction for further research is to investigate how a fractional integral equation
can be converted to a calculus of variation problem and how the proposed B-splines technique is employed to solve it
directly.
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Abstract

In this paper, we will first introduce the Haar wavelets operational matrix for fractional inte-
gration in two dimensional spaces. Haar wavelet approximation is then utilized to reduce a two
dimension fractional Volterra nonlinear integral equation, to a system of algebraic equations.

1. Introduction

The conception of the fractional derivatives was introduced for the first time in the middle of the 19th century by Rie-
mann and Liouville. Later on the number of researches and studies about the fractional calculus has rapidly increased,
because some physical processes such as anomalous diffusion[2], complex viscoelasticity [10], behavior of biological
systems [9], rheology[11] and etc. can’t be described by classical models of fractional derivatives. Fractional differ-
ential equations have been discussed in many papers and in most of them, they are transformed into fractional Volterra
integral equations. Fractional differential equations are solved by different types of wavelets such as Haar wavelets.
Haar wavelets are used due to their useful properties such as, orthogonality, compact support and simple applicability.
Compact support of the Haar wavelets basis permits straight inclusion of the different types of boundary conditions
in the numerical algorithms. Another good feature of these wavelets is the possibility to integrate them analytically.
Haar wavelets are used in system analysis by Chen and Hsiao [3], they derived Haar operational matrix of the Haar
function vector. In [5] a Haar product matrix and a coefficient matrix proposed for the integrals in linear time delayed
systems. Haar wavelets operational matrix of fractional order integration has been applied to solve fractional differ-
ential equations in [21]. Sufficient conditions for the existence and uniqueness of solutions for a class of fractional
partial differential equations using Haar wavelets operational matrix of fractional order integration are obtained in[8].
In [16] Haar wavelets operational matrix is used to find the solution of fractional Bagley-Torvik equation. A new
Haar wavelets method based on operational matrices of fractional order integration are used to solve several types of
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fractional order differential equations numerically in [7]. A Haar wavelets operational matrix is applied for solving
fractional Volterra integral equations in [18]. This paper is organized as follows: In section 2 we state the main con-
cepts of Riemann-Liouville fractional integral operator and Haar wavelets in one and two dimensional spaces. Also
two dimensional fractional Volterra integral equations, which are going to be solved in this paper, are introduced. In
section 3 we will introduce the function approximation via two dimension Haar wavelets, the operational matrix of
integration, the product operational matrix and the generalized operational matrix for fractional integration. Next we
will utilized these matrices for solving the two dimensional fractional Volterra integral equations.

2. Preliminaries

In this section, we will present the main definitions and properties of fractional integration operator and Haar wavelets
in one and two dimensions.

2.1. Riemann-Liouville fractional integration
The Riemann-Liouville fractional integral operator of order α ≥ 0 of the function f(x) is defined as [12, 14]:

Iαf(x) =

 1
Γ(α)

∫ x

0

(x− s)α−1f(s)ds, α > 0,

f(x), α = 0.
(1)

Here, Γ is the so called Gamma function. Similarly, the Riemann-Liouville fractional integral operator of order α, β >
0 of the function f(x, y) with respect to the variables x and y is given by:

Iα,βf(x, y) =
1

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− s)α−1(y − t)β−1f(s, t)dsdt.

2.2. Haar Wavelets
The orthogonal set of the Haar wavelets hn(x), n = 0, 1, 2, ..., is a group of square waves defined as follows:

h0(x) =

{
1, 0 ≤ x <1;
0, elsewhere.

h1(x) =

 1, 0 ≤ x < 1
2 ;

−1, 1
2 ≤ x < 1;

0, elsewhere.

(2)

and for n = 2, 3, ..., we choose the numbers j, k ∈ N ∪ {0} and 0 ≤ k < 2j , such that n = 2j + k and:

hn(x) = h1(2
jx− k). (3)

On the other hand, we can also define Haar wavelets by using the Heaviside step function as follows [17]:

u(x) =

{
1, x ≥ 0,
0, x < 0.

h0(x) = u(x)− u(x− 1),

hn(x) = u(x− k
2j )− 2u(x− k+1/2

2j ) + u(x− k+1
2j ),

n = 2j + k, j, k ∈ N ∪ {0}; 0 ≤ k < 2j .

(4)
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In fact

hn(x) =

 1, k
2j ⩽ x < k+0.5

2j ,
−1, k+0.5

2j ⩽ x < k+1
2j ,

0, o.w.
(5)

The Haar wavelets satisfy the following orthogonality property:∫ 1

0

hn(x)hm(x)dx = 2−jδnm = 2−iδnm, (6)

where δnm is the Kronecker delta and

n = 2j + k, j, k ∈ N ∪ {0}; 0 ≤ k < 2j .
m = 2i + l, i, l ∈ N ∪ {0}; 0 ≤ l < 2i.

For more details see [2, 6, 19].
Now we define the two dimensional Haar wavelets as follows [6]:

hn,m(x, y) := hn(x)hm(y) (7)

The {hn,m(x, y)}∞n,m=0 is an orthogonal basis for the space L2[0, 1)× [0, 1).

2.3. Two dimensional Fractional Volterra nonlinear integral equation
A two dimensional fractional Volterra nonlinear integral equation is given by:

f(x, y)− 1
Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− s)α−1(y − t)β−1k(x, y, s, t)fq(s, t)dsdt = g(x, y). (8)

where f is the unknown function, the kernel k(x, y, s, t), the right-hand side function g(x, y) and α, β > 0 are given
and q ≥ 1 is a positive integer.

2.4. Existence and uniqueness of the solution
In this subsection according to [15], we introduce a sufficient condition so that Eq.(8) has a unique solution. We denote
the exact solution by f(x, y) and approximate solution by fm,n(x, y). We assume |(x−s)α−1(y−t)β−1k(x, y, s, t)| ≤
N1 and | fq(x, y)− fq

m,n(x, y) |≤ L | f(x, y)− fm,n(x, y) |, where L is a constant.

Theorem 2.1. The solution of Eq.(8) exists and is unique, if N1L
Γ(α)Γ(β) < 1.

3. Methodology

3.1. Function approximation
A square integrable function f(x, y) on [0, 1)× [0, 1) can be expanded into two dimensional Haar series:

f(x, y) =
∞∑

n=0

∞∑
m=0

fn,mhn,m(x, y), x, y ∈ [0, 1)× [0, 1). (9)

For computing the Haar coefficients, fn,m, of f(x, y),in Eq.(9), we multiply both sides of Eq.(9) by hn,m(x, y).
Therefore, by using Eq.(6) and (7)we have:

fn,m = 2(i+j)

∫ 1

0

∫ 1

0

f(x, y)hn,m(x, y)dxdy (10)

The series (9) is not useful for approximation, so by truncating and rewriting it, we have:

f(x, y) ∼=
I∑

i=0

2i−1∑
l=0

J∑
j=0

2j−1∑
k=0

f2j+k,2i+lh2j+k,2i+l(x, y) = hT (x, y)F = FTh(x, y), (11)
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where F and h(x, y) are the vectors given by:
FT =

[
f0,0 . . . fr−1,r−1

]
, hT (x, y) =

[
h0,0(x, y) . . . hr−1,r−1(x, y)

]
, the superscript T denotes the transpose

and r = 2I+1 = 2J+1.
For the positive integer powers of a function we have:

fq(x, y) = hT (x, y)D =
I∑

i=0

2i−1∑
l=0

J∑
j=0

2j−1∑
k=0

d2j+k,2i+lh2j+k,2i+l(x, y), (12)

where entries of matrix D are:

Dm,n = 2(i+j)

∫ 1

0

∫ 1

0

(hT (x, y)F )qhm,n(x, y)dxdy. (13)

Now, considering Eq.(8), let
g(x, y) ∼= GTh(x, y) (14)

Similarly, the corresponding integral kernel k(x, y, s, t) on the region [0, 1)×[0, 1)×[0, 1)×[0, 1) can be approximated
as:

k(x, y, s, t) ∼= hT (x, y)Kh(s, t), (15)

where:

K =

 k0,0,0,0 . . . k0,0,r−1,r−1

...
. . .

...
kr−1,r−1,0,0 . . . kr−1,r−1,r−1,r−1

 ,

and the entries of the matrix K are:

km,n,p,q = 2(i+j)2(a+b)

∫ 1

0

∫ 1

0

(∫ 1

0

∫ 1

0

k(x, y, s, t)hm,n(x, y)dxdy

)
hp,q(s, t)dsdt, (16)

with

m = 2i + l, i, l ∈ N ∪ {0}; 0 ≤ l < 2i,

n = 2j + k, j, k ∈ N ∪ {0}; 0 ≤ k < 2j ,

p = 2a + c, a, l′ ∈ N ∪ {0}; 0 ≤ c < 2a,

q = 2b + d, b, d ∈ N ∪ {0}; 0 ≤ d < 2b.

By substituting Eq.(11), Eq.(12), Eq.(14) and Eq.(15) and in Eq.(8), we have:

hT (x, y)F − 1

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− t)α−1(y − s)β−1hT (x, y)Kh(s, t)hT (s, t)Ddsdt ∼= hT (x, y)G. (17)

If the integral term of Eq.(17) can be written as a linear combination of Haar wavelets, as:

1
Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− t)α−1(y − s)β−1hT (x, y)Kh(s, t)hT (s, t)Ddsdt ∼= hT (x, y)V, (18)

then, (17) can be converted into:
hT (x, y)F − hT (x, y)V ∼= hT (x, y)G, (19)

and therefore:
F − V ∼= G. (20)

Eq.(20) represents a nonlinear system of algebraic equations for the unknown F . The details of computing the vector
components V are given in the next subsection.
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3.2. Determining the vector V
First, the following theorem is presented:

Theorem 3.1. If D =
[
d0,0 . . . dr−1,r−1

]T is a vector of dimension r2, then

h(x, y)hT (x, y)D = Nh(x, y),

where

h(x, y) = h(x)⊗ h(y)

Fr2 = Cr ⊗ Cr,
(21)

where ⊗ is known as Kronecker product.
Also Cr = [f0, · · · fr−1]

T . By [17], we have

h(x)hT (x)Cr = Mr×rh(x), (22)

and N = (M ⊗M)q . Now, consider Eq.(18). If V T =
[
v0,0, . . . , vm,n, . . . , vr−1,r−1

]
, then:

vm,n = 2i+j

∫ 1

0

∫ 1

0

1

Γ(α)Γ(β)

(∫ x

0

∫ y

0
(x− s)α−1(y − t)β−1hT (x, y)KNh(s, t)dsdt

)
hm,n(x, y)dxdy

= 2i+j

∫ 1

0

∫ 1

0
hT (x, y)KN

1

Γ(α)Γ(β)

(∫ x

0

∫ y

0
(x− t)α−1(y − s)β−1h(s, t)dsdt

)
hm,n(x, y)dxdy.

(23)

For simplifying the integral:

1
Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− t)α−1(y − s)β−1h(s, t)dsdt, (24)

we recall the following Lemmas.

Lemma 3.2. The expansion of the fractional integral of order α of h(x) into a Haar series including Pα
m as a Haar

coefficient matrix is given as below:

1
Γ(α)

∫ x

0

(x− t)α−1h(t)dt ∼= Pα
mh(x). (25)

Proof. See [17].

Lemma 3.3. If Pα and P β are the operational matrices of fractional integration of orders α and β, respectively, in
Lemma 3.2, then

1
Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− t)α−1(y − s)β−1h(s, t)dsdt ∼= (Pα ⊗ P β)h(x, y),

Now, Eq.(23) can be rewritten as follows using Lemma 3.3:

vm,n = 2i+j

∫ 1

0

∫ 1

0

hT (x, y)KNPα ⊗ P βh(x, y)hm,n(x, y)dxdy

= 2i+j

∫ 1

0

∫ 1

0

hT (x, y)Ah(x, y)hm,n(x, y)dxdy,

where A = KNPα ⊗ P β . Also we can write

vm,n = 2i+j

∫ 1

0

∫ 1

0

Bhm,n(x, y)dxdy, (26)

whereB = hT (x, y)Ah(x, y). Hence, we can compute vm,n with Eq.(26) and we have the nonlinear system F −V =
G for F .
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4. Error Approximation

Theorem 4.1. Suppose that f maps a convex open set D ⊆ R2 into R, f is differentiable in D, and there is a real
number L such that

∥f ′
(t)∥ ≤ L

for every t ∈ D. Then
|f(b)− f(a)| ≤ L|b− a|

for all a, b ∈ D.

Proof. See [15].

Let f(x, y) ∈ L2[0, 1)2 and FTh(x, y) = f̃m,n(x, y) are respectively the exact and approximate solutions of Eq. (8).
We define em,n(x, y) = f(x, y)− f̃m,n(x, y) and call em,n the error function of 2D HW approximation. Where fm,n

is given by Eq.(10), the error em,n is minimum in the 2-norm sense. By Eq.(11) we have

em,n(x, y) =
∞∑

i=I+1

2i−1∑
l=0

∞∑
j=J+1

2j−1∑
k=0

f2j+k,2i+lh2j+k,2i+l(x, y).

Theorem 4.2. If the function f(x, y) satisfies the following Lipschitz condition on [0, 1)× [0, 1):

∃L > 0; ∀x, y, s, t ∈ [0, 1)× [0, 1) : | f(x, y)− f(s, t) |≤ L | (x, y)− (s, t) | . (27)

Then, the HWM will be convergent with the meaning that the error function em,n(x, y) tends to zero in L2-norm when
m, n go to infinity. In addition, the order of convergence is two, that is

∥ em,n(x, y) ∥2= O(
1

n

1

m
).

5. Numerical Examples

In this section, we examine the our proposed method for solving some fractional two-dimensional Volterra integral
equations. Notice that

∥ em,n(x, y) ∥2=

 1∫
0

1∫
0

(em,n(x, y))
2dxdy


1
2

=

 1∫
0

1∫
0

(f(x, y)− f̃m,n(x, y))
2dxdy


1
2

,

where f(x, y) is the exact solution and f̃m,n(x, y) is the approximate solution obtained by (12).

Example 5.1. Consider the following two dimensional nonlinear fractional Volterra integral equation:

f(x, y)− 1
Γ(2)Γ(2)

x∫
0

y∫
0

(x− t)(y − s)xystf2(s, t)dsdt

= xy(x− 1)(y − 1)− (x6y6(10x2 − 28x+ 21)(10y2 − 28y + 21))/176400,

where f(x, y) = xy(1 − x)(1 − y) is the exact solution. Table 1 shows the L2- norm of the two dimensional Haar
approximation for somem and n. See Table 1 for example.

6. Conclusions

In this paper, the generalized 2D-FVNIEs were solved by using an OM method Based on 2D-HWs. The 2D-OM of
fractional nonlinear integration was obtained to achieve a matrix system of algebraic linear equations. The simplicity
and effectiveness of our method were shown in various problems. The error analyses of the proposed method show
that this technique is effective to solve the applied science and engineering problems modelled as FVNIEs. For future
research, it is suggested to extend our proposed method for solving the fractional Fredholm-Volterra nonlinear integro-
differential equations.
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Table 1. ∥ em,n ∥2 for somem,n in Example.

m = n = 2 m = n = 4 m = n = 8 m = n = 16 m = n = 32 m = n = 64

1.84× 10−2 1.05× 10−2 5.3× 10−3 2.7× 10−3 1.3× 10−3 6.72× 10−4

m=n=2 m=n=4 m=n=8

m=n=16 m=n=32 m=n=64

Fig. 1. Exact solution vs. approximate solution for Example 5.1
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Abstract

The problem of generalized tensor eigenvalue is the focus of this paper. To solve the prob-
lem, we suggest using the normalized Newton generalized eigenproblem approach (NNGEM).
Since the rate of convergence of the spectral gradient projection method (SGP), the generalized
eigenproblem adaptive power (GEAP), and other approaches is only linear, they are signifi-
cantly improved by our proposed method, which is demonstrated to be locally and cubically
convergent.

1. Introduction

A numerical algorithm for a generalized tensor eigenproblem was proposed by Kolda and Mayo [1]. They solved the
optimization problem in order to apply the adaptive shifted power method (GEAP).

max
∥y∥=1

Aym

Bym
∥y∥m.

The shifted symmetric higher-order power method (SS-HOPM) for locating Z-eigenpairs is extended by this method,
which also includes an adaptive technique for automatically selecting the shift. With this method, the rate of conver-
gence is only linear. An adaptive gradient (AG) approach was presented by Yu et al. in 2016 to address generalized
tensor eigenvalue problems. Under certain appropriate conditions, the method establishes both global convergence and
linear convergence rates [2]. Moreover, two convergent gradient projection techniques were presented by Zhao, Yang,
and Liu to address the weakly symmetric tensors generalized eigenvalue problem [3]. One could consider AGP to be
an adaptation of the GEAP technique. The BB method plus the gradient projection method yields SGP, which is better
than the GEAP, AG, and AGP methods. Nevertheless, not all potential Z-eigenpairs and generalized eigenvalues of
tensors can be found using the GEAP, AG, AGP, and SGP methods.
The computation of a symmetric tensor’sZ-,H-, and generalized eigenpairs constitutes the paper’s major contribution.
We present the normalized Newton method (NNGEM) for solving the generalized tensor eigenproblem, which is based
on the relationship between the even degree homogeneous polynomial and even order symmetry. Every NNGEM
iteration involves computing a new approximation in two steps; in particular, the second step can be computed quickly
by utilizing the qualities that were computed in the first step. The method consistently leads to B-eigenpairs of a
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cubical rate symmetric tensor. The NNGEM approach has a higher rate of convergence than the SGP and GEAM
approaches. Compared to current methods, ours is a more efficient one, as shown by numerical examples.

2. Preliminaries

A symmetric tensor is a tensor that is invariant under a permutation of its vector arguments:

A(i1 . . . im) = A(σ1 . . . σm)

for every permutation σ of the symbols { 1, 2, . . . , r} . Denote the set of allmth order, n-dimensional real symmetric
tensors by S[m,n]. For any y ∈ Rn, the following frequently used notations are worthy of consideration. If y is a
vector, Aym−1 is a vector with

(Aym−1)i =
n∑

i2,...,im=1

aii2...imyi2yi3 . . . yim ,

for i = 1, 2, . . . , n, Aym is a scalar as

Aym =

n∑
i1,...,im=1

ai1...imyi1yi2 . . . yim

and Aym−2 ∈ Rn×n is a matrix defined by

A(y) := Aym−2 =

 n∑
i3,i4,...,im=1

aiji3...imyi1yi3 . . . yim

 . (1)

Anmth order, n-dimensional real tensor A is called positive definite if Aym > 0, ∀y ∈ Rn \ {0}.

Definition 2.1. Let A and B be two mth order, n-dimensional symmetric real tensors. Assume that Aym−1 and
Bym−1 are not identical to zero. If y ∈ Rn \ {0} and λ ∈ R satisfy

Aym−1 = λBym−1, (2)

then λ is called a B-eigenvalue of A, and y is called a B-eigenvector of A. Assume that m is even and B is positive
definite. It is clear that any B-eigenpair in (2) satisfies

λ =
Aym

Bym
. (3)

We designate a number λ ∈ C as an eigenvalue of A if it satisfies the following homogeneous polynomial equations
when combined with a nonzero vector y ∈ Cn.

(Aym−1)i = λym−1
i , for i = 1, . . . , n. (4)

We refer to y in this case as an eigenvector of A that is connected to the eigenvalue λ. Then, (4) can be simply
expressed as

Aym−1 = λy[m−1]. (5)

If y[m−1] = (ym−1
1 , ym−1

2 , . . . , ym−1
n )T as a vector in Rn, then x is an H-eigenvector of A connected to the H-

eigenvalue λ . This is equivalent to a generalized tensor eigenpair with bi1,i2,...,im = δi1,i2,...,im .
If y ∈ Rn \ {0} and λ ∈ R satisfy

Aym−1 = λy and yT y = 1, (6)
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y is referred to asA’sZ-eigenvector, and λ is referred to as itsZ-eigenvalue. In terms of a generalized tensor eigenpair,
this is represented by B = E = (ei1,i2,...,im), with entries defined by

ei1,i2,...,im =

{
1 i1 = i2, i3 = i4, . . . , im−1 = im

0 otherwise.

In this case, we have Bym−1 = x and Bym = 1. Then, (2) is equivalent to

Aym−1 = λy. (7)

3. Main results

Theorem 3.1. Assume that A = (ai1,...,im), B = (bi1,...,im) ∈ S[m,n], that B is positive definite, and that c is a
nonzero real number. The following nonlinear system of equations has (λ∗, y∗) as a nonzero solution if and only if
(λ∗, y∗) is a B-eigenpair of A.

E(y; b) := Aym−1 − λF (y)Bym−1 +
b

2
(yT y − 1)y = 0, (8)

and λ∗ = λF (y∗), where λF (y) =
Aym

Bym .
We define the following notations:

λF (y) := ϕ(x), E(y; b) := f(y), B(y) = (m− 1)Aym−2 − (m− 1)Bym−2λF (y)− Bym−1(λ′
F (y))

T .

Specifically, at ∥y∥ = 1, we have

E′(y; b) = (m− 1)Aym−2 − (m− 1)Bym−2λF (y)− Bym−1(λ′
F (y))

T + byyT . (9)
= B(y) + byyT

Theorem 3.2. Let A,B ∈ S[m,n] and B be a positive definite tensor. Assume that (λ∗, y∗) a B-eigenpair of A. Then
H ′(y∗; b) is nonsingular matrix.

3.1. Example of B-eigenpair
[1] Let A,B ∈ S[4,3] be defined by

a1111 = 0.4982, a1112 = −0.0582, a1113 = −1.1719, a1122 = 0.2236,

a1123 = −0.0171, a1133 = 0.4597, a1222 = 0.4880, a1223 = 0.1852,

a1233 = −0.4087, a1333 = 0.7639, a2222 = 0.0000, a2223 = −0.6162,

a2233 = 0.1519, a2333 = 0.7631, a3333 = 2.6311,

and

b1111 = 3.0800, b1112 = 0.0614, b1113 = 0.2317, b1122 = 0.8140,

b1123 = 0.0130, b1133 = 2.3551, b1222 = 0.0486, b1223 = 0.0616,

b1233 = 0.0482, b1333 = 0.5288, b2222 = 1.9321, b2223 = 0.0236,

b2233 = 1.8563, b2333 = 0.0681, b3333 = 16.0480.

In this case, we want to calculate a symmetric tensor’s B-eigenpairs.
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Fig. 1. As the number of iterations increases, the error value changes.

Table 1. Comparison of results for computing B-eigenpairs ofA in Example ??.

GEAP SGP NNMGET
λ Its Time Error Its Time Error Its Time Error

0.4359 117 1.241331 0 30 1.045496 2.5403e-08 8 0.293241 0
0.2219 500 4.898877 0 31 1.024953 4.9453e-08 5 0.214433 0
0.5356 206 2.094713 0 16 0.554923 1.6935e-08 8 0.287557 0
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Abstract

This paper introduces some of the structured light beams generated by special mathematical
functions. For this purpose, the solutions of the Helmholtz equation are obtained in Cartesian,
Circular Cylindrical, Elliptical Cylindrical, and Parabolic Cylindrical coordinate systems. We
introduce several types of well-known structured light beams.

1. Introduction

In the 16th and 17th centuries, some scientists, such as Newton, considered the physics of light as a particle, while
others, such as Huygens, considered it as a wave. But in the 20th century, it was found that light has both wave and
particle properties, and at the same time, it is neither of these two. This state of light is called wave-particle duality.
Maxwell’s equations are set of differential equations with partial derivatives that describe the time dependence of the
two electric and magnetic fields of electromagnetic waves. He showed that by using these four equations, all electrical
and magnetic phenomena can be described. These equations in free space are as[1]:

∇ · E = 0, ∇× E = −∂B
∂t

, ∇ · B = 0, ∇× B =
1

c2
∂E
∂t

, (1)

where the vectors E and B are the electric field and the magnetic field, respectively, and c is the speed of light in
vacuum. Considering that light is electromagnetic phenomenon, Maxwell’s equations must also be applicable light.
Getting∇ from Maxwell’s equations, we have

∇2E− 1

c2
∂2E
∂t2

= 0, ∇2B− 1

c2
∂2B
∂t2

= 0, (2)

which are known as Almbert’s homogeneous wave equation. In practice, due to the measurable nature of the electric
field, the electric field is used more than the magnetic field. Now we have to find the solutions of eq.2. A separable
monotonic wave function as a solution of the wave equation is in the form E(r, t) = e−iωtE(r), where ω is a positive
real number, the frequency of the wave and r is the position vector. By putting this function in the wave eq.2, we have

∇2E(r) + k2E(r) = 0, (3)

∗Talker
Email address: fazelsaadati@pnu.ac.ir (Fazel Saadati-Sharafeh)
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where k = ω
c is the wave number. This equation is known as the Helmholtz equation. Therefore, the propagation of an

optical field is described by the three-dimensional Helmholtz equation. Solving this equation in different coordinate
systems, it can be seen that this equation is separable in eleven orthogonal coordinate systems, which is symmetrical
in only four of them and divided into two longitudinal and transverse parts. These coordinate systems are Cartesian,
Circular Cylindrical, Elliptical Cylindrical, and Parabolic Cylindrical Coordinate Systems.[2]
There are a set of special functions such as Gaussian and Hypergeometric functions and a set of orthogonal polynomials
or special functions such as Bessel, Laguerre, associated Laguerre, Hermite functions, which are very important in
mathematical physics. These functions and their combinations are used in the production of structured light beams
that have a particular mathematical and physical structure and a particular total momentum value.[3].

2. Solving the Helmholtz equation in two-dimensional orthogonal coordinate systems

Using the method of separation of variables to solve differential equations with second-order partial derivatives of n
variables, turns it into a system of n second-order ordinary differential equations. Now, using this method, we want to
obtain the exact solutions of the Helmholtz equation in the four mentioned orthogonal coordinate systems[4].

2.1. Solving the Helmholtz equation in the Cartesian coordinate system
In this orthogonal coordinate system, we are looking for solutions in the form of E(x, y) = X(x)Y (y) for equation
3. As a result, the Helmholtz equation becomes the form:

X ′′Y +XY ′′ + k2XY = 0. (4)

This equation can be arranged as follows by dividing by XY :

X ′′

X
= −Y ′′

Y
− k2 (5)

where the left side of the relationship is only a function of x and the right side is only a function of y and this is only
possible when both sides of the equation are equal to a constant number such as −h2 be equal, which is called the
separation constant. Therefore, the equation 5 will be equivalent to the following two equations

X ′′(x) + h2X(x) = 0, Y ′′(y) + (k2 − h2)Y (y) = 0. (6)

The general solutions of the first equation with condition h ̸= 0 are

X1(x) = exp(ihx), X2(x) = exp(−ihx). (7)

While with the condition k2 − h2 ̸= 0, the general solutions of the second equation will be

Y1(y) = exp(i
√

k2 − h2y), Y2(y) = exp(−i
√

k2 − h2y). (8)

Therefore, the solutions of the eq.3 can be written as a linear combination of solutions type 7 and 8 as follows:

Ek(x, y) =

2∑
i,j=1

Ai,jXi(x)Yj(y) (9)

where the complex coefficients of Ai,j are arbitrary. As an example of the answers we have

Eh(x, y) = X1(x)Y1(y) = exp
[
i(hx+

√
k2 − h2y)

]
. (10)
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2.2. Solving the Helmholtz equation in the polar coordinate system
The polar coordinate system has

x = r cos θ, y = r sin θ. (11)

With this assumption, the Helmholtz equation transforms into the following form:(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+ k2

)
E(r, θ) = 0. (12)

Assuming E(r, θ) = R(r)θ(θ), we have

r2R′′ + rR′ + r2k2

R
= −θ′′

θ
(= h2) (13)

which leads to the equation θ′′ + h2θ = 0 with the general solution θ(θ) = exp(±ihθ) and Bessel’s differential
equation

r2R′′ + rR′ + (r2k2 − h2)R = 0 (14)

With the solution R(r) = J±h(kr). So
Eh(r, θ) = Jh(kr) exp(ihθ) (15)

is another exact solution of the Helmholtz equation.

2.3. Solving the Helmholtz equation in the elliptic coordinate system
In the elliptic coordinate system (ξ, η), we have

x = d cosh ξ cos η, y = d sinh ξ sin η (16)

where ξ ≥ 0, 0 ≤ η ≤ 2π. With this transformation, the ellipses and hyperbolas obtained for each ξ ∈ [0,+∞]
and η ∈ [0, 2π] are the orthogonal lines of this system. With this transformation, the Helmholtz equation will be
transformed into the form (

∂2

∂ξ2
+

∂2

∂η2
+ d2k2(cosh2 ξ − cos2 η)

)
E(ξ, η) = 0 (17)

which obtained the following two equations by assuming E(ξ, η) = U(ξ)V (η)

U ′′ + (d2k2 cosh2 ξ + h2)U = 0, V ′′ − (d2k2 cos2 η + h2)V = 0. (18)

These equations are known as the Mathieu equations and generate the Mathieu functions.

2.4. Solving the Helmholtz equation in the parabolic coordinate system
Using x = 1

2 (u
2 − v2), y = uv, the Cartesian coordinate system (x, y), transforms into the parabolic coordinate

system (u, v). With this transformation, the coordinate lines

u =

√√
x2 + y2 + x, v = ±

√√
x2 + y2 − x (19)

form two orthogonal families. With this transformation, the Helmholtz equation becomes the form:(
∂2

∂u2
+

∂2

∂v2
+ (u2 + v2)k2

)
E(u, v) = 0. (20)

Assuming E(u, v) = U(u)V (v), we have

U ′′ + (k2u2 − h2)U = 0, V ′′ + (k2v2 + h2)V = 0 (21)

where k2 is the separation constant. Parabolic beams are solutions of these equations.
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3. Structured light beams generated by special functions

3.1. The Bessel beams
Bessel beams are one of the most important structured light beams whose solution to the Helmholtz equation is in
circular cylindrical coordinate system and their amplitude are described by the first kind Bessel function. Bessel-
Gaussian beams with limited energy were introduced by Gori and Guattari in[5]. The amplitude of these beams is
expressed by the product of the Gaussian function and the first kind Bessel functions of nth order. These beams carry
orbital angular momentum and their intensity distribution has circular symmetry. Considering the ability of rotating
beams carrying orbital angular momentum in improving the efficiency of communication, Bessel beams are of high
importance and are suitable for directing atoms. The complex amplitude of a Bessel beam in cylindrical coordinate
system is defined as[6]:

En(r, ϕ, z) = exp
[
inϕ+ iz

√
k2 − α2

]
Jn(αr). (22)

where k is the wave number, α = k sin(θ0), where θ0 is the cone wave angle and Jn is the first kind Bessel functions of
nth order. Figure 1 depict the bessel beams of order 0 to 5 with λ = 532µm, α = 1

10×λ and−100µm ≤ x, y ≤ 100µm
respectively. obviousely, as the order of the Bessel beam increases, the diagonal of the main central ring of the beam
also increases.

Fig. 1. The Bessel beams of order 0 to 5 with λ = 532µm, α = 1
10×λ

and −100µm ≤ x, y ≤ 100µm respectively.

3.2. The Laguerre-Gaussian beams
Among structured light beams, Laguerre-Gaussian (LG) beams are one of the well-defined optical fields. The shape
of the transverse intensity of these fields is uniform during propagation in a homogeneous environment and they
have axial symmetry in cylindrical coordinate system. These vortex beams also carry orbital angular momentum [7]
and special attention has been paid to these types of beams for the transmission of quantum information [8] and the
manipulation of microparticles [9]. Complex amplitude of the LG beams in Cartesian coordinate system is defined
as[10]:

Enm(x, y, z) =
w0

w(z)

( √
2

w(z)

)m

(x±iy)mLm
n

[
2(x2 + y2)

w2(z)

]
exp

[
− (x2 + y2)

w2(z)

]
exp

[
−i

(
(m+ 2n+ 1)ζ(z)− k(x2 + y2)

2R(z)

)]
(23)

where w0 is the waist radius of the Gaussian beam, λ is the wavelength, w(z) = w0

√
1 +

(
z
zR

)2
, beam radius,

zR =
πw2

0

λ , Rayleigh range, ζ(z) = arctan
(

z
zR

)
is the Gouy phase, m is the topological charge, and Lm

n is the
associated Laguerre polynomial. Figure 2a shows the intensity distribution of the LG beams with n andm = 0, 1, 2.

3.3. The Hermite-Gaussian beams
The Hermite-Gaussian (HG) beams as an another kind of structured light beams in cartesian coordinate system have
been known in optics by Kogelnik[11]. This kind of beams have no orbital angular momentum (OAM). Complex
amplitude of the HG beams in Cartesian coordinates is defined as follows[12]:

Enm(x, y, z) =
w0

w(z)
Hn

[ √
2

w(z)
x

]
Hm

[ √
2

w(z)
y

]
exp

[
− (x2 + y2)

w2(z)

]
exp

[
−i

(
kz − (1 + n+m)ζ(z) +

k(x2 + y2)

2R(z)

)]
(24)
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(a) The LG beams (b) The HG beams

Fig. 2. Intensity distribution of the LG and HG beams with n = 0, 1, 2 in rows andm = 0, 1, 2 in columns, respectively.

where w0 is the waist radius of the Gaussian beam, λ is the wavelength, w(z) = w0

√
1 +

(
z
zR

)2
, beam radius,

zR =
πw2

0

λ , Rayleigh range, ζ(z) = arctan
(

z
zR

)
is the Gouy phase, and Hn is the Herimtian polynomials of order n.

The intensity distribution of the HG beams with n andm = 0, 1, 2 is shown in Fig 2b.

4. Conclusion

In this study, we introduce some of the well-known structured light beams like Bessel, Hermite-Gaussian and Laguerre-
Gaussian beams, generated by special mathematical functions. For this purpose, the solutions of the Helmholtz equa-
tion are obtained in Cartesian and Circular Cylindrical coordinate systems.
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Abstract

In this paper, the self-healing property of the Laguerre-Gaussian (LG) beams were reported in
detail. In all cases, the self-healing value were precisely quantified. For numerical simulation
and calculation the similarity function, the Huygens Convolution Method (HCM) were used.

1. Introduction

In recent years, using mathematical special functions in generation and propagation of structured light are noticed.
They are easily generated and have a mathematical representation[1]. Also a lot of them have structured stability in
propagation during. Among these structural lights, the LG beams consist a class of well-studied optical fields. The
transverse intensity shapes of these fields in propagation during in homogeneous (isotropic) medium are uniform and
have axial symmetry in cylindrical coordinates. These vortex beams, carrying orbital angular momentum too[2].
There are several works to change various beams, carrying angular momentum by several researchers. For instance,
Wada et al.[3], clarified the entire range of transformations that an LG beam with astigmatism can go through in free
space. They classified all patterns of beam transformation and map them to initial beam conditions. Mei et al.[4],
proposed the concept of vectorial Laguerre-Bessel-Gaussian beams, and based on vectorial Rayleigh-Sommerfeld
formulas, they derived the analytical formulas for the non paraxial propagation properties of Laguerre-Bessel-Gaussian
beams. The generation of several vortex beams by coaxial superposition of two, three, and four LG beams is proposed
by Huang et al.[5]. Plick et al.[6], explained the physical meaning of the radial index of LG beams. Stilgoe et al.[7],
investigated the energy, momentum, and propagation of the solutions of the paraxial wave equation like, LG, Hermite-
Gaussian and Ince-Gaussian.
Obviously, one of the most interesting and important properties of the structured light beams, is their self-healing
characteristic, that describes the ability of the self-construction of the amplitude of beam at the minimum distance
beyond the obstruction. Chu et al.[8], analytically studied the self-healing characteristic of the Airy beams in free
space. Vaity et al.[9] generated optical ring lattice structures of superposition of two coaxial LG beams with same
waist position and waist parameter, experimentally. The self-healing property of the optical Airy beam is investigated
by Zhang et al.[10], analytically. Litvin et al.[11] studied theoretically and experimentally, the self-healing property of
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Bessel-like beams. They found that self-construction of them are similar to Bessel beams but depends on the distance
between the initial field and the obstruction. A family of asymmetric LG beams, is introduced by Kovalev et al.[12],
via a complex shift of LG beams in Cartesian coordinates, and used asymmetric LG beams to optical trapping and
moving of microparticles[13].
The self-healing property of beams is very useful in optical tweezing, Optical manipulation, Optical microscopy,
optical trapping, atmospheric sciences, optical communications, especially, in inhomogeneous media. In this paper,
We have reported the detailed quantitatively analyzed self-healing behavior of the LG.

2. Theory of the LG beams

Complex amplitude of the LG beams in Cartesian coordinates is described by[12]:

Enm(x, y, z) =
w0

w(z)

[ √
2

w(z)

]m
(x+ iy)mLm

n

[
2(x2 + y2)

w2(z)

]
exp

[
− (x2 + y2)

w2(z)
+

ik(x2 + y2)

2R(z)
− i(m+ 2n+ 1)ζ(z)

]
, (1)

where w0, is the Gaussian beam waist radius, λ, is the wave length, zR =
πw2

0

λ , is the Rayleigh range, w(z) =

w0

√
1 + ( z

zR
)2, Ln

m, is the associated Laguerre polynomial, ζ(z) = arctan
(

z
zR

)
, is the Gouy phase, R(z) = z[1 +

( zRz )2], andm is the vortex topological change.

3. Quantification of the self-healing property of beams

Depicting numerical values of the beam’s self-healing, we have define the following similarity function[14], that gives
the similarity percent of the propagated beams without mask A and those propagated beams with circular mask B on
propagation during.

similarity(A,B) =

(
1−

√
∥A−B∥
∥A+B∥

)
× 100, (2)

where the power of a matrix is the power of all entries and the norm is the Frobenius norm of matrix. To more clarity,
we use positive self-healing value and negative self-healing value terminologically. The positive self-healing value
means that the similarity percent of constructive beam respect to original beam is more than the similarity percent of
masked beam at initial plane and the negative self-healing value means that the similarity percent of constructive beam
respect to original beam is less than the similarity percent of masked beam at initial plane.

4. Simulation of propagation

There are several methods to calculate diffraction of the beams in their propagation during. Among them, we can list
Fresnel Transform method, Angular Spectrum method and Huygens Convolution method(HCM). We apply HCM to
the beams’ propagation simulation. The Huygens Convolution integral is described by[15]:

E(x, y, z) = F−1{F{E0(x0, y0)}[kx, ky]F{SH(x0, y0)}[kx, ky]}[x, y], (3)

where F, is fourier transform and the point propagate function of Huygens is

SH(x, y, z) = − ik

2πz
exp(ik

√
x2 + y2 + z2). (4)
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5. Detailed Quantification of Self-Healing Property of beams

In this section, we detail observationally and quantitatively, the self-healing property of the LG beams setting two
area of circular mask 314 (Mask1) and mask 707 (Mask2) pixels for various topological charges m = 1, 2, 5. The
self-healing Behavior of beams is investigated in 1000 × 1000 pixels sampled array with beam waist radius 1000λ.
We propagate the beams with w0 = 1000λ in 0− 10 meter range.
The LG beams as one of important beams are noticed by optics researchers that have many applications. Table (1)
depict the LG beams with topological charge m = 1, 1000λ beam waist radius, and Mask1 propagated via HCM
(raw 2), in 5 arbitrary distances and similarity values of them respect to propagated beams with no mask (raw 1). For
instance, similarity value of the LG beams respect to the LG beam with no mask in initial plane z = 0 equals 95.06
percent and maximum similarity value at zopt = 5 meter distance of initial plane is 96.46 percent that has positive
self-healing value.

z = 0 m z = 2 m zopt = 5 m z = 8 m z = 10 m
95.06 95.91 96.46 95.87 94.69

Table 1. propagation of masked LG beams via HCM with topological chargem = 1, 1000λ beam waist and their similarity values
respect to original propagated beams

In table (2), have been studied quantified self-healing behavior of the LG beams propagated via HCMwith 1000λ beam
waist and Mask1 for various topological charge m = 1, 2, 5. Results show that LG beams have self-healing property
observationally, and have positive self-healing quantitatively. Intensity profile of the LG beams are asymmetric. The
bright spots are centered on the number of topological chargem on the LG ring. For topological chargem = 2 (m =

m = 1 m = 2 m = 5

z = 0 m zopt = 5 m z = 0 m zopt = 4.6 m z = 0 m zopt = 4 m
95.06 96.46 95.71 96.66 95.56 96.93

Table 2. propagation of the LG beams via HCM with topological charge m = 1, 2, 5, 1000λ beam waist radius, circular mask of
314 pixels, and their self-healing values respect to original propagated beam

5), the self-healing value of the LG beam with circular mask after propagation, from 95.71 (96.56) percent at initial
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plane z = 0, increases to 96.66 (96.3) percent at zopt = 4.6 m (zopt = 4 m). In this case, both of them have positive
self-healing value. Obviously, by increasing of topological charge m, difference of self-healing value of beams at
initial and optimum planes with exerting mask decreases consistently. Also because of mask1 in this table The bright
spots are centered on the number of topological chargem on the LG ring, too.
Table (3), depicts quantified self-healing behavior of the LG beams propagated via HCM with 1000λ beam waist
and Mask2 for various topological charge m = 1, 2, 5. Results show that LG beams have self-healing property
observationally, while only the LG beam with topological charge m = 1 has positive self-healing quantitatively, and
others have negative self-healing quantitatively. Like table (2), Intensity profile of the LG beams are asymmetric, and
the bright spots are centered on the number of topological chargem on the LG ring.

m = 1 m = 2 m = 5

z = 0 m zopt = 6.4 m z = 0 m zopt = 5.8 m z = 0 m zopt = 5 m
92.75 92.94 93.75 95.54 95.03 94.31

Table 3. propagation of the LG beams via HCM with topological charge m = 1, 2, 5, 1000λ beam waist radius, circular mask of
707 pixels, and their self-healing values respect to original propagated beam

According to table (2)-(3) and noticed to themask sizes, the LG beamswithmask1 reach to their maximum self-healing
values faster than the LG beams with mask2.

6. Conclusions

In this paper, are investigated the self-healing property of the LG beams with topological charge m = 1, 2, 5, quan-
titatively and observationally. Results show the LG beams have observational self-healing property. In all cases,
self-healing values of the LG beams with small mask are positive self-healing value. Mostly, increasing topological
charges caused to decreasing self-healing value difference. Also, bright spots are centered on the number ofm on the
LG ring.
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Abstract

This paper deals with numerical solution of a class cordial Volterra integral equations with
Mittag−Leffler solution. A numerical approach based the generalized log orthogonal functions
is proposed to solve this kind of Volterra integral equations. By using the generalized log orthog-
onal functions as basis function, the presented numerical method can effectively approximate
the solution of problems with singular behavior. The error estimate with respect to L2−norm is
investigated. Finally, the accuracy of the method is illustrated through a numerical example.

1. Introduction

Cordial Volterra integral operators are a special class of Volterra integral operators with weak singular kernels that
appear in the study of heat conduction problems with mixed boundary conditions and some Volterra integral operators
with certain kernel singularities [1, 2]. Such operators have the form

(Vφu)(t) =

∫ t

0

t−1φ(t−1s)k(t, s)u(s)ds, t ∈ I := [0, T ], (1)

which is inspired by Vainikko’s studies [3, 4]. The function φ ∈ L1(0, 1) is the core of the operator, and k ∈ Cm(D)
for somem ≥ 0 whereD = {(t, s) : 0 ≤ s ≤ t ≤ T}. Cordial Volterra integral operators and the associated Volterra
integral equations have been studied by Vainikko [5, 6] and several other authors [7–9]. This work is concerned with
numerical solution for the second kind cordial Volterra integral equation (CVIE) of the form

u(t) = f(t) + a(Vφu)(t), (2)

whose solution can be expressed in terms of the Mittag−Leffler function defined by Ed(z) :=
∑∞

n=0
zn

Γ(1+nd) , z ∈
C, d > 0, in which Γ denotes the gamma function. The function f ∈ Cm(I), a stands for an arbitrary constant,
φ(t−1s) = tb(1−t−1s)b−1

Γ(b) , 0 < b < 1, and without loss of generality we assume k(t, s) = 1.
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It is of interest to know CVIEs have singular behavior at the initial point t = 0. In general, facing singular problems,
in order to develop accurate spectral methods, there are some strategies such as employing a local adaptive procedure
in finite differences/finite elements [10], singular functions method [11], the enriched spectral methods [12, 13], and
mapped spectral methods [14, 15]. In [16] authors suggested that mapped spectral methods on the non-uniformly
Sobolev weighted spaces are more suitable for equations with singular behaviors. Actually, these methods lead to
better convergence results than numerical methods for instance finite-element, finite-difference and spectral methods
on usual Sobolev spaces. The choice of a log mapping to generalized Laguerre polynomials seemed to be the best
adapted to their theory. Thus, they introduced two new classes of orthogonal functions on the non-uniformly Sobolev
weighted spaces, log orthogonal functions (LOFs) and generalized log orthogonal functions (GLOFs). Now, in order
to solve numerically (2), we apply the spectral collocation method using the GLOFs as basis functions.
The layout of this paper is as follows: Section 2, presents definitions and some properties of the LOFs and their
generalized type, approximation by the GLOFs along with operational matrices, and applies the well-known spectral
collocation method for solving (2). The error estimation of the approximate solution will be studied in section 3. In
Section 4, a numerical example is given to clarify the effectiveness of the proposed method. Finally, in the last section,
we present our conclusion.

2. Generalized log orthogonal functions

In this section, our concepts agree with those given in [16].

Indeed, it is the log mapping

x(t) := −(β + 1) log(t), β > −1, t ∈ (0, 1),

to generalized Laguerre polynomials L(α)
n (x), α > −1, that makes the definition of the LOFs possible as follows.

Definition 2.1. For α, β > −1 the LOFs are defined by

S(α,β)
n (t) := L(α)

n (x(t)) = L(α)
n (−(β + 1) log(t)), n = 0, 1, . . . ,

with satisfying the following properties:

• Three-term recurrence relation

S(α,β)
0 (t) = 1,

S(α,β)
1 (t) = (β + 1) log(t) + α+ 1,

S(α,β)
n+1 (t) =

2n+ α+ 1 + (β + 1) log(t)
n+ 1

S(α,β)
n (t)− n+ α

n+ 1
S(α,β)
n−1 (t), n = 1, 2, . . . ,

• Orthogonality∫ 1

0

S(α,β)
n (t)S(α,β)

m (t)(− log(t))αtβdt = γ(α,β)
n δnm, γ(α,β)

n =
Γ(n+ α+ 1)

(β + 1)α+1Γ(n+ 1)
. (3)

Definition 2.2. For α, β > −1, λ ∈ R, the GLOFs are defined by

S(α,β,λ)
n (t) := t(β−λ)/2S(α,β)

n (t), λ ∈ R, n ≥ 0,

with satisfying orthogonality condition∫ 1

0

S(α,β,λ)
n (t)S(α,β,λ)

m (t)(− log(t))αtλdt = γ(α,β)
n δmn,

in which γ(α,β)
n is already defined in (3). It is interesting to know that by choosing λ = β, the GLOFs are the same as

the LOFs.
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2.1. Approximation by the GLOFs
To obtain an approximation of any function f ∈ L2[0, 1] in terms of the GLOFs, one can write

f(t) =
∞∑
i=0

ciS(α,β,λ)
i (t), f(t) ≃ fn(t) =

n∑
i=0

ciS(α,β,λ)
i (t) := CTΦ(t) = ΦT (t)C

where ci = ⟨f(t),S(α,β,λ)
i (t)⟩ in which ⟨., .⟩ denotes the inner product with respect to the weight function χα,λ(t) :=

(− log(t))αtλ, and (n+ 1)-order vectors C, Φ(t) are given by

C = [c0, c1, . . . , cn]
T , Φ(t) = [S(α,β,λ)

0 (t),S(α,β,λ)
1 (t), . . . ,S(α,β,λ)

n (t)]T . (4)

Similarly, approximation of a two-variable function K(t, s) ∈ L2([0, 1]× [0, 1]) is as follows

K(t, s) ≃ Kn(t, s) =

n∑
i=0

n∑
j=0

KijS(α,β,λ)
i (t)S(α,β,λ)

j (s) = ΦT (t)KΦ(s), (5)

where K is an (n+ 1)× (n+ 1) matrix with coefficients Kij are given by

Kij = ⟨S(α,β,λ)
i (t), ⟨K(t, s),S(α,β,λ)

j (s)⟩χα,λ(s)⟩χα,λ(t), i, j = 0, 1, . . . , n.

2.2. Operational matrices
we can approximate the integration of the vector Φ(t) defined in (4) as follows∫ t

0

Φ(τ)dτ ≃ PΦ(t), (6)

where P is the GLOFs operational matrix of integration of order (n+1)× (n+1) with coefficients Pij are given by

Pij =

〈∫ t

0
S(α,β,λ)
i (τ)dτ,S(α,β,λ)

j (t)
〉

〈
S(α,β,λ)
j (t),S(α,β,λ)

j (t)
〉 (7)

Furthermore, we have
Φ(t)ΦT (t)C ≃ C̃TΦ(t), (8)

where C̃ is the product operation matrix of two GLOFs vector whose entries are related to vector C.

2.3. Solution of equation
In order to solve (2) using the collocationmethod, we approximate the functionsu(t), f(t), andK(t, s) := at−1φ(t−1s)k(t, s)
by the GLOFs with coefficients determined by collocating (2) at the nodal points {ti}ni=0, which are (n+ 1) roots of
Chebyshev polynomials Tn+1(t) of degree (n+ 1) on [0, 1]. Assume

u(t) ≃
n∑

i=0

ciS(α,β,λ)
i (t) = CTΦ(t) = ΦT (t)C, f(t) ≃

n∑
i=0

fiS(α,β,λ)
i (t) = FTΦ(t), K(t, s) ≃ ΦT (t)KΦ(s),

(9)
where C, K are defined in (4), (5), respectively, and F = [f0, f1, . . . , fn]

T is a known vector defined similarly to C.
It is obtained by substituting (9) into (2)

CTΦ(t) ≃ FTΦ(t) +

∫ t

0

ΦT (t)KΦ(s)ΦT (s)Cds = FTΦ(t) + ΦT (t)KC̃T

∫ t

0

Φ(s)ds

= FTΦ(t) + ΦT (t)KC̃TPΦ(t).
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It follows that (
CT − FT − ΦT (t)KC̃TP

)
Φ(t) ≃ 0. (10)

Now, if we collocate (10) in (n+ 1) points {ti}ni=0 and replace ≃ with =, we achieve(
CT − FT − ΦT (ti)KC̃TP

)
Φ(ti) = 0, i = 0, 1, . . . , n, (11)

The equation (11) produces a linear system of (n + 1) equations and (n + 1) unknowns that can be solved for the
unknown vector C. Thus, the approximate solution of (2) will be obtained by u(t) ≃ CTΦ(t).

3. Convergence

In this section, we present the approximation error by the GLOFs. The construction is due to Chen and Shen [16].

First of all, suppose that un(t) is the approximate solution of (2). The error function will be

en(t) = u(t)− un(t) =
∞∑

i=n+1

ciS(α,β,λ)
i (t).

Consider a pseudo−derivative with respect to the LOFs as follows

∂̂tu := t∂tu.

Assume

Ak
α,β(I) :=

{
ν ∈ L2

χα,β (I) : ∂̂
j
t ν ∈ L2

χα+j,β (I), j = 1, 2, ..., k
}
, k ∈ N,

is a non−uniformly weighted Sobolev space equipped with the semi−norm and norm

| ν |Am
α,β

:=∥ ∂̂m
t ν ∥χα+m,β , ∥ ν ∥Am

α,β
:=

(
m∑

k=0

| ν |2Ak
α,β

)1/2

.

The pseudo−derivative with respect to the GLOFs can be defined as

∂̂γ,tu := t1+γ∂t
{
t−γu

}
.

Furthermore, to better describe the approximability of un(t) by the GLOFs, we need to define a non−uniformly
weighted Sobolev space as

Ak
α,β,λ(I) :=

{
ν ∈ L2

χα,λ(I) : ∂̂
j
β−λ

2 ,t
ν ∈ L2

χα+j,λ(I), j = 1, 2, ..., k
}
, k ∈ N,

equipped with semi−norm and norm as

| ν |Am
α,β,λ

:=∥ ∂̂m
β−λ

2 ,t
ν ∥χα+m,λ , ∥ ν ∥Am

α,β,λ
:=

(
m∑

k=0

| ν |2Ak
α,β,λ

)1/2

.

Theorem 3.1. [16] Given f(t) = tr(− log(t))k, r ≥ 0, k ∈ N0. Let λ > −1− 2r, α, β > −1 and β > λ. Then, we
have

f ∈ L2
χα,λ and Rr,β,λ =

∣∣∣∣ 2r + λ− β

2r + 2 + λ+ β

∣∣∣∣ < 1,
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and

∥ f − fn ∥χα,λ≤ c(k + 1)!n
α+1
2 +k(Rr,β,λ)

n when n > − 2k + α+ 2

2log(Rr,β,λ)
,

where

c ≈

√
2α+1+k(β + 1)2α+2−k

(β + λ+ 2r + 2)α+1+k
.

In particular, if α = λ = 0, then an accurate estimate for the GLOFs to singular functions in L2−norm is obtained as

∥ f − fn ∥≤
√
2
k
(β + 1)−kk!nk

√
2(β + 1)n

∣∣∣∣ 2r − β

2r + β + 2

∣∣∣∣n−k

.

Also, for f(t) = tr, r ≥ 0, we have

∥ f − fn ∥≤
√

2(β + 1)n

∣∣∣∣ 2r − β

2r + β + 2

∣∣∣∣n.
Theorem 3.2. [16] Let m,n, k ∈ N, λ ∈ R and α, β > −1. For any u ∈ Am

α,β,λ(I) and 0 ≤ k ≤ m̃ =
min {m,n+ 1}, we have

∥ ∂̂k
β−λ

2 ,t
(u− un) ∥χα+k,λ≤

√
(β + 1)

k−m̃ (n− m̃+ 1)!

(n− k + 1)!
∥ ∂̂m̃

β−λ
2 ,t

u ∥χα+m̃,λ ,

In particular, in the case of α = β = λ = k = 0 andm < n+ 1, it holds that

∥ u− un ∥≤ cn−m/2 ∥ ∂̂m
t u ∥χm ,

where χm = χm,0 = (−logt)m.

4. Numerical examples

In this section, we implement the collocation method given in Subsection 2.3 numerically for

u(t) = 1−
√
π

∫ t

0

t−1φ(t−1s)u(s)ds, 0 ≤ t ≤ 1, (12)

which has the exact solution u(t) = E1/2(
√
πt). Here φ(t−1s) = t1/2(1−t−1s)−1/2

Γ(1/2) . Table 1 and Figure 1 illustrate
the asymptotics of the proposed method numerically for this example. Table 1 exhibits the errors obtained by using
the GLOFs with α = 0, β = 1, λ = −1. It can be seen that as the number of the GLOFs increases the accuracy of the
solution will reasonably improve. In Figure 1, we have shown the graphic representation of the exact and approximate
solution of (12) for n = 6 with α = 0, β = 1, λ = −1.

5. Conclusion

The log orthogonal functions and their generalized type were introduced. The distinctive feature of these functions is
that they are very useful in resolving singularities. These functions were used to numerically solve equation (2). An
illustrative example is presented to assess the effectiveness of the method.
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Table 1. The absolute errors with α = 0, β = 1, λ = −1 in (12).

t n = 2 n = 4 n = 6

0 0 0 0
0.125 9.507E − 2 1.921E − 3 6.181E − 6
0.250 9.409E − 2 9.815E − 4 3.570E − 6
0.375 3.022E − 2 5.985E − 4 5.473E − 6
0.500 3.158E − 2 9.382E − 5 2.173E − 6
0.625 6.673E − 2 2.710E − 4 1.425E − 6
0.750 6.411E − 2 2.620E − 5 1.797E − 6
0.875 1.839E − 2 1.970E − 4 1.320E − 6
1.000 7.298E − 2 1.648E − 4 1.292E − 6

Fig. 1. The approximate and the exact solution (left) and the absolute error (right) for n = 6 with α = 0, β = 1, λ = −1 in (12).
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Abstract

In this paper, we present a method for solving time varying fractional optimal control prob-
lems by Fibonacci polynomials. Firstly, we derive the Fibonacci polynomials (FPs) operational
matrix for the fractional derivative in the Caputo sense, which has not been undertaken before.
This method reduces the problems to a system of algebraic equations. The results obtained are in
good agreement with the existing ones in open literatures and the solutions approach to classical
solutions as the order of the fractional derivatives approach to 1.

1. Introduction

Although the optimal control theory is an area in mathematics which has been under development for years but the
fractional optimal control theory is a very new area in mathematics. Recent contributions in this field were reported
by several authors [1-4].
In this paper, we consider the time varying fractional optimal control problem as follows:

Minimize J (x(t), u(t)) =
1

2

∫ 1

0

x2(t) + u2(t) dt , (1)

subject to the dynamic constrain

Dαx(t) = a1(t)x(t) + a2(t)u(t), 0 < t ≤ 1 , 0 < α ≤ 1 , (2)

and the initial condition
x(0) = x0 , (3)

where x(t) and u(t) are the state function and the control function, respectively. When α = 1, the above problem
reduces to a standard optimal control problem.

∗Talker
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Mohsen Alipour / The 4th National Congress on Mathematics and Statistics 211

The rest of this paper is as follows. In Section 2, we present some preliminaries in fractional calculus. In Section
3, FBs are introduced and then we approximate functions by using FBs and we show the properties of FBs by several
Lemmas and corollaries. We make a new operational matrix for fractional derivative by FBs in Section 4. In Section
5, we apply FBs for solving time varying fractional optimal control problems. In Section 6, numerical examples are
simulated to demonstrate the high performance of the proposed method. Finally, Section 7 concludes our work in this
paper.
2. Some preliminaries in fractional calculus
In this section, we give some basic definitions and properties of the fractional calculus which are used further in this

paper.
Definition 2.1. (See [5] ) We define
Cµ = {f(t) | f(t) > 0 for t > 0 and f(t) = tpf1(t)where p > µ and f1(t) ∈ C [0 , ∞), andCn

µ =
{
f(t)

∣∣f (n)(t) ∈ Cµ

}
where n ∈ N , µ ∈ R.
Definition 2.2. (See [5]) The Riemann-Liouville fractional integral operator of order α ≥ 0, of a function f ∈
Cµ , µ ≥ −1, is defined as

Iαf(t) = 1
Γ(α)

∫ t

0
(t− x)α−1 f(x) dx , α > 0, t > 0,

I0f(t) = f(t),
(4)

and for n− 1 < α ≤ n , n ∈ N , t > 0 , f ∈ Cn
−1, the fractional derivative of f(t) in the Caputo sense is defined as

Dαf(t) = In−αDnf(t) =
1

Γ(n− α)

∫ t

0

(t− x)n−α−1 f (n)(x) dx . (5)

Property 2.3. (See [6-8]) For f ∈ Cµ , µ ≥ −1 , α , β ≥ 0 we have

Iαtγ =
Γ(γ + 1)

Γ(α+ γ + 1)
tα+γ , (6)

and for n− 1 < α ≤ n , n ∈ Nand f ∈ Cn
µ , µ ≥ −1 we see the following properties

1. DαIαf(t) = f(t), (7)

2. IαDαf(t) = f(t)−
n−1∑
k=0

f (k)(0+)
xk

k!
, t > 0 , (8)

3. Dβf(t) = Iα−βDαf(t) . (9)

3. Fibonacci polynomials and function approximation
Definition 3.1. For any positive real number k, the k-Fibonacci sequence {Fk,n}n∈N is defined recurrently by

Fk,n+1 = kFk,n + Fk,n−1, n ≥ 1, (10)

with initial conditions
Fk,0 = 0, Fk,1 = 1.

Particular cases of the k-Fibonacci sequence are constructed from the following relations.
If k=1 the classical Fibonacci sequence is obtained.

F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1, n = 1,

If k=2, the Pell sequence appears:

P0 = 0, P1 = 1, Pn+1 = 2Pn + Pn−1, n = 1,

If k=3, the following sequence appears:
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H0 = 0, H1 = 1, Hn+1 = 3Hn +Hn−1, n = 1.

If k be a real variable x then Fk,n = Fx,n and they correspond to the Fibonacci polynomials defined by

Fn+1 (x) =

 1, n = 0,
x, n = 1,
xFn (x) + Fn−1 (x) , n > 1,

(11)

and from these expressions, as for the k-Fibonacci numbers we can write:

Fn+1 (x) =

⌊n
2 ⌋∑

i=0

(
n− i
i

)
xn−2i, n = 0,(12)

where
⌊
n
2

⌋
denotes the greatest integer in n

2 .
Note that F2n (0) = 0 and x = 0 is the only real root, while F2n+1 (0) = 1 with no real roots. Also for x = k ∈ N
we obtain the elements of the k-Fibonacci sequences.
The Fibonacci polynomials are normalized so that Fn (1) = Fn, where the Fn is nth Fibonacci number.
Note first, that the equations for the Fibonacci polynomials may be written in matrix form as

F (x) = AT (x) , (13)

where F (x) = [F1 (x) , F2 (x) , F3 (x) , . . . , FN (x)]
T
, T (x) =

[
1, x, x2, x3, . . . , xN−1

]T
, and A is the lower tri-

angular matrix with entrances the coefficients appearing in the expansion of the Fibonacci polynomials in increasing
powers of x. if N is odd,

A =



1 0 · · · 0
0 1 0 · · ·
1 0 1 0 · · ·
0 2 0 1 0 · · ·
...

...
...

. . . . . . . . . . . .
...
0

0
(N+1

2 )!
(N−1

2 )!
0 . . . 0 N − 1 0 1


(N+1)×(N+1)

If N is even

A =



1 0 · · · 0
0 1 0 · · ·
1 0 1 0 · · ·
0 2 0 1 0 · · ·
...

...
...

. . . . . . . . . . . .
...
0

0
(N+2

2 )!
(N−2

2 )!
0 . . . 0 N − 1 0 1


(N+1)×(N+1)

Note that in matrix A the non-zero entrances build precisely the diagonals of the Pascal triangle and the sum of the
elements in the same row gives the classical Fibonacci sequence. In addition, matrix A is invertible and therefore xn

may be written as a linear combination of Fibonacci polynomials that is given in closed form in the following theorem,
which is the version of the Zeckendorfs theorem for the Fibonacci polynomials.
Corollary 3.2. For every integer n = 1, xn−1 may be written in a unique way as linear combination of the n first
Fibonacci polynomials as

xn−1 =

⌊n
2 ⌋∑

n=0

(−1)
i

[(
n
i

)
−

(
n

i− 1

)]
Fn−2i (x) , (14)
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where
(

n
−1

)
= 0.

Lemma 3.3. (see [9]) Let L2 [0, 1] be a Hilbert space with the inner product ⟨f, g⟩ =
∫ 1

0
f (x)g (x) dx and y ∈

L2 [0, 1]. Then, we can find the unique vector C = [c1, c2, . . . , cN ]
T such that

y (x) ≃
N∑

n=1

Cn Fn (x) =CTF (x) , (15)

where
CT = [c1, c2, . . . , cN ] , F (x) = [F1 (x) , F2 (x) , . . . , FN (x)]

T
.

Corollary 3.4. In lemma 3.3 we have CT = ⟨y, F ⟩Q−1 such that

⟨y, F ⟩ =
∫ 1

0

y (x)FT (x) dx = [⟨y, F1⟩ , ⟨y, F2⟩ , . . . , ⟨y, FN ⟩] and

Qij =

∫ 1

0

Fi (x)Fj (x) dx =

∫ 1

0

[ i−1
2 ]∑

p=0

(
i− p− 1

p

)
xi−2p−1

[ j−1
2 ]∑

r=0

(
j − r − 1

j

)
xj−2r−1dx

=

[ i−1
2 ]∑

p=0

[ j−1
2 ]∑

r=0

(
i− p− 1

p

)(
j − r − 1

j

)∫ 1

0

xi+j−2p−2r−2dx

[ i−1
2 ]∑

p=0

[ j−1
2 ]∑

r=0

(
i− p− 1

p

)(
j − r − 1

j

)
1

i+ j − 2p− 2r − 1
, i, j = 1, . . . , N.

Lemma 3.5. Suppose that CN×1 is an arbitrary vector. The operational matrix of product ĈN×N using FPs can be
given as follows:

CTF (x) F (x)
T ∼= F (x)

T
Ĉ.(16)

Proof. Since F (x) = A T (x) we have

CTF (x)FT (x) = CTF (x)TT (x)AT =
[
CTF (x) , xCTF (x) , . . . , xN−1CTF (x)

]
AT

=

[
N∑
i=1

ciFi (x),
N∑
i=1

cixFi (x), . . . ,
N∑
i=1

cix
N−1Fi (x)

]
AT

Now, we approximate all functions xkFi (x) in terms of F (x) as

xkFi (x) ∼= eTk,i F (x) , k = 0, . . . , N − 1 and i = 1, . . . , N

where ek,i =
[
e1k,i, e

2
k,i, . . . , e

N
k,i

]T
and

ek,i = Q−1

∫ 1

0

xkFi F (x) dx

= Q−1

[∫ 1

0

xkFI (x) F1 (x) dx,

∫ 1

0

xkFi (x)F2 (x) dx , . . . ,

∫ 1

0

xkFi (x)FN (x) dx]
T
.

So we get ∫ 1

0

xkFi (x)Fj (x) dx =
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∫ 1

0

xk

[ j−1
2 ]∑

p=0

(
i− p− 1

p

)
xi−2p−1

[ j−1
2 ]∑

r=0

(
j − r − 1

j

)
xj−2r−1dx

[ i−1
2 ]∑

p=0

[ j−1
2 ]∑

r=0

(
i− p− 1

p

)(
j − r − 1

j

)∫ 1

0

xk+i+j−2p−2r−2dx =

[ i−1
2 ]∑

p=0

[ j−1
2 ]∑

r=0

(
i− p− 1

p

)(
j − r − 1

j

)
∗ 1

k + i+ j − 2p− 2r − 1
.

Then we have

N∑
i=1

cix
kFi (x) =

N∑
i=1

ci

N∑
j=1

ejk,i.Fj (x) =

N∑
j=1

Fj (x)

 N∑
j=1

cie
j
k,i

 = FT (x) vk C,

where vk (k = 1, . . . , N) is a N × N matrix that has vectors ek,i (i = 1, . . . , N) for each column. If we define
C = [v1C, v2C, . . . , vNC], then we obtain

CTF (x) F (x)
T ∼= F (x)

T
CAT ,

and therefore we get the operational matrix of product Ĉ = CAT .
4. FPs operational matrix for fractional derivative
In this section, we obtain the operational matrix for the fractional derivative. We can write

DαF (t) =
1

(n− α)

∫ t

0

(t− x)
n−α−1

F (n)(x)

=
1

(n− α)

∫ t

0

(t− x)
n−α−1

A T (n) (x) dx

= A
[
Dα (1) , Dαt, . . . , DαtN−1

]
(17)

where

Dαtj =

{
0 j = 0 , . . . , ⌈α⌉ − 1,
Γ(j+1)

Γ(j+1−α) t
j−α j = ⌈α⌉ , . . . , N − 1.

.(18)

Therefore we have
DαT (t) = Σ̃T̃ (t), (19)

where Σ̃ and T̃ are a N ×N diagonal matrix and a N × 1 matrix, respectively as follows:

Σ̃ =
(
Σ̃i,j

)m+1

i,j=1
, Σ̃i+1,j+1 =

{
Γ(j+1)

Γ(j+1−α) i, j = ⌈α⌉ , . . . , N − 1 and i = j,

0 otherwise,
(20)

and
T̃ =

[
t−α, t1−α, ..., tN−1−α

]T
. (21)

Now, we approximate ti−α (i = ⌈α⌉ , . . . , N − 1) with respect to FBs by using (15). Therefore, we can write

ti−α ≈ PT
i F (t), (22)

where Pi, (i = ⌈α⌉ , . . . , N − 1) is a vector N × 1. So, we hav

Pi = Q−1
(∫ 1

0
ti−α F (t) dt

)
= Q−1

[∫ 1

0
ti−αF1(t) dt ,

∫ 1

0
ti−αF2(t) dt , . . . ,

∫ 1

0
ti−αFN (t) dt

]T

= Q−1P̄i,
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where

P̄i = [P̄i , 1 , P̄i , 2 , . . . , P̄i , N ]T , (23)

P i,j=

∫ 1

0

ti−αFj,m (t) dt =

[ j−1
2 ]∑

r=0

(
j − 1− r

r

)∫ 1

0

ti−α+j−2r−1dt =

[ j−1
2 ]∑

r=0

(
j − 1− r

r

)
1

i− α+ j − 2r
,

i = ⌈α⌉ , . . . , N − 1 and j = 1, . . . , N. (24)

Now, we suppose P is anN ×N matrix that has vector zero in ⌈α⌉ first column and vector Pi in (i+1)th column’s for
i = ⌈α⌉ , . . . , N − 1.
Finally, from (17)− (24), we obtain

DαF (t) ≈ Dα F (t), (25)

where

Dα ≈ A Σ̃PT , (26)

is called the Fibonacci polynomials operational matrix of fractional derivative.

6. FPs for solving time varying fractional optimal control problems

Using Lemma 3.3, we can approximate the known and unknown functions in (1) and (2) as follows:

x(t) ≈ cTF (t), (27)

u(t) ≈ bTF (t), (28)

a1(t) ≈ aT1 F (t), (29)

a2(t) ≈ aT2 F (t), (30)

where c , b ∈ RN×1 are unknown vectors and a1 , a2 ∈ RN×1 are known vectors.
by (25) and (27) we can write

Dαx(t) ≈ cTDαF (t).(31)

Therefore, the problem (1)− (3) reduce to the following problem:

Minimize
1

2

∫ 1

0

cTF (t)F (t)T c+ bTF (t)F (t)T b dt, (32)

subject to the dynamic constraint

cTDαF (t) = aT1 F (t)F (t)T c+ aT2 F (t)F (t)T b , (33)

and the initial condition
cTF (0) = x0.(34)

Now, using Corollary 3.4 for (32) we can write

Minimize J (c, b) = 1
2c

T
(∫ 1

0
F (t)F (t)T dt

)
c+ 1

2 b
T
(∫ 1

0
F (t)F (t)T dt

)
b

= 1
2c

TQc+ 1
2b

TQb

Also by Lemma 3.5 for (33) we have

cTDαF (t) = F (t)T Â1c+ F (t)T Â2b .(36)
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Now, by using tau method [10] we can generate algebraic equations from (36) as follows

Gj (c, b) =

∫ 1

0

(
cTDα − cT ÂT

1 − bT ÂT
2

)
F (t)Fj(t) dt = 0, j = 1, . . . , N , (37)

and from (34) we set GN = cTF (0)− x0.
Finally, the problem (1)− (3) has been reduced to a parameter optimization problem which can be stated as follows:
Find cand b which

Minimize J (c, b) =
1

2
cTQc+

1

2
bTQb, (38)

subject to the system of algebraic equations

Gj (c, b) = 0, j = 1, . . . , N.(39)

For solving the above problem we use the Lagrange multipliers method. So, we define Lagrange function for the
problem (38) and (39) as follows:

L (c, b, λ) =
1

2
cTQc+

1

2
bTQb +

N∑
j=1

λj Gj (c, b) , (40)

where λ = [λ0, . . . , λm] T is the unknown Lagrange multiplier. Now, we consider the necessary conditions for the
extremum and obtain the following systems of algebraic equations

∂L

∂c
= 0, (41)

∂L

∂b
= 0, (42)

∂L

∂λ
= 0.(43)

Equations (41)− (43) can be solved for c, b and λ by Newton’s iterative method. Then, we get the approximate value
of the state functions x(t)and the control functions u(t) from (27) and (28), respectively.
7. Numerical examples

To demonstrate the applicability and to validate the numerical scheme, we apply the present method for the following
examples.
Example 1. Consider the following time invariant problem [1, 2]

Minimize J =
1

2

∫ 1

0

x2(t) + u2(t) dt ,

subject to the system dynamics
Dαx(t) = −x(t) + u(t) ,

with initial condition x(0) = 1. For this problem we have the exact solution in the case of α = 1 as follows

x(t) = cosh(
√
2 t) + β sinh(

√
2 t) , u(t) = (1 +

√
2β) cosh(

√
2 t) + (

√
2 + β) sinh(

√
2 t) ,

where β = − cosh(
√
2)+

√
2 sinh(

√
2)√

2 cosh(
√
2)+sinh(

√
2)
.

Figures 1 and 2 show the state and the control variables, respectively, as a function of time for N = 5, for different
values of α. These figures show that as α approaches close to 1, the numerical solutions for both the state and the
control variables approach to the analytical solutions for α = 1 as expected. In Figs. 3 and 4, we see the absolute
error of obtained results forN = 5 and α = 1. Also, in Table 1, the absolute error of x(t) for when α = 1 andN = 5
is demonstrated and is compared with [1].



Mohsen Alipour / The 4th National Congress on Mathematics and Statistics 217

Fig. 1. Approximate solutions of x(t) forN = 5 in example 1.

Fig. 2. Approximate solutions of u(t) forN = 5 in example 1.

Fig. 3. Plot of absolute error function x(t) for α = 1 andN = 5 in example 1.

Fig. 4. Plot of absolute error function u(t) for α = 1 andN = 5 in example 1.

Example 2. This example considers a time varying fractional optimal control problem [1, 2]. Find the control u(t)
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Table 1. Absolute error x(t) for α = 1, N = 5 and different values t in example 1.

t [1] N = 5 Present Method N = 5

0 0.00000625 0
0.2 0.0000212 3.13415×10−6

0.4 0.0000473 1.53012×10−6

0.6 0.0000749 1.17532 ×10−7

0.8 0.000107 3.26531×10−6

which minimizes the performance index J given in Example 1 subject to the following dynamical system

Dαx(t) = t x(t) + u(t) ,

with initial condition x(0) = 1. Figs. 5 and 6 show the state x(t) and the control u(t) as functions of t for different
values of α. These figures show that as α approaches close to 1, the numerical solutions for both the state and the
control variables approach to the solutions for α = 1 as expected. The numerical solution obtained with the proposed
method for fractional orders of α matches those found in the literature.

Fig. 5. Approximate solutions of x(t) forN = 5 in example 2.

Fig. 6. Approximate solutions of u(t) forN = 5 in example 2.

8. Conclusion
In this work, by Fibonacci polynomials we obtained operational matrices of the product and fractional derivative. Then
we reduced the time varying fractional optimal control problem to a system of algebraic equations that can be solved
easily. We saw that the obtained results in examples were in good agreement with the exact solution and approximate
solution of other methods. Also, we observed that the solutions for the fractional optimal control problems approach
to the solutions for standard optimal control problems as the order of the fractional derivative approaches to 1.
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Abstract

In this paper, we develop a new scheme for numerical solutions of the fractional two di-
mensional heat conduction equation on a rectangular plane. Our main aim is to generalize the
Bernstein operational matrices of derivatives and integrals to the three dimensional case. By
the use of these operational matrices, we reduce the corresponding fractional order partial dif-
ferential equations to a system of easily solvable algebraic equations. The results we obtain are
compared with the exact solutions and we find that the error is negligible.

1. Introduction
The diffusion equation is of great importance in many engineering problems such as heat conduction, chemical

diffusion, fluid flow, mass transfer, refrigeration and traffic analysis and so on. After the development of fractional
derivatives it is found that most of these phenomena can well be explained by fractional order partial differential
equations (FPDEs), see for example [1,2] and the references quoted therein. We consider the problem in generalized
form as

∂αu(t, x, y)

∂tα
= C1

∂βu(t, x, y)

∂xβ
+ C2

∂βu(t, x, y)

∂yβ
+ g (x, y, t) , (1)

subject to initial condition

u (0, x, y) = f (x, y) , (2)

where C1 and C2 are constants, 0 < α ≤ 1, t, x, y ∈ [0, 1]. Conventionally various methods such as smoothed partial
hydrodynamic method [3], meshless method [4,2], homotopy perturbation method [5,6], Tau method [7], method of
local radial functions [8], Sinc–Legendre collocation method [9,10] are used for the solutions of such type of problems.

∗Talker
Email address: m.alipour2323@gmail.com; m.alipour@nit.ac.ir (Mohsen Alipour)
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Recently some approximate solutions for integer order heat conduction equations are obtained by Exp-functionmethod
[11], variational iteration method and energy balance method [12, 13]. These methods are very efficient and provide
very good approximations to the solutions but due to high computational complexities these methods are not so easy to
apply to fractional order partial differential equations in higher dimensions. Therefore, we need an easy and efficient
method to solve such type of problems. More recently, the techniques based on operational matrices are extensively
used for approximate solutions of a wide class of differential equations as well as partial differential equations, see
for example, [14,15] and references quoted therein. The technique based on the operational matrices is simple and
provides high accuracy but up to now this technique is used only to solve partial differential equations (PDEs) with
only two variables. We generalize the technique to solve PDEs with three variables.
We use Bernstein polynomials and develop new matrices of fractional order differentiations and integrations to solve
the corresponding fractional order partial differential equations without actually discretizing the problem. Our method
reduces the FPDEs to a system of easily solvable algebraic equations of Sylvester type which can be easily solved by
any computational software. Generally, large systems of algebraic equations may lead to greater computational com-
plexity and large storage requirements. However our technique is simple and reduces the computational complexity
of the resulting algebraic system. It is worthwhile to mention that, the method based on using the operational matrix
of orthogonal functions for solving FPDEs is computer oriented. We use Mathematica software to perform necessary
calculations.
The article is organized as follows. We begin by introducing some necessary definitions and mathematical preliminar-
ies of the fractional calculus and Bernstein polynomials which are required for establishing main results. In Section 3,
the Bernstein operational matrices of fractional derivatives and fractional integrals are obtained. Section 4 is devoted
to the application of the Bernstein operational matrices of fractional derivatives and fractional integrals to solve the
transient state two-dimensional fractional heat conduction equation on a rectangular plane. In section 5, the proposed
method is applied to an example. Conclusion is made in Section 6.
2. Preliminaries
For convenience, this section summarizes some concepts, definitions and basic results from fractional calculus.

Definition 2.1. ([16–18]). Given an interval [a, b] ⊂ R The Riemann–Liouville fractional order integral of a function
∅ ∈

(
L1 (a, b) , R

)
of order α ∈ R+is defined by

Iα∅ (x) = 1

�(α)

∫ x

a

(x− s)
α−1∅ (s) ds,

provided that the integral on the right hand side exists

Definition 2.2. ([16–18]) For a given function ∅(x) ∈ cn[a, b], the Caputo fractional order derivative is defined
as

Dα∅ (x) = 1

�(n− α)

∫ x

a

∅(n) (s)
(x− s)

α+1−n ds, n− 1 ≤ α < n, nϵN,

where n = [α] + 1. Hence, it follows that

Dαxk =
�(1 + k)

�(1 + k − α)
xk−α, Iαxk =

�(1 + k)

�(1 + k + α)
xk+α, Dαc = 0 for a constant C. (3)

2.1. Properties of Bernstein polynomials

The well-known Bernstein polynomials of the nth degree are defined on the interval [0, 1] as [19, 20]

bni (x) =
(n
i

)
xi(1− x)

n−i
, i = 0, . . . , n (4)

These Bernstein polynomials form a complete basis on over the interval [0, 1] . A recursive definition also can be used
to generate these polynomials

bni (x) = (1− x) bn−1
i (x) + xbn−1

i−1 , i = 0, . . . , n,
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where bn−1
−1 (x) = 0 and bn−1

n (x) = 0. Since the power basis
{
1, x, x2, . . . , xn

}
, forms a basis for the space of

polynomials of degree less than or equal to n, any Bernstein polynomial of degree n can be written in terms of the
power basis. This can be directly calculated using the binomial expansion of (1− x)

n−i, one can show that

bni (x) =

n∑
j=i

(−1)
j−i

(n
i

)(
n− i

j − i

)
xj , i = 0, . . . , , n (5)

On the other hand, the fact that they are not orthogonal turns out to be their disadvantage when used in the least-squares
approximation. As said in [21] one approach to direct least-squares approximation by polynomials in Bernstein form
relies on construction of the basis {dn0 (x) , dn1 (x) , . . . , dnn (x)} that is “dual” to the Bernstein basis of degree n on
x ∈ [0, 1] .This dual basis is characterized by the property∫ 1

0

bni (x) d
n
j (x) dx =

{
1 for i = j,
0 for i ̸= j,

for i, j = 0, 1, . . . , n. A function f(x), square integrable in [0, 1] may be expressed in terms of the Bernstein basis in
practice, only the first (n+ 1) term Bernstein polynomials are considered. Hence if we write

f (x) ∼=
n∑

i=0

cib
n
i (x) = CTB (x) , (6)

where the Bernstein coefficient vector C and the Bernstein vector B (x) are given by

CT = [c0, . . . , cn] , B (x) = [bn0 (x) , b
n
1 (x) , . . . , b

n
n (x)]

T
, (7)

then
ci =

∫ 1

0

f (x) dni (x) , i = 0, 1, . . . , n.

Author of [22] has derived explicit representations

dnj (x) =

n∑
k=0

λjkb
n
k (x) , j = 0, 1, . . . , n,

for the dual basis functions, defined by the coefficients

λjk =
(−1)

j+k(
n
j

) (
n
k

) min(j,k)∑
i=0

(2i+ 1)

(
n+ i+ 1

n− j

)(
n− i

n− j

)(
n+ i+ 1

n− k

)(
n− i

n− k

)
(8)

for j, k = 0, 1, . . . , n.
It is worth to mention here that, orthogonal bases such as the Legendre polynomials present very nice stability prop-
erties and are very useful in approximation. Bernstein polynomials and Legendre polynomials both span the same
spaces and the transformation between Legendre and Bernstein polynomials is comparatively well-conditioned [21].
The Bernstein polynomials is advantageous for practical computations, on account of its intrinsic numerical stability
[23]. One of the useful property of Bernstein basis polynomials is that they all vanish at end points of the interval,
except the first and the last one, which are equal to one at x = 0 and x = 1, respectively. This provides greater flexi-
bility in which to impose boundary conditions at the end points of the interval [24]. Also, Bernstein polynomials have
two main properties: their sum equals 1 and every bni (x) is positive for all real x belonging to the interval x ∈ (0, 1).
Moreover, as pointed by [25], the Bernstein basis polynomials have the following properties:

1) bni (x) has a root with multiplicity i at point x = 0 (note if i is 0 there is no root at 0).
2) bni (x) has a root with multiplicity n− i at point x = 1 (note if n = i there is no root at 1).
While for the Legendre polynomials, no explicit formula of the roots is known.
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2.1. Approximation by Bernstein polynomials

By (6) we see that a function f (x) can be approximated by Bernstein polynomials as follows:

f (x) ≈
m∑

a=0

capa (x) (9)

where

ca =

∫ 1

0

f (x) da (x) dx, a = 0, 1, . . . , n, (10)

In vector notation, we write

f (x) ≈ KT
M P̂M (x) , (11)

whereM = m + 1, K is the coefficient vector and is P̂M (x) , M terms function vector. The notion was extended
to the two-dimensional space and the two-dimensional Bernstein polynomials of order M are defined as a product
function of two Bernstein polynomials

Pn (x, y) = Pa (x)Pb (y) , n =Ma+ b+ 1, a = 0, 1, 2, . . . .,m, b = 0, 1, 2, . . . ,m. (12)

The orthogonality condition of Pn(x, y) is∫ 1

0

∫ 1

0

Pa (x)Pb (y) di (x) dj (y) dxdy =

{
1 i = a, j = b,
0 o.w.

(13)

Any f (x, y) ∈ C([0, 1] × [0, 1]) can be approximated by the polynomials Pn(x, y) as follows:

f(x, y) ≈
m∑

a=0

m∑
b=0

cabPa (x)Pb (y) (14)

where

cab=
∫ 1

0

∫ 1

0

f (x) f(y)dna (x) d
n
b (y) dxdy (15)

For simplicity, we use the notation Cn = Cab where n = Ma + b + 1, and rewrite (14) as follows:

f(x, y) ≈
M2∑
n=1

cnPn (x, y) = KM2 ψ̂ (x, y) (16)

in vector notation, where KM2 is the 1 × M2 coefficient row vector and ψ̂ (x, y) is theM2 × 1 column vector of
functions defined by

ψ̂ (x, y) = (ψ11 (x, y) , . . . , ψ1M (x, y) , ψ21 (x, y) , . . . ψ2M (x, y) , . . . ψMM (x, y))
T

(17)

where

ψi+1,j+1 (x, y) = Pi (x)Pj (y) , i, j = 0, 1, 2, . . . ,m, (18)

where

cMi+j+1 =

∫ 1

0

∫ 1

0

f (x, y) di (x) dj (y) dxdy =
M2∑
n=1

cn

∫ 1

0

∫ 1

0

Pa (x)Pb (y) di (x) dj (y) dxdy.
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3. The operational matrices

3.1. Operational matrices of Riemann–Liouville fractional integral

Lemma 3.1. Let ψ (x) be the function vector, then the integration of order α of ψ(x) is generalized as

Iα (ψ (x)) ∼= Pαψ (x) (19)

where Pα is the operational matrix of integration of order α and is defined by

Pα =



∑0
l=0 θ0,0,l∑1
l=0 θ1,0,l
...

∑0
l=0 θ0,1,l . . .

∑0
l=0 θ0,j,l∑1

l=0 θ1,1,l . . .
∑1

l=0 θ1,j,l
...

...
...

. . .
∑0

l=0 θ0,m,l

. . .
∑1

l=0 θ1,m,l

...
...∑i

l=0 θi,0,l
∑i

l=0 θi,1,l . . .
∑i

l=0 θi,j,l . . .
∑i

l=0 θi,m,l

...∑m
l=0 θm,0,l

...∑m
l=0 θm,1,l

...
. . .

...∑m
l=0 θm,j,l

...
...

. . .
∑m

l=0 θm,m,l


, (20)

where
θi,j,l = (−1)

j−i
(n
i

)(
n− i

j − i

)
�(j + 1)

�(j + 1 + α)
ul,j . (21)

Proof. Using (3) and (5) we have

Iαbni (x) =
n∑

j=i

(−1)
j−i

(n
i

)(
n− i

j − i

)
Iα(x)

j
=

n∑
j=i

(−1)
j−i

(n
i

)(
n− i

j − i

)
�(j + 1)

�(j + 1 + α)
xj+α (22)

Now, approximate xj+α by bym + 1 termsBernstein polynomials, we have

xj+α ∼=
n∑

l=0

ul,jb
n
l (x) ,

ul,j =

∫ 1

0

xj+αdnl (x) dx =
n∑

k=0

λl,k

∫ 1

0

xj+αbnk (x) dx =
n∑

k=0

λl,k

n∑
s=k

(−1)
s−k

(n
k

)(
n− k

s− k

)∫ 1

0

xj+α+sdx

=

n∑
k=0

λl,k

n∑
s=k

(−1)
s−k

(n
k

)(
n− k

s− k

)
1

j + α+ s+ 1
=

n∑
k=0

λl,k µ
′
k,j .

Consequently, (22) takes the form

Iαbni (x) ≈
n∑

j=i

n∑
l=0

(−1)
j−i

(n
i

)(
n− i

j − i

)
� (j + 1)

� (j + 1 + α)
ul,jb

n
l (x) =

n∑
l=0

n∑
j=i

θi,j,lb
n
l (x)

=

 n∑
j=i

θi,j,0,
n∑

j=i

θi,j,1, . . . ,
n∑

j=i

θi,j,n

B (x) .

So we have

Iα (ψ (x)) ∼= Pαψ (x) . (23)
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Lemma3.2. Let ψ̂ (x, y) be the function vector as defined in (17), then the fractional derivative of order ofψ (x, y)with
respect to y is given by

Dα
y

(
ψ̂ (x, y)

)
∼= Hα,y

M2×M2 ψ̂ (x, y) , (24)

where Hα
M2×M2 is the operational matrix of differentiation of order α and is defined as

Hα,y
M2×M2 =



∆1,1,k ∆1,2,k · · ·
∆2,1,k ∆2,1,k . . .
...

...
...

∆1,r,k . . . ∆1,M2,k

∆2,r,k . . . ∆2,M2,k

...
...

...
∆q,1,k ∆q,2,k . . .
...

...
...

∆M2,1,k ∆M2,2,k . . .

∆q,r,k . . . ∆q,M2,k

...
...

...
∆M2,r,k . . . ∆M2,M2,k


, (25)

where q =Mi+ j + 1, r =Ma+ b+ 1, i, j, a, b = 0, 1, 2, . . . ,m and

∆q,r,k = Ci,j,a,b =
m∑

k=max(b,⌈α⌉)

δi,a

m∑
k1=0

λjk1
(−1)

k−b
(m
b

)(
m− b

k − b

)
m!�(1− α+ k + k1)�(k + 1)

k1!� (2− α+ k +m)� (k + 1− α)
. (26)

Proof. Taking the element Pn(x, y) defined by (12), the fractional order partial derivative of Pn(x, y) with respect
to y is given by relation

Dα
y (bm (x, y)) = Dα

y b
m
a (x) bmb (y) = bma (x)

m∑
k=b

(−1)
k−b

(m
b

)(
m− b

k − b

)
Dα

y y
k

=
m∑

k=max(b,⌈α⌉)

(−1)
k−b

(m
b

)(
m− b

k − b

)
ba (x)

� (k + 1)

� (k + 1− α)
yk−α

=
m∑

k=max(b,⌈α⌉)

(−1)
k−b

(m
b

)(
m− b

k − b

)
� (k + 1)

� (k + 1− α)
ba (x) y

k−α. (27)

Approximating ba (x) yk−α by Bernstein polynomials in two variables, yields

ba (x) y
k−α ≈

m∑
i=0

m∑
j=0

ck,aij Pi (x)Pj (y) , (28)

where

ck,aij =

∫ 1

0

∫ 1

0

ba (x) y
k−αdi (x) dj (y) dxdy =

∫ 1

0

ba (x) di (x) dx

∫ 1

0

yk−αdj (y) dy = δia

∫ 1

0

yk−αdj (y) dy,

where

δia =

{
1 i = a
0 i ̸= a

, dnj (y) =
n∑

k1=0

λjk1
bnk1

(y) , j = 0, 1, . . . , n,

ck,aij = δia

m∑
k1=0

λjk1

∫ 1

0

bnk1
(y) yk−αdy = δia

m∑
k1=0

λjk1

m!�(1− α+ k + k1)

k1!�(2− α+ k +m)
(29)
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hence it follows that

Dα
y b

m
a (x) bmb (y) ≈

m∑
k=max(b,⌈α⌉)

(−1)
k−b

(m
b

)(
m− b

k − b

)
� (k + 1)

� (k + 1− α)

m∑
i=0

m∑
j=0

ck,aij Pi (x)Pj (y)

=
m∑
i=0

m∑
j=0

m∑
k=max(b,⌈α⌉)

(−1)
k−b

(m
b

)(
m− b

k − b

)
� (k + 1)

� (k + 1− α)
ck,aij Pi (x)Pj (y)

∼=
m∑
i=0

m∑
j=0

ci,j,a,bPi (x)Pj (y) , (30)

where

ci,j,a,b =
m∑

k=max(b,⌈α⌉)

δi,a

m∑
k1=0

λjk1
(−1)

k−b
(m
b

)(
m− b

k − b

)
m!�(1− α+ k + k1)�(k + 1)

k1!�(2− α+ k +m)�(k + 1− α)
. (31)

Using the notations, q = Mi + j + 1, r = Ma + b + 1 and �q, r, k = Ci,j,b,a,k for i, j, a, b =
0, 1, 2, 3, . . . ,m, we get the desired result .

Lemma 3.3. Let �(x, y) be as defined in (1, thenthederivativeoforderβ of �(x, y) with respect to x is given by

Dβ
x (ψ (x, y)) ∼= Hβ,x

M2×M2ψ (x, y) , (32)

where Hβ,x
M2×M2 is the operational matrix of derivative of order β and is defined as

Hβ,x
M2×M2 =



θ1,1,k θ1,2,k · · ·
θ2,1,k θ2,1,k . . .
...

...
...

θ1,r,k . . . θ1,M2,k

θ2,r,k . . . θ2,M2,k

...
...

...
θq,1,k θq,2,k . . .
...

...
...

θM2,1,k θM2,2,k . . .

θq,r,k . . . θq,M2,k

...
...

...
θM2,r,k . . . θM2,M2,k


, (33)

where q =Mi+ j + 1, r =Ma+ b+ 1, i, j, a, b = 0, 1, 2, . . . ,m and

θq,r,k = Ci,j,a,b =

m∑
k=max(a,⌈α⌉)

δj,b

m∑
k1=0

λik1(−1)
k−a

(m
a

)(
m− a

k − a

)
m!�(1− α+ k + k1)�(k + 1)

k1!�(2− α+ k +m)�(k + 1− α)
. (34)

Proof. The proof of this lemma 3.3 is similar as the above lemma 3.2.
4. Application of the Bernstein operational matrices for two-dimensional fractional heat conduction problem

Now we apply the Bernstein operational matrices to solve the two-dimensional fractional heat equation (1) and (2) as
follows:
Approximate

∂αu(t, x, y)

∂tα
≈ ψT (t)KM×M2 ψ̂ (x, y) . (35)

Applying fractional integration of order with respect to t on Eq. (35), we have

Iα
∂u(t, x, y)

∂tα
≈ ψT (t)PαT

M×MKM×M2 ψ̂ (x, y) ,
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that implies
u (t, x, y)− c1 ≈ ψT (t)PαT

M×MKM×M2 ψ̂ (x, y) (36)

The initial condition u(0, x, y) = f (x, y) yields c1 = f (x, y) and the above equation can be written as

u (t, x, y) ≈ ψT (t)PαT

M×MKM×M2 ψ̂ (x, y) + f (x, y) , (37)

which implies that
f (x, y) ≈ ψT (t)FM×M2 , (38)

u (t, x, y) ≈ ψT (t)
(
PαT

M×MKM×M2 + FM×M2

)
ψ̂ (x, y) . (39)

Taking β order derivative of u(t, x, y), we get

∂βu (t, x, y)

∂xβ
≈ ψT (t)

(
PαT

M×MKM×M2 + FM×M2

)
H(B,x)ψ̂ (x, y) . (40)

and
∂βu(t, x, y)

∂yβ
≈ ψT (t)

(
PαT

M×MKM×M2 + FM×M2

)
H(B,y)ψ̂ (x, y) . (41)

g (x, y, t) ≈ ψT (t)GM×M2 ψ̂ (x, y) , (42)

Using (35), (40)− (42) in (1) we get

ψT (t)KM×M2 ψ̂ (x, y) = C1ψ
T (t)

(
PαT

M×MKM×M2 + FM×M2

)
H(B,x)ψ̂ (x, y)

+C2ψ
T (t)

(
PαT

M×MKM×M2 + FM×M2

)
H(B,y)ψ̂ (x, y) + ψT (t)GM×M2 ψ̂ (x, y) , (43)

which can be rewritten as

ψT (t)
(
KM×M2 − C1(P

αT

M×MKM×M2 + FM×M2

)
H(B,x)

−C2

(
PαT

M×MKM×M2 + FM×M2

)
H(B,y) −GM×M2 )ψ̂ (x, y) = 0.

Hence it follows that

KM×M2 − c1

(
PαT

M×MKM×M2 + FM×M2

)
H(B,x)−c2

(
PαT

M×MKM×M2 + FM×M2

)
H(B,y)−GM×M2 = 0 (44)

Using the value ofKM×M2 in (39) we can get the approximate solution of the problem (1) and (2).
5. Illustrative example
Example . Consider the following two-dimensional fractional heat conduction equation

∂αu(t, x, y)

∂tα
=
∂βu(t, x, y)

∂xβ
+
∂βu(t, x, y)

∂yβ
+ 2t− 6x− 6y,

subject to the initial condition u (0, x, y) = x3 + y3 where 0 < ≤ 1 and t, x, y ∈ [0, 1]. The exact solution for =
1 and = 2 is known and is given by u (t, x, y) = t2 + x3 + y3. We calculate the absolute error at t = 0.5 found
that the error is much more less than 10−15as evident from Fig. 1 show this phenomenon. Also we use the method
to approximate solution for the fractional value of α&β and it is found that as α → 1 and β → 2 the approximate
solution becomes equal to the exact solution. This phenomenon is shown in Fig. 2 where we observe the approximate
solution at t = 0.5.
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Fig. 1. The absolute error at time t = 0.5 and M = 4.

Fig. 2. The approximate solution at time t = 0.5 for M = 4 and different values of α and β.

6. Conclusion

The presented method is a simple method for the numerical solution of the fractional order heat conduction equation
on a rectangular region. The method easily reduces the problem to a system of easily solvable algebraic equations.
We saw that the obtained results in example were in good agreement with the exact solution. Also, we observed that
the solutions approach to the solutions for standard problems (α = 1, β = 2) as α→ 1 and β → 2 .
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Abstract

The conjugate gradient squared method is a desirable approach for solving nonsymmetric linear
system of equations due to its low computational cost, compared to the other iterative solvers.
In this paper, we present a preconditioned global conjugate gradient squared method to solve
the saddle point problems with multiple right-hand sides arising from Stocks equation. Finally,
some numerical experiments are provided to illustrate the feasibility and validity of the algorithm
proposed.

1. Introduction

Recently, systems with multiple right-hand sides have been occurred in many research and engineering application
areas, such as mixed or mixed-hybrid finite element disceritization of partial differential equations in computational
fluid dynamics [1], constrained optimization [2] and so on.
In this paper we deal with the following saddle point problem with multiple right-hand sides[

A B
ϵBT 0

] [
X
Y

]
=

[
F1

F2

]
, (1)

where A ∈ Rn×n is a symmetric positive definite matrix, B ∈ Rn×m has a full column rank, X ∈ Rn×s, Y ∈
Rm×s, F1 ∈ Rn×s, F2 ∈ Rm×s and ϵ is a given scalar. To convenience, we denote system (1) as follow:

AX = B, (2)

where X = [X (1), . . . ,X (s)] and B = [B(1), . . . ,B(s)]. Under the aforementioned assumptions, the coefficient matrix
A is nonsingular.
In the last decade, several efficient iterative methods have been developed to solve the saddle point problems, such as
the Uzawa method, the HSS method and related variants [3] and Krylov subspace methods [1]. For the purpose of the
improvement to the efficiency of standard iterative solvers, many preconditioners have been proposed in the literature.

∗Talker
Email address: izadkhah@birjandut.ac.ir (Mohammad Mahdi Izadkhah)
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For example, the block diagonal preconditioners, the block triangular preconditioners, and the parameterized block
triangular preconditioners [2]. In this paper, we investigate the preconditioned global BiCG (PGl-BiCG) method
[5] and preconditioned global conjugate gradient squared (PGl-CGS) method for solving linear system with multiple
right-hand sides (1). We concentrate on the use of the indefinite preconditioner

P =

[
I B

ϵBT 0

]
, (3)

where I is the identity matrix of order n. This choice has been shown to be particulary effective on problems associated
with constrained nonlinear programming. Throughout this paper, we use the following notations. Inner product for
two n × s matrices X and Y is defined as ⟨X,Y ⟩F = tr(XTY ), where tr(Z) denotes the trace of the square matrix
Z. The associated norm is the Frobenius norm denoted by ∥ · ∥F . We will use the notation ⟨·, ·⟩2 for the usual inner
product in Rn, and the related norm will be denoted by ∥ · ∥2. For a matrix V ∈ Rn×s, the matrix Krylov subspace
Km(A, V ) is defined by

Km(A, V ) = span{V,AV, . . . , Am−1V }.

Moreover, Z ∈ Kj(A, V ) means that Z =
∑j−1

i=0 ξiA
iV , where ξi ∈ R, for i = 0, 1, . . . , j − 1. Finally, 0s, Is, and

0l×s will denote the zero, the identity, and zero matrices in Rs×s,Rs×s, and Rl×s, respectively. For brevity, we use
the MATLAB-like notation [v;w] to represent the vector [vTwT ]T .

2. Properties of the indefinite preconditioner

In this work, we utilize the global version of the CGS (Gl-CGS) [4] for the solution of the nonsymmetric saddle point
problems with multiple right-hand sides (2). The convergence behavior of this method without a good preconditioner
is very slow, when applied to the saddle point problems with multiple right-hand sides. In order to accelerate the
convergence, we use the indefinite matrix P defined in (3) as a right preconditioner for the Gl-CGS algorithm applied
to the problem (1) as

AP−1

[
X̃

Ỹ

]
= B,

[
X
Y

]
= P−1

[
X̃

Ỹ

]
, (4)

where
P−1 =

[
I −Π 1

ϵB(BTB)−1

(BTB)−1BT − 1
ϵ (B

TB)−1

]
, AP−1 =

[
G S
0 I

]
,

withΠ = B(BTB)−1BT , G = A(I−Π)+Π, and S = 1
ϵ (A−I)B(BTB)−1. Once an approximate solution [X̃k; Ỹk]

is determined, an approximate solution to the unpreconditioned problem is recovered as [Xk;Yk] = P−1[X̃k; Ỹk].
Choosing the vector [X̃0, Ỹ0] = [0;F2] as the initial approximate solution, the starting residual is given by

R0 =

[
F1

F2

]
−AP−1

[
X̃0

Ỹ0

]
=

[
F1 − SF2

0

]
=

[
R

(1)
0

0

]
,

so that the second block component of R0 is identically zero. Problem (4) can thus be reformulated as determining an
approximation [X̄k; Ȳk] to the solution [X̄; Ȳ ] of the system

AP−1

[
X̄
Ȳ

]
= R0, (5)

so that [X̃k; Ỹk] = [X̃0; Ỹ0] + [X̄k; Ȳk]. In addition, for every [U ; 0] ∈ R(m+n)×s, we have

AP−1

[
U
0

]
=

[
GU
0

]
, and P−1

[
U
0

]
=

[
(I −Π)U

(BTB)−1BTU

]
. (6)



232 M.M. Izadkhah / The 4th National Congress on Mathematics and Statistics

3. The preconditioned global CGS method

At the first, we employ the PGl-BiCG method [5] to solve system (4). Let X0 ∈ Rn×s be an initial guess with the
residual R0 = B − AX0 and let R̃0 be an arbitrary n × s matrix. The residual Rk generated by the step k of the
PGl-BiCG method is such that, Rk −R0 lies in the right matrix Krylov subspace Kk(A, R0) and Rk is F-orthogonal
to the left matrix Krylov subspace Kk(AT , R̃0). We say that two set of matrices {Vi} and {Wi} are F-orthogonal if
and only if ⟨Vi,Wj⟩F = 0 for i ̸= j and ⟨Vi,Wi⟩F = 1 for i = 1, 2, . . . ,m.
For solving (1) by preconditioned global biconjogate gradient (PGl-BiCG) algorithm by using the preconditioner P
defined in (3) and equations (4) and (5), we choose [X̃0; Ỹ0] = [0;F2] as the initial guess. So, R0 = [R

(1)
0 ; 0].

We set R̃0 = P−1R0 = [(I − Π)R
(1)
0 ; (BTB)−1BTR

(1)
0 ], P0 = R0, P̃0 = R̃0, and we obtain R̃k = P−1Rk =

[(I − Π)R
(1)
k ; (BTB)−1BTR

(1)
k ] and P̃k = P−1Pk = [(I − Π)P

(1)
k ; (BTB)−1BTP

(1)
k ]. Therefore, the iterates R̃k

and P̃k can be computed explicitly fromRk and Pk, and the auxiliary ”tilde” recurrence can be omitted. Now, by using
the relations (6) and ignoring from the last m rows of the matrices that are zero, we can summarize the PGl-BiCG
algorithm for solving (2) as the following Algorithm 1.
Algorithm 1: The right PGl-BiCG method

1 Set
[

X̃0

Ỹ0

]
=

[
0
F2

]
and

[
X̄0

Ȳ0

]
=

[
0
0

]

2. Compute R(1)
0 = F1 − SF2 and set R0 =

[
R

(1)
0

0

]
and P0 =

[
P

(1)
0

P
(2)
0

]
=

[
R

(1)
0

0

]
3. for k = 0, 1, 2, . . . until convergence

4. αk =
⟨R(1)

k ,(I−Π)R
(1)
k ⟩F

⟨GP
(1)
k ,(I−Π)P

(1)
k ⟩F

5. X̄k+1 = X̄k + αkP
(1)
k , Ȳk+1 = 0m×s

6. R
(1)
k+1 = R

(1)
k − αkGP

(1)
k , R

(2)
k+1 = 0

7. βk
⟨R(1)

k+1,(I−Π)R
(1)
k+1⟩F

⟨R(1)
k ,(I−Π)R

(1)
k ⟩F

8. P
(1)
k+1 = R

(1)
k+1 + βkP

(1)
k , P

(2)
k+1 = 0

9. end

10. X̃k+1 = X̃0 + X̄k+1, Ỹk+1 = Ỹ0 + Ȳk+1

11. Xk+1 = (I −Π)X̃k+1 +
1
ϵB(BTB)−1Ỹk+1, Yk+1 = (BTB)−1BT X̃k+1 − 1

ϵ (B
TB)−1Ỹk+1

In practical implementation of Algorithm 1, we can factorize B as B = Q

[
R
0

]
and use the relation (BTB)−1 =

R−1R−T . From Algorithm 1, the first block of residuals and the first block of matrix directions can be expressed as
follows:

R
(1)PGl−BiCG

k = Rk(G)R
(1)
0 , P

(1)PGl−BiCG

k = Pk(G)R
(1)
0 , (7)

whereRk(t) and Pk(t) are the polynomials of degree k with scalar coefficients satisfyingRk(0) = 1 and Pk(0) = 1,
respectively. The polynomialsRk(t) and Pk(t) are related together with the recurrence formulas as follows:

Rk+1(t) = Rk(t)− αktPk(t), (8)
Pk+1(t) = Rk+1(t) + βkPk(t). (9)
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In the PGl-CGS method, the matrix residual and the matrix direction satisfies

Rk = Rk(AP−1)2R0, Pk = Pk(AP−1)2R0, (10)

whereRk and Pk are defined as before. We introduce the matrix Qk as

Qk = Rk+1(AP−1)Pk(AP−1)R0.

If the PGl-CGS method is written for system (5) with R0 = [R
(1)
0 ; 0], then the relation (10) can be written as

Rk =

[
Rk(G)2R

(1)
0

0

]
, (11)

and for solving the problem (2), the PGl-CGS algorithm can be summarized as Algorithm 2.

Algorithm 2: The right PGl-CGS method

1 Set
[

X̃0

Ỹ0

]
=

[
0
F2

]
and

[
X̄0

Ȳ0

]
=

[
0
0

]

2. Compute R(1)
0 = F1 − SF2 and set R0 =

[
R

(1)
0

0

]
and P0 =

[
P

(1)
0

P
(2)
0

]
=

[
R

(1)
0

0

]
3. Set U0 = P0

3. for k = 0, 1, 2, . . . until convergence

4. αk =
⟨R(1)

k ,(I−Π)R
(1)
0 ⟩F

⟨GP
(1)
k ,(I−Π)R

(1)
0 ⟩F

5. Qk = Uk − αkGPk

6. X̄k+1 = X̄k + αk(Uk +Qk), Ȳk+1 = 0

7. R
(1)
k+1 = R

(1)
k − αkG(Uk +Qk), R

(2)
k+1 = 0

8. βk =
⟨R(1)

k+1,(I−Π)R
(1)
0 ⟩F

⟨R(1)
k ,(I−Π)R

(1)
0 ⟩F

9. Uk+1 = R
(1)
k+1 + βkQk

10. Pk+1 = Uk+1 + βk(Qk + βkPk),

11. end

12. X̃k+1 = X̃0 + X̄k+1, Ỹk+1 = Ỹ0 + Ȳk+1

13. Xk+1 = (I −Π)X̃k+1 +
1
ϵB(BTB)−1Ỹk+1, Yk+1 = (BTB)−1BT X̃k+1 − 1

ϵ (B
TB)−1Ỹk+1
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4. Numerical experiments

In this section, we consider the stokes equation as

−ν∆u+▽p = f̃ , in Ω (12)
▽ · u = g̃, in Ω

u = 0, on ∂Ω∫
Ω

p(x) dx = 0,

where Ω = (0, 1) × (0, 1) ⊆ R2, ∂Ω is the boundary of Ω, ν is the viscosity scalar, and u and p denote the velocity
and the pressure, respectively. By discretizing (12), we obtain te system of linear equations as[

A B
−BT 0

] [
U
P

]
=

[
F1

−F2

]
(13)

in which
A =

[
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

]
∈ R2q2×2q2 B =

[
I ⊗ F
F ⊗ I

]
∈ R2q2×q2

where T and F are tridiagonal matrices given by

T =
ν

h2
tridiag(−1, 2,−1) ∈ Rq×q, F =

1

h
tridiag(−1, 1, 0) ∈ Rq×q

and ⊗ denotes the Kronecker product. Also h = 1
q+1 is the discretization mesh size. We set n = 2q2 and m = q2.

Hence the total number of variables is n+m = 3q2. We choose the right-hand side such that the exact solution of the
saddle point problem (13) is a matrix of ones. In this example, we use zero tensor as the initial guess and

ERR ≡ ∥Rk∥
∥R0∥

≤ 10−5,

as the stopping criterion and the maximum number of iterations Max-Iter = 500 . The computations was performed in
double-precision floating-point arithmetic in MATLAB codes.
For this example, we obtain numerical results of the number of iteration (Iter) and the elapsed time (CPU time) in Table
1. In Figure 1, we display the convergence history of the PGl-CGS and PGl-BiCG algorithms for Stokes problem (12)
with s = 5, ν = 0.01 and q = 16. The results in Figure 1 show that the PGl-CGS method is more effective and
smoother than the PGl-BiCG method.

    
 

Table 1. Numerical results for ν = 0.01
Grid q=8 q=12 q=16

PGl-BiCG
Iter 21 31 39

CPU time 0.0372 0.3994 2.1306
PGl-CGS

Iter 10 14 19
CPU time 0.0185 0.1595 1.0264
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Fig. 1. Comparison of convergence histories for the case s = 5, ν = 0.01 and q = 16 
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Abstract

Performance of new released cultivars in multi-environment trials are analyzed by various para-
metric and nonparametric methods for exploring stabile cultivars via biometricians. For a non-
parametric estimation of stability in test environments, a new nonparametric statistic as NCV
(nonparametric coefficient of variation) has been introduced which is based upon the ranks of
the cultivars in each test environment. This new statistic use median as a nonparametric central
tendency, and nonparametric index of statistical dispersion as inter-percentile range. The NCV
nonparametric stability statistic which presented here is similar to the concept of environmental
coefficient of variation which was previously proposed for detection of the stable cultivars in
multi-environment trials. Our research showed that the most stable cultivars based on the low-
est values of this nonparametric statistic, had the highest mean yield among studied genotypes.
Plotting of mean yield versus NCV verified the above results and showed that the highest mean
yielding cultivar is identified as the most stable one. This nonparametric statistic would be use-
ful for simultaneous selection for yield and stability, so this model can provide some flexible
tool for biometricians.

1. Introduction

Multi-environment yield trials are carried out over several years in experimental stations and are central to plant breed-
ing programs to evaluate and improve various crops. These trials are the most common and important experiments
in agricultural research, and various statistical methods have been extensively developed and discussed to effectively
analyze yield trials. In most cases, only simple statistical methods are needed when cultivars show similar results
between test environments. Evaluation in terms of relative performance and utility is complicated by the failure of
two or more cultivars to respond similarly to a test environment, known as cultivar by environment interactions. such
interactions had important effects on improving cultivar buffering because they impede the extrapolation of agronomic
assessments from one environment to another, so more knowledge about the magnitude of cultivar by environment
interactions and different sources of variation in cultivar by environment interactions is needed [1]. Ignoring culti-
var by environment interactions is problematic when it is larger than the main effect of cultivar, which is a common
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problem in multiple environment yield experiments. Additionally, cultivar by environment interactions complicate
cultivar recommendations, as cultivars must target specific test sites. In most cases, analysis of variance estimates
the existence, importance, and magnitude of cultivar by environment interactions, but cannot explain their signifi-
cance. Therefore, several statistical strategies were developed to analyze cultivar by environment interaction patterns.
Whether this statistical strategy is sufficient to explain cultivar by environment interactions remains a matter of debate.
The stabilization methods for both strategies mentioned above are all parametric. In contrast, the third strategy is
a nonparametric stability statistic, which is largely independent of the data distribution. These stability methods are
rank-based, and a given cultivar is considered stable if its rank is constant across environments. Several nonparametric
stability statistics have been developed to account for cultivar by environment interactions. The nonparametric stabil-
ity statistics separate cultivars based on their similarity of response to a range of test environments. The nonparametric
strategy is based on ranks of cultivars and provides an important alternative to the parametric strategies including uni-
variate and multivariate statistics. According to Sabaghnia et al. [2], the nonparametric strategy has some advantages
over the parametric strategies such as: reduction of the bias caused by outliers, no assumptions are required about
the data distribution, easy to use and to interpret, additions or deletions of few cultivars or environments do not cause
much variation of estimates, and for many applications such as selection in plant breeding programs and cultivar test-
ing trials, the rank order of cultivars is the most essential information. The good ability of the nonparametric stability
statistics for detecting the most stable cultivars as well as cultivar by environment interaction investigation have been
demonstrated in different crops. The objective of this study was estimation of stability performance of cultivars in
different test environments using a new nonparametric statistic as NCV (nonparametric coefficient of variation) which
is based upon the ranks of the cultivars in each environment.

2. Materials and Methods

If xij is denoted as observed mean value of the ith cultivar in the jth environment (i = 1, 2, . . . ,M ; j = 1, 2, . . . , N).
Then, rij is considered as the rank of cultivar i in environment j which the lowest value is rank 1 and the highest
value is rank of K. The concept of stability is practicable; a cultivar is the most stable over test environments if its
ranks are similar over environments, and so maximum stability = equal ranks over all test environments. The new
nonparametric stability statistics as NCV (nonparametric coefficient of variation) which is proposed in this paper is:

NCV =
(P95 − P5)

Mdi

.

In the above nonparametric statistic, P95 − P5 is the inter-percentile range, is a nonparametric index of statistical
dispersion, being equal to the difference between the upper and lower percentiles. Mdi is the median of the cultivars’
ranks in the test environments. The NCV nonparametric stability statistic which presented here is similar to the nature
and concept of ECV (environmental coefficient of variation) [3] as parametric CV (coefficient of variation), and two
nonparametric stability statistics,NS

(1)
i andNS

(2)
i , as nonparametric CV [4]. The important central tendency of ranks

Table 1. Two-way layout cited from the reference [5].

Cultivar E1 E2 E3 E4 E5 E6 Mean Median P5 P95 NCV

Man. 162 247 185 219 165 155 189 2.5 1 3 0.80
Sva. 188 258 182 183 139 144 182 1 1 3 2.00
Vel. 200 263 195 220 166 146 198 4 2 5 0.75
Tre. 197 339 271 266 151 194 236 5 2 5 0.60
Pea. 183 254 219 201 184 190 205 3 2 5 1.00

is the median and its related measures of dispersion can be inter-percentile range. It would be interesting that compare
this nonparametric statistic with the environmental coefficient of variation. The ECV was designed to exploration in
investigation on the physiological basis for stability [3], and was found more practical to characterize cultivars on a
group basis rather than individually. However, this procedure and its related concept could be used in the breeding
because it represents a simple and descriptive tool for investigation of cultivars’ stability. Considering these benefits of
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ECV concept, using new nonparametric stability statistic (NCV) could be useful in cultivar by environment interaction
interpreting and identification of the most stable cultivars especially in nonparametric strategy.

3. Findings

A barley multi-environmental trails [5] dataset is used in this research and its two-way layout of yield for five barley
cultivars at six environments. The cultivars mean, the ranks of cultivars in environments and the median of these
ranks are given in Table 1. According to the obtained results, cultivar #4 (Tre.) was the most stable cultivar based
on the lowest values of NCV statistic. This cultivar had the high mean yield performance among studied cultivars
(Table 1). Plotting of mean yield versus NCV (Fig. 1) verified the above results and indicated that the high mean
yielding cultivar is identified as the most stable cultivar. In other word, this nonparametric statistic would be useful for
simultaneous selection for mean yield and stability. Simultaneous selection for mean yield and stability of performance
is an important issue in breeding programs. Several stability models for simultaneous selection for yield and stability
of performance have been investigated. According to literature, most nonparametric stability statistics of could not be
useful for simultaneous selection of mean yield and stability [2], while this nonparametric stability statistic (NCV),
showed good detection power for both yield and stability.

Fig. 1. Plot of mean yield versus the NCV nonparametric statistic. Cultivars are: 1: Man., 2: Sva., 3: Vel., 4: Tre., 5: Pea.

4. Conclusion

It seems that the new nonparametric stability statistic (NCV) has similar nature of ECV and so benefits from Type I of
stability. In contrast, detection of high yielding cultivar as the stable one benefits from dynamic concept of stability.
However, for simultaneous selection of mean yield and stability, it is necessary to use mean yield in the formula of
each stability statistic. This method thus provides some flexibility in the hands of plant biometricians for simultaneous
selection for yield and stability. Many parametric and nonparametric statistics of stability have been presented in the
literature [1], while for making recommendation, it is essential to investigate the association among these statistics
and compare their statistical powers through biometricians.
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Abstract

Nonlinear regression models find extensive applications across various scientific disciplines. It
is vital to accurately fit the optimal nonlinear model while considering the biases of the Bayesian
optimal design. By utilizing the Dirichlet process as a prior, we present a Bayesian optimal de-
sign. The Dirichlet process serves as a fundamental tool in the exploration of Nonparametric
Bayesian inference, offering multiple representations that are well-suited for application. This
research paper introduces a novel one-parameter model, referred to as the ”Unit-Exponential
distribution”, specifically designed for the unit interval. Additionally, we employ a representa-
tion to approximate the D-optimality criterion considering the Dirichlet process as a functional
tool. Through this approach, we aim to identify a Nonparametric Bayesian optimal design.

1. Introduction

Within the realm of experimental design, the concept of optimal design refers to a specific category of designs that
are classified based on certain statistical criteria. It is widely acknowledged that a well-designed experiment can
significantly enhance the accuracy of statistical analyses. Consequently, numerous researchers have dedicated their
efforts to address the challenge of constructing optimal designs for nonlinear regression models. Experimental design
plays a pivotal role in scientific research domains, including but not limited to biomedicine and pharmacokinetics. Its
application in these fields enables researchers to conduct rigorous investigations and yield valuable insights.
Optimal designs are sought using optimality criteria, typically based on the information matrix. Until 1959, research
primarily focused on linear models, where the models were linear with respect to the parameters. However, in non-
linear models, the presence of unknown parameters introduced complexities in the design problem, as the optimality
criteria depended on these unknown parameters [3, 5, 26]. To address this challenge, researchers proposed various
solutions, including local optimal designs [1, 6, 7, 11, 18, 29], sequential optimal designs, minimax optimal designs,
Bayesian optimal designs [27, 20-24], and pseudo-Bayesian designs [25]. Chernoff (1953) introduced the concept of
local optimality, which involves specifying fixed values for the unknown parameters and optimizing a function of the

∗Talker
Email addresses: anita.abdollahi@yahoo.com (Anita Abdollahi Nanvapisheh), h.jafari@razi.ac.ir (habib Jafari),

s.khazaei@razi.ac.ir (Soleiman Khazaei)



Abdollahi Nanvapisheh & Jafari & Khazaei / The 4th National Congress on Mathematics and Statistics 241

information matrix to determine the design for these specified parameter values. This approach aimed to overcome
the difficulties associated with the dependence of the design problem on unknown parameters in nonlinear models.
The selection of unknown parameters in local designs is typically obtained from previous studies or experiments specif-
ically conducted for this purpose. The effectiveness of local designs heavily relies on the appropriate selection of these
parameters. However, a significant challenge arises when the investigated problem lacks robustness in relation to weak
parameter estimation. To address this, an alternative approach for local optimal designs involves utilizing a prior dis-
tribution for the unknown parameters instead of relying solely on initial guess. In the Bayesian method, the first step
is to represent the available information in the form of a probability distribution for the model parameter, known as
the prior distribution. A Bayesian optimal design aims to maximize the relevant optimality criterion over this prior
distribution. Nevertheless, it is crucial to acknowledge that the selection of the prior distribution within the Bayesian
framework can be problematic and may potentially lead to erroneous results. The choice of the prior distribution is
subjective, relying on the researcher’s beliefs, and it significantly influences the final outcome. Unfortunately, the
Bayesian approach lacks a definitive method for selecting the prior distribution. Numerous researchers have investi-
gated the effect of the prior distribution on determining design points in various types of optimal designs. For instance,
Chaloner and Lorentz [10], Chaloner and Duncan [8], Burghaus and Dette [4], Chaloner and Vardinelli [9], Pronzato
andWalter [28], Mukhopadhyay and Haines [25], Dette and Ngobauer [12, 13], Fedorov [14, 15], and Firth and Hinde
[17] have contributed extensively to this field. Chapter 18 of Atkinson et al.’s book [2] provides further reading on
this topic. Moreover, in situations where there is insufficient evidence from previous studies on the topic of interest,
specifying an appropriate prior distribution becomes challenging. In such cases, subjective or noninformative prior
distributions are used, incorporating all available information regarding the uncertainty of the parameter values.For
more information, refer to Burghaus and Dette [4].
This research paper presents the introduction of a novel one-parameter model, referred to as the UE distribution,
specifically designed for the unit interval in section 2. In Section3, the optimal design for nonlinear models is derived.
In the fourth section, the nonparametric Bayesian D-optimal design, Dirichlet process and Polya Urn Scheme are
introduced in this section. Finally, Section 5 concludes the paper with some closing remarks.

2. The Unit-Exponential distribution

The exponential distribution is continuous distribution in statistics and probability theory. If Y ∼ Exp(θ), then using

the transformation X=
Y

1 + Y
we have a new distribution with support on the unit-interval that the CDF and the PDF

of the resulting distribution are respectively:

F (x | θ) = 1− Exp(
−θx
1− x

); 0 ≤ x < 1, θ > 0, (1)

f(x | θ) = θ

(1− x)2
Exp(

−θx
1− x

); 0 ≤ x < 1, θ > 0. (2)

The Hazard Rate Function (HRF) of this distribution is as follows:

h(x | θ) = f(x | θ)
1− F (x | θ)

=
θ

(1− x)2
; 0 ≤ x < 1, θ > 0. (3)

In the following figure, the PDF and the HRF of this distribution are plotted for different values of the parameter θ.
Acording to this figurs, it can be seen that the HRF is increasing in 0 ≤ x < 1,.

3. Optimal Design for Nonlinear Models

In the context of nonlinear experimental design, a common issue arises where the relationship between the response
variable y and the independent variable x is given by the equation y = η(x,θ)+ϵwhere x ∈ χ⊆R and y is a response
variable and θ ∈ Θ is the unknown parameter vector and ϵ is a normally distributed residual value with mean 0 and
known variance σ2 > 0. For simplicity, we assume σ2 = 1 in this problem. If η(x,θ) is differentiable with respect to
θ then, the information matrix at a given point x can be represented as follows:
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Fig. 1. Plot of density function (left) and hrf (right)

I(ξ, θ) =
∂

∂θ
η(x,θ)

∂

∂θT
η(x,θ). (4)

There exist several optimality criteria used to obtain the optimal design, including D-optimality and A-optimality.
These criteria are functions of the information matrix and can be expressed as follows:

ΨD(ξ,θ) =− log(det(M(ξ,θ))) , ΨA(ξ,θ) = tr(M−1(ξ;θ)),

where ξ denotes a design with two components; the first component represents specific values from the design space
χ and the second component corresponds to the weights assigned to these values, so that design ξ can be defined as
follows:

ξ =

{
x1 x2 . . . xℓ
w1 w2 . . . wℓ

}
∈ Ξ, (5)

where
Ξ={ξ | 0 ≤ wj ≤ 1 ;

ℓ∑
j=1

wj = 1 , x ∈ χ}, [25].

When considering a discrete probability measure ξ with finite support, the information function of ξ can be expressed
as follows [3]:

M(ξ,θ) =
ℓ∑

j=1

wjI(xj ,θ). (6)

Because of the dependence of the information matrixM(ξ,θ) to the unknown parameter θ, one approach to address
this issue is to employ the Bayesian method and incorporate a prior distribution for the parameter vector. The Bayesian
D-optimality criterion can be formulated as follows:

ΨΠ(ξ) = E(ψ(ξ;θ)) =

∫
Θ

ψ(ξ;θ)dΠ(θ) =

∫
Θ

− log(det(M(ξ,θ)))dΠ(θ), (7)

where Π represents the prior distribution for θ and the Bayesian D-optimal design is attained by minimizing (7).
According to Dette and Neugebauer [12], in the general case of optimal designs which can include designs with two
and more points, if the support of the prior distribution has n points, then the maximum number of Bayesian optimal
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design points is given by n
p(p+ 1)

2 . Hence, in the specific scenario of nonlinear models with one parameter (p = 1),
this implies that the support of the Bayesian optimal design does not contain more points than the support of the prior
distribution.
In certain situations, specifying a prior distribution on the parameter spaceΘ can be challenging for the experimenter.
In such cases, an alternative approach is to consider an unknown prior distribution Π for the parameter θ. In this
condition, Π is treated as a parameter itself. Consequently, equation (7) becomes a random functional, and it becomes
necessary to determine its distribution or approximation. From aBayesian perspective, we construct a prior distribution
on the space of all distribution functions to address this issue. Ferguson (1973) introduced the concept of the Dirichlet
process in this context, that in the section 4.1.1 an overview of the Dirichlet process will be provided.

4. Nonparametric Bayesian D-optimal design

Now suppose we have the following regression model:

E(y|x) = η(x,θ) =
θ

(1− x)2
exp(

−θx
1− x

), 0 ≤ x < 1, θ > 0. (8)

In this section, we introduce the nonparametric Bayesian optimal designl. In the nonparametric Bayesian framework, it
is assumed that θ | P ∼ P , where P is a random probability distribution and P ∼ Π. General method of construction
a random measure is to start with the stochastic processes. Ferguson (1973) formulated the requirements which must
be imposed on a prior distribution and proposed a class of prior distributions, named Dirichlet processes. One of the
main argument in using the Dirichlet distribution in practical applications is based on the fact that this distribution
is a good approximation of many parametric probability distributions. Below we give the definition of the Dirichlet
process.

4.1. Dirichlet Process (DP)
To have a random distribution G distributed according to a Dirichlet process (DP), its marginal distributions must
follow aDirichlet distribution. Specically, letH be a distribution overΘ andα be a positive real number. For any finite
measurable partitionA1, A2, ..., Ar ofΘ the vector (G(A1), G(A2), ..., G(Ar)) is random sinceG is random. We say
G is Dirichlet process distributed with base distribution H and concentration parameter α, written G ∼ DP(α,H), if
the following conditions hold:

(G(A1), G(A2), ..., G(Ar)) ∼ Dir(αH(A1), ..., αH(Ar)), (9)

for every finite measurable partition A1, A2, ..., Ar of Θ. The parameters of H and α play intuitive roles in the
definition of the DP. The base distributionH represents the mean of the Dirichlet process, such that for any measurable
set A⊂ Θ we have E[G(A)] = H(A). On the other hand, the concentration parameter α can be viewed as an inverse
variance: V [G(A)]=H(A)(1−H(A))/(α +1). The larger α is, the smaller the variance, and the DP will concentrate
more of its mass around the mean. The concentration parameter is also referred the strength parameter, referring to
the strength of the prior when using the DP as a nonparametric prior in Bayesian nonparametric modelsl, It can be
interpreted as the amount of mass or sample size associated with the observations. It is worth noting that α and H
only appear as their product in the definition of the Dirichlet process (equation 4.2). Consequently, some authors treat
H̃=α H , as the same as the single (positive measure) parameter of the DP, writing DP( H̃ ) instead of DP(α,H). This
parametrization can be notationally convenient, but loses the distinct roles α and H play in describing the DP.
As the concentration parameter α increases, the mass of the DP becomes more concentrated around its mean. Conse-
quently, when α approaches infinity (α→ ∞ ),G(A) approachesH(A) for any measurable setA, indicating weak or
pointwise convergence of G toH . However, it’s important to note that this does not imply a direct convergence of G
toH as a whole. In fact, as we will explore later, samples drawn from a DP will typically be discrete distributions with
probability one, even if the base distributionH is smooth. Therefore,G andH may not be absolutely continuous with
respect to each other. Despite this, some authors still utilize the DP as a nonparametric extension of a parametric model
represented by H . However, if the desire is to maintain smoothness, it is possible to extend the DP by convolving G
with kernels, resulting in a random distribution with a density function.
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An alternative definition of the Dirichlet process is proposed by Ferguson [16] that defined a random probability
measure which is a Dirichlet process on (Θ, B(Θ)), as:

P (.) =
∞∑
i=1

piδθi(.), (10)

where θi (i > 1) be a sequence of i.i.d. random variables with common distribution Q, δθi represents a probability
measure that is degenerate at θ where δθi=1 if θi ∈ A and 0 otherwise, and p,i s are the random weights satisfying pi>0

and
∞∑
i=1

pi=1. The random distribution P is discrete with probability one. Several authors have proposed alternative

series representations of the Dirichlet process. Bondesson [6], Sethuraman [30], and Zarepour and Al Labadi [31] are
among those who have contributed to this area. A method of producing samples from the Dirichlet process is to use the
Polya urn process that in the upcoming section, we will discuss about it. Then the nonparametric Bayesian D-optimal
design for the UE model is discussed.

4.2. Polya Urn Scheme
Polya Urn Scheme was used by Blackwell and McQueen (1973) to demonstrate the existence of the Dirichlet process.
The method of producing a sample of the Dirichlet process is to use a Polya Urn Scheme [19]. Consider a Polya urn
with a(χ) balls of which a(i) are of color i ; i = 1, 2, ..., k.[For the moment assume that a(i) are whole numbers or
0]. Draw balls at random from the urn, replacing each ball drawn by two balls of the same color. Let Xi = j if the i
th ball is of color j. Then:

P (X1 = j) =
a(j)

a(χ)
, (11)

P (X2 = j | X1) =
a(j) + δX1

(j)

a(χ) + 1
, (12)

and in general

P (Xn+1 = j | X1, X2, ..., Xn) =

a(j) +
n∑
1
δXi(j)

a(χ) + n
, (13)

That n is the number of extracted balls and δXi
(j) is equal to one if Xi = j, otherwise it is equal to zero.

4.3. Nonparametric Bayesian D-optimal design for UE model
Now let’s consider the regression model (8), Therefore, the Bayesian D-optimality criterion, denoted asΨΠ(ξ) can be
expressed as follows:

ΨΠ(ξ) = E(ψ(ξ;θ)) =

∫
Θ

ψ(ξ; θ)dΠ(θ) =

∫
Θ

− log(
ℓ∑

j=1

wj [exp(
−θxj
1− xj

)(
1

(1− xj)2
− θxj
(1− xj)3

)]2)dΠ(θ) (14)

where Π is the prior distribution for θ. The Bayesian D-optimal design is attained by minimizing equation (14). In
the nonparametric Bayesian framework, we consider P ∼ DP(α,P0) and its collective representation as P (.) =

∞∑
i=1

pi δθi(.). In this context, the optimality criterion can be expressed as follows:

ΨΠ(ξ) =
∞∑
i=1

pi(− log(
ℓ∑

j=1

wj [exp(
−θixj
1− xj

)(
1

(1− xj)2
− θixj

(1− xj)3
)]2)). (15)

Chernoff [7] demonstrated that when searching for a local optimal design, there exists an optimal design where all
the mass is concentrated at a single point within the design’s support. Caratheodory’s theorem also confirms the
existence of a one-point optimal design. However, when employing the Bayesian optimality criterion, a more complex
situation arises. Brice and Dette showed that with a uniform prior distribution, as the support of the prior distribution
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increases, the number of optimal design points for the single-parameter model also increases. Challoner suggested that
if the researcher aims to obtain a one-point optimal design, it is advisable to consider a small support for the uniform
prior distribution. The same principle applies to nonparametric Bayesian designs. In this case, assuming a uniform
distribution over the interval [1, B] as the basic distribution, the one-point optimal design can be achieved.
Equation (7) is a stochastic function of the Dirichlet process. According to Ferguson’s definition of the Dirichlet
process, the calculation (8) is not easily possible, so to solve this problem in obtaining the optimal nonparametric
Bayesian criterion, methods such as the stick breaking process are used to approximate this criterion. Another method
has been presented by Zarepour and Ellabadi [31] whose simulation speed and accuracy is much higher than the stick
breaking process.
Since the weights produced by the stick breaking process don’t follow a decreasing trend, therefore, the Dirichlet
process can be simulated in a way where the weights are produced in a decreasing manner. The reason for this is that
the speed of reaching the cutting point increases. Zarepour and Ellabadi presented a finite collective representation
of the Dirichlet process in order to generate data from the Dirichlet process, which almost certainly converges to the
Ferguson collective representation that we present below, and the weights produced from this method are uniformly
descending, while the weights produced by the stick breaking method are randomly descending. Ferguson showed
that the Dirichlet process with parameters (α, P0) can be presented using the following series representation:

PFerg.
n (.)=

∞∑
i=1

N−1(Γi)
∞∑
i=1

N−1(Γi)
δθi(.),

where

N(x) = α

∫ ∞

x

exp(−t)
t

dt, x > 0. (16)

is the Levy measure of a Gamma(α, 1) random variable and δθi(.) denotes the Dirac measure. Now, in this section,
we present the finite sum representation of the Dirichlet process presented by Zarepour and Ellabadi [31]. LetXn be
a random variable with distribution Gamma(

α

n
,1) and with survival and quantile function, respectively as follows:

Gn(x)=P (Xn > x)=
∫∞
x

1

Γ(
α

n
)
exp(−t) t

α

n
−1
dt,

G−1
n (y)=inf{x : Gn(x) ≤ y} , 0<y<1.

According to the dominated convergence theorem, n→ ∞, we have:

nGn(x)→ N(x).

Notice that the left hand side of the above quantitative is a sequence of monotone functions converging to a monotone
function. We have:

G−1
n (x/n)→ N−1(y).

Zarepour and Ellabadi showed that for eachEi∼Exp(1), i = 1, 2, ..., n and for each θi ∼ P0, thatΓi=E1+E2+...+Ei

the obtained approximation almost certainly converges to Ferguson’s collective representation; that’s mean:

PNew.
n (.) =

n∑
i=1

G−1
n (

Γi

Γn+1
)

n∑
i=1

G−1
n (

Γi

Γn+1
)
δθi(.) → PFerg.(.) =

∞∑
i=1

N−1(Γi)
∞∑
i=1

N−1(Γi)
δθi(.), (17)

where n is as follows:
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n = inf{m :

G−1
m (

Γm

Γm+1
)

m∑
i=1

G−1
m (

Γi

Γm+1
)
< ϵ}. (18)

It is important to emphasize that unlike in the previously discussed truncation approximations, the weights:

pi =

G−1
n (

Γi

Γn+1
)

n∑
i=1

G−1
n (

Γi

Γn+1
)
, (19)

decrease monotonically for any fixed positive integer n, that leads to the fact that the speed of simulation and its
accuracy is much higher than the stick breaking process. In the following, a nonparametric Bayesian optimal design
is obtained for different selections of Dirichlet process parameters. For this purpose, at first we generate pi from (19).
We obtain n from (18) and generate Ei ∼ Exp(1), i = 1, 2,…, n, and let Γi=E1 + E2 + ... + Ei. We calculate

G−1
n (

Γi

Γn+1
), i = 1, 2,…,n from the equation G−1

n (y)= inf{x : Gn(x) < y}, and generate θi from Base measure

P0. Finally, we evaluate the functional:

ΨP (ξ) =
∞∑
i=1

pi [− log(det(M(ξ, θi)))],

and obtain ξ∗ from the following equation:

ξ∗= argmin ΨP (ξ).

Now, in this section we consider Polya Urn Scheme as the base measure in DP. We get the results by using a nonlinear
optimization programing with R package Rsolnp. For better understanding of the effect of the α parameter, we
tabulate the results for four different values of α=1, 5, 10, 50, in Tables 1-4. We also fixed ϵ=10−10. Without loss of
generality, we consider a bounded design space χ=[0, 1].
Tables 1-4 represent the results when the concentration parameter and uncertainty in the base measure increase. Ac-
cording to the results, when the value of α increases, the support points in two points design do not significantly
change. The weight of minimum point increases rapidly and the smallest point will have the most weight that this
weight almost increases or remains fixed by increasing the concentration parameter. Also for three points design,
minimum support point has the greatest weight. In addition, in the range under investigation, the results show that we
don’t have a three - point design for µ = 5, σ = 2, and in fact, it converts to the design by less points. This observation
is more clear for larger concentration parameter. But, by increasing the parameter space, optimal two and three - point
designs are obtained.

Table 1. Nonparametric Bayesian D-optimal designs with truncated normal base distribution and concentration parameter when α=1. First row:
support points; second row: weights.

Parameters Design Two points Three points
µ = 5, σ = 2 x 0.00039 0.23748 − − −

w 0.99738 0.00262 − − −
µ = 50, σ = 30 x 0.03358 0.18865 0.038036 0.18630 0.29563

w 0.97085 0.02915 0.949231 0.050768 0.0000001
µ = 150, σ = 90 x 0.01520 0.19838 0.01595 0.19625 0.29908

w 0.99393 0.00607 0.98983 0.00813 0.00204
µ = 1000, σ = 500 x 0.002302 0.19991 0.00275 0.20004 0.29995

w 0.999998 0.000002 0.999999 0.0000006 0.0000005

Now, if we assume the mean of the base distribution to be constant and increase the variance, it can be seen that in the
two-point designs, the smallest point has the most weight. The results related to this case has been presented in the
table 5.
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Table 2. Nonparametric Bayesian D-optimal designs with truncated normal base distribution and concentration parameter when α=5. First row:
support points; second row: weights.

Parameters Design Two points Three points
µ = 5, σ = 2 x 0.00068 0.22791 − − −

w 0.99734 0.00266 − − −
µ = 50, σ = 30 x 0.03373 0.18516 0.03688 0.17411 0.28843

w 0.96606 0.03394 0.91814 0.07302 0.00884
µ = 150, σ = 90 x 0.01457 0.19748 0.14979 0.19533 0.29895

w 0.99192 0.00808 0.9979605 0.0020304 0.0000001
µ = 1000, σ = 500 x 0.002169 0.19994 0.00245 0.19965 0.29999

w 0.999999 0.000001 0.9999908 0.0000001 0.0000001

Table 3. Nonparametric Bayesian D-optimal designs with truncated normal base distribution and concentration parameter when α=10. First row:
support points; second row: weights.

Parameters Design Two points Three points
µ = 5, σ = 2 x 0.00031 0.23268 − − −

w 0.99735 0.00265 − − −
µ = 50, σ = 30 x 0.03269 0.17711 0.03922 0.17145 0.29027

w 0.94385 0.05615 0.92004 0.07552 0.00444
µ = 150, σ = 90 x 0.01361 0.19819 0.01601 0.19434 0.29891

w 0.99798 0.00202 0.9879202 0.0120707 0.0000001
µ = 1000, σ = 500 x 0.00226 0.20000 0.00251 0.19948 0.29997

w 0.999992 0.0000008 0.9979901 0.0020004 0.0000005

Table 4. Nonparametric Bayesian D-optimal designs with truncated normal base distribution and concentration parameter when α=50. First row:
support points; second row: weights.

Parameters Design Two points Three points
µ = 5, σ = 2 x 0.00119 0.21958 − − −

w 0.98904 0.01096 − − −
µ = 50, σ = 30 x 0.03164 0.18099 0.03504 0.16948 0.29022

w 0.96095 0.03905 0.91685 0.07641 0.00674
µ = 150, σ = 90 x 0.01236 0.19683 0.14969 0.19641 0.29876

w 0.99596 0.00404 0.9979801 0.0020107 0.0000002
µ = 1000, σ = 500 x 0.00221 0.19988 0.002462 0.19979 0.29999

w 0.9999999 0.00000001 0.9999908 0.0000006 0.0000006

Table 5. Nonparametric Bayesian D-optimal designs with truncated normal base distribution and concentration parameter when α=1. First row:
support points; second row: weights.

Parameters Design Two points Three points
µ = 50, σ = 30 x 0.03342 0.18889 0.03342 0.19076 0.29333

w 0.97926 0.02074 0.96545 0.03227 0.00228
µ = 50, σ = 90 x 0.02209 0.19534 0.02491 0.19477 0.29463

w 0.98720 0.01280 0.98060 0.1939609 0.0000001
µ = 50, σ = 500 x 0.00567 0.20004 0.008246 0.19944 0.29863

w 0.99797 0.00203 0.9979821 0.0020104 0.0000005

5. Concluding Remarks And Future Works

Nonlinear regression models are widely used in various scientific fields, and the Bayesian method is commonly em-
ployed to obtain optimal designs in such models. However, one of the challenges in the Bayesian framework is the
subjective selection of the prior distribution, which can potentially lead to incorrect results. The choice of the prior
distribution is often based on the researcher’s beliefs, and it strongly influences the final outcome. Unfortunately, the
Bayesian approach lacks a systematic method for selecting the prior distribution. To overcome these limitations and
reduce reliance on restrictive parametric assumptions, nonparametric Bayesian methods are pursued. In this study,
we consider the prior distribution as an unknown parameter and utilize the Dirichlet process to derive nonparametric
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Bayesian D-optimal designs. Specifically, we focus on a nonlinear model with one parameter, namely the Unit-
Exponential distribution. We investigate the Bayesian D-optimal design for the unit exponential regression model
(equation 8) using a truncated normal prior distribution, examining various parameter values. By adopting a non-
parametric Bayesian approach and utilizing the Dirichlet process, we aim to address the challenges associated with
selecting the prior distribution in Bayesian optimal design construction. This allows us to account for uncertainty and
mitigate the impact of restrictive parametric assumptions, providing more flexible and robust designs for nonlinear
regression models.
In this study, we focus on utilizing the Polya Urn Scheme as the base distribution in the Dirichlet process. To better
understand the influence of the concentration parameter α, we present the results in tables for four different values of
α=1, 5, 10, 50. These tables provide valuable insights into the nonparametric Bayesian optimal designs, showcasing the
distribution of weights and support points. By analyzing the results for different values of α, we can better understand
the impact of this parameter on the design outcomes. This approach allows us to explore and evaluate the performance
of the nonparametric Bayesian optimal designs under varying levels of concentration parameter α.
In the investigated range, the results reveal interesting findings. For small parameter values, there are no three-point
designs observed. However, By increasing uncertainty in the base measure, another optimal point is obtained with a
very small weight, resulting in a design where the smallest point has the highest weight.
Moreover, as the uncertainty in the base measure and the concentration parameter in the Dirichlet process increase, the
support points in the two-point designs do not undergo significant changes. The weight of the smallest point increases
rapidly, and it becomes the point with the highest weight. This weight tends to either increase or remain relatively
stable with an increase in the concentration parameter.
It is important to note that this approach can be applied to other optimality criteria and various models with two or
more parameters. For example, nonparametric Bayesian optimal designs using the A- or E-optimality criterion for the
nonlinear model discussed in this paper, along with a Dirichlet process prior, hold potential for further research. We
hope to report new results in this area in the near future.
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Abstract

A statistical model for statistical analysis has been proposed for biometricians based on testing
the n varieties in m environments which lets to explore the general and specific adaptive ability
of varieties. The stability characterizes of statistics, are compared across environments for their
ability to differentiate the varieties. It was shown that the both general and specific adaptive
ability have their variances give more precise information about the stability and differentiative
ability of environments. A method for estimation of selection value of a genotype as relative
stability (RS) based on the general and specific adaptive ability of varieties is proposed in se-
lection of highly productive and stable ones. Selection for specific adaptive ability taking into
stability can be recommended, because the first direction of selection can transform the struc-
ture of crop. Predictably given environmental conditions, it is advisable to carry out selection for
specific adaptive ability. However, in unpredictable cases, selection of general adaptive ability
cause to achieve stability and aid biometricians.

1. Introduction

Multi-environment Attention of biometricians is involved in the development of models for assessing sustainable
stability, general adaptive ability as well specific adaptive ability of varieties in order to optimize these important
properties of crops. There are various approaches to assessing stability of cultivars and some overviews of these
models are presented in thework of Cheshkova et al. [1]. The terms general and specific adaptation have become firmly
established in the literature while term stability reflecting the general reaction of the variety throughout set of locations
and years. The study of varieties in different environments can also provide information about the environments as
backgrounds for selection. Kilchevskiy and Hotyleva [2] proposed a method of genetic analysis based on the testing
varieties in different environments and allowing biometricians to identify a general and the specific adaptive ability
of varieties, their stability and also compare performance according to their ability to differentiate varieties. In this
case, it is possible to evaluate the breeding value of the variety and carry out selection according to adaptive ability
depending on the selected selection tasks. The method also makes it possible to obtain phenotypic variances of the
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studied population on the basis of general and specific adaptive capacity for the purpose of comparing populations and
choosing methods for genetic improvement.

2. Methods

The adaptive ability modifies the ability of variety under keeping its characteristic phenotypic expression of a trait
under certain environmental conditions. General adaptive capacity of the variety as defined GAA (general adaptive
ability) characterizes the average value of a trait under different conditions environment, while the specific adaptive
ability (SAA) is deviation from GAA in a specific environment. The developed method for assessing GAA and SAA
is based on a test population of i varieties in j environments, and the number of repetitions is equal to k. Then,

xijk = µ+ νi + ej + νeij + ϵijk, (1)

where xijk is the phenotypic value of the variety i grown in the j-th environment in the k-th repetition, and µ is
the general mean among the entire set of phenotypic values, νi is the effect of variety i; ei, is the effect of the j-th
environment; νeij is the effect of the interaction of variety i with the environment j; ϵijk, residual of formula, caught
by random reasons and assigned to error. To establish the significance of the contributions of varieties, environments
and interaction actions between them in the phenotypic variability of the population, two-factor analysis of variance
is performed. Interpretation of the results of variance analysis depends on the reprovisions regarding the material
being studied. If varieties and environments are non-random samples, we consider their effects to be fixed data and
can obtain information about specific varieties and mean. In this case, the first option is used, in which all effects
except independently varying environments are considered constant values, and normally distributed with zero mean
and variance equal to one is supposed. To establish the significance of the effects of varieties, environments and
interactions, the p-criterion is used. At the same time, the corresponding averages the squares are compared with the
mean square of random deviations error. Let us accept the assumptions of the first option, then, according to definition,
the effect the general adaptive capacity of the i-th variety of GAA is equal to vi. Deviation from the sum ν + e, will
show the effect of a specific adaptive ability of variety in A-that environment - SAS. This effect consists of the linear
(the effect of the j-th environment) and the nonlinear part (the effect of interaction effect νeij). To determine the effects
of GAA and SAA, we calculate the average values of the phenotypic in terms of repetition. Then the results of testing
i varieties in j environment, can be written in the form of a two-way table variety × environment × repetition. The
effects of GAA and SAA are calculated using the following formulas:

xij = µ+ νi + ej + νeij , (2)
xij = µ+GAAi + SAAij . (3)

To obtain the standard error of the differences it is necessary to take the square root of the corresponding variation. A
number of varieties in terms of general adaptive ability can be determined lead by comparing the GAA. As a measure
of the stability of each variety, it is proposed to use this formula:

σ2
SAA =

1

m− 1

∑
k

(νi + νeij)
2 − m− 1

m
σ2. (4)

The concept of relative stability (RS) of the variety can be calculated as:

RS =
σSAAi

µ+GAAi
× 100. (5)

This indicator will allow you to compare the results of experiments, carried out with a different set of crops, varieties,
environments and studied traits. Essentially, relative stability is similar to the coefficient of variation in the case in a
number of environments.



252 Naser Sabaghnia & Mohsen Janmohammadi / The 4th National Congress on Mathematics and Statistics

3. Findings

There are big disagreements in the selection interpretation of the evaluation of stability of varieties. Thus, the optimal
variety based on regression analysis, is one with a high average value of the trait, to effectively regression rate close
to unity and the smallest deviations from regression line. However, Olivoto et al. [3] showed that as a result of
selection it is possible to achieve any combination of the average value of the characteristic and the environment index
of sensitivity. optimal variety that, having a high general adaptive capacity, gives the greatest harvest in favorable
environments and provides maximum stability. The final assessment of the breeding material will depend on the
adaptive selection. The following main directions are possible adaptive selection. Under selection of varieties for
SAA in a certain environment, selection is desirable only in controlled environmental conditions (closed ground.
irrigated lands, etc.). At the same time, there is a danger of depletion of the basis of general fitness and decreased
stability variety. Under selection for GAA of varieties for a number of environments, the average phenotype in all
environments and, there is a maximum increase in the trait compared to selection in the favorable or unfavorable
environments and average environmental sensitivity activity, the latter is not controlled during the selection process.

4. Conclusion

Finally, selection for SAA taking into account stability can be recommended, because the first direction of adaptive
selection which transforms the structure and functions of organisms, the second leads to stabilization of morphogen-
esis. Predictably given environmental conditions, it is advisable to carry out selection for specific adaptive ability, in
unpredictable cases, to select for GAA taking into account volume of stability. Experimental verification of compar-
ative effectiveness is necessary because methods of adaptive selection on various objects with depended to genetic
analysis of the obtained material.

References

[1] A. F. Cheshkova, P. I. Stepochkin, A. F. Aleynikov, I. G. Grebennikova, V. I. Ponomarenko. A comparison of statistical methods for assessing
winter wheat grain yield stability. Vavilov Journal of Genetics and Breeding, 24(3): 267-274, 2020.

[2] A.V. Kilchevskiy, L.V. Hotyleva. Methods of assessments of the adaptive abilities and stability of genotypes differentiating the abilities of
environment. Messages 1. Justification of the method. Genetics, 21:1481 –1490, 1985.

[3] T. Olivoto, A. D. Lúcio, J. A. da Silva, V. S. Marchioro, V. Q. de Souza, E. Jost. Mean performance and stability in multi‐environment trials
I: combining features of AMMI and BLUP techniques. Agronomy Journal, 111(6), 2949-2960, 2019.



Gonbad Kavous University

The 4th National Congress on Mathematics and StatisticsThe 4th National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1402

The 4th National Congress on Mathematics and Statistics, ST–105, pp. 253–258

The optimal method selection for considering the dependence degree
determining of students examinations

Hakim Bekrizadeha,∗
aDepartment of Statistics, Payame Noor University, Tehran, Iran

Article Info

Keywords:
Canonical correlation analysis
Neural network
Kernel method
Gaussian-kernel function
Hyperbolic tangent function

Abstract

Canonical correlation analysis is a technique applied for extracting common properties of mul-
tivariate data pair to find their linear transformation in a way that coefficient correlation be-
comes maximum. There are also other techniques including non-linear neural network and ker-
nel canonical correlation analysis method that are in fact generalization of canonical correlation
analysis. The whole purpose of these techniques is determination of the correlation or relation
among several variable sets. In this paper, canonical correlation analysis methods were consid-
ered and an optimal way for determining the correlation degree of student’s examinations was
selected.

1. Introduction

Since regression analysis is not reliable for very great dimensions, it is necessary to decrease the spatial dimension
in some ways to solve this problem. For this reason the canonical correlation analysis is introduced as a technique
to extract common features from a pairs of multivariate data. Therefore canonical correlation analysis is used for
decreasing spatial dimension and finds the linear transformation of a pairs ofmultivariates so that correlation coefficient
is maximized (Hotelling, 1936; Bartlett, 1941; Foucat, 1999). The initial objective is to find the maximal correlation
between a chosen linear combination of the first set of variables and a chosen linear combination of the second set of
variables. Maximizing this method tries to focus on a relation with high dimension which is illustrated between two
sets of variables to a number of canonical variable pairs. However, if the purpose is regression, the large values of
correlation coefficient are crucially necessary. The reason that correlation coefficients are small can be considered in
the following cases:

1. X and Y does not have almost any relation.
2. There is strong nonlinear relation between X and Y.

It is impassible to improve the first case. However, in the second case, we can obtain the relation by some method.
One of those methods is to allow the nonlinear transformation.
If the relationship between variables pairs is stated in nonlinear form it is proposed to use the neural network model
which approximately optimizes the nonlinear canonical correlation analysis ( Lai and Fyfe, 2000). However, this
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Fig. 1. CCA

model requires a lot of computation time and it also has a lot of local optima. To solve this problem a kernel canonical
correlation analysis is used which enable us to decrease voluminous computations and pretend unwanted local optima.
A kernel model analyses the data to its basic elements and keeps them in the memory (Akaho, 2001). In this way it
learns those data. The whole purpose of these techniques is to determine the correlation or relation among several
variable sets.
In this paper, canonical correlation analysis methods were considered and an optimal way for determining the corre-
lation degree of student’s examinations was selected.

2. Analysis methods

2.1. Canonical Correlation Analysis (CCA)
CCA has been proposed by Hotelling(1936). Suppose there is a pair’s multi-variate and CCA finds a pairs of linear
transformation such that the correlation coefficient between extracted features is maximized (Fig.1).
Suppose two linear combinations of and . Correlation between and is as following:

ρ (v,u) =
E (vu)√

var(u)var(v)
=

α′Σxyβ√
(α′Σxxα) (β′Σyyβ)

(1)

where,
∑

xx = E (x− µ) (x− µ)
′ ,

∑
yy = E (y − η) (y − η)

′, and
∑

xy = E (x− µ) (y − η)
′. We have to further

assume {
var(u) = α′Σxxα = 1

var(v) = β′Σyyβ = 1
. (2)

To reduce the freedom of scaling of u and v. Using the Lagrangean,

L (λ, α, β) = α′Σxyβ − λx

2
(α′Σxxα− 1)− λy

2
(β′Σyyβ − 1) (3)

where λx and λy are langrangean coefficients. Deriving the equation (3) for and parameters gives their scores.

2.2. Nonlinear neural network
Simulation techniques with neural network have had successful results e.g. in functions values approximation, realiz-
ing patterns and nonlinear processes estimation (Scholkopf, et. all, 1999; Vert and Kanehisa, 2003; Asoh and Takechi,
1994; Hsieh, 2000). The main advantage of the neural network model is learning. The operational function for all
variables is,

f (x1, x2) = arctanh

(
∥x1∥2

∥x2∥2

)
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Fig. 2. Nonlinear neural network

If we choose appropriate initial coefficient, the above will be able to relate between income and outcome. In this
method the main purpose is to maximize the correlation and (Fig.2).That is;{

u =
∑

j αjf(xj) = αf1

v =
∑

j βjf(yj) = βf2
. (4)

To calculate the and coefficient used Lagrangean,

J = E

{
(uv) +

λ1

2

(
1− u2

)
+

λ2

2

(
1− v2

)}
(5)

Deriving the equation (5) for and parameters gives their scores. e.g.,{
∂J
∂α = f1 (v − λ1u)
∂J
∂β = α

(
1− f2

1

)
x (v − λ1u)

. (6)

. This model which approximately optimizes the nonlinear canonical correlation analysis. However, this model re-
quires a lot of computation time and it also has a lot of local optima. To solve this problem a kernel canonical correlation
analysis is used which enable as to decrease voluminous computations and pretend unwanted local optima.

2.3. Kernel canonical correlation analysis (KCCA)
KCCA is a method which generalizes classical CCA and which we now recall. The kernel canonical correlation
analysis is used which enables as to decrease voluminous computations and pretend unwanted local optima (Bach and
Jordan, 2002; Melzer, et. all, 2001). Its goal is to detect correlation between two data-sets and . To this end, the
objects and are mapped to some Hilbert space and by a mapping and . Classical CCA can then be performed between
the images and as follows. The goal is to find two directions and such that the features{

u = (α,ΦX(x))
v = (β,ΦY (y))

(7)

be maximally correlated (Fig.3). They can therefore be expressed as:{
α =

∑
i αiΦX(xi)

β =
∑

i βiΦY (yi)
(8)

In that case the corresponding and can be rewritten as{
u =

∑
i αi (ΦX(xi),ΦX(x))

v =
∑

i βi (ΦY (yi),ΦY (y))
(9)
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Fig. 3. KCCA

The and can now be found by solving the Lagrangean

L0 = E ((u− E (u)) (v − E (v)))− ρx
2
E (u− E (u))

2 − ρy
2
E (v − E (v))

2 (10)

Where and are lagrange multipliers. Any Gaussian kernel functionK (x1, x2) = exp
(

∥x1−x2∥2

2σ2

)
K (., .)onχ2 defines

a Hilbert space and a mappingΦχ(.). Such that

KX(x1, x2) = (ΦX(x1),ΦX(x2)) , ∀(x1, x2) ∈ χ2 (11)

Now let (Kx)ij = Kx (xi, xj)and (Ky)ij = Ky (yi, yj)be two matrices, assumed to be centered. Then L can be
rewritten as

L = α′KxKyβ − ρx
2
α′ (Kx + λxI)

2
α− ρy

2
β′ (Ky + λyI)

2
β (12)

This shows that regularization parametersλx and λy control the trade-off between maximizing the correlation and
penalizing the complexity of α and β. Maximizing this lagrangean can be done by solving the following generalized
eigenvalue problem. After finding, kernel canonical correlation scores (KCC scores) can be recovered by u = Kxα
and v = Kxβ .

3. Data Analysis

Knowing how to find scores (dependent variable) will be affected by pervious exam’s or other variables such as age
or sex (explanatory variable), maybe useful for canceling or other objectives. Suppose we have some final scores
from different field, how can we combine and mix these scores or obtain the mean? The direction is to the mean. But
this way always is not the appropriate way. For example if some scores from certain examination, will change more
consistently than others we may give them different value and this lead to seeking linear combination which is, in one
sense, optimal. Some times some exams will be classified in to more than one group. For example we may have “open
book exams” or” closed book” ones. In such cases we may tend to use linear combination in each group separately. To
study this, consider, data related to open and closed books, so that we have five variables, two closed books (Mechanic
and vectors) and three open books (statistics, analysis and algebra). In this case we want to know how much a student
has aptitude in open books. You should know that (u1, v1) and (u2, v2) are new artificial pair variables based on
canonical and kernel methods. Table 1 shows that the first and second correlation obtained by kernel are higher than
canonical methods. Table 2 shows that the first correlation (the most) obtained by neural network and kernel methods
are higher than those obtained by canonical method. Of course correlation obtained by kernel method is much higher
than those obtained by other statistical analysis. Diagram 1 and 2 show the dispersion of the data obtained by normal
& kernel method. As clear from diagram 1 it is the best interpretation for is that, this variable shows the high frequency
for closed book exams. The above results obtained by R1.9.0.



Bekrizadeh / The 4th National Congress on Mathematics and Statistics 257

Table 1. shows that the first and second correlation

 

 

 
  Figure 3: KCCA    

3. Data Analysis 

Knowing how to find scores (dependent variable) will be affected by pervious exam’s or other variables such as age 

or sex (explanatory variable), maybe useful for canceling or other objectives. Suppose we have some final scores 

from different field, how can we combine and mix these scores or obtain the mean?  The direction is to the mean. 

But this way always is not the appropriate way. For example if some scores from certain examination, will change 

more consistently than others we may give them different value and this lead to seeking linear combination which is, 

in one sense, optimal. Some times some exams will be classified in to more than one group. For example we may 

have “open book exams” or” closed book” ones. In such cases we may tend to use linear combination in each group 

separately. To study this, consider, data related to open and closed books, so that we have five variables, two closed 

books (Mechanic and vectors) and three open books (statistics, analysis and algebra). In this case we want to know 

how much a student has aptitude in open books. You should know that ),(  vu  and ),(  vu are new artificial pair 

variables based on canonical and kernel methods. Table 1 shows that the first and second correlation obtained by 

kernel are higher than canonical methods. Table 2 shows that the first correlation (the most) obtained by neural 

network and kernel methods are higher than those obtained by canonical method. Of course correlation obtained by 

kernel method is much higher than those obtained by other statistical analysis. Diagram 1 and 2 show the dispersion 

of the data obtained by normal & kernel method. As clear from diagram 1 it is the best interpretation for v  is that, 

this variable shows the high frequency for closed book exams. The above results obtained by R1.9.0. 

TABLE 1: shows that the first and second correlation 

 CCA
 

KCCA 

 v  v  v  v  

u  0.663 0 0.736 0 

u  0 0.031 0 0.419 

 

TABLE 2: Statistical methods 

1. Standard statistics maximum correlation  0.663 

2. Canonical maximum correlation 0.663 

3. Nonlinear neural network maximum correlation 0.674 

4. Kernel maximum correlation 0.736 

 

   

 

 

 

 

 

 

 

 

 

     

Diagram 2                   Diagram 1 
-0.2 -0.1 0.0 0.1 0.2

-0
.2

-0
.1

0
.0

0
.1

CC1 scores: close book vs. open book

score1-1

s
c
o

re
2

-1

u1

v
1

0.2 0.4 0.6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Table 2. Statistical methods

 

 

 
  Figure 3: KCCA    

3. Data Analysis 

Knowing how to find scores (dependent variable) will be affected by pervious exam’s or other variables such as age 

or sex (explanatory variable), maybe useful for canceling or other objectives. Suppose we have some final scores 

from different field, how can we combine and mix these scores or obtain the mean?  The direction is to the mean. 

But this way always is not the appropriate way. For example if some scores from certain examination, will change 

more consistently than others we may give them different value and this lead to seeking linear combination which is, 

in one sense, optimal. Some times some exams will be classified in to more than one group. For example we may 

have “open book exams” or” closed book” ones. In such cases we may tend to use linear combination in each group 

separately. To study this, consider, data related to open and closed books, so that we have five variables, two closed 

books (Mechanic and vectors) and three open books (statistics, analysis and algebra). In this case we want to know 

how much a student has aptitude in open books. You should know that ),(  vu  and ),(  vu are new artificial pair 

variables based on canonical and kernel methods. Table 1 shows that the first and second correlation obtained by 

kernel are higher than canonical methods. Table 2 shows that the first correlation (the most) obtained by neural 

network and kernel methods are higher than those obtained by canonical method. Of course correlation obtained by 

kernel method is much higher than those obtained by other statistical analysis. Diagram 1 and 2 show the dispersion 

of the data obtained by normal & kernel method. As clear from diagram 1 it is the best interpretation for v  is that, 

this variable shows the high frequency for closed book exams. The above results obtained by R1.9.0. 

TABLE 1: shows that the first and second correlation 

 CCA
 

KCCA 

 v  v  v  v  

u  0.663 0 0.736 0 

u  0 0.031 0 0.419 

 

TABLE 2: Statistical methods 

1. Standard statistics maximum correlation  0.663 

2. Canonical maximum correlation 0.663 

3. Nonlinear neural network maximum correlation 0.674 

4. Kernel maximum correlation 0.736 

 

   

 

 

 

 

 

 

 

 

 

     

Diagram 2                   Diagram 1 
-0.2 -0.1 0.0 0.1 0.2

-0
.2

-0
.1

0
.0

0
.1

CC1 scores: close book vs. open book

score1-1

s
c
o

re
2

-1

u1

v
1

0.2 0.4 0.6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

 

 

 
  Figure 3: KCCA    

3. Data Analysis 

Knowing how to find scores (dependent variable) will be affected by pervious exam’s or other variables such as age 

or sex (explanatory variable), maybe useful for canceling or other objectives. Suppose we have some final scores 

from different field, how can we combine and mix these scores or obtain the mean?  The direction is to the mean. 

But this way always is not the appropriate way. For example if some scores from certain examination, will change 

more consistently than others we may give them different value and this lead to seeking linear combination which is, 

in one sense, optimal. Some times some exams will be classified in to more than one group. For example we may 

have “open book exams” or” closed book” ones. In such cases we may tend to use linear combination in each group 

separately. To study this, consider, data related to open and closed books, so that we have five variables, two closed 

books (Mechanic and vectors) and three open books (statistics, analysis and algebra). In this case we want to know 

how much a student has aptitude in open books. You should know that ),(  vu  and ),(  vu are new artificial pair 

variables based on canonical and kernel methods. Table 1 shows that the first and second correlation obtained by 

kernel are higher than canonical methods. Table 2 shows that the first correlation (the most) obtained by neural 

network and kernel methods are higher than those obtained by canonical method. Of course correlation obtained by 

kernel method is much higher than those obtained by other statistical analysis. Diagram 1 and 2 show the dispersion 

of the data obtained by normal & kernel method. As clear from diagram 1 it is the best interpretation for v  is that, 

this variable shows the high frequency for closed book exams. The above results obtained by R1.9.0. 

TABLE 1: shows that the first and second correlation 

 CCA
 

KCCA 

 v  v  v  v  

u  0.663 0 0.736 0 

u  0 0.031 0 0.419 

 

TABLE 2: Statistical methods 

1. Standard statistics maximum correlation  0.663 

2. Canonical maximum correlation 0.663 

3. Nonlinear neural network maximum correlation 0.674 

4. Kernel maximum correlation 0.736 

 

   

 

 

 

 

 

 

 

 

 

     

          
-0.2 -0.1 0.0 0.1 0.2

-0
.2

-0
.1

0
.0

0
.1

CC1 scores: close book vs. open book

score1-1

s
c
o

re
2

-1

u1

v
1

0.2 0.4 0.6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Fig. 4. Diagram 1 and 2 show the dispersion of the data obtained by normal & kernel method.



258 Bekrizadeh / The 4th National Congress on Mathematics and Statistics

4. Conclusion

The kernel method compared to canonical method is preferred in space with high domination one .If all canonical
correlation are significant, all correlation will have an approximate one. We can apply kernel method for discriminant
analysis, principal Components analysis and regression. Generally, for nonlinear data we can use kernel method to
optimize correlation in canonical method is both linear & significant, we can show this relationship by kernel method
much better. The optimal method for student’s exams results is kernel method. For optimizing exams values or
coefficient, the first step is correlation or relationships between the data. Kernel method shows that student’s aptitude
in closed book depends highly on his or her aptitude in open book. Other words we can use open book results for
predicting close book ones or visa versa. Therefore one appropriate method for exams result analysis in determining
correlation or relationship is kernel analysis. These results, of course, should be studied carefully since firstly, in kernel
method it is necessary that quantity of each sample data be similar. Secondly, obtaining correlation or relationship in
each set of data is possible only on the condition that we have a generalized kernel regression.
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Abstract

Dealing with outliers poses a significant challenge in the realm of data classification. These
outliers can inadvertently inflate the number of predicted categories and result in classification
errors. Classification methods can be broadly divided into two categories: parametric and non-
parametric. One example of a parametric approach is model-based classification, which relies
on utilizing a finite mixture of probability density functions. Notable among the non-parametric
methods are decision trees and random forests. In this research, we explore the impact of out-
liers on classification algorithms through Monte Carlo simulations and conduct a comparative
analysis. The findings indicate that parametric methods exhibit superior accuracy compared to
the decision trees and random forests algorithms.

1. Introduction

Classification methods are a fundamental aspect of data analysis and machine learning. They are utilized to categorize
and predict the class or category to which a particular data sample belongs. In this article, we will delve into the world
of classification methods, specifically focusing on the comparison between parametric and nonparametric approaches
and their sensitivity to outliers.
There are two general categories for these methods: parametric and nonparametric. Parametric methods involve mak-
ing assumptions about the underlying distribution of the data. By making these assumptions, the model can estimate
the parameters that define the distribution and then use those estimated parameters to make predictions. Finite mixture
(FM) models, specifically, incorporate a combination of probability density functions, which can accommodate multi-
modal distributions. Each density function within the model has weight coefficients that determine the probability of
assigning each observation to a specific group or class. Since the sum of these coefficients equals one, this method can
be used to classify data into predefined groups. The main condition for using this method is that the data distribution
is known in advance.
On the other hand, nonparametric methods do not make any restrictive assumptions about the underlying data distri-
bution. Instead, they rely on the data itself to determine the decision boundaries and make predictions. Nonparametric
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methods include techniques such as k-nearest neighbors (KNN), support vector machines (SVM), decision trees, and
random forests.
One crucial aspect to consider when working with classification methods is the presence of outliers in the data. Outliers
are data points that deviate significantly from the overall pattern or distribution of the data. These outliers can have
a substantial impact on the classification results, potentially skewing the decision boundaries and misclassifying data
points.
In this article, we compare the behavior of some finite mixture models and nonparametric tree-based models for clas-
sification in the presence of outliers. In the following section, we will examine a few classification models. Section 3
will include simulated studies to assess the classification performance of eachmodel when dealing with data containing
outliers.

2. Classification schemes

2.1. Finite mixture models
Consider n independent random variables Y1, Y2, ..., Yn, which are taken from a mixture of some distributions. The
pdf of a g-component mixture model is given by

f(yi|Θ) =

g∑
j=1

πj fZ(yi;θj), i = 1, · · · , n, (1)

whereπj ≥ 0’s,
∑g

j=1 πj = 1, aremixing proportions and fZ(yi;θj) denotes the pdf of the fZ andΘ = (π1, ..., πg−1, θ1, ..., θg)
represents all unknown parameters.
McLachlan and Peel (2004) is a good reference for two well-known FM-Normal and FM-t models. In these mod-
els, fZ(yi;θj) is the pdf of Normal and t-student distributions, respectively. Nonetheless, the stability provided by
the FM-Normal and FM-t models might not be adequate to handle significant extreme values in the observed data’s
tails. To mitigate this problem, Lin et al. introduced finite mixture models of the skew-normal (SN) and skew-t (ST)
distributions in separate studies published in 2007.
The SN distribution (Azzalini, 1985) is conventionally denoted by Y ∼ SN

(
ξ, σ2, λ

)
with pdf given by

fSN (y; ξ, σ2, λ) =
2

σ
ϕ(u)Φ(λu), (2)

where u = (y − ξ)/σ, and ϕ(·) and Φ(·), respectively, stand for the pdf and cdf of the standard normal distribution,
namely N(0, 1). Moreover, the skew-t (Azzalini and Capitanio, 2003) distribution has the pdf as

fST (y; ξ, σ
2, λ, ν) =

2

σ
t(u; ν)T

(
λu

√
ν + 1

ν + u2
; ν + 1

)
, y ∈ R,

where t(·;κ) and T (·;κ) denote the pdf and cdf of the Student-t distribution with κ degrees of freedom (df), respec-
tively. The FM-SN and FM-t distributions are defined by getting fZ(yi;θj) in (1) as the pdf of SN and ST distributions,
respectively.

2.2. Tree-based classification models
In this section, we give a summary of each nonparametric method that is used to classify data. The focus is on providing
an overview rather than diving into the mathematical formulas or technical algorithms of each approach. For in-depth
understanding, readers are encouraged to explore the referenced sources associated with each model. In addition, there
are various machine learning algorithms available for this purpose. However, for the purpose of comparison, we will
only focus on two tree-based models that are developed using distance measurements between observations and their
similarities and dissimilarities.
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• DT: The decision tree is a type of supervised learning model that involves dividing the predictor space into
multiple simple regions. In this model, each observation is assigned to the most common class of training
observations within its specific region. This is achieved by constructing a tree with different nodes and leaves.
Each observation can be classified into a terminal node of the decision tree based on input variables, with a
conditional probability. To create a classification tree, themisclassification error rate or Gini index can be used as
criteria to determine when the algorithm should stop. Decision trees are easily displayed visually, making them
simple to explain to non-experts. However, compared to other parametric classification approaches, decision
trees may not always provide the same level of predictive accuracy, as noted by some authors (James et al.,
2013).

• RF: The random forest algorithm is a method for improving the predictive accuracy of decision trees by combin-
ing several of them together. It works by constructing multiple decision trees using different training samples,
selecting a random set of input variables for each tree, and stopping the algorithm when a certain accuracy
level is reached. Because these trees are uncorrelated and chosen through bootstrap sampling, the random forest
provides a more accurate classification compared to individual decision trees. (Wager and Athey, 2018)

In the next section, we’ll employ these algorithms on simulated data and compare the performance of them in presence
of outliers data.

3. Simulation scheme

Outliers can have a large impact on the estimation of model parameters and the prediction of future outcomes. There-
fore, it is desirable to have models that are not overly influenced by outliers and can handle them appropriately. In
this section, we will compare the models that we have introduced in the previous section in terms of their sensitivity
to outliers. We will use some synthetic and real data sets to illustrate the effect of outliers on each model and discuss
the advantages and disadvantages of each model in dealing with outliers.
The faithful data set is a classic example of how to apply classification techniques to real-world problems. This data
set contains 272 observations of the Old Faithful geyser in Yellowstone National Park, USA. The data set records the
duration of each eruption (eruption) and the time elapsed since the previous eruption (waiting). By plotting these two
variables, we can see that there are two distinct clusters of points, corresponding to two types of eruptions: short and
long. The goal of classification is to assign each observation to one of these two classes, based on the values of the
variables. This can help us understand the patterns and dynamics of the geyser’s behavior, and also predict when the
next eruption will occur.
We wanted to see how outliers affect the classification performance of different models on the data set we used. We
also wanted to compare the models under different scenarios of outlier contamination. So, we created three simulation
schemes, where we added outliers to the original data set at different rates: 10%, 20% and 30%. We generated the
outliers from a uniform distribution by adding 0.2 to maximum values of each variable.
Figure 1 shows the faithful data and added outliers in three different schems.
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Fig. 1. Faithful data (black cyrcles) and added outliers (gray) in three different schems. Left: 10 percent, middle: 20 percent, Right: 30 percent.

Then, we apply the classification models that we discussed in the previous chapter to the three data sets with different
levels of outlier contamination. These models are based on either distributional assumptions or tree-based structures.
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Fig. 2. The contour plots of fitted Normal and t distributions to faithful data with differnet outlier percents: (a) 10 percent (b) 20 percent (c) 30
percent.
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Fig. 3. The contour plots of fitted skew-normal and skew-t distributions to faithful data with differnet outlier percents: (a) 10 percent (b) 20 percent
(c) 30 percent.

We plot the contour lines of the fitted distributions for each data set in Figures 2 and 3. We can see that the skew-normal
and skew-t distributions are more robust to outliers than the normal and t distributions.
We also compare the classification performance of the different models on the original data and the data with outliers.
We use two metrics to measure the performance: classification accuracy and sensitivity. The accuracy index measures
the proportion of correct predictions out of the total number of predictions made by the model. It is calculated by
dividing the number of true positives and true negatives by the total number of examples. A high accuracy index
means that the model can correctly classify most of the examples.
The sensitivity index measures the proportion of positive examples that are correctly classified by the model. It is also
known as the true positive rate or the recall. It is calculated by dividing the number of true positives by the sum of true
positives and false negatives. A high sensitivity index means that the model can correctly identify most of the positive
examples. The confusion matrix for a classification model is shown as:
The accuracy and sensitivity indices for this model are:

ACCURACY =
(TP + TN)

(TP + TN + FP + FN)
, SENSITIVITY =

TP

(TP + FN)

Figures 4 and 5 show the accuracy and sensitivity of compared models in 250 replicated of simulation schemes. Figure
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Table 1. The confusion matrix of a classification model
Predicted positive Predicted negative

Actual positive TP FN
Actual negative FP TN

4 shows that in all three cases, the finite mixture models have higher accuracy than the nonparametric models. Among
the parametric models, the skew-normal model is better than the other models as the number of outliers increases.
According to Figure 5, the sensitivity of tree-based models decreases as the number of outliers increases. While the
accuracy of the finite mixture models increases. Also, in general, in all three cases, the sensitivity of the finite mixture
models is higher than the nonparametric models.
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Fig. 4. The accuracy of finite mixture and tree-based models in three situations: (a) 10 percent outlier (b) 20 percent outlier (c) 30 percent outlier.
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Fig. 5. The sensitivity of finite mixture and tree-based models in three situations: (a) 10 percent outlier (b) 20 percent outlier (c) 30 percent outlier.

4. Conclusions

In this paper, we have compared the parametric and nonparametric classification models in the presence of outliers.
We observed that the parametric models have higher accuracy and sensitivity in classifying the data and as the number
of outliers increases, the accuracy and sensitivity of the parametric models also increases. In this paper, we only used
tree-based models, which are one of the most popular classification models and classify the observations based on their
distance. There are other nonparametric models that can be compared, which researchers can also do this comparison
on them.
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Abstract

In this paper, we introduce some novel finite mixture models that are based on scale and shape
mixtures of skew-normal and skew-t distributions. These models are useful for analyzing the
returns of financial assets, which often exhibit skewness and heavy tails. We compare the per-
formance of these models with existing ones using real data and demonstrate that our models
provide better fit and prediction accuracy.

1. Introduction

In the field of financial marketing, the analysis of stock returns serves as a versatile tool for predicting future market
trends. Additionally, modeling stocks can provide insights into the behavior of other indices such as hedge funds, pri-
vate equity, and money markets. Various authors have proposed probability distributions to effectively model financial
and actuarial indices, with commonly utilized models including the Generalized Hyperbolic, inverse Gaussian, Logis-
tic, and the well-established normal distribution. More recently, literature has discussed skewed distributions that are
related to the normal model. For instance, Eling et al. (2014) applied skew-normal (SN) and skew-t (ST) distributions
to asset returns. It is noteworthy that these models share the common property of being unimodal; however, in some
cases, the histogram of the data suggests that the fitted models may be multimodal or a mixture with more than one
component.
Finite mixture models, which involve expressing results as a linear combination of component probability density
functions mixed in varying proportions, have been widely utilized as an analytical method in various scientific domains
such as density estimation, supervised classification, unsupervised clustering, data mining, image analysis, pattern
recognition, and machine learning (McLachlan and Peel, 2004). In the literature, Lin et al. (2007a) and Lin et al.
(2007b) presented finite mixture models of the ST and SN distributions, respectively. Basso et al. (2010) conducted an
investigation into finite mixture modeling in the univariate scale mixtures of SN (SMSN) distributions. Additionally,
Tamandi and Jamaliadeh (2019) introduced a new family of finite mixtures based on skew scale-shape mixtures of
the normal distribution. The objective of this study is to apply finite mixture models to stock returns datasets and
demonstrate the performance of these models.

∗Talker
Email address: Tamandi@vru.ac.ir (Mostafa Tamandi)



266 Mostafa Tamandi / The 4th National Congress on Mathematics and Statistics

2. Main results

The family of skew scale-shape mixtures of normal(SKSSMN) distributions, introduced by Tamandi and Jamalizadeh
(2019) is a big family includes many distributions. We briefly discuss on some of them and fitted these models to
stock markets data.
Let the PDF of the random variable Y is given by

fSKSSMN (y; ξ, σ2, λ, α,ν) = 2g(u;ν)Φ(
λu√

1 + αu2
), y ∈ R, (1)

where u = (y − ξ)/σ, g(u;ν) =
∫∞
0

τ1/2ϕ
(
τ1/2u

)
h(τ ;ν)dτ , and τ is a positive random variable with PDF

h(τ ;ν). Moreover, ϕ(·) and Φ(·) are the PDF and CDF of a standard normal distribution. Then generally the dis-
tribution of Y is on the family of skew scale-shape mixtures of normal(SKSSMN) distributions and is denoted by
Y ∼ SKSSMN(ξ, σ2, λ, α,ν).
Some special cases of SKSSMN family of distributions are:

(a) Normal distribution: If τ = 1 and λ = 0, then the pdf in (1) is equal to a standard normal distribution.

(b) Skew-normal distribution: If τ = 1 and α = 0, then the pdf in (1) is equal to skew-normal, introduced by
Azzalini(1983).

(c) Skew-t-normal (STN): Let τ ∼ Γ( ν2 ,
ν
2 ) and α = 0, where Γ(α, β) denotes the gamma distribution with mean

α/β, we have STN distribution which is introduced by Gomez (2007). The range of kurtosis of STN distribution
is wider than ST and hence this model is extensively used in many applications as an alternative to the ST
distribution.

(d) Skew-contaminated-normal (SCN): The skew-contaminated-normal distribution is studied by Ferreira et al. (2011)
as a particular member of the skew scale mixture of normal (SSMN) family. Now, let τ be a discrete random
variable taking one of two states with pdf h(τ ; ν1, ν2) = ν1I(τ=ν2) + (1− ν1)I(τ=1). Further, let α = 0 in (1),
so the SCN distribution is achieved.

(e) Skew-slash (SSL): Another member of the SSMN family of distributions, that is discussed by Ferreira et al. (2011)
is the skew-slash distribution. This model is obtained by assuming τ ∼ β(ν, 1) and α = 0 in (1).

(f) shape mixture of STN (SMSTN): Tamandi et al. (2018) generalized the STN distribution by introducing a shape
mixture of the STN distribution. They showed that although the SMSTN distribution provides the same skew-
ness range as the STN case, but allows for kurtosis ranging over a slightly wider interval than the STN distribu-
tion. To obtain this model from (1), it is sufficient to assume α > 0 in case (c).

(g) and (h) If in the cases (d) and (e), we assume α > 0, shape mixtures of SCN (SMSCN) and SSL (SMSSL) are
obtained, which are discussed by Tamandi and Jamalizadeh (2019).

The well-known t and skew-t(ST; Azzalini and Capitanio(2003)) distribution are not in this family. But we discuss on
them in our application for the sake of comparison.

2.1. Finite mixtures
Consider Y1, Y2, ..., Yn, is a random sample from a mixture of the SKSSMN distributions. The pdf of a g-component
FM-SKSSMN model is given by

f(yi|Θ) =

g∑
j=1

πj fSKSSMN (yi; ξj , σj , λj , αj ,νj), i = 1, · · · , n, (2)

where πj ≥ 0’s,
∑g

j=1 πj = 1, are mixing proportions and fSKSSMN (yi; ξj , σj , λj , αj ,νj) denotes the pdf of the
SKSSMN defined in (1) and Θ = (π1, ..., πg−1, θ1, ..., θg) represents all unknown parameters. In this case, the
component vector θj consists of (ξj , σj , λj , αj ,νj).
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Fig. 1. Stock markets: Histograms with superimposed fitted densities for some concentrations.

Usually, mixture models have a widespread parameter’s space and the PDF of these models have a complicated form.
So, estimation of the parameters in a finite mixture model is a challenging aspect. Tamandi and Jamalizadeh (2019)
introduced an expectation-conditional-maximization (ECM) algorithm to obtain the maximum likelihood estimates
of the parameters of FM-SKSSMN model. For more details on FM-SKSSMN model and its ECM algorithm, see
Tamandi and Jamalizadeh (2019)

3. Application

To model stock returns using finite mixture distributions, we employ six indices: JP Morgan Chase & Co. (JPM) and
NAZDAQ (IXIC) Adj.close prices fromOctober 2019 to October 2020 (the data are given fromYahoo finance), MSCI
WORLD, MSCI G7, EMU ex Germany (EMUexGer) and MSCI EAFE from MSCI Inc.
Fig. 1 shows the histogram of data sets superimposed with the fitted density of the competitors. In all cases the
well-known Gaussian mixture and t-mixture models are not adequate because of the big kurtosis in the data. Also the
goodness of fit test based on Kolmogrov-Smirnov(KS) test statistics is significant in all cases and so the null hypothesis
is rejected in all sudied stock indices.
Table 1 gives the number of components and some information criteria for finite mixture models of the studied dis-
tributions in section 2. The FM models with a big criteria are not reported in this table. Furthermore, we perform the
Kolmogorov-Smirnov (KS) goodness of fit test to compare the quality of fit among the studied finite mixture distri-
butions. The results are also shown in Table 1. To determine the optimal number of components of a mixture model,
we fit the studied models to data sets with g = 2 − 5 components. Recently, McNicholas and Murphy (2008) have
demonstrated the effectiveness of BIC in selecting the number of components for Gaussian mixture models.

4. Conclusions

In conclusion, this study has delved into the application of finite mixture models, particularly focusing on the compar-
ison of shape mixture of STN and SCN distributions with older classes such as SN and ST distributions in analyzing
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Table 1. Information criteria and goodness of fit test for some stock market indices.

Stock Index g Model BIC EDC ICL KS test p-value
JPM 2 SN 4204.954 4190.909 4375.044 0.3845 0

ST 4192.464 4178.418 4239.381 0.0296 0.847
STN 4193.899 4177.847 4230.132 0.0316 0.829

SMSTN 4199.920 4181.862 4235.387 0.0325 0.775
IXIC 2 SN 4252.007 4235.509 4273.485 0.0379 0.837

ST 4250.76 4234.262 4274.957 0.0337 0.92
STN 4255.994 4237.139 4274.764 0.0349 0.905

SMSTN 4261.519 4240.308 4280.280 0.0348 0.914
MSCI WORLD 3 ST 5254.266 5232.195 5295.167 0.0404 0.533

STN 5254.452 5230.374 5306.572 0.0336 0.742
SMSTN 5260.456 5234.372 5312.955 0.0335 0.759
SMSCN 5266.507 5238.417 5314.687 0.0332 0.775

MSCI G7 3 SN 5556.816 5534.745 5632.99 0.0522 0.212
STN 5540.685 5516.607 5581.855 0.0251 0.955

SMSTN 5533.938 5507.854 5576.301 0.0255 0.956
SMSCN 5539.862 5511.771 5582.026 0.0254 0.95

MSCI EMUexGER 3 SN 4229.013 4206.942 4510.956 0.0669 0.053
ST 4211.657 4189.585 4291.01 0.0380 0.64
STN 4195.669 4171.592 4219.099 0.0337 0.767

SMSTN 4200.463 4174.379 4224.239 0.0308 0.838
MSCI EAFE 2 SN 5459.532 5445.486 5462.143 0.0347 0.713

ST 5462.069 5448.024 5467.158 0.0346 0.717
STN 5454.647 5438.595 5457.455 0.0264 0.939
SCN 5462.108 5448.063 5467.637 0.0294 0.868

SMSCN 5459.153 5439.088 5469.956 0.0250 0.95

stock returns. Through rigorous empirical analysis, we have demonstrated that the utilization of the newer distribu-
tions, SMSTN and SMSCN, offer significant advantages over traditional distributions in capturing the complexities
and nuances inherent in stock return data.
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Abstract

This paper first proves a characterization of exponential distribution in terms of the Gini index.
After that three test statistics for exponentiality are introduced. Then, Monte Carlo simulations
are carried out to assess their performances. Finally a real data set is used to illustrate introduced
methods.

1. Introduction

The exponential distribution is one of the continuous distributions that is used frequently in different statistical fields
like reliability theory and stochastic process. So, it is important to verify whether a random sample is taken from
exponential distribution or not. There are various results for testing exponentiality in the literature, see [1] as the
recent work. To the best of our knowledge, there is no test for exponentiality based on the Gini index. Gini [2]
introduced the Gini coefficient which is a measure of statistical dispersion to represent income inequality, wealth
inequality the consumption inequality. The rest of the paper is organized as follows. In Section 2, we present a new
characterization of exponential distribution and propose three new test statistics for exponentiality. In Section 3, by
Monte Carlo simulation, the critical values of proposed tests are computed. Also, their empirical power are derived
for different alternatives which have different hazard functions. Finally, in Section 4, usefulness of these methods are
illustrated with a real data set.

2. Characterization and test statistics

Let X and Y be independent and identically distributed (iid) non-negative continuous random variables (rvs). The
notation X d

= Y means that X and Y have the same distribution. Puri and Rubin[3] proved that

|X − Y | d
= X, (1)

Email address: m.akbari@umz.ac.ir (Masoumeh Akbari)
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if and only if they have exponential distribution. Suppose X1 and X2 are iid non-negative rvs with finite mean µ.
Then, the Gini index is given by

G =
E|X1 −X2|

2µ
. (2)

Theorem 2.1. Let X and Y be iid non-negative continuous rvs. Then G = 1
2 if and only if X belongs to family of

exponential distributions.

Proof. The result can be easily obtained by (1) and (2).

There exist several estimations of G based on the sample X1, . . . , Xn as follows.

G1 =
2

n
∑n

i=1 Xi

n∑
i=1

X(i)

(
i− 1

2

)
− 1,

G2 =
2
∑n−1

i=1 iX(i+1)

(n− 1)
∑n

i=1 Xi
− 1,

G3 =
2

n
∑n

i=1 Xi

n∑
i=1

iX(i) − 1,

whereX(i) is the ith order statistics of the sample. For more details aboutG1 andG2 see [4] and [5], respectively. G3

is a new proposed estimator for G. Therefore three following statistics for exponentiality are proposed as follows.

T1 = |G1 − 0.5|, T2 = |G2 − 0.5|, T3 = |G3 − 0.5|.

3. Power comparison

In this section, using Monte Carlo simulations, we get the critical values of T1, T2 and T3 for sample sizes n =
10, 20, 30. The results are shown in Table 1. We also obtain the empirical power of the proposed tests for differ-
ent alternative distributions Weibull (W (θ)), gamma (G(θ)), half-normal (HN), lognormal (LN(θ)) and standard
uniform (U(0, 1)) with following densities, respectively

f(x) = θxθ−1 exp{−xθ}; x > 0,

f(x) =
1

Γ(θ)
xθ−1 exp{−x}; x > 0,

f(x) =

√
2

π
exp{−x2

2
}; x > 0,

f(x) =
1

θx
√
2π

exp{− log2 x
2θ2

}; x > 0,

f(x) = 1; 0 < x < 1.

Table 1. Critical values at significance level α = 0.05.

n T1 T2 T3

10 0.191 0.187 0.195
20 0.132 0.129 0.132
30 0.082 0.810 0.081

From the Tables 2-5, it is obvious that test T1 is the most powerful for increasing failure rate (IFR) distributions, and
T3 is the best for decreasing failure rate (DFR) distributions. Also T2 is the most powerful for unimodal increasing-
decreasing failure rate (UFR) distributions.
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Table 2. Empirical power of proposed tests for α = 0.05 and n = 10.

IFR
G(1) W (1.4) G(2) HN U(0, 1)

T1 0.056 0.275 0.360 0.194 0.505
T2 0.050 0.169 0.228   0.114    0.363
T3 0.046 0.019 0.029  0.014  0.079

Table 3. Empirical power of proposed tests for α = 0.05 and n = 10.

UFR UFR DFR DFR
LN(0.8) LN(1.5) W (0.8) G(0.4)

T1 0.092 0.094 0.041 0.210
T2 0.093 0.096 0.149   0.488  
T3 0.079 0.078 0.206  0.579

Table 4. Empirical power of proposed tests for α = 0.05 and n = 50.

IFR
G(1) W (1.4) G(2) HN U(0, 1)

T1 0.048 0.845 0.936 0.619 0.995
T2 0.049 0.788 0.905   0.539    0.990
T3 0.049 0.679 0.832  0.402  0.978

Table 5. Empirical power of proposed tests for α = 0.05 and n = 50.

UFR UFR DFR DFR
LN(0.8) LN(1.5) W (0.8) G(0.4)

T1 0.129 0.131 0.371 0.971
T2 0.150 0.149 0.476   0.984  
T3 0.160 0.163 0.548  0.990

4. Application

In this section, we explain the procedures of proposed tests to detect the accuracy of exponentiality. It is used one
following data set. In every test, the corresponding p-value is obtained based on 10000 replications. Also, assessing
the suitability of exponential distribution is done at 5 percent nominal level.

Data1 : 74; 57; 48; 29; 502; 12; 70; 21; 29; 386; 59; 27; 153; 26; 326

This is from Prochan [6] that shows the time between consecutive failures of the air conditioner in a Boeing 720 air
plain. So far several authors verified that exponential distribution is a good fit for this data. See for example, Shanker
et al.[7], Jose and Sathar[8].
The p-values of our proposed tests T1, T2 and T3 are 0.349, 0.133 and 0.073, respectively that confirm exponential
distribution can be a fit for its distribution with mean 121.267.
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Abstract

Air quality index (AQI) forecasting is a useful tool for increasing the general public ’s aware-
ness of the state of the air in the next days. This is one of the most significant problems facing
any country. In this study, machine learning algorithms are used to predict the AQI in Tehran.
The six important regression models are applied to forecast AQI on a daily basis. Models were
compared and evaluated using statistical measures such as Mean Absolute Error (MAE), coef-
ficient of determination, and root mean square error (RMSE). Based on these evaluations, the
best model was selected. ExtraTreesRegressor is thought to be the best model for forecasting
AQI in all seasons based on its outcomes. The results demonstrate that the ExtraTreesRegressor
’s determination coefficient is nearly 1, and that the values of MAE and RMSE are respectively
0.002 and 0.004.

1. Introduction

Tehran is one of several cities throughout the world that are affected by air pollution, which is a serious environmental
issue. Recent years have seen a considerable decline in air quality due to the city’s rapid population increase, heavy
traffic, and industrial activity. In order to assist authorities in making sound decisions and executing the necessary steps
to enhance the quality of the air, there is an urgent need for efficient monitoring and prediction systems[3][6]. Recently,
many researchers have focused on forecasting air pollution using machine learning[10], neural networks[3][12], and
deep learning[6]. Machine learning techniques are widely used in environmental sciences, including weather fore-
casting, soil erosion, waste management, dust storms, and air pollution [1]. Conventional air pollution prediction
techniques can be divided into statistical methods , artificial intelligence , and numerical forecasting [2]. Sharma et
al.[11] time-series analysis of data from 2009 to 2017 was used to predict the air quality in New Delhi. To create
a forecasting model based on deep learning, Kaya and Oguducu [7] used PM10 hourly data from Istanbul (Turkey)
between 2014 and 2018. Gocheva-llieva et al. [5] developed a model for daily prediction that had 90% accuracy using
the classification and regression tree technique.
The rest of the paper follows the materials and methods in Section 2, the results including the data preparation and
refinement and air pollution prediction are presented in Section 3, and conclusions is presented in Section 4.
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2. Materials and Methods

The data used in this paper consist of daily air quality data from Tehran Air Quality Control Company (AQCC) from
several monitoring stations across Tehran from March 21, 2020, and March 21, 2023.
After researching and reading several articles about Tehran’s air pollution, the following 14 features have been selected
in Table2. [4][14][9][8][13]

Symbol Feature

PM Particulate Matter
NO2 Nitrogen Oxides
SO2 Sulfur Dioxide
CO Carbon Monoxide
O3 Ozone

Temperature A physical quantity known as temperature expresses quantitatively how hot or
cold something is

Humidity The concentration of water vapor in the air is known as humidity
Precipitation Precipitation is any byproduct of atmospheric water vapor condensation that

falls from clouds as a result of gravitational pull
Wind Gust A wind gust is a momentary increase in wind speed
Wind Speed The most important component of the atmosphere is wind speed, which is the

rate at which air shifts from high to low pressure
Sea Level Pressure Pressure within the atmosphere of Earth

Visibility The measurement of the distance at which a light or item can be seen clearly
Solar Radiation Solar irradiance is the surface power density of electromagnetic radiation that

is received from the Sun in the wavelength range of the measuring device
UV Index The ultraviolet index, or UV index, is a globally recognized indicator of the

amount of UV light that can cause sunburns at a specific location and time

All of the data used in this work was normalized as scaled to range (0,1) in order to ensure that all numerical values
were on the same scale and that large values did not dominate smaller ones. Figure 1 shows the general structure of
the suggested model.

Fig. 1. The proposed best air pollution prediction model.

The performance of our approach was confirmed using the 10-fold cross-validation method. Applying machine learn-
ing algorithms like ExtraTreesRegressor, Random Forest, Decision Tree, Linear Model and XGBoost Regression will
be done in the coming steps. In order to evaluate the prediction performance of the proposed model, we used the
following measure:
• The mean absolute error is the average absolute difference between the predicted value and actual value, and is



Azizi & Rahmany / The 4th National Congress on Mathematics and Statistics 275

calculated as follows:

MAE =

∑N
i=1 |yi − xi|

N

• The root mean square error is the square root of the distance between the predicted and actual value:

RMSE =

√
Σn

i=1(Predictedi −Actuali)2

N

• The coefficient of determination, sometimes called coefficient, is the fraction of the variation in the dependent
variable that is predicted from the independent variable(s), denoted R2:

R2 = 1− RSS

TSS

Our results show that the ExtraTreesRegressor model performed well in predicting AQI. The most important variables
for predicting AQI concentration were found to be temperature, humidity, wind speed, and traffic volume.
The ExtraTreesRegressor algorithm is a variant of the popular Random Forest method, which uses an ensemble of
decision trees to make predictions. The ExtraTreesRegressor algorithm adds an additional level of randomness to the
decision tree construction process, resulting in improved performance and faster training times.
The most important variables for predicting AQI concentration were found to be PM2.5, PM10, O3, Visibility, NO2
and traffic volume. Figure 2 shows the relative importance of each variable in the model.

Fig. 2. Relative importance of each variable in predicting AQI concentration using the ExtraTreesRegressor algorithm.

3. Results

We evaluated the performance of the model using several metrics, including mean absolute error (MAE), mean squared
error (MSE), root mean squared error (RMSE) and coefficient of determination (R2). The mean absolute error (MAE)
measures the difference in errors between paired observations describing the same occurrence. The results of the al-
gorithms applied to the data are shown in Table 3 and Figure 3 shows a comparison of the predicted and actual AQI
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Algorithm MAE MSE RMSE R2

ExtraTreesRegressor 0.002 1.94 0.004 0.996
Random Forest 0.002 0.0001 0.010 0.97
Decision Tree 0.002 4.84 0.006 0.99
Linear Model 0.015 0.0005 0.02 0.91

XGBoost Regression 0.003 3.43 0.005 0.99
SVM 0.04 0.002 0.046 0.62

Fig. 3. Comparison of predicted and actual AQI concentrations for the testing set using the ExtraTreesRegressor algorithm.

concentrations for the testing set.

Overall, our results suggest that the ExtraTreesRegressor algorithm can be a useful tool for predicting air pollution in
Tehran. The default setting for the ExtraTreesRegressor algorithm used in this study is 100 trees. The ExtraTreesRe-
gressor algorithm produces the results shown below by altering the number of trees:

Number of Trees MAE MSE RMSE R2

100 0.002 2.23 0.004 0.993
500 0.002 2.35 0.004 0.995
1000 0.002 1.94 0.004 0.996

4. conclusions

The focus of the research conducted in this article was on predicting air quality in Tehran by utilizing machine learning
algorithms. Specifically, the ExtraTreesRegressor algorithm was employed to predict the concentrations of air pollu-
tants in the city, based on various environmental and meteorological factors. Our study’s findings indicated that the
ExtraTreesRegressor algorithm was successful in predicting air pollutant concentrations, with an overall accuracy rate
of 99% for predicting pollutant AQI.
One of the major advantages of our study was the use of a comprehensive and novel dataset that encompassed various
meteorological and environmental factors. This allowed us to identify the crucial factors responsible for air pollutant
concentrations and develop an accurate model to predict pollutant concentrations. Our research also highlights the
potential of machine learning algorithms in predicting air pollutant concentrations, which can be leveraged to inform
public health policies and decrease the adverse effects of air pollution on public health.
However, it’s worth noting that our study’s scope was limited to air pollutant concentrations in Tehran, which may not
be generalizable to other regions or cities. Additionally, our research did not consider the impact of human behavior
and activity patterns on air pollutant concentrations, which could be an important factor to consider in future studies.
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In conclusion, our study provides crucial insights into the potential of machine learning algorithms for predicting air
pollutant concentrations, emphasizing the necessity for further research in this domain. By enhancing and refining
these algorithms, we can gain a better understanding of the factors contributing to air pollution and develop more
effective approaches to mitigate its negative impacts on public health.
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Abstract

In this paper the problem of logarithmically asymptotically optimal (LAO) identification of
probability distributions of two independent objects, is studied.

1. Introduction

The problem of identification of distribution for one object was considered in [1] and for two objects in [2]. We
revealed certain in formulation and proof of the Theorem about indentification in [2]. Similar inaccuracy is remarded
also in paper [4]. It is convinient to apply the definitions and notations of the paper [2]. The problem of identification
of distributions for one and two independentMarkov chains to the subject reliobility Critrion was studied in [5] and [6].
Also we add some assertion in the formulation of the Theorem. LetX1 andX2 be independent random variables (RV )
taking values in the same finite set χ with one of M probability (PDs). They are characteristics of corræponding
independent objects. The random vector (X1, X2) assumes values (x1, x2) ∈ χ× χ.
Let (x1, x2) = ((x1

1, x
2
1), . . . , (x

1
n, x

2
n), . . . , (x

1
N , x2

N )), xi
n ∈ χ, i = 1, 2, n = 1, N , be two dimentional vectors of

results ofN independent observations of the pair (X1, X2). The statistician must define unknown PDs of the objects
on the base of observed data. The selection for each object must be made from the same known set of hypotheses:
Hm : G = Gm,m = 1,M . We call the procedure of making decision on the base of N pairs of observations the test
for two objects and denote it by ΦN . Because of the objects independence test ΦN may be considered as the pair of
the tests ϕ1

N and ϕ2
N for the respective separate objects. We shall denote the infinite sequence of compound tests by

ΦN = (ϕ1, ϕ2).
Let αl1,l2|m1,m2

(ΦN ) be the probability of the erroneous acceptance by test ΦN of the hypotheses pair (Hl1 ,Hl2)

provided that the pair (Hm1 ,Hm2), is true, where (m1,m2) ̸= (l1, l2), mi, li = 1,M , i = 1, 2. The probability to
reject a true pair of hypothess (Hm1 ,Hm2) is following:

αm1,m2|m1,m2
(ΦN ) ≜

∑
(l1,l2) ̸=(m1,m2)

αl1,l2|m1,m2
(ΦN ) (1)
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Corresponding limits El1,l2|m1,m2
(ΦN ) of the error probability exponents of the sequence of tests Φ, are called relia-

bilities:

El1,l2|m1,m2
(Φ) ≜ lim

N→∞
− 1

N
logαl1,l2|m1,m2

(ΦN ), mi, li = 1,M, i = 1, 2. (2)

It is clear that

Em1,m2|m1,m2
(Φ) = min

(l1,l2) ̸=(m1,m2)
El1,l2|m1,m2

(Φ). (3)

Here we call the test sequence Φ∗ logarithmically asymptotically optimal (LAO) for the model with two objects if for
given positive values of certain 2(M − 1) elements of the reliability matrix the procedure provides maximal values
for all other elements of it.

2. Problem Statament and formoulation of results.

For identification the statistician have to answer to the questionwhether the pair of distributions (r1, r2), rl, r2 ∈ [1,M ]
occurred or not. Let us consider two kinds of error probabilities for each pair (r1, r2). We denote byαN

(l1,l2) ̸=(r1,r2)|(m1,m2)=(r1,r2)

the probability.that pair (r1, r2) is true, but it is rejected, that is accepted pair (l1, l2) do not coinsides with (r1, r2). Note
that this probability is equal to probabilityαr1,r2|r1,r2(ΦN ) in testing. Let αN

(l1,l2)=(r1,r2)|(m1,m2) ̸=(r1,r2)
be the proba-

bility that the pair (r1, r2) is accepted, when it is not correct. The corresponding reliabilities areE(l1,l2) ̸=(r1,r2)|(m1,m2=(r1,r2) =
Er1,r2|r1,r2 and E(l1,l2)=(r1,r2)|(m1,m2 ̸=(r1,r2). Our aim is to determine the depende of E(l1,l2)=(r1,r2)|(m1,m2 ̸=(r1,r2)

on given Er1,r2|r1,r2 during optimal. that is LAO, identification.
As in [2] we assume that hypotheses G1, G2, . . . , GM have a priori positive probabilities Pr(r), r = 1,M , and
consider the following probability:

αN
(l1,l2)=(r1,r2)|(m1,m2) ̸=(r1,r2)

=
PrN ((m1,m2) ̸= (r1, r2), (l1, l2) = (r1, r2))

Pr((m1,m2) ̸= (r1, r2))

=

∑
(m1,m2):(m1,m2) ̸=(r1,r2)

αr1,r2|m1,m2Pr(m1,m2)∑
(m1,m2) ̸=(r1,r2)

Pr(m1,m2)
.

Using this expression, we can derive that

E(l1,l2)=(r1,r2)|(m1,m2 ̸=(r1,r2) = min
(m1,m2):(m1,m2) ̸=(r1,r2)

Er1,r2|m1,m2
. (4)

For every test Phi = (ϕ1, ϕ2), such that Eri|mi
(ϕi) > 0,i = 1, 2, from (4) and Lemma [2] we obtain that

E(l1,l2)=(r1,r2)|(m1,m2 ̸=(r1,r2) = min[ min
m1 ̸=r1

EI
r1|m1

, min
m2 ̸=r2

EII
r2|m2

], (5)

where EI and EII are elements of reliability matrices of corresponding objects. Using that the minimal elements of
rowes of reliability matrices are the diagonal ones, we find that

Er1,r2|r1,r2 = min
m1 ̸=r1,m2 ̸=r2

(min(EI
m1|r1 , E

II
m2|r2)) = min(EI

r1|r1 , E
II
r2|r2). (6)

Let us denote for brevity

A(r) = min
l ̸=r

D(Gl||Gr).

Let P = {Φ = (ϕ1, ϕ2) : Er1,r2|r1,r2(Φ) = Er1,r2|r1,r2} be the set of tests the reliability matrices of which
have diagonal elements equal to some preliminary given number Er1,r2|r1,r2 . For each test ϕ ∈ P we can obtain
value of corresponding reliability of indentification E(l1,l2)=(r1,r2)|(m1,m2 ̸=(r1,r2). We must choose such a test, for
which the reliability E(l1,l2)=(r1,r2)|(m1,m2 ̸=(r1,r2) is the greatest. For every test Φ = (ϕ1, ϕ2) we find the reliability
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E(l1,l2)=(r1,r2)|(m1,m2 ̸=(r1,r2) by equality (5), for which we must find the greater values of reliabilities EI
l1|r1(ϕ1)

andEII
l2|r2(ϕ2). But only matrices corresponding to LAO tests can have such properties. Hence. the selection must be

implemented from the set Φ∗ = (ϕ∗
1, ϕ

∗
2) of LAO tests, such that Er1,r2|r1,r2(Φ

∗) = Er1,r2|r1,r2 .
From Theorem 1 of paper [3] we see that the order of hypotheses is important in formulation of conditions imposed
on diagonal elements of the reliability matrix. This conditions depend on elements which are defined by preceding
diagonal elements. But if we Consider the elementEr|r as the elementE1|1, it will be possible consider the conditions
formulated only by distributionGm,m = 1,M . Passing to the problem of identification by (5) we can see that it will
be usefully to change numeration of hypotheses obtaining formulation of corresponding conditions by distributions
Gm, m = 1,M only. Assume that Er1,r2|r1,r2 = EI

r1|r1 and Er1,r2|r1,r2 = EI
r1|r1 ≤ EII

r2|r2 . According to the
above mentioned argumentation the number Er1,r2|r1,r2 = EI

r1|r1 must satisfy the condition for being LAO test, i.e.
Er1,r2|r1,r2 ∈ (0,A(r1)). Then we get the best test for the first object. from which we will obtain the least value in
the column r1 of the reliability matrix. It remains only to define the test for the second object applying the condition
that its diagonal element Er2|r2 is not less then Er1,r2|r1,r2 = EI

r1|r1 . From the tests with such property we will select
only one requiring that in the column r2 are greater than corresponding elements of the other tests.
Consider a set of numbers K = {E : Er1,r2|r1,r2 ≤ Er2|r2 < A(r2)}. We introduce this numerical set with the goal
to include into consideration all the LAO tests corresponding to the second object with a diagonal element Er2|r2 ≥
EI

r1|r1 . Taking into consideration the obtained condition we determine the following condition for the preliminary
given number

Er1,r2|r1,r2 ≤ min[A(r1), A(r2)]. (7)

For each Er2|r2 ∈ K there exists a LAO test such that elements in column r2 of its reliablity matrix are greater than
corresponding elements of other tests. To examine all such tests we require that the second expression in (5) be the
following:

max
Er2|r2∈K

min
m2 ̸=r2

Er2|m2
(Er2|r2). (8)

Since the lower bound can only decrease when the set increases, we get

max
Er2|r2∈K

min
m2 ̸=r2

Er2|m2
(Er2|r2) = min

m2 ̸=r2
Er2|m2

(Er1,r2|r1,r2) :

The axpression (8) takes its greatest value at the point Er1,r2|r1,r2 . We derive the following estimate

E(l1,l2)=(r1,r2)|(m1,m2) ̸=(r1,r2) = min[ min
m1 ̸=r1

Er1|m1
(Er1,r2|r1,r2), min

m2 ̸=r2
Er2|m2

(Er1,r2|r1,r2)], (9)

where

Er|m(Er|r) = inf
Q:D(Q||Gr)≤Er|r

D(Q||Gm).

If we assume thatEr1,r2|r1,r2 = Er2|r2 , wewill again come to formula (9) for calculationE(l1,l2)=(r1,r2)|(m1,m2) ̸=(r1,r2),
where the preliminary by given E(r1,r2)|(r1,r2) elements must meet condition (7).
If (7) is violated then the reliability which we investigate is equal to zero. The main result is can be formulated now
in the following

Theorem 2.1. If the distributions Gm, m = 1,M , are different and the given strictly positive number Er1,r2|r1,r2
satisfy condition (7), then the reliability E(l1,l2)=(r1,r2)|(m1,m2) ̸=(r1,r2) is defined in (9).

If condition (7) is violated, then the reliability E(l1,l2)=(r1,r2)|(m1,m2) ̸=(r1,r2) is equal to zero.
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Abstract

The problem of logarithmically asymptotically optimal hypotheses (LAO) testing and identi-
fication for a model consisting of two stochastically related objects is studied. It is supposed
that L1 possible probability distributions are known for the first object and the second object
is distributed according to one of Ll × L2 given conditional distributions depending on the
distribution index and the current observed state of the first object.

1. Introduction

As a development of the results on multiple hypotheses testing concerning probability distributions of one object.
Haroutunian and Hakobyan considered in [3] the problem of many hypotheses testing and in [4] the problem of the
indentification of distributions for two independent objects. Solutions of analogical problems concerning Markov dis-
tributions are obtained in works of Haroutunian and Grigoryan [8], Haroutunian and Navaei [10]. In [6], [7] and [9]
Haroutunian and Yessayan solved the problem of many hypotheses testing for two objects under different kinds of de-
pendence. We study characteristics of procedures of logarithmically asymptotically optimal testing and identification
of probability distributions of two stochastically dependent objects.
LetXl andX2 be random variables (RV s) taking values in the same finite set χ and P(χ) be the space of all possible
distributions on X. IfXl andX2 take values in different sets χl and χ2 only the notations becamemore complicated. so
we omit this ”generalization”. There are givenLl probability distributions (PDs)Gl1 = Gl1(x

1), x1 ∈ χ, l1 = 1, L1,
from P(χ). The first object is characterized by RV Xl which has one of these L1 PDs and the second object is
dependent on the first and is characterized by RV X2 which can have one of Ll × L2 conditional PDs Gl2⧸l1 =
{Gl2⧸l1(x

2|x1), x1, x2 ∈ χ}, l1 = 1, L1, l2 = 1, L2. Let (X1, X2) = ((x1
1, x

2
1), (x

1
2, x

2
2), . . . , (x

1
N , x2

N )) be a
sequence of results of N independent observations of pair of objects. Joint (PDs) Gl1,l2(X

1, X2), l1 = 1, L1,
l2 = 1, L2 where Gl1,l2(x

1, x2) = Gl1(x
1)Gl2⧸l1(x

2|x1). The probability GN
l1,l2

(X1, X2) of vector (X1, X2) is
following product:

GN
l1,l2(X1, X2) = GN

l1 (x1)G
N
l2⧸l1(X2|X1) =

N∏
n=1

Gl1(x
1
n)Gl2⧸l1(x

2
n|x1

n). (1)
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withGN
l1
(x1) =

∏N
n=1 Gl1(x

1
n) andGN

l2⧸l1
(X2|X1) =

∏N
n=1 Gl2⧸l1(x

2
n|x1

n). For the object characterized byXl the
non-randomized test ϕN

1 (X1) can be determined partition of the sample space χN on L1 disjoint subsetsAN
l1

= {X1 :

ϕN
1 (X1) = l1}, l1 = 1, L1, i.e. the set AN

l1
consists of vectors X1 for which the PDGl1 is adopted. The probability

αN
l1|m1

(ϕN
1 ) of the erroneous acceptance of PDGl1 provided that Gm1

is true, l1,m1 = 1, L1 , m1 ̸= l1, is defined
by the set AN

l1

αN
l1|m1

(ϕN
1 ) ≜ GN

m1
(AN

l1 ).

We define the probability to reject Gm1
, when it is true, as follows

αN
m1|m1

(ϕN
1 ) ≜

∑
l1 ̸=m1

αN
l1|m1

(ϕN
1 ) = GN

m1
(AN

m1
). (2)

Denote by ϕ1, ϕ2 and Φ the infinite sequences of tests. Corresponding error probability exponents El1|m1
(ϕ1) for

testϕ1 are defined as

El1|m1
(ϕ1) ≜ lim

N→∞
− 1

N
logαN

l1|m1
(ϕN

1 ), l1,m1 = 1, L1. (3)

For brevity we call them reliabilities. It follows from (2) and (3) that

Em1|m1
(ϕ1) = min

l1 ̸=m1

El1|m1
(ϕ1), l1,m1 = 1, L1, l1 ̸= m1. (4)

We shall reformulate now the Theorem from [1] for the case of one object with Ll hypotheses. This requires some
notions and notations. For some PD Q = {Q(x1), x1 ∈ χ} the entropy HQ(X1) and the informational divergence
D(Q||Gl1 , l1 = 1, L1,

HQ(X1) ≜ −
∑
x1∈χ

Q(x1) logQ(x1),

D(Q||Gl1) ≜ −
∑
x1∈χ

Q(x1) log
Q(x1)

Gl1(x
1)
.

For given positive numbers E1|1, . . . , EL−1|L−1 let us consider the following sets of PDs Q = {Q(x1), x1 ∈ χ}:

Rl1 ≜ {Q : D(Q||Gl1) ≤ El1|l1}, l1 = 1, L1 − 1 (5)

RL1 ≜ {Q : D(Q||Gl1) > El1|l1}, l1 = 1, L1 − 1. (6)

and the elements of the reliability matrix E∗ of the LAO test:

E∗
l1|l1 = E∗

l1|l1(El1|l1) ≜ El1|l1 , l1 = 1, L1 − 1, (7)

E∗
l1|m1

= E∗
l1|m1

(El1|l1) ≜ inf
Q∈Rl1

D(Q||Gm1
), m1 = 1, L1, m1 ̸= l1, l1 = 1, L1 − 1, (8)

E∗
l1|m1

= E∗
L1|m1

(E1|1, E2|2, . . . , EL1−1|L1−1) ≜ inf
Q∈RL1

D(Q||Gm1
), m1 = 1, L1 − 1, m1 ̸= l1, l1 = 1, L1 − 1,

(9)

E∗
L1|L1

= E∗
L1|L1

(E1|1, E2|2, . . . , EL1−1|L1−1) ≜ min
l1=1,L1−1

E∗
l1|L1

. (10)



Navaei / The 4th National Congress on Mathematics and Statistics 287

Theorem 1.1. If all distributions Gl1 , l1 = 1, L1, are different in the sense thatD(Gl1 ||Gm1
) > 0, L1 ̸= m1 and the

positive numbers (E1|1, E2|2, . . . , EL1−1|L1−1 are such that the inequalities hold

E1|1 < min
l1=2,L1

D(Gl1 ||G1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . (11)
Em1|m1

< min( min
l1=m1+1,L1

D(Gl1 ||Gm1
), min

l1=1,m1−1
E∗

l1|m1
(El1|l1)), m1 = 2, L1 − 1

exists a LAO sequence of tests ϕ∗
1, the reliability matric of which E∗ = {El1|m1

(phi∗1)} is defined in (7)−(10) and
all elements of it are positive.

Inequalities (11) are necessary for existence of tests sequence unth reliability matrix E having in diagonal given
elements E∗

l1|l1 , l1 = 1, L1 − 1, and all other elements positive.

2. LAO Testing and Identification of the Probability Distributions for Two Stochastically Coupled Objects.

Firest it is necessary to formulate the concept ofLAO approach to the identification problem for one object, which was
introduced in [1] and [2], see also [9]. We have one object, and there are known L1 ≥ 2 possible PDs. Identification
Is the answer to the question: whether r1 − th distribution is correct, or not. As in the testing problem, the answer
must be given on the base of a sample x with the help of an appropriate test.
There are two error probabilities for each r1 ∈ [1, L1] : the probabilityαl1 ̸=r1|m1=r1(ϕN ) to accept l−th PD different
from r1, when PD r1 is in reality, and the probability αl1=r1|m1 ̸=r1(ϕN ) that r1 is accepted, when it is not correct.
The probability αl1 ̸=r1|m1=r1(ϕN ) coincides with the probability αr1|r1(ϕN ) which is equal to

∑
l1:l1 ̸=r1

αl1|r1(ϕ
N ).

The corresponding reliability El1 ̸=r1|m1=r1(ϕ) is equal to Er1|r1(ϕ) which satisfies the equality (4).
Reliability approach to identificationmeans to determine the optimal dependence ofE∗

l1=r1|m1 ̸=r1
upon givenE∗

l1 ̸=r1|m1=r1
=

E∗
r1|r1 , which can be an assigned value satisfying conditions (11). Solution of this problems uses knowledge of some

a priori PD of the hypotheses. The result from paper [1] is valid for the first object.

Theorem2.1. In the case of distinctPDs G1, G2, . . . , GL1
, under condition that the probabilities of allL1 hypotheses

are positive the reliability of El1=r1|m1 ̸=r1 for given El1 ̸=r1|m1=r1 = Er1|r1 is the following:

El1=r1|m1 ̸=r1(Er1|r1) = min
m1:m1 ̸=r1

inf
Q:D(Q||Gr1

)≤Er1|r1

D(Q||Gm1), r1 ∈ [1, L1].

The test, which we denote by ΦN , is a procedure of making decision about unknown indices of PDs on the base of
results ofN observations (Xl, x2). For the objects characterize byX1,X2 the non-randomized testΦN (Xl, x2) can be
determined by partition of the sample space (χ×χ)N on L1×L2 disjoint subsetsAN

l1,l2
= {X1, X2 : ΦN (Xl, x2) =

l1, l2}, l1 = 1, L1, l2 = 1, L2 i.e. the set AN
l1,l2

consists of vectors X1, X2 for which the PD Gl1,l2 is adopted. The
true, l1,m1 = 1, L1, l2,m2 = 1, L2 (m1,m2) ̸= (l1, l2) is defined by the set AN

l1,l2

αN
l1,l2|m1,m2

(ΦN ) ≜ GN
m1,m2

(AN
l1,l2). (12)

We define the probability to reject Gm1,m2 , when it is true, as follows

αN
m1,m2|m1,m2

(ΦN ) ≜
∑

(l1,l2) ̸=(m1,m2)

αN
l1,l2|m1,m2

(ΦN ) = GN
m1,m2

(AN
m1,m2

). (13)

We study the reliabilities of the sequence of tests Φ

El1,l2|m1,m2
(Φ) ≜ lim

N→∞
− 1

N
logαN

l1,l2|m1,m2
(ΦN ), l1,m1 = 1, L1, l2,m2 = 1, L2 (14)

From (13) and (14) we have

Em1,m2|m1,m2
(Φ) = min

(l1,l2) ̸=(m1,m2)
El1,l2|m1,m2

(Φ), l1,m1 = 1, L1, l2,m2 = 1, L2 (15)
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We call the matrix E(Φ) = {El1,l2|m1,m2
(Φ), l1,m1 = 1, L1, l2,m2 = 1, L2} the reliability matrix of the sequence

of tests Φ. Our aim is to investigate the reliability matrix of optimal tests, and the conditions ensuring positivity of all
its elements.
We use some notions and estimates from [11], [12]. For given positive numbers E1,1|1,1, . . . , EL1,L2−1|L1,L2−1 let us
consider the following sets of PDs QoV ≜ {Q(x1)V (x2|x1), x1, x2 ∈ χ} :

Rl1,l2 ≜ {QoV : D(QoV ||Gl1,l2) ≤ El−1,l2|l1,l2}, l1 = 1, L1, l2 = 1, L2 − 1 (16)

RL1,L2
≜ {QoV : D(QoV ||Gl1,l2) > El−1,l2|l1,l2}, l1 = 1, L1, l2 = 1, L2 − 1 (17)

and the elements of the reliability matrix E∗ of the LAO test:

E∗
l1,l2|l1,l2 = E∗

l1,l2|l1,l2(l1, l2|l1, l2) ≜ El1,l2|l1,l2 , l1 = 1, L1, l2 = 1, L2 − 1, (18)

E∗
l1,l2|m1,m2

= E∗
l1,l2|m1,m2

(El1,l2|l1,l2) ≜ inf
QoV ∈Rl1,l2

D(QoV ||Gm1,m2
),

m1 = 1, L1, m2 = 1, L2 (m1,m2) ̸= (l1, l2), l1 = 1, L1, l2 = 1, L2 − 1, (19)

E∗
L1,L2|m1,m2

= E∗
L1,L2|m1,m2

(E1,1|1,1, E1,2|1,2, . . . , EL1,L2−1|L1,L2−1) ≜
inf

QoV ∈RL1,L2

D(QoV ||Gm1,m2
), m1 = 1, L1, m2 = 1, L2 (20)

E∗
L1,L2|L1,L2

= E∗
L1,L2|L1,L2

(E1,1|1,1, E1,2|1,2, . . . , EL1,L2−1|L1,L2−1) ≜ min
l1=1,L1

min
l2=1,L2−1

E∗
l1,l2|L1,L2

. (21)

For simplicity we can take (Xl, X2) = Y , χ × χ = Y and y = (y1, y2, . . . , yN ) ∈ Y , where yn = (x1
n, x

2
n),

n = 1, N , then we will have L1 × L2 = L new hypotheses for one object G1,1(X1, X2) = F1(y), G1,2(X1, X2) =
F2(y), G1,3(X1, X2) = F3(y),. . .,G1,L2

(X1, X2) = FL2
(y), G2,1(X1, X2) = FL1+1(y),. . .,Gl1,l2(X1, X2) =

F(l1−1)L1+L2
(y), l1 = 1, L1, l1 = 1, L2, αl1,l2|m1,m2

= α
′

l|m, l1 = 1, L1, l1 = 1, L2, El1,l2|m1,m2
= E

′

l|m,
l1 = 1, L1, l1 = 1, L2, and thus we have brought the original problem to the case of one object with L hypotheses.
Now we can reformulate Theorem 1.1 and Theorem 2.1 for these notations:

Theorem 2.2. If all distributions Fl, l = 1, L, are different in the sense thatD(Fl||Fm) > 0, l ̸= m, and the positive
numbers E′

1|1,E
′

2|2,. . ., E
′

L−1|L−1 are such that the following inequalities hold

E
′

1|1 < min
l=2,L

D(Fl||Fl)

. . . . . . . . . . . . . . . . . . . . . . . . . . . (22)

E
′

m|m < min( min
l=m+1,L

D(F1||Fm1), min
l=1,m−1

E∗
′

l|m(E
′

l|l)), m1 = 2, L

then there exists aLAO sequence of testsΦ∗, the reliability matric of whichE∗
′

= {E′

l|m(Φ∗)} is defined in (18)-(21)
and all elements of it are positive.
Inequalities (22) are necessary for ecistence of tests sequence with reliability matric E′ hving in diagonal given ele-
ments E∗′

l|l1 , l = 1, L− 1, and all other elements positive.

Theorem 2.3. In the case of distinct PDs F1, F2, . . . , FL, under condition that the probabilities of all L hypotheses
are positive the reliability of E′

l=r1|m ̸=r1
for given E

′

l ̸=r1|m=r1
= Er1|r1 is the following:

E
′

l=r1|m ̸=r1
(E

′

r|r) = min
m:m ̸=r1

inf
QoV :D(QoV ||Fr)≤E

′
r|r

D(QoV ||Fm), r ∈ [1, L].
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Abstract

Here, the classical and Bayesian inferences for estimating the parameters of the Weibull-half-
logistic distribution have been studied, when the lower record values along with the number of
observations following the record values (inter-record times) have been observed. In classical
inference, the maximum likelihood estimation and the asymptotic confidence intervals for the
parameters are obtained. In Bayesian inference, two approximation Bayes estimates and highest
posterior density intervals for the parameters are discussed. The Bayes estimates of the param-
eters have been provided by using Lindley’s approximation and Markov Chain Monte Carlo
method. A data set is also analyzed for illustration aims.

1. Introduction

The Weibull distribution is one of the most widely used distributions in the reliability and survival studies. The
exponential and Rayleigh distributions are two special cases of this model. For more detail on applications of the
Weibull distribution, see, for example, Murthy et al. [10] and some references therein. The cumulative distribution
function (CDF) of the Weibull distribution is Fα,β(x) = 1 − e−αxβ

, x > 0 with parameters α > 0 and β > 0.
Let Gθ(x) be a continuous baseline CDF, where θ is a parameter vector. By replacing x with Gθ(x)/(1−Gθ(x)) in
Weibull CDF, the CDF of Weibull-G distribution is defined by

Fα,β,θ(x) = 1− exp

{
−α

(
Gθ(x)

1−Gθ(x)

)β
}
, x ∈ D ⊂ R, α > 0, β > 0, θ ∈ Θ. (1)
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For half-logistic distribution, we suppose G(x) = (ex − 1)/(ex + 1) and then G(x)/(1 −G(x)) = (ex − 1)/2. So,
from (1), the CDF of the Weibull-half-logistic (WHL) distribution is defined by

Fα,β(x) = 1− e−α2−β(ex−1)β , x > 0. (2)

Hence, the probability density function (PDF) of the WHL distribution becomes

fα,β(x) = αβ2−β (ex − 1)
β−1

ex−α2−β(ex−1)β , x > 0. (3)

Let X1, X2, . . . be a sequence of identical and independent continuous random variables. The random variable Xi

is a lower record value if its value is smaller than all preceding values X1, X2, . . . , Xi−1. Considering this fact, the
sequence of lower record values can be rewritten as (W ,K) ≡ (W1,K1,W2,K2 . . . ,Wr,Kr) where Wi is the ith
record value or new minimum andKi is the number of trials following the observation ofWi that are needed to obtain
a new record value Wi+1. Also, we set Kr = 1. The values K1, . . . ,Kr are called inter-record times. An analogous
definition can be provided for upper record values.
Statistical inferences based on record data have been discussed extensively in the literature, see, for example, Arnold
et al. [1]. The Bayesian and non-Bayesian estimates for the parameters of the two-parameter exponential distribution
based on record values and their corresponding inter-record times was considered by Doostparast [3]. Optimal confi-
dence intervals of the parameters as well as uniformly most powerful tests for one-sided alternatives and generalized
likelihood ratio and uniformly unbiased and invariant tests for two-sided alternatives were derived by Doostparast and
Balakrishnan [4]. The optimal statistical procedures including point and interval estimation as well as most power-
ful tests based on record data from a two-parameter Pareto model were studied by Doostparast and Balakrishnan [5].
The Bayesian and non-Bayesian point estimates as well as asymptotic confidence intervals for the parameters of the
lognormal distribution were obtained by Doostparast et al. [6]. When the underlying distribution is the generalized
exponential distribution, Bayesian and non-Bayesian point estimates as well as asymptotic confidence intervals and
highest probability density credible intervals for the parameters were obtained by Kizilaslan and Nadar [8]. Also,
Pak and Dey [11] developed inference procedures for the estimation of the parameters and prediction of future record
values for the power Lindley distribution using record data and inter-record times.
In this paper, based on a sequence of record data from the WHL distribution, the unknown parameters of the baseline
distribution are estimated. The rest of the paper is organized as follows. In Section 2, we describe the construction of
the likelihood function for record data and corresponding inter-record times and then obtain the Maximum likelihood
(ML) estimates of the parameters of distribution. In Section 3, we provide the asymptotic confidence intervals for
the unknown parameters. The Bayesian estimates are another estimates which we will obtain. Assuming statistically
independent gamma priors for the parameters and SE loss function, the Bayes estimates of the parameters are discussed
by applying the Lindley’s approximation and theMarkov chainMonte Carlo (MCMC)method in Section 4. Moreover,
the highest probability density (HPD) credible intervals for the parameters are derived on the basis of the MCMC
method in Section 4. Section 5 includes an illustrative example.

2. Maximum likelihood estimation

Suppose that (W ,K) is be a sequence of record data from the WHL distribution with CDF and PDF (2) and (3),
respectively. Then, following Samaniego and Whitaker [12], the likelihood function associated with the sequence
(W ,K) is given by

L ≡ L(α, β|w,k) =
r∏

i=1

fα,β(wi) (1− Fα,β(wi))
ki−1

=
(
αβ2−β

)r
e−α2−β ∑r

i=1 ki(e
wi−1)β

r∏
i=1

ewi(ewi − 1)β−1, (4)
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and the corresponding log-likelihood function is

logL = r (logα+ logβ − β log 2)− α2−β
r∑

i=1

ki(e
wi − 1)β

+ (β − 1)

r∑
i=1

log(ewi − 1) +

r∑
i=1

wi. (5)

Taking the first partial derivatives of log-likelihood (5) with respect to α and β and equating each to zero, we obtain

∂ logL
∂α

=
r

α
− 2−β

r∑
i=1

ki(e
wi − 1)β = 0, (6)

and
∂ logL
∂β

= r

(
1

β
− log 2

)
− α2−β

r∑
i=1

ki(e
wi − 1)β log

ewi − 1

2
+

r∑
i=1

log(ewi − 1) = 0. (7)

From (6), we have

α̂ = r2β̂

[
r∑

i=1

ki(e
wi − 1)β̂

]−1

, (8)

where β̂ is the solution of the nonlinear equation in (7). Therefore, β̂ can be obtained by using the fixed point method
or Newton–Raphson method or other numerical methods.

3. Asymptotic Confidence Interval

In this section, we obtain the asymptotic confidence intervals for α and β by the asymptotic distribution of α̂ and β̂.
First, we need to compute the Fisher information matrix given by

I(α, β) =

−E
(

∂2 logL
∂α2

)
−E
(

∂2 logL
∂α∂β

)
−E
(

∂2 logL
∂β∂α

)
−E
(

∂2 logL
∂β2

)
 =

[
I11 I12
I21 I22

]
. (9)

But, it is difficult to obtain exact mathematical expectations I11, I12, I21 and I22 in (9). Therefore, we take the observed
Fisher information matrix as

Î(α, β) =

−∂2 logL
∂α2 −∂2 logL

∂α∂β

−∂2 logL
∂β∂α −∂2 logL

∂β2

 =

[
Î11 Î12
Î21 Î22

]
. (10)

From (6) and (7), we have

Î11 =
r

α2
, Î12 = Î21 = 2−β

r∑
i=1

ki(e
wi − 1)β log

ewi − 1

2
, (11)

Î22 =
r

β2
+ α2−β

r∑
i=1

ki(e
wi − 1)β

(
log

ewi − 1

2

)2

. (12)

Theorem 3.1. Let α̂ and β̂ be the ML estimators for α and β. So[
α̂− α

β̂ − β

]
D−→ N2

(
0, Î−1(α, β)

)
, (13)
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where D−→ denotes convergence in distribution and Î−1(α, β) is the inverse of the matrix Î(α, β) with

Î−1(α, β) =
1

Î11Î22 − Î12Î21

[
Î22 −Î12

−Î21 Î11

]
=

[
Var(α̂) Cov(α̂, β̂)

Cov(α̂, β̂) Var(β̂)

]
. (14)

Proof. From the asymptotic normality of the ML estimators, the theorem resulted.

On the basis of Theorem 3.1, the asymptotic 100(1− δ)% confidence intervals for α and β are

α̂± z1− δ
2

√
V̂ar(α̂), (15)

and
β̂ ± z1− δ

2

√
V̂ar(β̂), (16)

where zγ is the lower γ-th quantile of the standard normal distribution. respectively.
The confidence intervals (15) and (16) for α and β, respectively, may lead to negative lower bounds. For this reason,
we apply the logarithmic transformation and use the delta method to obtain the asymptotic normality distribution of
log α̂ and log β̂, respectively, as

log α̂− logα D−→ N
(
0,

Var(α̂)
α2

)
, (17)

and

log β̂ − logβ D−→ N

(
0,

Var(β̂)
β2

)
. (18)

Now, the asymptotic 100(1− δ)% confidence intervals for logα and logβ are

log α̂± z1− δ
2

√
V̂ar(α̂)
α̂

≡ (L1, U1),

and

log β̂ ± z1− δ
2

√
V̂ar(β̂)
β̂

≡ (L2, U2),

respectively. Finally, using the inverse logarithmic transformation, the asymptotic 100(1− δ)% confidence intervals
for α and β are derived, respectively, as

(eL1 , eU1), (19)

and
(eL2 , eU2). (20)

4. Bayes Estimation

Bayesian inference is a useful method for analyzing record-breaking data. Since records are often scarce, incorporating
prior information becomes invaluable. In the Bayesian inference, the most commonly used loss function is the squared
error (SE) loss, L(θ̂, θ) = (θ̂ − θ)2, where θ̂ is an estimator for θ. The Bayes estimate of θ under SE loss function is
the posterior mean of θ.
In this section, we derive the Bayes estimators for the parameters α and β by using the SE loss function. We assume
that α and β are random variables that follow the gamma prior distributions with PDFs as

π1(α) =
ba1
1

Γ(a1)
αa1−1e−b1α, (21)
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and
π2(β) =

ba2
2

Γ(a2)
βa2−1e−b2β , (22)

respectively, where the positive hyperparameters ai and bi for i = 1, 2 are chosen to reflect the prior knowledge about
α and β.
Using (4), (21) and (22), the joint posterior PDF of α and β can be written as

π(α, β|w,k) =
L(α, β|w,k)π1(α)π2(β)∫∞

0

∫∞
0

L(α, β|w,k)π1(α)π2(β) dα dβ
. (23)

As shown in the joint posterior PDF (23), it is not possible to obtain the Bayes estimates of parameters in closed
form. Therefore, we employ Lindley’s approximation to obtain them. Following Lindley [9], this method can be
demonstrated as follows.
Suppose that g(λ) is a desired function of parameter λ. The Bayes estimate of g(λ), under the SE loss function, is

E(g(λ)|data) =
∫
g(λ)eQ(λ)dλ∫
eQ(λ)dλ

, (24)

where Q(λ) = l(λ) + ρ(λ), l ≡ l(λ) and ρ ≡ ρ(λ) are the logarithm of the likelihood function and the logarithm of
the prior density of λ, respectively. Lindley approximated E(g(λ)|data) in (24) as

E(g(λ)|data) ∼= g +
1

2

m∑
i=1

m∑
j=1

(gij + 2giρj)σij +
1

2

m∑
i=1

m∑
j=1

m∑
k=1

m∑
h=1

lijkσijσkhgh

∣∣∣∣
λ=λ̂

,

where λ = (λ1, . . . , λm), g ≡ g(λ), gi = ∂g/∂λi, gij = ∂2g/∂λi∂λj , lijk = ∂3l/∂λi∂λj∂λk, ρj = ∂ρ/∂λj , σij is
(i, j)-th element in the inverse of the matrix [−lij ] with lij = ∂2l/∂λi∂λj . Also, λ̂ is the ML estimate of λ.
In the case of two parameters λ = (λ1, λ2), Lindley’s approximation leads to

E(g(λ)|data) ∼= g + g1(ρ1σ11 + ρ2σ12) + g2(ρ1σ21 + ρ2σ22) + g12σ12 +
1

2
(g11σ11 + g22σ22)

+
1

2

[
(l111σ11 + 2l121σ12 + l221σ22)(g1σ11 + g2σ12)

+ (l112σ11 + 2l122σ12 + l222σ22)(g1σ21 + g2σ22)
]
,

calculated at λ̂ = (λ̂1, λ̂2). In our case (λ1, λ2) = (α, β). From (11) and (12), we have

l111 =
2r

α3
, l112 = l121 = l211 = 0,

l221 = l212 = l122 = −2−β
r∑

i=1

ki (e
wi − 1)

β

(
log

ewi − 1

2

)2

,

l222 =
2r

β3
− α2−β

r∑
i=1

ki (e
wi − 1)

β

(
log

ewi − 1

2

)3

.

Using (21) and (22), it is easy to see that ρ1 = (a1 − 1)/α − b1 and ρ2 = (a2 − 1)/β − b2. When g(α, β) = α, we
obtain g1 = 1, g2 = 0 and gij = 0 for i, j = 1, 2. Also, when g(α, β) = β, we have g1 = 0, g2 = 1 and gij = 0 for
i, j = 1, 2. Hence, the Bayes estimators for the parameters α and β under the SE loss function are obtained as

α̂Lind ∼= α+ ρ1σ11 + ρ2σ12 +
1

2

[
σ11(l111σ11 + l221σ22) + σ21(2l122σ12 + l222σ22)

]
, (25)

β̂Lind ∼= β + ρ1σ21 + ρ2σ22 +
1

2

[
σ12(l111σ11 + l221σ22) + σ22(2l122σ12 + l222σ22)

]
, (26)
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respectively. All parameters (α, β) in (25) and (26) are replaced by the ML estimators, i.e., (α̂, β̂).
Clearly, constructing the HPD credible interval is not possible, by applying the Lindley’s approximation. So, we
approximate the Bayes estimates of the parameters and construct the corresponding HPD credible intervals using the
MCMC method.
Referring to (23), it is easy to show that the conditional posterior PDFs of α and β are as follows:

α|β, data ∼ Γ

(
r + a1, 2

−β
r∑

i=1

ki(e
wi − 1)β + b1

)
,

π (β|α, data) ∝ βr+a2−12−rβe−α2−β ∑r
i=1 ki(e

wi−1)β−b2β
r∏

i=1

(ewi − 1)
β−1

. (27)

Note that the conditional posterior PDF in (27) is not a well-known distribution and, therefore, it is not possible to
generate a sample from this distribution, directly. When a posterior PDF is roughly symmetric and unimodal, it can
be approximated by using the normal distribution, see, for example, Gelman et al. [7]. Consequently, we employ the
Metropolis-Hastings method with the normal proposal distribution to generate random samples from the distribution
with PDF (27). So, the hybrid Metropolis-Hastings and Gibbs sampling algorithm is as follows:

1. Choose an initial value (α0, β0) for the parameters (α, β) and set t = 1.
2. Using the Metropolis-Hastings algorithm under the proposal distributionN(β, 1) with PDF denoted by q(x|β),

generate βt from π (β|αt−1, data) as follows:
• Generate β⋆ from the proposal distribution q(x|βt−1).
• Compute the quantity

p = min
{
1,

π(β⋆|αt−1, data)q(βt−1|β⋆)

π(βt−1|αt−1, data)q(β⋆|βt−1)

}
. (28)

If p = 1, then set βt = β⋆. If p < 1, then set βt = β⋆ with probability p and βt = βt−1 with probability
1− p. To do this, generate u from the standard uniform distribution. If u < p, accept β⋆, otherwise accept
βt−1. Note that the property of symmetry of the normal distribution causes q(βt−1|β⋆) = q(β⋆|βt−1) and
so the quantity p in (28) can be simplified to p = min {1, π(β⋆|αt−1, data)/π(βt−1|αt−1, data)}.

3. Generate αt from Γ
(
r + a1, 2

−βt
∑r

i=1 ki(e
wi − 1)βt + b1

)
.

4. Set t = t+ 1.
5. Reiterate steps 2–4, T times and obtain (αt, βt) for t = 1, . . . , T .

By using the random sample generated from the above Gibbs sampling algorithm, the Bayes estimators for the param-
eters α and β under SE loss function are approximated by

α̂MC ∼=
1

T

T∑
t=1

αt, (29)

and

β̂MC ∼=
1

T

T∑
t=1

βt, (30)

respectively. Also, using the method of Chen and Shao [2], a 100(1 − δ)% HPD credible interval for the parameters
α and β is provided as follows. Let α⋆

1 < · · · < α⋆
T be the ordered values of α1, . . . , αT . The HPD credible interval

for α is the shortest length interval through the following 100(1− δ)% intervals(
α⋆
t , α

⋆
t+[T (1−δ)]

)
for t = 1 . . . , T − [T (1− δ)],

where [γ] denotes the largest integer less than or equal to γ. The 100(1− δ)% HPD credible interval for β is derived
in a similar manner.
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5. Illustrative eample

In order to explain how the methods proposed in previous sections can be applied in practice, we consider a simulated
data set for (W ,K) generated form theWHL distribution with parametersα = 2 and β = 3. This data set is presented
in Table 1.

Table 1. A sequence of record data (W ,K) of size r = 5 simulated from WHL distribution with α = 2 and β = 3.

i 1 2 3 4 5

Wi 0.72227 0.25851 0.10432 0.09783 0.05564
Ki 4 155 541 2725 1

Based on the data presented in Table 1 and using Equations (7) and (8), the ML estimates of the parameters are derived
α̂ = 1.76468 and β̂ = 2.67931. On the basis of Equations (19) and (20), the asymptotic 95% confidence intervals
for the parameters α and β are obtained, respectively, as (0.24485, 12.71835) and (1.93238, 3.71495). Under the
Bayesian framework, we assumed that the hyperparameters in prior densities (21) and (22) are (a1, b1) = (1, 0.1) and
(a2, b2) = (2, 1). From (25) and (26), the Bayes estimates of α and β under Lindley’s approximation are α̂Lind =

3.27719 and β̂Lind = 2.86272, respectively. Also, from (29) and (30), the Bayes estimates of these parameters using
the MCMC method are α̂MC = 3.64587 and β̂MC = 2.18444, respectively. Finally, the 95% HPD credible intervals
for α and β are, respectively, as (0.18784, 7.1039) and (2.18444, 3.42092).
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Abstract

The problem of point and interval estimation of the two parameters of the Weibull-half-logistic
distribution through a Bayesian approach is discussed, when the upper record values have been
observed. The Bayes estimates are derived on the basis of a bivariate prior distribution for the
parameters. To do this, the Bayes estimates are studied by using Lindley’s approximation and
Markov Chain Monte Carlo method under symmetric and asymmetric loss functions. Also,
point and interval predictions for future upper records are provided from a Bayesian viewpoint.
A data set is analyzed for illustrating the findings.

1. Introduction

Let X1, X2, . . . be a sequence of independent and identically distributed continuous random variables. If the obser-
vationXj is upper (lower) than all previous observations, then it is called a upper (lower) record value. That is,Xj is
an upper (lower) record value if Xj > Xi (Xj < Xi) for every i < j. Generally, let us define T1 = 1 and for n ≥ 2,

Tn = min{j : j > Tn−1, Xj > XTn−1
},

So, the sequence T1, T2, . . . is called the upper record times. Then, the sequence of upper record values becomes

Rn = XTn
, n = 1, 2, . . . ,

where R1 = X1. An analogous definition deals with lower record times and lower record values. Since these record
values arise in many practical situations, such as industrial stress testing, meteorology, seismology and athletic events,

∗Talker
Email addresses: mv.ahmadi@ub.ac.ir (Mohammad Vali Ahmadi), ghrahmadi@pnu.ac.ir (Gholam Reza Ahmadi)



298 M.V. Ahmadi & G.R. Ahmadi / The 4th National Congress on Mathematics and Statistics

they are extensively employed in statistical applications and modeling. Properties of record values have been widely
discussed in the literature. Chandler [7] studied record values and documented many of basic properties of them. We
refer the intersted readers to Glick [10], Arnold et al. [4] and Nevzorov [14] for studing in this area.
Many studies have been done concerning the statistical inference on the basis of record values. See, for example,
Ahmadi and Arghami [1], Ahmadi et al. [2], Baklizi [6], Ahsanullah and Shakil [3], Seo and Kim [17] and Zhao
et al. [20]. Recently, Asgharzadeh [5] presented the exact confidence intervals and joint confidence regions for the
parameters of Gumbel and inverse Weibull distributions based on record data. Also, Piriaei et al. [16] discussed the
E-Bayesian estimations for the unknown parameters, when the observed data set is a sequence of record values coming
from the exponential distribution.
The Weibull distribution is one of the most widely used distributions in the reliability and survival studies. The
exponential and Rayleigh distributions are two special cases of this model. For more detail on applications of the
Weibull distribution, see, for example, Murthy et al. [12] and some references therein. The cumulative distribution
function (CDF) of the Weibull distribution is Fα,β(x) = 1 − e−αxβ

, x > 0 with parameters α > 0 and β > 0.
Let Gθ(x) be a continuous baseline CDF, where θ is a parameter vector. By replacing x with Gθ(x)/(1−Gθ(x)) in
Weibull CDF, the CDF of Weibull-G distribution is defined by

Fα,β,θ(x) = 1− exp

{
−α

(
Gθ(x)

1−Gθ(x)

)β
}
, x ∈ D ⊂ R, α > 0, β > 0, θ ∈ Θ. (1)

For half-logistic distribution, we suppose G(x) = (ex − 1)/(ex + 1) and then G(x)/(1 −G(x)) = (ex − 1)/2. So,
from (1), the CDF of the Weibull-half-logistic (WHL) distribution is defined by

Fα,β(x) = 1− e−α2−β(ex−1)β , x > 0. (2)

Hence, the probability density function (PDF) of the WHL distribution becomes

fα,β(x) = αβ2−β (ex − 1)
β−1

ex−α2−β(ex−1)β , x > 0. (3)

In this paper, in Section 2, based on upper record data from the WHL distribution, Bayes estimators for the unknown
parameters are discussed. In order to obtain the Bayes estimates under symmetric and asymmetric loss functions,
Lindley’s approximation and Markov Chain Monte Carlo (MCMC) method are used in Subsections 2.1 and 2.2, re-
spectively. The highest probability density (HPD) credible intervals for the unknown parameters are also constructed
on the basis of the MCMC sample. In Section 3, the Bayesian approach is employed to develop the point and interval
predictors for the future records. Finally, a simulated data set analysis is provided in Section 4.

2. Bayesian estimation

Let R = (R1, . . . , Rm) be the first m upper record values from a distribution with PDF F (·; θ) and CDF f(·; θ).
Then, the likelihood function associated with the observed first m upper record values r = (r1, . . . , rm) (for more
details, see Arnold et al. [4]) is given by

L(θ|r) = f(rm; θ)
m−1∏
i=1

h(ri; θ), (4)

where −∞ < r1 < · · · < rm < ∞ and
h(ri; θ) =

f(ri; θ)

F̄ (ri; θ)
,

with F̄ (·; θ) = 1− F (·; θ). Under the WHL distribution with CDF (2) and PDF (3), the the likelihood function in (4)
is reduced to

L(α, β|r) =
(
αβ2−β

)m
e−α2−β(erm−1)β+

∑m
i=1 ri

m∏
i=1

(eri − 1)β−1, α > 0, β > 0. (5)
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Following Nadar et al. [13], we consider a bivariate prior distribution for the parameters α and β with the joint prior
PDF as

π(α, β) = π1(β|α)π2(α), (6)

where α has a gamma prior distribution with shape and scale parameters a2 and b2, respectively, and the conditional
prior distribution of β given α is gamma with shape and scale parameters a1 and α/b1, respectively. In other words,
we have

π1(β|α) =
αa1

Γ(a1)b
a1
1

βa1−1e−
αβ
b1 , β > 0, (7)

and
π2(α) =

ba2
2

Γ(a2)
αa2−1e−b2α, α > 0, (8)

where (a1, b1) and (a2, b2) are positive hyperparameters. Using Equations (5) and (6), the joint posterior PDF of α
and β can be rewritten as

π(α, β|r) = L(α, β|r)π(α, β)∫∞
0

∫∞
0

L(α, β|r)π(α, β) dα dβ

= C(r)αm+a1+a2−1βm+a1−12−mβe
−α

[
2−β(erm−1)β+b2+

β
b1

] m∏
i=1

(eri − 1)β−1, α > 0, β > 0, (9)

where
[C(r)]−1 = Γ(m+ a1 + a2)

∫ ∞

0

βm+a1−12−mβ
∏m

i=1(e
ri − 1)β−1(

2−β(erm − 1)β + b2 +
β
b1

)m+a1+a2
dβ.

The choice of loss function is crucial in the Bayesian approach to point estimation. The most commonly employed
loss function is the squared error (SE) loss functoin defined as

L(δ, θ) = (δ − θ)2, (10)

where δ is an estimate of θ. This symmetric loss function assigns equal importance to both overestimation and under-
estimation. However, in many situations, overestimation can have more severe consequences than underestimation,
or vice versa. Therefore, the use of symmetric loss functions may not be suitable in such cases. This is particularly
true in the estimation of reliability and failure rate functions, where an overestimate is often more consequential than
an underestimate. This realization necessitates the adoption of an asymmetric loss function. A valuable alternative to
the SE loss function is a convex but asymmetric loss function, called the LINEX (linear-exponential) loss function,
which was proposed by Varian [19]. It is defined as

L(δ, θ) = eγ(δ−θ) − γ(δ − θ)− 1, (11)

where γ ̸= 0 is the shape parameter. The sign and magnitude of γ determine the direction and degree of asymmetry,
respectively. When γ tends to zero, the LINEX loss function converges to the SE loss functon. For more details, see
Parsian and Kirmani [15]. The Bayes estimates of δ that minimize E (L(δ, θ)|data) can be shown to be E(θ|data) and
− log E(e−γθ|data)/γ under SE and LINEX loss functions in (10) and (11), respectively.
Using (5) and (6), the Bayes estimate of a givenmeasurable function ofα and β, say g(α, β), under the SE loss function
is given by

E(g(α, β)|r) =
∫∞
0

∫∞
0

g(α, β)L(α, β|r)π(α, β) dα dβ∫∞
0

∫∞
0

L(α, β|r)π(α, β) dα dβ
. (12)

As we recognize, Equation (12) leads us to some complexities and it is not possible to compute it analytically and
then the Bayes estimates cannot be obtained in the closed form. So, we use the Lindley’s approximation and MCMC
methods to obtain Equation (12).
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2.1. Lindley’s approximation
Lindley [11] suggested a method to approximate the ratio of integrals such as Equation (12). This procedure has
been employed by many authors to derive a approximation for the Bayes estimates. For two parameter case (α, β),
Lindley’s approximation can be represented as

E(g(α, β)|r) ∼= g(α̃, β̃) +
1

2

[
B +Q30B12 +Q21C12 +Q12C21 +Q03B21

]
, (13)

whereB =
∑2

i=1

∑2
j=1 gijτij ,Qij = ∂i+jQ/∂αi∂βj for i, j = 0, 1, 2, 3with i+ j = 3, g1 = ∂g/∂α, g2 = ∂g/∂β,

gij = ∂2g/∂αi∂βj for i, j = 0, 1, 2, Bij = (giτii + gjτij)τii, Cij = 3giτiiτij + gj(τiiτij + 2τ2ij) for i ̸= j, τij
is the (i, j)-th element in the inverse of the matrix Q⋆ = (−Q⋆

ij) with Q⋆
ij = ∂2Q/∂θi∂θj for i, j = 1, 2, where

(θi, θj) = (α, β) and Q is the logarithm of the posterior PDF in (9). Also, (α̃, β̃) is the mode of Q. Notice that the
parameters α and β in (13) are replaced by α̃ and β̃, respectively.
From (9), we have

Q = logC(r) + (m+ a1 + a2 − 1) logα+ (m+ a1 − 1) logβ −mβ log 2− α

[(
erm − 1

2

)β

+ b2 +
β

b1

]

+ (β − 1)
m∑
i=1

log(eri − 1).

The mode of Q is derived from the equations ∂Q/∂α = 0 and ∂Q/∂β = 0. Then, we obtain

α̃ =
m+ a1 + a2 − 1

2−β̃ (erm − 1)
β̃
+ b2 +

β̃
b1

,

where β̃ is the solution of the following nonlinear equation

m+ a1 − 1

β̃
−m log 2− m+ a1 + a2 − 1

2−β̃ (erm − 1)
β̃
+ b2 +

β̃
b1

[(
erm − 1

2

)β̃ (
log

erm − 1

2

)
+

1

b1

]
+

m∑
i=1

log(eri − 1) = 0.

To obtain β̃, we can apply the Newton-Raphson method or fixed point method or other numerical methods. Also, the
elements of Q⋆ are given by

Q⋆
11 =

∂2Q

∂α2
= −m+ a1 + a2 − 1

α2
,

Q⋆
12 = Q⋆

21 =
∂2Q

∂α∂β
= −

(
erm − 1

2

)β (
log

erm − 1

2

)
− 1

b1
,

Q⋆
22 =

∂2Q

∂β2
= −m+ a1 − 1

β2
− α

(
erm − 1

2

)β (
log

erm − 1

2

)2

.

So, we have [
τ11 τ12
τ21 τ22

]
=

1

Q⋆
11Q

⋆
22 −Q⋆

12Q
⋆
21

[
−Q⋆

22 Q⋆
12

Q⋆
21 −Q⋆

11

]
.

Moreover, it is easy to show that

Q30 =
∂3Q

∂α3
=

2(m+ a1 + a2 − 1)

α3
, Q21 =

∂3Q

∂α2∂β
= 0,

Q12 =
∂3Q

∂α∂β2
= −

(
erm − 1

2

)β (
log

erm − 1

2

)2

,

Q03 =
∂3Q

∂β3
=

2(m+ a1 − 1)

β3
− α

(
erm − 1

2

)β (
log

erm − 1

2

)3

.
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Therefore, based on the Lindley’s approximation in (13), the Bayes estimates of α and β under SE and LINEX loss
functions are, respectively, given by

α̂BS ∼= α̃+
1

2

[
Q30τ

2
11 + 3Q21τ11τ12 +Q12τ21 (τ22 + 2τ21) +Q03τ21τ22

]
, (14)

β̂BS ∼= β̃ +
1

2

[
Q30τ11τ12 +Q21τ12(τ11 + 2τ12) + 3Q12τ21τ22 +Q03τ

2
22

]
, (15)

α̂BL ∼= α̃− 1

γ
log
{
1 +

γ

2

(
γτ11 −Q30τ

2
11 − 3Q21τ11τ12 −Q12τ21(τ22 + 2τ21)−Q03τ21τ22

)}
, (16)

β̂BL ∼= β̃ − 1

γ
log
{
1 +

γ

2

(
γτ22 −Q30τ11τ12 −Q21τ12(τ11 + 2τ12)− 3Q12τ21τ22 −Q03τ

2
22

)}
. (17)

It is noteworthy that the parameters α and β are evaluated at α̃ and β̃, respectively.

2.2. MCMC method
In the preceding subsection, we derived the Bayes estimates of the parameters α and β using Lindley’s approximation
under the SE and LINEX loss functions. Due to the unavailability of exact probability distributions for these esti-
mates, evaluating Bayesian credible intervals for the parameters becomes challenging. Nevertheless, by employing
the MCMC method, we can obtain estimates of α and β and subsequently construct HPD credible intervals. To do
this, we refer to the joint posterior PDF of α and β in (9). From (9), we have

(α|β, r) ∼ Gamma

(
m+ a1 + a2,

(
erm − 1

2

)β

+ b2 +
β

b1

)
,

and

π(β|α, r) ∝ βm+a1−12−mβ
m∏
i=1

(eri − 1)β−1e
−α

[
2−β(erm−1)β+b2+

β
b1

]
.

Generation the random sample from the posterior distribution of α given β is straightforward. But, the posterior dis-
tribution of β given α cannot be analytically reduced to a well-known distribution, making it impossible to sample
directly using standard methods. Following the approach by Gelman et al. [9], in cases where the posterior PDF is
unimodal and roughly symmetric, it is often convenient to approximate it with a normal distribution. Since, the pos-
terior PDF of β given α is unimodal and roughly symmetric (as determined through experimentation), we employ the
Metropolis-Hasting algorithm with a normal proposal distribution to generate the sample from the posterior distribu-
tion of β given α. Therefore, for generating samples from the joint posterior distribution of α and β, the following
hybrid Metropolis-Hastings and Gibbs sampling algorithm, proposed by Tierney [18], will be used.

1. Let initial values of the parameters to be (α0, β0) and set t = 1.
2. Using the Metropolis-Hastings algorithm under the proposal distribution N(β, Vβ), where

Vβ = (−∂2 logπ(β|αt−1, r)/∂β
2)−1 with the corresponding PDF q(x|β), generate βt from π (β|αt−1, data)

as follows:
• Generate β⋆ from the proposal distribution q(x|βt−1).
• Compute the quantity

p = min
{
1,

π(β⋆|αt−1, r)q(βt−1|β⋆)

π(βt−1|αt−1, r)q(β⋆|βt−1)

}
. (18)

If p = 1, then set βt = β⋆. If p < 1, then set βt = β⋆ with probability p or βt = βt−1 with probability
1− p. To do this, generate u from the standard uniform distribution. If u < p, accept β⋆, otherwise accept
βt−1.

3. Generate αt from Gamma
(
m+ a1 + a2, 2

−βt (erm − 1)
βt + b2 + βt/b1

)
.

4. Set t = t+ 1.
5. Repeat steps 2–4, N ′ times, where N ′ is a large number, and obtain (αt, βt) for t = 1, . . . , N ′.
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Also, we employ a thinning approach, whereby only every k-th generated sample is retained, to diminish the autocor-
relation of the chain. Then, the generated samples from π(α, β|r) are

(αM+1, βM+1), (αM+k+1, βM+k+1), . . . , (αM+k(N−1)+1, βM+k(N−1)+1),

whereM is the burn-in period, k is the thinning parameter and N is the desired size of the generated sample. On the
basis of the random samples generated from the above algorithm, the Bayes estimators for the parameters α and β
under SE and LINEX loss functions are, respectively, given by

ˆ̂αBS ∼=
1

N

N∑
t=1

αt , ˆ̂βBS ∼=
1

N

N∑
t=1

βt, (19)

and

ˆ̂αBL ∼= − 1

γ
log

(
1

N

N∑
t=1

e−γαt

)
, ˆ̂βBL ∼= − 1

γ
log

(
1

N

N∑
t=1

e−γβt

)
. (20)

Also, using the method of Chen and Shao [8], a 100(1 − δ)% HPD credible interval for the parameters α and β is
provided as follows. Let α⋆

1 < · · · < α⋆
N be the ordered values of α1, . . . , αT . The HPD credible interval for α is the

shortest length interval through the following 100(1− δ)% intervals(
α⋆
t , α

⋆
t+[N(1−δ)]

)
for t = 1 . . . , N − [N(1− δ)],

where [κ] denotes the largest integer less than or equal to κ. The 100(1− δ)% HPD credible interval for β is derived
in a similar manner.

3. Bayesian prediction

This section deals with the prediction of the future records based on the past records using a Bayesian approach.
Suppose that we have the firstm upper recordsR = (R1, . . . , Rm) with observed values r = (r1, . . . , rm) from the
WHL distribution with parameters α and β. Also, let Y = Rs with s > m be the s-th upper record. It is proved
that the sequence {R1, R2, . . .} is a Markov chain; that is, the conditional PDF of Y = Rs given R = r is just the
conditional pdf of Y = Rs given Rm = rm. For more details, see Arnold et al. [4]. It follows that the conditional
PDF of Y = Rs givenR = r is given by

f(y|r, θ) =
f(y; θ)

(
H(y; θ)−H(rm; θ)

)s−m−1

Γ(s−m)F̄ (rm; θ)
, rm < y < ∞, (21)

where H(·; θ) = − log F̄ (·; θ). We can rewrite the conditional PDF of Y = Rs givenR = r in (21) as follows

f(y|r, θ) = f(y; θ)

Γ(s−m)F̄ (rm; θ)

s−m−1∑
j=0

(
s−m− 1

j

)
(−1)

j (log F̄ (y; θ)
)j (log F̄ (rm; θ)

)s−m−1−j
, rm < y < ∞.

Hence, the conditional CDF of Y = Rs givenR = r is

F (y|r, θ) =
∫ y

rm

f(t|r, θ) dt

=
1

Γ(s−m)F̄ (rm; θ)

s−m−1∑
j=0

(
s−m− 1

j

)(
log F̄ (rm; θ)

)s−m−1−j

×
[
Γ
(
j + 1,− log F̄ (y; θ)

)
− Γ

(
j + 1,− log F̄ (rm; θ)

)]
, rm < y < ∞,
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where Γ(c, x) =
∫ x

0
uc−1e−u du is the incomplete gamma function. For a special case, when s = m + 1, the

conditional PDF and CDF of Y = Rs given Rm = rm are reduced to f(y|r, θ) = f(y; θ)/F̄ (rm; θ) and F (y|r, θ) =
1− F̄ (y; θ)/F̄ (rm; θ), respectively.
Replacing Equations (2) and (3) into (21), the conditional PDF of Y = Rs givenR = r, under the WHL distribution
with parameters α and β, is obtained as

f(y|r, α, β) =
αβ2−β (ey − 1)

β−1
ey−α2−β(ey−1)β

(
α2−β (ey − 1)

β − α2−β (erm − 1)
β
)s−m−1

Γ(s−m) e−α2−β(erm−1)β
, rm < y < ∞.

(22)
Then, the Bayes predictive PDF of Y = Rs givenR = r is

h(y|r) =
∫ ∞

0

∫ ∞

0

f(y|r, α, β)π(α, β|r) dα dβ.

Based on Equations (9) and (22), it is easy to check that h(y|r) is not computed analytically and then the Bayes
predictive PDF of Y given R = r has not a closed form. However, we can derive a consistent estimator for h(y|r)
using the hybrid Metropolis-Hastings and Gibbs sampling method explained in Subsection 2.2. Let {(αt, βt); t =
1, . . . , N} be the MCMC sample obtained from the posterior PDF π(α, β|r) on the basis of the hybrid Metropolis-
Hastings and Gibbs sampling method. So, the consistent estimator for h(y|r) is given by

ĥ(y|r) = 1

N

N∑
t=1

f(y|r, αt, βt).

Also, a consistent estimator for the Bayes predictive CDF of Y = Rs given R = r, based on the MCMC sample, is
as follows

Ĥ(y|r) = 1

N

N∑
t=1

F (y|r, αt, βt). (23)

Moreover, the point predictors for Y = Rs givenR = r, under SE and LINEX loss functions, are, respectivley, given
by

ŶBS
∼=
∫ ∞

rm

y ĥ(y|r) dy =
1

N

N∑
t=1

∫ ∞

rm

yf(y|r, αt, βt) dy, (24)

and

ŶBL
∼= − 1

γ
log
{∫ ∞

rm

e−γy ĥ(y|r) dy
}

= − 1

γ
log

{
1

N

N∑
t=1

∫ ∞

rm

e−γyf(y|r, αt, βt) dy

}
. (25)

Finally, for constructing the equi-tailed two-sided 100(1 − δ)% Bayesian prediction interval (L,U) for Y = Rs, we
have

δ

2
= P (Y < L|r) = H(L|r) and 1− δ

2
= P (Y < U |r) = H(U |r).

From (23), we can obtain the lower bound L and upper bound U by solving the nonlinear equations δ/2 = Ĥ(L|r)
and 1− δ/2 = Ĥ(U |r) using the Newton-Raphson method.

4. Illustrative example

In this section, we illustrate how the methods presented in two previous sections can be employed using an numerical
example. For this purpose, we simulated a set of upper record data with m = 5 form the WHL distribution with
parameters α = 2 and β = 3. This simulated data set is

0.6946668 0.7850423 1.1602795 1.1807104 1.3466174.
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Let the hyperparameters of the gamma prior distributions in (7) and (8) be (a1, b1) = (1, 1) and (a2, b2) = (2, 2),
respectively. On the basis of the above record data, from Equations (14) to (17), the Bayes estimates of α and β under
SE and LINEX loss functions and using the Lindley’s approximation are obtained as

α̂BS = 1.38612, β̂BS = 2.06941, α̂BL = 1.53841, β̂BL = 1.78531.

However, using the MCMC method and based on Equations (19) and (20), these Bayes estimates are derived as

ˆ̂αBS = 1.47188, ˆ̂βBS = 1.80343, ˆ̂αBL = 1.29781, ˆ̂βBL = 1.45382.

Also, the 95% HPD credible intervals for α and β are computed as (0.37147, 2.78904) and (0.17588, 3.64702), re-
spectively.
Moreover, from Equations (24) and (25), the point Bayesian predictors for Y = Rm+1 under SE and LINEX loss
functions are obtained as ŶBS = 1.54365 and ŶBL = 1.51395, respectively. Finally, the 95% Bayesian prediction
interval for Y = Rm+1 is derived as (1.35035, 2.24837).
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Abstract

Returns on financial assets are not normally distributed. They exhibit both skewness and kur-
tosis. There are so many proposals in construction of skewed distributions and it is worth to
find an overall class which covers all of these proposals. In this paper the multivariate unified
skew-symmetric distributions is introduced. This unified multivariate representation of skewed
distributions includes all of the multivariate skewed distributions in the literature. The purpose
of this paper is to use one version of this unified form which is an attractive model for appli-
cations in finance and is suitable for portfolio selection in the presence of skewness and offers
a number of different insights into the sources of expected return and risk in a portfolio. This
article shows that, investors who are expected utility maximizers will be located on a single
mean-variance-skewness efficient surface, regardless of their choice of utility function.

1. Introduction

Markowitz (1952) was the first to propose a quantitative approach to optimal portfolio selection. This method is
equivalent to assuming that investors maximize the expected utility when the utility function used is quadratic in
portfolio return. The use of quadratic utility functions in finance, however, is criticized, see for example Pratt(1964),
on the grounds that there must be circumstances in which an investor appears to prefer less wealth to more wealth. This
criticism, coupled with the natural desire to achieve higher portfolio returns or lower portfolio volatility or both, has
lead to the search for what might be called better utility functions. When returns on financial assets have a multivariate
normal distribution, the consequence of Stein’s Lemma is that all well behaved utility functions will lead to a point on
Markowitz’ mean-variance efficient frontier.
When two random variable have a bivariate normal distribution, Stein’s Lemma provides an expression for the co-
variance of the first variable with a function of the second. Stein’s Lemma has many application in statistics and
probability and it plays an important role in modern finance. Stein’s Lemma states that, if X is a random vector which
has a multivariate normal distribution with mean vector µ and covariance matrixΣ and h(x) is a scaler valued function
which satisfies certain regularity conditions, then Cov{X, h(X)} = ΣE{∇h(X)}, where∇h(X) is the vector of first
derivatives of h(.) with respect to the elements of X.
However, it is well known that returns on financial assets are not normally distributed. They exhibit both skewness and
kurtosis. The construction of skewed multivariate distributions have received some considerable attention in the past
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few decades. There are somany proposals in construction of skewed distributions and it is worth to find an overall class
which covers all of these proposals. Unification of families of skewed distributions under a new general formulation
has been one of the important subject considered in recent years. Abtahi and Towhidi (2013) introduced, the unified
representation of multivariate skewed distributions. They showed that, this new unified multivariate representation of
skewed distributions includes all of the multivariate skewed distributions in the literature and introduced in the next
section.

2. Unified multivariate skewed distribution

Definition 2.1. A random vector Xf,p is said to have a unified multivariate skewed distribution with functional pa-
rameters f and p, if its pdf be of the form

s(x|f, p) = f(x) p[F (x1), F (x2|x1), ..., F (xk|x1, ..., xk−1)]; x ∈ ℜk, (1)

where f is a symmetric multivariate pdf corresponding to a random vector U on ℜk and p is a multivariate pdf on
[0, 1]k.
Note that for i = 2, ...k

F (xi|x1, ..., xi−1) = FUi
(xi|U1 = x1, U2 = x2, ..., Ui−1 = xi−1) (2)

is the conditional cumulative distribution of Ui|U1 = x1, U2 = x2, ..., Ui−1 = xi−1.

Xf,p has the unified multivariate skewed distribution, is denoted byXf,p ∼ UMSD(f, p), if its pdf is given by (1).
In the above definition the density p specifies a skewing mechanism. Different skewing mechanisms lead to different
skewed symmetric distributions.
Unified definition of multivariate skewed distributions introduced here, separated the skewing mechanism from the
symmetric distribution. The following theorem states that any multivariate continuous skewed distribution can be
interpreted as a skewed version of a symmetric distribution F , generated by a skewing mechanism p, in the form (2).

Theorem 2.2. Every continuous multivariate skewed density function s(.) can be expressed in the form ofUSSk(f, p).

The following example is the direct result of the above theorem.

Example 2.3. The probability distribution of X is multivariate skew-normal with parameters µ,Σ, λ and τ , denoted
as X ∼ MSN(µ,Σ, λ, τ). The probability density function of this distribution is

s(x) = ϕn(x, µ+ λτ,�+ λλT )Φ(
τ + λT�−1(x− µ)√

1 + λT�−1λ
)

1

Φ(τ)
(3)

This density function is introduced by Azzalini and Dalla Valle’s (1996) with a change of notation and general-
ization to accommodate a non zero value of τ . By defining f(x) = fU (x) = ϕn(x)and Φ(xi|x1, ..., xi−1) =
FUi(xi|U1=x1,...,Ui−1=xi−1) ,theMSN can be stated as (1) with the skewing mechanism

p(v) = Φ[ά(g1(v1), g2(v1, v2), ..., gk(v1, v2, ..., vk))
′ − (µ1, ..., µk)]

1

Φ(τ)
(4)

where α′ = τ+λ′Σ−1
√
1+λ′Σ−1λ

and gi(v1, ..., vi) defined as follows

x1 = F−1(v1) = g1(v1)
x2 = F−1(v2|g1(v1)) = g2(v1, v2)
.
.
.
xk = F−1(vk|g1(v1), ..., gk−1(v1), ..., vk−1)) = gk(v1, ..., vk)

and F−1(xi|x1, ..., xi−1) is the inverse of the cumulative distribution function of (Ui|U1 = x1, ..., Ui−1 = xi−1).
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This distribution that is introduced in the above example is an attractive model for application in finance. This is
because it offers a parsimonious model for the skewness which is often observed in the return distributions of risky
financial assets. The setup and method of proof follow Adcock(2007).

Theorem 2.4. Let X be an n vector that has the distributionMSN(µ,Σ,Λ, τ). For any scalar valued function h(x)
such that ∂h(x)

∂xi
is continuous almost everywhere and E{∂h(x)

∂xi
} < ∞, i = 1, ..., n,

Cov(X, h(X)) = (Σ + λλT )E{∇h(X)}+ λ[ENh(X)− E{h(X)}]ξ1(τ), (5)

where E{.} denotes expectation taken over the MSN distribution defined above and EN{.} denotes expectation
taken over a multivariate normal distribution with mean vector µ and covariance matrix Σ. The vector ∇h(X) is the
vector of first derivatives of h(.) with respect to the elements of X.

Proof. First write the vector X as X = � 1
2Z+ γ, where � and γ are as defined as follow:

γ = µ+ λτ,Ω = Σ+ λλT , β = {1 + λTΣ−1λ} 1
2λ = α−1λ

and define g(Z) = h(Ω
1
2Z + γ). Noting that the expected value of X is δ which is defined as, δ = E(X) =

µ+ λ{τ + ξ1(τ)}. It follows that cov{X, h(X)} = � 1
2 cov{Z, g(Z)} − λξ1(τ)E{g(Z)}.

Element i of the vector of covariance of Z with g(Z) is
∫
...
∫
zig(z)fZ(z)dz. The distribution of Z has a probability

density function given by

fZ(z) = ϕn(x; 0, In)Φ(τ{1+ηT η}
1
2 +ηT z)

Φ(τ) , η = �−1
2 β

The integral with respect to zi only is
∫
ziϕ(zi)g(z)Φ(τ{1 + ηT η} 1

2 + ηT z)/Φ(τ)dzi, which, using integration by
parts, can be expressed as∫

ϕ(zi)
∂g(z)
∂zi

Φ(τ{1+ηT η}
1
2 +ηT z)

Φ(τ) dzi +
∫
ϕ(zi)g(z)ηiΦ(τ{1+ηT η}

1
2 +ηT z)

Φ(τ) dzi

Integration of the first term with respect to all elements of z gives E{∂g(Z)/∂Zi}. After re-arrangement of the
arguments of the two ϕ(.) functions, the second integral with respect to z is ξ1(τ)ηi

∫
...

∫
g(z)ϕn(z,−ητ, In+ηηT )dz.

This may be expressed in terms of X, the original vector of variables, as αξ1(τ)ηi
∫
...
∫
h(x)ϕn(x, µ,Σ)dx. To

complete the proof, note that αΩ 1
2 η = λ and that the vector of derivatives ∂g(Z)/∂Zi, i = 1, ..., n is given by

Ω
1
2∇h(.).

3. Application To Portfolio Selection

A portfolio is a set of investment weights or proportions {wi}, i = 1, ..., n, defined such that an investor invests 100wi

of wealth in asset i. It is conventionally assumed that the weights sum to one. If the return on asset i is denoted by
the random variable Ri, i = 1, ...n, then the return on the portfolio with weights {wi} is RP =

∑n
i=1 wiRi = wTR,

where w and R are vectors of length n containing the investment weights and asset returns, respectively. For portfolio
selection, the investor conventionally chooses the vector of portfolio weights w to maximize the expected utility of
portfolio return.
For a general utility function, U(Rp), the expected utility is,

∫
...

∫
U(rP )f(r)dr = Ξ(w) where f(r) denote the

density function of the multivariate probability distribution of the vector of return R.
Following Kallberg and Ziemba(1983), the investor who is an expected utility maximizer solves, max(w)Ξ(w) −
η(uTw−1), where, u is a vector of length n containing ones and η is the Lagrange multiplier of the budget constraint.
Ignoring this constraint for simplicity, the first order conditions for theweight for asset i are, ∂Ξ

∂wi
=

∫
...

∫
riU

′(rP )f(r)dr.
The right hand side of this last expression may be written as

E(Ri)E{U ′(RP )}+
∫
...
∫
riE[Ri]U

′(rP )f(r)dr = Cov(Ri, U
′(RP )) + E(Ri)E{U ′(RP )}

When returns follow the multivariate skew normal distribution in example 2.3, application of theorem 3.4 gives the
vector of first order conditions for all assets.
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δE(U ′) + (�+ λλT )E(∇U ′) + λ{EN (U ′)− E(U ′)}ξ1(τ)

where the vector ∇U ′ is given by ∇U ′ = ∂U ′

∂R = wU ′′. The first order conditions may re-expressed in terms of Θ,
the covarianve of the returns as

δE(U ′) + ΘwE(U ′′) + λ[(EN (U ′)− E(U ′))ξ1(τ)− λTwE(U ′′)ξ2(τ)]

This equation in wis the same for all investors, except for the three scalar quantities, which are functions of certain ex-
pected values of U ′(.) and U ′′(.). When all elements of the vector λ are equal to zero, asset returns have a multivariate
normal distribution and Kallberg and Ziemba’s(1983) result is obtained. That is, the portfolios of all investors who
are expected utility maximizers are located on Markowitz’s mean-variance efficient frontier. Under the multivariate
skew normal distribution, investors’ portfolios are located on the mean variance-skewness-efficient surface.
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Abstract

In this article, a new wavelet-based method for estimating the conditional density function us-
ing the wavelet method is investigated. Based on this method, we will explain how to obtain
an estimate with the optimal convergence rate for the conditional density function based on the
information in the quantiles and using the copula density function. We also discuss the conver-
gence rate of the new estimator.

1. Introduction

One of the important statistical subjects with wide application in many practical problems, especially problems related
to forecasting, is the estimation of the conditional probability function. For example, this function plays a central role
in financial econometrics (see [2] and [7]). Now, suppose that (Xi, Yi)i≥1 be mutually independent random vectors
of a pair (X,Y ). We can show the structure of function f(y | x) as below

f(y | x) = fXY (x, y)

fX(x)
(1)

where fXY (x, y) and fX(x) denote the joint density of (X,Y ) and X , respectively. The kernel estimators of these
functions are given by

f̂n,XY (x, y) =
1

n

n∑
i=1

K ′
h′(Xi − x)Kh(Yi − y)

f̂n,X(x) =
1

n

n∑
i=1

K ′
h′(Xi − x)
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respectively. Here, Kh(.) = 1/hK(./h) and K ′
h′(.) = 1/h′K(./h′) are (rescaled) kernels whose associated se-

quences h = hn and h′ = h′n of bandwidth vanish as n → ∞. Accordingly, an estimator of f(y | x) is given
by

f̂(y | x) = f̂n,XY (x, y)

f̂n,X(x)

Kernel estimators have been studied in various fields of application due to their ease of working with them. But
these estimators create limitations, especially in the estimation of bounds in discontinuous functions. For this reason,
it is more preferred in this situation to suggest alternative estimation methods such as wavelets, which have higher
efficiency. The complete background on wavelets can be found in [10].
Following the idea of [3], we propose two new wavelet estimators for f(y | x): a linear estimator and a non-linear
hard thresholding estimator. The later estimator is entirely adaptive. We evaluate their performance by taking the
mean integrated error (MISE) over a wide class of functions. We show that the introduced estimator obtains the near
optimal convergence rate (lnn/n)2s/(2s+1), where s represents the smoothness parameter which we will discuss about
in section 2.
The following is how the paper is structured. In Section 2, we give some details about the wavelets and Besov balls and
then we introduce the considered block threshold estimator for the conditional density function. The main assumptions
and the main theoretical result, with discussions are presented in Section 3. Some potential applications are listed in
Section 4. Finally, the proofs are collected in Section 5.

2. Wavelets and Estimator

The mathematical context of the multiresolution analysis as well as the considered estimator are presented in this
section.

2.1. Wavelets
We consider an orthonormal wavelet basis generated by dilation and translation of a compactly supported ”father”
wavelet ϕ(.) and a compactly supported ”mother” wavelet ψ(.). For the purposes of this paper, we use the periodized
wavelet bases on the unit interval. For any x ∈ [0, 1], any integer i and any j ∈ {0, ..., 2i−1}, let

ϕi0j(x) = 2i0/2ϕ(2i0x− j), ψij(x) = 2i/2ψ(2ix− j)

be the elements of the wavelet basis and

ϕperi,j (x) =
∑
k∈Z

ϕi,j(x− k), ψper
i,j (x) =

∑
k∈Z

ψi,j(x− k)

there periodized version. There exists an integer τ such that the collection Ω = defined by Ω =
{
ϕperτ,j , j =

0, ..., 2τ−1; ψper
i,j , i = τ, ...,∞, j = 0, ..., 2i−1}, constitutes an orthonormal basis of L2([0, 1]). In what follows,

the superscript ”per” will be suppressed from the notations for convenience. For any integer k ≥ τ , a function
f ∈ L2([0, 1]) can be expanded into a wavelet series as

f(x) =
∑

j∈{0,...,2i0−1}

αi0,jϕi0,j(x) +
∑
i≥i0

∑
j∈{0,...,2i−1}

βi,jψi,j(x),

where the scaling coefficient αi0,j and the wavelet coefficient βi,j are given by

αi0,j =

∫
f(x)ϕi0,j(x)dx, and βi,j =

∫
f(x)ψi,j(x)dx.

All the details about these wavelet bases, including the expansion into wavelet series as described above, can be found
in, for example, [10] and [6].
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LetM > 0, s > 0, p ≥ 1, and q ≥ 1. We say that a function f(.) ∈ L2(R) pertains to the Besov balls Bs
p,q(M) if

and only if the associated wavelet coefficients (2) satisfy

(
2τ−1∑
k=0

| ατ,k |p
)1/p

+

 ∞∑
j=τ

2jσ

2j−1∑
k=0

| βjk |p
1/p


q

1/q

≤M (2)

where σ = s+ 1/2− 1/p. and with the usual modifications for p = ∞ or q = ∞.
These sets contain function classes of significant spatial inhomogeneity, including Sobolev balls and Holder balls.
Details about Besov balls can be found in, for example [10].

2.2. A product-shaped estimator
The kernel-based approach described above suffers from several drawbacks. From a practical point of view, the
Nadaraya-Watson estimator (and its local polynomial counterpart) may be numerically unstable when the denomina-
tor is close to zero. The large-sample behavior of the estimators is also difficult to track down, due to the quotient
form. This problem is usually addressed by linearizing the inverse after centering the numerator and the denominator
individually; see, e.g., [4] or [1] for details. At a conceptual level, one could also argue that implementing regression
estimation techniques in this setting is somewhat artificial: estimating a density, albeit a conditional one, should resort
to density estimation techniques only.
To remedy these problems, we propose an estimator which builds on the idea of using pseudo-observations, i.e., a
transformation of the original data. To be specific, a quantile transform of the data will be seen to lead, through a
copula representation, to a product-form estimator

f̂n(y | x) = f̂Y (y)ĉn{F̂n(x), Ĝn(y)} (3)

where f̂Y , ĉn, F̂n(x), Ĝn(y) are estimators of the density fY of Y , the copula density c , the c.d.f. F of X and G of
Y , respectively.
As will be shown, the properties of f̂n(y | x) are easily deduced from existing results in nonparametric density
estimation.

2.3. The quantile transform
Data transformations are common. They are often used to improve the range of applicability and performance of
classical estimation techniques to deal with skewed data, heavy tails, or restrictions on the support, among others;
see, e.g., Chapter 14 of [5]. In order to make inference on Y from X , an appropriate choice of transformation must
be made. We will see below that, in our context, a natural candidate is the quantile transform, i.e., the mapping
X 7−→ U = F (X) which turns a continuous random variable X with c.d.f. F into a uniform random variable U on
the interval [0, 1].

2.4. The copula representation
A copula is a cumulative distribution function whose margins are uniform on the interval [0, 1]. [9] proved the follow-
ing fundamental result:

Theorem 2.1. For any bivariate c.d.f. FX,Y on R2, with marginal c.d.f. F of X and G of Y , there exists some
function C : [0, 1]2 −→ [0, 1], called the dependence or copula function, such as

FX,Y (x, y) = C{F (x), G(y)}, −∞ < x, y <∞ (4)

If F and G are continuous, this representation is unique. The copula C is itself a c.d.f. on [0, 1]2 with uniform margins.
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This theorem gives a representation of the bivariate c.d.f. as a function of each univariate c.d.f. In other words,
the copula captures the dependence structure in the pair (X,Y ), irrespectively of the marginal distribution F and G.
Simply put, it allows one to deal with the randomness of the dependence structure and the randomness of the margins
separately.
Copulas are naturally linked with the quantile transform as formula (4) entails that

C(u, v) = FX,Y {F−1(u), G−1(v)}

For more details regarding copulas and their properties, see, e.g., the book of Joe [12].
From now on, we assume that the copula function C(u, v) has a density

c(u, v) =
∂2

∂u∂v
C(u, v)

with respect to the Lebesguemeasure on [0, 1]2 and thatF andG are strictly increasing and differentiable with densities
f and g. C(u, v) and c(u, v) are then the c.d.f. and density of the transformed variables (U, V ) = (F (X), G(Y )).
Upon differentiating both sides of (4), we get the joint density, viz.

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y) = f(x)g(y)c{F (x), G(y)}.

This leads to the following explicit formula of the conditional density:

f(y | x) = fX,Y (x, y)

f(x)
= g(y)c{F (x), G(y)}. (5)

2.5. Main Estimator
Starting from the previously stated product-type formula (5), a natural plug-in approach to build an estimator of the
conditional density is using:
1- a wavelet based nonparametric estimator of the density g of Y , viz

ĝ(y) =
∑
j∈Z

θ̂i0,jϕi0,j(y) +
R∑

i=i0

∑
j∈Z

ξ̂ijψi,j(y),

where ξ̂ij = ω̂i,jI(̂|ω̂i,j |>c
√
n−1 lnn) and θ̂i0,j , ω̂i,j are defined as follow

θ̂i0,j =
1

n

n∑
k=1

ϕi0,j(Yk), ω̂i,j =
1

n

n∑
k=1

ψi0,j(Yk)

2- Given that c(u, v) is the joint density of the transformed variables (U, V ) = (F (X), G(Y )), it could be estimated
in principle by the BlockShrink estimator,

ĉk′(u, v) =
∑
k

α̂i0,jϕi0j(u, v) +

i2∑
i=i1

∑
j∈Z

β̂ϵ
i,j1{|β̂ϵ

i,j |≥dλn}ψ
ϵ
i,j(u, v), u, v ∈ [0, 1].

Where λn =
√

log(n−k′)
n−k′ , and the natural estimator of αj0k and βϵ

j,k are given by

α̂j0,k =
1

n

n∑
i=1

ϕj0,k(F (Xi), G(Yi)), β̂ϵ
j,k =

1

n

n∑
i=1

ψϵ
j,k(F (Xi), G(Yi)).
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These coefficients cannot be evaluated since the distributions functions associated to the marginal distributions F
and G are unknown. We propose to replace these unknown distributions functions by their corresponding empirical
distributions functions Fn and Gn. The modified empirical coefficients are

α̃j0,k =
1

n

n∑
i=1

ϕj0,k(Fn(Xi), Gn(Yi)), β̃ϵ
j,k =

1

n

n∑
i=1

ψϵ
j,k(Fn(Xi), Gn(Yi)). (6)

where the empirical distribution functions are given by

Fn(x) =
1

n

n∑
k=1

I(Xi ≤ x), Gn(y) =
1

n

n∑
k=1

I(Yi ≤ y)

So the wavelet-based estimator for copula density is as

c̃k′(u, v) =
∑
k

α̃j0,kϕj0k(u, v) +

i2∑
i=i1

∑
j∈Z

β̃ϵ
i,j1{|β̃ϵ

i,j |≥dλn}ψ
ϵ
i,j(u, v), u, v ∈ [0, 1]. (7)

where where the smoothing parameters i1 and i2 satisfying 2i1 ' logn2 and 2i2 ' n(logn2 )−2.

3. Main Results

At the beginning of this section, we formulate some basic assumptions that are needed to prove the main results.

3.1. Assumptions
• A1 There is some compact subset Ωx such that for any c > 0, we have

sup
y∈Ωx

f(x, y) ≤ c

• A2 There exists a known constant c′ > 0 such that f(x) ≥ c′ > 0

These assumptions are only technical and necessary to prove our main theorem.

3.2. Main Results
In the following two theorems, an upper bound for the convergence rate of the bivariate density function and conditional
density function estimators is investigated. We also have two important propositions, which are used to prove these
theorems.

Theorem 3.1. Suppose that A1 hold and let c ∈ Bs
p,q(M) for all M > 0, s > 2/p and p, q ≥ 1. Consider the

estimator c̃k′(u, v) characterized by (7) with i1 and i2 satisfying 2i1 ' logn2 and 2i2 ' n(logn2 )−2. Then there exists
a constant C > 0 such that

E

(∫
[0,1]

| c̃k′(u, v)− c(u, v) |2 dy

)
≤ C

(
lnn
n

)− 2s
1+2s

Theorem 3.2. Suppose that A1 and A2 hold and let c ∈ Bs
p,q(M) for allM > 0, s > 2/p and p, q ≥ 1. Consider the

estimation of conditional density function f(y | x) with estimates (6) and (7). Then for a large enough d, there exists
a value of C > 0 such that we have

E

(∫
[0,1]

| f̂(y | x)− f(y | x) |2 dy

)
≤ Cn− 2s

1+2s
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The proof of Theorem 3.1 is based on a suitable decomposition of the MISE and the statistical properties of (6)
presented in Lemma 2 and Lemma 3 which are discussed in [8]. Also to prove Theorem 3.2, we follow the lines of
[3], Proof of Theorem 3.1.
Theorems 3.1 and 3.2 provide theoretical guarantees about the optimal convergence rate for estimators (7) and (2.2)
under mild boundedness assumptions. In addition, it should be noted that in Theorem 3.2, the value of n− 2s

1+2s is
the standard near optimal convergence rate for the nonlinear hard threshold wavelet estimator in the standard one-
dimensional density estimation problem (see [2] ).
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Abstract

Recently, there has been significant attention given to the characterization of probability dis-
tribution functions for random variables. This paper presents an approach to characterize the
distributions of real-valued random variables based on a real, continuous, and strictly increasing
function ψ(t). By examining specific scenarios, we demonstrate the versatility and applicability
of the developed techniques.

1. Introduction

Modern probability theory emerged in the late 19th and early 20th centuries, reaching its pinnacle with the introduction
of Kolmogorov’s axioms in 1933. The development of mathematical statistics came even later, with its fundamental
concepts solidifying in the early 1940s. Following World War II, there was a surge in the publication of periodicals
and monographs in this field, and this trend continues to this day, with an ever-increasing pace. Probability theory and
mathematical statistics rely on several specific concepts that become clearer when translated into pure mathematical
language. One such concept is the distribution function. Characterization theorems, situated at the intersection of
probability theory and mathematical statistics, make use of various classical tools from mathematical analysis, includ-
ing advanced topics such as complex variable functions, different types of differential equations, series theory, and
the theory of functional equations. One significant distribution is the exponential distribution where its cumulative
distribution function (CDF) is expressed as F (x) = e−λx, where x and λ are positive values greater than zero. The
lack of memory property of a random variable or its distribution can be conveniently illustrated using the analogy of
the lifespan of an industrial device. Let’s consider a random variable X representing the lifespan of an item. It is
evident that X takes values greater than zero. We say that X or its distribution function F (x) exhibits the lack of
memory property if, for all x and t greater than zero, such that P (X > z) > 0, it satisfies the following condition:

P (X − t > x|X > t) = P (X > x),

∗Talker
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Later advancements in this field have superseded the aforementioned characterization. Cox [1], Cundy [2], and
Shanbhag [10] have introduced a new characterization that utilizes the concept of constant expected residual life.
Additional relevant results can be found in Dallas [3], Galambos and Hagwood [5], Rao and Shanbhag [7], and other
related references. For instance, if a non-negative and non-degenerate random variable X satisfies the following
condition:

E(G(X − t)|X > t) = c, t > 0,

If a non-negative and non-degenerate random variable X satisfies certain conditions, where the function G fulfills
mild requirements, then X follows an exponential distribution. Additionally, Zoroa et al. [11] established necessary
and sufficient conditions for a real function h(y) to be the conditional expectation E(g(X)|X ≥ t) of a continuous
random variable Z, considering a given real, continuous, and strictly monotone function g. Ruiz et al. [8] extended
this result to continuous multivariate random variables. For discrete cases, Ruiz and Navarro [9] and Marin et al.
[6] provided related characterizations. Franco and Ruiz [4] also contributed corresponding characterizations for order
statistics and record values, respectively. The aim of this paper is to provide some characterization results based on
the exponential family of distribution.

2. Main results

Hereafter, we aim to characterize a broad range of distribution functions, dividing it into three subsections. The first
subsection focuses on the characterization of the exponential family of distributions. Consider a real, continuous, and
strictly increasing function ψ(t). The literature pays particular attention to the exponential family (EF) of distributions
based on the weight cumulative function ψ(t), where we have an absolutely continuous nonnegative random variable
defined by its survival function, which can be expressed as follows:

G(t) = e−θψ(t), α < t < β, (1)

where θ > 0, is a positive parameter such ψ(α) = 0 and β may take the value of infinity. Specifically, if we set
ψ(t) = F (t), where F (t) represents the cumulative distribution function, we obtain a wide range of distributions,
including the following:

G(t) = e−θF (t), α < t < β.

In the specific case where ψ(t) = t, the distribution reduces to the exponential distribution when t > 0. It is widely
recognized that the exponential distribution exhibits the following property:

G(x+ t) = G(x)G(t), x, t > 0.

This property, known as the memoryless property, has been extensively utilized in various fields of applied probability,
such as queueing theory. Now, we present the following theorem.

Theorem 2.1. LetX be an absolutely continuous random variable with survival function F (x), PDF f(x) and hazard
rate function of λ(x) = f(x)/F (x) with the supportD = (α, β).Moreover, let ψ(x) be a given real, continuous and
strictly increasing function. Then

P (ψ(X)− ψ(t) > y|X > t) = P (ψ(X) > y), y > 0, t ∈ D, (2)

holds if and only if the underlying distribution is EF distribution.

Proof. Let us define Fψ(y) = P (ψ(X) > y). The equation (2) can be equivalently expressed as follows:

Fψ(y + ψ(t)) = Fψ(y)F (t), y > 0, t ∈ D. (3)

By taking the derivative of (3) with respect to t and y and dividing the resulting expressions, we obtain the following
relationship:

ϕ(t) =
λ(t)

λψ(y)
, y > 0, t ∈ D.
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Taking into account

λψ(y) =
f(ψ−1(y))

ϕ(ψ−1(y))F (ψ−1(y))
=
λ(ψ−1(y))

ϕ(ψ−1(y))
, y > 0, (4)

and setting x = ψ−1(y), then we have

ψ−1(0) < ψ−1(y) < ψ−1(∞) ⇐⇒ α < x < β.

So, we obtain
λ(x) = θϕ(x), α < x < β,

where θ = λ(α)
ϕ(α) is a constant. This represents the hazard rate function of the exponential family of distributions, and

it concludes the proof.

An immediate consequence of the preceding theorem is presented in the following corollary.

Corollary 2.2. Under the conditions of Theorem 2.1, let us define ψ(x) = − logF (x). Then, we have the following:

P (− logF (X) + logF (t) > x|X > t) = P (− logF (X) > t), x > 0, t ∈ D, (5)

holds if and only if the underlying distribution is the proportional hazard rate model with the survival functionG(x) =
[F (x)]θ.

Let’s now write Equation (5) in detail for several specific distributions that are commonly used in various applications.
For each of the distributions, we will rewrite only one property of the exponential distribution that is representative
and informative for the transformed distribution. Here are the characterizing properties for each distribution.

(i) The power distribution: if ψ(x) = −θ log(1− x), from Corollary 2.2, we can conclude that

P (−θ log(1−X) + θ log(1− t) > x|X > t) = P (−θ log(1−X) > t), 0 < x < 1, 0 < t < 1,

holds if and only if the underlying distribution is the power distribution with the survival function F (x) =
(1− x)θ, θ > 0, for 0 ≤ x ≤ 1.

(ii) The Weibull distribution: if ψ(X) = Xθ, from Corollary 2.2, we can conclude that

P (Xθ − tθ > x|X > t) = P (Xθ > t), x, t > 0,

holds if and only if the underlying distribution is the Weibull distribution with the survival function F (x) =

e−x
θ

, θ > 0, for x > 0.

(iii) The Pareto distribution: if ψ(X) = θ logX, from Corollary 2.2, we can conclude that

P (θ logX − θ log t > x|X > t) = P (θ logX > t), x > 1, t > 1,

holds if and only if the underlying distribution is the Pareto distribution with the survival function F (x) =
x−θ, θ > 0, for x ≥ 1.

The Table 1 displays some continuous distribution functions that can be characterized under a suitable choice of ψ(x).
Because of the obvious flexibility of Eq. (2), it is very useful in several characterization results,

3. Conclusion

The characterization of probability distribution functions for random variables has received considerable attention in
recent times. This paper introduced a novel approach to characterize the distributions of real-valued random variables
using a real, continuous, and strictly increasing function ψ(t). Through the examination of specific scenarios, we
have showcased the versatility and practical applicability of the developed techniques. By applying these methods to
concrete examples, we have demonstrated their effectiveness in capturing the essential characteristics of various dis-
tributions. The proposed approach offers a valuable tool for understanding and analyzing the probability distributions
of real-valued random variables, with potential applications in a wide range of domains.
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Table 1. Examples of Exponential Family of Distributions.
Distribution Survival function Parameter ψ(x)

Exponential F (x) = e−θx, x > 0, θ x

Weibull F (x) = e−(λx)α , x > 0, λα xα

Pareto Type I F (x) =
[
x
µ

]−α

, x > µ, α log( x
µ
)

Pareto Type II F (x) =
[
1 + x−µ

σ

]−α
, x > µ, α log(1 + x−µ

σ
)

Lomax F (x) =
[
1 + x

σ

]−α
, x > 0, α log(1 + x

σ
)

Gompertz F (x) = e−λ(ebx−1), x > 0, λ ebx − 1

Beta of the first kind F (x) = (1− x)α, 0 < x < 1, α − log(1− x)

Beta of the second kind F (x) = (1 + x)−1, x > 0, 1 log(1 + x)

Log logistic F (x) = (1 + axb)−1, x > 0, 1 log(1 + axb)

Burr type XII F (x) = (1 + axb)−θ, x > 0, θ log(1 + axb)
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Abstract

In the present work the concept of inner uniform acts is introduced and investigated. We bring
out some general properties of these classes of acts and also their relations with some concepts
for example duo, coregular and quasi-injective acts are studied.

1. Introduction

Throughout this paper S will denote a monoid and an S-actAS (orA) is a right S-act. Recall that a subactB of a right
S-act A is called large (or essential) in A if any S-homomorphism g : A −→ C such that g|B is a monomorphism
is itself a monomorphism (see [1]). Also from [4] an S-act A is said to be uniform if any nonzero subact of A is
essential. As a special case of the concept of uniform acts in this paper we introduce and study the notion of inner
uniform acts. We investigate conditions that are relevant to these classes of acts and under some special conditions
we characterize monoids which over them any cyclic S-act is inner uniform. It is shown that for an injective act A
the concepts uniformity and inner uniformity are equivalent. For an S-act A a nonzero subact B of A is called inner
essential and denoted by B ⊆ie A if any endomorphism g : A −→ A such that g|B is a monomorphism is itself a
monomorphism and A is called inner uniform if any nonzero subact of A is inner essential. Here it is necessary to
remember some concepts.
A right S-act A is called injective if for any S-act B, any subact C of B and any homomorphism f : C −→ A,
there exists a homomorphism f̄ : B −→ A such that f̄ |C= f (see [1]). Also from [5] the right S-act A is called
quasi-injective if it is injective relative to all inclusions from its subacts. For the sake of simplicity, we denote ”quasi-
injective” by ”Q-injective”. Recall from [6], the right S-act A is called C-injective if it is injective relative to every
inclusion from cyclic acts. For an S-act AS , by E(A), we mean the injective envelope of A. We refer the reader to
[1] for all concepts and basic properties of S-acts not defined here.
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2. Main Results

Definition 2.1. Let A be an S-act over a monoid S. A nonzero subact B of A is called inner essential and denoted
by B ⊆ie A if any endomorphism g : A −→ A such that g|B is a monomorphism is itself a monomorphism and A is
called inner uniform if any nonzero subact ofA is inner essential. Also a monoid S is called right inner uniform
if the right S-act SS is inner uniform.

Regarding the above definition it is clear that any uniform S-act is inner uniform and also clearly Θ ⊔ Θ is inner
uniform.

Proposition 2.2. Suppose A is an S-act over a monoid S. Then the following conditions are equivalent:
(i) Any nonzero subact of A is inner essential.
(ii) Any nonzero finitely generated subact of A is inner essential.
(iii) Any nonzero cyclic subact of A is inner essential.
(iv) Any nonzero indecomposable subact of A is inner essential.

Proposition 2.3. Over a monoid S an injective S-act A is uniform if and only if it is inner uniform.

Proposition 2.4. Suppose a monoid S is right inner uniform. Then for any elements x, y ∈ S if xy is left cancellable
then x is also left cancellable.

From [2] a subactB of an S-actA is called fully invariant if for any endomorphism f : A −→ A, f(B) ⊆ B. Also
A is said to be duo if any subact of A is fully invariant.

Proposition 2.5. Suppose B ⊆ C ⊆ A are S-acts over a monoid S. Then the following hold:
(i) If B ⊆ie A, then C ⊆ie A.
(ii) If A is Q-injective and B ⊆ie A then B ⊆ie C.
(iii) If C is a fully invariant subact of A and B ⊆ie C ⊆ie A, then B ⊆ie A.

Corollary 2.6. Suppose B ⊆ C ⊆ A are S-acts over a monoid S and A is a Q-injective duo act. Then B ⊆ie A if
and only if B ⊆ie C ⊆ie A.

Corollary 2.7. The following hold over a monoid S:
(i) Any nonzero subact of any Q-injective inner uniform S-act is inner uniform.
(ii) Any essential duo extension of any inner uniform S-act is also inner uniform.

Proposition 2.8. Suppose for an S-act A,E(A) is a duo S-act. Then the following conditions are equivalent:
(i) A is inner uniform.
(ii) E(A) is inner uniform.
(iii) E(A) is uniform.
(iv) A is uniform.

From [3] an S-act A is called coregular if any cyclic subact of A is injective.

Corollary 2.9. Suppose an S-act A is coregular. Then the following conditions are equivalent:
(i) A is inner uniform.
(ii) A is uniform.
(iii) A is a zero simple S-act.

Corollary 2.10. Suppose over a monoid S any S-act is C-injective. Then the following conditions are equivalent:
(i) Any cyclic S-act is inner uniform (uniform).
(ii) S = G ⊔Θ where G is a group and Θ is the one element S-act.
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Abstract

We introduce the notion of Stanley Cohen-Macaulay modules and show that if u ∈ S is a regular
element on S/I , where I ⊂ S = K[x1, . . . , xn] is a monomial ideal, then I is a Stanley Cohen-
Macaulay ideal if and only if (I, u) is a Stanley Cohen-Macaulay ideal.

1. Introduction

Let S = K[x1, . . . , xn] be a polynomial ring in n variables over a fieldK andM be a finitely generated Zn-graded S-
module. Letm ∈ M be a homogeneous element inM and Z ⊆ {x1, . . . , xn}. We denote bymK[Z] theK-subspace
of M generated by all elements mf where f is a monomial in K[Z]. The Zn-graded K-subspace mK[Z] ⊂ M
is called a Stanley space of dimension |Z|, if mK[Z] is a free K[Z]-module. A Stanley decomposition of M is a
presentation of theK-vector spaceM as a finite direct sum of Stanley spaces

D : M =
r⊕

i=1

miK[Zi].

Set (D) = min{|Zi| : i = 1, . . . , r}. The number

(M) = max{(D) : D is a Stanley decomposition of M}

is called Stanley depth of M . R. P. Stanley [2] conjectured that (M) ≤ (M) for all finitely generated Zn-graded
S-modulesM .

A chain of Zn-graded submodules F : 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mr = M is called a prime filtration of M if
Mi/Mi−1

∼= S/Pi(−ai) Where ai ∈ Zn and each Pi is a monomial prime ideal. We call the set {P1, . . . , Pr} the
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support of F and denote it (F).
Herzog, Vladoiu, Zheng proved in [[1], Proposition 1.3] that if F is a prime filtration ofM , then
min{dim(S/P ) : P ∈ F} ≤ (M), (M) ≤ min{dim(S/P ) : P ∈ Ass(M)}.
We say that a finitely generated Zn-graded S-module M is Stanley Cohen-Macaulay module if (M) = (M), where
(M) = min{dim(S/P ) : P ∈ (M)}. This paper is organized as follows. In Section 1 we recall some notation and
definitions which will be needed later. A monomial ideal I is called Stanley Cohen-Macaulay ideal if S/I is a Stanley
Cohen-Macaulay S-module. As the main result of Section 2 we prove that if I is a monomial ideal and u ∈ S is a
regular element on S/I , then I is a Stanley Cohen-Macaulay ideal if and only if (I, u) is a Stanley Cohen-Macaulay
ideal, see Theorem 3.4.
Example 3.2 shows that there exists Stanley Cohen-Macaulay modules which are not Cohen-Macaulay.

2. Preliminaries

In this section we fix some notation and recall some definitions.

Definition 2.1. LetM be a finitely generated Zn-graded S-module. Then the Stanley dimension ofM is given by

(M) = min{dim(S/P ) : P ∈ (M)}

Definition 2.2. LetM be a finitely generated Zn-graded S-module. M is Stanley Cohen-Macaulay module if (M) =
(M).

We also say that x ∈ S is an M -regular element if xz = 0 for z ∈ M implies z = 0, in other words, if x is not a
zero-divisor onM .

Definition 2.3. A monomial ideal I is called Stanley Cohen-Macaulay ideal if S/I is a Stanley Cohen-Macaulay
S-module.

3. Stanley Cohen-Macaulay ideals

As the main result of this paper we prove that if I is a monomial ideal and u ∈ S is a regular element on S/I , then I
is a Stanley Cohen-Macaulay ideal if and only if (I, u) is a Stanley Cohen-Macaulay ideal.

Remark 3.1. Let M be a Cohen-Macaulay finitely generated Zn-graded S-module and Stanley’s Conjecture holds
forM . ThenM is a Stanley Cohen-Macaulay module.

The following example shows that converse of the above remark is not true in general.

Example 3.2. Let S = K[x1, x2] and M = S/(x2
1, x1x2). Then we have (M) = (M) = 0. So M is a Stanley

Cohen-Macaulay module. But (M) = 0, dim(M) = 1. ThusM is not Cohen-Macaulay.

Proposition 3.3. Let I = (u1, . . . , ur) be a monomial ideal, and u =
∏t

k=1 x
ak
jk

∈ S be a monomial regular on S/I .
Then

(i) xak
jk

∤ ui for all k = 1, . . . , t and all i = 1, . . . , r,

(ii) I =
∩l

i=1 Qi is the minimal primary decomposition of I if and only if (I, u) =
∩l

i=1

∩t
k=1(Qi, x

ak
jk
) is the

minimal primary decomposition of (I, u).

Proof. (i) Suppose on the contrary that there exists d ∈ [r] such that xak
jk

| ud for all k = 1, . . . , t. So ud = xak
jk
fd for

some fd ∈ S and this implies that fd /∈ I and xak
jk
(fd + I) = I which is a contradiction.

(ii) Let I =
∩l

i=1 Qi is the minimal primary decomposition of I . We claim that
∩l

i=1

∩t
k=1(Qi, x

ak
jk
) is the minimal

primary decomposition of (I, u). We first prove that (I, u) =
∩l

i=1

∩t
k=1(Qi, x

ak
jk
). Let w ∈ (I, u). Then we have

to consider two cases: If u ∤ w, then one has w ∈ I and w ∈ Qi for all i = 1, . . . , l. This implies that w ∈ (Qi, x
ak
jk
)

for all k = 1, . . . , t and all i = 1, . . . , l. Hence w ∈
∩l

i=1

∩t
k=1(Qi, x

ak
jk
). If u | w, then w ∈ (Qi, x

ak
jk
) for all
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k = 1, . . . , t and all i = 1, . . . , l. So w ∈
∩l

i=1

∩t
k=1(Qi, x

ak
jk
). Assume w′ ∈

∩l
i=1

∩t
k=1(Qi, x

ak
jk
). Then we have

w′ ∈ (Qi, x
ak
jk
) for all i = 1, . . . , l and all k = 1, . . . , t. If xak

jk
| w′ for all k = 1, . . . , t, then w′ ∈ (I, u). Otherwise,

we have w′ ∈ Qi for all i = 1, . . . , l thus w′ ∈ I and w ∈ (I, u). Now We show that
∩t

k=1(Qi, x
ak
jk
) is a primary

ideal for all i = 1, . . . , l and k = 1, . . . , t. Let fg ∈
∩t

k=1(Qi, x
ak
jk
), where f, g ∈ S and g /∈

∩t
k=1(Qi, x

ak
jk
). If

fg ∈ Qi, then there exists n ∈ N such that fn ∈ Qi and fn ∈
∩t

k=1(Qi, x
ak
jk
).

If fg ∈ (xak
jk
) and g /∈ (xak

jk
), then there exists m ∈ N such that fm ∈ (xak

jk
) and fm ∈

∩t
k=1(Qi, x

ak
jk
).

It suffices to show that decomposition is minimal. Suppose on the contrary that there exists d ∈ [l] such that∩l
i=1,i ̸=d

∩t
k=1(Qi, x

ak
jk
) ⊂

∩t
k=1(Qd, x

ak
jk
). So

∩l
i=1,i ̸=d Qi ⊂ Qd which is a contradiction. Let (I, u) =

∩l
i=1

∩t
k=1(Qi, x

ak
jk
)

is the minimal primary decomposition of (I, u). We know that
∩t

k=1(Qi, x
ak
jk
) = (Qi, u) and (I, u) =

∩l
i=1(Qi, u).

Therefore (I, u) \ (u) =
∩l

i=1((Qi, u) \ (u)) and I =
∩l

i=1 Qi is the minimal primary decomposition of I .

Theorem 3.4. Let I ⊂ S be a monomial ideal of S = K[x1, . . . , xn] and u ∈ S be a monomial regular on S/I .
Then (S/(I, u)) = (S/I) − 1. In particular, I is a Stanley Cohen-Macaulay ideal if and only if (I, u) is a Stanley
Cohen-Macaulay ideal.

Proof. By part (ii) Proposition 3.3 and the definition of Stanley dimension we have (S/(I, u)) = (S/I) − 1. Let I
be a Stanley Cohen-Macaulay ideal. Then (S/I) = (S/I). Also (S/(I, u)) = (S/I)− 1.
On the other hand, A. Rauf [[3],Theorem 2.4.1] proved that

(S/(I, u)) = (S/I)− 1.

Therefore (S/(I, u)) = (S/(I, u)). Now let (I, u) is a Stanley Cohen-Macaulay ideal. Then (S/(I, u)) = (S/I)−
1 = (S/(I, u)) = (S/I)− 1. So (S/I) = (S/I).
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Abstract

LetG be a finite group. A subsetX of a groupG is a set of pairwise of noncommuting elements
if xy ̸= yx for all x ̸= y ∈ X. If |X| ≥ |Y | for any other subset Y of pairwise noncommut-
ing elements, then X is called a maximal subset of pairwise noncommuting elements and the
size of such a set is denoted by ω(G). Here, we determine the cardinality of a maximal subset
of pairwise non-commuting elements for some p-groups and generalise some results that was
computed for certain p−groups.

1. Introduction

LetG be a non-abelian group and letX be amaximal subset of pairwise non-commuting elements ofG. The cardinality
of such a subset is denoted by ω(G). Also, ω(G) is the maximal clique size in the non-commuting graph of a group
G. Let Z(G) be the center of G. The non-commuting graph of a group G is a graph with G \ Z(G) as the vertices
and join two distinct vertices x and y, whenever xy ̸= yx. By a famous result of Neumann [11], answering a question
of Erdös, the finiteness of ω(G) in G is equivalent to the finiteness of the factor group G

Z(G) . Pyber [13] has shown
that there is a constant c such that |G : Z(G)| ≤ cω(G).Moreover, figure out ω(G) for various families of groups are
attracted by the several authors, for example, [1, 2, 3, 4, 5, 7, 8, 9, 12]. A finite p−group G is called extraspecial if the
center, the Frattini subgroup and the derived subgroup of G all coincide and are cyclic of order p. Chin [7] obtained
upper and lower bounds for ω(G) for an extra-special p−group G, where p is an odd prime number.
For p = 2 , Issacs [6 p.40] showed that ω(G) = 2n + 1 for any extra-special group G of order 22n+1. Mason [10]

gave a bound for ω(G) by covering the group G by (
1

2
|G| + 1) abelian subgroups. The cardinalities of maximal

subsets of pairwise non-commuting elements of extraspecial p−groups are important as they provide combinatorial
information which can be used to calculate their cohomology lengths. (The cohomology length of a nonelementary
abelian p−group is a cohomology invariant derived from a theorem of Serre [15]). Azad [5] proved that ω(G) = p+1
for any finite p−groupGwith central quotient of order p2, where p is a prime number. Moreover, they also determined
ω(G) for any nonabelian group of order p4. Orfi [12] determined ω(G) for p−groups of order p5. Fouladi and Orfi
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[9] proved that ω(G) = |G′ |(p+ 1)/p, where G is a finite nonabelian metacyclic p−group with p2. Further, Fouladi
and Orfi [8] determined ω(G) for some p−groups G of maximal class. In this paper, we generalise the results of [5],
namely Lemmas [3.1 , 3.2].

2. Notation and preliminary results

Throughout of the paper, G denotes a finite group. Then Z(G), CG(x) denotes respectively the center and the cen-
tralizer of an element x ∈ G. If x, y ∈ G then [x, y] = x−1y−1xy. A group G is called AC−group if the centralizer
of every non-central element of G is abelian. In this section we give some basic results that are needed for the rest of
the paper. We start the following lemma, while is an easy exercise.

Lemma 2.1. Let G be a finite group. Then
1) For any subgroup H of G, ω(G) ≤ ω(G).

2) For any normal subgroup N of G, ω(
G

N
) ≤ ω(G).

Lemma 2.2. [14, Lemma 3.2] The following statements are equivalent:
1) G is an AC−group.
2) If [x, y] = 1, then CG(x) = CG(y), where x, y ∈ G \ Z(G).
3) If [x, y] = [x.z] = 1, then [y, z] = 1, where x ∈ G \ Z(G).
4) If A and B are subgroups of G and Z(G) < CG(A) ≤ CG(B) < G, then CG(A) = CG(B).

Remark 2.3. If G is an AC−group, then {CG(x)|x ∈ G \ Z(G)} is the set of maximal abelian subgroups.

Lemma 2.4. [8, Lemma 2.2]. Let G be an AC−group. Then
1) If x, y ∈ Z(G) with distinct centralisers, then CG(x)

∩
CG(G) = Z(G).

2) IfG =
∪k

i=1 CG(xi), where CG(xi) and CG(yi) are distinct for 1 ≤ i < j ≤ k, then {x1, x2, ..., xk} is a maximal
set of pairwise non-commuting elements of G.

Lemma 2.5. [3, Lemma 2.3] Let G be a finite AC−group. Then G =
∪k

i=1 CG(xi), where CG(xi) are distinct for
i ̸= j and {x1, ..., xk} is a maximal set of pairwise non-commuting elements of G.

Lemma 2.6. [12, Lemma 3.4]. Let G = H ×K, where H and K are nonabelian subgroups of G. Then, ω(G) ≥
ω(H)ω(K).

Lemma 2.7. Let H and K be groups. Then
1) If K is an AC−group and H

′
= 1 then H ×K is also an AC−group.

2) If H,K and H ×K all are AC−groups, then ω(H ×K) = ω(H)ω(K).
3) If H is a nilpotent AC−group, then H is a metabelian.

Lemma 2.8. [14, P roposition 3.10]. Let G be a p−group. Then
1) If G has an abelian subgroup of index p, then G is an AC− group.
2) If G has an abelian subgroup A of index p2, but no abelian subgroup of index p, then G is an AC−group if and
only if CG(x)

∩
A = Z(G) for every x ∈ G \A.
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Lemma 2.9. Let G be a p−group of maximal class and order pn (n ≥ 4) with positive degree of commutativity
which possesses an abelian maximal subgroup. Then :
1) G is an AC−group,
2) ω(G) = pp−2 + 1.

Lemma 2.10. If G is a 2−group of maximal class and order 2n, then ω(G) = 2n−2 + 1

Corollary 2.11. Let G be a 3−group of maximal class and order 3n.
1) If G possesses an abelian maximal subgroup, then ω(G) = 3n−2 + 1.
2) If G possesses no abelian maximal subgroup, then ω(G) = 3n−2 + 4.

Corollary 2.12. Let G be a p−group of maximal class and order p5.
1) If G possesses an abelian maximal subgroup, then ω(G) = p3 + 1.
2) If G possesses no abelian maximal subgroup, then ω(G) = p3 + p+ 1.

3. Main results

In this section, we generalize the results of [5], namely below Lemmas:

Lemma 3.1. Let G be a group of order pn with the central quotient of order p2, where p is a prime number. Then
ω(G) = p+ 1.

Lemma 3.2. Let G be a group of order pn with the central quotient of order p3, where p is a prime number.
1) G is an AC−group.
2) If G possesses an abelian maximal subgroup, then there exists an element x in G \ Z(G) such that CG(x) is of
order pn−1 and CG(x) is uniquely determined.

Lemma 3.3. Let G be a group of order pn with the central quotient of order p3, where p is a prime number.
1) If G possesses no abelian maximal subgroup, then ω(G) = p2 + p+ 1.
2) If G possesses an abelian maximal subgroup, then ω(G) = p2 + 1.

Lemma 3.4. Let G be a non-abelian group of order p4.
1) If G is of maximal class, then ω(G) = 1 + p2.
2) If G is of class two, then ω(G) = 1 + p.

Theorem 3.5. Let G be a non abelian p−group of order pn. Suppose |Z(G)| = pr with n − r ≥ 3 and G has an
abelian maximal subgroup. Then there exist an element x ∈ G \ Z(G) such that |CG(x)| = pn−1 and CG(x) is
uniquely determined. Moreover, ω(G) = pn−r−1 + 1.

Proof. Since G has an abelian maximal subgroup, G is an AC− group by Lemma 2.8(1). By Remark 2.3, there
exist a non-central element x such that |CG(x)| = pn−1. Suppose for y ̸= x, we have |CG(y)| = pn−1 such that
CG(y) ̸= CG(x). Then

pn−r = | G

Z(G)
| = | G

CG(x)
∩
CG(y)

| ≤ | G

CG(x)
||CG(y)| = p2
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,
which is impossible.Hence |CG(x)| is uniquely determined. Next, we determine the ω(G) in the following two
cases.......

Corollary 3.6. Let G be a non abelian p−group of order pn. Suppose |Z(G)| = pr with n − r ≥ 3 and G has an
abelian maximal subgroup. Then
1) If | G

Z(G) | = p3, then ω(G) = pn−2 + 1.

2) If | G
Z(G) | = p4, then ω(G) = pn−3 + 1.

3)If | G
Z(G) | = p5, then ω(G) = pn−4 + 1.

Theorem 3.7. Let G be a p−group of order p6. Suppose G is not AC−group and | G
Z(G) | = p4. Then we have the

following:
1) There exist a non-central element x such that

|CG(x)| = p5 and
CG(x)

Z(CG(x))
= Cp × Cp.

2) If there is an element x such that |CG(x)| = p3 or p4, then CG(x) is abelian.

Theorem 3.8. Let G be an an AC− group with | G
Z(G) = p5| where p is odd. Suppose G has no abelian maximal

subgroup and letX = {x1, x2, ...xk} is a maximal set of non-commutative elements inG. Then we have the following:

1) If G has a non-central element x such that |CG(x)| = pn−2, then CG(x) is uniquely determined. Further, suppose
|CG(xi)| = pn−3 with 2 ≤ i ≤ r + 1 and |CG(xj)| = pn−4 for r + 2 ≤ j ≤ k. Then ω(G) = p4 + p3 − rp+ 1 and
r ̸= k − r − 1.

2) If G has no non-central element x such that |G(x)| = pn−2, then ω(G) = p(p + 1)(p2 + 1) + 1 − r(p + 1) + r,
where |CG(xi)| = pn−3 for 1 ≤ i ≤ r , |CG(xj)| = pn−4 for r + 1 ≤ j ≤ k and rneqk.

Proof. By the hypothesis, G has no abelian maximal subgroup and hence cardinality of centralizer of any non-central
element is either pn−4 or pn−3 or pn−2. Write G =

∪k
i=1 CG(xi)........
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Abstract

Let G be a finite group of degree n. We shall say that G is a quasi-permutation group if the
trace of every element of G is a non-negative rational integer. By a quasi-permutation matrix
we mean a square matrix over the complex fieldC with non-negative integral trace. For a given
finite group G, let q(G) denote the minimal degree of a faithful representation of G by quasi-
permutation matrices over the rational fieldQ, and let c(G) be the minimal degree of a faithful
representation of G by complex quasi-permutation matrices. Finally r(G) denotes the minimal
degree of a faithful rational valued complex character of G. The purpose of this paper is to
calculate above quantities for finite special orthogonal groups.

1. Introduction

In [13], [14] Wong defined a quasi-permutation group of degree n to be a finite group G of automorphisms of an n-
dimensional complex vector space such that every element of G has non-negative integral trace. Also Wong studied
the extent to which some facts about permutation groups generalize to the quasi-permutation group situation. Then in
1994Hartley with their colleague investigated further the analogy between permutation groups and quasi-permutation
groups by studying the relation between the minimal degree of a faithful permutation representation of a given finite
group G and the minimal degree of a faithful quasi-permutation representation. They also worked over the rational
field and found some interesting results (See [4]).
If F is a subfield of the complex numbers C, then a square matrix over F with non-negative integral trace is called
a quasi-permutation matrix over F . Thus every permutation matrix over C is a quasi-permutation matrix. For a
given finite group G, let p(G) denote the minimal degree of a faithful permutation representation ofG or of a faithful
representation of G by permutation matrices, let q(G) denote the minimal degree of a faithful representation of G by
quasi-permutation matrices over the rational fieldQ and let c(G) be the minimal degree of a faithful representation of
G by complex quasi-permutation matrices.
By a rational valued character we mean a character χ corresponding to a complex representation of G such that
χ(g) ∈ Q for all g ∈ G. As the values of the characters of a complex representation are algebraic numbers, a
rational valued character is in fact integer valued. A quasi-permutation representation of G is then simply a complex
representation of G whose character values are rational and non-negative. The module of such a representation will
be called a quasi-permutation module. We will call a homomorphism from G to GL(n,Q) a rational representation

∗Talker
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of G and its corresponding character will be called a rational character of G. Let r(G) denote the minimal degree of
a faithful rational valued character of G. It is easy to see that for a finite group G the following inequalities hold

r(G) ≤ c(G) ≤ q(G) ≤ p(G).

It is easy to see that if G is a symmetric group of degree 6, then c(G) = q(G) = p(G) = 6. If G is a cyclic group of
order 6, then c(G) = q(G) = 4 and p(G) = 5, while on the other hand, if G is a quaternion group of order 8, then
c(G) = 4 and q(G) = p(G) = 8. Thus, both inequalities can be strict. It is not too hard to see that for the group
SL(2, 5), both inequalities are strict. Our principal aim in this paper is to investigate these quantities and inequalities
further.
Finding the above quantities have been carried out in some papers, for example in [5], [6], [7] and [9] we found these
for the groups GL(2, q), SU(3, q2), PSU(3, q2), SL(3, q), PSL(3, q) and G2(2

n) respectively. In [3] we found the
rational character table and the values of r(G), c(G), q(G) and p(G) for the group PGL(2, q). In this paper we
will apply the algorithms in [1] to the special orthogonal groups.

2. Notation and preliminary results

Assume thatE is a splitting field forG and that F is a subfield ofE. If χ, ψ ∈ IrrE(G)we say that χ and ψ are Galois
conjugate over F if F (χ) = F (ψ) and there exists σ ∈ Gal(F (χ)/F ) such that χσ = ψ, where F (χ) denotes the
field obtained by adding the values χ(g), for all g ∈ G, to F . It is clear that this defines an equivalence relation on
IrrE(G). (see [11])
Let ηi for 0 ≤ i ≤ r be Galois conjugacy classes of irreducible complex characters of G. For 0 ≤ i ≤ r let φi be a
representative of the class ηi, with φo = 1G. Write Ψi =

∑
χi∈ηi

χi and Ki = kerφi. We know that Ki = kerΨi.
For I ⊆ {0, 1, 2, · · · , r}, putKI =

∩
i∈I

Ki.

By definition of r(G) , c(G) and using above notations we have:

r(G) = min{ξ(1) : ξ =
r∑

i=1

niΨi, ni ≥ 0,KI = 1 for I = {i, i 6= 0, ni > 0}}

c(G) = min{ξ(1) : ξ =
r∑

i=0

niΨi, ni ≥ 0,KI = 1 for I = {i, i 6= 0, ni > 0}}

where n0 = −min{ξ(g)|g ∈ G}.

In [1] we defined d(χ),m(χ) and c(χ) [See Definition 3.4]. Here we can redefine it as follows:

Definition 2.1. Let χ be a complex charater ofG, such that kerχ = 1 and χ = χ1 + · · ·+χn for some χi ∈ Irr(G).
Then define

(1) d(χ) =
n∑

i=1

|Γi(χi)|χi(1),

(2)m(χ) =


0 if χ = 1G,

|min{
n∑

i=1

∑
α∈Γi(χi)

χα
i (g) : g ∈ G}| otherwise,

(3) c(χ) =
n∑

i=1

∑
α∈Γi(χi)

χα
i +m(χ)1G.

So

r(G) = min{d(χ) : kerχ = 1},

and
c(G) = min{c(χ)(1) : kerχ = 1}.
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We can see all the following statements in [1], [2].

Lemma 2.2. Let χ be a character of G. Then Kerχ = Ker
∑

α∈Γ(χ) χ
α. Moreover χ is faithful if and only if∑

α∈Γ(χ) χ
α is faithful.

Lemma 2.3. Let χ ∈ Irr(G) ,then
∑

α∈Γ(χ) χ
α is a rational valued character ofG . Moreover c(χ) is a non-negative

rational valued character of G and c(χ) = d(χ) +m(χ).

Lemma 2.4. Let χ ∈ Irr(G), χ 6= 1G . Then c(χ)(1) ≥ d(χ) + 1 ≥ χ(1) + 1 .

Corollary 2.5. Let χ ∈ Irr(G). Then
(1) c(χ)(1) ≥ d(χ) ≥ χ(1) ;
(2) c(χ)(1) ≤ 2d(χ) . Equality occurs if and only if Z(χ)/kerχ is of even order.

3. Quasi-permutation representations

The orthogonal group of degree n over a field F (write as O(n, F )) is the group of n-by-n orthogonal matrices with
entries from F , with the group operation that of matrix multiplication. This is a subgroup of the general linear group
GL(n, F ) given by

O(n, F ) = {Q ∈ GL(n, F ) | QTQ = QQT = I}.
whereQT is the transpose ofQ.The classical orthogonal group over the real numbers is usually just writtenO(n).More
generally the orthogonal group of a non-singular quadratic form over F is the group of matrices preserving the form.
The Cartan-Dieudonne theorem describes the structure of the orthogonal group. Every orthogonal matrix has determi-
nant either 1 or −1. The orthogonal n-by-n matrices with determinant 1 form a normal subgroup of O(n, F ) known
as the special orthogonal group SO(n, F ). If the characteristic of F is 2, then 1 = −1, hence O(n, F ) and SO(n, F )
coincide ; otherwise the index of SO(n, F ) in O(n, F ) is 2.
For the convenience in the discussion of the characterization of the conjugacy classes of SO(3, q) and O(3, q), we let

Θ = {θ ∈ GF (q)|θ 6= 0, 4, θ is a square and θ − 4 is a square},
Γ = {γ ∈ GF (q)|γ 6= 0, 4, γ is a nonsquare and γ − 4 is a nonsquare},
Π = {π ∈ GF (q) | π 6= 0, 4 , π is a square and π − 4 is a nonsquare},
Ξ = {ξ ∈ GF (q) | ξ 6= 0 , ξ is a nonsquare and ξ − 4 is a square}.

Then |Θ| = q−5
4 , and |Γ| = |Π| = |Ξ| = q−1

4 . We shall denote the elements of Θ,Γ,Π,Ξ by θi, γj , πk and ξl
respectively , where 1 ≤ i ≤ q−5

4 and 1 ≤ j, k, l ≤ q−1
4 .

Now let L = {

 ad+ bc ac bd
2ab a2 b2

2cd c2 d2

 | ad− bc = 1 and a, b, c, d ∈ GF (q)}.

Dickson [8, Theorem 178] shows thatL is a normal subgroup of index 2 of SO(3, q) and is isomorphic toPSL(2, q) =
SL(2, q)/{±I} through the isomorphism

±
(
a b
c d

)
7−→

 ad+ bc ac bd
2ab a2 b2

2cd c2 d2

 , (∗∗)

for each ±
(
a b
c d

)
∈ PSL(2, q).
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Theorem 3.1. Let G = O(3, q) , then

a) r(G) = q − 1

b) c(G) = q(G) = 2(q − 1).

c)Limq−→∞
c(G)
r(G) = 2.

Proof. By [12] we know that the characters ψ1 × ρ1 , ψ1 × ρq , ψ1 × ρ
′

1 , ψ1 × ρ
′

q , ψ1 × ρ
(n)
q+1 ; 1 ≤ n ≤

q−3
2 , ψ1 × ρ

(m)
q−1 ; 1 ≤ m ≤ q−1

2 are not faithful and (x,D) belongs to kernel of all characters , so
∩

χ kerχ 6= 0.
But the characters ψ2 × ρ1 , ψ2 × ρq , ψ2 × ρ

′

1 , ψ2 × ρ
′

q , ψ2 × ρ
(n)
q+1 ; 1 ≤ n ≤ q−3

2 , ψ2 × ρ
(m)
q−1 ; 1 ≤ m ≤ q−1

2

are faithful and by Corollary 4.8 we know that ψ2 × ρ
( q+1

4 )
q−1 and ψ2 × ρ

( q−1
4 )

q+1 are rational valued characters.
Now by definition of d(χ) and c(χ) and Table (3) we have
d(ψ2 × ρ

(m)
q−1) = |Γ|(q − 1) ≥ q − 1 where Γ = Γ(Q(ψ2 × ρ

(m)
q−1) : Q) and m(ψ2 × ρ

(m)
q−1) ≥ q − 1 and so

c(ψ2 × ρ
(m)
q−1)(1) ≥ 2(q − 1) and equality holds if m = q+1

4 .

And d(ψ2 × ρ
(n)
q+1) ≥ q + 1 and m(ψ2 × ρ

(n)
q+1) ≥ q + 1 and so c(ψ2 × ρ

(n)
q+1)(1) ≥ 2(q + 1) and equality

hold if m = q−1
4 .

For other characters we have d(ψ2 × ρq) = d(ψ2 × ρ
′

q) = q and m(ψ2 × ρq) = m(ψ2 × ρ
′

q) = q and so
c(ψ2 × ρq)(1) = c(ψ2 × ρ

′

q)(1) = 2q.
The values are set out in the following table :

Table (1)
χ d(χ) c(χ)(1)

ψ2 × ρq q 2q

ψ2 × ρ
′

q q 2q

ψ2 × ρ
(n)
q+1 ≥ q + 1 ≥ 2(q + 1)

ψ2 × ρ
(m)
q−1 ≥ q − 1 ≥ 2(q − 1)

Now by Definition 2.1 and Table (1) we have

min {d(χ) : kerχ = 1} = q − 1 and min {c(χ)(1) : kerχ = 1} = 2(q − 1).
Now by Lemmas 2.3, 2.5 and [10] Schur index of each irreducible characters of the group O(3, q) is 1, and so
c(G) = q(G).
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Abstract

Asquarematrix over the complex fieldwith non-negative integral trace is called a quasi-permutation
matrix. Thus every permutation matrix over C is a quasi-permutation matrix. For a given finite
groupG, let p(G) denote the minimal degree of a faithful permutation representation ofG. The
minimal degree of a faithful representation ofG by quasi-permutation matrices over the rational
and the complex numbers are denoted by q(G) and c(G) respectively. Finally r(G) denotes
the minimal degree of a faithful rational valued complex character of G. In this paper we will
calculate p(G), q(G), c(G) and r(G) for the Steinberg groups.

1. Introduction

In [14], [15] Wong defined a quasi-permutation group of degree n to be a finite group G of automorphisms of an n-
dimensional complex vector space such that every element of G has non-negative integral trace. Also Wong studied
the extent to which some facts about permutation groups generalize to the quasi-permutation group situation. Then in
1994Hartley with their colleague investigated further the analogy between permutation groups and quasi-permutation
groups by studying the relation between the minimal degree of a faithful permutation representation of a given finite
group G and the minimal degree of a faithful quasi-permutation representation. They also worked over the rational
field and found some interesting results (See [4]).
If F is a subfield of the complex numbers C, then a square matrix over F with non-negative integral trace is called
a quasi-permutation matrix over F . Thus every permutation matrix over C is a quasi-permutation matrix. For a
given finite group G, let p(G) denote the minimal degree of a faithful permutation representation ofG or of a faithful
representation of G by permutation matrices, let q(G) denote the minimal degree of a faithful representation of G by
quasi-permutation matrices over the rational fieldQ and let c(G) be the minimal degree of a faithful representation of
G by complex quasi-permutation matrices.
By a rational valued character we mean a character χ corresponding to a complex representation of G such that
χ(g) ∈ Q for all g ∈ G. As the values of the characters of a complex representation are algebraic numbers, a
rational valued character is in fact integer valued. A quasi-permutation representation of G is then simply a complex
representation of G whose character values are rational and non-negative. The module of such a representation will
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be called a quasi-permutation module. We will call a homomorphism from G to GL(n,Q) a rational representation
of G and its corresponding character will be called a rational character of G. Let r(G) denote the minimal degree of
a faithful rational valued character of G. It is easy to see that for a finite group G the following inequalities hold

r(G) ≤ c(G) ≤ q(G) ≤ p(G).

It is easy to see that if G is a symmetric group of degree 6, then c(G) = q(G) = p(G) = 6. If G is a cyclic group of
order 6, then c(G) = q(G) = 4 and p(G) = 5, while on the other hand, if G is a quaternion group of order 8, then
c(G) = 4 and q(G) = p(G) = 8. Thus, both inequalities can be strict. It is not too hard to see that for the group
SL(2, 5), both inequalities are strict. Our principal aim in this paper is to investigate these quantities and inequalities
further.
Finding the above quantities have been carried out in some papers, for example in [5], [6], [7] and [8] we found these
for the groups GL(2, q), SU(3, q2), PSU(3, q2), SL(3, q), PSL(3, q) and G2(2

n) respectively. In [3] we found the
rational character table and the values of r(G), c(G), q(G) and p(G) for the group PGL(2, q). Let G be a finite
group and χ be an irreducible complex character of G. Let mQ(χ) denote the Schur index of χ over Q and Γ(χ) be
the Galois group Q(χ) over Q. It is known that ∑

α∈Γ(χ)

mQ(χ)χ
α (1)

is a character of an irreducible QG-module [[12], Corollary 10.2(b)]. So by knowing the character table of a group
and Suchr indices of each of the irreducible characters of G, we can find the irreducible rational characters.
In this paper we will apply the algorithms in [1] to the Steinberg groups.

2. Notation and preliminary results

Assume thatE is a splitting field forG and that F is a subfield ofE. If χ, ψ ∈ IrrE(G)we say that χ and ψ are Galois
conjugate over F if F (χ) = F (ψ) and there exists σ ∈ Gal(F (χ)/F ) such that χσ = ψ, where F (χ) denotes the
field obtained by adding the values χ(g), for all g ∈ G, to F . It is clear that this defines an equivalence relation on
IrrE(G). (see [11])
Let ηi for 0 ≤ i ≤ r be Galois conjugacy classes of irreducible complex characters of G. For 0 ≤ i ≤ r let φi be a
representative of the class ηi, with φo = 1G. Write Ψi =

∑
χi∈ηi

χi and Ki = kerφi. We know that Ki = kerΨi.
For I ⊆ {0, 1, 2, · · · , r}, putKI =

∩
i∈I

Ki.

By definition of r(G), c(G) and using above notations we have:

r(G) = min{ξ(1) : ξ =
r∑

i=1

niΨi, ni ≥ 0,KI = 1 for I = {i, i ̸= 0, ni > 0}}

c(G) = min{ξ(1) : ξ =
r∑

i=0

niΨi, ni ≥ 0,KI = 1 for I = {i, i ≠ 0, ni > 0}}

where n0 = −min{ξ(g)|g ∈ G}.

In [1] we defined d(χ),m(χ) and c(χ) [See Definition 3.4]. Here we can redefine it as follows:

Definition 2.1. Let χ be a complex charater ofG, such that kerχ = 1 and χ = χ1 + · · ·+χn for some χi ∈ Irr(G).
Then define

(1) d(χ) =
n∑

i=1

|Γi(χi)|χi(1),

(2)m(χ) =


0 if χ = 1G,

|min{
n∑

i=1

∑
α∈Γi(χi)

χα
i (g) : g ∈ G}| otherwise,
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(3) c(χ) =
n∑

i=1

∑
α∈Γi(χi)

χα
i +m(χ)1G.

We can see all the following statements in [1], [2].

Lemma 2.2. Let χ be a character of G. Then Kerχ = Ker
∑

α∈Γ(χ) χ
α. Moreover χ is faithful if and only if∑

α∈Γ(χ) χ
α is faithful.

Lemma 2.3. Let χ ∈ Irr(G), then
∑

α∈Γ(χ) χ
α is a rational valued character ofG. Moreover c(χ) is a non-negative

rational valued character of G and c(χ) = d(χ) +m(χ).

Lemma 2.4. Let χ ∈ Irr(G), χ ̸= 1G. Then c(χ)(1) ≥ d(χ) + 1 ≥ χ(1) + 1.

Corollary 2.5. Let χ ∈ Irr(G). Then
(1) c(χ)(1) ≥ d(χ) ≥ χ(1);
(2) c(χ)(1) ≤ 2d(χ) . Equality occurs if and only if Z(χ)/kerχ is of even order.

Now according to Corollary 3.11 of [1] and above statements the following result is useful for calculation of r(G), c(G)
and q(G).

Lemma 2.6. Let G be a finite group with a unique minimal normal subgroup. Then

1) r(G) = min{d(χ) : χ is a faithful irreducible complex character of G}

2) c(G) = min{c(χ)(1) : χ is a faithful irreducible complex character of G}

3) q(G) = min{mQ(χ)c(χ)(1) : χ is a faithful irreducible complex character of G}.

If the Schur index of each non-principal irreducible character of G over Q is equal tom, then from [1] Corollary 3.15
we have q(G) = mc(G).

3. Permutation and Quasi-permutation representations

Using definition of p(G) it is proved in [1] that

p(G) = min{
n∑

i=1

[G : Hi] : Hi ≤ G,

n∩
i=1

∩
x∈G

Hx
i = 1}

By [1] Corollary 2.4 we know that if G is a finite group with a minimal normal subgroup then p(G) is the smallest
index of a subgroup with trivial core. Therefore for the simple group 3D4(q) we introduce the maximal subgroups of
3D4(q) and then calculate p(G) for this group.

We can see all the following statements in [10], [11], [13].

Now we introduce the maximal subgroups of the group 3D4(q).
Throughout this paper,H0 denotes the finite simple Steinberg triality group 3D4(q) of order q12(q6−1)2(q4−q2+1),
where q = pn and p is prime. We defineH1 =Aut(H0) and we let H be any group with socleH0. Thus

3D4(q) ∼= H0 ≤ H ≤ H1
∼= Aut(3D4(q)). (1)
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Theorem 3.1. 1 Let H be as in (1) and assume thatM is a maximal subgroup of H not containing H0. ThenM0 =
M ∩H0 is H0-conjugate to one of the following groups:

Proof. Table (I)
Groups Structure Remarks
Pa [q9] : (SL2(q

3) ◦ (Zq−1)).d Parabolic, d = (2, q − 1)
Pb [q11] : ((Zq3−1) ◦ SL2(q)).d Parabolic, d = (2, q − 1)

CH0
(g1) G2(q)

CH0
(g2) PGLε

3(q) 2 < q ≡ ε1(mod 3), ε = ±
CH0(ϕα)

3D4(q0) q = qα0 , α prime, α ̸= 3
NH0

(F ) L2(q
3)× L2(q) p = 2, F ∼= L2(q)

a fundamental subgroup
CH0

(S2) (SL2(q
3) ◦ SL2(q)).2 p odd, involution

centralizer
NH0

(< S4 >) ((Zq2+q+1) ◦ SL3(q)).f+.2 f+ = (3, q2 + q + 1)
NH0(< S9 >) ((Zq2−q+1) ◦ SU3(q)).f−.2 f− = (3, q2 − q + 1)
NH0

(T3) (Zq2+q+1)
2.SL2(3)

NH0
(T4) (Zq2−q+1)

2.SL2(3)
NH0(T5) (Zq4+q2+1).4

Conversely, if L ≤ H0 is conjugate to one of these groups, then NH(L) is maximal inH .

Theorem 3.2. 1) Let G =3 D4(q), where q is odd, then

p(G) = (q2 + q + 1)(q4 − q2 + 1)(q3 + 1)/2.

2)Let G =3 D4(q), where q is even, then p(G) = (q2 + q + 1)(q4 − q2 + 1)(q3 + 1).

Theorem 3.3. Let G =3 D4(q), where q = pn, p is a prime number and n is an integr. then

1) r(G) = q(q4 − q2 + 1)

2) c(G) = q(G) = q5

3)Limq−→∞
c(G)
r(G) = 1.
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Abstract

In this paper we generalize the notion of (short) Rees exact sequence for S-acts to the notion of
(short) exact sequence for S-acts with respect to a congruence. Then, some results concerning
commutative diagrams are discussed. Specially, We focus our scope to the short five lemma.

1. Preliminaries and Introduction

Throughout the paper, S and AS are used to denote a monoid and a right S-act, respectively. A non-empty set A
is called a right S-act, usually denoted AS , if S acts on A unitarily from the right; that is, there exists a mapping
A × S → A, (a, s) 7→ as, satisfying the conditions (as)t = a(st) and a1 = a, for all a ∈ A and all s, t ∈ S. A
non-empty subsetB of a right S-actAS is called a subact ofA if bs ∈ B for all s ∈ S and b ∈ B. Recall thatΘ = {θ}
with the action θs = θ for all s ∈ S is called the one element S-act. An S-act is said to be simple if it has no subacts
other than itself, and it is called θ-simple if it has no subacts other than itself and the one-element subact Θ. Also,
products and coproducts of non-empty families of S-acts are the cartesian product and disjoint unions, respectively.
Unlike the case of groups, rings and modules, in the category of S-acts their congruences are not defined by special
subacts, and so we have to use congruence for the desired characterizations. Recall from [4, Definition 2.4.18.] that an
equivalence relation ρ on an S-actAS is said to be a congruence onAS if a ρ a′ implies as ρ a′s for any a, a′ ∈ AS and
s ∈ S. The set of all congruences on AS is denoted by Con(AS). Any subact BS of AS defines the Rees congruence
ρB on A, by setting a ρB a′ if a, a′ ∈ B or a = a′. For more information on S-acts, we refer the reader to [4].
Let f : A −→ B be an S-morphism, the kernel of f is defined by

Kf = ker f := {(a, a′) ∈ A×A : f(a) = f(a′)},

and f(A) = {f(a) : a ∈ A}. Note that f(A) is a subact of BS . Let If = (f(A) × f(A)) ∪ ∆B , where ∆B =
{(b, b) : b ∈ B}. Recall from [3], suppose that A,B,C are S-acts, and f : A −→ B, g : B −→ C are S-morphisms.
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Then the sequence
A

f−→ B
g−→ C

is Rees exact at B if If = Kg , and it is called a Rees short exact sequence if g is surjective, f is a monomorphism,
and If = Kg .
Studying the properties of short exact sequence is a key tool in homological algebra. Preliminary works on Rees short
exact sequence of S-acts were done in [2, 3]. Then, in [5], the authors investigated conditions under which a spacial
property can be transferred under Rees exact sequences. Also, in [1], the authors introduced the concept of quasi
exact sequences as a generalization of Rees exact sequences in the category of S-acts. In this paper we continue the
investigation of quasi Rees short exact sequences of S-acts.

2. Main Results

In [1], the authors substitute a congruence ρ on CS for the trivial congruence ∆CS
in the definition of Rees exact

sequence to obtain the notion of ρ-exact sequence in the category of S-acts for a congruence ρ on C, as follows. We
recall that Kg(ρ) = {(b, b′) ∈ B ×B : g(b) ρ g(b′)}. In fact, Kg = ker g = Kg(∆CS

).

Definition 2.1. ([1]) Suppose that A,B,C are S-acts, ρ a congruence on CS , and f : A −→ B, g : B −→ C are
S-morphisms. Then the sequence

A
f−→ B

g−→ C
is ρ-exact (quasi exact) atB if If = Kg(ρ), and it is called a short ρ-exact sequence if g is surjective, f is a monomor-
phism, and If = Kg(ρ).

First, we start with the examples which illustrate how ρ-exact sequences accrue naturally.

Example 2.2. Let Ai, Bi, Ci be S-acts, for i ∈ I , and ρi a congruence on Ci. It is easily checked that

ρ =
∏
i∈I

ρi = {({ai}i∈I , {bi}i∈I)| (ai, bi) ∈ ρi, for all i ∈ I}

is a congruence on
∏

i∈I Ci. Suppose that the sequences
Ai

fi−→ Bi
gi−→ Ci

are ρi-exact at Bi for all i ∈ I . Define
∏

i∈I fi :
∏

i∈I Ai −→
∏

i∈I Bi by
∏

i∈I fi({ai}i∈I) = {fi(ai)}i∈I . Then∏
i∈I Ai

∏
i∈I fi−→

∏
i∈I Bi

∏
i∈I gi−→

∏
i∈I Ci

is ρ-exact at
∏

i∈I Bi.

If ρ is a congruence on CS , and h : C −→ D an S-morphism, then it is easily checked that

h(ρ) = {(h(a), h(b))| (a, b) ∈ ρ}

is a congruence on DS .

Example 2.3. Let ρ and σ be congruences on S-acts CS and ES , respectively. Suppose A
f−→ B

g−→ C and
C

h−→ D
k−→ E are ρ-exact and σ-exact at B and D, respectively. Then

A
f−→ B

hg−→ D
k−→ E

is h(ρ)-exact and σ-exact at B and D, respectively.

The following result be easily obtained.

Proposition 2.4. Let A f−→ B
g−→ C be a ρ-exact sequence at BS , and g is an epimorphism. If AS is generated by

a set A′ and CS is generated by a set C ′, then BS is generated by f(A′) ∪ g−1(C ′).

Corollary 2.5. LetA f−→ B
g−→ C be a ρ-exact sequence atBS , and g is an epimorphism. IfAS and CS are finitely

generated, then so is BS .
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Proposition 2.6. Let A f−→ B
g−→ C be a ρ-exact sequence at BS and B′ be a subact of B such that B′′ =

B′ ∩ f(A) 6= ∅. Take C ′ = g(B′), A′ = f−1(B′′), f ′ = f |A′ , g′ = g|B′ and σ = ρ ∩ Ig′ . Then A′ f ′

−→ B′ g′

−→ C ′

is σ-exact sequence at B′.

Similar to the proof of [5, Corollary], we could generalize short five lemma for short ρ-exact sequences.

Lemma 2.7. Let the following diagram of S-morphisms of acts be commutative rows.

A B C

L M N

f

α

g

β γ

h r

Suppose that the upper row is short ρ-exact atBS and the lower row is short σ-exact atMS , where ρ, σ are congruence
of CS and NS , respectively. Then the followings hold:

(i) If α and γ are monomorphisms, then β is a monomorphism.
(ii) If α and γ are epimorphisms, then β a is epimorphism.
(iii) If α and γ are isomorphisms, then β is a isomorphism.

Next, we generalize [2, Lemma 3.2] for ρ-exact sequences.

Lemma 2.8. Suppose that AS , BS , CS , LS ,MS , NS are S-acts, and f, g, h, r are S-morphisms. Let the following
diagram be commutative:

A B C

L M N

f

α

g

β γ

h r

where α, β, γ are isomorphisms. Then the followings hold:

(i) The upper row is ρ-exact at BS if and only if the lower row is γ(ρ)-exact at MS .
(ii) The upper row is a short ρ-exact sequence if and only if the lower row is a short γ(ρ)-exact sequence.

Suppose that A,B are S-acts, and f : A −→ B is an S-morphism. Clearly, Kf is a subact of A
∏

A. Now, we
generalize Snake Lemma for ρ-exact sequences.

Lemma 2.9. Suppose that A,B,C, L,M,N are S-acts, and f, g, h, r, α, β, γ are S-morphisms. Let the following
diagram be commutative:

A B C

L M N

f

α

g

β γ

h r

where the upper and lower rows are ρ-exact at B and γ(ρ)-exact at M , respectively. Then there exists a sequence
Kα −→ Kβ −→ Kγ which is δ-exact at Kβ , where

δ = ρ× ρ = {((a1, b1), (a2, b2))| (a1, b1), (a2, b2) ∈ ρ}.

References

[1] R. Aminizadeh, H. Rasouli, and A.Tehranian, Quasi-exact Sequences of S-Acts. Bull. Malays. Math. Sci. Soc. 42 (2019), 2225–2235.
[2] Y. Chen, Projective S-acts and Exact Functors, Algebra Colloquium 7(1) (2000), 113–120.
[3] Y. Chen and K. P. Shum, Rees short exact sequences of S-systems, Semigroup Forum 65 (2002), 141–148.
[4] M. Kilp, U. Knauer, A. Mikhalev,Monoids, Acts and Categories,W. de gruyter. Berlin, (2000). https://doi.org/10.4134/CKMS.c210114.
[5] M. Jafari, A. Golchin, and H. Mohammadzadeh Saany, Rees short exact sequence and flatness properties. Semigroup Forum 99 (2019), 32–46.



Gonbad Kavous University

The 4th National Congress on Mathematics and StatisticsThe 4th National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1402

The 4th National Congress on Mathematics and Statistics, AL–148, pp. 343–346

The automorphisms of autocentral and autocommutator series terms

Sara Barina,∗, Mohammad Mehdi Nasrabadia
aDepartment of Mathematics, University of Birjand, Birjand, Iran

Article Info

Keywords:
Automorphism
autocentral automorphism
upper autocentral series
lower autocentral series
autosoluble series

2020 MSC:
20D45
20D15

Abstract

In this paper, we define new automorphisms on the autocentral series and the autocommutator
series and we identify the relationships of these automorphisms with Aut(G),AutL(G), Inn(G),
and each other. Also, we present some results that generalize two important theorem.

1. Introduction and preliminaries

The upper and lower autocentral series and the autocommutator series are necessary for important definitions such
as autonilpotency and autosolubility of groups. On the other hand, All kinds of automorphisms also have interesting
properties. Hence, the automorphisms have been the idea of many researchers articles.
Let G be a group and j be any positive integer. Let us denote by Zj(G), G′, Aut(G) and Inn(G), respectively the j-th
term of the upper central series, the commutator subgroup, the full automorphism group and the inner automorphisms.
Bachmuth [1] in 1965 defined an IA-automorphism of a group G as

IA(G) = {α ∈ Aut(G) | g−1α(g) = [g, α] ∈ G′, ∀ g ∈ G}.

For any group G, Inn(G) ⩽ IA(G)⊴Aut(G).
The investigation of the IA-group has been of interest in different contexts. P. Hall, for example, has shown that the
IA-group of a nilpotent group of class c is nilpotent of class c-1 [3]; M. Zyman has remarked that if G is finitely
generated nilpotent, so too is IA(G) [7]; and Bonanome et al. have studied the IA-group of a group G for which
the upper central series stalls at some point [2]. Bonanome et al. defined the group of j-central automorphism of G,
denoted by Autcj (G), as the kernel of the natural homomorphism from Aut(G) to Aut

(
G/Zj(G)

)
, i.e.

Autcj (G) = {α ∈ Aut(G) | g−1α(g) ∈ Zj(G), ∀ g ∈ G}.
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Hegarty [4] in 1994 introduced the absolute center as

L(G) = {g ∈ G | g−1α(g) = 1, ∀ α ∈ Aut(G)}.

Also, he defined the autocommutator subgroup as

K(G) = ⟨[g, α] | g ∈ G, α ∈ Aut(G)⟩.

An automorphism α of G is called an absolute central automorphism if x−1α(x) ∈ L(G) for each x ∈ G. The set of
all absolute central automorphisms of G is denoted by AutL(G).
The concept of autonilpotent and autosoluble groups were introduced by Parvaneh and Moghaddam [5] in 2010. They
defined the upper autocentral series of G in the following way:

⟨1⟩ = L0(G) ⊆ L1(G) = L(G) ⊆ L2(G) ⊆ · · · ⊆ Ln(G) ⊆ · · ·

where
Ln(G) = {g ∈ G | [g, α1, α2, . . . , αn] = 1, ∀ α1, α2, . . . , αn ∈ Aut(G)}

and Ln(G) is nth-absolute centre of G. Also, They defined the autocommutator subgroup of weight n+1 in the follow-
ing way:

Kn(G) = [Kn−1(G), Aut(G)]

= ⟨[g, α1, α2, . . . , αn] | g ∈ G, α1, α2, . . . , αn ∈ Aut(G)⟩,

for all n ≥ 1, and obtained a the lower autocentral series of G as follows:

· · · ⊆ Kn(G) ⊆ · · · ⊆ K2(G) ⊆ K1(G) = K(G) ⊆ K0 = G.

Also, they called a group to be autonilpotent of class at most c ifKc(G) = 1, or Lc(G) = G for some positive integer
c. They defined the autosoluble series as a descending series

· · · ⊆ K(n)(G) ⊆ · · · ⊆ K(2)(G) ⊆ K(1)(G) = K(G) ⊆ K(0)(G) = G.

of subgroups of G inductively as follows

K(n)(G) = [K(n−1)(G), Aut(G)]

= ⟨[g, α] | g ∈ K(n−1)(G), α ∈ Aut
(
K(n−1)(G)

)
⟩,

for all n ≥ 1 which is called the nth-autocommutator subgroup of G. Also, they called a group to be autosoluble of
length l ifK(l)(G) = 1 andK(l−1)(G) ̸= 1, for some positive integer l.
In this paper, we study the automorphisms on the upper and lower autocentral series, the autocommutator series and
the relationships of them.

2. Main results

In this section and in each subsection, after some new definitions, we give our main results about the automorphisms
on series.

2.1. The automorphisms of autosoluble series
Definition 2.1. The kernel of the natural homomorphism from Aut(G) to Aut

(
G/K(j)(G)

)
is called the group of

Kj-automorphism and denoted by AutKj (G).
According to the above definition, aKj-automorphism group acts as the identity on G moduloK(j)(G), Thus:

AutKj (G) = {α ∈ Aut(G) | g−1α(g) ∈ K(j)(G), ∀ g ∈ G}⊴Aut(G).

Also, we have AutK1(G) = Aut(G) and IA(G) ⩽ AutKj (G), for every j.
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Notation 2.2. We use the notation Autaj (G) = AutL(G) ∩ AutKj (G) and we refer to Autaj (G) as the group of
aj-automorphism. Another definition of Autaj (G) is given by

Autaj (G) = {α ∈ Aut(G) | g−1α(g) ∈ L(G) ∩K(j)(G), ∀ g ∈ G}⊴Aut(G).

Proposition 2.3. For any group G,
a) φ ∈ AutKj (G) if and only if [α, φ] ∈ AutKj (G), for all α ∈ Aut(G).

b) Autaj (G) is a normal subgroup of AutL(G) and we have
AutL(G)

Autaj (G)
∼=
AutL(G)AutKj (G)

AutKj (G)
.

Proof. a) It is obvious by the normality of AutKj (G).
b) Letψ ∈ Aut(G) and [g, α] ∈ K(j)(G). BecauseK(j)(G) is a characteristic subgroup of G, soψ([g, α]) ∈ K(j)(G).
Now, let σ ∈ AutL(G) and β ∈ Autaj (G). We will show that σ−1βσ ∈ Autaj (G). For every g ∈ G, we have

g−1
(
σ−1βσ

)
(g) = g−1σ−1

(
σ(g)

(
σ(g)

)−1
β
(
σ(g)

))
= g−1gσ−1

((
σ(g)

)−1
β
(
σ(g)

)︸ ︷︷ ︸
∈ L(G)∩K(j)(G)

)
.

Because the intersection of two characteristic subgroups is a characteristic subgroup, the first part is proved.
For the second part, the result follows by the definition of Autaj (G) and the third isomorphism theorem.

Corollary 2.4. For any group G, [Aut(G), AutKj (G)] ⩽ AutKj (G).
Theorem 2.5. Let G be a group. If AutL

(
G/K(j)(G)

)
= Inn

(
G/K(j)(G)

)
, then

AutL(G) ⩽ Inn(G)AutKj (G).

Proof. Let α ∈ AutL(G). By hypothesis, there exists g ∈ G such that for all x ∈ G, α(x)K(j)(G) = xgK(j)(G).
Hence,

x−gα(x) =
(
x−1

(
α(x)

)g−1)g

∈ K(j)(G).

Thus,
x−1

(
α(x)

)g−1

= x−1g
(
α(x)

)
g−1 = x−1φ−1

g α(x) ∈ K(j)(G)

where φg ∈ Inn(G).
Consequently, φ−1

g α ∈ AutKj (G), i.e., α = φgφ
−1
g α ∈ Inn(G)AutKj (G).

2.2. The automorphisms of lower autocentral series
Definition 2.6. The kernel of the natural homomorphism from Aut(G) to Aut

(
G/Kj(G)

)
is called the group of

Kj-automorphism and denoted by AutKj (G). In other words,

AutKj
(G) = {α ∈ Aut(G) | g−1α(g) ∈ Kj(G), ∀ g ∈ G}⊴Aut(G).

Also, AutK1
(G) = Aut(G) and IA(G) ⩽ AutKj

(G) ⩽ AutKj (G), for every j.
Notation 2.7. We use the notation

Autaj
(G) = AutL(G) ∩AutKj

(G)

= {α ∈ Aut(G) | g−1α(g) ∈ L(G) ∩Kj(G), ∀ g ∈ G}⊴Aut(G)

and we refer to Autaj
(G) as the group of aj-automorphism.

In the following, the results are similar to the results of the subsection 2.1, so we do not prove them.
Proposition 2.8. For any group G,

a) φ ∈ AutKj
(G) if and only if [α, φ] ∈ AutKj

(G), for all α ∈ Aut(G).

b) Autaj (G) is a normal subgroup of AutL(G) and
AutL(G)

Autaj (G)
∼=
AutL(G)AutKj

(G)

AutKj (G)
.

Corollary 2.9. For any group G, [Aut(G), AutKj (G)] ⩽ AutKj (G).
Theorem 2.10. Let G be a group. If AutL

(
G/Kj(G)

)
= Inn

(
G/Kj(G)

)
, then

AutL(G) ⩽ Inn(G)AutKj
(G).
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2.3. The automorphisms of upper autocentral series
Definition 2.11. The kernel of the natural homomorphism from Aut(G) to Aut

(
G/Lj(G)

)
is called the group of

Lj-automorphism and denoted by

AutLj
(G) = {α ∈ Aut(G) | g−1α(g) ∈ Lj(G), ∀ g ∈ G}⊴Aut(G).

Also, we have AutL1
(G) = AutL(G) and AutLj

(G) ⩽ Autcj (G), for every j.

Notation 2.12. We use the notation

a) Autaj
(G) = AutLj

(G) ∩AutKj
(G)

= {α ∈ Aut(G) | g−1α(g) ∈ Lj(G) ∩Kj(G), ∀ g ∈ G}⊴Aut(G).
b) Autaj

(G) = AutLj
(G) ∩AutKj (G)

= {α ∈ Aut(G) | g−1α(g) ∈ Lj(G) ∩K(j)(G), ∀ g ∈ G}⊴Aut(G).

Proposition 2.13. For any group G,

a) φ ∈ AutLj (G) if and only if [α, φ] ∈ AutLj (G), for all α ∈ Aut(G).

b)
AutKj (G)

Autaj
(G)

∼=
AutKj (G)AutLj (G)

AutLj
(G)

.

c)
AutKj (G)

Autaj
(G)

∼=
AutKj (G)AutLj (G)

AutLj
(G)

.

Corollary 2.14. For any group G, [Aut(G), AutLj (G)] ⩽ AutLj (G).

Theorem 2.15. Let G be a group.
a) If AutKj

(
G/Lj(G)

)
= Inn

(
G/Lj(G)

)
, then AutKj

(G) ⩽ Inn(G)AutLj
(G).

b) If AutKj

(
G/Lj(G)

)
= Inn

(
G/Lj(G)

)
, then AutKj (G) ⩽ Inn(G)AutLj (G).

2.4. Some generalization
In introduction, we stated two theorem from Hall and Zyman. In this subsection, we generalize them as follows.

Theorem 2.16 (Generalization of Hall’s theorem). The IA-group of a autonilpotent(or autosoluble) group of class c
is solvable and its derived length is at most [log2 c] + 1.

Proof. This idea is motivated by the fact that nilpotent groups are solvable. Now the result follow by [6, 5.1.2].

Similary, we have

Theorem 2.17 (Generalization of Zyman’s theorem). If G is finitely generated autonilpotent or autosoluble, then
IA(G) is finitely generated solvable.
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Abstract

The main purpose of this paper is to introduce and study the notion of hypercyclic monoids as
monoids which for them any cyclic right act has cyclic injective envelope. We investigate some
properties of some classes of acts over such monoids.

1. Introduction

In [7] the authores have investigated the monoids for which any cyclic right act is injective and also in [8] in more
limited conditions these classes of monoids have been studied. In this article we introduce and study the concept of
hypercyclic monoids (monoids for which any cyclic right act has cyclic injective envelope). It is shown that over a
commutative hypercyclic monoids any cyclic act is quasi-injective and contains a zero element. Also it is proved that
for a hypercyclic monoid S any non-zero right ideal I of S is essential in S if and only if SS = E(I).
Throughout this article S will denote a monoid and an S-act AS (or A) is a right S-act. A subact B of an act A
is called large (or essential) in A denoted by B ⊆′ A, if any S-homomorphism g : A −→ C such that g|B is a
monomorphism is itself a monomorphism (see [1]). From [5] an S-act A is said to be uniform, provided that every
non-zero subact ofA is essential. For an S-actA, byE(A), we mean the injective envelope ofA. Recall that an S-act
A is injective if for any right S-act N , any subact M of N , and any homomorphism f ∈ Hom(M,A), there exists a
homomorphism g ∈ Hom(N,A) which extends f, i.e., g|M = f . Also regarding the following diagram an S-act A
is called:
(i) C-injective ifM is a cyclic subact of N ([7]).
(ii) CC-injective ifM and N are cyclic acts ([8]).
(iii) quasi-injective if N = A ([6]).
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M ⊆ N
f ↓ ↙ ∃ g

A.

We encourage the reader to see [1] for basic results and definitions relating to acts over monoids.

2. Main Results

Definition 2.1. A monoid S is said to be hypercyclic if any cyclic right S-act has cyclic injective envelope.
Let A,B be right S-acts. From [1] the trace of B in A is defined by tr(B,A) =

∪
f∈Hom(B,A)

f(B). Recall that

an S-act A is strongly duo if for every subact B of A, tr(B,A) = B ([3]). Also from [4] an S-act A is siad to be
coregular if any cyclic subact of A is injectice.
Proposition 2.2. Suppose S is a commutative hypercyclic monoid. Then
(i) Every cyclic S-act is quasi-injective (strongly duo) and contains a zero element.
(ii) Eny strongly faithful S-act is coregular.
(iii) The right S-act SS is injective.

Theorem 2.3. Let S be a commutative hypercyclic monoid. Then SS is uniform if and only if for any non-trivial right
ideal I of S,E(I) = SS .

Proposition 2.4. Suppose S is a hypercyclic monoid. Then the following conditions are equivalent:
(i) Every cyclic S-act is injective.
(ii) Eny finite product of cyclic S-acts are quasi-injective.

Proposition 2.5. Let S be a hypercyclic monoid and A be a uniform S-act which contains a non-zero element. Then
E(A) is a cyclic S-act.

Theorem 2.6. A monoid S is hypercyclic and every S-act is CC-injective if and only if all S-acts are C-injective.

Corollary 2.7. Suppose S is a monoid with central idempotents. Then S is a regular hypercylic monoid if and only if
any S-act is C-injective.

From [2] a monoid S is called Rees artinian if S satisfies the descending chain condition on right ideals.
Proposition 2.8. Let S be a hypercylc Rees artinian monoid. Then the right S-act SS is injective and for any right
ideal I of S,E(I) = eS for some idempotent e ∈ S.

Proof. SupposeE(SS) = aS is a cyclic S-act. Thus by projectivity of S there exists a homomorphism f : SS −→ SS

such that λf = i where λ : SS −→ aS is defined by λ(s) = as for any s ∈ S and i is the inlusion map i : SS −→
E(SS). Hence f is a monomorphism. Now since S satisfies the descending chain condition on right ideals we can
see that f is an epimorphism and so i is an isomorphism which implies the result. For the second part note that by
injectivity of SS , for any right ideal I of S,E(I) is a retract of S and consequently is indecomposable and projective.
Thus we imply the result.

As a direct concequence of the previouse proposition if S is a finite hypercylci monoid, the SS is injective.
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Abstract

Let R be a commutative Noetherian ring, and let a be a proper ideal of R. LetM be a non-zero
finitely generated R-module with the finite projective dimension p, and let N be a non-zero
finitely generated R-module with N ̸= aN . Assume that c is the greatest non-negative integer
with the property that Hi

a(N), the i-th local cohomology module ofN with respect to a, is non-
zero. It is known that Hi

a(M,N), the i-th generalized local cohomology module of M and N
with respect to a, is zero for all i > p+ c. In this paper, we obtain the coassociated prime ideals
of Hp+c

a (M,N). Using this, in the case whenR is a local ring and c is equal to the dimension of
N , we give a necessary and sufficient condition for the vanishing of Hp+c

a (M,N)which extends
the Lichtenbaum-Hartshorne vanishing theorem for generalized local cohomology modules.

1. Introduction

Throughout this paper, let R be a commutative Noetherian ring with non-zero identity. Let a be an ideal of R and N
be an R-module. The i-th local cohomology module of N with respect to a was defined by Grothendieck as follows:

Hi
a(N) := lim−→

n∈N
ExtiR(R/an, N);

see [2] for more details. For a pair of R-modules (M,N), the i-th generalized local cohomology module of (M,N)
with respect to a was introduced by Herzog as follows:

Hi
a(M,N) := lim−→

n∈N
ExtiR(M/anM,N);

see [1] for more details. It is clear that Hi
a(R,N) = Hi

a(N). The cohomological dimension of N with respect to a
and the cohomological dimension of (M,N) with respect to a are defined, respectively, as follow:

cda(N) := sup{i ∈ N0 : Hi
a(N) ̸= 0}
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and
cda(M,N) := sup{i ∈ N0 : Hi

a(M,N) ̸= 0}.

Assume that N is finitely generated with finite dimension d. By [2, Theorem 6.1.2 and Exercise 7.1.7 ], cda(N) ≤ d
and Hd

a(N) is Artinian. When R is local, Dibaei and Yassemi proved in [3, Theorem A] that

AttR(Hd
a(N)) = {p ∈ AssR(N) : cda(R/p) = d}.

This equality also holds without the hypothesis that R is local (see [4, Theorem 2.5]). IfM is finitely generated with
finite projective dimension p, then cda(M,N) ≤ p + d and Hp+d

a (M,N) is Artinian (see [1, Lemma 5.1] and [11,
Theorem 2.9]). When R is local, as a generalization of the theorem of Dibaei and Yassemi, Gu and Chu show in [8,
Theorem 2.3] that

AttR(Hp+d
a (M,N)) = {p ∈ AssR(N) : cda(M,R/p) = p+ d}.

In [7, Theorem 5.3], the author of the present paper, Tehranian and Zakeri proved this equality in the case when R is
not necessarily local. Also, it is shown in [7, Theorem 5.6] that

AttR(Hp+d
a (M,N)) = SuppR(Ext

p
R(M,R)) ∩ AttR(Hd

a(N)) (†)

wheneverR/AnnR(Hd
a(N)) is a complete semilocal ring. This equality allows us to compute the set of attached prime

ideals of the top generalized local cohomology module Hp+d
a (M,N) from the set of attached prime ideals of the top

local cohomology module Hd
a(N).

Now we assume thatN ̸= aN and set c := cda(N). For all i > p+ c, Hi
a(M,N) = 0; see [9, Proposition 2.8]. Since

c ≤ d, p + c yields a sharper upper bound for cda(M,N). Note that Hc
a(N) and Hp+c

a (M,N) are not necessarily
Artinian. In Theorem 3.1, using the set of coassociated prime ideals of Hc

a(N), we compute the set of coassociated
prime ideals of Hp+c

a (M,N). More precisely, we show that

CoassR
(
Hp+c

a (M,N)
)
= {p ∈ SuppR(M) ∩ CoassR (Hc

a(N)) : proj dimRp
(Mp) = p}.

As a consequence of this equality, we prove in Corollary 3.2 that the equality (†) holds even if R/AnnR(Hd
a(N)) is

not a complete semilocal ring, and we show that

AttR
(
Hp+d

a (M,N)
)
= {p ∈ SuppR(M) ∩ AssR(N) : proj dimRp

(Mp) = p, cda(R/p) = d}. (‡)

In particular, if R is local andM is Cohen-Macaulay, then it is shown in Corollary 3.3 that

AttR(Hp+d
a (M,N)) = {p ∈ SuppR(M) ∩ AssR(N) : cda(R/p) = d}.

Finally, we will extend the Lichtenbaum-Hartshorne vanishing theorem for generalized local cohomology modules.
More precisely, when R is a local ring, we prove in Theorem 3.4 that Hp+d

a (M,N) is zero if and only if for all
P ∈ SuppR̂(M̂) ∩ AssR̂(N̂) with dimR̂(R̂/P) = d and proj dimR̂P

(M̂P) = p, dimR̂(R̂/(aR̂+P)) > 0.

2. Preliminaries

Let M be an R-module. We denote the localization of M at p by Mp, and the set of all prime ideals p of R such
that Mp is non-zero is called the support of M and denoted by SuppR(M). The annihilator of M in R, denoted by
AnnR(M), is defined to be the set {r ∈ R : rx = 0 for all x ∈ M}. If p := AnnR(Rx) is a prime ideal ofR for some
x ∈ M , then p is called an associated prime ideal ofM , and we denote the set of all associated prime ideals ofM by
AssR(M). We will denote the set of all positive integers (respectively, non-negative integers) byN (respectively, N0).
The concepts of attached prime ideal and secondary representation as the duals of the concepts of associated prime
ideal and primary decomposition were introduced by Macdonald in [10]. An R-module M is said to be secondary if
M ̸= 0 and, for each r ∈ R, the endomorphism µr : M → M defined by µr(x) = rx (for x ∈ M ) is either surjective
or nilpotent. If M is secondary, then p :=

√
AnnR(M) is a prime ideal and we say that M is p-secondary. A prime

ideal p is called an attached prime ideal ofM ifM has a p-secondary quotient. We denote the set of all attached prime
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ideals ofM by AttR(M). IfM can be written as a finite sum of its secondary submodules, then we say thatM has a
secondary representation. Such a secondary representation

M = M1 + · · ·+Mt with pi :=
√
AnnR(Mi) for i = 1, . . . , t

ofM is said to be minimal when none of the modulesMi (1 ≤ i ≤ t) is redundant (that is,Mi ⊈ M1+ · · ·+Mi−1+
Mi+1 + · · · +Mt) and the prime ideals p1, . . . , pt are distinct. Since the sum of two p-secondary submodules of M
is again p-secondary, so if M has a secondary representation, then it has a minimal one. When the above secondary
representation is minimal, then AttR(M) = {p1, . . . , pt}, and hence t and the set {p1, . . . , pt} are independent of
the choice of minimal secondary representation ofM . Artinian modules have secondary representation. We refer the
readers to [10] for more details.
Yassemi [12] has introduced the coassociated prime ideal as a dual of associated prime ideal. In Yassemi’s definition,
we do not need to assume that the module has a secondary representation, and note that if a module has a secondary
representation, then its sets of coassociated prime ideals and attached prime ideals are same (see [12, Theorem 1.14]).

Definition 2.1. We say that an R-moduleM is cocyclic whenM is a submodule of E(R/m) for some maximal ideal
m of R, where E(R/m) denotes the injective envelope of R/m.

Definition 2.2. We say that a prime ideal p of R is a coassociated prime ideal of an R-moduleM when there exists a
cocyclic homomorphic image L of M such that p = AnnR(L). We denote by CoassR(M) the set of all coassociated
prime ideals ofM .

3. Main results

In the following theorem, using the set of coassociated prime ideals of the top local cohomology module, we compute
the set of coassociated prime ideals of the top generalized local cohomology module.

Theorem 3.1 ([6]). Let a be an ideal of R and M be a non-zero finitely generated R-module with finite projective
dimension p. Let N be an R-module such that N ̸= aN and c := cda(N). Then

CoassR
(
Hp+c

a (M,N)
)
= {p ∈ SuppR(M) ∩ CoassR (Hc

a(N)) : proj dimRp
(Mp) = p}.

Now, let the notations and assumptions be as in Corollary 3.2. The author of the present paper, Tehranian and Zakeri,
in [7, Theorem 5.6], proved that

AttR(Hp+d
a (M,N)) = SuppR(Ext

p
R(M,R)) ∩ AttR(Hd

a(N))

whenever B := R/AnnR(Hd
a(N)) is a complete semilocal ring. In the following corollary it is shown that the above

equality holds without the hypothesis that B is a complete semilocal ring.

Corollary 3.2 ([6]). Let a be an ideal of R, and M , N be two non-zero finitely generated R-modules such that
p := proj dimR(M) < ∞ and d := dimR(N) < ∞. Then Hp+d

a (M,N) is Artinian and

AttR(Hp+d
a (M,N)) = {p ∈ SuppR(M) ∩ AssR(N) : proj dimRp

(Mp) = p, cda(R/p) = d}.

Corollary 3.3 ([6]). Let R be a local ring and a be an ideal of R. Let M and N be two non-zero finitely generated
R-modules such that M is Cohen-Macaulay, p := proj dimR(M) < ∞ and d := dimR(N). Then we have

AttR Hp+d
a (M,N) = {p ∈ SuppR(M) ∩ AssR(N) : cda(R/p) = d}.

Theorem 3.4 (The Lichtenbaum-Hartshorne vanishing theorem for generalized local cohomology modules [6]). Let
(R,m) be a local ring and a be a proper ideal ofR. LetM andN be two non-zero finitely generatedR-modules such
that p := proj dimR(M) < ∞ and d := dimR(N). Then the following statements are equivalent:

(i) Hp+d
a (M,N) = 0;
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(ii) for each P ∈ SuppR̂(M̂) ∩ AssR̂(N̂) satisfying proj dimR̂P
(M̂P) = p and dimR̂(R̂/P) = d, we have

dimR̂(R̂/(aR̂+P)) > 0.

Remark 3.5. Let (R,m) be a local ring. Let M and N be two non-zero finitely generated R-modules such that
p := proj dimR(M) < ∞ and d := dimR(N). By Grothendieck’s vanishing and non-vanishing theorems [2, The-
orems 6.1.2 and 6.1.4], we have cdm(N) = dimR(N). The exact value of cdm(M,N) is unknown under the above
assumptions. However, if in addition R is Cohen-Macaulay, then Divaani-Aazar and Hajikarimi in [5, Theorem 3.5]
proved that

cdm(M,N) = dimR(R)− gradeR(AnnR(N),M).

We know that p+ d is an upper bound for cdm(M,N). If we set a := m in Theorem 3.4, then it is not true to say that
since dimR̂(R̂/mR̂+P) = 0 for all prime idealsP of R̂, Hp+d

m (M,N) is non-zero and so cdm(M,N) = p+ d. The
following example shows that p+d can be a strict upper bound for cdm(M,N). In fact, if there does not exist a prime
ideal P in SuppR̂(M̂) ∩ AssR̂(N̂) satisfying dimR̂(R̂/P) = d and proj dimR̂P

(M̂P) = p, then the statement (ii) in
Theorem 3.4 is true and hence Hp+d

m (M,N) = 0.

Example 3.6. Let K be a field and R := K[[x, y]] be the ring of formal power series over K in indeterminates x, y.
Then R is a complete regular local ring of dimension 2 with maximal ideal m := (x, y). We set M := R/(x2, xy).
It follows from AssR(M) = {(x), (x, y)} that depthR(M) = 0 and dimR(M) = dimR(R/(x)) = 1. Since R is
regular,M has finite projective dimension and so the Auslander-Buchsbaum formula implies that proj dimR(M) = 2.
Therefore proj dimR(M) + dimR(R) = 4. Now since AssR(R) = {0}, SuppR(M) ∩ AssR(R) = ∅ and so, by
Theorem 3.4 or Corollary 3.2, we obtain H4

m(M,R) = 0. Hence

cdm(M,R) < proj dimR(M) + dimR(R).

Furthermore, since R is Cohen-Macaulay and M has finite projective dimension, the Divaani-Azar–Hajikarimi for-
mula implies that

cdm(M,R) = dimR(R)− gradeR(AnnR(R),M) = 2− 0 = 2.
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Abstract

Let R be a commutative Noetherian ring, a a proper ideal of R and N a non-zero finitely gen-
erated R-module with N ̸= aN . Let d be the least non-negative integer i for which the local
cohomology Hi

a(N) is non-zero. In this paper, we provide a sharp bound under inclusion for the
annihilator of the local cohomology module Hd

a(N) and we show that the analogue version of
Lynch’s conjecture does not hold for Hd

a(N). Also, whenR is a local ring with maximal ideal n
and t is an arbitrary non-negative integer, a sharp bound for the annihilator of Ht

n(N) is given.

1. Introduction

Throughout this note, we assume that R is a commutative Noetherian ring with non-zero identity. Let a be an ideal
of R and N be an R-module. For an integer i, the i-th local cohomology of N with respect to a was defined by
Grothendieck as follows

Hi
a(N) := lim−→

n∈N
ExtiR(R/an, N);

see [1] for more details. We denote the ideal {r ∈ R : rx = 0 for all x ∈ N} of R by AnnR(N). Let N be finitely
generated. We recall that the cohomological dimension (respectively, the depth) of N with respect to a, denoted
by cdR(a, N) (respectively, depthR(a, N)), is defined as the supremum (respectively, infimum) of the non-negative
integers i such that Hi

a(N) is non-zero. The N -height of a is defined as

htN (a) := inf{dimRp
(Np) : p ∈ SuppR(N) ∩ V(a)},

where V(a) denotes the set of all prime ideals ofR containing a. We denote the set of all minimal elements of AssR(N)
by MinAssR(N). For a submodule L of N and p ∈ SuppR(N), we denote the contraction of Lp under the canonical
map N → Np by CN

p (L). Also, we denote the set of positive integers (respectively, non-negative integers) by N
(respectively, N0). For any unexplained notation or terminology, we refer the reader to [1] and [5].
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Assume that N ̸= aN and d := depthR(a, N). We show, in Theorem 2.4, that there is the following bound under
inclusion for the annihilator of Hd

a(N):

AnnR

N/
∩
p∈∆

CN
p (0)

 ⊆ AnnR
(
Hd

a(N)
)
⊆ AnnR

N/
∩
p∈Σ

CN
p (0)

 ∩

 ∩
p∈Σ′

p

 ,

where ∆ := {p ∈ AssR(N) : a + p ̸= R}, Σ := {p ∈ MinAssR(N) : htR/p ((a+ p)/p) = d} and Σ′ := {p ∈
AssR(N) \MinAssR(N) : htR/p ((a+ p)/p) = d}. If in addition N is Cohen-Macaulay, then we show, in Corollary
2.5, that the last inclusion is equality.
Also, when R is a local ring with maximal ideal n and N is a non-zero finitely generated R-module, then it is shown
in Theorem 2.1 that, for an arbitrary non-negative integer t, there is the following bound for the annihilator of Ht

n(N):

AnnR

N/
∩

p∈∆(t)

CN
p (0)

 ⊆ AnnR
(
Ht

n(N)
)
⊆ AnnR

N/
∩

p∈Σ(t)

CN
p (0)

 ∩

 ∩
p∈Σ′(t)

p

 ,

where ∆(t) := {p ∈ AssR(N) : dimR(R/p) ≥ t}, Σ(t) := {p ∈ MinAssR(N) : dimR(R/p) = t} and Σ′(t) :=
{p ∈ AssR(N) \MinAssR(N) : dimR(R/p) = t}. Finally, in the case when R is a homomorphic image of a Cohen-
Macaulay local ring, the dimension of R/AnnR(Ht

n(N) is considered (see Proposition 2.7 and Corollary 2.9) and we
show that the analogue version of Lynch’s conjecture is not true for HdepthR R

n (R) even if R is a homomorphic image
of a complete regular local ring (see Example 2.8).

2. Main results

In the following theorem, when R is a local ring, we provide a sharp bound for the annihilator of local cohomology
module of a finitely generated module with respect to the maximal ideal.

Theorem 2.1 (see [2, Theorem 3.2] and [3, Lemma 5.1]). Let (R, n) be a local ring and let N be a non-zero finitely
generatedR-module. For each t ∈ N0, set∆(t) := {p ∈ AssR(N) : dimR(R/p) ≥ t},Σ(t) := {p ∈ MinAssR(N) :
dimR(R/p) = t} and Σ′(t) := {p ∈ AssR(N) \MinAssR(N) : dimR(R/p) = t}. Then there is the following bound
under inclusion for the annihilator of Ht

n(N):

AnnR

N/
∩

p∈∆(t)

CN
p (0)

 ⊆ AnnR
(
Ht

n(N)
)
⊆ AnnR

N/
∩

p∈Σ(t)

CN
p (0)

 ∩

 ∩
p∈Σ′(t)

p

 .

Let the situation be as in the above theorem and p ∈ SuppR(N). Then it is clear that AnnR(N/CN
p (0)) ⊆ p. Example

2.6 shows that to improve the upper bound for the annihilator of Ht
n(N), we cannot replace MinAssR(N) by AssR(N)

in the definition of Σ(t).

Proposition 2.2 ([3, Lemma 5.2]). LetN be a finitely generatedR-module and let a an ideal ofR such thatN ̸= aN .
Let p ∈ AssR(N) with a+ p ̸= R and n := htR/p ((a+ p)/p). Then

AnnR
(
Hn

a+p(N)
)
⊆ p.

If, in addition, p ∈ MinAssR(N), then

AnnR
(
Hn

a+p(N)
)
⊆ AnnR

(
N/CN

p (0)
)
.

The following corollary is an immediate consequence of Proposition 2.2.

Corollary 2.3. Let N be a finitely generated R-module such that |AssR(N)| = 1, and let a be an ideal of R with
N ̸= aN . Then

AnnR
(
HhtN (a)

a (N)
)
= AnnR(N).
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The next theorem provides a sharp bound for the annihilator of the first non-zero local cohomology module of a finitely
generated module with respect to an arbitrary ideal in the case when R is not necessarily local.

Theorem 2.4 ([3, Theorem 5.4]). LetN be a finitely generated R-module, a be an ideal of R such thatN ̸= aN and
d := depthR(a, N). There is the following bound for the annihilator of Hd

a(N):

AnnR

N/
∩
p∈∆

CN
p (0)

 ⊆ AnnR
(
Hd

a(N)
)
⊆ AnnR

N/
∩
p∈Σ

CN
p (0)

 ∩

 ∩
p∈Σ′

p

 ,

where ∆ := {p ∈ AssR(N) : a + p ̸= R}, Σ := {p ∈ MinAssR(N) : htR/p ((a+ p)/p) = d} and Σ′ := {p ∈
AssR(N) \MinAssR(N) : htR/p ((a+ p)/p) = d}.

Corollary 2.5 ([3, Corollary 5.5]). Let N be a finitely generated Cohen-Macaulay R-module and let a be an ideal of
R such that N ̸= aN . Let d := depthR(a, N) and Σ := {p ∈ AssR(N) : htR/p ((a+ p)/p) = d}. Then

AnnR
(
Hd

a(N)
)
= AnnR

N/
∩
p∈Σ

CN
p (0)

 .

In particular,
htN

(
AnnR

(
Hd

a(N)
))

= 0

and
dimR

(
R/AnnR

(
Hd

a(N)
))

= dimR(N).

Example 2.6 ([3, Example 5.6]). Let K be a field and R := K[[x, y]] be the ring of formal power series over K
in indeterminates x, y. Set N := R/(Rx2 + Rxy), p := Rx and n := Rx + Ry. Then we have Γn(N) ∼= R/n,
H1

n(N) ∼= HomR(R/p, ER(R/n)) and Hi
n(N) = 0 for all i ≥ 2. Thus depthR(N) = 0, cdR(n, N) = dimR(N) = 1

and
AnnR

(
HdepthR(N)

n (N)
)
= Rx+Ry,

AnnR
(
HdimR(N)

n (N)
)
= Rx.

On the other hand, SuppR(N) = {p, n} and if ∆ is a subset of SuppR(N), then

AnnR

N/
∩
q∈∆

CN
q (0)

 =

 R if∆ = ∅,
Rx if∆ = {p},
Rx2 +Rxy otherwise.

Therefore the following statements hold.
(i) AnnR

(
HdepthR(N)

n (N)
)
̸= AnnR

(
N/

∩
q∈∆ CN

q (0)
)
for all subsets∆ of SuppR(N),

(ii) By setting a := n, this example shows that to improve the upper bound for the annihilator of HdepthR(a,N)
a (N) in

Theorem 2.4, we can not replace MinAssR(N) by AssR(N) in the index set Σ.

Proposition 2.7 ([3, Proposition 5.8]). Let (R, n) be a homomorphic image of a Cohen-Macaulay local ring and let
N be a non-zero finitely generated R-module. Assume that t ∈ N0 is such that Ht

n(N) ̸= 0. Then

dimR(R/AnnR(Ht
n(N)) ≤ t

and equality holds when there exists p ∈ AssR(N) with dimR(R/p) = t.

The following example shows that there is a local ring (A, n) which is a homomorphic image of a complete regular
local ring such that

dimA(A/AnnA(H
depthA(A)
n (A))) < depthA(A) = depthA(A/Γn(A)).

Therefore the inequality in Proposition 2.7 may be strict. Also, this shows that the analogue version of Lynch’s
conjecture [4, Conjecture 1.2] is not true for HdepthA(A)

n (A).
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Example 2.8 ([3, Example 5.9]). LetK be a field and letR := K[[x, y, z, w]] be the ring of formal power series over
K in indeterminates x, y, z, w. Set m := (x, y, z, w) and I := (x, y) ∩ (z, w). Then A := R/I is a local ring with
maximal ideal n := m/I . By [2, Example 2.8] and the Independence Theorem, we have Γn(A) ∼= Γm(R/I) = 0 and
H1

n(A) ∼= H1
m(R/I) ∼= R/m ∼= A/n. Therefore

depthA(A) = depthA(A/Γn(A)) = 1,

dimA(A/AnnA(H
depthA(A)
n (A))) = 0.

Thus dimA(A/AnnA(H
depthA(A)
n (A))) is not equal to depthA(A) or depthA(A/Γn(A)) and the inequality in Proposi-

tion 2.7 may be strict.

Let (R, n) be a local ring and let N be a non-zero finitely generated R-module. Then, for each p ∈ AssR(N),
depthR(N) ≤ dimR(R/p). We say that N has maximal depth if depthR(N) = dimR(R/p) for some p ∈ AssR(N).
Cohen-Macaulay modules and sequentially Cohen-Macaulay modules have maximal depth; see [6] for more details.
Now assume in addition that R is a homomorphic image of a Cohen-Macaulay local ring. Proposition 2.7 shows that
dimR(R/AnnR(H

depthR(N)
n (N))) ≤ depthR(N) and Example 2.8 shows that this inequality may be strict. In the

following corollary we see that the equality holds if N has maximal depth.

Corollary 2.9. Let (R, n) be a homomorphic image of a Cohen-Macaulay local ring and let N be a non-zero finitely
generated R-module which has maximal depth. Then

dimR

(
R/AnnR

(
HdepthR(N)

n (N)
))

= depthR(N).

Proof. It is an immediate consequence of Proposition 2.7.
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Abstract

Let D be a division ring with center F . An element of the form xyx−1y−1 ∈ D is called a
multiplicative commutator. Let T (D) be the vector space over F generated by all multiplicative
commutators in D. In this paper it is shown that if D is algebraic over F and Char(D) = 0,
thenD = T (D). Among other results it is shown that in characteristic zero if T (D) is algebraic
over F , thenD is algebraic over F .

1. Introduction and Preliminaries

Throughout this paperD is a division ringwith centerF . An element of the form xyx−1y−1 ∈ D is called amultiplica-
tive commutator, and D′ and [D,D] denote the multiplicative and additive commutator subgroup of D, respectively.
Also we denote by T (D) the vector space generated by the set of all multiplicative commutators of D over F . An
element a ∈ D is said to be algebraic over F if a satisfies a non-zero polynomial in F [x]. A set S ⊆ D is called
algebraic if each of its elements is algebraic over F . WhenK is a finite dimensional extension of F , then we denote
by TrK/F , the regular trace of K over F . If a ∈ D, then F (a) denotes the subfield of D generated by F and {a}.
An element a ∈ D is said to be radical over F if there exists an integer n = n(a) such that an ∈ F . A set S ⊆ D
is said to be radical overF , if each element of S is radical overF . Also we denote byChar(D) the characteristic ofD.

The division ring generated by additive commutators or multiplicative commutators ofD is the wholeD [7, pp. 205,
211]. In the algebraic and zero characteristic case, it was proved thatD is generated as a vector space over the center
by the union of its additive commutators and the unity, see [1]. As a generalization we provide another generating
structure for a division ring as a vector space generated by all multiplicative commutators over its center. We prove
this in the algebraic case when the characteristic is zero. Besides, consider a special property P in a ring (for example
commutativity, algebricity or some finiteness conditions), there are a lot of studies in literature to specify a set or a
substructure S, such that the property P for S implies the property P for the whole ring, for instance see [1–6] and
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[8–10]. Most of these studies have focused on the set of multiplicative and additive commutators and their generating
subgroups D′ and [D,D] in division rings. We show that the subspace T (D) reflects some properties to the whole
division ring.

2. Results

We start this section with the following lemma.

Lemma 2.1. LetD be a division ring with center F . Then for each algebraic element a ∈ D, there exists an element
d ∈ T (D) ∩ F (a) such that TrF (a)/F (a) = ad.

The following lemma is an immediate consequence of the previous lemma.

Lemma2.2. LetD be a division ringwith center F and a ∈ D be an algebraic element overF such thatTrF (a)/F (a) ̸=
0. Then a−1 ∈ T (D).

Now, we have the following theorem.

Theorem 2.3. Let D be a division ring with center F . Then T (D) contains all separable elements of D.

The following is a simple corollary of the previous theorem.

Corollary 2.4. Let D be an algebraic division ring over its center F . If Char(D) = 0, then T (D) = D.

3. Some other aspects of T (D)

A theorem due to Kaplansky [7, p. 246] states that if D is radical over F , then D = F . There are various kinds of
generalizations of this theorem. The next theorem is another one.

Theorem 3.1. Let D be a division ring with center F . If T (D) is radical over F , then D = F .

Mahdavi-Hezavehi together with his colleagues in [10] conjectured that one could conclude the algebracity of a di-
vision ring over its center from the algebracity of all its multiplicative commutators. They were able to deduce the
conjecture is true in the caseD′ is algebraic over the center, but in general the problem is still open. Also it is proved
that when [D,D] is algebraic over F , then D is algebraic over F , see [1]. In what follows we give an affirmative
answer to the conjecture when the center of division ring is uncountable.

Theorem 3.2. LetD be a division ring with uncountable center F such that all of its multiplicative commutators are
algebraic over F . Then D is algebraic over F . In particular, if D is a division ring with uncountable center F and
T (D) is algebraic over F , then D is algebraic over F .

Now, a question is naturally proposed: Whether a division ring is finite dimensional when T (D) is a finite dimen-
sional vector space over F ? This is the content of the following theorem. This theorem is along of some analogous
results which state that if each element of a specific set has a minimal polynomial of bounded degree, thenD is finite
dimensional over F [10]. Note that finite dimensionality of T (D) as a vector space does not imply that all elements
of T (D) or multiplicative commutators are algebraic over F .

Theorem 3.3. Let D be a division ring with center F . If dimFT (D) = n < ∞, then dimFD < ∞.

Now, we would like to prove that ifD is a division ring with centerF and T (D) is algebraic overF , thenD is algebraic
over F . Before stating the proof we need a lemma.

Lemma 3.4. LetD be a division ring with center F , T (D) is algebraic over F and Char(D) = 0. Then for any two
algebraic elements a, b ∈ D, the set S = {a+ b, aba, a2b} is algebraic over F .
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To prove the main theorem we need the following well known result.

Theorem 3.5. (Cartan-Brauer-Hua [7, p. 211]) LetD be a division ring with center F andK be its subdivision ring
such that for any non-zero element x ∈ D, xKx−1 ⊆ D and K ̸= D. Then K ⊆ F .

Theorem 3.6. LetD be a division ring with center F and Char(D) = 0. Then T (D) is algebraic over F if and only
if D is algebraic over F .

Proof. Let T (D) be algebraic over F . If a and b are algebraic elements of D over F , then by the previous lemma
(a+1)2b is algebraic over F and so ab = 1/2((a+1)2b−b−a2b) is algebraic over F . Therefore the setA containing
all algebraic elements ofD over F forms an algebraic subdivision ring containing T (D) which is also invariant under
conjugation. Now, by Theorem 3.5 , the proof is complete.
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Abstract

Let G be a finite group. If H ≤ G, recall that H is Weakly S-semipermutable in G provided
there exists a normal subgroup A of G such that HA is S-permutable in G, and H ∩ A is S-
semipermutable in G. The purpose of this survey note is to show Weakly S-semipermutability
or SS-quasi-normality of especial types of subgroups in a group G can help us to determine
the properties of G. This relationship Weakly S-semipermutability or SS-quasi-normality of
special subgroups of groupG and, p-supersolubility groupG. Moreover, we investigate, if some
subgroups ofG be Weakly S-semipermutable or SS-quasi-normal inG, thenG is a p-nilpotent
group.

1. Introduction

All groups mentioned in this paper are considered to be finite. Let π(G) stand for the set of all prime divisors of the
order of a group G. Recall that two subgroups H and K of a group G are said to be permutable if HK = KH .
The subgroupH is said to be S-permutable (S-quasinormal or π-quasinormal) in G ifH permutes with every Sylow
subgroup of G, i.e., HGp = GpH for any Sylow subgroup Gp of G. This concept was introduced by O. H. Kegel
[3]. A subgroup H of G is said to be S-semipermutable in G, if HGp = GpH for every Sylow p-subgroup Gp of
G with (|H|, p) = 1. This concept was introduced by Chen(1998). Clearly, every S-permutable subgroup of G is
S-semipermutable inG but the converse does not hold: for example, a Sylow 2-subgroup of S3 (the symmetric group
of degree 3) is semipermutable in S3, so is S-semipermutable in S3 but does not S-permutable in S3. Kegel proved
that, for every S-permutable subgroup H of G, H is subnormal subgroup of G.
H.Zhangjia (2010) proved that, let p be an odd prime dividing the order of a group G and Gp be a Sylow p-subgroup
of G. Suppose that NG(Gp) be a p-nilpotent group and there exists a subgroup D of Gp with 1 < |D| < |Gp| such
that every subgroup H of Gp with order |D| is S-semipermutable in G. Then G is a p-nilpotent.
LetG be a group andH ≤ G. H is called SS-quasi-normal inG (Supplement Sylow-quasi-normal subgroup) if there
exists a SupplementK of H in G, such that HBp = BpH for all Sylow p-subgroups Bp ofK, Li [4].
S.E. Mirdamadi and G.R. Rezaeezadeh [5] introduced SS-semipermutability’s concept, which is a general of SS-
quasi-normality and semipermutability.
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2. Preliminaries

Below are some of the Lemmas and Theorems needed to prove the main results.

Lemma 2.1. [1, Lemma 2.5] Let G be a group and p ∈ π(G) a prime with (|G|, p− 1) = 1. Then the subsequent
statements stand:

1. If N ⊴G and |N | = p, then N ≤ Z(G).
2. If G has a Sylow p-subgroup such that it is cyclic, then G is p-nilpotent.
3. IfM ≤ G such that |G : M | = p, thenM ⊴G.

Lemma 2.2. [1, Lemma 2.4] Let G be a minimal non-nilpotent group. Then the following hold:

1. For some p ∈ π(G), there exists Gp ∈ Sylp(G) such that Gp ⊴ G and G = GpQ, where Q is a cyclic
non-normal Sylow q-subgroup of G for some prime q ̸= p.

2. If p > 2, then Gp has exponent p. If p = 2, then Gp has exponent 2 or 4.
3. If Gp is abelian, then Gp is elementary abelian.
4. Φ(Gp) ≤ Z(G).
5. Gp/Φ(Gp) is a chief factor of G.

Lemma 2.3. [2, Lemma 2.1] Suppose that a subgroup H of a group G is S-permutable in G and N is a normal
subgroup of G. Then the following hold:

1. If H ≤ K ≤ G then H is S-permutable in K.
2. HN and H ∩N are S-permutable in G, HN/N is S-permutable in G/N .
3. H ∩K is S-permutable in K.
4. If H is a p-subgroup of G, then H ⊆ Op (G) and Op(G) ≤ NG(H).
5. H/HG is nilpotent.

Lemma 2.4. [1, Lemma 2.2] Let G be a group, p ∈ π(G) be a prime and A be a p-subgroup of G. Then A is
S-permutable in G if and only if Op(G) normalizes A.

Lemma 2.5. [1, Lemma 2.3] Let G be a group and p ∈ π(G) be a prime and A ≤ Op(G). If A is S-semipermutable
in G, then A is S-permutable in G.

Lemma 2.6. [2, Lemma 2.2] Suppose that a subgroup H of a group G is S-semipermutable in G and N is a normal
subgroup of G, then the following hold:

1. If H ≤ K ≤ G, then H is S-semipermutable in K.
2. If H is a p-subgroup for some prime p ∈ π(G), then HN/N is S-semipermutable in G/N .
3. If (|H|, |N |) = 1, then HN/N is S-semipermutable in G/N .
4. If H ≤ Op(G), then H is S-permutable in G.

Lemma 2.7. [4, Lemma 2.1, 2.2] Let H ≤ G be the SS-quasi-normal in G, H ≤ L ≤ G, and N ⊴G.

1. H is SS-quasi-normal in L.
2. HN/N is SS-quasi-normal in G/N.
3. If for some prime p ∈ π(G), H is a p-subgroup of G, then HGq = GqH for every Gq ∈ Sylq(G) with q ̸= p

(q ∈ π(G)).
4. If H ≤ F (G), then H is S-quasi-normal in G.

G.R. Rezaeezadeh and H. Jafarian Dehkordy[2] define the Weakly S-semipermutable (ν-permutable) subgroups.

Definition 2.8. Let G be a group and H ≤ G. Then H is said to be Weakly S-semipermutable (ν-permutable) in G
provided there exists A⊴G such that HA is S-permutable in G and H ∩A is S-semipermutable in G .
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It is clear that if K ≤ G is S-semipermutable in G, then K is ν-permutable in G. However, the converse is not true.
For instance, let K denote the subgroup ⟨(12)⟩ of S4 (symmetric group of degree 4). Then K is easily seen to be
ν-permutable in S4, butK is not S-semipermutable in S4.
The purpose of this survey paper is to show ν-permutability of some subgroups of a groupG can help us to determine
the p-supersolubility or p-nilpotency of G.
G.R.Rezaeezadeh and H.Jafarian Dehkordy [2],[1] prove the following results.

Lemma 2.9. [2, Lemma 2.7] Suppose that a subgroup H of a group G is ν-permutable in G and N is a normal
subgroup of G, then the following statements hold:

1. If H ≤ K ≤ G, then H is ν-permutable in K.
2. If (|H|, |N |) = 1, then HN/N is ν-permutable in G/N .
3. IfH ≤ K⊴G, thenG has a normal subgroup L contained inK such thatHL is S-permutable inG andH ∩L

is S-semipermutable in G.
4. If H is a p-subgroup of G, then HN/N is ν-permutable in G/N .
5. If N ≤ U and U/N is ν-permutable in G/N , then U is ν-permutable in G.

Lemma 2.10. [2, Lemma 2.8] Let N ⊴ G be a minimal normal and elementary abelian subgroup. Then N has no
nontrivial proper subgroupK such that any subgroup of N with order |K| is ν-permutable in G.

Theorem 2.11. [2, Theorem 3.2] Let G be a group, p ∈ π(G) with (|G|, p− 1) = 1 and Gp is a Sylow p-subgroup of
G. If every maximal subgroup of Gp is ν-permutable in G, then G is p-nilpotent.

Theorem 2.12. [2, Theorem 3.3] Let G be a group, p ∈ π(G) with (|G| , p− 1) = 1 and Gp be a Sylow p-subgroup
ofG. If every cyclic subgroup ofGp with order p or 4 (ifGp is a nonabelian 2-group) has a p-nilpotent supplement in
G or is ν-permutable in G, then G is p-nilpotent.

Theorem 2.13. [1, Theorem 3.1] Let G be a p-soluble group and Gp ∈ Sylp(G) where p ∈ π(G). If each of the
maximal subgroups of Gp is ν-permutable in G, then G is p-supersoluble.

3. Main results

Theorem 3.1. Let G be a group, p be the smallest prime dividing the order of G, and Gp ∈ Sylp(G). If each of the
maximal subgroups of Gp is either ν-permutable in G or SS-quasi-normal in G, then G is p-nilpotent.

Theorem 3.2. Let G be a group, p be the smallest prime dividing the order of G, and Gp ∈ Sylp(G). If there exists
a subgroup L of Gp with 1 < |L| < |Gp| such that all subgroups K of Gp with |K| = |L| or |K| = 2 |L| (Gp is a
non-abelian 2-group) is either ν-permutable or SS-quasi-normal in G, then G is p-nilpotent.

Theorem 3.3. Let G be a group and p ∈ π(G) with (|G|, p− 1) = 1. Let Gp be a Sylow p-subgroup of G. Suppose
that any maximal subgroup of Gp, that does not have a p-nilpotent supplement in G, is ν-permutable in G. Then G is
p-nilpotent.
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Abstract

δ − ⊕−supplemented module is a generalization of ⊕−supplemented modules. We introduce
(weak) δ−coclosed submodules and give the nature of δ − ⊕−supplemented modules under
these submodules. We show that ifM is a δ−⊕−supplemented module andN is a δ−coclosed
submodule of M such that the intersection of N with any direct summand of M is a direct
summand of N , then N is ⊕−supplemented and especially δ − ⊕−supplemented. It will be
shown any δ − ⊕−supplemented module M has a decomposition M = M1 ⊕ M2, where
δ(M1) ≪δ M1 and δ(M2) = M2. The relationship of this type of modules with some other
modules and also the nature of δ − ⊕−supplemented modules under direct sum and direct
summand will be investigated.

1. Introduction

A submodule L ofM is called small inM (denoted by L ≪ M ) if, for every proper submoduleK ofM , L+K ̸= M .
A submodule N ofM is called essential inM (denoted by N ⊴e M ) if N ∩K ̸= 0 for every nonzero submoduleK
of M . The singular submodule of a module M (denoted by Z(M)) is Z(M) = {x ∈ M | Ix = 0 for some ideal
I ⊴e R}. A moduleM is called singular (nonsingular) if Z(M) = M (resply. Z(M) = 0).
A submodule N ofM is called fully invariant inM if f(N) ≤ N for every f ∈ End(M).
A moduleM is called lifting if, for every submoduleN ofM ,M has a decompositionM = A⊕B such that A ≤ N
andN∩B ≪ B. M is said to satisfy conditionD3 if, wheneverA andB are direct summands ofM withM = A+B,
then A ∩B is also a direct summand ofM .
For two submodulesN andK of the moduleM , N is called a supplement ofK inM ifN is minimal with respect to
the property M = K + N , equivalently M = K + N and N ∩K ≪ N . The module M is called supplemented if
every submodule ofM has a supplement inM . The moduleM is called ⊕−supplemented if every submodule ofM
has a supplement that is a direct summand of M . M is called completely ⊕−supplemented if every direct summand
ofM is ⊕−supplemented (see [1]).
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Let M be a module and B ≤ A ≤ M . If A/B ≪ M/B, then B is called a cosmall submodule of A in M . The
submodule A ofM is called coclosed if A has no proper cosmall submodule. Also B is called a coclosure of A inM
if B is a cosmall submodule of A and B is coclosed inM .

2. δ−upplemented and δ − ⊕−upplemented modules

δ−small submodules were defined as a generalization of small submodules by Zhou in [5]. After that, many authors
have done researches related to this type of modules (for example see [2–4] . Let M be a module and L ≤ M . Then
L is called δ−small in M (denoted by L ≪δ M ) if, for any submodule N of M with M/N singular, M = N + L
implies thatM = N . The sum of all δ−small submodules ofM is denoted by δ(M).
LetK,N be submodules ofmoduleM . ThenN is called a δ−supplement ofK inM ifM = N+K andN∩K ≪δ N .
The moduleM is called δ−supplemented if every submodule ofM has a δ−supplement inM .
The moduleM is called δ−lifting if, for any submodule N ofM , there is a decompositionM = M1 ⊕M2 such that
M1 ≤ N and N ∩M2 ≪δ M2.
In this paper we investigate generalizations of ⊕−supplemented and completely ⊕−supplemented modules, namely
δ−⊕−supplementedmodules and completely δ−⊕−supplementedmodules. AmoduleM is called a δ−⊕−supplemented
module if every submodule ofM has a δ−supplement that is a direct summand ofM . AlsoM is called a completely
δ −⊕−supplemented module if every direct summand ofM is δ −⊕−supplemented.
Let M be any module and B ≤ A be submodules of M . Then B is called a δ−cosmall submodule of A in M if
A/B ≪δ M/B. A submodule A of M is called δ−coclosed in M if N has no proper δ−cosmall submodule in M ,
that is, if B ≤ A such that A/B ≪δ M/B, then A = B. A submodule A of M is weak δ−coclosed in M if, given
B ≤ A such that A/B is singular and A/B ≪δ M/B, then A = B. For a submodule N of M , A ≤ N is called a
δ−coclosure of N in M if A is δ−coclosed in M and N/A ≪δ M/A and A is called a weak δ−coclosure of N in
M if A is weak δ−coclosed inM and N/A ≪δ M/A.
It is easy to see that every small submodule of amoduleM is δ−small inM , soRad(M) ⊆ δ(M) and, ifM is singular,
all δ−small submodules of M are small and so Rad(M) = δ(M). Also any non-singular semisimple submodule of
M is δ−small inM .

Example 2.1. Let R be a semisimple ring and M a left R−module. Since R has no essential ideal, all submodules
of M are non-singular. Hence all submodules of are δ−small in M , while non of its nonzero submodules are small.
Especially all submodules of the Z6−modules, Z6 are δ−small but it has no nonzero small submodules.

Lemma 2.2. Let M and N be modules. Then

(1) δ(M) =
∑

{L ≤ M | L ≪δ M} =
∩
{K ≤ M | M/K is singular simple }.

(2) If f : M → N is an R−homomorphism, then f(δ(M)) ⊆ δ(N). Therefore δ(M) is a fully invariant submodule
of M . In particular, if K ≤ M , then δ(K) ⊆ δ(M).

(3) If M = ⊕i∈IMi, then δ(M) = ⊕i∈Iδ(Mi).

(4) If every proper submodule of M is contained in a maximal submodule of M , then δ(M) is the unique largest
δ−small submodule of M . In particular if M is finitely generated, then δ(M) is δ−-small in M .

Lemma 2.3. Let M be a module and δ(M) ≤ K ≤ M . Then the following hold:

(1) If δ(M) is δ−small in M and δ(M) is a δ−cosmall submodule of K in M , then K is δ−small in M .

(2) If δ(M) is δ−small in M , then δ(M/δ(M)) = 0.

3. Main Results

Lemma 3.1. Let M be a module and N ⊆⊕ M . Then N is weak δ−coclosed inM .

Lemma 3.2. Let M be a module and A ≤ N ≤ M such that N is weak δ−coclosed in M . Then A ≪δ M implies
that A ≪δ N .
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Lemma 3.3. LetM be a module and A ≤ N ≤ M be such that N is δ−coclosed inM . Then A ≪δ M implies that
A ≪ N .

Theorem 3.4. Let M be a δ − ⊕−supplemented module and N be a weak δ−coclosed submodule of M . If the
intersection of N with any direct summand of M is a direct summand of N , then N is δ − ⊕−supplemented. In
particular, ifM has the summand intersection property, then every direct summand ofM is δ −⊕−supplemented.

Corollary 3.5. LetM be a δ−⊕−supplemented module andN be a δ−coclosed submodule ofM . If the intersection
of N with any direct summand of M is a direct summand of N , then N is ⊕−supplemented.

Corollary 3.6. Let M be a δ −⊕−supplemented module and N be a weak δ−coclosed (δ−coclosed) submodule of
M . If eN ≤ N for all e = e2 ∈ End(M), then N is δ − ⊕−supplemented (⊕−supplemented). In particular any
fully invariant δ−coclosed submodule ofM is ⊕−supplemented.

Lemma 3.7. (1) LetM be a module andN , L be submodules ofM . ThenN +L ≪δ M if and only ifN ≪δ M and
L ≪δ M . (2) Let M , N be modules with K ≤ M . If f : M → N is a homomorphism, then K ≪δ M implies that
f(K) ≪δ N . In particular K ≪δ M ≤ N implies K ≪δ N .
(3) LetM = M1⊕M2,K1 ≤ M1 ≤ M andK2 ≤ M2 ≤ M . ThenK1⊕K2 ≪δ M1⊕M2 if and only ifK1 ≪δ M1

and K2 ≪δ M2. In particular if X ≪δ N and Y ≪δ M , then X + Y ≪δ M +N .

Theorem 3.8. Any finite direct sum of δ −⊕−supplemented modules is a δ −⊕−supplemented module.

Lemma 3.9. The following are equivalent :
(1) M is δ−D1.
(2) Every submodule A of M can be written as A = N ⊕ S with N ⊆⊕ M and S ≪δ M .

A moduleM is called distributive if its lattice of submodules is distributive, equivalently for all submodules L,K,N
ofM , N + (K ∩ L) = (N +K) ∩ (N + L) or N ∩ (K + L) = (N ∩K) + (N ∩ L).

Corollary 3.10. Any distributive δ−D1 module is a δ −⊕−supplemented module.

Corollary 3.11. Let M1,M2, . . . ,Mn be modules where each Mi is distributive and δ−lifting. Then ⊕n
i=1Mi is a

δ −⊕−supplemented module.

Recall that a module M is called δ−hollow if every proper submodule of M is δ−small in M . It is clear that any
δ−hollowmodule is δ−lifting and so any finite direct sum of distributive δ−hollowmodules is a δ−⊕−supplemented
module.

Theorem 3.12. Any δ − ⊕−supplemented module M has a decomposition M = M1 ⊕M2, where δ(M1) ≪δ M1

and δ(M2) = M2.

The submodule Z∗(M) of M is defined by Z∗(M) = {m ∈ M : mR is small in E(mR)} where E(mR) is the
injective hull of mR (see for example [4]). We define the submodule δ∗(M) of M by δ∗(M) = {m ∈ M : mR
is δ−small in E(mR)}. Note that if M = M1 ⊕ M2 we have Z∗(M) = Z∗(M1) ⊕ Z∗(M2) and δ∗(M) =
δ∗(M1)⊕ δ∗(M2).

Theorem 3.13. LetM be a δ−⊕−supplemented module. Then there exists a decompositionM = M1 ⊕M2, where
δ∗(M1) ≪δ M1 and δ∗(M2) = M2.

Lemma 3.14. Let M be a nonzero module and N a fully invariant submodule of M . If M = M1 ⊕ M2, then
N = (N ∩M1)⊕ (N ∩M2).

Theorem 3.15. Let N be a fully invariant submodule of the moduleM . IfM is δ −⊕−supplemented, thenM/N is
δ −⊕−supplemented. Moreover if N is a direct summand of M , then N is also δ −⊕−supplemented.

A module N is called radical if Rad(N) = N . The sum of all radical submodules N of M is denoted by P (M).
Here we say that a moduleN is δ−radical if δ(N) = N and denote the sum of all δ−radical submodulesN ofM by
Pδ(M).
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Corollary 3.16. LetM be amodule. IfM is δ−⊕−supplemented, thenM/Pδ(M) is δ−⊕−supplemented. Moreover
if Pδ(M) ⊆⊕ M then Pδ(M) is δ −⊕−supplemented.

Example 3.17. (1) LetM denote the Z−module Z/6Z. The proper nonzero submodules ofM are 2Z/6Z and 3Z/6Z
and we have Z/6Z = 2Z/6Z⊕ 3Z/6Z. HenceM is a δ −⊕−supplemented module.
(2) The Z−module Z is not a δ −⊕−supplemented module.

References

[1] HARMANCIA., KESKIN D., AND SMITH P. F., On ⊕−supplemented modules, Acta Math., (1999), 83, 161-169.
[2] KOSAN M. T., δ−lifting and δ−supplemented Modules, Alg. Coll., (2007), 14 (1), 53-60.
[3] B. Talaee,G−�δ−�M Modules and Torsion Theory Cogenerated by SuchModules, Iranian Journal of Science and Technology, Transactions

A: Science, 42: 141 - 146, (2018).
[4] B. Talaee, A Generalization ofM -Small Modules, Journal of Sciences, Islamic Republic of Iran, 26(2): 179 - 185, (2015).
[5] ZHOU Y., Generalizations of perfect, semiperfect, and semiregular rings, Alg. Coll. 7 (3) (2000), 305-318.



Gonbad Kavous University

The 4th National Congress on Mathematics and StatisticsThe 4th National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1402

The 4th National Congress on Mathematics and Statistics, AL–178, pp. 367–369

Realizing the singularity category as a Spanier-Whitehead
triangulated category

Abdolnaser Bahlekeha,∗
aGonbad-Kavous University, Gonbad-Kavous, Iran

Article Info

Keywords:
singularity category
Spanier-Whitehead category
maximal Cohen-Macaulay
modules

2020 MSC:
13C60
13D05

Abstract

Let (R,m) be a commutative noetherian Cohen-Macaulay ring with a canonical module ω. In
this paper, we describe the singularity Dsg(R) ofR in terms of the Spanier-Whitehead category
of the category of maximal Cohen–Macaulay R-modules.

1. Introduction

Let (R,m) be a commutative noetherian local ring. The singularity category of R is the Verdier quotient

Dsg(R) = Db(modR)/P(R)

of the bounded derived category of finitely generatedR-modulesDb(modR) by the full subcategoryP(R) of bounded
complexes of finitely generated projective R-modules. This category measures the homological singularity of R in
the sense that R has finite global dimension if and only if its singularity category is trivial. The singularity category
was introduced by Buchweitz [3] in the 1980s, and studied actively ever since the relation with mirror symmetry was
found by Orlov [6]. Assume that Gp(R) is the category of all finitely generated Gorenstein projective R-modules. A
nice feature of this category is that its stable versionGp(R)modulo projectives is a triangulated category. It is known
that the natural triangulated functor F : Gp(R) −→ Dsg(R) sending each object X to the complex concentrated in
degree zero is fully faithful. A fundamental result of Buchweitz and Happel [3, 4] states that F is an equivalence,
provided that R is Gorenstein. So a natural question is arisen: Is there a description of the singularity category of
a Cohen-Macaulay ring? The aim of this paper is to give an affirmative answer to this question. In this direction,
as already mentioned above, the singularity category of a Gorenstein ring can be described via the stable category
Gorenstein projective modules and Since over gorenstein rings, the category of Gorenstein projective modules is the
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same as the category of maximal Cohen-Macaulay modules, an appropriate candidate will be the category of maximal
Cohen-Macaulay modules. But the problem is that the stable category of maximal Cohen-Macaulay modules is not a
triangulated category. To overcome this hole, we use the notion of the Spanier–Whitehead category, which has been
defined by Heller [5]. Indeed, inspired by a well-known construction in algebraic topology, he defined the Spanier–
Whitehead category for each left triangulated category by formally inverting the suspension and proved that it is
always a triangulated category. Assume that R is a Cohen-Macaulay ring with a canonical module and CM(R) is
the category of maximal Cohen-Macaulay R-modules. Since CM(R) is a resolving subcategory of the category of
finitely generatedR-modules, its stable category modulo projectives forms a left triangulated category with the syzygy
functor being the suspension functor. So by Heller’s result, the Spanier–Whitehead category of the stable category of
maximal Cohen-Macaulay modules, SW (CM), is a triangulated category. The main result of this paper is to show
that the singularity category Dsg(R) of R can be described within SW (CM).

2. Results

Let us begin this section wby recalling the definition of the left triangulated category.
Definition 2.1. Let C be an additive cateory and Ω : C → C an additive covariant functor. Assume that ∆ is a
collection of sequences of the form ΩX

h−→ Z
g−→ Y

f−→ X in C, called left triangles. The triple (C,Ω,∆) is said
to be a left triangulated category, if the following conditions are satisfied:
(LT0): Any sequence which is isomorphic to a left triangle is a left triangle. Moreover, for any objectX ∈ C, the left
triangle 0 −→ X

id−→ X −→ 0 belongs to∆.
(LT1): For any morphism f : Y −→ X in C, there is a left triangle ΩX h−→ Z

g−→ Y
f−→ X lies in ∆.

(LT2): For a given left triangle ΩX h−→ Z
g−→ Y

f−→ X in ∆, the left triangle ΩF −Ωf−→ ΩX
h−→ Z

g−→ Y also
belongs to∆.
(LT3): For any commutative diagram of the form

ΩX
h−−−−−→ Z

g−−−−−→ Y
f−−−−−→ X

Ωγ

y β

y γ

y
ΩX′ h′

−−−−−→ Z′ g′−−−−−→ Y ′ f ′
−−−−−→ X′,

where the rows are left triangles, there is a morphism α : Z −→ Z ′ in C, making the completed diagram commutative.
(LT4): For any two left triangles ΩX m−→ Z ′ l−→ Y

k−→ X and ΩY
h−→ X ′ g−→ Z

f−→ Y in ∆, there exist a third
left triangle ΩX j−→ Y ′ i−→ Z

kof−→ X in ∆ and two morphisms α : X ′ −→ Y ′ and β : Y ′ −→ Z ′ in C, such that
the following diagram is commutative, where the second column from the left is a left triangle in∆

ΩZ ′

hoΩl��
ΩY

h //

Ωk��

X ′ g //

α��

Z
f // Y

k��
ΩX

j // Y ′ i //

β��

Z
kof //

f��

X

ΩX
m // Z ′ l // Y

k // X

Remark 2.2. SPANIER-WHITEHEAD CATEGORY. Assume that (C,Ω,∆) is a left triangulated category. The Spanier-
Whitehead category of C, SW (C,Ω) is defined as follows: the objects have the formX[n] where X is an object of C
and n ∈ Z. Moreover, for any two objects X[n], Y [m] in SW (C,Ω), their Hom-set is defined by

HomSW (X[n], Y [m]) = lim
−→

i≥n,m

HomC(Ω
i−nX,Ωi−mY ).

For the basic properties of Spanier-Whitehead categories, the reader is refereed to [5]. In the remainder, we write
SW (C) for simplicity instead of SW (C,Ω).
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Remark 2.3. LetX be a resolving subcategory and letX denote the stable category ofX modulo projective modules.
Recall that for an R-module X , its first syzygy ΩX is the kernel of its projective (pre)cover πX : PX −→ X . Now
fix the short exact sequence 0 −→ ΩX

λX−→ PX
πX−→ X −→ 0. This gives rise to the syzygy functor Ω : X −→ X .

Take an R-homomorphism f ∈ HomX (X,Y ) and consider the following pullback diagram;

0 −−−−−→ ΩY
α(f)−−−−−→ Cf

β(f)−−−−−→ X −−−−−→ 0

id

y θf

y f

y
0 −−−−−→ ΩY

λY−−−−−→ PY
πY−−−−−→ Y −−−−−→ 0.

In particular, we have the sequence ΩY
¯α(f)−→ Cf

¯β(f)−→ X
f̄−→ Y in X which is called left triangle. Put all sequences

which are equivalent to one of this from in ∆. In view of [2, Theorem 3.1], (X ,Ω,∆) is a left triangulated category.
Therefore, as we have mentioned above, SW (X ) is a triangulated category.

Assume that (R,m) is a (commutative) Cohen–Macaulay local ring. Denote the category of all maximal Cohen–
Macaulay by CM(R). Since CM(R) is a resolving subcategory ofmodR, (CM(R),Ω) is a left triangulated category
and, in particular, SW (CM(R)) is a triangulated category.
Now we are ready to state our results.

Proposition 2.4. Let R be a d-dimensional commutative Cohen–Macaulay local ring. Then there is a triangle equiv-
alence SW (CM(R)) ∼= SW (modR).

A result due to Beligiannis [1, Theorem 3.8] asserts that there is a triangle equivalence SW (modR) ∼= Dsg(R). This
fact, in conjunction with Proposition 2.4 yields the main result of this paper.

Theorem2.5. LetR be a commutative Cohen–Macaulay local ring. Then there is a triangle equivalenceSW (CM(R)) ∼=
Dsg(R).

It is known that the category of finitely generatedGorenstein projectiveR-modules,Gp(R), is a is a Frobenius category
, and so, its stable category is triangulated. Thus one may apply [1, Corollary 3.9.(3)] and get a triangle equivalence
Gp(R) ∼= SW (Gp(R)). This leads us to recover a fundamental result of Buchweitz and Happel, as follows.

Corollary 2.6. LetR be a commutative Gorenstein local ring. Then there is a triangle equivalenceGp(R) ∼= Dsg(R).
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Abstract

Let (R,m) be a commutative noetherian Cohen-Macaulay ring of finite Cohen-Macaulay type.
The aim of this paper is to show that the Spanier-Whitehead ofR-modules is pure-semisimple.That
is, every object of this category is a direct sum of finitely generated ones.

1. Introduction

The pure-semisimple conjecture asserts that every left pure-semisimple ring (a ring over which every left module is a
direct sum of finitely generated ones) is of finite representation type. A result due to Chase [4, Theorem 4.4] yields
that left pure-semisimple rings are left artinian. A famous result of Auslander [1, 2] implies the validity of the pure-
semisimple conjecture for artin algebras. Indeed, he has proved that an artin algebraΛ is of finite representation type if
and only if every leftΛ-module is a direct sum of finitely generatedmodules. Recall that an associative ring is said to be
of finite representation type, if the set of isomorphism classes of indecomposable finitely generated modules is finite.
Motivaited by the Auslander’s result, Beligiannis investigated decomposability of Gorebstein projective modules.
Precisely, in a successful attempt, he showed that a virtually Gorenstein algebra Λ is of finite Cohen-Macaulay type,
in the sense that there are only finitely many isomorphism classes of indecomposable finitely generated Gorenstein
projective Λ-modules if and only if any left Gorenstein projective Λ-module is a direct sum of finitely generated
ones, see [3, Theorem 4.10]. This result has been proved by Chen [5] for Gorenstein artin algebras.In this paper,
we make progress twords examining the pure-semisimplicity of modules over Cohen-Macaulay rings. To be more
precise, assume that (R,m) is a commutative noetherian Cohen-Macaulay local ring with a cononical module. As
a main result, we show that if R is of finite Cohen-Macaulay type, then Spanier-Whitehead category of R-modules,
SW (ModR), is pure-semisimple.
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2. Results

Let us begin this section with our convention.

Remark 2.1. Throughout the paper, (R,m) is a commutative Cohen-Macaulay local ring with a canonical module ω.
The category of all R-modules will be denoted by ModR. By Xω we mean a subcategory of ModR consisting of all
modulesM such that there is an exact sequence of R-modules;

0 −→ M −→ w0
d0−→ w1

d1−→ · · · di−1−→ wi
di−→ · · · ,

with wi ∈ Addω. Here Addω) stands for the full subcategory ofModR consisting of all modules isomorphic to direct
summands of direct sums (resp. finite direct sums) of copies of ω.

Remark 2.2. It is evident that maximal Cohen–Macaulay modules are exactly those finitely generated modules inXω .
Moreover, it is known that over a d-dimensional Cohen–Macaulay ring, dth syzygy of any finitely generated module
is a maximal Cohen–Macaulay module. The result below proves the validity of this result for not necessarily finitely
generated modules.

Proposition 2.3. Let (R,m) be a d-dimensional commutative Cohen–Macaulay ring with a canonical module ω. Then
for any R-module M , �dM ∈ Xω .

Recall that a given R-moduleM is said to be fully decomposable, provided that it is a direct sum of finitely generated
modules.

Proposition 2.4. Let (R,m) be a Cohen–Macaulay local ring which is of finite CM-type. Then for a given object
M ∈ Xω , �M is fully decomposable.

The result below is a direct consequence of the two previous results.

Corollary 2.5. Let (R,m) be a d-dimensional Cohen–Macaulay local ring of finite Cohen-Macaulay type. Then
�d+1ModR is pure-semisimple.

Remark 2.6. SPANIER-WHITEHEAD CATEGORY. Assume that (C,Ω,∆) is a left triangulated category. The Spanier-
Whitehead category of C, SW (C) is defined as follows: the objects have the formX[n] whereX is an object of C and
n ∈ Z. Moreover, for any two objects X[n], Y [m] in SW (C,Ω), their Hom-set is defined by

HomSW (X[n], Y [m]) = lim
−→

i≥n,m

HomC(Ω
i−nX,Ωi−mY ).

A given element f ∈ HomSW (X[n], Y [m]) is said to have an i-th representative fi : Ωi−nX −→ Ωi−mY , provided
that the canonical image fi by λi = λi(X[n], Y [m]) : HomC(Ω

i−nX,Ωi−mY ) −→ HomSW (X[n], Y [m]) equals f .

Theorem 2.7. Let (R,m) be a Cohen–Macaulay local ring of finite CM-type. Then SW (ModR) is pure-semisimple.
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Abstract

LetNc1,...,ct be the variety of polynilpotent Lie algebras of class row (c1, . . . , ct). In this paper,
we show that a polynilpotent Lie algebra L of class row (c1, . . . , ct) has no anyNc1,...,ct,ct+1 -
covering lie algebra if its Baer-invariant with respect to the variety Nc1,...,ct,ct+1 is nontrivial.
As an immediate consequence, we can conclude that a solvable Lie algebra L of length c with
nontrivial solvable multiplier, SnM(L), has no Sn-covering Lie algebra for all n > c, where
Sn is the variety of solvable Lie algebras of length at most n.

1. Introduction and preliminaries

Definition 1.1. Let F be a field. A Lie algebra over F is an F -vector space L, together with a bilinear map, the Lie
bracket L× L → L, (x, y) 7→ [x, y], for all x, y, z ∈ L satisfying the following properties:
(L1) [x, x] = 0,
(L2) (Jacobi identity) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Suppose that I and J are ideals of a Lie algebra L. Then it is defined [I, J ] as the ideal generated by {[x, y] : x ∈
I, y ∈ J}. For each positive integers c, it is defined (I, J)c inductively as (I, J)0 = I and (I, J)c+1 = [(I, J)c, J ].
The ideal L′ := [L,L] is called derived algebra of L. The lower central series of L is the series L ⊇ L1 ⊇ L2 ⊇ · · ·
with terms L1 = L′ and Lc+1 = [L,Lc] for c ≥ 2.Also, The upperer central series of L is the series {0} ⊆ Z1(L) :=
Z(L) ⊆ Z2(L) ⊆ · · · in which Z(L) = {x ∈ L|[x, y] = 0, ∀y ∈ L} and Zc+1(L)/Zc(L) = Z (L/Zc(L)) for
c ≥ 2.
Let t ≥ 2 and c1, . . . , ct be arbitrary positive integers. By notation of [1], we denote recursively Lc1,...,ct =(
Lc1,...,ct−1

)
ct
, and Zc1,...,ct(L) as numrator of the c1-th center of L/Zc2,...,ct(L). Also, we set

(I, J)c1,...,ct =
[
(I, J)c1,...,ct−1 ,ct Jc1,...,ct−1

]
.

It is obvious that Lc1,...,ct = (L,L)c1,...,ct and also,
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(I, L)c1,...,ct = 0 if and only if I ⊆ Zc1,...,ct(L).

A Lie algebra is called polynilpotent Lie algebra of class row (c1, . . . , ct), even L ∈ Nc1,...,ct or equivalentely
Lc1,...,ct = 0.
The following key-lemma in [1] is needed for proving our main result.

Lemma 1.2 ([1]). Let I and J be ideals of a Lie algebra L. Then
(i) For all c > 1, [I, Jc] = (I, J)c+1.
(ii) For all t > 1, [I, Jc1,...,ct ] ⊆ (I, J)c1,...,ct .

Definition 1.3. Let 0 → R → F → L → 0 be a free presentation for L. Then the polynilpotent multiplier of L with
respect to the variety Nc1,...,ct , denoted byMc1,...,ct(L), is defined to be

Mc1,...,ct(L) =
R ∩ Fc1,...,ct

(R,F )c1,...,ct
.

It is always abelian and independent of the choice of the free presentation ofL, [6]. If t = 1, the Lie algebraMc1(L) =
(R ∩ Fc1)/(R,F )c1 is c1-nilpotent multiplier of L andM(1)(L) = M(L) is the well-known Schur multiplier of L.

Definition 1.4. An Nc1,...,ct -covering Lie algebra of L is a Lie algebra L∗ with an idealM such that
(i) L ' L∗/M ,
(ii) M ' Mc1,...,ct(L∗) and
(iii) M ⊆ Zc1,...,ct(L

∗) ∩ L∗
c1,...,ct .

We also call L∗ a (c1, . . . , ct)-polynilpotent covering Lie algebra of L.

In 1994, Moneyhun proved that all covers of finite dimensional Lie algebras are isomorphic. Also, it is a well-known
fact that every finite dimention Lie algebra has at least a covering Lie algebra (see [2], [3] and [5]). But it is an open
problem whether the cover for an arbitrary Lie algebra exists. As a result of [4], every nilpotent Lie algebras of class
at most n with non-trivial c-nilpotent multiplier does not have any c-covering whenever c > n.
Now, in this paper, we concentrate on nonexistence of polynilpotent covering Lie algebra of some polynilpotent Lie
algebra.

2. Nonexistence of polynilpotent covering

Let L be a Lie algebra and V a variety of Lie algebras. It is clear, by definition, that if VM(L) = 1, then L is the only
V-covering Lie algebra of itself. So it is natural to put the condition VM(L) 6= 1 for nonexistence of V-covering Lie
algebra L.

Theorem 2.1. If L is a polynilpotent Lie algebra of class row (c1, . . . , ct) such that Mc1,...,ct,ct+1(L) 6= 0, then L
has no (c1, . . . , ct, ct+1)-polynilpotent covering Lie algebra of L.

Proof. Suppose on the contrary that L∗ is a (c1, . . . , ct+1)-polynilpotent covering Lie algebra of L. There exists ideal
M of L∗ such that

L ' L∗/M ,M ' Mc1,...,ct+1(L∗) andM ⊆ Zc1,...,ct+1
(L∗) ∩ L∗

c1,...,ct+1
.

SinceL is polynilpotent of class row (c1, . . . , ct),Lc1,...,ct = 1. By property (i) of cover, we conclude (L∗/M)c1,...,ct =
1 and so L∗

c1,...,ct ⊆ M . On the other hand by property (iii), M ⊆ L∗
c1,...,ct,ct+1

. Hence L∗
c1,...,ct ⊆ L∗

c1,...,ct,ct+1
.

Clearly L∗
c1,...,ct,ct+1

=
(
L∗
c1,...,ct

)
ct+1

⊆ L∗
c1,...,ct , so L

∗
c1,...,ct,ct+1

= L∗
c1,...,ct . It is concluded that

L∗
c1,...,ct,ct+1

= L∗
c1,...,ct,ct+1−1 = · · · = L∗

c1,...,ct,1 = L∗
c1,...,ct . (∗)

On the other hand M ⊆ Zc1,...,ct+1
(L∗) imples L∗

c1,...,ct ⊆ Zc1,...,ct+1
(L∗) and thus (L∗

c1,...,ct , L
∗)c1,...,ct,ct+1

= 0.
Now, by Lemma 1.2 (ii) we can write [L∗

c1,...,ct , L
∗
c1,...,ct,ct+1

] = 0. The relation (∗) implies [L∗
c1,...,ct , L

∗
c1,...,ct ] is

vanished. It means
(
L∗
c1,...,ct

)′
= 0 or L∗

c1,...,ct,1 = 0 and this by (∗) implies L∗
c1,...,ct,ct+1

= 0 and so M = 0. This
is contradiction.
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Note that, Sn, the variety of solvable Lie algebra of derived length at most n is in fact the variety of polynilpotent Lie
algebra of class row (1, . . . , 1)︸ ︷︷ ︸

n−times

. Hence the following result is a consequence of Theorem 2.1.

Corollary 2.2. LetL be a solvable Lie algebra with derived length at most c. If the l-solvable multiplier ofL, SnM(L),
is nontrivial, then L has no any Sn-covering Lie algebra, for all n > c.
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Abstract

Let S be a monoid. In this talk we study Nakayama’s Lemma on Act-S. We also include some
consequences which are useful in other settings. As an application of Nakayama’s Lemma we
prove Krull intersection theorem for S-acts.

1. Introduction and Preliminaries

Let S be a monoid with identity 1. Recall that a (right) S-act is a non-empty setA equipped with a map µ : A×S → A
called its action, such that, denoting µ(a, s) by as, we have a1 = a and a(st) = (as)t, for all a ∈ A, and s, t ∈ S.
An element θ ∈ A is called a zero element of A if θs = θ for every s ∈ S. Let A be an S-act and B ⊆ A a non-empty
subset. Then B is called a subact of A if bs ∈ B for all s ∈ S and b ∈ B. In particular, if I is a (proper) ideal of S,
then

AI := {as | a ∈ A, s ∈ I} (1)

is a subact of A. An equivalence relation ρ on an S-act A is called a congruence on A if aρa′ implies (as)ρ(a′s) for
a, a′ ∈ A and s ∈ S. Any subact B ⊆ A defines the Rees congruence ρB on A, by setting aρBa

′ if a, a′ ∈ B or
a = a′. We denote the resulting factor act by A/B and call it the Rees factor act of A by the subact B. Clearly, A/B
has a zero which is the class consisting ofB, all other classes are one-element sets. Moreover, any subactB ⊆ A gives
rise to a kernel congruence kerπ where π : A → A/B is the canonical epimorphism. The category of all S-acts, with
action-preserving (S-act) maps (f : A → B with f(as) = f(a)s, for s ∈ S, a ∈ A), is denoted by Act-S. Clearly S
itself is an S-act with its operation as the action.
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Throughout this paper, S is a monoid with at least a right non-invertible element, all S-acts will be right S-acts and
all ideals of S are right ideals, zero element of an S-act, if it exists, is unique. If S-act A has a unique zero element θ,
then θ ∈ B for any subact B of A. The set of all idempotents of S is denoted by E(S). It is known that the set

{s | s is a right non-invertible element of S} (2)

is the only maximal right ideal of S. In this note, we reserve M to denote, always, this unique maximal right ideal
of S. For more information on S-acts we refer the reader to [9]. Nakayama’s Lemma was first discovered in the
special case of ideals in a commutative ring by W. Krull and then in general by G. Azumaya [5]. The lemma is named
after the Japanese mathematician T. Nakayama and introduced in its present form in [10]. D. D. Anderson and E. W.
Johnson have proved some versions of Nakayama’s Lemma for lattices and commutative monoids with a unique zero
element in [2] and [1], respectively. Some generalizations of Nakayama’s Lemma have been given and studied, in
the literatures. For example, A. Azizi [4] introduced Nakayama property for modules over a commutative ring with
identity. He says that an R-module M has Nakayama property if IM = M , where I is an ideal of R, implies that
there exists a ∈ R such that aM = 0 and a − 1 ∈ I. Then Nakayama’s Lemma states that every finitely generated
R-module has Nakayama property. He has proved thatR is a perfect ring if and only if everyR-module has Nakayama
property. Besides, we remark that there are generalizations in other contexts, we refer the reader to [6] and [11]. It
is a significant tool in algebraic geometry, because it allows local data on algebraic varieties, in the form of modules
over local rings, to be studied pointwise as vector spaces over the residue field of the ring. Nakayama’s Lemma for
R-modules governs the interaction between the Jacobson radical of a ring and its finitely generated modules. There
are several equivalent forms of Nakayama’s Lemma in algebra. We express one here. Let R be a ring with identity 1,
and A a finitely generated right R-module. If I is a right ideal of R contained in the Jacobson radical of R, J(R), and
AI = A then A = 0.

M = {s ∈ S | st ̸= 1 for all t ∈ S} (3)

is the only maximal right ideal of S and then for any proper ideal I of S we have I ⊆ M. We can not talk about
Jacobson radical of a monoid, because M is the only maximal right ideal of it. We therefore consider Nakayama’s
Lemma inAct-S where S is a monoid with a unique two-sided maximal idealM. In [9, Example 3.18.10], the authors
present a monoid S in which M is not a two-sided ideal. Moreover, there are other examples of monoids S that are
not commutative, but their maximal ideals are two-sided. For example, given S = (Mn(R), ·), the monoid of all
n × n matrices with real number entries under usual multiplication of matrices. Since ab = 1 implies ba = 1 for
a, b ∈ S, the unique maximal ideal of S is two-sided (see Lemma 2.1 below). Besides, there are many examples of
finitely generated S-acts A with a zero element θ in which for a proper ideal I of S, AI = A, but A ̸= {θ}; take any
monoid S and an arbitrary finite set A with |A| > 1. Then A becomes a right S-act by trivial action, i.e., as = a
for all a ∈ A, s ∈ S. Therefore, AI = A for every proper ideal I , although, A ̸= {θ}. Finally, as an application of
Nakayama’s Lemma we prove Krull intersection theorem for S-acts.

2. Some Forms of Nakayama’s Lemma

In this section first we present a lemma which determines monoids in which their unique maximal ideals are two-sided.

Lemma 2.1. Let S be a monoid. Then the following statements are equivalent:
1)M is a two-sided ideal of S.
2) st = 1 implies ts = 1, for all s, t ∈ S.

The next lemma guarantees that every finitely generated S-act with a unique zero element has a maximal subact.

Lemma 2.2. Let S be a monoid and let A be a finitely generated S-act with a unique zero element θ and A ̸= {θ}.
Then every proper subact of A is contained in a maximal subact. In particular, A has a maximal subact.

Now we are ready to state the first version of Nakayama’s lemma.

Theorem 2.3. Let S be a monoid in which its unique maximal right idealM is two-sided. Moreover, letA be an S-act
and B a maximal subact of A in which there exists a ∈ A \ B such that M = {s ∈ S | as ∈ B}. Then for every
proper ideal I of S we have AI ̸= A.
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The next example illustrates Theorem 2.3.

Example 2.4. Let S = (N, ·) be the monoid of natural numbers with the usual multiplication. Then A = {2, 3, · · · }
is a subact of N. Let U be the set of all prime numbers. Then U is a set of generating elements ofA. Note that U is the
least generating set of A, i.e. A is not finitely generated. The set B = {3, 4, · · · } is a maximal subact of A in which
M = {n ∈ N | 2n ∈ B}. All assumptions of Theorem 2.3 hold forA. Therefore for any proper ideal I of S,AI ̸= A.

In the next lemma we will see that the second condition of Theorem 2.3 is equivalence to the implication that ‘as = a
implies s /∈ M’. More precisely, we have:

Lemma 2.5. Let A be an S-act and B a maximal subact of A. Then for every a ∈ A \B the following statements are
equivalent:
1)M = {s ∈ S | as ∈ B}.
2) as = a implies s /∈ M.

Definition 2.6. LetA be an S-act. A nonzero element a ∈ A is called quasi-strongly faithful, if for s ∈ S the equality
as = a implies that s /∈ M. One callsA a quasi-strongly faithful S-act if all of its nonzero elements are quasi-strongly
faithful.

Proposition 2.7. Let S be a monoid in which its unique maximal right ideal M is two-sided.
(i) Let A be an S-act and B a maximal subact of A such that there exists a quasi-strongly faithful element in A\B.
Then:
a) AI = A if and only if I = S;
b) For every ideal I of S with I2 = I , AI ∼= A if and only if I = S.
(ii) Let A be a quasi-strongly faithful S-act and B a maximal subact of A. Then AI = A if and only if I = S.

Now we state a second version of Nakayama’s Lemma which is quite similar to module theory. Also, in the next
corollary we give another similar consequence.

Theorem 2.8. Let S be a monoid in which its unique maximal right idealM is two-sided. LetA be a finitely generated
quasi-strongly faithful S-act with a unique zero element θ. If AI = A for some proper ideal I of S, then A = {θ}.

Corollary 2.9. Let S be a monoid in which its unique maximal right idealM is two-sided. LetA be a finitely generated
quasi-strongly faithful S-act. If B ∪AI = A for some proper ideal I of S and some subact B of A, then A = B.

3. Krull’s Intersection Theorem

Let I be an ideal of a commutative Noetherian ring R such that I ⊆ J(R). Then
∩

n∈N In = 0. This is known as
Krull’s Intersection Theorem in the theory of modules over commutative rings. (see [12, Corollary 8.25])
In the following we prove a counterpart of this result for S-acts. First we need the next theorem. Recall [13] that
an S-act A is Noetherian if A satisfies the ascending chain condition on its subacts, that is, every ascending chain of
subacts of A is finite.

Lemma 3.1. Let S be a monoid and A,B be two S-acts.
1) A∪̇B is Noetherian if and only if A and B themselves are;
2) if B is a subact of A, then A is Noetherian if and only if B and A/B themselves are;
3) if ρ is a congruence on Noetherian S-act A, then A/ρ is Noetherian;
4) if S is a Noetherian monoid and A is a finitely generated S-act then A is Noetherian.

Theorem 3.2. Let S be a commutative Noetherian monoid, I an ideal of S and A a finitely generated S-act. If
B =

∩
n∈N

AIn, then BI = B.

Corollary 3.3. (Krull Intersection Theorem) Suppose that S is a commutative Noetherian monoid. Let A be a
finitely generated quasi-strongly faithful S-act with a unique zero element θ. Then

∩
n∈N

AIn = {θ} for every proper

ideal I of S.
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Corollary 3.4. Let S be a commutative Noetherian monoid with a unique zero element θ. Then:
1) S as an S-act is quasi-strongly faithful if and only if

∩
n∈N

Mn = {θ};

2) if S as an S-act is quasi-strongly faithful, then
∩

n∈N
In = {θ} for every proper ideal I of S.

In the following proposition we will see the converse of Corollary 3.4, of course with some additional conditions.

Proposition 3.5. Let S be a commutative monoid in which as an S-act is quasi-strongly faithful and has a unique zero
element θ. Then S is Noetherian if and only if

∩
n∈N

Mn = {θ} and M is a finitely generated ideal.
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Abstract

LetF be a field andD be a centralF -division algebra. D is called cyclic if it contains a maximal
subfield K such that K/F is a cyclic Galois extension. We also say that D is cyclically split
if D has a cyclic splitting filed. In this note we give some conditions under which D is not
cyclically split.

1. Introduction

Let F be a field andD be a central F -division algebra, i.e.,D is a division algebra whose center is F . Recall that the
dimension of D over F , as a vector space, is always a square [3, p. 31, Cor. 5]. In the other words dimF D = n2

for some n ≥ 1. Such n is called the degree of D and is denoted by deg(D). Recall that a field extension L/F is
called a splitting field of D if D ⊗F L ∼= Mn(L) where n = deg(D). D is said to be cyclic if there is a maximal
subfield K of F such that K/F is a cyclic extension. In a more general context, we say that D is cyclically split if
there exists a cyclic extension L/F which splits D. It is well known that all division algebras of degrees two, three
and six are cyclic (see [6, §15]). The existence of a non-cyclic division algebra remained as an open problem till 1932
when Albert presented the first example of a non-cyclic division algebra in [1]. After that, other examples of noncyclic
division algebras were given by different authors. As an example, in [2] Amitsur proved that for a given n there exists
a division algebraD of degree n such that every maximal subfield ofD is Galois over the center and its Galois group
is a direct product of cyclic groups of prime order. So in the special case that n is divisible by a square of a prime, D
is noncyclic. However, in general, it is very difficult to recognize that a given division algebra is cyclic or cyclically
split. In fact, there are very limited methods to detect this properties. One of the most important results in relation to
this problem is that if D is a tame and totally ramified valued F -central division algebra such that its relative value
group has rank at least 3, thenD is not cyclically split [8, Th. 4.7]. To see more results concerning noncyclic alegbars,
we refer the reader to [4, 5, 7]. The aim of this note is to give a generalization of [8, Th. 4.7] in the level of inertially
split division algebras.
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2. Results

To state our results we need to recall some preliminaries from the theory of valued division algebras.
Let Γ be an additive totally ordered abelian group. By a valuation onD with values in Γ, we mean a map v : D∗ → Γ
satisfying, for all a, b ∈ D∗, v(ab) = v(a) + v(b) and v(a+ b) ≥ min{v(a), v(b)}. We write ΓD for the value group
of v, i.e., ΓD = v(D∗). We denote the valuation ring by VD = {d ∈ D∗ | v(d) ≥ 0}∪{0}. It can be seen that this ring
has a unique maximal ideal denoted byMD = {d ∈ D∗ | v(d) > 0} ∪ {0}. We denote the residue division ring of v
byD = VD/MD. When we restrict v to F ∗, we obtain a valuation w on the field F . The objects for w corresponding
to those for v are denoted by ΓF , VF , MF and F . Since VF ∩MD = MF , one can consider the residue field F as a
subalgebra ofD. F is called Henselian if its valuation has a unique extension to any algebraic extension of F . In this
setting, we say D is tame if Z(D)/F is separable and charF ∤ n. D is called totally ramified if D = F . We also say
thatD is inertially split if it has a valued splitting field L such that ΓL = ΓF . Finally, we recall that if A is an abelian
group then its rank, denoted by rank(A), is the smallest cardinality of a generating set for A.
Now, we are ready for the following results.

Theorem 2.1. Let D be a tame and inertially split F -central division algebra. If rank(ΓD/ΓF ) ≥ 3, then D is not
cyclically split.

Theorem 2.2. Let F be a Henselian field. Let D be a tame and inertially split central F -division algebra. If
rank(ΓD/ΓF ) = 2 and F does not contain any n-th root of unity then D is not cyclically split.
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Abstract

It is well known that every unit regular ring is clean and has stable range one. We construct an
example of a ring that has stable range one and uniquely clean but isn’t unit regular.

1. Introduction

An element a in a ring R is called a clean element if a is a sum of a unit and an idempotent in R. On the other hand,
We have a = e+ u, with e ∈ idem(R) and u ∈ U(R), a clean decomposition for a. A ring is clean if every element
has a clean decomposition. Clean rings were first studied by Nicholson [2] in connection with exchange rings and
lifting of idempotents. Recall that an element in a ring R is called unit-regular if it can be expressed as a product of a
unit and an idempotent. The ringR is called a unit regular ring if every element is unit-regular [1]. In [4], Camillo and
Khurana proved that every unit-regular ring is clean. An element a ∈ R is strongly clean if it has a clean decomposition
a = e+ u in which eu = ue. An element is uniquely clean if it has exactly one clean decomposition. Strongly clean
rings and uniquely clean rings are defined similarly. A ring R is said to have stable range one if for any a, b ∈ R
satisfying aR+ bR = R, there exists y ∈ R such that a+ by is a unit [1].

2. Stable range one with uniquely clean do not implies unit regularity

Lemma 2.1. If aR+ bR = R implies a or b is unit then R has stable range one.

Proof. If aR+ bR = R and a is a unit then a+ (b.0) is a unit so R has stable range one.
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Example 2.2. Let R = {m/n ∈ Q : n is odd},then R has stable range one also uniquely clean and do not unit
regular.
If (m/n)R+(p/q)R = R, we conclude that there exist (x/y) and (r/t) inR such that (m/n)(x/y)+(p/q)(r/t) = 1.
So, we have qtmx+ nypr = nyqt. Then both ofm and p can’t even since the nyqt is odd. Letm is odd then (m/n)
is a unit with inverse (n/m), by applying lemma 2.1, R has stable range one. If (m/n) ∈ R andm is odd then (m/n)
is a unit and all of idempotent of R is 0 and 1 so (m/n) = (m/n) + 0 is unique presentations in clean form and if
m is even then m− n is odd so (

m− n

n
) is a unit and (m/n) = (

m− n

n
) + 1 is unique presentations in clean form

so R is uniquely clean. It is obvious that if m is even. So, we can’t present (m/n) of product a unit and idempotent.
Hence R isn’t unit-regular.

3. Unit regularity do not implies uniquely cleanity

Lemma 3.1. Let e ∈ R is an idempotent. If r ∈ R, then e− (er− ere) is an idempotent and 1− (er− ere) is a unit.

Proof. 1− (er − ere) is a unit with inverse 1 + (er − ere).
Now, we pay attention ifR is uniquely clean then by lemma 3.1 and the fact that [e−(er−ere)]+1 = e+[1−(er−ere)]
implies that e− (er − ere) = e because R is uniquely clean. Then, we obtain that er = ere, and similarly re = ere.
Hence, idempotents in uniquely clean ring are central.

Theorem 3.2. Every unit-regular ring is not uniquely clean.
Proof. In view of [4, Theorem1], if the ring R is unit-regular and a ∈ R then, there exist u ∈ U(R) and idempotent
e ∈ R such that a = e+ u and e and u constructed in the proof do not commute But by Lemma 3.1 if R is a uniquely
clean ring any idempotent is central, so R is not uniquely clean.

Let RMa leftt R-module. RM is said to have the (full) exchange property if for every module RA and any two
decompositions of RA,

A = M ′ ⊕N = ⊕i∈IAi,

WithM ’ ≈ M there exist submodules A′
i ⊆ Ai such that

A = M ′ ⊕ (⊕i∈IA
′
i).

The module RM has the finite exchange property if the above condition is satisfied whenever the index set I is finite.
Warfield [5] introduced the class of exchange rings. He called a ring R an exchange ring if RR has the exchange
property above and proved that this definition is left-right symmetric. Independently, Goodearl and Nicholson [2]
obtained the very useful characterization thatR is an exchange ring if and only if for any a ∈ R there exist e2 = e ∈ R
such that e ∈ aR and 1− e ∈ (1− a)R

Theorem 3.3. Let R be an exchange ring. If for any regular a ∈ R, there exist an idempotent e ∈ R and u ∈ U(R)
such that a = e+ u and aR

∩
eR = 0 then R has stable range one.

Proof. Given that any regular a ∈ R. So, there exist an idempotent e ∈ R and u ∈ U(R) such that a = e + u and
aR

∩
eR = 0. As a result, (au−1 − 1)a = eu−1a ∈ aR

∩
eR = 0; hence, a = au−1a. According to [3, Theorem

3], we complete the proof of Theorem 3.3.

Author in [2, Proposition 1.8] was obtained that every clean ring is an exchange ring. So, by using Theorem 3.3, we
derive the following corollary.
Corollary 3.4. IfR is a clean ring such that every regular element ofR is a unit regular thenR has stable range one.
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Abstract

Let R be a commutative Noetherian ring with non-zero identity, a an ideal of R, M a finitely
generated R-module, X an arbitrary R-module, and t a non-negative integer. In this paper, we
compare the Bass numbers of generalized local cohomology module Ht

a(M,X) with the Bass
numbers of some other generalized local cohomology modules Hi

a(M,X) where i ̸= t.

1. Introduction

Throughout R is a commutative Noetherian ring with non-zero identity, a is an ideal of R,M is a finite (i.e., finitely
generated) R-module, and X is an arbitrary R-module which is not necessarily finite. For a prime ideal p of R,
the number µi(p, X) = dimκ(p)(ExtiRp

(κ(p), Xp)) is known as the ith Bass number of X with respect to p, where
κ(p) = Rp/pRp. When R is local with maximal ideal m, we write µi(X) = µi(m, X) and κ = R/m. The ith
generalized local cohomology module

Hi
a(M,X) ∼= lim−→

n∈N
ExtiR(M/anM,X)

was introduced by Herzog in [6]. It is clear that Hi
a(R,X) is just the ordinary local cohomology module Hi

a(X) of
X with respect to a. For basic results, notations, and terminology not given in this paper, the reader is referred to
[1, 2, 10].
An important problem in commutative algebra is to determine when the Bass numbers of the local cohomology module
Hi

a(X) are finite. The following conjecture, which was made by Huneke, has been studied by several authors (see [7,
Conjecture 4.4]).

Conjecture 1.1. Let R be a regular local ring. Then for any prime ideal p of R, the Bass numbers µi(p,Hj
a(R)) is

finite for all i and j.
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Even though there is a negative answer to this conjecture (over a non-regular ring) (see [5]), there is evidence that this
conjecture is true (see [8] and [9]). Since the conjecture does not hold over a non-regular ring, several attempts made
to find some conditions for the ideal a to have finiteness for the Bass numbers of the local cohomology modules with
respect to the ideal a.
In [3] and for the local case, Dibaei and Yassemi compared the Bass numbers of local cohomology module Ht

a(X)
with the Bass numbers of X and those of some other local cohomology modules Hi

a(X) where i ̸= t. They proved,
in [3, Theorem 2.6], that the inequality

µs(Ht
a(X)) ≤ µs+t(X) +

t−1∑
i=0

µs+t+1−i(Hi
a(X)) +

s+t−1∑
i=t+1

µs+t−1−i(Hi
a(X))

holds for all s ≥ 0. In this paper, we generalize this result by showing that ifM is a finiteR-module, then the inequality

µs(Ht
a(M,X)) ≤

s+t∑
i=0

dimκ(Exts+t−i
R (TorRi (κ,M), X))+

t−1∑
i=0

µs+t+1−i(Hi
a(M,X))+

s+t−1∑
i=t+1

µs+t−1−i(Hi
a(M,X))

is true for all s ≥ 0.

2. Main Results

The following theorem is the main result of this paper which generalizes [3, Theorem 2.6]. In the proof, we use the
isomorphism

Hi
a(M,X) ∼= Hi(HomR(M,Γa(E•X))),

for all i, where E•X is a deleted injective resolution ofX (see [4, Lemma 2.1(i)]).

Theorem 2.1. Let R be a local ring,M a finite R-module, and X an R-module. Then the inequality

µs(Ht
a(M,X)) ≤

s+t∑
i=0

dimκ(Exts+t−i
R (TorRi (κ,M), X))+

t−1∑
i=0

µs+t+1−i(Hi
a(M,X))+

s+t−1∑
i=t+1

µs+t−1−i(Hi
a(M,X))

holds for all non-negative integers s and t.

Proof. Suppose that the right-hand side of the inequality is a finite number. Let

E• = 0 −→ X −→ E0 −→ · · · −→ Ei −→ · · ·

be an injective resolution of X and apply HomR(M,Γa(−)) to its deletion E•X to get the complex

HomR(M,Γa(E•X)) = 0 −→ HomR(M,Γa(E
0)) −→ · · · −→ HomR(M,Γa(E

i)) −→ · · · .

Let
0 −→ HomR(M,Γa(E•X)) −→ T •,0 −→ T •,1 −→ · · · −→ T •,i −→ · · ·

be a Cartan-Eilenberg injective resolution of HomR(M,Γa(E•X)), which exists by [10, Theorem 10.45], and consider
the third quadrant bicomplex T = {HomR(κ, T

p,q)}. We denote the total complex of T by Tot(T ).
The first filtration has I E2 term the iterated homology H′p H′′p,q(T ). We have

H′′p,q(T ) ∼= Hq(HomR(κ, T
p,•))

∼= ExtqR(κ,HomR(M,Γa(Ep)))
∼= HomR(TorRq (κ,M),Γa(Ep))

from [1, Proposition 2.1.4] and [10, Corollary 10.63]. Therefore
I Ep,q

2
∼= H′p H′′p,q(T )
∼= Hp(HomR(TorRq (κ,M),Γa(E•X)))
∼= Hp

a(TorRq (κ,M), X)
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which yields, by [12, Lemma 2.5(c)], the third quadrant spectral sequence

I Ep,q
2 := ExtpR(Tor

R
q (κ,M), X) =⇒

p
Hp+q(Tot(T )).

For all i ≤ s + t, we have IEs+t−i,i
∞ = IEs+t−i,i

s+t+2 because IEs+t−i−j,i+j−1
j = 0 = IEs+t−i+j,i+1−j

j for all
j ≥ s+ t+2; so that dimκ(

IEs+t−i,i
∞ ) ≤ dimκ(

IEs+t−i,i
2 ) from the fact that IEs+t−i,i

s+t+2 is a subquotient of IEs+t−i,i
2 .

There exists a finite filtration

0 = ϕs+t+1Hs+t ⊆ ϕs+tHs+t ⊆ · · · ⊆ ϕ1Hs+t ⊆ ϕ0Hs+t = Hs+t

such that IEs+t−i,i
∞

∼= ϕs+t−iHs+t/ϕs+t−i+1Hs+t for all i ≤ s+ t. Now the exact sequences

0 −→ ϕs+t−i+1Hs+t −→ ϕs+t−iHs+t −→ IEs+t−i,i
∞ −→ 0,

for all i ≤ s+ t, show that

dimκ(H
s+t) ≤

s+t∑
i=0

dimκ(
IEs+t−i,i

∞ )

≤
s+t∑
i=0

dimκ(
IEs+t−i,i

2 )

=
s+t∑
i=0

dimκ(Exts+t−i
R (TorRi (κ,M), X)).

On the other hand, the second filtration has II E2 term the iterated homology H′′p H′q,p(T ). Note that every short
exact sequence of injective modules splits and so it remains split after applying the functor HomR(κ,−). By using
this fact and the fact that T •,• is a Cartan-Eilenberg injective resolution of HomR(M,Γa(E•X)), we get

H′q,p(T ) ∼= Hq(HomR(κ, T
•,p))

∼= HomR(κ,Hq(T •,p))
∼= HomR(κ,Hq,p).

Therefore
II Ep,q

2
∼= H′′p H′q,p(T )
∼= Hp(HomR(κ,Hq,•))
∼= ExtpR(κ,H

q
a(M,X))

which gives the third quadrant spectral sequence

II Ep,q
2 := ExtpR(κ,H

q
a(M,X)) =⇒

p
Hp+q(Tot(T )).

Thus there exists a finite filtration

0 = ψs+t+1Hs+t ⊆ ψs+tHs+t ⊆ · · · ⊆ ψ1Hs+t ⊆ ψ0Hs+t = Hs+t

such that IIEs+t−i,i
∞

∼= ψs+t−iHs+t/ψs+t−i+1Hs+t for all i ≤ s + t. Hence dimκ(
IIEs,t

∞ ) ≤ dimκ(ψ
sHs+t) ≤

dimκ(H
s+t). Therefore

dimκ(
IIEs,t

s+t+2) ≤ dimκ(H
s+t)

because IIEs,t
s+t+2 = IIEs,t

∞ from the fact that IIEs−j,t+j−1
j = 0 = IIEs+j,t+1−j

j for all j ≥ s + t + 2. For all
r ≥ 2, let IIZs,t

r = Ker(IIEs,t
r −→ IIEs+r,t+1−r

r ) and IIBs,t
r = Im(IIEs−r,t+r−1

r −→ IIEs,t
r ). We have the exact

sequences
0 −→ IIZs,t

r −→ IIEs,t
r −→ IIEs,t

r /IIZs,t
r −→ 0

and
0 −→ IIBs,t

r −→ IIZs,t
r −→ IIEs,t

r+1 −→ 0.
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Thus we get

dimκ(
IIEs,t

r ) ≤ dimκ(
IIEs,t

r+1) + dimκ(
IIEs,t

r /IIZs,t
r ) + dimκ(

IIBs,t
r )

≤ dimκ(
IIEs,t

r+1) + dimκ(
IIEs+r,t+1−r

r ) + dimκ(
IIEs−r,t+r−1

r )

≤ dimκ(
IIEs,t

r+1) + dimκ(
IIEs+r,t+1−r

2 ) + dimκ(
IIEs−r,t+r−1

2 ).

Therefore we have

dimκ(
IIEs,t

2 )

≤ dimκ(
IIEs,t

3 ) + dimκ(
IIEs+2,t−1

2 ) + dimκ(
IIEs−2,t+1

2 )

≤ dimκ(
IIEs,t

4 ) + (dimκ(
IIEs+3,t−2

2 ) + dimκ(
IIEs+2,t−1

2 )) + (dimκ(
IIEs−2,t+1

2 ) + dimκ(
IIEs−3,t+2

2 ))
≤ · · ·

≤ dimκ(
IIEs,t

s+t+2) + (
t−1∑
i=0

dimκ(
IIEs+t+1−i,i

2 )) + (
s+t−1∑
i=t+1

dimκ(
IIEs+t−1−i,i

2 ))

≤ dimκ(
IIEs,t

s+t+2) + (
t−1∑
i=0

dimκ(Exts+t+1−i
R (κ,Hi

a(M,X))) + (
s+t−1∑
i=t+1

dimκ(Exts+t−1−i
R (κ,Hi

a(M,X))))

which completes the proof.

As applications of the above theorem, we have the following corollaries. For a finite R-moduleM with finite projec-
tive dimension and for an arbitrary R-module X , we denote the largest integer i in which Hi

a(M,X) is not zero by
cda(M,X). We also write cda(X) = cda(R,X).

Corollary 2.2. Let R be a local ring,M a finite R-module with finite projective dimension, andX a finite R-module
such that depthR(a+ AnnR(M), X) = cda(M,X). Then the inequality

µs(Hcda(M,X)
a (M,X)) ≤

s+cda(M,X)∑
i=0

dimκ(Exts+cda(M,X)−i
R (TorRi (κ,M), X))

is true for all s ≥ 0.

Proof. By [12, Corollary 2.14], Hi
a(M,X) = 0 for all i ̸= cda(M,X). Thus the assertion follows from Theorem

2.1.

Corollary 2.3. Let R be a local Cohen-Macaulay ring with maximal ideal m and let M be a finite R-module with
finite projective dimension. Then

µs(Hdim(R)
m (M,R)) ≤

s∑
i=0

dimκ(Exts+dim(R)−i
R (TorRi (κ,M), R))

for all s ≥ 0.

Proof. By [12, Corollary 2.9] and [11, Corollary 3.2], Hi
m(M,R) = 0 for all i ̸= dim(R). Thus the assertion follows

from Theorem 2.1. Note that, dimκ(Exts+dim(R)−i
R (TorRi (κ,M), R)) = 0 for all i > s because R is a local Cohen-

Macaulay ring.

The next results follow by puttingM = R in Theorem 2.1, Corollary 2.2, and Corollary 2.3.

Corollary 2.4. (see [3, Theorem 2.6]) Let R be a local ring and X an R-module. Then the inequality

µs(Ht
a(X)) ≤ µs+t(X) +

t−1∑
i=0

µs+t+1−i(Hi
a(X)) +

s+t−1∑
i=t+1

µs+t−1−i(Hi
a(X))

holds for all non-negative integers s and t.
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Corollary 2.5. LetR be a local ring andX a finiteR-module such that depthR(a, X) = cda(X). Then the inequality

µs(Hcda(X)
a (X)) ≤ µs+cda(X)(X)

is true for all s ≥ 0.

Corollary 2.6. Let R be a local Cohen-Macaulay ring with maximal ideal m. Then

µs(Hdim(R)
m (R)) ≤ µs+dim(R)(R)

for all s ≥ 0.
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Abstract

Let R be a commutative Noetherian ring with non-zero identity, a an ideal of R, M an R-
module with a finite free resolution,X an arbitrary R-module, and t a non-negative integer. In
this paper, we compare the Betti numbers of generalized local cohomology module Ht

a(M,X)
with the Betti numbers of some other generalized local cohomology modules Hi

a(M,X) where
i ̸= t.

1. Introduction

Throughout R is a commutative Noetherian ring with non-zero identity, a is an ideal of R,M is a finite (i.e., finitely
generated)R-module, andX is an arbitraryR-module which is not necessarily finite. For basic results, notations, and
terminology not given in this paper, the reader is referred to [1, 2, 5].
The ith generalized local cohomology module

Hi
a(M,X) ∼= lim−→

n∈N
ExtiR(M/anM,X)

was introduced by Herzog in [3]. It is clear that Hi
a(R,X) is just the ordinary local cohomology module Hi

a(X) of
X with respect to a. For a finite R-moduleM with finite projective dimension and for an arbitrary R-module X , we
denote the largest integer i in which Hi

a(M,X) is not zero by cda(M,X). We also write cda(X) = cda(R,X).
For a prime ideal p of R, the number βi(p, X) = dimκ(p)(Tor

Rp

i (κ(p), Xp)) is known as the ith Betti number of X
with respect to p, where κ(p) = Rp/pRp. When R is local with maximal ideal m, we write βi(X) = βi(m, X) and
κ = R/m.
In [7] and for the local case, the author compared the Betti numbers of local cohomology module Ht

a(X)with the Betti
numbers of X and those of some other local cohomology modules Hi

a(X) where i ̸= t. He proved, in [7, Theorem
3.2], that the inequality

βs(Ht
a(X)) ≤ βs−t(X) +

t−1∑
i=0

βs−t+i−1(Hi
a(X)) +

cda(X)∑
i=t+1

βs−t+i+1(Hi
a(X))

Email address: vahidi.ar@pnu.ac.ir (Alireza Vahidi)
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holds for all s ≥ 0. In this paper, we generalize this result by showing that if M is an R-module with a finite free
resolution of length l, then the inequality

βs(Ht
a(M,X)) ≤

ara(a)+l+s−t∑
i=s−t

dimκ(Extt−s+i
R (M,TorRi (κ,X))) +

t−1∑
i=0

βs−t+i−1(Hi
a(M,X)) +

cda(M,X)∑
i=t+1

βs−t+i+1(Hi
a(M,X))

is true for all s ≥ 0. Here, ara(a) is the arithmetic rank of a.

2. Main Results

The following theorem is the main result of this paper which generalizes [7, Theorem 3.2].

Theorem 2.1. Let R be a local ring, M an R-module with a finite free resolution of length l, and X an R-module.
Then the inequality

βs(Ht
a(M,X)) ≤

ara(a)+l+s−t∑
i=s−t

dimκ(Extt−s+i
R (M,TorRi (κ,X))) +

t−1∑
i=0

βs−t+i−1(Hi
a(M,X)) +

cda(M,X)∑
i=t+1

βs−t+i+1(Hi
a(M,X))

holds for all non-negative integers s and t.

Proof. Suppose that the right-hand side of the inequality is a finite number. Let c = ara(a), u = c + l − t, and
n = s+ u. There exist elements x1, . . . , xc of R such that

√
a =

√
(x1, . . . , xc). Let

F• = · · · −→ Fi+1 −→ Fi −→ Fi−1 −→ · · · −→ F1 −→ F0 −→ 0

and
F ′
• = 0 −→ F ′

l −→ F ′
l−1 −→ · · · −→ F ′

1 −→ F ′
0 −→ 0

be, respectively, free resolutions of κ and M such that F ′
i is finite for all 0 ≤ i ≤ l. Consider the first quadrant

bicomplex T = {Fp ⊗R (
⊕

i+j=c+l−q C
i ⊗R HomR(F

′
j , X))}, where C• is the Čech complex of R with respect to

x1, . . . , xc. We denote the total complex of T by Tot(T ).
The second filtration has IIE2 term the iterated homologyH ′′

pH
′
q,p(T ). We have

H ′
q,p(T ) ∼= Hq(F• ⊗R (

⊕
i+j=c+l−q C

i ⊗R HomR(F
′
j , X)))

∼=
⊕

i+j=c+l−q C
i ⊗R HomR(F

′
j ,Hq(F• ⊗R X))

∼=
⊕

i+j=c+l−q C
i ⊗R HomR(F

′
j ,Tor

R
q (κ,X)).

Thus, by [4, Theorem 2.8] and [8, Lemma 2.5(c)],

IIE2
p,q

∼= Hc+l−p(
⊕

i+j=• C
i ⊗R HomR(F

′
j ,Tor

R
q (κ,X)))

∼= Hc+l−p
a (M,TorRq (κ,X))

∼= Extc+l−p
R (M,TorRq (κ,X))

which gives the first quadrant spectral sequence
IIE2

p,q := Extc+l−p
R (M,TorRq (κ,X)) =⇒

p
Hp+q(Tot(T )).

For all i ≤ n, we have IIE∞
n−i,i =

IIEn+2
n−i,i because IIEj

n−i+j,i+1−j = 0 = IIEj
n−i−j,i−1+j for all j ≥ n + 2. So

that dimκ(
IIE∞

n−i,i) ≤ dimκ(
IIE2

n−i,i) as IIEn+2
n−i,i is a subquotient of IIE2

n−i,i. There exists a finite filtration

0 = ϕ−1Hn ⊆ ϕ0Hn ⊆ · · · ⊆ ϕn−1Hn ⊆ ϕnHn = Hn
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such that IIE∞
n−i,i = ϕn−iHn/ϕ

n−i−1Hn for all i ≤ n. Now the exact sequences

0 −→ ϕn−i−1Hn −→ ϕn−iHn −→ IIE∞
n−i,i −→ 0,

for all i ≤ n, show that

dimκ(Hn) =
n∑

i=0

dimκ(
IIE∞

n−i,i)

≤
n∑

i=0

dimκ(
IIE2

n−i,i)

=
ara(a)+l+s−t∑

i=0

dimκ(Extt−s+i
R (M,TorRi (κ,X)))

=
ara(a)+l+s−t∑

i=s−t

dimκ(Extt−s+i
R (M,TorRi (κ,X))).

On the other hand, the first filtration has IE2 term the iterated homologyH ′
pH

′′
p,q(T ). Again by [4, Theorem 2.8], we

have
H ′′

p,q(T ) = Hc+l−q(Fp ⊗R (
⊕

i+j=• C
i ⊗R HomR(F

′
j , X)))

= Fp ⊗R H
c+l−q(

⊕
i+j=• C

i ⊗R HomR(F
′
j , X))

= Fp ⊗R Hc+l−q
a (M,X).

Hence
IE2

p,q = Hp(F• ⊗R Hc+l−q
a (M,X))

= TorRp (κ,Hc+l−q
a (M,X))

which yields the first quadrant spectral sequence
IE2

p,q := TorRp (κ,Hc+l−q
a (M,X)) =⇒

p
Hp+q(Tot(T )).

Thus there exists a finite filtration

0 = ψ−1Hn ⊆ ψ0Hn ⊆ · · · ⊆ ψn−1Hn ⊆ ψnHn = Hn

such that IE∞
n−i,i = ψn−iHn/ψ

n−i−1Hn for all i ≤ n. Hence dimκ(
IE∞

s,u) ≤ dimκ(ψ
sHn) ≤ dimκ(Hn).Therefore

dimκ(
IEn+2

s,u ) ≤ dimκ(Hn)

because we have IEn+2
s,u = IE∞

s,u as IEj
s+j,u+1−j = 0 = IEj

s−j,u−1+j for all j ≥ n + 2. For all r ≥ 2, let
IZr

s,u = Ker(IEr
s,u −→ IEr

s−r,u−1+r) and IBr
s,u = Im(IEr

s+r,u+1−r −→ IEr
s,u). We have the exact sequences

0 −→ IZr
s,u −→ IEr

s,u −→ IEr
s,u/

IZr
s,u −→ 0

and
0 −→ IBr

s,u −→ IZr
s,u −→ IEr+1

s,u −→ 0

which show that
dimκ(

IEr
s,u) = dimκ(

IEr+1
s,u ) + dimκ(

IEr
s,u/

IZr
s,u) + dimκ(

IBr
s,u)

≤ dimκ(
IEr+1

s,u ) + dimκ(
IEr

s−r,u−1+r) + dimκ(
IEr

s+r,u+1−r)
≤ dimκ(

IEr+1
s,u ) + dimκ(

IE2
s−r,u−1+r) + dimκ(

IE2
s+r,u+1−r).

Therefore
dimκ(

IE2
s,u)

≤ dimκ(
IE3

s,u) + dimκ(
IE2

s−2,u+1) + dimκ(
IE2

s+2,u−1)
≤ dimκ(

IE4
s,u) + (dimκ (

IE2
s−2,u+1) + dimκ(

IE2
s−3,u+2)) + (dimκ(

IE2
s+3,u−2) + dimκ(

IE2
s+2,u−1))

≤ · · ·

≤ dimκ(
IEn+2

s,u ) + (
t−1∑
i=0

dimκ(TorRs−t+i−1(κ,Hi
a(M,X)))) + (

cda(M,X)∑
i=t+1

dimκ(TorRs−t+i+1(κ,Hi
a(M,X))))

which completes the proof.
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The following corollaries are immediate applications of the above theorem.

Corollary 2.2. LetR be a local ring,M anR-module with a finite free resolution of length l, andX a finiteR-module
such that depthR(a+ AnnR(M), X) = cda(M,X). Then the inequality

βs(Hcda(M,X)
a (M,X)) ≤

ara(a)+l+s−cda(M,X)∑
i=s−cda(M,X)

dimκ(Extcda(M,X)−s+i
R (M,TorRi (κ,X)))

is true for all s ≥ 0. In particular, for all s ≥ 0,

βs(Hcda(M,R)
a (M,R)) ≤ dimκ(Extcda(M,R)−s

R (M,κ))

when depthR(a+ AnnR(M), R) = cda(M,R).

Proof. By [8, Corollary 2.14], Hi
a(M,X) = 0 for all i ̸= cda(M,X). Thus the assertion follows from Theorem

2.1.

Corollary 2.3. Let R be a local Cohen-Macaulay ring with maximal ideal m andM an R-module with a finite free
resolution. Then

βs(Hdim(R)
m (M,R)) ≤ dimκ(Extdim(R)−s

R (M,κ))

for all s ≥ 0. In particular, βs(Hdim(R)
m (M,R)) = 0 for all s > dim(R).

Proof. By [8, Corollary 2.9] and [6, Corollary 3.2], Hi
m(M,R) = 0 for all i ̸= dim(R). Thus the assertion follows

from Theorem 2.1.

The next results follow by puttingM = R in Theorem 2.1, Corollary 2.2, and Corollary 2.3.

Corollary 2.4. (see [7, Theorem 3.2]) Let R be a local ring and X an R-module. Then the inequality

βs(Ht
a(X)) ≤ βs−t(X) +

t−1∑
i=0

βs−t+i−1(Hi
a(X)) +

cda(X)∑
i=t+1

βs−t+i+1(Hi
a(X))

holds for all non-negative integers s and t.

Corollary 2.5. LetR be a local ring andX a finiteR-module such that depthR(a, X) = cda(X). Then the inequality

βs(Hcda(X)
a (X)) ≤ βs−cda(X)(X)

is true for all s ≥ 0. In particular, βs(Hcda(X)
a (X)) = 0 for all s < cda(X).

Corollary 2.6. Let R be a local Cohen-Macaulay ring with maximal ideal m. Then

βs(Hdim(R)
m (R)) ≤ βs−dim(R)(R)

for all s ≥ 0. That means βdim(R)(H
dim(R)
m (R)) ≤ 1 and βs(Hdim(R)

m (R)) = 0 for all s ̸= dim(R).

References
[1] M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Stud. Adv. Math., 60,

Cambridge University Press, Cambridge, 1998. MR1613627.
[2] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Stud. Adv.Math., 39,Cambridge University Press,Cambridge, 1993.MR1251956.
[3] J. Herzog, Komplexe, auflösungen und dualität in der lokalen Algebra, Habilitationsschrift, Universitat Regensburg, Regensburg, 1970.
[4] T. T. Nam, N. M. Tri, and N. V. Dong, Some properties of generalized local cohomology modules with respect to a pair of ideals, Internat. J.

Algebra Comput. 24 (2014), no. 7, 1043–1054. MR3286150.
[5] J. J. Rotman, An introduction to homological algebra, Second edition, Universitext, Springer, New York, 2009. MR2455920.
[6] N. Tu Cuong and N. Van Hoang, On the vanishing and the finiteness of supports of generalized local cohomology modules,Manuscripta Math.

126 (2008), no. 1, 59–72. MR2395249.
[7] A. Vahidi, Betti numbers and flat dimensions of local cohomology modules, Canad. Math. Bull. 58 (2015), no. 3, 664–672. MR3372880.
[8] A. Vahidi and M. Aghapournahr, Some results on generalized local cohomology modules, Comm. Algebra 43 (2015), no. 5, 2214–2230.

MR3316846.



Gonbad Kavous University

The 4th National Congress on Mathematics and StatisticsThe 4th National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1402

The 4th National Congress on Mathematics and Statistics, AL–202, pp. 392–396

Cofiniteness of generalized local cohomology modules with respect
to Serre categories of modules

Alireza Vahidi

Department of Mathematics, Payame Noor University, Tehran, Iran

Article Info

Keywords:
Cofinite modules
Generalized local cohomology
modules

2020 MSC:
13D45

Abstract

Let R be a commutative Noetherian ring with non-zero identity, a an ideal of R, S a Serre
subcategory of the category of R-modules, M a finitely generated R-module, X an arbitrary
R-module, and t a non-negative integer. In this paper, we show that if ExtiR(R/a, X) ∈ S
for all i and Hi

a(M,X) is an (S, a)-cofinite R-module for all i ̸= t, then Ht
a(M,X) is an

(S, a)-cofinite R-module. In particular, if ExtiR(R/a, X) is a finitely generated R-module for
all i ≤ ara(a) and Hi

a(M,X) is an a-cofinite R-module for all i ̸= t, then Ht
a(M,X) is an

a-cofinite R-module.

1. Introduction

Throughout, letR denote a commutative Noetherian ring with non-zero identity, a an ideal ofR,M andN finite (i.e.,
finitely generated) R-modules,X an arbitrary R-module which is not necessarily finite, and t a non-negative integer.
For basic results, notations, and terminology not given in this paper, readers are referred to [3, 4, 11].
It is a known fact that Hi

m(N) is an Artinian R-module and hence HomR(R/m,Hi
m(N)) is a finite R-module for all

i whenever R is a local ring with maximal ideal m. This led Grothendieck to conjecture that HomR(R/a,Hi
a(N)) is

a finite R-module for all i [6, Expose XIII, Conjecture 1.1]. Hartshorne showed in [7, Section 3] that this conjecture
is not true in general. However, he defined an a-torsion R-module X to be a-cofinite if ExtiR(R/a, X) is a finite
R-module for all i and asked the following question:
(see [7, First Question]) Under what hypotheses, is Hi

a(N) an a-cofinite R-module for all i?
Recall that a subcategory of the category of R-modules is said to be Serre if it is closed under taking submodules,
quotients, and extensions. The class of zero R-modules, the class of finite R-modules, and the class of Artinian R-
modules are some examples of Serre subcategories of the category of R-modules. In this paper, S stands for a Serre
subcategory of the category of R-modules. We say that X is an (S, a)-cofinite R-module if X is an a-torsion R-
module and ExtiR(R/a, X) ∈ S for all i [1, Definition 4.1]. Note that, if S is the class of finite R-modules, thenX is
an (S, a)-cofinite R-module if and only ifX is an a-cofinite R-module. Therefore, as a generalization of Question 1,
we have the following question.
Under what hypotheses, is Hi

a(N) an (S, a)-cofinite R-module for all i?
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In [9, Proposition 2.5], Marley and Vassilev proved that Ht
a(N) is an a-cofinite R-module whenever Hi

a(N) is an
a-cofinite R-module for all i ̸= t. As an improvement of [9, Proposition 2.5], by [10, Proposition 3.11], Ht

a(X) is an
a-cofiniteR-module if ExtiR(R/a, X) is a finiteR-module for all i and Hi

a(X) is an a-cofiniteR-module for all i ̸= t.
As a generalization of [10, Proposition 3.11], the authors in [1, Theorem 4.2] showed that Ht

a(X) is an (S, a)-cofinite
R-module when ExtiR(R/a, X) ∈ S for all i and Hi

a(X) is an (S, a)-cofinite R-module for all i ̸= t.
The ith generalized local cohomology module

Hi
a(M,X) ∼= lim−→

n∈N
ExtiR(M/anM,X)

was introduced by Herzog in [8]. It is clear that Hi
a(R,X) is just the ordinary local cohomology module Hi

a(X) ofX
with respect to a. As generalizations of Questions 1 and 1, we have the following questions.
Under what hypotheses, is Hi

a(M,N) an a-cofinite R-module for all i?
Under what hypotheses, is Hi

a(M,N) an (S, a)-cofinite R-module for all i?
In this paper, we study the above questions. We generalize [1, Theorem 4.2] by showing that if ExtiR(R/a, X) ∈ S
for all i and Hi

a(M,X) is an (S, a)-cofinite R-module for all i ̸= t, then Ht
a(M,X) is an (S, a)-cofinite R-module.

In particular, if ExtiR(R/a, X) is a finite R-module for all i ≤ ara(a) and Hi
a(M,X) is an a-cofinite R-module for all

i ̸= t, then Ht
a(M,X) is an a-cofinite R-module. Here, ara(a) is the arithmetic rank of a.

2. Main Results

The following lemma is needed in this paper

Lemma2.1. LetN be a finiteR-module,X an arbitraryR-module, and t a non-negative integer such thatExtiR(N,X) ∈
S for all i ≤ t. Then ExtiR(L,X) ∈ S for each finite R-module L with SuppR(L) ⊆ SuppR(N) and for all i ≤ t.

Proof. Let L be a finite R-module such that SuppR(L) ⊆ SuppR(N). By Gruson’s theorem [13, Theorem 4.1], there
is a finite filtration

0 = L0 ⊂ L1 ⊂ · · · ⊂ Ln−1 ⊂ Ln = L

of submodules of L such that for all 1 ≤ j ≤ n, there exists a short exact sequence

0 −→ L′
j −→ Nαj −→ Lj/Lj−1 −→ 0,

whereL′
j is a finiteR-module with SuppR(L′

j) ⊆ SuppR(N) andαj is an integer. Thus we get the long exact sequence

0 −→ HomR(Lj/Lj−1, X) −→ HomR(N
αj , X) −→ HomR(L

′
j , X)

−→ · · ·
−→ Exti−1

R (Lj/Lj−1, X) −→ Exti−1
R (Nαj , X) −→ Exti−1

R (L′
j , X)

−→ ExtiR(Lj/Lj−1, X) −→ ExtiR(Nαj , X) −→ ExtiR(L′
j , X)

−→ · · ·

for all 1 ≤ j ≤ n. Also, by the short exact sequences

0 −→ Lj−1 −→ Lj −→ Lj/Lj−1 −→ 0,

we get the long exact sequences

0 −→ HomR(Lj/Lj−1, X) −→ HomR(Lj , X) −→ HomR(Lj−1, X)
−→ · · ·
−→ ExtiR(Lj/Lj−1, X) −→ ExtiR(Lj , X) −→ ExtiR(Lj−1, X)
−→ · · ·

for all 1 ≤ j ≤ n.
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We use induction on t. Let t = 0 and 1 ≤ j ≤ n. Since HomR(N,X) ∈ S , HomR(N
αj , X) ∈ S . Thus

HomR(Lj/Lj−1, X) ∈ S . ThereforeHomR(Lj , X) ∈ S wheneverHomR(Lj−1, X) ∈ S . HenceHomR(L,X) ∈ S .
Suppose that t > 0 and that the case t − 1 is settled. Let i and j be integers such that i ≤ t and 1 ≤ j ≤ n. Since
ExtiR(N,X) ∈ S , ExtiR(Nαj , X) ∈ S . Therefore ExtiR(Lj/Lj−1, X) ∈ S because Exti−1

R (L′
j , X) ∈ S from the

induction hypothesis. Hence ExtiR(Lj , X) ∈ S whenever ExtiR(Lj−1, X) ∈ S . Thus ExtiR(L,X) ∈ S .

The following theorem is the main result of this paper which generalizes [1, Theorem 4.2]. In the proof, we use the
isomorphism

Hi
a(M,X) ∼= Hi(HomR(M,Γa(E•X))),

for all i, where E•X is a deleted injective resolution ofX (see [5, Lemma 2.1(i)]).

Theorem 2.2. Let M be a finite R-module, X an arbitrary R-module such that ExtiR(R/a, X) ∈ S for all i, and
t a non-negative integer such that Hi

a(M,X) is an (S, a)-cofinite R-module for all i ̸= t. Then Ht
a(M,X) is an

(S, a)-cofinite R-module.

Proof. Let s be a non-negative integer. We show that ExtsR(R/a,Ht
a(M,X)) ∈ S . Assume that

E•X : 0 −→ E0 −→ · · · −→ Ei −→ · · ·

is a deleted injective resolution of X . By applying HomR(M,Γa(−)) to E•X , we get the complex

HomR(M,Γa(E•X)) : 0 −→ HomR(M,Γa(E
0)) −→ · · · −→ HomR(M,Γa(E

i)) −→ · · · .

Assume that
0 −→ HomR(M,Γa(E•X)) −→ T •,0 −→ · · · −→ T •,j −→ · · ·

is a Cartan-Eilenberg injective resolution of HomR(M,Γa(E•X)) which exists from [11, Theorem 10.45]. Now,
consider the third quadrant bicomplex T = {HomR(R/a, T

p,q)}. We denote the total complex of T by Tot(T ).
The first filtration has I E2 term the iterated homology H′p H′′p,q(T ). We have

H′′p,q(T ) ∼= Hq(HomR(R/a, T
p,•))

∼= ExtqR(R/a,HomR(M,Γa(Ep)))
∼= HomR(TorRq (R/a,M),Γa(Ep))

from [3, Proposition 2.1.4] and [11, Corollary 10.63]. Therefore, by [5, Lemma 2.1(i)],

I Ep,q
2

∼= H′p H′′p,q(T )
∼= Hp(HomR(TorRq (R/a,M),Γa(E•X)))
∼= Hp

a(TorRq (R/a,M), X)

which yields, by [12, Lemma 2.5(c)], the third quadrant spectral sequence

I Ep,q
2 := ExtpR(Tor

R
q (R/a,M), X) =⇒

p
Hp+q(Tot(T )).

For all i ≤ s + t, we have IEs+t−i,i
∞ = IEs+t−i,i

s+t+2 because IEs+t−i−j,i−1+j
j = 0 = IEs+t−i+j,i+1−j

j for all
j ≥ s + t + 2; so that IEs+t−i,i

∞ is in S from the fact that IEs+t−i,i
s+t+2 is a subquotient of IEs+t−i,i

2 which is in S by
assumption and Lemma 2.1. There exists a finite filtration

0 = ϕs+t+1Hs+t ⊆ ϕs+tHs+t ⊆ · · · ⊆ ϕ1Hs+t ⊆ ϕ0Hs+t = Hs+t

such that IEs+t−i,i
∞

∼= ϕs+t−iHs+t/ϕs+t−i+1Hs+t for all i ≤ s+ t. Now the exact sequences

0 −→ ϕs+t−i+1Hs+t −→ ϕs+t−iHs+t −→ IEs+t−i,i
∞ −→ 0,

for all i ≤ s+ t, show that Hs+t is in S .
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On the other hand, the second filtration has II E2 term the iterated homology H′′p H′q,p(T ). Note that every short
exact sequence of injective modules splits and so it remains split after applying the functor HomR(R/a,−). By using
this fact and the fact that T •,• is a Cartan-Eilenberg injective resolution of HomR(M,Γa(E•X)), we get

H′q,p(T ) ∼= Hq(HomR(R/a, T
•,p))

∼= HomR(R/a,Hq(T •,p))
∼= HomR(R/a,Hq,p).

Therefore, by [5, Lemma 2.1(i)],
II Ep,q

2
∼= H′′p H′q,p(T )
∼= Hp(HomR(R/a,Hq,•))
∼= ExtpR(R/a,H

q
a(M,X))

which gives the third quadrant spectral sequence

II Ep,q
2 := ExtpR(R/a,H

q
a(M,X)) =⇒

p
Hp+q(Tot(T )).

Thus there exists a finite filtration

0 = ψs+t+1Hs+t ⊆ ψs+tHs+t ⊆ · · · ⊆ ψ1Hs+t ⊆ ψ0Hs+t = Hs+t

such that IIEs+t−i,i
∞

∼= ψs+t−iHs+t/ψs+t−i+1Hs+t for all i ≤ s + t. Since Hs+t is in S , ψsHs+t is in S . Hence
IIEs,t

∞
∼= ψsHs+t/ψs+1Hs+t is in S . Therefore IIEs,t

s+t+2 is in S because IIEs,t
s+t+2 = IIEs,t

∞ from the fact that
IIEs−j,t−1+j

j = 0 = IIEs+j,t+1−j
j for all j ≥ s+ t+ 2. For all r ≥ 2, let IIZs,t

r = Ker(IIEs,t
r −→ IIEs+r,t+1−r

r )

and IIBs,t
r = Im(IIEs−r,t−1+r

r −→ IIEs,t
r ). We have the exact sequences

0 −→ IIZs,t
r −→ IIEs,t

r −→ IIEs,t
r /IIZs,t

r −→ 0

and
0 −→ IIBs,t

r −→ IIZs,t
r −→ IIEs,t

r+1 −→ 0.

Since IIEs+r,t+1−r
2 and IIEs−r,t−1+r

2 are in S by assumptions, IIEs+r,t+1−r
r and IIEs−r,t−1+r

r are also in S , and
so IIEs,t

r /IIZs,t
r and IIBs,t

r are in S . It shows that IIEs,t
r is in S whenever IIEs,t

r+1 is in S . Therefore IIEs,t
2 =

ExtsR(R/a,Ht
a(M,X)) ∈ S which completes the proof.

As applications of the above theorem, we have the following corollaries.

Corollary 2.3. LetM be a finite R-module, X an arbitrary R-module such that ExtiR(R/a, X) is a finite R-module
for all i ≤ ara(a), and t a non-negative integer such that Hi

a(M,X) is an a-cofinite R-module for all i ̸= t. Then
Ht

a(M,X) is an a-cofinite R-module.

Proof. Follows from Theorem 2.2 and [2, Theorem 3.3].

For a finite R-module M with finite projective dimension and for an arbitrary R-module X , we denote the largest
integer i in which Hi

a(M,X) is not zero by cda(M,X). We also write cda(X) = cda(R,X).

Corollary 2.4. Let M be a finite R-module with finite projective dimension and X a finite R-module such that
depthR(a+ AnnR(M), X) = cda(M,X). Then Hi

a(M,X) is an a-cofinite R-module for all i.

Proof. By [12, Corollary 2.14], Hi
a(M,X) = 0 for all i ̸= cda(M,X). Thus the assertion follows from Corollary

2.3.

The next results follow by puttingM = R in Theorem 2.2, Corollary 2.3, and Corollary 2.4.

Corollary 2.5. (see [1, Theorem 4.2]) LetX be an arbitrary R-module such that ExtiR(R/a, X) ∈ S for all i and t a
non-negative integer such that Hi

a(X) is an (S, a)-cofinite R-module for all i ̸= t. Then Ht
a(X) is an (S, a)-cofinite

R-module.
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Corollary 2.6. (see [10, Proposition 3.11]) Let X be an arbitrary R-module such that ExtiR(R/a, X) is a finite R-
module for all i ≤ ara(a) and t a non-negative integer such that Hi

a(X) is an a-cofinite R-module for all i ̸= t. Then
Ht

a(X) is an a-cofinite R-module.

Corollary 2.7. LetX be a finiteR-module such that depthR(a, X) = cda(X). ThenHi
a(X) is an a-cofiniteR-module

for all i.
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Abstract

Let X be a connected locally-primitive (G, 1)-transitive graph for some G ≤ Aut(X). In
this paper, we determine the structure of the vertex-stabilizerGv when X has valency 3p where
p ≥ 5 is a prime.

1. Introduction

Throughout this paper, we consider finite, undirected graphs without loops or multiple edges. For a graph X , let
V (X), E(X) and Aut(X) denote the vertex set, the edge set and the full automorphism group, respectively. For
u, v ∈ V (X), {u, v} is the edge incident to u and v in X and X1(v) is the set of vertices adjacent to v in X . Let
G ≤ Aut(X). We denote the vertex-stabilizer of v ∈ V (X) in G by Gv . Denote by G

X1(v)
v the constituent of Gv

acting onX1(v) and by G∗
v the kernel ofGv acting onX1(v). Then, GX1(v)

v
∼= Gv/G

∗
v . For an edge {u, v} ∈ E(X),

we consider Guv = Gu ∩Gv and G∗
uv = G∗

u ∩G∗
v .

For each integer s ≥ 0, an s-arc in graph X is a sequence (v0, v1, ..., vs−1, vs) of vertices such that vi−1 is adjacent
to vi and vi−1 ̸= vi+1 for all admissible i. For a subgroup G ≤ Aut(X), X is said to be (G, s)-arc-transitive if G
is transitive on the set of s-arcs in X . A (G, s)-arc-transitive graph which is not (G, s + 1)-arc-transitive is called
(G, s)-transitive. A graphX is called s-arc-transitive or s-transitive if it is (Aut(X), s)-arc-transitive or (Aut(X), s)-
transitive, respectively. In particular, X is called symmetric if it is (Aut(X), 1)-arc-transitive. A G-arc-transitive
graph X is called locally-primitive if Gv acts on X1(v) primitively, that is, the induced permutation group GX1(v)

v is
primitive.
As we all know, a graph X is G-arc-transitive if and only if G is transitive on V (X) and Gv is transitive on X1(v).
So the structure of Gv plays an important role in the study of symmetric graphs and to investigate such graphs, we
need the information of the vertex-stabilizer Gv . LetX be a connected (G, s)-transitive graph for some s ≥ 1. It is a

∗Talker
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well-known result that s ≤ 7 and s ̸= 6 [6]. Note that the only connected graphs of valency two are cycles which are
s-arc-transitive for any positive integer s. So the valency of a s-transitive graph is greater than 2. Up to now, we know
the structure of Gv when X has prime or twice a prime valency [4, 5]. In this paper, we characterize the structure of
Gv when X is a locally-primitive 1-transitive graph of valency 3p.
Let p a prime and n a positive integer. We denote by n the cyclic group of order n, by An and Sn the alternating
group and the symmetric group of degree n. For two groupsM and N , we denote by N.M an extension of N byM
and N : M stands for a semidirect product of N by M . For any group G, denote the largest normal p-subgroup of
G by Op(G) All the notation and terminology used throughout this paper are standard. For group and graph theoretic
concepts not defined here, we refer the reader to [1, 3].

2. Preliminaries

In this section, we collect some results which have an important role in characterizing the structure ofGv in symmetric
graphs. The first proposition is about sufficient and necessary conditions for such graphs. Its proof is straightforward.

Proposition 2.1. Let X be a graph and G ≤ Aut(X). Then we have;

(i) X is G-arc-transitive if and only if G is transitive on V (X) and Gv is transitive onX1(v) for each v ∈ V (X).
(ii) X is (G, 2)-arc-transitive if and only if G is transitive on V (X) and Gv is 2-transitive on X1(v) for each

v ∈ V (X).

Lemma 2.2. LetX be a (G, s)-arc-transitive graph for someG ≤ Aut(X) and s ≥ 1. Let {u, v} ∈ E(X). Then we
have;

(i) Gv
∼= G∗

v.G
X1(v)
v

∼= (G∗
uv.(G

∗
v)

X1(u)).G
X1(v)
v .

(ii) G∗
v
X1(u) ⊴ G

X1(u)
uv

∼= G
X1(v)
uv .

Proof. (i) Since GX1(v)
v

∼= Gv/G
∗
v and (G∗

v)
X1(u) ∼= G∗

v/G
∗
uv , by group extensions we obtain the result.

(ii) Since G is transitive on the set of arcs, then G
X1(u)
uv

∼= G
X1(v)
uv . By isomorphism we have, (G∗

v)
X1(u) ∼=

G∗
v/G

∗
uv

∼= G∗
v/G

∗
u ∩G∗

v
∼= G∗

uG
∗
v/G

∗
u ⊴ Guv/G

∗
u
∼= G

X1(u)
uv .

Combining a result from ([2], Corollary 2.3) and ([5], Theorem 4.3), we have the following lemma.

Lemma 2.3. LetX be a connected graph, {u, v} ∈ E(X) andG ≤ Aut(X). Suppose thatX is aG-locally-primitive
arc-transitive graph. Then G∗

uv is a r-group for some prime r. Moreover, either G∗
uv = 1 or Or((G

∗
v)

X1(u)) ̸= 1 and
Or((Gv

X1(v))u) ̸= 1.

In view of ([1], Section7.7), we have the following observation.

Lemma 2.4. LetH be a primitive but not 2-transitive permutation group of degree 3p where p ≥ 5 is a prime and let
α ∈ Ω. Up to isomorphism H is one of the groups in Table 1.

Table 1.

Degree H Hv

15 A6 S4

15 S6 S4 × 2
21 PGL2(7) PSL2(7)
21 A7 S5

21 S7 S5 × 2
57 PSL2(19) A5
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3. Main results

Let X be a connected locally-primitive (G, 1)-transitive graph of valency 3p for some G ≤ Aut(X) and p ≥ 5 a
prime. According to Proposition 2.1, we get that GX1(v)

v
∼= Gv/G

∗
v ≤ S3p is a primitive but not 2-transitive group

of degree 3p. So by Lemma 2.4, we know the possibilities for p and GX1(v)
v . Hence the main result of the paper is as

follows.

Theorem 3.1. LetX be a finite connected locally-primitive (G, 1)-transitive graph of valency 3p whereG ≤ Aut(X)
and p ≥ 5 is a prime. Let v ∈ V (X). Then one of the following holds.

(i) p = 5, Gv
∼= A6, S6, O2(Gv).N.A6 or O2(Gv).N.S6 where N ⊴ S3.

(ii) p = 7, Gv
∼= PGL2(7) or PSL2(7).PGL2(7).

(iii) p = 7, Gv
∼= A7, S7, A5.A7, S5.A7, A5.S7, S5.S7 or O2(Gv).N.S7 where N ⊴ S5.

(iv) p = 19, Gv
∼= PSL2(19) or A5.PSL2(19).
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Abstract

In this article, some results and corollaries on real closed domains are derived. We show that the
field of fractions FD of an ordered domainD is real closed whenD is real closed. It is observed
that an ordered domain has divisibility property if and only if it is a convex subring of FD . It is
also shown that an ordered domain is real closed if and only if it is a convex subring of a real
closed field.

1. Introduction

Let (D, ≤) (in brief, D) be a commutative totally ordered integral domain with unity. Briefly,D is called an ordered
domain. Define a relation∼ onD×D by (a, b) ∼ (c, d) ⇔ ad = bc. It is observed that∼ is an equivalence relation
on D × D. If we let [(a, b)] be the equivalence class of (a, b) with respect to ∼, then we have [(a, b)] = {(c, d) :
(c, d) ∼ (a, b)}. For simplicity, D ×D is denoted by FD and [(a, b)] is also denoted by a

b . In the recent fraction, b
can be taken as a positive element of D. Hence, we have FD = {a

b : a, b ∈ D, and b > 0}. It is easy to check that
(FD, +, ×) has a field structure, where + and × are defined as follows:

a

b
+

c

d
=

ad+ bc

bd
, and

a

b
× c

d
=

ac

bd
.

Note that FD is the smallest field containingD, i.e., if F is a field containingD, then it contains FD. Moreover, define
≤′ on FD by a

b ≤′ c
d ⇔ ad ≤ bc. By the fact that D is an ordered domain, one can show that (FD,≤′) (in brief,

FD) is also an ordered domain. As usual, Z, Q, and R are the sets of integers, rational numbers, and real numbers
respectively. In Section 2, we show that FD is real closed if D is real closed. We observed that D has divisibility
property (in brief, DP) if and only if D is a convex subring of FD. It is also proved that D is real closed if and only
if D is a convex subring of a real closed field. Moreover, it is equivalent to: every nonnegative element of D has a
square root in D, and every monic polynomial of odd degree in D[x] has a root in D, if D satisfies DP. Real closed
fields are introduced and investigated in [5, Chapter 13], and real closed domains are also studied in [1], [2], [3], and
[4]. Throughout this article, D is an ordered domain.
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2. Topics and Results

Definition 2.1. ([2, Definition 1]) A domain D is called real closed if it satisfies the intermediate value property for
polynomials inD[x], i.e., for any polynomial p(x) = anx

n + an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0 ∈ D[x] and
any a, b ∈ D; a < b and p(a)p(b) < 0 gives p(c) = 0 for some c ∈ D such that a < c < b.

Example 2.2. The field R is real closed while Z and Q are not real closed. To see this, let p(x) = 2x− 1 ∈ Z[x] on
[0, 1]. Then p(0)p(1) < 0 but the root of p does not belong to Z. Also, for q(x) = x3 − 2 ∈ Q[x] on [0, 2] we have
q(0)q(2) < 0, but q does not have a root in Q.

Definition 2.3. ([2, Definition 20]) A domain D is called satisfying Divisibility Property (in brief, DP) whenever
0 < a < b gives b | a, i.e., b = ac for some c ∈ D. In other words, a ∈ (b) where (b) is the generated ideal by b.

For instance, every ordered division ringD satisfies DP, since if a, b ∈ D and 0 < a < b, then a = (ab−1)b. So b | a.
Similarly, a | b. In fact, each of the two nonzero elements of a division ring divides the other.

Remark 2.4. (i) Every ordered field satisfies DP.
(ii) For any domain D; FD is the smallest field containingD.
(iii) A subring of a ring with divisibility property (DP) need not necessarily satisfy the same property, for example,

consider Z and Q.

Proposition 2.5. If D satisfies DP, then for every c ∈ FD; c ∈ D or c−1 ∈ D.

Proof. Let 0 < c = m
n ∈ F . If 0 < m < n, then by hypothesis n |m. So m = nk for some k ∈ D and hence

c = m
n = k ∈ D. If 0 < n < m, thenm |n. So c−1 = n

m ∈ D.

Proposition 2.6. Let D be a real closed domain. Then the following hold.

(i) D satisfies DP.
(ii) Any nonnegative element a ∈ D has a square root in D, i.e., b2 = a for some b ∈ D.
(iii) Any monic polynomial of odd degree of D[x] has a root in D.
(iv) The field of fractions FD of D is real closed.

Proof. (i). Let a, b ∈ D and 0 < a < b. Consider polynomial p(x) = bx − a on [0, 1]. Then p(0) = −a < 0 and
p(1) = b − a > 0. Since D is real closed, there exists 0 < c < 1 such that p(c) = bc − a = 0. Hence, bc = a, i.e.,
b | a.
(ii). Let a > 0. Take p(x) = x2 − a ∈ D[x]. If 0 < a < 1, then values of p at the endpoints of the interval [0, 1] are
p(0) = −a < 0 and p(1) = 1− a > 0, and if a > 1, then consider p on [1 a]. So p(1) < 0 and p(a) = a2 − a > 0.
By intermediate value property, there exists 0 < c < 1 or 1 < c < a such that p(c) = c2 − a = 0, i.e. c2 = a.
(iii). Let p(x) = xn + an−1x

n−1 + an−2x
n−2 + · · ·+ a1x+ a0 ∈ D[x] and n is an odd integer. Let

M = 1 + |an−1|+ |an−2|+ · · ·+ |a1|+ |a0|.

It is sufficient to get values of p at the endpoints of [−M, M ].
(iv). Let

p(x) = cn
dn

xn + cn−1

dn−1
xn−1 + cn−2

dn−2
xn−2 + cn−3

dn−3
xn−3 + · · ·+ c1

d1
x+ c0

d0
∈ F [x].

Take m
n , m′

n′ ∈ FD such that m
n < m′

n′ . Suppose p(mn ) < 0, and p(m
′

n′ ) > 0. We are going to find an element c ∈ FD

lying between m
n and m′

n′ such that p(c) = 0. Put

d = d0d1d2 · · · dn−1dn and p1(x) = dnp(x).

Since mn′ < m′n, we have dmn′ < dm′n. Furthermore, p1(x) ∈ D[x]; p1(mn ) < 0 and p1(
m′

n′ ) > 0. Now,
consider polynomial q as below:

q(x) = p1(
x

dnn′ ) = dnp(
x

dnn′ ).

Clearly, q ∈ D[x]. It is easy to see that for some t ∈ D; q(t) = 0. So p( t
dnn′ ) = 0, and we are done.
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A subset S of a partially ordered ring R is called convex, if a ≤ c ≤ b and a, b ∈ S, then c ∈ S.

Proposition 2.7. An ordered domain satisfies DP if and only if it is a convex subring of its field of fractions.

Proof. (⇒) : Let D be an ordered domain satisfying DP and 0 < a = m
n < b, where b ∈ D. Since m < bn, by

hypothesis bn |m, i.e.,m = bnd for some d ∈ D. Hence, a = m
n = bd ∈ D.

(⇐) : Let a, b ∈ D and 0 < a < b. Then 0 < a
b < 1 (note that a < b if and only if a

b < 1). SinceD is convex in FD,
we obtain a

b ∈ D. So a = bd for some d ∈ D, i.e. D satisfies DP.

Proposition 2.8. If D satisfies property (i) or (ii) below

(i) every nonnegative element of D has a square root in D,
(ii) every monic polynomial of odd degree in D[X] has a root in D,

then FD satisfies the same property.

Proof. Suppose first that D satisfies (i) and 0 < m
n ∈ FD. So 0 < mn ∈ D and hence there exists c ∈ D such that

c2 = mn. Therefore, ( c
n )

2 = c2

n2 = mn
n2 = m

n , i.e.,
c
n is a square root of m

n , in other words, FD satisfies (i). Next,
suppose that D satisfies (ii), and

p(x) = xn + cn−1

dn−1
xn−1 + cn−2

dn−2
xn−2 + cn−3

dn−3
xn−3 + · · ·+ c1

d1
x+ c0

d0
∈ FD[x]

where n is an odd integer. Put d = d0d1d2 . . . dn−1, and q(x) = dnp(xd ).
Since q is a monic polynomial of D[x], by hypothesis it has a root in D, say λ. So q(λ) = dnp(λd ) = 0. On the other
hand, since D is domain and d ̸= 0, we get p(λd ) = 0, as desired.

The converse of Proposition 2.8(i) is always true. But the converse of (ii) is not true in general.

Corollary 2.9. If D satisfies properties (i) and (ii) in the above proposition, then FD is real closed.

According to Example 2.2, a subring of a real closed field need not necessarily be real closed. The following result
gives an equivalent condition for the real closeness of an ordered domain.

Theorem 2.10. A domain D is real closed if and only if it is a convex subring of a real closed field F .

Proof. (⇒) : Since D is real closed, parts (i) and (iv) of Proposition 2.6 respectively imply that D satisfies DP, and
FD is real closed. On the other hand, by Proposition 2.7, D is a convex subring of FD. So the result holds.
(⇐) : Let F be a real closed field in which D is convex. Let p(x) ∈ D[x] ≤ F [x] and a, b ∈ D such that a < b and
p(a)p(b) < 0. Since F is real closed, there exists c ∈ F such that a < c < b and p(c) = 0. By convexity of D in F ,
we obtain c ∈ D, i.e., D is real closed.

Corollary 2.11. Suppose D satisfies DP. Then D is real closed if and only if FD is real closed.

Proof. Necessity: It follows from Proposition 2.6 (iv).
Sufficiency: Since D satisfies DP, D is convex in FD, by Proposition 2.7. The result is now obtained by Theorem
2.10.

Theorem 2.12. Suppose D satisfies DP. Then the following are equivalent.

(i) D is real closed.
(ii) Every nonnegative element of D has a square root in D, and every monic polynomial of odd degree in D[X]

has a root in D.
(iii) Every nonnegative element of FD has a square root in FD, and every monic polynomial of odd degree in FD[X]

has a root in FD.
(iv) FD is real closed.
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Proof. (i) ⇒ (ii) follows from Proposition 2.6.
(ii) ⇒ (iii) follows from Proposition 2.8.
(iii) ⇒ (iv) If every nonnegative element of FD has a square root in FD, then D clearly satisfies the same property.
Furthermore, suppose that every monic polynomial of odd degree in FD[X] has a root in FD. SinceD satisfies DP, it
inherits the same property. Now, Corollary 2.9 gives FD is real closed.
(iv) ⇒ (i) follows from Corollary 2.11.

Note that for an ordered field F ; F = FD and it clearly satisfies DP. So the following result is immediate.

Corollary 2.13. An ordered field F is real closed if and only if every nonnegative element of F has a square root in
F , and every monic polynomial of odd degree in F [X] has a root in F .

Lemma 2.14. Let (D1, ≤1), (D2, ≤2) be ordered domains and φ : D1 → D2 be a surjective homomorphism that
preserves order. If D1 satisfies DP, then D2 satisfies DP.

Proof. Let b1, b2 ∈ D2 such that 0 < b1 < b2. Then there exist a1, a2 ∈ D1 such that a1 ∈ φ−1(b1) and a2 ∈
φ−1(b2). It is claimed that a1 < a2. Otherwise, a1 ≥ a2. Since φ preserves order, we obtain b1 = φ(a1) ≥ b2 =
φ(a2) which is a contradiction. So 0 < a1 < a2. By hypothesis, a2 | a1. So a1 = a2 k for some k ∈ D1. Therefore,
b1 = b2 φ(k), i.e., b2 | b1. This means D2 satisfies DP .

According to [5, Chapter 5], we have the following:

(a) An ideal I in a partially ordered ring A is called convex whenever a ≤ b ≤ c and a, c ∈ I , then b ∈ I .
Equivalently, if 0 ≤ a ≤ b and b ∈ I , then a ∈ I .

(b) Let (A, ≤) be a partially ordered ring and I be an ideal ofA. Then A
I is a partially ordered ring via the following

definition:

I(a) ≥ 0 if and only if there exists 0 ≤ x ∈ A such that a ≡ x (mod I), i.e., a− x ∈ I.

Theorem 2.15. ([5, Theorem 5.2]) Let (A, ≤) be a partially ordered ring and I be an ideal ofA. Then A
I is a partially

ordered ring (via the above definition) if and only if I is convex.

Proposition 2.16. Let D be a domain and P be a prime convex ideal in D. If D satisfies DP, then D
P satisfies DP.

Proof. By Theorem 2.15, D
P is a partially ordered domain. Let P (a1), P (a2) ∈ D

P . If a1 < a2, then a2−a1 > 0 and
therefore P (a2)− P (a1) = P (a2 − a1) ≥ 0. So P (a1) ≤ P (a2) and hence D

P is totally ordered. On the other hand,
the natural mapping π : D → D

P with π(a) = P (a) is a surjective homomorphism and preserves order. The result is
now obtained by Lemma 2.14.
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Abstract

Let R be a commutative Noetherian ring and M be a finitely generated R-module. In this talk
we concider the cohomological dimension of M with respect to the linked ideals over it. We
show that for every ideal bwhich is geometrically linked with a, cd (a, Hgrade Rb

b (R)) is constant
and doese not depend on b.

1. Introduction

Linkage theory is an important topic in commutative algebra and algebraic geometry. It refers to Halphen (1870)
and M. Noether (1882) who worked to classify space curves. In 1974 the significant work of Peskine and Szpiro
[7] brought breakthrough to this theory and stated it in the modern algebraic language; two proper ideals a and b
in a Cohen-Macaulay local ring R is said to be linked if there is a regular sequence x in their intersection such that
a = (x) :R b and b = (x) :R a.
A new progress in the linkage theory is the work of Martsinkovsky and Strooker [5] which established the concept of
linkage of modules. Also, in [3], the authors introduced the concept of linkage of ideals over a module and studied
some of its basic properties.
Let R be a commutative Noetherian ring, a and b be two non-zero ideals of R and M denotes a non-zero finitely
generated R-module. Assume that aM ̸= M ̸= bM and let I ⊆ a ∩ b be an ideal generating by an M -regular
sequence. Then the ideals a and b are said to be linked by I over M , denoted by a ∼(I;M) b, if bM = IM :M a
and aM = IM :M b. Also, we say that a is linked over M if there exist ideals b and I of R such that a ∼(I;M) b.
This concept is the classical concept of linkage of ideals in [7], where M := R. Note that these two concepts do not
coincide [3, 2.6] although, in some cases they do (e.g. Example [3, 2.4]). We can also characterize linked ideals over
R, see [4, 2.7].
As an application of this generalization, one may characterize Cohen-Macaulay modules in terms of the type of linked
ideals over it, see [4, 3.5].
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One of the most important invariants in local cohomology theory is the cohomological dimension of an R-module X
with respect to the ideal a, i.e.

cd (a, X) := Sup {i ∈ N0|Hi
a(X) ̸= 0}.

In this talk, we consider the above generalization of linkage of ideals over a module and study the cohomological
dimension of an R-module M with respect to the ideals which are linked over M . In particular, in Theorem 2.6 we
show that if a is an ideal of R which is linked by I overM , then

cd (a,M) ∈ {grade Ma, cd (a,Hgrade Ma
c (M)) + grade Ma},

where c :=
∩

p∈Ass M
IM −V (a) p.

And in Corollary 2.10 it is shown that for every ideal bwhich is geometrically linkedwith a overM , cd (a,Hgrade Mb
b (M))

is constant.
Also, we show that if cd (b, R) < dim (R) for any linked ideal b over R, then cd (a, R) < dim (R) for any ideal a
(Corollary 2.15).
Throughout the paper, R denotes a commutative Noetherian ring with 1 ̸= 0, a and b are two non-zero proper ideals
of R andM denotes a non-zero finitely generated R-module.

2. Cohomological dimension

The cohomological dimension of an R-module X with respect to a is defined by

cd (a, X) := Sup {i ∈ N0|Hi
a(X) ̸= 0}.

It is a significant invariant in local cohomology theory and attracts lots of interest. In this section, we study this
invariant via ”linkage”. We begin by the definition of our main tool.

Definition 2.1. Assume that aM ̸= M ̸= bM and let I ⊆ a∩b be an ideal generated by anM -regular sequence. Then
we say that the ideals a and b are linked by I over M , denoted a ∼(I;M) b, if bM = IM :M a and aM = IM :M b.
The ideals a and b are said to be geometrically linked by I over M if aM ∩ bM = IM . Also, we say that the ideal
a is linked over M if there exist ideals b and I of R such that a ∼(I;M) b. a is M -selflinked by I if a ∼(I;M) a. Note
that in the case where M = R, this concept is the classical concept of linkage of ideals in [7].

The following lemma, which will be used in the next proposition, finds some relations between local cohomology
modules ofM with respect to ideals which are linked overM.

Lemma 2.2. Assume that I is an ideal of R such that a ∼(I;M) b. Then

(i)
√
I + AnnM =

√
(a ∩ b) + AnnM . In particular, Hi

a∩b(M) ∼= Hi
I(M), for all i.

(ii) Let I = 0. Then,
√
0 : R

AnnM
a =

√
Ann aM
AnnM =

√
b+AnnR M
AnnR M . Therefore, Hi

AnnR M :Ra(M) ∼= Hi
Ann aM (M) ∼=

Hi
b(M). In other words, if M is faithful, then Hi

b(M) ∼= Hi
0:Ra(M).

Proposition 2.3. Let I be an ideal of R such that a ∼(I;M) b and set t := grade MI . Then cd (a + b,M) ≤
Max {cd (a,M), cd (b,M), t+1}.Moreover, if cd (a+ b,M) ≥ t+1, e.g. a and b are geometrically linked overM ,
then the equality holds.

The following corollary, which is immediate by the above proposition, shows that, in spite of [2, 21.22], parts of an
R-regular sequence can not be linked over R.

Corollary 2.4. Let (R,m) be local and x1, ..., xn ∈ m be anR-regular sequence, where n ≥ 4. Then (xi1 , ..., xij ) ≁
(xij+1 , ..., xi2j ), for all 1 < j ≤ [n2 ] and any permutation (i1, ..., i2j) of {1, ..., 2j} .
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Let M ̸= aM . It is known that, e.g. by [1, 1.3.9], grade Ma ≤ cd (a,M). Then M is said to be relative Cohen-
Macaulay with respect to a if

cd (a,M) = grade Ma.

In the following proposition we compute the cohomological dimension of an R-module M with respect to a in two
cases.

Proposition 2.5. Let I be an ideal of R generating by an M -regular sequence and a ∼(I;M) b.

(i) IfM is relative Cohen-Macaulay with respect to a+b, thenHi
a(M) = 0 for all i /∈ {grade Ma, grade Ma+b}.

(ii) If I = 0, then cd (a,M) = cd (a, M
bM ).

The next theorem, which is our main result, provides a formula for cd (a,M) in the case where a is linked overM .

Theorem 2.6. Let I be an ideal of R generating by an M -regular sequence such that Ass M
IM = MinAss M

IM and a
is linked by I over M. Then

cd (a,M) ∈ {grade Ma, cd (a,Hgrade Ma
c (M)) + grade Ma},

where c :=
∩

p∈Ass M
IM −V (a) p.

Proof. Note that, by [3, 2.7], Ass M
aM ⊆ Ass M

IM . Set t := grade Ma. Without loss of generality, we may assume
that cd (a,M) ̸= t. Hence, there exists p ∈ Ass M

IM − V (a), else,
√
I + AnnM =

√
a+ AnnM which implies that

cd (a,M) = t. We claim that
grade M (a+ c) > t. (1)

Suppose the contrary. So, there exist p ∈ Ass M
IM and q ∈ Ass R

c such that a + q ⊆ p. By the assumption, p = q
which is a contradiction to the structure of c.
Let A := {p|p ∈ Ass M

IM ∩ V (a)}. Then, in view of [3, 2.7],
√
a+ AnnM =

∩
p∈MinAss M

aM

p ⊇
∩
p∈A

p.

On the other hand, let p ∈ MinA. Then, there exists q ∈ MinAss M
aM such that q ⊆ p. Hence, again by [3, 2.7], q ∈ A

and, by the structure of p, q = p. Therefore,
√
a+ AnnM =

∩
p∈A

p. (2)

Whence, using (2), it follows that
√
I + AnnM =

∩
p∈Ass M

IM

p =
∩

p∈Ass M
aM

p ∩ c =
√
a ∩ c+ AnnM.

Now, in view of (1), we have the following Mayer-Vietoris sequence

0 −→ Ht
a(M)⊕Ht

c(M) −→ Ht
I(M) −→ N −→ 0 (3)

for some a-torsion R-module N . Applying Γa(−) on (3), we get the exact sequence

0 → Ht
a(M)⊕ Γa(H

t
c(M)) → Γa(H

t
I(M)) → N

f→ H1
a(H

t
c(M)) → H1

a(H
t
I(M)) → 0

and the isomorphism
Hi

a(H
t
c(M)) ∼= Hi

a(H
t
I(M)), for all i > 1.
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Also, using [6, 3.4], we have Hi+t
a (M) ∼= Hi

a(H
t
I(M)), for all i ∈ N0. This implies that

Hi
a(M)


∼= Hi−t

a (Ht
c(M) i > t+ 1,

∼= H1
a(H

t
c(M)

im(f) i = t+ 1,
̸= 0 i = t,
0 otherwise.

Now, the result follows from the above isomorphisms.

The following corollary, which follows from the above theorem, provides a precise formula for cd (a,M) in the case
where a is geometrically linked over M and shows how far cd (a,M) is from grade Ma. Note that by [1, 1.3.9],
grade Ma ≤ cd (a,M).

Corollary 2.7. Let I be an ideal of R generating by an M -regular sequence and a and b be geometrically linked by
I over M . Also, assume that M is not relative Cohen-Macaulay with respect to a. Then

cd (a,M) = cd (a,Hgrade Ma
b (M)) + grade Ma.

Proposition 2.8. Let I be an ideal of R generating by an M -regular sequence and a and b be geometrically linked
by I over M . Then grade Ma+ b = grade MI + 1.

Remark 2.9. A linked ideal can be linked with more than one ideal. Let R be local and x, y, z be an M -regular
sequence. ThenRx andRy are geometrically linked overM . AlsoRx andRz are geometrically linked overM . The
following corollary shows that for all ideals b which are geometrically linked with a overM , cd (a,Hgrade Mb

b (M)) is
constant.

Corollary 2.10. Let a be linked over M . Then, for every ideal b which is geometrically linked with a over M ,
cd (a,Hgrade Mb

b (M)) is constant. In particular,

cd (a,Hgrade Mb
b (M)) =

 1, M is relative Cohen-Macaulay
with respect toa,

cd (a,M)− grade Ma, otherwise.

Proof. Assume that M is relative Cohen-Macaulay with respect to a and a and b are geometrically linked by some
M -regular sequence I of length t overM. Then, by [3, 2.8], we have the following Mayer-Vietoris sequence

0 −→ Ht
a(M)⊕Ht

b(M) −→ Ht
I(M) −→ N −→ 0 (4)

for some a-torsion R-module N . Applying Γa(−) on (4), we get the exact sequence

Hi−1
a (N) → Hi

a(H
t
b(M)) → Hi

a(H
t
I(M)),

for i > 1. Now, by [6, 3.4] and the assumption, we get Hi
a(H

t
b(M)) = 0, for i > 1. On the other hand, again by [3,

2.8] , Γa(H
t
b(M)) = 0.

Therefore, using the convergence of spectral sequence

Hi
a(H

j
b(M)) ⇒i H

i+j
a+b(M)

and the assumption, we get H1
a(H

t
b(M)) ∼= Ht+1

a+b(M). Now, by 2.8, H1
a(H

t
b(M)) ̸= 0 and cd (a,Hgrade Mb

b (M)) =
1.
In the case whereM is not relative Cohen-Macaulay with respect to a, the result follows from 2.7.
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Convetion 2.11. Assume that I is an ideal of R which is generated by anM -regular sequence. We define the set

S(I;M) := {a ◁ R|I ⫋ a, a = IM :R IM :M a}.

S(I;R) actually contains of all linked ideals by I .

The following proposition, which is needed in the next two items, shows that any ideal a with aM ̸= M can be
embedded in a redical ideal a′ of S(I;M) for some I.

Proposition 2.12. Assume that aM ̸= M . Then,

(i) There exists an ideal I , generating by anM -regular sequence, such that a can be embedded in a radical element
a′ of S(I;M) with grade Ma′ = grade Ma =: t. Also, a′ can be chosen to be the smallest radical ideal with this
property.

(ii) Let a′ be as in (i). Then AssHt
a(M) = Ass R

a′ . In particular, a′ =
∩

p∈AssHt
a(M) p and it is independent of the

choice of the ideal I.

(iii) Let a be a linked ideal over M . Then,
√
a+ AnnM =

∩
p∈AssHt

a(M) p.

The following theorem provides some conditions in order to have cd(a,M) < dim M.

Theorem2.13. Let (R,m) be local and x = x1, ..., xt be anM -regular sequence of length t. Assume thatHdim M
p (M) =

0 for all p ∈ AssR M
(x)M . Then, Hdim M

a (M) = 0 for any ideal a ⊇ (x) with grade Ma = t.

Remark 2.14. Let the situations be as in the above theorem and assume, in addition, that (R,m) is complete. Let
a ⊇ (x) be an ideal with grade Ma = t. Then, a can not be coprimary with a member of Assh M ,i.e. there is no
p ∈ Assh M with

√
a+ p = m.

Corollary 2.15. Let Hdim R
b (R) = 0 for any linked ideal b over R. Then Hdim R

a (R) = 0 for any ideal a.
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Abstract

The rate of a graded module is a measure of the growth of shifts in its minimal graded free
resolution. In this paper, we consider this invariant and study its behaviour under some special
change of rings and also tensor product.

1. Introduction

Let R be a standard graded algebra over a field K, i.e. R is generated as an K-algebra by finitely many elements of
degree 1. Also, let m :=

⊕
i∈N Ri be the homogeneous maximal ideal of R and M be a finitely generated graded

R-module . One of the important invariants attached toM is the Castelnuovo-Mumford regularity ofM , defined by

regR(M) := sup{tRi (M)− i : i ≥ 0},

where for all i ≥ 0, tRi (M) denotes the maximum degree of minimal generators of the ith syzygy module of M ,
i.e. ti(M) := sup{j ∈ Z : ToriR(M,K)j ̸= 0}. This invariant plays an important role in the study of homological
properties of M . Regularity of a module can be infinite. Avramov and Peeva in [6] showed that regR(K) is zero or
infinite. The K-algebra R is called Koszul if regR(K) = 0. From certain point of views, Koszul algebras behave
homologically as polynomial rings. Avramov and Eisenbud in [5] showed that if R is Koszul, then the regularity of
every finitely generated graded R-module is finite.
Another important invariant of M is rate. The notion of rate for algebras introduced by Backelin ([7]) and it is
generalized in [3] for graded modules. The rate of a finitely generated graded moduleM over R is defined by

rateR(M) := sup{tRi (M)/i : i ≥ 1},

This invariant is always finite (see [3]). The Backelin rate of the algebra R is denoted by Rate(R) and is equal to
rateR(m(1)), the rate of the unique homogenous maximal ideal of R which is shifted by 1. By the definition, one can
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see that Rate(R) ≥ 1 and the equality holds if and only if R is Koszul, so that the Rate(R) can be taken as a measure
of how much R deviates from being Koszul.
The goal of this talk is to study the rate of modules under some change rings and also tensor product. Letφ : R → S be
a surjective homomorphism of standard gradedK-algebras andM be a finitely generated graded S-module. Aramova
et al. in [3, Proposition 1.2] studied the behavior of rate via change of rings. They showed that

rateS(M) ≤ max{rateR(M), rateR(S)}.

But, one can see that their proof works for the case whereM is non-negatively graded over S. In this talk we consider
this problem. More precisely, with the above assumptions, we show that

rateR(M) ≤ max{rateS(M), rateR(S)}+max{0, tS0 (M)}.

By a result of Backelin and Fröberg ([8]) the tensor product of two Koszul algebras are Koszul. Here we extend this re-
sult for the rate of modules. More precisely, we show that ifR and S are two standard gradedK-algebras andM andN
are finitely generated graded modules overR and S respectively, then rateT (M⊗KN) ≤ max{rateR(M), rateS(N)},
where T = R⊗K S ( Proposition 4.2).
Throughout,K is a field and R =

⊕
i∈N0

Ri is a standard gradedK-algebra. Also,M =
⊕

i∈Z Mi denotes a finitely
generated graded R-module.

2. Preliminaries

First of all, we prepare some notations and preliminaries which will be used in the paper.
Remark 2.1.

1. For each d ∈ Z we denote byM(d) the graded R-module withM(d)p = Md+p, for all p ∈ Z.
Denote by m the maximal homogeneous ideal of R, that is m = ⊕i∈NRi. Then we may considerK as a graded
R-module via the identificationK = R/m.

2. A minimal graded free resolution ofM as an R-module is a complex of free R-modules

F = · · · → Fi
∂i−→ Fi−1 → · · · → F1

∂1−→ F0 → 0

such that Hi(F), the i-th homology module of F, is zero for i > 0, H0(F) = M and ∂i(Fi) ⊆ mFi−1, for all
i ∈ N0. Each Fi is isomorphic to a direct sum of copies of R(−j), for j ∈ Z. Such a resolution exists and any
two minimal graded free resolutions are isomorphic as complexes of graded R-modules. So, for all j ∈ Z and
i ∈ N0 the number of direct summands of Fi isomorphic to R(−j) is an invariant ofM , called the ij-th graded
Betti number ofM and denoted by βR

ij(M).
Also, by definition, the i-th Betti number of M as an R-module, denoted by βR

i (M), is the rank of Fi. By
construction, one has βR

i (M) = dimk(TorRi (M,K)) and βR
ij(M) = dimk(TorRi (M,K)j).

3. For every integer i we set
tRi (M) := max{j : βR

ij(M) ̸= 0}.
If βR

i (M) = 0 we set tRi (M) = 0.
4. The Castelnuovo-Mumford regularity ofM is defined by

regR(M) := sup{tRi (M)− i : i ∈ N0}.

This invariant is, after Krull dimension and multiplicity, perhaps the most important invariant of a finitely gen-
erated graded R-module.

Definition andRemark 2.2. Following [13],M is calledKoszul if the associated gradedmoduleMg := ⊕i≥0m
iM/mi+1M

has 0-linear resolution. The ring R is Koszul if the residue fieldK, as an R-module, is Koszul.
The Castelnuovo-Mumford regularity plays an important role in the study of homological properties of M and it is
clear that regR(M) can be infinite. Avramov and Peeva in [6] proved that regR(K) is zero or infinite. Also, Avramov
and Eisenbud in [5] showed that if R is Koszul, then the regularity of every finitely generated graded R-module is
finite.



412 Jahangiri / The 4th National Congress on Mathematics and Statistics

3. The rate of modules

Definition and Remark 3.1.

1. The Backelin rate of R is defined as

Rate(R) := sup{(tRi (K)− 1)/i− 1 : i ≥ 2},

and generalization of this for modules is defined by

rateR(M) := sup{tRi (M)/i : i ≥ 1}.

2. A comparison with Bakelin’s rate shows that Rate(R) = rateR(m(1)). Also, it turns out that the rate of any
module is finite (see [3, Corollary 1.3]).

3. One can see that rateR(M) ≤ regR(M) + 1.

Remark 3.2. Consider a minimal presentation of R as a quotient of a polynomial ring, i.e.

R ∼= S/I,

where S = k[X1, · · · , Xn] is a polynomial ring and I is an ideal generated by homogeneous elements of degree ≥ 2.
I is called a defining ideal of R. Letm(I) denotes the maximum of the degree of a minimal homogeneous generator
of I . Then, by (the graded version of) [9, 2.3.2], tR2 (K) = m(I). Therefore, one has

Rate(S/I) ≥ m(I)− 1. (1)

From the above inequality one can see that Rate(R) ≥ 1 and the equality holds if and only if R is Koszul. So
that Rate(R) can be taken as a measure of how much R deviates from being Koszul. Also, for a module M with
indeg(M) = tR0 (M) = 0 we have rateR(M) ≥ 1 and the equality holds if and only ifM is Koszul.

Lemma 3.3. Let
· · · → Ln → Ln−1 → · · · → L1 → L0 → L → 0

be an exact sequence of graded R-modules and homogeneous homomorphisms. Then

tRn (L) ≤ max{tRn−i(Li) : 0 ≤ i ≤ n}.

Proof. We prove the claim by induction on n.
In the case n = 0, the result follows using the surjection

TorR0 (L0,K)j → TorR0 (L,K)j

and Remark 2.1(3). Now, let n > 0 and suppose that the result has been proved for smaller values of n. LetK1 be the
kernel of the homomorphism L0 → L. Then, using the exact sequence

· · · → Li → · · · → L1 → K1 → 0

and the inductive hypothesis, we have

tRn−1(K1) ≤ max{tRn−1−i(Li+1)|0 ≤ i ≤ n− 1}. (2)

Also, the exact sequence
0 → K1 → L0 → L → 0

and Remark 2.1(4) implies that
tRn (L) ≤ max{tRn (L0), t

R
n−1(K1)}.

Now, the result follows from 2 and the above inequality.
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In the following theorem we study the rate of modules via change of rings.

Theorem 3.4. Let φ : R → S be a surjective homogeneous homomorphism of standard gradedK-algebras. Assume
that M is a finitely generated graded S-module. Then

rateR(M) ≤ max{rateS(M), rateR(S)}+max{0, tS0 (M)}.

Proof. Let
F : · · · → Fn → Fn−1 → · · · → F0 → 0

be the minimal graded free resolution ofM as an S-module. Applying Lemma 3.3 to F, one has

tRn (M) ≤ max{tR0 (Fn), t
R
1 (Fn−1), · · · , tRn (F0)}.

Note that
tRi (Fj) = tRi (⊕r∈ZS(−r)β

S
jr(M)) = tRi (S) + tSj (M).

In particular, since tR0 (S) = 0, we have tR0 (Fj) = tSj (M). Therefore, for any integer n ≥ 1, we get

tRn (M)

n
≤ max{ t

S
n(M)

n
,
tR1 (S) + tSn−1(M)

n
, · · · , t

R
n (S) + tS0 (M)

n
}. (3)

Let a = max{rateR(S), rateS(M)} then for all j > 0, we have tSj (M) ≤ ja and tRj (S) ≤ ja. Now, by (3), one has

tRn (M)

n
≤ max{a, a+ tS0 (M)}

and this implies our desired inequality.

Remark 3.5. Let the situation be as in the above theorem.

1. Aramova et al. in [3, Proposition 1.2] studied the behaviour of rate via change of rings. They showed that

rateS(M) ≤ max{rateR(M), rateR(S)}.

But, one can see that their proof works for the case whereM is non-negatively graded over S.
2. We remark that in particular case in the above theorem, if tS0 (M) ≤ 0 and rateR(S) = 1, then

rateR(M) ≤ rateS(M).

3. In view of (1) and (2), ifM is generated in degree zero and rateR(S) = 1, then

rateR(M) = rateS(M).

4. Bounding Rate and regularity of tensor product

In this section we find upper bounds for the rate and regularity of tensor product of modules over standard graded
K-algebras in terms of rate and regularity of those modules.
The following lemma will be used in the next theorem.

Lemma 4.1. Let R and S be two standard gradedK-algebras andM andN be two finitely generated graded R and
S-modules, respectively. Set T := R⊗K S. Then

tTn (M ⊗K N) = max{tRi (M) + tSj (N) : i, j ≥ 0 and i+ j = n}.
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Proof. Let
F : · · · → Fi → Fi−1 → · · · → F0 → M → 0

and
G : · · · → Gj → Gj−1 → · · · → G0 → N → 0

be the minimal graded free resolutions ofM andN as an R and S-module, respectively. We show that F⊗K G is the
minimal graded free resolution ofM ⊗K N as T -module:
Note that T+ = R+⊗K S⊕R⊗K S+ is the homogeneous maximal ideal of T . Let a ∈ Fi and b ∈ Gj with i+j = n.
Then

∂F⊗KG(a⊗ b) = ∂F(a)⊗ b± a⊗ ∂G(b)

∈ R+Fi−1 ⊗K Gj ⊕ Fi ⊗K S+Gj−1

⊆ T+(Fi−1 ⊗K Gj ⊕ Fi ⊗K Gj−1).

Now consider the Künneth map

KFG : H(F)⊗K H(G) −→ H(F⊗K G)

KFG(cls(a)⊗ cls(b)) = cls(a⊗ b)

Since H(F) is a free K-module, KFG is an isomorphism (see [4, Proposition 1.3.4]). Therefore, F ⊗K G is acyclic
and augmented toM ⊗K N .
Now, let r, s ∈ N0 with r + s = n, Fr =

⊕
i∈Z R(−i)β

R
ri(M) and Gs =

⊕
j∈Z S(−j)β

S
sj(N). Then we have

tTn (M ⊗K N) = max{i+ j : βR
ri(M)βS

sj(N) ̸= 0}
= max{tRr (M) + tSs (N) : r + s = n},

as desired.

Backelin and Fröberg in [8] showed that the tensor product R ⊗K S of two standard graded K-algebras is Koszul if
and only ifR and S are both Koszul. In the following theorem we consider this problem for modules. More precisely,
we find an upper bound for the rate and regularity of tensor product of two modules in terms of the rate and regularity
of each of them. As a result, it gives a sufficient condition for the Koszulness of tensor product of two modules.

Theorem 4.2. Let the situations be as in Lemma 4.1. Then

1. rateT (M⊗KN) ≤ max{rateR(M), rateS(N)}. In particular, ifR andS are Koszul algebras, then so isR⊗KS.
2. regT (M ⊗K N) ≤ regR(M) + regS(N).

Proof. 1) Let rateR(M) = a and rateS(N) = b. Then, by definition, for all i, j ≥ 1, we have

tRi (M) ≤ ai and tSj (N) ≤ bj.

So, if i+ j = n then
tRi (M) + tSj (N) ≤ ai+ bj ≤ max{a, b}n.

Now, by the above lemma,
tTn (M ⊗K N) ≤ max{a, b}n.

Therefore,
rateT (M ⊗K N) ≤ max{rateR(M), rateS(N)},

as desired.
2) The proof of (2) is similar and follows from Lemma 4.1 .
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Abstract

Assume thatD be an division algebra with centreF of indexn. LetD′ the commutator subgroup
of the multiplicative group D∗. For a given subgroup G of D∗, G is maximal in D∗ if for any
subgroupH ofD∗ such thatG ⊆ H , we haveH = D∗. We defineG(D) := D∗/RN(D∗)D′,
where RN(D∗) is the image of D∗ under the reduced norm of D to F . In this paper, we
investigate the structure of G(D). Let A = Mn(D) be an F -central simple algebra of finite
dimension its center. Assume that Br(F ) = ⊕Z2 and F ∗n ̸= F ∗. Then either G(A) :=
A ∗ /F ∗A′ ̸= 1 or F ∗2 = RND/F (D

∗).

1. Introduction

Assume thatD be an division algebra with centre F of index n. LetD′ the commutator subgroup of the multiplicative
group D∗. For a given subgroup G of D∗, G is maximal in D∗ if for any subgroup H of D∗ such that G ⊆ H , we
haveH = D∗. We define G(D) := D∗/RN(D∗)D′, where RN(D∗) is the image ofD∗ under the reduced norm of
D to F , is an abelian periodic group of a bounded exponent dividing the index ofD over F . We know that this group
is not trivial in general. For example, when D is the algebra of real quaternions, we have G(D) is trivial whereas for
rational quaternions G(D) is isomorphic to a direct product of copies of Z2. Consider that G(D) is not trivial, so by
Prufer- Baer Theorem, we obtain that G(D) is isomorphic to a direct product of Zri , when ri divides the index of D
over F . In addition, we conclude that the existence of normal maximal subgroups of finite index in D∗. Thus, when
G(D) is not trivial, then D∗ contains maximal subgroups.

The problem of whether the multiplicative group of D contains non-cyclic free subgroups seems to be posed first by
Lichtman in [8]. In [5] and [6] stronger versions of this problem have been investigated which deal with the existence
of non-cyclic free subgroups in normal or subnormal subgroups of GL1(D). Also, the question on the existence of
non-cyclic free subgroups in linear groups over a field was studied by Tits in [14] which asserts that in the characteristic
0, every subgroup of the general linear group over a field F either contains a non-cyclic free subgroup or is soluble-
by-finite, and every finitely generated subgroup either contains a non-cyclic free subgroup or is soluble-by-finite in
the case of prime characteristic. This result of Tits is now referred as the Tits Alternative. Lichtman in [8] showed that
there exists a finitely generated group which is not soluble-by-finite and does not contain a non-cyclic free subgroup.

For more information on these concepts, please refer to [2], [3], [7], [11],[12] and [13].
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2. Main Result

In references [1], [3]and [7] various studies have been performed on the maximal subgroups of multiplicative sub-
groups of division algebras as well as the G (D) structure. Proven for example:

Theorem A. Let D be an F -central division algebra of index pe such that F contains a primitive p-th root of unity
and G(D) = 1. Then D is a quaternion algebra.

Theorem B. Given an F -central division algebra D of index n, the following conditions are equivalent:
(1) G(D) = 1;
(2) SK1(D) = 1 and F ∗2 = F ∗2n;
(3) G0(D) = 1 and F ∗2 = F ∗2n;
(4) D∗is Fπ-perfect where π is the set of all primes dividing ind(D).

Also, examples show that G(D) is not stable under the extension over formal Laurent series. We then have an ana-
logue of the Lipnickii Theorem by showing that there exists a field F and F -central division algebra D of odd index
such that G(D) (or G(D)) can be any finite cyclic group.

Assume that a field F is a field, set F ∗ the multiplicative group of F . For any prime number p, set Fp be its prime
subfield. An absolutely algebraic field, denoted by aaf, is an algebraic extension of Fp. It is easily checked that for
any aaf F we obtain that F =

∪
n∈S Fpn , where S is a nonempty subset of the positive integers such that for any

n,m ∈ S we conclude that Fplcm(n,m) ⊆ F . Also, if n ∈ S and x|n, then Fpx ⊆ F . These conditions are necessary
and sufficient conditions for when F is an absolutely algebraic field (aaf). It is also clear that any aaf is perfect. For
this field it is proved that Br(F ) = 0. Let A = Mn(D) be an F -central simple algebra of finite dimension its center.
Let G(A) := A∗/F ∗A′ ̸= 1. So for any aaf F , G(A) := F ∗/F ∗n.

In this manner, we prove the following result:

Main Result. Let A = Mn(D) be an F -central simple algebra of finite dimension its center. Assume that Br(F ) =
⊕Z2 and F ∗n ̸= F ∗. Then either G(A) := A∗/F ∗A′ ̸= 1 or F ∗2 = RND/F (D

∗).

Proof. On the contrary, consider that G(A) = 1. We know that A = Mn(D), when D is a division ring of finite
dimensional over center F . By Theorem 5.7 of [10], we obtain that G(A) = A∗/F ∗A′ = D∗/F ∗nD′. If F = D,
then F ∗n = F ∗, which is a contradiction. Then, F ̸= D with F ∗nD′ = D∗, and soG(D) = 1. Since Br(F ) = ⊕Z2

we conclude that D is a quaternion division algebra. Therefore, there exist α, β ∈ F ∗such that D = (α,βF ) and
D = a+ bi+ cj + dk|a, b, c, d ∈ F ∗ with i2 = α, j2 = β, ij = −ji = k, and RND/F (a + bi + cj + dk) =
a2 − αb2 − βc2 + αβd2. Thus F ∗D′ = D∗, for any x ∈ D∗ we have x = ac with a ∈ F ∗ and c ∈ D′. This implies
that RND/F (x) = a2 ∈ F ∗2, and hence F ∗2 = RND/F (D

∗), which is a contradiction.
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Abstract

The Frattini subgroup of a group G is defined as the intersection of all maximal subgroups of
G. If we have no maximal subgroups in G, we set ϕ(G) = G. For finite groups G the Frattini
subgroup, being a nilpotent subgroup. For infinite groups, we have a result of Wehrfritz in [10],
which says that the Frattini subgroup of a finitely generated linear group is nilpotent. Here we
investigate the Frattini subgroup of the general skew linear group A∗ = GLn(D) for various
division ringsD. LetA = Mn(D) be anF -central simple algebra of finite dimension its center.
Assume that F is an absolutely algebraic field such that contains no q-th root of unity for any
prime number q, then F ∗ ∩ϕ(A∗) = F ∗Z(A′).

1. Intrduction

Assume that D is a division algebra, when F = Z(D). Set A := Mn(D) the full n× n matrix ring over D and also
let A∗ := GLn(D) the general skew linear group over D. Consider that A′ := SLn(D) the derived group of A∗.
We say that a subgroupM of A∗ is maximal in A∗if for any subgroup L of A∗ withM ⊆ L, we obtain that L = A∗.
When the dimension [A : F ] of A/F is finite, it is known that the group G(A) := A∗/F ∗A′ is periodic of a bounded
exponent dividing the index ofA. Consequently, by Prufer–Baer Theorem , we obtain that normal maximal subgroups
in A∗.

The Frattini subgroup of a group G is defined as the intersection of all maximal subgroups of G. If we have no max-
imal subgroups in G, we set ϕ(G) = G. For finite groups G the Frattini subgroup, being a nilpotent subgroup. It is
known that Φ(G) is equal to the set of all non-generators or non-generating elements ofG.Notice that non-generating
elements of a greoupG are elements such that can always be removed from a generating set. Which means an element
a of G such that wheneverX is a generating set of G containing a. Also, Φ(G) is always a characteristic subgroup of
G; and it is a normal subgroup of G. When G is finite, we know that Φ(G) is nilpotent. Where G is a finite p-group,
thus Φ(G) = Gp[G,G]. In addition, the Frattini subgroup is the smallest normal subgroup N such that the quotient
group G/N is an elementary abelian group and isomorphic to a direct sum of cyclic groups of order p. Also„ if the
quotient group G/Φ(G) has order pk, then k is the smallest number of generators for G. Also, a finite p-group is
cyclic if and only if its Frattini quotient is cyclic. We say that a finite p-group is elementary abelian if and only if its
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Frattini subgroup is the trivial group.

It seems that the most difficult case in the investigation of the structure of Frattini subgroup of GLn(D) is the case
n = 1, since we do not know in general if we have maximal subgroups inGL1(D) for a noncommutative division ring
D (cf. [5]). However, for the real quaternion division algebraH , we will be able to determine the Frattini subgroup of
GLn(H) for all n ≥ 1. In fact, it is shown that Frat(GLn(H)) = Z(GLn(H)). It is proved that, if F is an algebraic
number field, then the group of roots of unity, denoted by µ(F ), contains 2t elements. In this case it is proved that

Frat(F ∗) = Frat(µ(F )) ∼= Frat(Z2t).

Also, if A is an F -central simple algebra of finite dimension over an algebraic number field, then

Frat(µ(F ))Z(A′) ⊆ F ∗ ∩ Frat(A∗) ⊆ ∩p(µ(F )p)Z(A′),

where p is a prime with p|(2t/(2t, [A : F ])). If (2t, [A : F ]) = 1, then F ∗∩Frat(A∗) = Frat(µ(F )). If F is a local
field with residue class field of p elements, set U (n) := 1 + pnO, where O is the valuation ring. It is proved that for
any prime number q ̸= p, (U (1))q = U (1) and Frat(F ∗) = (Frat(µp−1)) × (U (1))p. Furthermore, if A is of index
m :=

√
[A : F ] andG := F ∗ ∩Frat(A∗), it is shown thatG = (∩qF

∗q)Z(A′), where q is a prime with (q,m) = 1.

For more results see [1], [2],[3], [4], [8], [9], [10] and [11].

2. Main Result

For infinite groups, we have a result of Wehrfritz in [10], which says that the Frattini subgroup of a finitely generated
linear group is nilpotent. Not much is known about the structure of the Frattini subgroup for skew linear groups. Here,
we investigate the Frattini subgroup of the general skew linear group A∗ = GLn(D) for various division rings D. If
n > 1, Lemma 1 shows that ϕ(A∗) is central. For example, it is proved that:

Theorem A. Given a global field F , let A be a finite dimensional F -central simple algebra. Assume that the group
µ(F ) of roots of unity of F contains r elements. Then, we have

ϕ(µ(F ))Z(A′) ⊂ F ∗
∩

ϕ(A∗) ⊂
∩
p

(µ(F )p)Z(A′)

where p is a prime with
p|(r/(r, [A : F ])).

If (r, [A : F ]) = 1, then F ∗ ∩ϕ(A∗) = ϕ(µ(F )).

In this manner, we prove the following result:

Main Result. Let A = Mn(D) be an F -central simple algebra of finite dimension its center. Assume that F is an ab-
solutely algebraic field such that contains no q-th root of unity for any prime number q, then F ∗ ∩ϕ(A∗) = F ∗Z(A′).

Proof. For any prime p, set Fp be its prime subfield, where Char(F ) = p. An absolutely algebraic field, or an aaf,
is an algebraic extension of Fp. One may easily check that for any aaf F we have F =

∪
n∈S Fpn , where S is a

nonempty subset of the positive integers such that for any n,m ∈ S we have Fplcm(n,m) ⊆ F . And, if n ∈ S and x|n,
then Fpx ⊆ F . The above conditions are necessary and sufficient conditions for when F is an absolutely algebraic
field or aaf. It is also clear that any aaf is perfect.

We haveF ∗ ∩ϕ(A∗) ⊆ F ∗ ∩
i∈I Mi, whereMi are normal maximal subgroups ofA∗of index pwith (p, [A : F ]) = 1.

When F ∗ = F ∗pZ(A′), then F ∗ does not any maximal subgroup of index p containing Z(A′). Consequently, A∗

has not any normal maximal subgroup M of index p such that F ∗ ⊈ M and thus F ∗ ∩
i∈I Mi ⊆ F ∗pZ(A′) = F ∗.
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Consider that F ∗ ̸= F ∗pZ(A′). Using Prufer-Baer Theorem, we conclude that F ∗/F ∗pZ(A′) is isomorphic to a
direct product Zp.
On the other hand, we know that for an commutative group G, ϕ(G) =

∩
Gp, when p is an arbitrary prime number.

it is clear that F ∗p = F ∗. But, since F contains no q-th root of unity for any prime number q, so F ∗q = F ∗. Now, by
simple calculation we conclude that F ∗ ∩ϕ(A∗) = F ∗Z(A′).
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Abstract

LetD be a noncommutativeF -central division algebra andN a subnormal subgroup ofGLn(D).
If M is a non-abelian maximal subgroup of N , such that M ′ is a locally finite group, then,
n = 1 and D is cyclic of prime degree p with a maximal cyclic subfield K/F such that the
groups Gal(K/F ) andM/(K∗ ∩N) are isomorphic. Furthermore, for any x ∈ M \K∗, we
have xp ∈ F ∗ andD = F [M ] =

⊕p
i=1 Kxi. So,Mn(D) is a cyclic crossed product.

1. Introduction

LetR be a ring and assume that S andK are subsets of ringR, the subring generated byK and S is showed byK[S].
The multiplicative group ofR is written asR∗. WhenG is a group and subset S ⊂ G, Z(G) and CG(S) are the center
and the centralizer of S in G, also the same notations are applied for R. NG(S) is used for the normalizer of S in G
and G′ for the derived group.
Assume thatR be a ring and S a sub-ring ofR andG be a subgroup of the multiplicative groupR normalizing S such
that R = S[G]. Suppose thatN = S ∩G is a normal subgroup of G and R =

⊕
t∈T tS, where T is some transversal

of N to G. Set E = G/N. Then, we say that R is a crossed product of S by E and we denote it by (R,S,G,E).

A locally finite group is a group for when every finitely generated subgroup is finite. The cyclic subgroups of a lo-
cally finite group are finitely generated hence finite, every element has finite order, and so the group is torsion. In
group theory, a locally finite group is a type of group that can be studied in ways analogous to a finite group. Sylow
subgroups, Carter subgroups, and abelian subgroups of locally finite groups have been studied. This topic is credited
to work in the 1930s by Russian mathematician Sergei Chernikov. A field of positive characteristic is called locally
finite if every finite subset of the field is contained in a finite subfield.

Assume that a division ring D be a division ring with center F and also consider that G a subgroup of GLn(D), the
space of column n-vectors V = Dn over D is a G-D bi-module. G is called irreducible (resp. completely reducible,
reducible) if V is irreducible (resp. completely reducible, reducible) as G-D bimodule. Furthermore, G is absolutely
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irreducible if F [G] = Mn(D).

For more information on these concepts, please refer to [2], [3], [4], [5], [8], [9] and [10].

D is said to be supersoluble crossed product if Gal(K/F ) is supersoluble. We also recall that a subgroup G of D∗

is irreducible if F [G] = D. When n = p, a prime, it is shown that D is cyclic if and only 1 if D∗ contains a
nonabelian soluble subgroup. this result is generalized to a division algebra of arbitrary degree n. To be more precise,
it is proved that D is supersoluble crossed product if and only if D∗ contains an irreducible abelianby- supersoluble
subgroup. it is presented a criterion for D to be nilpotent (abelian or cyclic) crossed product. In fact, it is shown that
a noncommutative finite dimensional F -central division algebra D is nilpotent (abelian or cyclic) crossed product if
and only if there exist an irreducible subgroup G of D∗ and an abelian normal subgroup A of G such that G/A is
nilpotent (abelian or cyclic). We recall that soluble subgroups of the multiplicative group of a division ring were first
studied by Suprunenko.

2. Main Results

In references [1], [6], [4], [5] and [8], various conditions have been examined to determine which group properties
cause the condition of the crossed product to occur. For example. it is proved that:

Theorem A. LetD be a noncommutative F -central division algebra andN a subnormal subgroup ofGLn(D) . IfM
is a non-abelian soluble maximal subgroup ofN , then, n = 1 andD is cyclic of prime degree p with a maximal cyclic
subfieldK/F such that the groupsGal(K/F ) andM/(K∗ ∩N) are isomorphic. Furthermore, for any x ∈ M \K∗,
we have xp ∈ F ∗ and D = F [M ] =

⊕p
i=1 Kxi. So,Mn(D) is a cyclic crossed product.

In this manner, we prove the following result:

Main Result. LetD be a noncommutative F -central division algebra andN a subnormal subgroup ofGLn(D) . IfM
is a non-abelian maximal subgroup of N , such thatM ′ is a locally finite group, then, n = 1 and D is cyclic of prime
degree p with a maximal cyclic subfield K/F such that the groups Gal(K/F ) and M/(K∗ ∩ N) are isomorphic.
Furthermore, for any x ∈ M \K∗, we have xp ∈ F ∗ and D = F [M ] =

⊕p
i=1 Kxi. So, Mn(D) is a cyclic crossed

product.

Proof. In order not to prolong the discussion, we present a brief proof. Since M ′ is a locally finite normal subgroup
of M , then by using Corollary 5.4.6 of [8], M/CM (M ′) is locally finite and therefore, it has a metabelian normal
subgroup of finite index. Consider thatG is a normal subgroup ofM such thatG/F ∗ is a metabelian normal subgroup
of M/F ∗ and [M/F ∗ : G/F ∗] < ∞. Thus, we conclude that [M : G] < ∞ and G

′′ ⊆ F . We may conclude
that either F [G] = Mn(D) or G ⊆ Z(M) = F ∗. Consider that G ⊆ F ∗. Thus [M : F ∗] < ∞. We obtain at a
contradiction. So, G is non-central and F [G] = Mn(D).

Now, consider that G′ ⊈ F . We know that G′ ⊆ M
′ and M

′ is a locally finite group, we conclude that G′ is a
locally finite group. Using Theorem 1.1.14 of [8], we conclude that F [G

′
] is a simple Artinian ring. We obtain that

M ⊆ NN (F [G
′
]∗), by maximality ofM , two cases may occur, i.e., eitherM = NN (F [G

′
]∗) or N = NN (F [G

′
]∗).

IfM = NGLn(D)(F [G
′
]∗), then F [G

′
]∗ ∩N ⊆ M . We obtain that G′ is non-central abelian normal subgroup ofM ,

which reduces to the previous case.

Consider N = NGLn(D)(F [G
′
]∗). Using Theorem 14.3.8 of [7] and Corollary 1 of [? ], we have either G′ ⊆ F or

F [G
′
] = Mn(D). The first case cannot happen. Now, let F [G

′
] = Mn(D). So,G′′ ⊆ F we haveG′′ ⊆ Z(G

′
). This

conclude thatG′ is nilpotent. Thus, by 2.5.2 of [8],G′ is abelian-by-finite. The group ring FG
′ satisfies a polynomial

identity. This implies that F [G
′
] satisfies a polynomial identity, and henceD satisfies a polynomial identity. Now, we

have [D : F ] < ∞. SinceM is an absolutely irreducible skew linear group, we conclude that M is an irreducible linear
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group (cf. [9, p. 100]). So, by Theorem 6 of [9, p. 135], M contains an abelian normal subgroup H of finite index.
IfH ⊆ F ∗, thusM/F ∗ is finite. We arrive at a contradiction. So,H is non-central, which reduces to the previous case.

Now, assume thatG′ ⊆ F . Then,G is nilpotent. With a similar argument as before, we coclude that eitherM ′ ∩G ⊆
F ∗ or F [M ′ ∩ G] = Mn(D). M ′ ∩ G is a locally finite nilpotent group. Therefore, the second case cannot happen.
Now, assume M ′ ∩ G ⊆ F ∗. Since F [M ′] = Mn(D) and [M ′ : M ′ ∩ G] < ∞, we conclude that [D : F ] < ∞.
Finally, we conclude thatM is soluble and conclusion is obtained.
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Abstract

In this paper, a generalization of weak flatness of acts, called left reversible weakly flat (LR-
weakly flat) is defined. Also we introduce condition LR-right reversible as a generalization of
right reversible, and we show that weakly right reversible does not imply LR-right reversible.
Finally, some basic results of property LR-weakly flat is given.

1. Introduction

Throughout this paper, unless otherwise stated, S always will stand for a monoid and LR-weakly flat will stand for a
left reversible weakly flat. For S, a nonempty setA is called a right S-act, usually denotedAS , if S acts onA unitarily
from the right, that is, there exists a mapping A × S → A, (a, s) 7→ as, satisfying the conditions (as)t = a(st) and
a1 = a, for all a ∈ A and all s, t ∈ S. Also, we denote by ΘS = {θ} a one-element right S-act. A right S-act AS is
called weakly flat if the functorAS⊗S− preserves all monomorphisms from left ideals of S into S. This is equivalent
to say that, as = a′t, for a, a′ ∈ AS , s, t ∈ S implies a⊗ s = a′ ⊗ t in AS ⊗ S(Ss ∪ St) (see [4]).
We recall from [3, 4] that a submonoid P of S is called weakly right reversible if for every s, t ∈ P , z ∈ S, sz = tz
implies the existence of u, v ∈ P such that us = vt, and S is called right (left) reversible, if for any s, t ∈ S, there
exists u, v ∈ S such that us = vt (su = tv).

An element s of S is called right e-cancellable for an idempotent e ∈ S, if s = es and kerρs ≤ kerρe. The monoid
S is called left PP if every principal left ideal of S is projective, as a left S-act. This is equivalent to saying that every
element s ∈ S is right e-cancellable for some idempotent e ∈ S (see [2]). The monoid S is called left PSF if every
principal left ideal of S is strongly flat, as a left S-act. This is equivalent to saying that S is right semi-cancellative,
that is, whenever su = s′u, for s, s′, u ∈ S, there exists r ∈ S such that u = ru and sr = s′r (see [6]). It is obvious
that every left PP monoid is left PSF .
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2. Basic Results

In this section, we introduce a generalization of weak flatness property and give some basic results. Also we introduce
condition LR-right reversible as a generalization of right reversible, and we show that weakly right reversible does
not imply LR-right reversible.

Definition 2.1. Let AS be a right S-act. We say that AS is left reversible weakly flat or LR-weakly flat if as = a′t
and sz1 = tz2, for a, a′ ∈ AS , s, t, z1, z2 ∈ S imply a⊗ s = a′ ⊗ t in AS ⊗ S(Ss ∪ St).

Theorem 2.2. The following statements are hold:

(1) If {Ai |i ∈ I} is a chain of subacts of an actAS and everyAi, i ∈ I isLR-weakly flat, then
∪
i∈I

Ai isLR-weakly

flat.

(2)
⨿
i∈I

Ai, where Ai, i ∈ I , are right S-acts, is LR-weakly flat if and only if Ai is LR-weakly flat, for every i ∈ I .

(3) The right S-act SS is LR-weakly flat.

Proof. Proofs are obvious.

Lemma 2.3. [4, Lemma 2.5.5] LetAS be a right S-act and SM be a left S-act. Then a⊗m = a′⊗m′, for a, a′ ∈ AS

andm,m′ ∈ SM , if and only if there exist s1, ..., sk, t1, ...tk ∈ S, b1, ..., bk−1 ∈ AS and n1, ..., nk ∈ SM such that

s1n1 = m
as1 = b1t1 s2n2 = t1n1

b1s2 = b2t2 s3n3 = t2n2
. . . . . .

bk−1sk = a′tk m′ = tknk.

Theorem 2.4. Any retract of any LR-weakly flat right S-act is LR-weakly flat.

Proof. Let AS be a retract of BS , which BS is LR-weakly flat. Let as = a′t, sz1 = tz2, for a, a′ ∈ AS , s, t, z1, z2 ∈
S. Since AS is a retract of BS , thus there exist homomorphisms φ : AS → BS and ψ : BS −→ AS , such that
ψφ = 1A. Then we have φ(as) = φ(a′t) or φ(a)s = φ(a′)t. Since φ(a), φ(a′) ∈ BS , by assumption we have
φ(a) ⊗ s = φ(a′) ⊗ t in BS ⊗ S(Ss ∪ St). Hence there exist t1, ..., tk, u1, ..., uk ∈ S, r1, ..., rk ∈ Ss ∪ St and
b1, ..., bk−1 ∈ BS such that

t1r1 = s
φ(a)t1 = b1u1 t2r2 = u1r1
b1t2 = b2u2 t3r3 = u2r2

. . . . . .
bk−1tk = φ(a′)uk t = ukrk.

Then ψ(φ(a)t1) = ψ(b1u1), and so at1 = ψ(b1)u1. Similarly, ψ(bi−1)ti = ψ(bi)ui, for 2 ≤ i ≤ k − 1, and
ψ(bk−1)tk = a′uk. Let ψ(bi) = ai, for i ∈ {1, ..., k − 1}. Now if we substitute ψ(bi) by ai, for i ∈ {1, ..., k − 1},
then we obtain a⊗ s = a′ ⊗ t in AS ⊗ S(Ss ∪ St).

Definition 2.5. A submonoid P of S is called LR-right reversible if for every s, s′ ∈ P , z1, z2 ∈ S, sz1 = s′z2
implies the existence of u, v ∈ P such that us = vs′.

Indeed, right reversible⇒ LR-right reversible⇒ weakly right reversible. The following example shows that weakly
right reversible does not imply LR-right reversible.
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Example 2.6. Let S =

{(
a 0
b 1

)
| a, b ∈ Z, a 6= 0

}
. Then S is a right cancellative monoid, and so it is weakly

right reversible, but S is not LR-right reversible, since(
3 0
3 1

)(
2 0
4 1

)
=

(
3 0
4 1

)(
2 0
2 1

)
,

but for every a, b, c, d ∈ Z, with ac 6= 0,(
a 0
b 1

)(
3 0
3 1

)
6=

(
c 0
d 1

)(
3 0
4 1

)
.

Proposition 2.7. ΘS is LR-weakly flat if and only if S is LR-right reversible.

Proof. Necessity. Let sz1 = s′z2, for s, s′, z1, z2 ∈ S. Since θs = θs′, thus θ ⊗ s = θ ⊗ s′ in ΘS ⊗ S(Ss ∪ Ss′),
and so by Lemma 2.3 there exist s1, ..., sn, t1, ..., tn, r1, ..., rn ∈ S, which ri ∈ {s, s′} for 1 ≤ i ≤ n, such that

t1r1 = s
t2r2 = s1r1
t3r3 = s2r2

. . .
s′ = snrn.

Now let s0 = 1 and r0 = s. If ri = s, for 1 ≤ i ≤ n, then s′ = sns implies that S is LR-right reversible, otherwise
let j is a first index such that rj = s′. Then tjs′ = sj−1s implies that S is LR-right reversible.

Sufficiency. Let θs = θt and sz1 = tz2, for s, t, z1, z2 ∈ S. By assumption there exist u, v ∈ S, such that us = vt.
Hence θ ⊗ s = θu ⊗ s = θ ⊗ us = θ ⊗ vt = θv ⊗ t = θ ⊗ t in ΘS ⊗ S(Ss ∪ St), and so ΘS is LR-weakly flat, as
required.

Theorem 2.8. Let S be left reversible. Then every LR-weakly flat right S-act is weakly flat.

Proof. Suppose AS be a LR-weakly flat right S-act. Let as = a′t, for a, a′ ∈ AS and s, t ∈ S. Since S is left
reversible, there exist z1, z2 ∈ S, such that sz1 = tz2, and so by assumption a ⊗ s = a′ ⊗ t in AS ⊗ S(Ss ∪ St).
Thus AS is weakly flat, as required.

Theorem 2.9. Every LR-weakly flat right S-act is principally weakly flat.

Proof. Proof is obvious.

Definition 2.10. A right S-actAS satisfies Condition LR-W , if as = a′t and sz1 = tz2, for a, a′ ∈ AS , s, t, z1, z2 ∈
S, then there exist a′′ ∈ AS and w ∈ Ss ∩ St, such that as = a′t = a′′w.

Theorem 2.11. A right S-act AS is LR-weakly flat, if and only if it is principally weakly flat and satisfies Condition
LR-W .

Proof. Necessity. AS is principally weakly flat, by Theorem 2.9. Now let as = a′t and sz1 = tz2, for a, a′ ∈ AS ,
s, t, z1, z2 ∈ S. By assumption, a ⊗ s = a′ ⊗ t in AS ⊗ S(Ss ∪ St). Thus there exist s1, ..., sk, t1, ..., tk ∈ S,
u1, ..., uk ∈ Ss ∪ St, b1, ..., bk−1 ∈ AS such that

s1u1 = s
as1 = b1t1 s2u2 = t1u1
b1s2 = b2t2 s3u3 = t2u2

. . . . . .
bk−1sk = a′tk t = tkuk.
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If uj ∈ Ss, for 1 ≤ j ≤ k, then t = tkuk implies that t = us, for some u ∈ S. Thus we can take w = t and a′′ = a′.
Now let j be the first index such that uj ∈ St. If j = 1 then s = s1u1 ∈ St, and so s = vt, for some v ∈ S. Thus we
can take w = s and a′′ = a. Suppose j > 1. Since uj−1 ∈ Ss, sjuj = tj−1uj−1 implies that w = sjuj ∈ Ss ∩ St
and so as = as1u1 = b1t1u1 = · · · = bj−1sjuj = bj−1w. Thus we can take a′′ = bj−1, and so Condition LR-W is
satisfied, as required.

Sufficiency. Let as = a′t, sz1 = tz2, for a, a′ ∈ AS , s, t, z1, z2 ∈ S. Since AS satisfies Condition LR-W ,
there exist a′′ ∈ AS and w ∈ Ss ∩ St, such that as = a′t = a′′w. Also w = us = vt, for some u, v ∈ S. Since AS

is principally weakly flat, thus as = a′′us implies that a ⊗ s = a′′u ⊗ s in AS ⊗ SSs, and a′t = a′′vt implies that
a′ ⊗ t = a′′v ⊗ t in AS ⊗ SSt. Hence,

a⊗ s = a′′u⊗ s = a′′ ⊗ us = a′′ ⊗ vt = a′′v ⊗ t = a′ ⊗ t

in AS ⊗ S(Ss ∪ St), and so AS is LR-weakly flat, as required.

By using Theorem 2.11, the proof of the following theorem is similar to that of [7, Theorem 2.18].

Theorem 2.12. For any family {Ai}i∈I ,
∏
i∈I

Ai is LR-weakly flat if and only if it is principally weakly flat and for

any s, t, z1, z2 ∈ S, if sz1 = tz2 and Ais ∩ Ait 6= ∅, for every i ∈ I , then for every (wi)I ∈
∏
i∈I

(Ais ∩ Ait), there

exist (a′′i )I ∈
∏
i∈I

Ai and u ∈ Ss ∩ St such that (wi)I = (a′′i )Iu.

By a similar argument as in the proof of [7, Theorem 2.21], for a commutative monoid we can show LR-weakly flat
can be transferred from products of acts to their components.

Theorem 2.13. For a commutative monoid S, if
∏
i∈I

Ai is LR-weakly flat, then Ai is LR-weakly flat, for every i ∈ I .

Notice that in Theorem 2.13 commutativity of S is a sufficient condition. See the following example.

Example 2.14. If S is not LR-right reversible, then S is not right reversible, and so is not commutative. Since
(Θ × S)S ∼= SS and SS is LR-weakly flat, (Θ × S)S is also LR-weakly flat, but ΘS is not LR-weakly flat, by
Proposition 2.7.

Theorem 2.15. The following statements are equivalent:

(1) If AS =
∏
i∈I

Ai is LR-weakly flat, then Ai is LR-weakly flat, for every i ∈ I .

(2) If AS =
∏
i∈I

Ai is LR-weakly flat, then Ai satisfies Condition LR-W , for every i ∈ I .

(3) ΘS is LR-weakly flat.

(4) ΘS satisfies Condition LR-W .

(5) S is LR-right reversible.

(6) There exists a LR-weakly flat right S-act containing a zero.

(7) There exists a right S-act which containing a zero and satisfies Condition LR-W .
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Proof. Implications (1) ⇒ (2), (3) ⇒ (4) and (6) ⇒ (7) are obvious, by Theorem 2.11. Also (3) ⇔ (6) and
(4) ⇔ (7), since ΘS is a retract of any act containing zero. (4) and (5) are equivalent, by Proposition 2.7.

(2) ⇒ (3). Since SS
∼= SS ×ΘS , it is obvious, by Theorem 2.2.

(2) ⇒ (1). It follows from [7, Lemma 2.12] and Theorem 2.11.

(5) ⇒ (2). Suppose AS =
∏
i∈I

Ai is LR-weakly flat, and let ais = a′it, sz1 = tz2, for ai, a′i ∈ Ai, s, t, z1, z2 ∈ S.

Since S is LR-right reversible, there exist u1, v1 ∈ S such that u1s = v1t. For every j ∈ I \ {i}, let aj be a fix
element of Aj , and define

cj =

{
aju1 j 6= i
ai j = i

, dj =

{
ajv1 j 6= i
a′i j = i

.

Thus (cj)Is = (dj)It, and so by assumption, there exist (a′′j )I ∈
∏
i∈I

Ai and w ∈ Ss ∩ St such that (cj)Is = (dj)It

= (a′′j )Iw. Hence ais = a′it = a′′i w, and so Ai satisfies Condition LR-W , as required.

Theorem 2.16. Let ρ be a right congruence on S. Then the right S-act S/ρ is LR-weakly flat if and only if for every
s, t, z1, z2 ∈ S, with sρt and sz1 = tz2, there exist u, v ∈ S, such that 1(ρ ∨ kerρs)u, 1(ρ ∨ kerρt)v and us = vt.

Proof. Necessity. Let sρt and sz1 = tz2, for s, t, z1, z2 ∈ S. Then [1]ρs = [1]ρt. Since S/ρ satisfies Condition
LR-W , there exist x, y, w ∈ S, such that xs = yt and [1]ρs = [w]ρxs = [w]ρyt. If u = wx and v = wy, then
us = vt, sρ(us) and tρ(vt). Since S/ρ is principally weakly flat, by [4, Proposition 3.10.7], we get from sρ(us) that
1(ρ ∨ kerρs)u and from tρ(vt) that 1(ρ ∨ kerρt)v.

Sufficiency. Let [x]ρs = [y]ρt and sz1 = tz2, for x, y, s, t, z1, z2 ∈ S. Then (xs)ρ(yt), and so by assumption
there exist u, v ∈ S, such that 1(ρ ∨ kerρxs)u, 1(ρ ∨ kerρyt)v and uxs = vyt. By [4, Lemma 3.10.6], we have
[1]ρ ⊗ xs = [u]ρ ⊗ xs in S/ρ⊗ Sxs and [1]ρ ⊗ yt = [v]ρ ⊗ yt in S/ρ⊗ Syt. Hence

[x]ρ ⊗ s = [1]ρ ⊗ xs = [u]ρ ⊗ xs = [1]ρ ⊗ uxs = [1]ρ ⊗ vyt =

[v]ρ ⊗ yt = [1]ρ ⊗ yt = [y]ρ ⊗ t,

in S/ρ⊗S (Ss ∪ St). Therefore S/ρ is LR-weakly flat, as required.

Corollary 2.17. Let z ∈ S. Then the principal right ideal zS is LR-weakly flat, if and only if for all s, t, z1, z2 ∈ S,
zs = zt and sz1 = tz2 imply that there exist u, v ∈ S, such that us = vt, 1(kerλz ∨kerρs)u and 1(kerλz ∨kerρt)v.

Proof. Since zS ∼= S/kerλz , for every z ∈ S, it is sufficient to apply Theorem 2.16, for ρ = kerλz .

We know that every weakly flat right S-act is LR-weakly flat. Now from Theorem 2.9 and [4, Theorem 3.12.16] we
have the following theorem.

Theorem 2.18. Let w, t ∈ S, where wt 6= t. Then the following statements are equivalent:

(1) S/ρ(wt, t) is flat.

(2) S/ρ(wt, t) is weakly flat.

(3) S/ρ(wt, t) is LR-weakly flat.

(4) S/ρ(wt, t) is principally weakly flat.

(5) t is a regular element in S.
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Recall from [5] that a right ideal K of S is called left stabilizing, if for every k ∈ K there exists l ∈ K, such that
lk = k.

Theorem 2.19. Let KS be a right ideal of S. Then S/KS is LR-weakly flat if and only if S is LR-right reversible
andKS is left stabilizing.

Proof. Necessity. Suppose S/KS is LR-weakly flat. Then there are two cases that can arise:

Case 1. KS = S. Then S/KS
∼= ΘS is LR-weakly flat, and so S is LR-right reversible, by Propotion 2.7.

Case 2. KS 6= S. Then S/KS is principally weakly flat, by Theorem 2.11, and soKS is left stabilizing, by [4,
Theorem 3.10.11]. To show that S is LR-right reversible, let sz1 = tz2, for s, t, z1, z2 ∈ S. Suppose k ∈ KS .
Then [k]ρK

s = [k]ρK
t, and since by Theorem 2.11, S/KS satisfies Condition LR-W , there exist u, v ∈ S such

that us = vt.

Sufficiency. Suppose S is LR-right reversible andKS is left stabilizing. Then there are two cases that can arise:

Case 1. KS = S. Since S is LR-right reversible, S/KS
∼= ΘS is LR-weakly flat, by Propotion 2.7.

Case 2. KS 6= S. Let sρKt and sz1 = tz2. Then here are two cases that can arise:

2.1. s = t. If u = 1 = v, then S/KS is LR-weakly flat, by Theorem 2.16.
2.2. s 6= t. Then s, t ∈ KS . Since KS is left stabilizing, there exist l1, l2 ∈ KS , such that l1s = s
and l2t = t, that is l1 ker ρs1 and l2 ker ρt1. Since sz1 = tz2 and S is LR-right reversible, there exist
u′, v′ ∈ S, such that u′s = v′t. Let u = l1u

′ and v = l1v
′. Then 1 ker ρs l1 ρKu and so 1(ρK ∨ ker ρs)u.

Similarly, 1(ρK ∨ ker ρt)v. Since us = l1u
′s = l1v

′t = vt, S/KS is LR-weakly flat, by Theorem 2.16.

From above cases S/KS is LR-weakly flat, as required.

Now from Theorem 2.9 and [4, Proposition 3.12.19] we have the following theorem.

Theorem 2.20. LetKS be a proper right ideal of S. Then the following statements are equivalent:

(1) The right S-act S
K⨿
S is flat.

(2) The right S-act S
K⨿
S is weakly flat.

(3) The right S-act S
K⨿
S is LR-weakly flat.

(4) The right S-act S
K⨿
S is principally weakly flat.

(5) KS is left stabilizing.

It is shown in [1] that for a left PP monoid S, AS is weakly flat if and only if as = a′t, for a, a′ ∈ AS , s, t ∈ S
implies that there exist a′′ ∈ AS , u, v ∈ S and e, f ∈ E(S) such that es = s, ft = t, ae = a′′ue, a′f = a′′vf and
us = vt. In a similar way we can show the following theorem for LR-weakly flat.

Theorem 2.21. Let S be a left PP monoid. An act AS is LR-weakly flat if and only if, for every a, a′ ∈ AS and
s, t, z1, z2 ∈ S, as = a′t and sz1 = tz2 imply that there exist a′′ ∈ AS , u, v ∈ S, and e, f ∈ E(S) such that es = s,
ft = t, ae = a′′ue, a′f = a′′vf and us = vt.

Now we give a similar theorem for PSF monoid.

Theorem 2.22. Let S be a left PSF monoid. An act AS is LR-weakly flat if and only if, for every a, a′ ∈ AS and
s, t, z1, z2 ∈ S, as = a′t and sz1 = tz2 imply that there exist a′′ ∈ AS and u, v, r, r′ ∈ S, such that rs = s, r′t = t,
ar = a′′ur, a′r′ = a′′vr′ and us = vt.
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Proof. Necessity. Let as = a′t, sz1 = tz2, for a, a′ ∈ AS , s, t, z1, z2 ∈ S. Since, by Theorem 2.11, AS satisfies
Condition LR-W , there exist a′′ ∈ AS and u, v ∈ S such that as = a′′us, a′t = a′′vt and us = vt. Again by
Theorem 2.11, AS is principally weakly flat, and so a⊗s = a′′u⊗s and a⊗ t = a′′v⊗ t inAS ⊗SSs andAS ⊗SSt,
respectively. Then by Lemma 2.3, there exist s1, ..., sk, t1, ...tk ∈ S and b1, ..., bk−1 ∈ AS such that

s1s = s
as1 = b1t1 s2s = t1s
b1s2 = b2t2 s3s = t2s

. . . . . .
bk−1sk = a′′utk s = tks.

Let t0 = 1 and sk+1 = 1. Since S is right semi-cancellative, s1s = t0s implies the existence of r1 ∈ S, such that
r1s = s and s1r1 = t0r1. Then s2r1s = t1r1s implies the existence of r2 ∈ S such that r2s = s and s2r1r2 = t1r1r2.
If z = r1r2, then

zs = r1r2s = s, s1z = s1r1r2 = t0r1r2 = t0z, s2z = t1z.

Continuing this procedure, there exists r ∈ S, such that rs = s and sir = ti−1r, for 1 ≤ i ≤ k + 1. Thus we have

ar = a(t0r) = a(s1r) = (as1)r = (b1t1)r = b1(t1r) = b1(s2r) = (b1s2)r

= · · · = (bk−1sk)r = (a′′utk)r = a′′u(tkr) = a′′u(sk+1r) = a′′ur.

A similar argument shows that there exists r′ ∈ S such that r′t = t and a′r′ = a′′vr′.

Sufficiency. Suppose as = a′t and sz1 = tz2, for a, a′ ∈ AS and s, t, z1, z2 ∈ S. By assumption, there exist
a′′ ∈ AS and u, v, r, r′ ∈ S, such that rs = s, r′t = t, ar = a′′ur, a′r′ = a′′vr′ and us = vt. Thus

a⊗ s = a⊗ rs = ar ⊗ s = a′′ur ⊗ s = a′′u⊗ rs = a′′u⊗ s = a′′ ⊗ us

= a′′ ⊗ vt = a′′v ⊗ t = a′′v ⊗ r′t = a′′vr′ ⊗ t = a′r′ ⊗ t

= a′ ⊗ r′t = a′ ⊗ t,

in AS ⊗ S(Ss ∪ St), and so AS is LR-weakly flat, as required.
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Abstract

Leibniz algebras introduced by J. L. Loday (1993) are non-antisymmetric generalizations of Lie
algebras. The classification problem of complex nilpotent Leibniz algebras were first studied by
Loday himself. Ismail Demir, Kailash C. Misra and Ernie Stitzinger obtained the classification
of 4-dimensional complex nilpotent Leibniz algebras. Through reviewing their classification,
we concluded that some algebras should be omitted from the list.

1. Introduction and preliminaries

Leibniz algebras were first introduced by Loday in [4] as a non-antisymmetric version of Lie algebras. The classi-
fication problem of complex nilpotent Leibniz algebras were first studied by Loday himself. He obtained the com-
plete classification of complex nilpotent Leibniz algebras of dimension n ≤ 2. Later Ayupov and Omirov classified
3−dimensional complex nilpotent Leibniz algebras in [2]. Albeverio, Omirov and Rakhimov, also I. Demir, K. C.
Misra, and E. Stitzinger obtained the classification of 4-dimensional complex nilpotent Leibniz algebras in [1] and [6].
One of the techniques to classify nilpotent Lie algebras were introduced by Skjelbred and Sund in [8]. Rakhimov
and Langari were the first researchers who used Skjelbred-Sund method in Leibniz algebras [3]. They also applied
in [7] and [3] this technique to obtain the classification of complex nilpotent Leibniz algebras of dimension n ≤ 4.
By comparing our classification with classification in [1] we realized that the Skjelbred-Sund method works also very
well. In this part we give the basic definitions and properties for Leibniz algebras.

Definition 1.1. A Leibniz algebra L is a vector space over a field F equipped with a bilinear map

[·, ·] : L× L −→ L

satisfying the Leibniz identity

[x, [y, z]] = [[x, y], z]− [[x, z], y], for all x, y, z ∈ L.
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Obviously, a Lie algebra is a Leibniz algebra. A Leibniz algebra is a Lie algebra if and only if

[x, x] = 0, for all x ∈ L.

Let n be the dimension of Leibniz algebra L. Let {e1, e2, ..., en} be a basis in L. The structural constants of L are the
numbers Ck

ij given by

[ei, ej ] =
n∑

k=1

Ck
ijek (i, j = 1, ..., n).

We can identify the Leibniz identity with its structural constants. These constants satisfy:
n∑

l=1

(Cl
jkC

s
il − Cl

ijC
s
lk + Cl

ikC
s
lj) = 0 (i, j, k, s = 1, ..., n).

Definition 1.2. Let L is a Leibniz algebra. We define

L1 = L, Lk =
[
Lk−1, L

]
(k > 1).

The series

L1 ⊇ L2 ⊇ L3 ⊇ ...

is called the descending central series ofL. If the series terminates for some positive integer s, then the Leibniz algebra
L is said to be nilpotent.

Definition 1.3. A Leibniz algebra L is said to be split if it can be written as a direct sum of two nontrivial ideals.
Otherwise, L is called non-split.

Theorem 1.4. [6] Let A be a non-split non-Lie nilpotent Leibniz algebra of dim(A) = 4. Then A is isomorphic to a
Leibniz algebra spanned by {x1, x2, x3, x4} with the nonzero products given by the following:

A1: [x1, x3] = x4, [x3, x2] = x4;
A2: [x1, x3] = x4, [x2, x2] = x4, [x2, x3] = x4, [x3, x2] = −x4, [x3, x1] = x4;
A3: [x1, x2] = x4, [x2, x1] = −x4, [x3, x3] = x4;
A4: [x1, x2] = x4, [x2, x1] = −x4, [x2, x2] = x4, [x3, x3] = x4;
A5(α): [x1, x2] = x4, [x2, x1] = αx4, [x3, x3] = x4, α ∈ C \ {−1, 1};
A6: [x1, x1] = x4, [x2, x2] = x4, [x3, x3] = x4;
A7: [x1, x1] = x2, [x1, x2] = x3, [x1, x3] = x4;
A8: [x1, x1] = x4, [x1, x2] = x3, [x2, x1] = −x3;
A9: [x1, x1] = x4, [x1, x2] = x3, [x2, x1] = −x3, [x2, x2] = x4;
A10: [x1, x1] = x4, [x1, x2] = x3, [x2, x1] = −x3, [x1, x3] = x4, [x3, x1] = −x4;
A11: [x1, x2] = x3, [x2, x1] = −x3, [x2, x2] = x4, [x1, x3] = x4, [x3, x1] = −x4;
A12: [x1, x1] = x4, [x1, x2] = x3, [x2, x1] = −x3 + x4, [x1, x3] = x4, [x3, x1] = −x4;
A13: [x1, x1] = x3, [x2, x1] = −x3 + x4, [x2, x2] = x4, [x1, x3] = x4, [x3, x1] = −x4;
A14: [x1, x1] = x3, [x1, x2] = x4;
A15: [x1, x1] = x3, [x2, x1] = x4;
A16: [x1, x2] = x4, [x2, x1] = x3, [x2, x2] = −x3;
A17(α):[x1, x1] = x3, [x1, x2] = x4, [x2, x1] = αx4, α ∈ C \ {−1, 0};
A18(α):[x1, x1] = x3, [x2, x1] = x4, [x1, x2] = αx3, [x2, x2] = −x4, α ∈ C \ {−1};
A19: [x1, x1] = x3, [x1, x2] = x3, [x2, x1] = x3 + x4, [x2, x3] = x4;
A20: [x1, x2] = x3, [x1, x3] = x4;
A21: [x1, x2] = x3, [x2, x2] = x4, [x1, x3] = x4;
A22: [x1, x2] = x3, [x2, x1] = x4, [x1, x3] = x4;
A23: [x1, x2] = x3, [x2, x1] = x4, [x2, x2] = x4, [x1, x3] = x4;
A24: [x1, x1] = x3, [x2, x1] = x4, [x1, x3] = x4;
A25: [x1, x1] = x3, [x2, x2] = x4, [x1, x3] = x4;
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2. Main results

In this section we prove that A3
∼= A5(α = −1), A6

∼= A5(α = 1), A8
∼= A17(α = −1), A14

∼= A17(α = 0) and
A15

∼= A18(α = −1). Therefore, the Leibniz algebra A3, A6, A8, A14, and A15 should be omitted from the list 1.4.
For example here we put:

A8: [x1, x1] = x4, [x1, x2] = x3, [x2, x1] = −x3;

and

A17(α = −1): [x′
1, x

′
1] = x′

3, [x
′
1, x

′
2] = x′

4, [x
′
2, x

′
1] = −x′

4.

The matrix A representing this linear transformation with respect to these bases is

A =


c11 0 0 0
c21 c22 0 0
c31 c32 0 c211
c41 c42 c22 0

 ;

where det(A) = −c411c
2
22. We can easily get the following constrains for matrix A such that det(A) ̸= 0 :

c21 = c31 = c32 = c41 = c42 = 0, c11 = c22 = 1.

Thus we can get:

A =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Writing the elements of basis A17(α = −1) in terms of the basis A8 we have


x1 = x′

1;
x2 = x′

2;
x3 = x′

4;
x4 = x′

3.

It shows that A17(α = −1) ∼= A8.
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Abstract

An element x of ring R has feebly cleanness property if x can be written as x = f1 − f2 + v
where v is a unit and f1, f2 are orthogonal idempotents of R. A ring R is feebly clean if every
element in R has feebly cleanness property. We define R is feebly neat if every homomorphic
image of R is feebly clean. In this paper, we begin with elementary properties of feebly neat
rings. In the following, we investigate feebly cleanness for some classes of FGC rings.

1. Introduction

Throughout this paper all rings are considered associative with identity element. An element in a ring is called clean
if it can be written as the sum of an idempotent and a unit. A ring is clean if every it’s element is clean. This concept
was introduced by Nicholson in 1977 (see[5]). Arora and Kundu [1] introduced the family of feebly clean rings which
has the property that every element x can be written as x = f1 − f2 + v where v is a unit and f1, f2 are orthogonal
idempotents. A ring R is feebly clean if every element in R is feebly clean. One of the fundamental properties of
feebly clean rings is that every homomorphic image of a feebly clean ring is feebly clean. We define a feebly neat
ring to be one for which every proper homomorphic image is feebly clean. In this paper, we begin with elementary
properties of feebly neat rings. In the following, we investigate feebly neatness property of some classes of FGC rings.

1.1. Main Results
The aim of this section is to examine the basic properties of feebly neat rings, which will be utilized in the next section.
We begin with

Proposition 1.1. The following are equivalent for a ring R.

1. R is feebly neat.
2. R/xR is feebly clean for every nonzero x ∈ R.
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3. R/xR is feebly neat for every x ∈ R.
4. R/J is feebly clean for every nonzero semiprime ideal J .

Moreover, a homomorphic image of a feebly neat ring is feebly neat.

Corollary 1.2. If R is a feebly neat ring which is not feebly clean, then R is semiprime.

Proposition 1.3. Let R be a decomposable ring. Then R is feebly neat if and only if it is feebly clean.

Theorem 1.4. Every zero-dimensional ring is feebly clean.

Corollary 1.5. If R is a domain of (Krull) dimension equal to 1, then R is feebly neat.

Example 1.6. If F is a field andR = F [X,Y ], thenR is not feebly neat asR/Y R ∼= F [X] is not feebly clean. F [X]
is feebly neat by the previous theorem. Moreover, if R[X] is feebly neat, then R is field.

1.2. FGC Rings
Recall that, an FGC ring is known as a R ring when every finitely generated module is isomorphic to a direct sum
of cyclics. This class of rings dates back to Kaplansky [4] who was interested in classifying rings which satisfied the
generalization of the Fundamental Theorem of Finitely Generated Abelian Groups. FGC rings are classified in [3].
The classification states that an FGC ring is finite direct product of three types of rings. Before we classify feebly neat
FGC rings we recall a few definitions.

Definition 1.7. Let R be a ring and M an R-module. We say M is a linearly compact R-module if every collection
of cosets with the finite intersection property has nonempty intersection. It is known that a homomorphic image of a
linearly compact R-module is linearly compact (see [3]). If RR is a linearly compact, then we say R is maximal ring.

Example 1.8. Artinian rings are examples of maximal rings.

Definition 1.9. A ring R is said to be almost maximal if R/I is a linearly compact R-module for every nonzero ideal
I of R.

Theorem 1.10. If the ring A is maximal, then it is a finite direct product of local rings.

Corollary 1.11. Every maximal ring is feebly clean. Moreover, an almost maximal ring is feebly neat.

A ring R is called h-local if it is of finite character and every proper homomorphic image is a pm-ring. To be of finite
character means that every element is contained in a finite number of maximal ideals. Recall that a ring is a Bézout
ring if every finitely generated ideal is principal.

Definition 1.12. A ring R is called a torch ring if it satisfies the following conditions:

1. R is not local.
2. R has a unique minimal prime ideal P which is nonzero and whose R-submodule form a chain.
3. R/P is an h-local domain.
4. R is a locally almost maximal Bézout ring.

Theorem 1.13. (Brandal [[3], Theorem 9.1]). A ring is an FGC-ring if and only if it is a finite direct product of the
following types of rings:

1. Maximal valuation rings.
2. Almost maximal Bézout domains.
3. Torch rings.

Lemma 1.14. A torch ring is never feebly neat.

Theorem 1.15. Suppose R is an FGC ring. R is feebly clean if and only if R is a finite direct product of local rings.
In this case, it is a finite direct product of almost maximal valuation rings.
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Theorem 1.16. Suppose R is an FGC ring. R is feebly neat if and only if R is either a feebly clean ring or it is an
almost maximal Bézout domain which is not local.

Corollary 1.17. An FGC-domain is feebly neat.

Almost maximal rings are feebly neat. Almost maximal domains were classified by Brandal:

Proposition 1.18. (Brandal [2]). A ring is an almost maximal domain if and only if it is h-local and locally almost
maximal.

Lemma 1.19. (Brandal [[3], Lemma 2.4]). Let I be an ideal of R which is contained in a finite number of maximal
ideals. Then R/I is a direct sum of indecomposable modules of the form R/J , where I ≤ J .

Proposition 1.20. (Brandal [3], Proposition 2.5]). Let I be an ideal of R such that W (I) is finite. Then R/I is
indecomposable if and only if for all nontrivial partitions W1, W2 of W (I) there are N1 ∈ W1 , N2 ∈ W2 and a
prime ideal P of R such that I ⊆ P ⊆ N1 ∩N2.

Proposition 1.21. Suppose W (I)is finite and R/I is a pm-ring. Then R/I is a finite direct product of local rings.

We are now in position to state our desired theorem whose proof is a consequence of the previous proposition.

Theorem 1.22. An h-local domain is feebly neat.
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Abstract

In this paper, we first introduce the Right Justified Pascal functional matrix with three variables
Pn[x, y, z]. Then, we obtain a decomposition and inverse of these new matrices using Pascal
functional matrices. We also introduce the generalized Fibonacci sequence of three variables
{Fn(x, y, z)}n≥0 as a tool for obtaining eigenvalues, eigenvectors and characteristic polyno-
mial of the matrix Pn[x, y, z]. Finally, we present some applications of this new kind of matrix
including some combinational identities related to the sequence {Fn(x, y, z)}n≥0 and a diag-
onal decomposition of Pn[x, y, z] based on Vandermond matrix.

1. Introduction

In [1] and [2] Peele and Stănic̆a studied the matrices with the (i, j)−entries the binomial coefficient
(
i−1
j−1

)
and

(
i−1
n−j

)
respectively. Then have also obtained some interesting results above the powers of these matrices. In [3], they ob-
tained eigenvalues, eigenvectors and characteristic polynomial of the matrixPn =

[(
i−1
n−j

)]
0≤i,j≤n

using the standard
Fibonacci sequence. In this paper, as a generalization of previous aforementioned research, we first introduce the
Right Justified Pascal functional matrix of three variables Pn[x, y, z]. Next, by generalizing the ordinary Fibonacci
sequence to the generalized three variables {Fn(x, y, z)}n≥0, we use the similar strategy of [3] to obtain the eigen-
values, eigenvectors and characteristic polynomial of Pn[x, y, z]. Finally, we present some applications of these new
kind of matrices including some combinational identities related to the sequence {Fn(x, y, z)}n≥0 and a diagonal
decomposition of Pn[x, y, z] based on Vandermond matrices.

Definition 1.1. For three variables x, y, z, the generalized Fibonacci matrix of three variables of order (n+1)×(n+1)
is defined by

Pn[x, y, z] =

[
xi+j−nyn−jzn−i

(
i

n− j

)]
0≤i,j≤n

.
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Example 1.2. the right justified Pascal functional matrix of three variables of order 4× 4 is as follows

P4[x, y, z] =


0 0 0 z3

0 0 yz2 xz2

0 y2z 2xyz x2z
y3 3y2x 3yx2 x3

 .

In the following lemma we present a decomposition and inverse for the right justified Pascal functional matrix of three
variables.

Lemma 1.3.

Pn[x, y, z] = diag(zn, · · · , z, 1)Pn[x]diag(yn, · · · , y, 1), (1)

P−1
n [x, y, z] =

[
(−x)n−i−jyi−nzj−n

(
n− i

j

)]
0≤i,j≤n

. (2)

Proof. Clearly we have (1). For finding P−1
n [x, y, z], it is enough to find P−1

n [x]. Now, consider the matrix Ĩ =

[δi,n−j ]0≤i,j≤n, where δi,n−j is theKronecker delta. It is easy to see thatPn[x] = Pn[x]Ĩ , wherePn[x] =
[(

i
j

)
xi−j

]
0≤i,j≤n

is the Pascal functional matrix with one variable, has the following properties (see [4–6])

1. Pn[x]Pn[y] = Pn[x+ y]

2. Pn[x]Pn[−x] = Pn[0] = In. In Particular, P−1
n [x] = Pn[−x].

Therefore
P−1
n [x] = Pn[x]ĨPn[−x] =

[(
n− i

j

)
(−x)n−i−j

]
0≤i,j≤n

.

Therefore, we present the inverse of the right justified Pascal functionalmatrix of three variables as followsP−1
n [x, y, z] =[

(−x)n−i−jyi−nzj−n
(
n−i
j

)]
0≤i,j≤n

.

Example 1.4.

P−1
4 [x, y, z] =


− x3

y3z3
3x2

y3z2 − 3x
y3z

1
y3

x2

y2z3 − 2x
y2z2

1
y2z 0

− x
yz3

1
yz2 0 0

1
z3 0 0 0

 .

2. The Generalized Fibonacci Sequence And Pn[x, y, z]

Definition 2.1. The generalized Fibonacci sequence of three variables x, y, z over the field F is defined by

zFn+1(x, y, z) = yFn−1(x, y, z) + xFn(x, y, z) (3)

F0(x, y, z) = 0, F1(x, y, z) = 1. (4)

By the linear recursive relation (3), the characteristic equation is zλ2 − xλ − y = 0. If α and β are the roots of the
characteristic equation, by the Binet formula, we have

Fn(x, y, z) =
αn − βn

α− β
. (5)

Remark 2.2. It is possible that the characteristic equation has no root in the field F. So, we consider the extended
field of F.
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Example 2.3.

F0(x, y, z) = 0, F1(x, y, z) = 1, F2(x, y, z) =
y

x
, F3(x, y, z) =

x

z
+

y2

z2
, · · · .

The following theorem is the main result of this paper which gives the relationship between the characteristic polyno-
mial of the right justified Pascal functional matrix of three variablesPn[x, y, z] and the generalized Fibonacci sequence
of three variables {Fn(x, y, z)}n≥0.

Theorem 2.4. If
(
Fn−i
l (x, y, z)F i

l+1(x, y, z)
)
0≤i≤n

is a column vector of (n+ 1)-dimension, then

Pn[x, y, z]
(
Fn−i
l (x, y, z)F i

l+1(x, y, z)
)
0≤i≤n

= zn
(
Fn−i
l+1 (x, y, z)F i

l+2(x, y, z)
)
0≤i≤n

. (6)

In other words the recursive sequence
{
Fn−i
l (x, y, z)F i

l+1(x, y, z)
}
0≤i≤n

is generated by the characteristic polyno-

mial of matrix z−nPn[x, y, z] for all 0 ≤ i ≤ n.

Proof. Let Pn[x, y, z]
(
Fn−i
l (x, y, z)F i

l+1(x, y, z)
)
0≤i≤n

= [aij ], we have

aij =
n∑

k=0

(
i

n− k

)
xi+k−nyn−kzn−iFn−k

l (x, y, z)F k
l+1(x, y, z)

=
(
zFl+1(x, y, z)

)n−i n∑
k=n−i

(
i

n− k

)(
yFl(x, y, z)

)n−k(
xFl+1(x, y, z)

)i+k−n

,

which by substituting t = k − n+ i+ 1, we obtain

aij =
(
zFl+1(x, y, z)

)n−i i∑
t=0

(
i

t

)(
yFl(x, y, z)

)i−t(
xFl+1(x, y, z)

)t

=
(
zFl+1(x, y, z)

)n−i(
yFl(x, y, z) + xFl+1(x, y, z)

)i

= zn
(
Fn−i
l+1 (x, y, z)F i

l+2(x, y, z)
)
.

This completes the proof of Theorem 2.4.

Corollary 2.5.

Fn−i
l+1 (x, y, z)F i

l+2(x, y, z) =∑
i1,··· ,il

(
i

n− i1

)(
i1

n− i2

)
· · ·

(
il+1

n− il

)
xi−nl+2

∑l−1
t=1 itynl−

∑l
t=1 itz−

∑l−1
t=1 it .

Proof. By induction on l and using (6), we have

P l
n[x, y, z](x

i)0≤i≤n = zn
(
Fn−i
l+1 (x, y, z)F i

l+2(x, y, z)
)
0≤i≤n

.

Now, if we consider the i−th rows, we get

znFn−i
l+1 (x, y, z)F i

l+2(x, y, z) =
(
P l
n[x, y, z](x

i)ni=0

)
i,0

=
∑

i1,··· ,il

ai,i1 · · · ail−1,ilx
il

=
∑

i1,··· ,il

(
i

n− i1

)(
i1

n− i2

)
· · ·

(
il−1

n− il

)
xi−nl+2

∑l−1
t=1 +itynl−

∑l
t=1 itz−

∑l−1
t=1 it ,
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which completes the proof.

Example 2.6.

P3[x, y, z](F
3−i
l (x, y, z)F i

l+1(x, y, z))0≤i≤3 =

=


0 0 0 z3

0 0 yz2 xz2

0 y2z 2xyz x2z
y3 3y2x 3yx2 x3




F 3
l (x, y, z)

F 2
l (x, y, z)Fl+1(x, y, z)

Fl(x, y, z)F
2
l+1(x, y, z)

F 3
l+1(x, y, z)



= z3


F 3
l+1(x, y, z)

F 2
l+1(x, y, z)Fl+2(x, y, z)

Fl+1(x, y, z)F
2
l+2(x, y, z)

F 3
l+1(x, y, z)

 .

Theorem 2.7. The matrix [Fn−i
i (x, y, z)F i

j+1(x, y, z)] is invertible, and hence, the sequence{
Fn−i
i (x, y, z)F i

l+1(x, y, z)
}
is nondegenerate of degree n+ 1.

Proof. If we divide the j−th column by F i
j+1(x, y, z), we obtain the Vandermond matrix

[(
Fj(x,y,z)

Fi+1(x,y,z)

)n−i
]
which

has nonzero determinant. Hence
[Fn−i

i (x, y, z)F i
j+1(x, y, z)]

is invertible and the sequence {Fn−i
i (x, y, z)F i

l+1(x, y, z)} is nondegenerate of degree n+ 1.

3. The Characteristic Polynomial of Pn[x, y, z]

Theorem 3.1. The eigenvalues of Pn[x, y, z] are

znαn, znαn−1β, · · · , znαβn−1, znβn,

and the characteristic polynomial of Pn[x, y, z] is

χn(t) =
n∏

i=0

(
t− znαiβn−i

)
.

Proof. By (5) we have

Fn−i
l (x, y, z)F i

l+1(x, y, z) =

(
αl − βl

α− β

)n−i (
αl+1 − βl+1

α− β

)i

.

=
∑
ω∈Sn

Aωω
l−1,

where Sn = {αn, αn−1β, · · · , αβn−1, βn}. So the polynomial of χn(t) =
∏n

ω∈Sn
(t− znω) generates the sequence

{znFn−i
l (x, y, z)F i

l+1(x, y, z)}. Again {
Fn−i
i (x, y, z)F i

l+1(x, y, z)
}

is non-degenerate of degree n+ 1, and the proof is complete.
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Corollary 3.2.

tr(Pk
n[x, y, z]) =

Fk(n+1)(x, y, z)

Fk(x, y, z)
.

Proof. By Theorem 3.1, we have

tr(Pk
n[x, y, z]) = αnk + α(n−1)kβk + · · ·+ βnk

=
αk(n+1) − βk(n+1)

αk − βk

=
Fk(n+1)(x, y, z)

Fk(x, y, z)
.

Theorem 3.3.

χn(t) =

n+1∑
i=0

(−1)
i(i+1)

2

(y
x

) i(i−1)
2

zni
[
n+ 1

i

]
Fn(x,y,z)

tn+1−i,

where
[
n+1
i

]
Fn(x,y,z)

is defined by[
n+ 1

i

]
Fn(x,y,z)

=

{
1, j = 0,m;
Fm(x,y,z)···Fm−j+1(x,y,z)

Fj(x,y,z)···F1(x,y,z)
, 0 < j < m.

Proof. We use the following identity (see [7])
n∏

j=0

(1− qjt) =

n+1∑
l=0

(−1)lq
l(l−1)

2 −nl

[
n+ 1

l

]
q

zl,

where
[
n+1
l

]
q
is the Gauss binomial coefficient which is defined by[

n+ 1

l

]
q

=
(1− qn) · · · (1− qn−l+1)

(1− ql) · · · (1− q)
.

Replacing q in the above equation by β
α and using the Binet formula, we have[
n+ 1

i

]
q

= αi2−(n+1)i

[
n+ 1

i

]
Fn(x,y,z)

.

Therefore
n∏

j=0

(1− α−jβjt) =
n+1∑
l=0

(−1)lβ
l(l−1)

2 α
l(l+1)

2 −(n+1)l

[
n+ 1

k

]
Fn(x,y,z)

tl.

Substituting t by znαnt−1 and using αβ = −y
z , we get

n∏
j=0

(t− znαn−jβj) =
n+1∑
k=0

(−1)
k(k+1)

2

(
−y

x

) k(k−1)
2

znk
[
n+ 1

k

]
Fn(x,y,z)

tn+1−l,

which is the desired result.

Example 3.4. The characteristic polynomials of χn(t) for n = 0, 1, 2 are

χ0(t) = t− 1

χ1(t) = t2 − xt− zy

χ2(t) = t3 − (zy + x2)t2 − (zx2y + y2z2)t+ y3z3.
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4. Diagonalization of Pn[x, y, z]

Let n ≥ 1 and Cn[x, y, z] be the component matrix for χn(t), where

Cn[x, y, z] = (ci,j(x, y, z)), i, j = 0, 1, · · · , n.
c0,1 = 1,
ci,i+1(x, y, z) = zn, i = 1, · · · , n− 1;

cn,n−j(x, y, z) = −(−1)
(j+1)(j+2)

2 zn
(
y
x

) j(j+1)
2

[
n+1
j+1

]
Fn(x,y,z)

, j = 0, 1, · · · , n− 1;
ci,j(x, y, z) = 0, otherwise.

and
Rn[x, y, z] =

(
ri,j(x, y, z)

)
andMn[x, y, z] =

(
mi,j(x, y, z)

)
, i, j = 0, 1, · · · , n,{

r0,j(x, y, z) = r1,j = znδn,j , j = 0, 1, · · · , n,
ri,j(x, y, z) =

(
n
j

)
Fn−j
i−1 (x, y, z)F j

i (x, y, z)
(
y
x

)n−j
zn,{

m0,j(x, y, z) = znδn,j , j = 0, 1, · · · , n,
mi,j(x, y, z) =

(
n
j

)
Fn−j
i (x, y, z)F j

i+1(x, y, z)
(
y
x

)n−j
z2n.

Lemma 4.1. For every positive integer k, we have(
Pk
n[x, y, z]

)
nj

= znk
(
n

j

)(y
x
Fk(x, y, z)

)n−j (
Fk+1(x, y, z)

)j

.

Proof. Let n be a fixed natural number. We will prove the assertion by induction on k. The above equality is valid for
k = 0. Now assume the results is valid for k ≥ 0. Then, since Pk+1

n [x, y, z] = Pk
n[x, y, z]Pn[x, y, z], we have(

Pk+1
n [x, y, z]

)
nj

=
n∑

i=0

(
Pk
n[x, y, z]

)
ni

(
Pn[x, y, z]

)
ij

=

n∑
i=0

znk
(
n

i

)(y
x
Fk(x, y, z)

)n−i (
Fk+1(x, y, z)

)i
(

i

n− j

)
xi+j−nyn−jzn−i

= zn(k+1)
(y
z
Fk+1(x, y, z)

)n−j n∑
i=0

(
n

n− j

)(
j

i+ j − n

)
×
(x
z
Fk+1(x, y, z)

)i−n+j (y
z
Fk(x, y, z)

)n−i

=

(
n

j

)
zn(k+1)

(y
z
Fk+1(x, y, z)

)n−j n∑
i=0

(
j

i+ j − n

)
×
(x
z
Fk+1(x, y, z)

)i+j−n (y
z
Fk(x, y, z)

)n−i

=

(
n

j

)
zn(k+1)

(y
z
Fk+1(x, y, z)

)n−j
j∑

m=0

(
j

m

)(x
z
Fk+1(x, y, z)

)m (y
z
Fk(x, y, z)

)j−m

=

(
n

j

)
zn(k+1)

(y
z
Fk+1(x, y, z)

)n−j (x
z
Fk+1(x, y, z) +

y

z
Fk(x, y, z)

)j

=

(
n

j

)
zn(k+1)

(y
z
Fk+1(x, y, z)

)n−j

(Fk+2(x, y, z))
j .
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Theorem 4.2.
n+1∑
k=0

(−1)
k(k+1)

2

(y
z

) k(k−1)
2

[
n+ 1

k

]
Fn(x,y,z)

(
Fn−k+1(x, y, z)

)n−j(
Fn−k+2(x, y, z)

)j

= 0.

Proof. The characteristic polynomials of Pk
n[x, y, z] is

n+1∑
k=0

(−1)
k(k+1)

2

(y
z

) k(k−1)
2

znk
[
n+ 1

k

]
Fn(x,y,z)

tn+k−1 = 0.

Now by the Cayley-Hamilton’s Theorem, we get

n+1∑
k=0

(−1)
k(k+1)

2

(y
x

) k(k−1)
2

znk
[
n+ 1

k

]
Fn(x,y,z)

(Pk
n[x, y, z])

n−k+l = O, (7)

where O denotes the (k + 1)× (k + 1) zero matrix. So by Lemma 4.1 and substituting this result into (7), we obtain

n+1∑
k=0

(−1)
k(k+1)

2

(y
z

) k(k−1)
2

znk
[
n+ 1

k

]
Fn(x,y,z)

(
Pn−k+1
n [x, y, z]

)
nj

= 0,

or
n+1∑
k=0

(−1)
k(k+1)

2

(y
z

) k(k−1)
2

znk
[
n+ 1

k

]
Fn(x,y,z)

zn(n−k+1)

(
n

j

)

×
(y
z
Fn−k+1(x, y, z)

)n−j

(Fn−k+2(x, y, z))
j
= 0.

Therefore
n+1∑
k=0

(−1)
k(k+1)

2

(y
z

) k(k−1)
2

znk
[
n+ 1

k

]
Fn(x,y,z)

(
Fn−k+1(x, y, z)

)n−j(
Fn−k+2(x, y, z)

)j

= 0.

Theorem 4.3. For all n, we have

Mn[x, y, z] = Cn[x, y, z]Rn[x, y, z] = Rn[x, y, z]Pn[x, y, z].

Furthermore,
Pn[x, y, z] = R−1

n [x, y, z]Cn[x, y, z]Rn[x, y, z].

Proof. We first prove Mn[x, y, z] = Cn[x, y, z]Rn[x, y, z]. In fact, multiplying the first n rows of Cn[x, y, z] by
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Rn[x, y, z], clearly we get the first n rows of Mn[x, y, z]. For the last row, for each 0 ≤ j ≤ n, we have

(
Cn[x, y, z]Rn[x, y, z]

)
nj

=
n∑

k=0

(
Cn[x, y, z]

)
n,n−k

(
Rn[x, y, z]

)
n−k,j

=

n∑
k=0

−(−1)
(k+1)(k+2)

2 zn
(y
z

) k(k+1)
2

[
n+ 1

k + 1

]
Fn(x,y,z)

×
(
n

j

)
Fn−j
n−k−1(x, y, z)F

j
n−k(x, y, z)

(y
z

)n−j

zn

= z2n
(
n

j

)(y
z

)n−j n+1∑
t=1

−(−1)
t(t+1)

2

(y
z

) t(t−1)
2

[
n+ 1

t

]
Fn(x,y,z)

Fn−j
n−t (x, y, z)F

j
n−t+1(x, y, z)

= z2n
(
n

j

)(y
z

)n−j [
Fn−j
n (x, y, z)F j

n+1(x, y, z)

+

n+1∑
t=0

−(−1)
t(t+1)

2

(y
z

) t(t−1)
2

[
n+ 1

t

]
Fn(x,y,z)

Fn−j
n−t (x, y, z)F

j
n−t+1(x, y, z)

]
= z2n

(
n

j

)(
Fn(x, y, z)

)n−j

F j
n+1(x, y, z)

(y
z

)n−j

,

which is true by Theorem 4.2. This proves,

Mn[x, y, z] = Cn[x, y, z]Rn[x, y, z].

Since for each i, j with 0 ≤ i ≤ j ≤ n, we have(
Rn[x, y, z]Pn[x, y, z]

)
ij
=

n∑
k=0

(
Rn[x, y, z]

)
ik

(
Pn[x, y, z]

)
kj

=
n∑

k=0

(
n

k

)(
Fi−1(x, y, z)

)n−k(
Fi(x, y, z)

)k (y
z

)n−k

znxk+j−nyn−jzn−k

(
k

n− j

)

=

(
n

j

)
z2n

n∑
k=0

(
j

n− k

)
xk+j−ny2n−j−kz−n

(
Fi−1(x, y, z)

)n−k(
Fi(x, y, z)

)k

=

(
n

j

)
z2nxj−nyn−j

j∑
t=0

(
j

t

)(y
z
Fi−1(x, y, z)

)t (x
z
Fi(x, y, z)

)n−t

=

(
n

j

)
z2nxj−nyn−j

(y
z
Fi−1(x, y, z) +

x

z
Fi(x, y, z)

)j

=

(
n

j

)
z2nxj−nyn−jF j

i+1(x, y, z)
(x
z
Fi(x, y, z)

)n−j

=

(
n

j

)(y
z

)n−j

F j
i+1(x, y, z)F

n−j
i (x, y, z)z2n

=
(
Mn[x, y, z]

)
ij
,

we getMn[x, y, z] = Rn[x, y, z]Pn[x, y, z].
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Example 4.4.

M3[x, y, z] =

 0 0 0 z3

z3y3 3y3z3x 3z3yx2 z3x3

x3y3 3y2x2(yz + x2) 3yx(yz + x2)2 (yz + x2)3

y3

z4
(yz + x2)3 3y2x

z3
(yz + x2)2(2yz + x2) 3yx2

z3
(yz + x2)(2yz + x2)2 x3

z3
(2yz + x2)3



C3[x, y, z] =


0 1 0 0
0 0 z3 0
0 0 0 z3

−y6 −y3x
z3 (2yz + x2) y

z2 (yz + x2)(2yz + x2) (2yz + x2)x

 ,

R3[x, y, z] =


1 0 0 0
0 0 0 z3

y3 3y2x 3yx2 x3

x3y3

z3
3y2x2

z3 (yz + x2) 3yx
z3 (yz + x2)2 1

z3 (yz + x2)3

 ,

and so
M3[x, y, z] = C3[x, y, z]R3[x, y, z].

Also,

R3[x, y, z] =


1 0 0 0
0 0 0 z3

y3 3y2x 3yx2 x3

x3y3

z3
3y2x2

z3 (yz + x2) 3yx
z3 (yz + x2)2 1

z3 (yz + x2)3

 ,

P3[x, y, z] =


0 0 0 z3

0 0 z2y z3

0 y2z 2yxz zx2

y3 3y2x 3yx2 x3

 ,

and thereforeM3[x, y, z] = R3[x, y, z]P3[x, y, z].

Let Vn be the Vandermonde matrix which is defined by

Vn = ∆[znαn, znαn−1β, · · · , znαβn−1, znβn]

=


1 1 · · · 1 1

znαn znαn−1β · · · znαβn−1 znβn

(znαn)2 (znαn−1β)2 · · · (znαβn−1)2 (znβn)2

...
...

. . .
...

...
(znαn)n (znαn−1β)n · · · (znαβn−1)n (znβn)n

 .

By the relation between the component matrix and the Vandermonde matrix, we can obtain Theorems 4.6 and 4.7.

Lemma 4.5. If A be the following matrix

A =


0 a1 0 · · · 0
0 0 a2 · · · 0
...

...
...

. . .
...

0 0 0 · · · an−1

p1 p2 p3 · · · pn

 ,

that a1, a2, · · · , an−1 are non-zero, then its eigenvalues are the roots of p1 + p2λ+ · · ·+ pnλ
n−1 = λn and

v1 = (α, αλ, , αλ2, · · · , αλn−1)T

is an eigenvector coresponding to the root λ.
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Proof. Let X = (x1, · · · , xn)
T . We can rewrite the equation AX = λX as follows

a1x2 = λx1, a2x3 = λx2, · · · , an−1xn = λxn−1 (a1, · · · , an−1 ̸= 0),

p1x1 + p2x2 + · · ·+ pnxn = λxn.

If we put x1 = α, then the eigenvectors of A are

v1 = (α, αλ, αλ2, · · · , αλn−1)T

where
a1a2 · · · an−1p1 + a2 · · · an−1p2λ+ · · ·+ pnλ

n−1 = λn.

So,
p1 + p2λ+ · · ·+ pnλ

n−1 = λn,

where v1 = (α, αλ, , αλ2, · · · , αλn−1)T .

Theorem 4.6. Eigenvectors of Cn[x, y, z] are Vn, and also eigenvectors of
Pn[x, y, z] are En[x, y, z] = R−1

n [x, y, z]Vn.

Proof. According to Lemma 4.5, columns of Vn are eigenvectors of Cn[x, y, z].

Theorem 4.7.(
R−1

n [x, y, z]Vn

)−1

Pn[x, y, z]
(
R−1

n [x, y, z]Vn

)
= diag(znαn, znαn−1β, · · · , znαβn−1, znβn).
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Abstract

Sierpiński graph are a family of fractal features with many applications in topology, Tower
of Hanoi mathematics, and computer science.Serpinski graphs are constructed by generalize
(Duplication) the original graph and creating self-similar graphs.Some graph variables that are
introduced as topological indices are used to determine some graph properties such as physical-
chemical properties, thermodynamic properties, biological activity of chemical graphs. In this
article, we investigate and calculate atom-bond connectivity index and geometric-arithmetric
index for Sierpiński graphs like Cn ,Pn and Petersen.

1. Introduction

All graphs considered in this paper are simple, connected and finite. Let G = (V (G), E(G)) be a connected graph
of order n = |V (G)| and of size m = |E(G)|. The degree of a vertex v ∈ V (G) is the number of vertices adjacent
to v and is denoted by degG(v). The distance between two vertices u, v ∈ V (G), denoted by dG(u, v), is the length
of a shortest path between u and v in G. A topological index is a real number assigned to a graph which that is not
depended on the labeling or pictorial representation of the graph.
Let k be an integer and G be a finite undirected graph on the vertex set {1, ..., k}. In the following, vertices of graphs
will be identified with words on integers. We denote by {1, ..., k}t the set of words of size n on alphabet {1, ..., k}.
The letters of a word u in {1, ..., k}t are denoted by u = u1u2 · · ·ut. The Sierpiński graph S(Kn, t) is a graph whose
vertex set is {1, ..., k}t and uv is an edge in it if and only if there exists i ∈ {1, ..., t} such that:[4]
(i) uj = vj if j < i;
(ii) ui ̸= vi;
(iii) uj = vi and vj = ui if j > i.
For Sierpiński graphs S(n, t), if t = 1, then S(n, 1) is isomorphic to the complete graph Kn; if n = 1, then S(1, t)
is isomorphic to the complete graph K1 consisting of one vertex and no edges; if n = 2, S(2, t) is isomorphic to the
path of length 2t − 1 and to the state graph of Chinese Rings[1].
Figure 1 shows the Sierpiński graph S(K4, 3) . The generalized Sierpiński graph, S(G, t), as the graph with vertex
{1, 2, . . . , n}t and edge set defined as follow, {u, v} is an edge if and only if there exists i ∈ {1, , ..., t} such that:

∗Talker
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Fig. 1. generalized Sierpiński graph: S(K4, 3).

(i) uj = vj if j < i;
(ii) ui ̸= vi and {ui, vi} ∈ E;
(iii) uj = vi and vj = ui if j > i.
Figure 2 shows the generalized Sierpiński graph S(G, 2) for arbitrary graphG. note that S(G, 1) is isomorphic to the

Fig. 2. generalized Sierpiński graph: S(G, 2).

graphG and S(G, 2) can be constructed by copying n times S(G, 1) and adding an edge between the ith vertex of the
jth copy and the jth vertex of the ith copy of S(G, 1) whenever {i, j} is an edge inG. In fact S(G, t) is a fractal-like
graph that uses G as a building block.
In mathematical chemistry and chemical graph theory, two important topological indices introduced about forty years
ago by Ivan Gutman and Trinajstic [3] are the first Zagreb index M1(G) and second Zagreb index M2(G) which are
defined as:

M1(G) =
∑

v∈V (G)

(degG(v))
2 , M2(G) =

∑
uv∈E(G)

deg(u) deg(v)

Estrada et al. [2] introduced a well known topological index, called the atom-bond connectivity (ABC) index that is
defined as:

ABC(G) =
∑

uv∈E(G)

√
deg(u) + deg(v)− 2

deg(u) deg(v)
(1)
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The degree based topological index geometric-arithmetric (GA) index was introduced by vukicevic et al. in [7] and is
defined as:

GA(G) =
∑

uv∈E(G)

2
√
deg(u) deg(v)

deg(u) + deg(v)
(2)

2. Main results

Let Ei,j be the set of edges in a graph whose end points are of degree i and j.

Remark 2.1. The generalized Sierpiński graph S(Cn, t) has three kind of edges, i.eE(S(Cn, t)) = E2,2∪E2,3∪E3,3

which their sizes are listed below.(see Figure 3 for instance)

Fig. 3. Sierpiński graph: S(C4, 3).

Theorem 2.2. Let Cn be a cycle with n vertices and t ⩾ 4. Then

ABC(S(Cn, t)) =
2n

3(n− 1)
(nt−1 + 4nt−2 − 5) +

4
√
2n

2(n− 1)
(nt−1 − 2nt−2 + 1) +

√
2nt−1

2
(n− 4).



Mahsa Khatibi & Ali Behtoei / The 4th National Congress on Mathematics and Statistics 451

Proof. By Using formula 1 and remark 2.1 we have

ABC(S(Cn, t)) =
∑

uv∈E(S(Cn,t)

√
deg(u) + deg(v)− 2

deg(u) deg(v)

= (
n

n− 1
(nt−1 + 4nt−2 − 5))(

√
3 + 3− 2

3× 3
)

+ (
4n

n− 1
(nt−1 − 2nt−2 + 1))(

√
2 + 3− 2

2× 3
)

+ nt−1(n− 4)(

√
2 + 2− 2

2× 2
)

=
2n

3(n− 1)
(nt−1 + 4nt−2 − 5) +

4
√
2n

2(n− 1)
(nt−1 − 2nt−2 + 1) +

√
2nt−1

2
(n− 4)

Theorem 2.3. geometric-arithmetric index of Cn for t ⩾ 4 is given by

GA(S(Cn, t)) =
n

n− 1
(nt−1 + 4nt−2 − 5) +

8
√
6

5(n− 1)
(nt−1 − 2nt−2 + 1) + nt−1(n− 4).

Proof. from formula 2 and remark 2.1 we obtain.

GA(S(Cn, t)) =
∑

uv∈E(S(Cn,t)

2
√
deg(u) deg(v)

deg(u) + deg(v)

= (
n

n− 1
(nt−1 + 4nt−2 − 5))(

2
√
3× 3

3 + 3
)

+ (
4n

n− 1
(nt−1 − 2nt−2 + 1))(

2
√
2× 3

2 + 3
)

+ nt−1(n− 4)(
2
√
2× 2

2 + 2
)

=
n

n− 1
(nt−1 + 4nt−2 − 5) +

8
√
6

5(n− 1)
(nt−1 − 2nt−2 + 1) + nt−1(n− 4)

Remark 2.4. Let P be the petersen graph as shown in Figure 4. The generalized Sierpiński graph S(P, t) has three
kind of edges, i.e E(S(P, t)) = E3,3 ∪ E3,4 ∪ E4,4 which their sizes are listed below.

Theorem 2.5. For Petersen graph and t ≥ 3 we have

ABC(S(Peterson, t)) =

√
3

8
(
35

3
(10t−2 − 1) + 15× 10t−2) +

√
5

12
(10t − 2× 10t−1 + 10) + 4× 10t−1
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Fig. 4. Petersen graph.

Proof. By Using formula 1 and remark 2.4 we have:

ABC(S(Peterson, t)) =
∑

uv∈E(S(Cn,t)

√
deg(u) + deg(v)− 2

deg(u) deg(v)

= (
35

3
(10t−2 − 1) + 15× 10t−2)

√
4 + 4− 2

4× 4

+ (10t − 2× 10t−1 + 10)

√
4 + 3− 2

4× 3

+ (6× 10t−1)

√
3 + 3− 2

3× 3

=

√
3

8
(
35

3
(10t−2 − 1) + 15× 10t−2) +

√
5

12
(10t − 2× 10t−1 + 10) + 4× 10t−1

Theorem 2.6. geometric-arithmetric index of P for t ⩾ 3 is given by

AG(S(Peterson, t)) =
35

3
(10t−2 − 1) + 15× 10t−2 +

2
√
12

7
(10t − 2× 10t−1 + 10) + 6× 10t−1

Proof. From formula 2 and remark 2.4 we obtain

AG(S(Peterson, t)) =
∑

uv∈E(S(Cn,t)

2
√
deg(u) deg(v)

deg(u) + deg(v)

= (
35

3
(10t−2 − 1) + 15× 10t−2)

2
√
4× 4

4 + 4

+ (10t − 2× 10t−1 + 10)
2
√
4× 3

4 + 3

+ (6× 10t−1)
2
√
3× 3

3 + 3

=
35

3
(10t−2 − 1) + 15× 10t−2 +

2
√
12

7
(10t − 2× 10t−1 + 10) + 6× 10t−1

Remark 2.7. The generalized Sierpiński graph S(Pn, t) has five kind of edges, i.e E(S(Pn, t)) = E2,2 ∪ E1,3 ∪
E1,2 ∪ E2,3 ∪ E3,3 which their sizes are listed below.
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Theorem 2.8. If Pn be a path with n vertices and t = 2, Then

ABC(S(Pn, 2)) =

√
2

2
(n2 − n− 4) +

2

3
(n− 3) +

4
√
6

3
+

√
2

Proof. by Using formula 1 and remark 2.7 we will have:

ABC(S(Pn, 2)) =
∑

uv∈E(S(Cn,t)

√
deg(u) + deg(v)− 2

deg(u) deg(v)

= ((n− 4)(n− 3) + 2)

√
2 + 2− 2

2× 2
+ 4×

√
1 + 3− 2

1× 3

+ (2n− 6)

√
1 + 2− 2

1× 2
+ (4n− 10)

√
2 + 3− 2

2× 3
+ (n− 3)

√
3 + 3− 2

3× 3

=

√
2

2
(n2 − n− 4) +

2

3
(n− 3) +

4
√
6

3
+

√
2

Theorem 2.9. If Pn is a path with n vertices and t = 2, Then

GA(S(Pn, 2)) = (n− 3)2 +
2
√
2

3
(2n− 6) +

2
√
6

5
(4n− 10) + 2(1 +

√
3)

Proof. From formula 2 and remark 2.7 we obtain:

GA(S(Pn, 2)) =
∑

uv∈E(S(Cn,t)

2
√
deg(u) deg(v)

deg(u) + deg(v)

= ((n− 4)(n− 3) + 2)
2
√
2× 2

2 + 2
+ 4× 2

√
1× 3

1 + 3

+ (2n− 6)
2
√
1× 2

1 + 2
+ (4n− 10)

2
√
2× 3

2 + 3
+ (n− 3)

2
√
3× 3

3 + 3

= (n− 3)2 +
2
√
2

3
(2n− 6) +

2
√
6

5
(4n− 10) + 2(1 +

√
3)
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Abstract

For a simple graphG = (V,E), the middle neighborhood graphMnd(G) ofG is the graph with
the vertex set V ∪S where S is the set of all open neighborhood sets ofG in which two vertices
u and v are adjacent if u, v ∈ S and u ∩ v ̸= ∅ or u ∈ V and v is an open neighborhood set of
G containing u. In this paper, we obtain the domination number, the independent domination
number and the k-connected component domination number in the middle neighborhood graph.

1. Introduction

LetG be a graph with the vertex set V (G) of size n and the edge set of sizem. A fundamental concept in graph theory
is domination which has been studied extensively [1]. The studies of domination set are important in the control of
engineering systems [2]. Many studies are done on the parameters of domination of graphs [3–7].
A dominating set is a set D of vertices such that every vertex outside D is dominated by some vertex of D. The
domination number of G, denoted by γ(G), is the minimum size of the dominating set of G. A dominating set D is
called an independent dominating set if D is an independent set. The independent domination number of G denoted
by γi(G) is the minimum size of an independent dominating set of G [1]. The subsetD of the set of vertices V (G) is
a connected dominating set inG ifD is a dominating set and the subgraph induced byD is connected. The minimum
cardinality of any connected dominating set inG is called the connected domination number ofG and it is denoted by
γc(G) [8].
Assume the graphG consists of k connected components. A subsetD of V (G) is a k-connected component dominat-
ing set ofG if and only ifD =

∪k
i=1 Di whereDi for 1 ≤ i ≤ k is a connected dominating set for every component of

G and D has exactly k components. The k-connected component domination number of G is denoted by γk
c (G) that

is the minimum cardinality of a k-connected component dominating set of G. If G is connected, then it is clear that

∗Talker
Email addresses: hadi.akhbari@iau.ac.ir (Mohammad Hadi Akhbari ), f.movahedi@gu.ac.ir (Fateme Movahedi)
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γ1
c (G) = γc(G). In the case that there is not a k-connected component dominating set ofG, we can define γk

c (G) = 0.
In this paper, we use u ∼ v andG1 ≃ G2 to denote two vertices u and v ofG are adjacent and two graphsG1 andG2

are isomorphic, respectively.
Kulli in [9] introduced a neighborhood graphN(G) of graphG and studied some properties of this graph. The neigh-
borhood graph N(G) of a graph G is the graph with the vertex set V ∪ S where S is the set of all open neighborhood
sets of G and two vertices u and v in N(G) are adjacent if u ∈ V and v is an open neighborhood set containing u.
Akhbari et. al in [10] determined the domination number, the total domination number and the independent domination
number in the neighborhood graph. They also investigated these parameters of domination on the join and the corona
of two neighborhood graphs. In [11], some parameters of domination number and the 2-domination polynomial of the
edge neighborhood graph for certain graphs are determined.
Kulli introduced a new graph called byMnd(G) and obtained some results about it. The middle neighborhood graph
Mnd(G) of G is the graph with the vertex set V ∪ S where S is the set of all open neighborhood sets of G. Two
vertices u and v ofMnd(G) are adjacent if u, v ∈ S and u ∩ v ̸= ∅ or u ∈ V and v is an open neighborhood set of G
containing u. In Figure 1, a graph G and its middle neighborhood graphMnd(G) are shown. The open neighborhood
sets in the graph G are N(1) = {2, 3, 4}, N(2) = {1, 3}, N(3) = {1, 2} and N(4) = {1} [12].

Fig. 1. The graph G and the middle neighborhood graph of G.

Kulli in [12] showed that for a graph G, the neighborhood graph N(G) of G is a spanning subgraph of Mnd(G). In
this paper, we determine some properties of the middle neighborhood graph of a graph. We also obtain the domination
number, independent domination number and k-connected component domination number for the middle neighbor-
hood graph of a graph G.

2. General results for the middle neighborhood graph of some certain graphs

In this section, we recall some results that in our work. Also, we obtain some properties of the middle neighborhood
graph on some certain graphs.

Lemma 2.1. [12] For any graph G, the neighborhood graph N(G) of G is a spanning subgraph of Mnd(G).

Lemma 2.2. [12] For n ≥ 1, Mnd(G) = 2nK2 if and only if G = nK2.

Lemma 2.3. [12] For n ≥ 2, Mnd(G) = G ∪Kn if and only if G = K1,n.

Lemma 2.4. [12] If v is a vertex of a graph G, then the degree of the corresponding vertex of v in Mnd(G) is the
same with the degree v in G.

Lemma 2.5. [13] For any graph G of order n with no isolated vertex and the minimum degree δ,

γ(G) ≤ 1

2
(n+ 2− δ).
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Lemma 2.6. [14] If G is an isolated-free graph of order n, then

γi(G) ≤ n+ 2− 2
√
n.

Theorem 2.7. For n ≥ 2,

(i) If n is even, then Mnd(Pn) = 2GP in which GP is shown in Figure 2(a).

(ii) If n is odd, then Mnd(Pn) = G1P ∪G2P where GiP , for i = 1, 2, is shown in Figure 2(b).

Proof. Let Pn be a path of order n that the vertices are labeled by i, 1 ≤ i ≤ n. Then by the definition of the middle
neighborhood graph of Pn and its structure, we can consider the following cases.

(i) If n even, then Mnd(Pn) = G1 ∪ G2 in which Gi is connected component of Mnd(Pn) with n vertices. The
vertex set and the edge set of Gi for i = 1, 2 is as follows,

V (G1) = {2i− 1, N(2i) : 1 ≤ i ≤ n

2
},

E(G1) = {1 ∼ N(2)} ∪
{
2i− 1 ∼ N(2(i− 1)), 2i− 1 ∼ N(2i) : 2 ≤ i ≤ n

2

}
∪
{
N(2i) ∼ N(2(i+ 1)) : 1 ≤ i ≤ n

2
− 1

}
,

and
V (G2) = {N(2i− 1), 2i : 1 ≤ i ≤ n

2
},

E(G2) = {n ∼ N(n− 1)} ∪
{
2i ∼ N(2i− 1), 2i ∼ N(2i+ 1) : 1 ≤ i ≤ n

2
− 1

}
∪
{
N(2i− 1) ∼ N(2i+ 1) : 1 ≤ i ≤ n

2
− 1

}
.

Each of Gi’s, for i = 1, 2 is a graph of order n and consists n−2
2 triangles and one end-vertex. So, it is clear to

see that Gi ≃ GP for i = 1, 2 that is shown in Figure 2(a). Therefore,Mnd(Pn) = 2G that G ≃ GP .

(ii) If n is odd, thenMnd(Pn) consists of two connected componentsGi, i = 1, 2 of order n where their vertex sets
and their edge set are as follows,

V (G1) = {2i− 1, N(2i) : 1 ≤ i ≤ n

2
} ∪ {n},

E(G1) = {1 ∼ N(2), n ∼ N(n− 1)} ∪
{
2i− 1 ∼ N(2(i− 1)), 2i− 1 ∼ N(2i) : 2 ≤ i ≤ n− 1

2

}
∪
{
N(2i) ∼ N(2(i+ 1)) : 1 ≤ i ≤ n− 1

2
− 1

}
,

and
V (G2) = {N(2i− 1), 2i : 1 ≤ i ≤ n

2
} ∪ {N(n)},

E(G2) =
{
2i ∼ N(2i− 1), 2i ∼ N(2i+ 1) : 1 ≤ i ≤ n

2
− 1

}
∪
{
N(2i− 1) ∼ N(2i+ 1) : 1 ≤ i ≤ n

2
− 1

}
.

We can easily see that G1 consists of n−3
2 triangles and two end-vertices and G2 consists n−1

2 triangles. So,
according to Figure 2(b) G1 ≃ G1P and G2 ≃ G2P . Therefore, the proof is complete.
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Fig. 2. The middle neighborhood graph of Pn. a) If n is even, thenMnd(Pn) = 2GP . b) If n is odd, thenMnd(Pn) ≃ G1P ∪G2P .

Theorem 2.8. For n ≥ 3,

(i) If n is even, then Mnd(Cn) = 2GC in which GC is shown in Figure 3 for k = n.

(ii) If n is odd, then Mnd(Cn) = GC where GC is shown in Figure 3 for k = 2n.

Proof. Let Cn be a cycle of order n that the vertices of Cn are labeled by i, 1 ≤ i ≤ n. Using the structure of the
middle neighborhood graph of Cn and its structure, we can consider the following cases.

(i) If n even, then Mnd(Cn) = G1 ∪ G2 in which Gi is one connected component of Mnd(Cn) of order n. The
vertex set and the edge set of Gi for i = 1, 2 are as follows,

V (G1) = {1 + 2i : 0 ≤ i ≤ n

2
− 1} ∪ {N(2i) : 1 ≤ i ≤ n

2
},

E(G1) = E(Cn) ∪ {N(2i) ∼ N(2(i+ 1)) : 1 ≤ i ≤ n

2
} ∪ {N(2) ∼ N(n)},

also, we have
V (G2) = {N(2i+ 1), 2(i+ 1) : 0 ≤ i ≤ n

2
− 1},

E(G2) = E(Cn) ∪ {N(2i− 1) ∼ N(2i+ 1) : 1 ≤ i ≤ n− 1

2
} ∪ {N(1) ∼ N(n)}.

It is clear to see thatGi ≃ GC for i = 1, 2 that is shown in Figure 3 with k = n. Therefore,Mnd(Cn) = 2G ≃
2GC .

(ii) If n is odd, then Mnd(Cn) = G′ in which G′ a graph of order 2n. Let the vertices of G′ are labeled by ui for
1 ≤ i ≤ 2n. The vertex set and the edge set of graph G′ are as follows,

V (G′) =
{
ui = 2i− 1 , u2i = N(2i) : 1 ≤ i ≤ n

2

}
∪
{
un = n

}
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∪
{
u2i = N(2

(
i− n− 1

2

)
− 1) , u2i+1 = 2

(
i− n− 1

2

)
:
n+ 1

2
≤ i ≤ n

}
,

E(G′) = E(C2n) ∪ {u2i ∼ u2(i+1) : 1 ≤ i ≤ n} ∪ {u2 ∼ u2n}.
It is easy to see that G′ ≃ GC in which GC is shown in Figure 3 with k = 2n vertices. Therefore, the proof is
complete.

Fig. 3. The middle neighborhood graph of Cn. If n is even, then Mnd(Cn) ≃ 2GC where k = n. If n is odd, then Mnd(Cn) ≃ GC for
k = 2n.

3. The results for the domination parameters ofMnd(G)

In this section, we propose the obtain results on some parameters of domination. We obtain the domination number
and independent domination number of Mnd(G) for a graph G. The results for k-connected component domination
number ofMnd(G) is proposed.

Theorem 3.1. For n ≥ 1,
γ(Mnd(Kn)) = γi(Mnd(Kn)) = 2.

Proof. Using the definition of the middle neighborhood graph ofKn, we have V (Mnd(Kn)) = V (Kn)∪ S where S
is the open neighborhood sets ofKn. If the vertices ofKn are labeled by i, 1 ≤ i ≤ n, thenMnd(Kn) is a graph with
2n vertices with label ui for every 1 ≤ i ≤ 2n that

V (Mnd(Kn)) = {ui = i : 1 ≤ i ≤ n} ∪ {ui = N(i− n) : n+ 1 ≤ i ≤ 2n},

E(Mnd(Kn)) = {ui ∼ uj : 1 ≤ i ≤ n , n+ 1 ≤ j ≤ 2n and i ̸= j − n}
∪ {ui ∼ uj : n+ 1 ≤ i ≤ 2n and j = i+ 1, i+ 2, · · · , 2n}. (1)

Using the structure of Mnd(Kn), the vertex u1 = 1 is adjacent to n − 1 vertices uj for n + 2 ≤ j ≤ 2n. Also,
un+1 = N(1) is adjacent to n − 1 vertices ui for 2 ≤ i ≤ n. It is shown that the set D = {u1, un+1} dominates all
of vertices ofMnd(Kn). So, γ(Mnd(Kn)) = 2.
On the other hand, by (1), u1 and un+1 are not adjacent in Mnd(Kn). So, D is an independent set in this graph.
Therefore, γi(Mnd(Kn)) = 2.

Theorem 3.2. For 1 ≤ m ≤ n,
γ(Mnd(Km,n)) = γi(Mnd(Km,n)) = 2.
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Proof. Let V (Km,n) = A ∪ B where |A| = m and |B| = n. Using the definition of Mnd(Km,n), we can obtain
Mnd(Km,n) = G1 ∪G2. If A = {ui : 1 ≤ i ≤ m} and B = {vj : 1 ≤ j ≤ n}, then the vertices ofMnd(Km.n)
is the set A∪B ∪ {N(ui) : 1 ≤ i ≤ m} ∪ {N(vj) : 1 ≤ j ≤ n}. Each vertexN(ui) is adjacent to the vertices vj
for 1 ≤ j ≤ n and each of vertices N(vj) is adjacent to the vertices ui for 1 ≤ i ≤ m. Also, N(ui) and N(uj) are
adjacent for 1 ≤ i ≤ m and j = i+ 1, i + 2, · · · , 2m. Similarly, for every 1 ≤ i ≤ n and j = i+ 1, i + 2, · · · , 2n,
two vertices N(vi) and N(vj) are adjacent. Thus, Mnd(Km,n) = G1 ∪ G2 such that V (G1) = A ∪ N(B) and
V (G2) = B ∪N(A) andKm,n is a spanning subgraph of G1 and G2.
We consider D1 = {N(u1)} and D2 = {N(v1)} as the dominating sets for graph G1 and graph G2, respectively.
Therefore, D = D1 ∪D2 is a dominating set ofMnd(Km,n). Since D is an independent set,

γ(Mnd(Km.n)) = γi(Mnd(Km.n)) = 2.

Theorem 3.3. for n ≥ 1,

(i) γ(Mnd(K1,n)) = γi(Mnd(K1,n)) = 2.

(i) γ(Mnd(nK2)) = γi(Mnd(nK2)) = 2n.

Proof. (i) Using Lemma 2.3 and Theorem 3.2, the result holds.

(ii) Using Lemma 2.2,Mnd(nK2) = 2nK2. Therefore,

γ(Mnd(nK2)) = 2nγ(K2).

Since γ(K2) = 1, the result completes. Also, the dominating set consists of 2n vertices of Mnd(nK2) where
these are not adjacent together. This completes that γi(Mnd(nKn)) = 2n.

Theorem 3.4. For any graph Pn with n ≥ 4,

γ(Mnd(Pn)) = γi(Mnd(Pn)) =


n
2 if n ≡ 0 (mod 4),
n
2 + 1 if n ≡ 2 (mod 4),
n+1
2 if n ≡ 1, 3 (mod 4).

Proof. Using Theorem 2.7, we consider the following cases.
Case 1: In n is even, then Mnd(Pn) = 2G where G is isomorphism with the graph GP in Figure 2(a). So, it is
sufficient to obtain a dominating set for graph GP .
Subcase 1: If n ≡ 0 (mod 4), then the set S1 =

∪n
4 −1
i=0 {3 + 4i} is a dominating set for graph GP . Thus, γ(GP ) ≤

|S| = n
4 .

Let D be a dominating set of GP . We must show that |D| ≥ n
4 . Otherwise, assume |D| ≤ n

4 − 1. Since vertex n is
an end-vertex, then {n− 1} ⊆ D. The vertex n− 1 is adjacent to {n− 3, n− 2, n}. So, n− 4 remained vertices of
GP are dominated byD \ {n− 1}. If each vertex ofD \ {n− 1} dominates at most four vertices, thenD \ {n− 1}
dominates at most 4(n4 − 2) vertices of GP . It is a contradiction. Because there are at least four vertices of GP any
vertices of D can not dominate them. So, γ(GP ) ≥ n

4 .
Since γ(Mnd(Pn)) = 2γ(GP ) we get, γ(Mnd(Pn)) = n

2 . Also, the set S1 is the independent dominating set of
Mnd(Pn). So, using γ(G) ≤ γi(G) for every graph G, we have

n

4
≤ γi(GP ) ≤ |S1| =

n

4
.

Therefore, γi(Mnd(Pn)) = 2γi(GP ) =
n
2 .

Subcase 2: If n ≡ 2 (mod 4), we consider the set S2 =
∪n+2

4
i=0 {1 + 4i} as a dominating set of graph GP . So,
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γ(GP ) ≤ |S| = n+2
4 .

Similarly, we can obtain γ(GP ) =
n+2
4 . On the other hand, the set S2 is the independent set in GP . So,

γ(Mnd(Pn)) = γi(Mnd(Pn)) = 2γi(GP ) = 2
(n+ 2

4

)
=

n+ 2

2
,

and therefore, γi(Mnd(Pn)) =
n
2 + 1.

Case 2: In n is odd, using Theorem 2.7(ii)Mnd(Pn) ≃ G1P ∪G2P such thatGiP is shown in Figure 2(b) for i = 1, 2.
So, we obtain the dominating set of GiP for i = 1, 2.
Subcase 1: If n ≡ 1 (mod 4), S′

1 =
∪n−5

4
i=0 {2+4i}∪{n− 1} is a dominating set ofG1P . So, γ(G1P ) ≤ |S′

1| = n+3
4 .

Let D is a dominating set of G1P and |D| ≤ n−1
4 . Since vertices 1 and n are the end-vertices, {1, n} ⊆ D. Thus,

D \ {1, n} must dominate n − 6 remained vertices of G1P . If every vertex of D \ {1, n} dominates at most four
vertices of G1P , then there are at least three vertices of G1P that D can not dominate it. It is a contradiction. So,
γ(G1P ) = |D| = n+3

4 .
For graph G2P , we consider S′

2 =
∪n−5

4
i=0 {3 + 4i} as a dominating set. We obtain γ(G2P ) =

n−1
4 . Therefore,

γ(Mnd(Pn)) = γ(G1P ) + γ(G2P ) =
n+ 1

2
.

It is clear to see that S′
1 and S′

2 are the independent sets in graphsG1P andG2P , respectively. So, using γ(G) ≤ γi(G),
the result holds.
Subcase 2: If n ≡ 3 (mod 4), then for graphG1P we consider the set S′′

1 =
∪n−3

4
i=0 {2+ 4i} as the dominating set. So,

γ(G1P ) ≤ n+1
4 .

Let D be a dominating set of G1P that |D| ≤ n−3
4 . According to Theorem 2.7(ii) and Figure 2(b), {1, n} ⊆ D. So,

D \{1, n}must dominate n−6 remained vertices ofG1P . If any vertex ofD \{1, n} dominates at most four vertices
ofG1P , then there are at least five vertices thatD can not dominate them. It is a contradiction and so, γ(G1P ) =

n+1
4 .

Similarly, for graph G2P , S′′
2 =

∪n−3
4

i=0 {3 + 4i} is the dominating set. Therefore, γ(G2P ) = n+1
4 . Since S′′

1 in the
graph G1P and S′′

2 in the graph G2P are the independent sets, then

γi(Mnd(Pn)) = γi(G1P ) + γi(G2P ) =
n+ 1

2
.

Theorem 3.5. For any n ≥ 3,

γ(Mnd(Cn)) = γi(Mnd(Cn)) =


n
2 if n ≡ 0 (mod 4),
n
2 + 1 if n ≡ 2 (mod 4),
n+1
2 if n ≡ 1, 3 (mod 4).

Proof. Using Theorem 2.8 we have
Case 1: If n is odd, then Mnd(Cn) ≃ GC where GC is a graph of order 2n (see Figure 3). Any vertex of GC with
labeling 2i for 1 ≤ i ≤ n is adjacent to four vertices {2i−2, 2i−1, 2i+1, 2i+2}. The setS =

∪n−3
2

i=0 {2+4i}∪{2n−1}
is a dominating set of GC . So,

γ(Mnd(Cn)) = γ(GC) ≤ |S| = n+ 1

2
.

Let D be the dominating set of GC with |D| ≤ n−1
2 . Without loss of generality suppose {2} ⊆ D. So, the vertex 2,

dominates the vertices {2n, 1, 3, 4}. So, D \ {2} must dominate 2n − 5 remained vertices of GC . If any vertex of
D \ {2} dominate at most four vertices of GC , then 2(n− 3) vertices of the graph are dominated by D \ {2}. It is a
contradiction. Because at least one vertex of GC is not dominated by D. So, γ(Mnd(Cn)) = γ(GC) ≥ n+1

2 . On the
other hand, S is the independent set of GC . Thus,

n+ 1

2
= γ(Mnd(Cn)) ≤ γi(Mnd(Cn)) ≤

n+ 1

2
.
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Case 2: Let n is even. According to Theorem 2.8 and Figure 3,Mnd(Cn) ≃ 2GC for k = n. So, we can consider the
following cases.
Subcase 1: If n ≡ 0 (mod 4), then S′ =

∪n
4 −1
i=0 {2 + 4i} is a dominating set of GC . So, γ(GC) ≤ |S| = n

4 .
Let D be a dominating set of GC with |D| ≤ n

4 − 1. Without loss of generality suppose that {2} ⊆ D. So, n −
5 remained vertices are dominated by D \ {2}. But, D \ {2} dominates at most n − 8 vertices of GC . It is a
contradiction. So, γ(GC) =

n
4 . Therefore, γ(Nnd(Cn)) = 2γ(GC) =

n
2 . Since S

′ is an independent set, in this case,
γi(Mnd(Cn)) =

n
2 .

Subcase 2: Assume n ≡ 2 (mod 4), then S′′ =
∪n−6

4
i=0 {2 + 4i} ∪ {2n− 1}. It is clear to see that S′′ is a dominating

set of GC . So, γ(GC) ≤ |S| = n+2
4 .

Similarly, in this case, S′′ is an independent set. So, the result holds.

Theorem 3.6. Let G be a graph of order n without isolated vertices and with the minimum degree δ. Then

γ(Mnd(G)) ≤ n+ 1− δ

2
.

Proof. For any graph G of order n, Mnd(G) is a graph with 2n vertices. Using Lemma 2.1 and Lemma 2.4, we can
obtain that the minimum degree ofMnd(G) is equal with the minimum degree of G. So, δMnd(G) = δG = δ.
According to Lemma 2.5, for graphMnd(G) of order 2n,

γ(Mnd(G)) ≤ 1

2
(2n+ 2− δ) = n+ 1− δ

2
.

Theorem 3.7. Let G be a graph without isolated vertices. Then

γi(Mnd(G)) ≤ 2(n+ 1−
√
2n).

Proof. Using Lemma 2.4, since G doesn’t have any isolated vertex,Mnd(G) of G is a graph without isolated vertex.
Therefore, using Lemma 2.6, for graphMnd(G) with 2n vertices, we have

γi(Mnd(G)) ≤ 2n+ 2− 2
√
2n.

Theorem 3.8. For n ≥ 3,
γ2
c (Mnd(Pn)) = n− 2.

Proof. Case 1: If n is even, using Theorem 2.7 and Figure 2(a), Mnd(Pn) ≃ 2GP . So, graph Mnd(Pn) consists
of two connected components GP . It is sufficient to obtain a connected dominating set of GP . We easily see that
S1 =

∪n
2 −1
i=1 {1 + 2i} is a connected dominating set of GP . So, γc(GP ) ≤ |S1| = n

2 − 1.
LetD be a connected dominating set ofGP and |D| ≤ n

2 −2. According to Figure 2(a), {n−1} ⊆ D. So,D\{n−1}
must dominate n− 4 remained vertices of GP . Since D is a connected set, every vertex of D dominates at most two
vertices of GP . So, n− 6 vertices are dominated byD \ {n− 1}. It is a contradiction. Because there are at least two
vertices of GP that can not dominate by D. So, γc(GP ) ≥ n

2 − 1. Since Mnd(Pn) has two connected dominating
sets,

γ2
c (Mnd(Pn)) = 2γc(Pn) = n− 2.

Case 2: If n is odd, by Theorem 2.7 and Figure 2(b), Mnd(Pn) ≃ G1P ∪ G2P . Similarly, we can consider S1 =∪n−1
2

i=1 {2i} as a connected dominating set ofG1P and S2 =
∪n−3

2
i=1 {1+2i} as a dominating set ofG2P . So, γc(G1P ) =

n−1
2 and γc(G2P ) =

n−3
2 . Therefore,

γ2
c (Mnd(Pn)) = γc(G1P ) + γc(G2P ) = n− 2.
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Theorem 3.9. For n ≥ 3,

(i) If n is odd, γc(Mnd(Cn)) = n.

(ii) If n is even, γ2
c (Mnd(Cn)) = n.

Proof. (i) If n is odd, then according to Theorem 2.8 Mnd(Cn) ≃ GC where GC is the graph in Figure 3 for
k = 2n. So, S =

∪n
i=1{2i} is a connected dominating set of GC . Thus, γc(GC) ≤ n. Let D be a connected

dominating set of GC and |D| ≤ n− 1. Every vertex of D dominates at most two vertices of GC . So, 2n− 2
vertices of GC are dominated by D. It is a contradiction. Because there are at least two vertices of G that are
not dominated by D. So, γc(GC) ≥ n. Therefore,

γc(Mnd(Cn)) = γc(GC) = n.

(ii) If n is odd, then using Theorem 2.8Mnd(Cn) ≃ 2GC whereGC is a graph with n vertices as is shown in Figure
3. It is easy to show that the set S =

∪n
2
i=1{2i} is a connected dominating set ofGC . In a similar way of (i), we

can obtain γc(GC) =
n
2 . Therefore,

γ2
c (Mnd(Cn)) = 2γc(Mnd(GC)) = n.

Theorem 3.10. For n ≥ 1,
γc(Mnd(Kn)) = 3.

Proof. Let D be a connected dominating set of Mnd(Kn). Since Mnd(Kn) is a connected graph, D is one com-
ponent and we have 3 ≤ |D| = γc(Mnd(Kn)). According to label the vertices of Theorem 3.1, we consider
S = {1, N(1), N(2)}. It is clear that S is a connected dominating set of Mnd(Kn). Therefore, the proof is com-
plete.

Theorem 3.11. For 1 ≤ m ≤ n,

(i) γ2
c (Mnd(Km,n)) = 2.

(ii) γ2
c (Mnd(K1,n)) = n.

(iii) γ2n
c (Mnd(nK2)) = 2n.

Proof. (i) Using Theorem 3.2 and sinceMnd(Km,n) = G1 ∪G2,Mnd(Km,n) consists of two connected compo-
nents. Thus,Mnd(Km,n) has 2-connected component dominating set. So, everyGi has a connected dominating
set. Using Theorem 3.2(i), the proof is complete.

(ii) This is the result of the segment (i).
(iii) Using Lemma 2.2, the graph Mnd(nK2) consists of 2n connected components. So, we consider a connected

dominating set for every component. Thus, Mnd(nK2) has 2n-connected component dominating set. Using
Theorem 3.3(ii) the result holds.
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Abstract

Sierpiński gasket graphs have many applications in diverse areas like topology, chemistry and
dynamical systems. In this paper, we determine some topological indices for the generalized
Sierpiński gasket of cycles and complete graphs.

1. Introduction

All graphs considered in this paper are assumed to be simple connected. Throughout G = (V,E) is assumed to be a
non-empty graph of order n with the vertex set V = {1, 2, . . . , n} and the edge setE. The degree of a vertex v ofG is
denoted by degG(v) which is the size of the set of its neighbourhoodNG(v). In mathematical chemistry and chemical
graph theory, topological indices are numerical parameter of a graph that are invariant under graph isomorphism. One
of the first degree-based indices is Randić index defined in [7] as follows

R(G) =
∑

uv∈E(G)

[deg(u) deg(v)]−
1
2 .

The sum-connectivity index of a graph G defined in [11] as follows

χ(G) =
∑

uv∈E(G)

[deg(u) + deg(v)]−
1
2 .

∗Talker
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It is shown in [3] that the Randić and sum-connectivity indices are highly interdependent quantities. The Randić index
has been extended and generalized as [1]

R
α
(G) =

∑
uv∈E(G)

[deg(u) deg(v)]α,

in which α is real a number. Similarly, the general sum-connectivity index is defined in [10] as follows

χα(G) =
∑

uv∈E(G)

[deg(u) + deg(v)]α.

Also, in [9] Arithmetic-Geometric index is defined as follows

AG1(G) =
∑

uv∈E(G)

deg(u) + deg(v)
2
√
deg(u)× deg(v)

.

2. Some topological indices of generalized Sierpiński gasket graph

Decomposition into special substructures that inherit remarkable features is an important method used for the investiga-
tion of some mathematical structures, specifically when the regarded structures have self-similarity features. Klavžar
et al. for the first time, introduced the Sierpiński graph S(Kn, t), see [5] and [6]. One of the most important families
of these self similar graphs is the family of Sierpiński gasket graphs, see [8]. The Sierpiński gasket graph St is made
from the Sierpiński graph S(3, t) by contracting all the edges that are in no triangle, see [4] for more details. In this
paper, we generalized this structure to each graph G, and call it the generalized Sierpiński gasket graph and denote it
by S[G, t].

Definition 2.1. [2] Let G = (V,E) be a graph of order n ⩾ 2, t be a positive integer and denote the set of words
of length t on the alphabet V by V t. The letters of a word u ∈ V (G) (of length t) are denoted by u1u2 . . . ut. The
generalized Sierpiński graph ofG of dimension t, denoted by S(G, t), is the graph with vertex set V t and {u, v} is an
edge if and only if there exists i ∈ {1, , ..., t} such that:
(i) uj = vj if j < i,
(ii) ui ̸= vi and {ui, vi} ∈ E,
(iii) uj = vi and vj = ui if j > i.

Definition 2.2. Let G be a simple graph of order n ≥ 2, with the vertex set V = {1, 2, . . . n} and t be a positive
integer. If i is adjacent to j in G, then by contracting the new edge between two copies i and j (the linking edge) in
the generalized Sierpiński graph, the generalized Sierpiński gasket graph is obtained. In other words, if i is adjacent
to j in G, then the vertex u = v1v2 . . . vrji . . . i is adjacent to v = v1v2 . . . vrij . . . j, in S(G, t), 0 ≤ r ≤ t − 2,
the edge uv will be contracted in S[G, t], and this new vertex will be denoted by v1v2 . . . vr{i, j}t−r or shortly by
v(r){i, j}t−r, see Figure 1 and Figure 2.

Similar to the structure of the generalized Sierpiński graph S(G, t), S[G, t] is constructed inductively by inserting a
copy of S[G, t−1] instead of each vertex ofG (Si[G, t] for i ∈ V (G)) and then by contracting the new |E(G)| linking
edges (of S(G, t)). More precisely, when i is adjacent to j in the graph G, then the linking edge between ijj . . . j
and jii . . . i is contracted and the new vertex is shown by {i, j}t in S[G, t]. Note that the vertex {i, j}t is the unique
common shared vertex between two copies Si[G, t] and Sj [G, t].
In what follows, we determine some of the topological indices of S[G, t] for special graphs G.

Theorem 2.3. The general sum-connectivity index of generalized Sierpiński gasket graph ofKn in step t is given by

χ
α
(S[Kn, t]) = (n2 − n)(3n− 3)α + (mnt−1 − n2 + n)(4n− 4)α.
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Fig. 1. C4, S[C4, 2] and S[C4, 3].

Proof. Since S[Kn, t] has n(n − 1) edges with endpoint degrees (n − 1) and 2(n − 1), and the other edges have
endpoints of degree 2(n− 1), we get

χα(S[Kn, t]) =
∑

uv∈E(S[Kn,t])

[deg(u) + deg(v)]α

=
∑

uv∈E(S[Kn,t])

((n− 1) + (2n− 2))α +
∑

uv∈E(S[Kn,t])

((2n− 2) + (2n− 2))α

= (n2 − n)(3n− 3)α + (mnt−1 − n2 + n)(4n− 4)α.

Corollary 2.4. If in Theorem 2.3, we let α = − 1
2 , then sum-connectivity index of S[Kn, t] is equal to

χ(S[Kn, t]) =
(n2 − n)√
3n− 3

+
(mnt−1 − n2 + n)√

4n− 4
.

Proof. Note that S[Kn, t] has n vertices of degree n−1 and (nt−mnt−1−1
n−1 )−n vertices of degree 2(n−1). Hence,

one has

χ(S[Kn, t]) =
∑

uv∈E(S[Kn,t])

[deg(u) + deg(v)]−
1
2

=
∑

uv∈E(S[Kn,t])

((n− 1) + (2n− 2))−
1
2 +

∑
uv∈E(S[Kn,t])

((2n− 2) + (2n− 2))−
1
2

=
(n2 − n)√
3n− 3

+
(mnt−1 − n2 + n)√

4n− 4
.

Theorem 2.5. The general Randić index of generalized Sierpiński gasket graph ofKn in step t is given by

R
α
(S[Kn, t]) = (n2 − n)(2n2 − 4n+ 2)α + (mnt−1 − n2 + n)(2n− 2)2α.
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Fig. 2. K5 and S[K5, 2].

Proof. By considering structure of generalized sierpiński gasket graph, in S[Kn, t], we have n extreme vertices in
form ii . . . i, 1 ⩽ i ⩽ n, and other vertices are in contracted form. Since each extreme vertex has degree n− 1 and its
neighbours have degree 2(n− 1), we have

R
α
(S[Kn, t]) =

∑
uv∈E(S[Kn,t])

[deg(u)× deg(v)]α

=
∑

uv∈E(S[Kn,t])

((n− 1)(2n− 2))α +
∑

uv∈E(S[Kn,t])

((2n− 2)(2n− 2))α

= (n2 − n)((n− 1)(2n− 2))α + (mnt−1 − n2 + n)((2n− 2))2α

= (n2 − n)(2n2 − 4n+ 2)α + (mnt−1 − n2 + n)(2n− 2)2α.

Corollary 2.6. If in Theorem 2.5, α = − 1
2 , then, the Randić index of S[Kn, t] is equal to

R(S[Kn, t]) =
(n2 − n)√

2n2 − 4n+ 2
+

(mnt−1 − n2 + n)

2n− 2
.

Proof. The Randić index of S[Kn, t] is as follows:

R(S[Kn, t]) =
∑

uv∈E(S[Kn,t])

[deg(u)× deg(v)]−
1
2

=
∑

uv∈E(S[Kn,t])

((n− 1)(2n− 2))−
1
2 +

∑
uv∈E(S[Kn,t])

((2n− 2)(2n− 2))−
1
2

=
(n2 − n)√

2n2 − 4n+ 2
+

(mnt−1 − n2 + n)

2n− 2
.
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Theorem 2.7. The Arithmetic-Geometric index of generalized Sierpiński gasket graph ofKn in step t is given by

AG1(S[Kn, t]) =
3n3 − 6n2 + 3n

2
√
2n2 − 4n+ 2

+ (mnt−1 − n2 + n).

Proof. The Arithmetic-Geometric index of S[Kn, t] is as follows:

AG1(S[Kn, t]) =
∑

uv∈E(S[Kn,t])

deg(u) + deg(v)
2
√
deg(u)× deg(v)

=
∑

uv∈E(S[Kn,t])

(n− 1) + (2n− 2)

2
√

(n− 1)(2n− 2)
+

∑
uv∈E(S[Kn,t])

(2n− 2) + (2n− 2)

2
√

(2n− 2)(2n− 2)

=
3n3 − 6n2 + 3n

2
√
2n2 − 4n+ 2

+ (mnt−1 − n2 + n).

Theorem 2.8. The general sum-connectivity index of generalized Sierpiński gasket graph of Cn in step t is given by

χ
α
(S[Cn, t]) = nt−1(n− 4)(4)α +

4n(nt−2 − 1)

n− 1
(8)α +

4n+ nt−1(4n− 8)

n− 1
(6)α.

Proof. we have three types of edges, there are nt−1(n−4) edges whose two endpoints have degree 2, and 4n(nt−2−1)
n−1

edges whose endpoints have degree 4, and 4n+nt−1(4n−8)
n−1 edges whose endpoints have degree 2 and 4. Thus,

χ
α
(S[Cn, t]) =

∑
uv∈E(S[Cn,t])

[deg(u) + deg(v)]α

=
∑

uv∈E(S[Cn,t])

(2 + 2)α +
∑

uv∈E(S[Cn,t])

(4 + 4)α +
∑

uv∈E(S[Cn,t])

(2 + 4)α

= nt−1(n− 4)(4)α +
4n(nt−2 − 1)

n− 1
(8)α +

4n+ nt−1(4n− 8)

n− 1
(6)α.

Corollary 2.9. If in Theorem 2.8, α = − 1
2 , then sum-connectivity index of S[Cn, t] is equal to

χ(S[Cn, t]) =
1

2
nt−1(n− 4) +

1

2
√
2

4n(nt−2 − 1)

n− 1
+

1√
6

4n+ nt−1(4n− 8)

n− 1
.

Theorem 2.10. The general Randić index of generalized Sierpiński gasket graph of Cn is determined by

Rα(S[Cn, t]) = nt−1(n− 4)(4)α +
4n(nt−2 − 1)

n− 1
(16)α +

4n+ nt−1(4n− 8)

n− 1
(8)α.

Corollary 2.11. The Randić index of S[Cn, t] is obtained

R(S[Cn, t]) =
1

2
nt−1(n− 4) +

n(nt−2 − 1)

n− 1
+

√
2(n+ nt−1(n− 2))

n− 1
.

Theorem 2.12. The Arithmetic-Geometric index of generalized Sierpiński gasket graph of Cn in step t is given by

AG1(S[Cn, t]) = nt−1(n− 4) +
4n(nt−1 − 1)

n− 1
+ 3

√
2 (

n+ nt−1(n− 2)

n− 1
).
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Abstract

Let R be a commutative ring with nonzero identity. The Nil clean graph N.G(R) is a simple
graph with vertex set the Nil clean element of R; and two element x and y are adjoint if and
only if xy or x − y in Nil(R). In this paper some of the basic graph theoric properties like
the diameter, maximum and mimimum degree, orthogonal set , choromatic number of nil clean
graph are studied.

1. Introduction

When one assigns a graph with an algebraic structure, numerous interesting algebraic problems arise from the transla-
tion of some graph-theoretic parameters such as clique number, chromatic number, diameter, radius and so on. There
are many papers about the attribution of a graph to a ring. Due to the fact that the idempotents, nilpotents and unit
elements in a ring are key instruments for the acknowledgment of the structure of a ring, different definitions for the
graphs related with rings were given utilizing these concepts, each of which characterized the ring structure in a few
way. In these structures, the condition of the connecting vertices is regularly that the sum, difference or product of
the vertices could be a zero divisor, a unit or a nilpotent element, for example, zero divisor graphs [2], unitary Cayley
graph [1], a kind of graph structure [4]
Presenting the concept of nil clean elements in [8], The elements are written as a sum of an idempotent element and a
nilpotent element, has made a wide field of exciting investigate topic, leading to numerous captivating comes about,
for occasion see, [3, 5, 6, 9].

Let R be a commutative ring with nonzero unitary. An element e ∈ R is called idempotent if e2 = e, and n ∈ R is
called nilpotent, if there exists a poitive integer k such that nk = 0 and denoted by Id(R) andNil(R) respectively. An
element a of R is nil clean when a can be written as a sum of idempotent and nilpotent element. The subset N.C(R)
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of a ring R consists all the nonzero nil clean elements of R. A pair of idempotents e and f are said to be orthogonal if
ef = 0. Let e be an idempotent element of R. The set of all nonzero orthogonal idempotents of e is denoted by Oe.
In fact, Oe = {0 ̸= f ∈ Id(R) : ef = 0}.
In this paper we focouse on nil clean graph. The main object of this paper is to study the interplay between the ring-
theoretic properties of R and the graph-theoretic properties of N.G(R). This study helps illuminate the structure of
NC(R). In [11] is defined following nil clean graph and show that basic properties of this graph and obtained some
result about graph from ring and conversly.

Definition 1.1. The nil clean graph of a ring R, denoted by N.G(R) is defined by vertices V (N.G(R)) = N.C(R),
and for distinct x, y ∈ N.C(R), the vertices x and y are adjacent if and only if xy ∈ Nil(R) or x− y ∈ Nil(R).

In [11][2.3] is expressed an equivalent condition for adjacency of two vertices, which plays a key role in identifying
Nil clean graph.

Theorem 1.2. For a commutative ring R, the vertices x = e + n and y = f +m are adjacent, where e, f ∈ Id(R)
and n,m ∈ Nil(R), if and only if e = f or ef = 0.

2. Main results

The focus of this sectionwill be on elucidating the concept of the nil clean graph of a commutative ring and emphasizing
its notable characteristics.
We introduce two subgraphs as follows:

N.C1(R) = {(0, n) : n ∈ Nil(R)}

and

N.C2(R) = {(e, n) : 0 ̸= e ∈ Id(R) and n ∈ Nil(R)}.

It is clear that

N.G(R) = N.G1(R) ∨N.G2(R)

where N.G1(R) is a complete subgraph of N.G(R) with vertices N.C1(R) and N.G2(R) is a subgraph of N.G(R)
with vertices N.C2(R), thus to explor main properties of N.G2(R), we need to study N.G2(R).
LetR be a reduced ring. Then V (N.G2(R)) = Id(R)\{0}. So, in this case, N.C(R) is a subset of nonzero zero-divisor
elements of R and the next Theorem shows that two vertices x and y are adjacent if and only if xy = 0.

Theorem 2.1. Let R be a reduced ring. Then N.G2(R) is a subgraph of the zero-divisor graph of R.

Corollary 2.2. For a ring R, if N.G2(R) is connected, then R is non-reduced. The convere is not true in general.

The ring of integers modulo 12 is a non-reduced ring in which N.G2(Z12) is a not a connected graph.

Theorem 2.3. Let R be a ring with a non trivial idempotent then N.G2(R) is not connected graph.

In [11] is showed for a commutative ringRwith a non trivial idempotent, diam(N.G2(R)) ≤ 3. Moreover, IfN.G2(R)
contains a cycle, then g(N.G2(R)) ≤ 7.
The aim of this paper is to introduce and study some of the basic properties of the nil clean graph N.G2(R), some of
its subgraphs N.G21 = {(1, n) : n ∈ Nil(R)} and N.G22 = {(e, n) : 1, 0 ̸= e ∈ Id(R), n ∈ Nil(R)}.

N.G2(R) = N.G21 ∨N.G22

by definition nil clean graph, we see ifR be a non indecomposible ring then any vertex ofN.G21 is not conjected with
vertex of N.G22 and N.G2(R) is a nonconnected graph that composed of two subgraph N.G21 and N.G22.

Corollary 2.4. for a ring R
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(1) N.G21 is isomorphic toK|Nil(R)|

(2) For a ring R, N.G22 is a connected graph.

Corollary 2.5. If R has a nontrivial nilpotent and nontrivial idempotent then N.G22(R) has At least a triangle.

Proof. suppose that e is nontrivial idempotent and n is nontrivial nilpotent of R. then we have the cycle (e, n) ∼
(1− e, n) ∼ (1− e, 0) ∼ (e, n), and we are done.

Corollary 2.6. If |Nil(R)| ≥ 3 then N.G2(R) has At least a triangle.

Proof. suppose that n1, n2 are nontrivial nilpotent of R then we have the cycle (e, 0) ∼ (e, n1) ∼ (e, n2) ∼ (e, 0),
for every 0 ̸= e ∈ Id(R). and we are done.

Theorem 2.7. Let R be a ring then gr(N.G2(R)) ∈ {3,∞}

Proof. IfR be indecomposible and reduced then (1, 0) is isolated vertices andN.G2(R) has no cycle so gr(N.G2(R)) =
∞. If R not indecomposible and reduced by corollary 2.5 N.G2(R) has a cycle with lenght 3.

The degree of v ∈ V (G) denoted by deg(v), is the number of edges of G incident with v. We denoted the minimum
and the maximum degrees of G, by δ(G) and∆(G), respectively.

Theorem 2.8. If R a finite ring then δ(N.G2(R))=N − 1 and ∆(N.G2(R))=|Nil(R)|(|Oei| + 1) − 1 where ei is
idempotent with maximum orthogonal idempotents.

Lemma 2.9. For the nil clean graph N.G2(R) we have the following:

(1) If R is reduced, then deg(1, 0) = 0 and for every 0, 1 ̸= e ∈ Id(R), deg(e, 0) = |Oe|.

(2) If |Nil(R)| = 2, then

(2.1) deg(1, 0) = deg(1, n) = 1 where n is nonzero.
(2.2) deg(e, n) = 2|Oe|+ 1 where e is a non-trivial idempotent of R and n is nonzero.

(3) If |Nil(R)| = k ≥ 3, then deg(e, n) = k(1 + |Oe|)− 1 where e is nonzero.

The next result [10] provides us a plenty source of examples.

Corollary 2.10. Let R1, R2, · · · , Rn be indecomposable reduced rings. If R = R1 ×R2 × · · ·Rn, thenN.G2(R) is
finite and moreover,

(1) V (N.G2(R)) = {(e1, · · · , en) : ei = 0 or 1 in Ri} − {(0, 0, · · · , 0)}.

(2) |V (N.G2(R))| = 2n − 1.

(3) If x = (e1, · · · , en) where k < n number of the ei’s are equal to zero, then deg(x) = 2k − 1.

Weddernburn-Artin theorem state that any semisimple commutative ring is a finite direct product of fields. Thus, by
this fact the following example follows.

Example 2.11. For a semisimple ring R ∼= F1 × F2 × · · · × Fn, N.G2(R) is finite. In addition, the statements of
corollary 2.10 are valid.

Proposition 2.12. If x = (x1, · · · .xn) and y = (y1, · · · , yn) are adjacent vertices in the ringR1×R2×· · ·Rn, then
xi and yi are adjacent vertices in Ri for all 1 ≤ i ≤ n. The converse is not true in general.

Now we would like to determine the clique number and the chromatic number of the idempotent graphs and the rela-
tionship between them. First we defineMO the maximal set of orthogonal idempotent element. for every idempotent
element ei we defined MOei = {f ∈ Oei : fg = 0, g ∈ Oei}, MOj = Max{MOei : ei ∈ Id(R)}. may be this set is
not unique but they have the same number of members. Now we start with the following theorem.



474 Bozorgzadeh & Fazaeli Moghimi & Samiei / The 4th National Congress on Mathematics and Statistics

Theorem2.13. LetR be a ring and x = (e, n) be a vertex of degree at least 2|Nil(R)| thenω(N.G2(R)) ≥ 3|Nil(R)|

Proof. x is a vertex of degree at least 2|Nil(R)| so there exists a vertex y = (f,m) where f ̸= 1 − e such that e
and f are orthogonal. now all of vertices x = (e, n = n1) ∼ (e, n2) ∼ .... ∼ (e, n|Nil(R)|) ∼ (1 − e − f, n1) ∼
.... ∼ (1 − e − f, n|Nil(R)|) ∼ (f, n1) ∼ .... ∼ (f, n|Nil(R)| = m) are adjacent, so this a clique in N.G2(R) and
ω(N.G2(R)) ≥ 3|Nil(R)|.

Theorem 2.14. »et R be a ring
(1) ]f R be indecomposible ring then ω(N.G2(R))=|Nil(R)|
(2) ]f R is not a indecomposible ring then ω(N.G2(R)) = |MO||Nil(R)|

now we want to obtain chromatic number of N.G2(R).

Theorem 2.15. ]f R be a ring and N.G2(R) be Nil clean graph then we have ω(N.G2(R)) = χ(N.G2(R))
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Abstract

In this paper, we determine the exact value of game chromatic number of Cartesian product
P3□Cn and game chromatic index of Cartesian product P2□Cn where Cn is a cycle on n
vertices.

1. Introduction

Let G be a simple graph and X = {1, 2, ..., k} be a set of colors. Consider two players. Alice and Bob take turns
in playing the game. They alternately color a vertex of G with a color from X . Alice always moving first. In this
coloring no two adjacent vertices recieve the same color. In the end if all the vertices of G are colored properly, Al-
ice wins and Bob wins if at any stage of the game before the G completely colored, one of the players has no legal
move. The game chromatic number of G, denoted by χg(G), is the least number k for which Alice has a winning
strategy. The game coloring introduced by Bodlaender [7]. There are some results for game chromatic number of
graph, see [3, 5, 6, 8, 10, 11, 15, 16]. It is clear that the game chromatic number χg(G) satisfies

χ(G) ≤ χg(G) ≤ ∆(G) + 1. (1)

where χ(G) and∆(G) are chromatic number and the largest vertex degree of the graph G, respectively.
It is defined similarly for edge coloring. That means Alice and Bob will be coloring the edges of a graph G instead
of its vertices with Alice start playing first. They alternately color an edge of G with a color from X such that two
adjacent edges have different colors. Alice wins the game if it is possible to color all the edges of G with colors inX
. Otherwise Bob wins. The game chromatic index χ′

g(G) is the least number of colors such that Alice has winning
strategy. The edge game coloring problem of graphs was introduced by Lam et al. [13] and it was studied by many
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people, see [1, 2, 4, 9, 12, 14]. The trivial bounds are:

∆(G) ≤ χ′
g(G) ≤ 2∆(G)− 1. (2)

where∆(G) denotes the maximum degree of G.
The Cartesian product of graphsG andH , denoted byG□H , where two vertices (u, v) and (u′, v′) are adjacent if and
only if u = u′ and vv′ ∈ E(H) or v = v′ and uu′ ∈ E(G). In this paper we determine the exact value of χg(P3□Cn)
and χ′

g(P2□Cn), where Cn is a cycle with n vertices.

2. Game Chromatic Number of P3□Cn

We denote vertices of copies Cn of graph P3□Cn by V1 = {v1, ..., vn}, V2 = {v′1, ..., v′n} and V3 = {v′′1 , ..., v′′n}.

Theorem 2.1. For every integer n ≥ 3, χg(P3□Cn) ≥ 4.

Proof. At first, we show that Bob has a winning strategy using 3 colors. For Alice first move consider following the
cases:
Case 1: Alice colors a vertex of degree 3.
Without loss of generality, suppose Alice colors vertex v1 with color 1. Then Bob replies with vertex v′2 with color 2.
In the second move, if Alice colors a vertex of vj (2 ≤ j ≤ n) or v′i or v′′i (3 ≤ i ≤ n) then Bob replies with vertex
v′′1 with color 3 and Bob wins. Suppose That in the second move Alice colors one of the vertices of {v1, v′′1 , v′′2} then
Bob colors vertex v3 with color 3 and he wins.
Case 2: Alice colors a vertex of degree 4.
Without loss of generality, suppose Alice colors vertex v′1 with color 1. Then Bob colors vertex v′′2 with color 2. In
the next move, if Alice colors a vertex of vi (1 ≤ i ≤ n) or v′j (1 ≤ j ≤ n− 1), then Bob replies with vertex v′′n with
color 3 and Bob wins. Also if Alice colors a vertex of v′′i (1 ≤ i ≤ n, i ̸= 2) or v′n, then Bob replies with vertex v2
with color 3 and Bob wins

Theorem 2.2. For every integer n ≥ 3, χg(P3□Cn) ≤ 4.

Proof. Let X = {1, ..., 4} be a color set. Now we give a winning strategy for Alice with color set X . At first, Alice
colors vertex v2 with color 1. In the following moves, if Bob colors a vertex vi(v

′′
i ) from V1(V3) with color j then

Alice colors vertex v′′i (vi) from V3(V1) with the same color. Now if Bob colors a vertex v′i from V2 with color j then
Alice colors a vertex among v′i+2 or v′i−2 (i ≤ n − 2) with color j. If it is not possible, she colors any vertex with
an available color. In this strategy any uncolored vertex is adjacent to colored neighbors with at most 3 distinct colors
and Alice wins.

Corollary 2.3. For every integer n ≥ 3, we have χg(P3□Cn) = 4.

3. Game Chromatic Index of P2□Cn

We denote edges of copies Cn of graph P2□Cn by E1 = {e1, ..., en}, E2 = {e′′1 , ..., e′′n} and edges of copies P2 by
E3 = {e′1, ..., e′n} such that edge e′i is neighbor with ei and e′′i (1 ≤ i ≤ n).

Theorem 3.1. For every integer n ≥ 3, χ′
g(P2□Cn) ≥ 4.

Proof. We show that Bob has a winning strategy using three colors. For Alice first move consider following the cases:
Case 1: Alice colors an edge from E3.
Without loss of generality, suppose Alice colors vertex e′1 with color 1 then Bob colors e2 with color 2. For the Alice
next move consider the following cases:
Case 1.1: Alice colors an edge from E2.
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Then Bob colors en with color 3 and Bob wins.
Case 1.2: Alice colors an edge from E1.
If Alice colors e1 then Bob replies with edge e′′2 with color 1 and Bob wins. Now suppose Alice colors an edge ei
(3 ≤ i ≤ n) in her second move then Bob colors e′2 with color 3 and Bob wins.
Case 1.3: Alice colors an edge from E3.
If Alice colors e′2 then Bob replies with edge en with color 3 and Bob wins. Now suppose Alice colors an edge e′i
(3 ≤ i ≤ n) then Bob colors e′′2 with color 3 and Bob wins.
Case 2: Alice colors an edge from E1 or E2.
Without loss of generality, suppose Alice colors e1 with color 1 then Bob colors e′′2 with color 2. For the Alice second
move consider the following cases:
Case 2.1: Alice colors an edge from E2.
Then Bob colors e2 with color 3 and Bob wins.
Case 2.2: Alice colors an edge from E1.
Then Bob colors e′′1 with color 3 and Bob wins.
Case 2.3: Alice colors an edge from E3.
If Alice colors e′1 then Bob replies with edge e2 with color 3 and Bob wins. Consider Alice colors e′2 then Bob replies
with edge e′′n with color 1 and Bob wins. Now suppose Alice colors an edge e′i (3 ≤ i ≤ n) then Bob colors e′′1 with
color 3 and again Bob wins.

Theorem 3.2. For every integer n ≥ 3, χ′
g(P2□Cn) ≤ 4.

Proof. We show that Alice has a strategy to win the game using four colors. Alice, in the second move, has this
strategy. In the first priority, she colors an edge such that it has three colored neighbors with three colors. In second
priority, if Bob colors an edge ei(e′′i ) fromE1(E2)with color j, if it is possible, Alice colors edge e′′i (ei) fromE2(E1)
with the same color j, otherwise she colors an edge of distance 2 from ei(e

′′
i ). Similarly, if Bob colors edge e′i then

Alice colors edge e′i+1 or e′i−1 with color j and if it is not possible she colors an edge of distance 2 from e′i .By using
this strategy, at any stage, any uncolored edge has two neighbors colored with the same color or if it has three colored
neighbors with three colors then Alice colors it.

Corollary 3.3. For every integer n ≥ 3, we have χ′
g(P2□Cn) = 4.

4. Conclusion

In this paper we have determined the exact value of game chromatic number of graph P3□Cn and game chromatic in-
dex of graph P2□Cn whereCn is a cycle on n ≥ 3 vertices and the results are obtained χg(P3□Cn) = χ′

g(P2□Cn) =
4.
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Abstract

In this paper, it is shown that any α− biharmonic map from an arbitrary Riemannian manifold
to a Riemannian manifold admitting a conformal vector field with potential function µ > 0, is
constant.

1. introduction

The theory of harmonic maps was first introduced in mathematics in 1954, almost six years earlier than a particular
example of it, the O(4) ∼ SU(2) × SU(2) non-linear sigma model, was independently introduced in physics [2] to
explain the low energy interaction of π mesons, the name coming from the sigma resonance which had by then been
observed in this system. Generalized sigma models (which are typically harmonic maps) were introduced in physics
later(in 1978), [5]. At present one often hears it said colloquially that ’ mathematicians call harmonic maps what
physicists call sigma model’. Therefore, harmonic maps has become one of the effective tools for studying in many
fields of mathematical physics such as theory of relativity, theory of electromagnetism, gravitational theories and etc.
, [1].
Let ϕ : (M, g) −→ (N,h) be a smooth map between Riemannian manifolds. The bienergy functional of ϕ is denoted
by e(ϕ) and defined as follows

E2(ϕ) =
1

2

∫
M

| τ(ϕ) |2 υg, (1)

where τ(ϕ) := Trg∇dϕ is the tension field of ϕ and υg is the volume element of (M, g) . A smooth map ϕ is called
a biharmonic map if ϕ is a critical point of the bienergy functional E2. This is equivalent to saying that ϕ satisfies the
Euler-Lagrange equation corresponding to E2 given by

τ2(ϕ) := Trg [∇dϕ+RN (dϕ, τ(ϕ))dϕ] = 0, (2)
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here∇ is the induced connection on the pull-back bundle ϕ−1TN . The section τ2(ϕ) ∈ Γ(ϕ−1TN) described in (2),
is known as the bitension field of ϕ.
Biharmonic maps from a closed compact Riemannian surface and their variants are useful tools in both physics and
mathematics for studying the geometry of a Riemannian manifold. In mathematical physics, they are borderline ex-
amples for the Palais- Smale condition and so can not be reached directly by using normal techniques. For solving,
Sacks and Uhlenbeck in their prominent paper [3] in 1981, introduced perturbed bienergy functional that satisfied the
Palais- Smale condition, and thus obtained well-known α-harmonic maps as critical points of perturbed functional to
approximate biharmonic maps. They also proved that ifM is a compact Riemannian manifold, then any non-trivial
class in π2(M) can be represented by a sum of smooth biharmonic mappings, ϕj : S2 −→M, j = 1, · · · , n, for some
positive integer n. In 2019, K. Uhlenbeck, as the first woman, won prestigious Abel prize for her prominent works on
α− harmonic maps from minimal surfaces.

2. α−biharmonic maps

In this section we recall the notion of α−harmonic maps. In this regard, we firstly study the concepts of α−bienergy
functional, α−bitension field and α−biharmonic maps. Then we calculate the first variation formula for α−bienergy
functional via a new technical method.
Let ϕ : (Mm, g) −→ (Nn, h) be a smooth map between Riemannian manifolds. From now on, it is supposed
that (M, g) is an m−dimensional oriented compact Riemannian manifold unless otherwise stated. Furthermore, the
Riemannian connections on Riemannian manifoldsM and N are denoted by ∇M and ∇N , respectively. Moreover,
denote the induced connection on the pullback bundle ϕ−1TN by ∇ and defined as follows

∇ZW = ∇N
dϕ(Y )V,

for any smooth vector field Z ∈ χ(M) and sectionW ∈ Γ(ϕ−1TN)
For α > 1 and any smooth map ϕ : (M, g) −→ (N,h) between Riemannian manifolds, the α− energy functional of
the map ϕ is denoted by Eα(ϕ) and defined as follows:

E2,α(ϕ) :=

∫
M

(1+ | τ(ϕ) |2)αυg, (3)

This function could be considered as a perturbation of the bienergy functional, E2, that is, in contrast to E2, satisfying
the Palais-Smale condition. Furthermore, E2,α assuage the Ljusternik- Schnirelman theory and the Morse theory, [4].
By Green’s theorem, the first variation formula of α− harmonic maps can be obtained as follows

Theorem 2.1. (The first variation formula) Let {ϕt : M −→ N}−ε<t<ε be a 1-parameter smooth variation of

ϕ : (M, g) −→ (N,h) such that ϕ0 = ϕ. Setting ϑ :=
dϕt
dt

|t=0 . Then we have

d

dt
E2,α(ϕt) |t=0= −

∫
M

⟨τ2α(ψ), ϑ⟩dυg (4)

where

τ2,α(ψ) := Trg∇(2α(1+ | τ(ϕ) |2)α−1dϕ)

= 2α(1+ | dϕ |2)α−1τ(ϕ)

+ dψ(grad(2α(1+ | τ(ϕ) |2)α−1), (5)

here τ(ϕ) is the tension field of ϕ.

The section τ2,α(ϕ) ∈ Γ(ϕ−1TN) is said to be the α− bitension field of ϕ and the critical points of α−bienergy
functional is called α−biharmonic maps.

Theorem 2.2. α−harmonicity of ϕ : (M, g) −→ (N,h) is equivalent by τ2,α(ϕ) = 0.
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By (4) and (5) toghther with Theorem 2.2, we get the following result.

Corollary 2.3. α− biharmonicity of ϕ : (Mm, g) −→ (Nn, h) implies that∫
M

⟨2α(1+ | τ(ϕ) |2)α−1dϕ,∇ϑ⟩dVg = 0, (6)

for every compactly supported vector field ϑ along ϕ.

Proof. Let p0 be a point on M and fix it, and let {ξk} be an orthonormal frame around p0 with ∇ξk = 0 at p0 for
k = 1, · · · ,m. Define a 1-form δ as follows

δ(Y ) := ⟨2α(1+ | τ(ϕ) |2)α−1dϕ(Y ), ϑ⟩, (7)

for any vector field Y onM . By (4), (7) and the first equality of (5), it is obtained that

d

dt
E2,α(ϕt) |t=0

= −
∫
M

⟨Trg∇(2α(1+ | τ(ϕ) |2)α−1dϕ), ϑ⟩

= −
∫
M

∑
i

⟨∇ξi(2α(1+ | τ(ϕ) |2)α−1dϕ(ξi)), ϑ⟩υg

= −
∫
M

∑
k

{ξk(⟨2α(1+ | τ(ϕ) |2)α−1dϕ(ek), ϑ⟩)

+ ⟨2α(1+ | dϕ |2)α−1dϕ(ϑk),∇ξiϑ⟩}υg

= −
∫
M

div δ + ⟨2α(1+ | τ(ϕ) |2)α−1dϕ,∇ϑ⟩υg. (8)

By (8) and Green’s theorem, Corollary 2.3, follows.

3. Existence of α−harmonic maps

In this section, we investigate the existence of α−biharmonic maps. First, it is studied the concepts of conformal and
killing vector fields and their physical applications. Then the existence of α−biharmonic maps between Riemannian
manifolds whose target admitting a conformal vector field with potential vector field µ > 0, is studied.

Definition 3.1. A smooth vector field Y on a Riemannian manifold (M, g) is called conformal with the potential
function µ If LY g = 2µg, where LY g is the Lie derivative of the Riemannian metric g on M with respect to Y .
Moreover, A conformal vector field Y with the potential µ is said to be a killing vector field If µ = 0 or, equivalently,
the flow of Y consists of isometries of (M, g).

Theorem 3.2. Any conformal vector field Y with potential function µ onM satisfying the following equation

g(∇M
X Y, Z) + g(X,∇M

Z Y ) = µg(X,Z), (9)

for any X,Z ∈ χ(M).

Proof. It can be found the proof of this Theorem in [5, page 3]

Remark 3.3. Conformal vector fields are key tools in physics for constructing various solutions that are then em-
ployed in the analysis of physical parameters in modified gravity theories (MGTs). For example, by using conformal
vector fields of pp−wave space-times in the f(R) theory of gravity, it is possible to discover that the plane fronted
gravitational waves (GWs), as a very specific class of pp−waves, has a solution in the f(R) theory of gravity, [3].
Killing vector fields are also important in many domains of mathematical physics, including gravitation, quantum and
teleparallel theory, and so on. For instance, Sharif and Amir in [4] launched an approach to exploring symmetries in
teleparallel theory by introducing the teleparallel version of the Lie derivative for Killing vector fields.
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According to the above notations, we investigate the non-existence of non-constant α−biharmonic maps as follows:

Theorem 3.4. Any α−biharmonic map ϕ : (M, g) −→ (N,h) between Riemannian manifolds whose target admitting
a conformal vector field Y with the potential function µ > 0, is constant.

Proof. Choose an arbitrary point p ∈M and fix it. Let {ξk} be a normal orthonormal frame at p. Setting

δ(X) := h(Y ◦ ϕ, (1+ | τ(ϕ) |2)αdϕ(X)), (10)

for any smooth vector field X onM . By (9) and (10), the divergence of δ can be calculated as follows

div δ = ξk(h(Y ◦ ϕ, (1+ | τ(ϕ) |2)αdϕ(ξk)))
= (1+ | τ(ϕ) |2)αh(∇ξkY ◦ ϕ, dϕ(ξk))
= µ ◦ ϕ(1+ | τ(ϕ) |2)αh(dϕ(ξk), dϕ(ξk))
= µ ◦ ϕ | τ(ϕ) |2 (1+ | dϕ |2)α, (11)

where we use the α−biharmonicity of ϕ for the second equality. From (11), we get

0 =

∫
M

divX dVg

=

∫
M

µ ◦ ϕ | τ(ϕ) |2 (1+ | τ(ϕ) |2)αdVg. (12)

This implies that | τ(ϕ) |= 0. Then, ϕ is constant and hence completes the proof.
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Abstract

In this paper, we solve the Kuper-Schmidt equation with the symmetry method. This PDE equa-
tion is one of the most important and widely used equations in physics and chemistry. This 5th
order nonlinear equation appears as a wave phenomenon in mechanical engineering. In this
article, by using the symmetry method by classifying the adjoint representation circuits of the
symmetry group on its Lie algebra, we obtain the optimal system of one-dimensional subalge-
bras of the Kuper-Schmidt equation.

1. Introduction

The Kuper-Schmidt equation is widely used in the diagnosis of various diseases and medical experiments inoptical
fibers. It can be used to identify internal body defects, in dentistry and to measure blood and fluids [6].
The Kuper-Schmidt equation plays an important role in the scattering of nonlinear waves.
These waves maintain a stable form. Due to the dynamic balance and non-linearity of this equation, an approximate
solution has been presented inmany articles [1, 3]. In this paper, we examine the symmetry group of the Kuper-Schmidt
equation.
This equation is in the following form:

ut = uxxxxx + 10uxxx u+ 25 uxx ux + 20 u2 ux (1)

Lie’s symmetry method was first proposed by Sophus Lie in the middle of the 19th century and then attracted the
attention of mathematicians and researchers [2].
In fact, the most important and practical method to solve the differential equation is the symmetric or classical method.
In this article, we want to obtain new solutions to the Kuper-Schmidt equation using the lie symmetry method. As it
is known, the symmetry method plays an important role in the analysis of differential equations.
Lie’s method is a method to find the solution of the differential equation with the help of its symmetry group. These
solutions are called group invariant solutions and obtained by solving the reduced system of differential equation

∗Talker
Email addresses: m.jafarii@pnu.ac.ir (Mehdi Jafari), Almhdyadlh@gmail.com (Adele Alemahdi)



484 Jafari & Alemahdi / The 4th National Congress on Mathematics and Statistics

having fewer independent variables than the original system.In this paper we use this method to compute the invariant
solutions of Kuper-Schmidt equation and classify them.
In section 2, with the help of Lie’s method, we express the symmetries of the Kuper-Schmidt equation and obtain its
symmetry groups. In section 3, we make an optimal system of one-dimensional sub-algebras of the Kuper-Schmidt
equation.

2. Lie symmetries of Kuper-Schmidt equation

In this part, we get to know classical symmetries of nonlinear differential equation with partial derivatives and its
calculation method.

Definition 2.1. Suppose∆ = 0 be a system of differential equationwith p as the independent Variablx = (x1 , . . . , xp)
and q as the dependent variable u = (u1 , . . . , uq).
A solution for this system is a function of the form u = f(x) where;

uα = fα
(
x1 , . . . , xp

)
, α = 1, . . . , q (2)

Are smooth function.

Definition 2.2. A symmetry group for system differential equation∆ = 0, is a locally group of transformations such
as G acting on an open subset of E such as O in such a way that it transforms any solution of the system into another
solution.
In other words, if u = f(x) be an answer to system, to every g ∈ G where f and g can be defined, g.f(x) be solution
too.

Theorem 2.3 (Invariance theorem of differential equations). suppose ∆ = 0 be a system of differential equations of
maximal rank defined on the open subset O of E, and suppose G be locally group of transformations where action on
O and v be its infinitesimal generator. In this case ∆ = 0, accepts the group G as a symmetry group, if vn (∆) = 0
every that � = 0 [5].

meaning of vn is the prolong of the nth order the vector field V is on the jet space and defined as follows:

Definition 2.4. suppose :

v =

p∑
i=1

ξi( x , u)
∂

∂xi
+

q∑
α=1

∅α (x , u)
∂

∂uα
(3)

be a vector field on open subset O of the set E. The nth order prolong of V is :

v(n) = v +

q∑
α=1

∑
J

∅αJ
(
x, u(n)

) ∂

∂uα
J

(4)

Where the coefficients are calculated as follows:

∅α
J ( x , un) =DJ Qα +

p∑
i=1

ξiuα
J,i (5)

Where J is multiple index with condition 1 ≤ jk ≤ p , 1 ≤ k ≤ n [5].

In this section , we calculate the symmetries of the Kuper-Schmidt equation using theabove theorem. We remind you
that equation (1) is a differential equation with partialderivatives that has a dependent variable u and two independent
variables x and t. So the general form of the symmetry algebra generators of this equation is as follows:

v = τ (x, t,U)∂t + ξ(x, t,U)∂x+ ∅(x, t,U) ∂U (6)

Since the order of the equation is (5), we must apply the prolong of the fifth order of the above field to the equation
and set it equal to zero to obtain the coefficients τ , ξ, ∅.
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We have to do this with the help of the maple :

∅ = c1 u

τ = − 5 c1 t

2
+ c2

ξ = − c1 x

2
+ c3

Where c1 , c2 and c3 are constant.
The infinitesimal generators of any Lie group are the symmetry parameters. In Kuper-schmidt equation the linear
combination of vector fields is as follows:

v1 = − x∂x

2
− 5t∂t

2
+ u∂u , v2 = ∂t , v3 = ∂u (7)

The commutation relations between vector fields is given by the following table, the entry in row i and column
j [vi , vj ]:

Table 1. Commutator table.

[, ] v1 v2 v3

v1 0 5v2
2

v3
2

v2 −5v2
2

0 0

v3 −v3
2

0 0

By calculating the flow corresponding to the vector fields above, the one-parameter group g.k(s) generated by b is as
follows:

g1 (s) = (x, t,u) −→ (xe−
ε
2 , t e−

5ε
2 , u eε)

g2 (s) = (x, t,u) −→ (x , ε + t , u)

g3 (s) = (x, t,u) −→ (ε + x , t , u)

(8)

Therefore, according to the definition of the symmetry group and the above results, the following theorem can be
concluded;

Theorem 2.5. If f = f(x, t) be a solution of equation (1), then The following functions will also be the solutions of
this equation,

g1 (s) · f = f( x

e−
ε
2
,

t

e−
5ε
2

) eε

g2 (s) · f = f(x , t− ε)

g3 (s) · f = f(x− ε , t)

(9)

3. One-dimensional optimal system of subalgebras for the Kuper-Schmidt equation

In this section, we compute the one-dimensional optimal system of Kuper-Schmidt equation by using symmetry group.
We know that the linear combination of infinitesimal symmetries is infinitesimal symmetry. Therefore, every group
has like G countless one-dimensional subgroups.Therefore,it is very important to know which subgroups result in
different solutions. So we look for solutions that do not transform into each other by symmetry transformations. For
this, we need the concept of subalgebra optimal system [4]. The optimal system under algebras is determined by taking
a representative from each class.
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Adjoint representation of eachXi, i = 1, . . . , 3 is defined as follow:

Ad
(
exp(εv)

)
W 0 = W 0 − ε [ V , W 0 ]+

ε2

2

[
V , [ V , W 0]

]
− . . . . (10)

Where s is a parameter and [V , W0] is the commutator of the Lie algebra for i , j = 1, . . ., 3 [4].
Using the commutator table, we obtain all the e adjoint representations related to the lie group of the Kuper-Schmidt
equation. This table is displayed in section 1 and table 2.
The lie algebra spanned by:

v1 = − x∂x

2
− 5t∂t

2
+ u∂u , v2 = ∂t , v3 = ∂u

Generate the symmetry group of the Kuper-Schmidt equation to compute the adjoint representation. we use the lie
series the following:

Ad
(
exp(εv)

)
W 0 =

∞∑
n=0

εn

n!
(ad V )

n
(W 0)

= W 0 − ε [ V , W 0 ]+
ε2

2

[
V, [V , W 0 ]

]
− . . . . (11)

In conjunction with the commutator table (in table 1 ), in this manner, we construct the table 2:

Table 2. The adjoint representation table of the infinitesimal generatorsXi.

Ad v1 v2 v3

v1 V 1 e− 5
2
ε V 2 e−

ε
2 V3

v2 e
5
2
ε V 1 V 2 V 3

v3 e
ε
2 V3 V 2 V 3

With the (i, j)-th entry indicating Ad
(
exp(ε Vi)

)
Vj .

T 1 , T 2 , T 3 =

1 0 0

0 e−
5ε
2 0

0 0 e−
ε
2

 ,

 1 0 0
5ε
2 1 0
0 0 1

 ,

1 0 0
0 1 0
ε
2 0 1


Now we can state the following theorem:

Theorem 3.1. A one-dimensional optimal system for Lie algebra of Kuper-Schmidt equation is given by:

1) V1 , 2) V2 , 3) V3 , 4) V1 ± V2 (12)

4. Conclusion

In this paper we analyzed the symmetries of one of the important equations called Kuper-schmidt in engineering
sciences and medicine. It was proved that the algebra of symmetries of this equation is produced by three generators.
In addition, by using the adjoint representation of the symmetry group in algebra, we built an optimal system of one-
dimensional subalgebras.
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Abstract

In 2017, the H-topology was developed in Zn, n ∈ N, as an Alexandroff topological space
and a generalization of the Marcus–Wyse topology. Based on theH-topology, several concepts
were established such as anH-adjacency derived from anH-topological space,HA-spaces, an
HA-map, and an HA-isomorphism between two HA-spaces. Then the author established an
HA-homotopy on an HA-space, which can contributed to the classification of digital images
in Zn. In the present paper, we define the concept of an HA-contactible space in the category
ofHAC and investigateHA-contractiblity of simple closedHA-curves SCn,l

HA.

1. Introduction

It is well known that the study of 2D digital spaces plays an important role in digital geometry related to the fields
of mathematical morphology, computer graphics, image analysis, image processing and so forth. In [2] established
two maps such as anMA-map and anMA-isomorphism based on Marcus–Wyse topology and studied its properties.
Also he defined the conception of MA-homotopy between two MA-maps and MA-contractibility of a space X in
MAC. Han [3] also developed a new topology on Zn, n ∈ N, that is called the H-topology and investigated its
properties. Also, he introduced the notions of an HA-continuous map and an HA-homeomorphism. The Author [5]
introduced the HA-homotopy between two HA-maps. In this paper, we define the concept of an HA-contactible
space in the category ofHAC and investigateHA-contractiblity of simple closedHA-curves with l elements, SCn,l

H .
We prove that an HA-connected proper subset of SCn,l

HA is HA-contractible, for all l ≥ 4. Also, every SCn,2l
HA is not

HA-contractible if l ≥ 3.

2. Preliminaries

Recall from [2] some of the main concepts from the Marcus–Wyse topology (M -topology, for brevity) on Z2. To
make the paper self-contained, we need to mention some essential notions fromM -topology as follows:
TheM -topology on Z2, denoted by (Z2, γ2) in the present paper, is induced by the set of all U in (2.1) as a base. For
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each point p = (x, y) ∈ Z2, we define the set {U(p) | p ∈ Z2} in (2.1) below as a base [2], where for each point
p = (x, y) ∈ Z2

U(p) :=

{
N4(p) ∪ {p} if x+ y is even, and
{p} : else.

}
(2.1)

whereN4(p) = {(x± 1, y), (x, y± 1)} = {q | q is 4-adjacent to p}. In relation to the further statement of a point in
Z2, a point p = (x1, x2) is called to be doubly even if each xi is even, i ∈ {1, 2}; even if each xi is odd, i ∈ {1, 2};
and odd if x1 + x2 is an odd number. For a set X ⊆ Z2, one can take the subspace induced by (Z2, γ2), denoted by
(X, γ2

X), which has been often studied in the context of digital images.
Hereinafter, given a space (X, γ2

X), the set X with an M -adjacency is said to be an MA-space. In other words, we
may recognize the space (X, γ2

X) with an M -adjacency as an MA-space. For two MA-spaces X := (X, γ2
X) and

Y := (Y, γ2
Y ), a function f : X −→ Y is said to be an MA-map at a point x ∈ X if f(MN(x)) ⊆ MN(f(x)).

Furthermore, a map f : X −→ Y is said to be anMA-map if it is anMA-map at every point x ∈ X .
UsingMA-maps, the paper [2] established theMA-topological category, denoted byMAC, consisting of two sets.
(1) The set of objects (X, γ2

X) with anM -adjacency,
(2) For every ordered pair of objects X := (X, γ2

X) and Y := (Y, γ2
Y ), the set of all MA-maps f : X −→ Y as

morphisms.
For two MA-spaces X and Y , a map f : X −→ Y is called an MA-isomorphism if f is a bijective MA-map and
furthermore, f−1 : Y −→ X is an MA-map. The paper [2, Theorem 6.3] showed that SCl1

MA is MA-isomorphic to
SCl2

MA if and only if l1 = l2.

Let us now recall some basic concepts of the generalized Marcus–Wyse topology on Zn, n(≥ 3) ∈ N from [3]:
OnZn, n ≥ 3, theH-topology, denoted by (Zn, γn), was defined as the product topology γn induced by the topologies
(Zn−1, γn−1), n ≥ 3, and (Z, γ), where (Z, γ) is the subspace (Z, γ2

Z). Namely, we obtain

(Zn, γn) = (Zn−1, γn−1)× (Z, γ), n ≥ 3. (3.1)

For instance, we have (Z3, γ3) = (Z2, γ2)×(Z, γ), (Z4, γ4) = (Z3, γ3)×(Z, γ), and so on. Hereinafter, (Zn, γn), n ∈
N, is called anH-topological space in this paper. Thus the space (Zn, γn) is a proper subspace of (Zn+1, γn+1) with
the relative topology on Zn induced by (Zn+1, γn+1), n ∈ N. In the present paper, in every subspace of (Zn, γn), a
black jumbo dot means a point whose all coordinates are odd, the symbols■means a point inZn whose all coordinates
are even, and • means a mixed point.
For X ⊂ Zn, assuming a subspace (X, γn

X) := (X, (γn)X) induced from (Zn, γn), we define an H-adjacency on X
[3] as follows:

Two distinct points x and y in X are H-adjacent if y ∈ OH(x) or x ∈ OH(y), (1)

where OH(q) is the smallest open set of the point q ∈ (X, γn
X), q ∈ {x, y}. Given a subspace (X, γn

X), we consider
X with an H-adjacency. Then we call it an HA-space and denote it by just X instead of “X with an H-adjacency”.
Besides, motivated by the adjacency neighborhood in (Z2, γ2) [2], Han [3] established anH-adjacency neighborhood
of a given point x ∈ (X, γn) as follows:

HN(x) := HA(x) ∪ {x}, (2)

where HA(x) = {q | q is H-adjacent to x }.

Definition 2.1. [3] We say that a simple closed HA-curve with l elements, denoted by SCn,l
HA, l ≥ 4, is a set

(xi)i∈[0,l−1]Z such that xi is H-adjacent to xj if and only if either j = i + 1(mod l) or i = j + 1(mod l) (or
| i− j | = ±1(mod l)).

for two HA-spaces (X, γn1

X ) = X and (Y, γn2

Y ) = Y , a function f : X −→ Y is said to be an HA-map at a point
x ∈ X if

f(HN(x)) ⊆ HN(f(x)). (3)
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Furthermore, a map f : X −→ Y is called anHA-map if it is anHA-map at every point x ∈ X .
Based on these notions, an HA-space X is called HA-connected [3] if for any two points x and y in X , there is an
HA-map f : [0,m]Z → X such that f(0) = x and f(m) = y.

Using HA-maps, in [3], it was established theHA-category, denoted byHAC, consisting of two sets, as follows:
(1) The set of HA-spaces as objects for X ⊆ Zn, n ∈ N.
(2) For every ordered pair of objects X and Y , the set of allHA-maps f : X −→ Y as morphisms of HAC.
For two HA-spaces X ⊂ Zn1 and Y ⊂ Zn2 , a map f : X −→ Y is called an HA-isomorphism if f is a bijective
HA-map and f−1 : Y −→ X is an HA-map.
It was proved that SCn,l1

HA is HA-isomorphic to SCn,l2
HA if and only if l1 = l2 [3, Theorem 5.1]. Furthermore, owing

to (3), for SCni,li
HA , i ∈ {1, 2}, even if n1 ̸= n2, we obtain the following remark.

Remark 2.2. SCn1,l1
HA is HA-isomorphic to SCn2,l2

HA if and only if l1 = l2.

3. Main Results

Let X ∈ Ob(HAC) and let B be a subset of X . Then (X,B) is called a space pair in HAC. Furthermore, if B is
a singleton set {x0}, then (X,x0) is called a pointed space in HAC. We establish the notions of an HA-homotopy
relative to a subset B ⊆ X and a pointedHA-contractible, which will be used for studying spaces inHAC.

Definition 3.1. Let (X,B) and Y be a space pair and a space in Ob(HAC), respectively. Let f, g : X −→ Y be
HA-maps. Suppose that there existm ∈ N and

a function F : X × [0,m]Z −→ Y (4.1)

such that
(i) for all x ∈ X , F (x, 0) = f(x) and F (x,m) = g(x);
(ii) for all x ∈ X , the induced function Fx : [0,m]Z −→ Y given by Fx(t) = F (x, t) for all t ∈ [0,m]Z is an
HA-map;
(iii) for all t ∈ [0,m]Z, the induced function Ft : X −→ Y given by Ft(x) = F (x, t) for all x ∈ X is an HA-map.
Then we say that F is an HA-homotopy between f and g.
Furthermore, for all t ∈ [0,m]Z, if Ft(x) = f(x) = g(x) for all x ∈ B, then we call F an HA-homotopy relative to
B between f and g, and we say that f and g are HA-homotopic relative to B in Y , denoted by f ≃HArel.B g.

Fig. 1. Configuration of SC3,8
HA.

Example 3.2. Consider the space X := SC3,8
HA := (wi)i∈[0,7]Z in Figure ??. Then one click transformation on

X is a kind of an HA-homotopy of X . Consider the map F : X × [0, 1]Z −→ X given by F (wi, 0) = wi and
F (wi, 1) = wi+1(mod 8). Since HN(wi) = {wi−1(mod 8), wi, wi+1(mod 8)}, we have Ft(HN(wi)) = HN(Ft(wi))
andFwi

(HN(t)) ⊆ HN(Fwi
(t)), for all t ∈ {0, 1} and i ∈ [0, 7]Z. Therefore, F satisfies the conditions of Definition

3.1.

Definition 3.3. Let X ∈ Ob(HAC) and let x0 ∈ X . If 1X is HA-homotopic to the constant map in the space {x0}
relative to {x0}, then we say that (X,x0) is a pointed HA-contractible. (for brevity HA-contractible if there is no
danger of ambiguity).
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Fig. 2. (a) Configuration of Y used in Lemma 3.4(1); (b)HA-contractibility ofW .

Now we exhibit some examples for anHA-contractible space.

Example 3.4. (1) The space Y := ([0, 1]Z)
3 in Figure 2(a) is an HA-contractible space.

(2) The spaceW := X × [−1, 1]Z, where X = {(0, 0), (1, 0), (0, 1), (1, 1)} in Figure 2(b) is HA-contractible.

Fig. 3. (a) Configuration of Y used in Lemma 3.4(1); (b)HA-contractibility ofW .

Example 3.5. Consider the space X = (xi)i∈[0,6]Z ⊆ SC3,8
HA defined in Figure 3 starting at x0 = (0,−1,−1) and

finishing at x6 = (0,−1, 1). To guarantee the assertion, let us now consider the followingH-adjacency neighborhood:

HN(x0) ={x0, x1}, HN(x1) = {x0, x1, x2},
HN(x2) ={x1, x2, x3}, HN(x3) = {x2, x3, x4},
HN(x4) ={x3, x4, x5}, HN(x5) = {x4, x5, x6},
HN(x6) ={x5, x6}.

We can establish anHA-homotopyF onX relative to the set {x0} between 1X and the constant map at {x0}. Consider
the map F : X × [0, 6]Z −→ X by (see Figure 3)

F (xi, 0) = xi if i ∈ [0, 6]Z,

F (xi, 1) = xi if i ∈ [0, 5]Z and F (x6, 1) = x5,

F (xi, 2) = xi if i ∈ [0, 4]Z and F (xi, 2) = x4 if i ∈ {5, 6},
...
F (xi, 6) = x0 if i ∈ [0, 6]Z.

Therefore, X is an HA-contractible space.

Using the process of the above example, we obtain the following result.

Theorem 3.6. An HA-connected proper subset of SCn,l
HA is HA-contractible, l ≥ 4.
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Proof. Put X l′

HA := (xi)i∈[0,l′−1]Z as an HA-connected proper subset of SCn,l
HA, where l′ ≤ l − 1. Indeed, the set

X l′

HA is a kind of simpleHA-path with l′ elements in SCn,l
HA. Consider the map F : X l′

HA × [0, l′ − 1]Z −→ X l′

H by

F (xi, 0) = xi if i ∈ [0, l′ − 1]Z,

F (xi, 1) = xi if i ∈ [0, l′ − 2]Z and F (xi, 1) = xl′−2 if i = l′ − 1,

F (xi, 2) = xi if i ∈ [0, l′ − 3]Z and F (xi, 2) = xl′−3 if i ∈ {l′ − 1, l′ − 2},
...
F (xi, l

′ − 1) = x0 if i ∈ [0, l′ − 1]Z,

which implies that the given map F is an HA-homotopy on X l′

HA relative to the set {x0} between the identity map
1Xl′

HA
and the constant map at {x0}.

Corollary 3.7. Every SCn,2l
HA is not HA-contractible if l ≥ 3.
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Abstract

In this paper, we investigate the symmetry group of the Hunter-Saxton equation applying the
classical Lie symmetry methods. Also, by utilizing the classification of one-dimensional sub-
algebras of the symmetry algebra of this equation, we compute the optimal system of one-
parameter subalgebras, then by using this optimal system and differential invariants, we reduce
the equation and obtain the group-invariant solutions.

1. Introduction

Differential equations play an important role in modeling physical problems, particularly differential equations with
partial derivatives have a special role, for example, one of the most important equations used in physics and mathe-
matics is the Hunter- Saxton (H-S) equation. This equation is used to modeling of nematic liquid crystals and it is a
second order equation which is defined as follows.

(ut + uux)x =
1

2
u2

x,

The H-S equation that is a well known nonlinear hyperbolic in mathematical model which is described by the partial
differential equation (PDE) [9]. Which has two independent variables x =

(
x1, x2

)
= (t, x) and one dependent vari-

able u = u (t, x). This equation has been first suggested by Hunter and Saxton for the theoretical modeling of nematic
liquid crystals [3]. Yao et al [12] tackled the periodic H-S equation, introducing a variable coefficient by employing
the classical approach to finding invariant solutions. Johnpillai and Khaliquo [8] also used Lie symmetry analysis to
find exact solutions for yet another generalized version of the H-S equation. Usually, two linearly independent vector
fields are needed for the complete description of nematic liquid crystals [1]. One for characterizing the fluid flow and
one for describing the orientation of the molecules which is the so-called director field [3]. Also order of the sections
of this article is as follows. In section 2, we have referred to some definitions and theorem that are used in the later
sections. In section 3, we calculate the lie algebra of infinitesimal symmetries, the one-parameter groups generated
and G-invariant solutions of H-S equation. In section 4, we obtain the optimal system of one-dimensional sub-algebras
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of H-S equation using the classification of orbits of adjoint representation of the symmetry group. In section 5, we
find the reduced equation and group invariant solutions for each element of the optimal system. In section 6, we draw
conclusion.

2. Definitions and Theorem of infinitesimal criterion

We use definitions 1 and 2 in section 3 and definitions 3 and 4 and theorem in section 4.

Definition 2.1. A system s of n-th order differential equations in p independent and q dependent varables is given as
a system of equations,

∆v

(
x, u(n)

)
= 0, v = 1, · · ·, l

Involving x =
(
x1, · · ·, xp

)
, u =

(
u1, · · ·, uq

)
and the derivatives of with respect to x up to order n. The functions

∆
(
x, u(n)

)
=

(
∆1

(
x, u(n)

)
, · · ·,∆l

(
x, u(n)

))
will be assumed to be smooth in their arguments, so∆ can be viewed

as a smooth map from the jet space X × U (n) to some l-dimensional Euclidean space

∆ : X × U (n) → Rl

The solutions of this differential equation are where the given mapping∆ vanishes onX ×U (n) , and thus determine
a subvariety [10]

s∆ =
{(

x, u(n)
)
: ∆

(
x, u(n)

)
= 0

}
⊂ X × U (n)

Definition 2.2. Let M ⊂ X × U be open and suppose v is a vector field on M with corresponding (local) one-
parameter group exp (εv) the n-th prolongation of v denoted pr(n)v will be avector field on the n-jet spaceM (n) and
is defined to be the infinitesimal generator of the corresponding prolonged one-parameter group pr(n) [exp (εv)] in
other words, we have

pr(n)v
∣∣∣(x,u(n)) =

d

dε
|ε=0 pr(n) [exp (εv)]

(
x, u(n)

)
,

For any
(
x, u(n)

)
∈ M (n) [3].

Definition 2.3. Let G be a lie group. For each g ∈ G, group conjugation Kg (h) ≡ ghg−1, h ∈ G, determines
a diffeomorphism on G. Moreover, KgOKg′ = Kgg′ ,Ke = 1G, so Kg determines a global group action of G on
itself, with each conjugacy mapKg being a group homomorphism: Kg (hh

′) = Kg (h)Kg (h
′), etc. The differential

dKg : TG |h → TG
∣∣
Kg(h) is readily seen to preserve the right-invariance of vector fields, and hence determines a

linear map on the Lie algebra of G, called the adjoint representation [10]

Adg (v) ≡ dKg (v) , v ∈ g

Definition 2.4. Let G be a lie group. An optimal system of s-parameter subgroups is a list of conjugacy inequivalent
s-parameter subgroups with the property that any other subgroup is conjugate to precisely one subgroup in the list.
Similarly, the optimal system for subalgebras is also defined in the same way [10]

Theorem 2.5. Suppose
∆v

(
x, u(n)

)
= 0, v = 1, · · ·, l,

Is a system of differential equations of maximal rank defined overM ⊂ X×U ifG is a local group of transformations
acting on M , and

pr(n)v
[
∆v

(
x, u(n)

)]
= 0, v = 1, · · ·, l whenever ∆

(
x, u(n)

)
= 0,

For every infinitesimal generator v of G, then G is a symmetry group of the system [11]. (Infinitesimal criterion)
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3. Lie symmetry group for the H-S equation

We consider the second order PDE,

∆
(
x, t, u(2)

)
= utx +

u2
x

2
+ uuxx,

And let,
v = η (x, t, u)

∂

∂x
+ τ (x, t, u)

∂

∂t
+ ϕ (x, t, u)

∂

∂u
,

Be a vector field on X × U .
We want to determine all possible coefficient functions η, τ, ϕ so that the corresponding one-parameter group exp (εv)
is a symmetry group of the H-S equation [6, 7]. According to theorem, we need to know the second prolongation of v

pr(2)v = v + ϕx ∂

∂ux
+ ϕt ∂

∂ut
+ ϕxx ∂

∂uxx
+ ϕtt ∂

∂utt
+ ϕxt ∂

∂uxt
.

Applying pr(2)v, we find the infinitesimal criterion must be satisfied whenever.

utx = −u2
x

2
− uuxx,

Replacing utx by−
u2

x

2
−uuxx. Equating the coefficient of the various monomials in the first and second order partial

derivatives of u, we find the determining equations for the symmetry group of the H-S equation [2]. The solution of
the determining equations follows by

η (x, t, u) = f2 (t)x+ f3 (t) ,

τ (x, t, u) = f1 (t) ,

ϕ (x, t, u) = f2 (t)u

For linear function f1, f2, f3 depend on t. Let

f1 (t) = c1t+ c2,

f2 (t) = c3,

f3 (t) = c4t+ c5,

Where c1, · · ·, c5 are arbitrary constants [5]. We conclude that the most general infinitesimal symmetry of the H-S
equation has cofficient functions as follows.

η (x, t, u) = c3x+ c4t+ c5,

τ (x, t, u) = c1t+ c2,

ϕ (x, t, u) = c3u,

Thus, the lie algebra of infinitesimal symmetries of H-S equation are spanned by the five vector fields.

v1 = t∂t Dilatation

v2 = ∂t Time translation

v3 = x∂x + u∂u Dilatation

v4 = t∂x

v5 = ∂x Space translation

The commutation relations between these vector fields are given by the following table, the entry in row i and column
j representing [vi, vj ]
The one-parameter groups fi generated by the vi are given in the pervious table.
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v1 v2 v3 v4 v5
v1 0 −v2 0 v4 0

v2 v2 0 0 v5 0

v3 0 0 0 −v4 −v5
v4 −v4 −v5 v4 0 0

v5 0 0 v5 0 0

Theorem 3.1. The entries give the transformed point exp (εv − i) (x, t, u) =
(
x̃, t̃, ũ

)
f1 (t) = (x, teε, u) ,

f2 (t) = (x, ε+ t, u) ,

f3 (t) = (xeε, t, ueε) ,

f4 (t) = (εt+ x, t, u) ,

f5 (t) = (ε+ x, t, u) .

Corollary 3.2. Since each group fi is a symmetry group, implies that if u = f (x, t) is a solution of H-S equation, the
following functions are also solutions.

u1 = f
(
t,

x

eε

)
,

u2 = f (t, x− ε) ,

u3 = f

(
t

eε
, x

)
eε,

u4 = f (−εx+ t, x) ,

u5 = f (t− ε, x) ,

Where ε is any real number. Therefore, we obtained the G-invariant solutions of the H-S equation.

4. One-Dimensional Optimal System of Subalgebras for the H-S equation

In this section, we obtain the one-dimensional optimal system of H-S equation by using symmetry group. Since
every linear combination of infinitesimal symmetries is an infinitesimal symmetry, there is an infinite number of one-
dimensional subgroups forG. Therefore, it is important to determine which subgroups give different types of solutions.
For this, we must find invariant solutions which cannot be transformed to each other by symmetry transformations in
the full symmetry group [5, 7]. Adjoint representation of each vi, i = 1, · · ·, 5 is defined as follow:

Ad (exp (εvi)) vj = vj − ε [vi, vj ] +
ε2

2!
[vi, [vi, vj ]]− · · ·

Where ε is a parameter and [vi, vj ] is the commutator of the lie algebra for i, j = 1, · · ·, 5. Considering the table of
commutator, we can compute all the adjoint representations corresponding to the Lie group of the H-S equation. Now
we state the following theorem.

Theorem 4.1. A one-dimensional optimal system for Lie algebra of the H-S equation is given by.

(1) 2v1 + v3,

(2) v3,

(3) v1,
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Proof. Let T ε
i : g → g be the adjoint transformation defined by X → Ad (exp (εVi))V for i = 1, · · ·, 5 The matrix

of T ε
i , i = 1, · · ·, 5, with respect to basis [T1, · · ·, T5] is.

T ε
1 =


1 0 0 0 0
0 eε 0 0 0
0 0 1 0 0
0 0 0 e−ε 0
0 0 0 0 1

 , T ε
2 =


1 0 0 0 0
−ε 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 −ε 1

 , T ε
3 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 eε 0
0 0 0 0 eε



T ε
4 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
ε 0 −ε 1 0
0 ε 0 0 1

 , T ε
5 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 −ε 0 1

 ,

Now, we try to vanish the coefficients of v that given a nonzero vector:

v = a1v1 + a2v2 + a3v3 + a4v4 + a5v5,

By acting the adjoint representations T ε
i on v by choosing suitable parameters ε in each step. Therefor we can simplify

v as follows:
Case (1): If a3 ̸= 0 we can assume that a3 = 1, ε =

a5
a3

with T ε
2 then we can make the coefficient of v2 vanish.

With T ε
5, ε = a5 then we can make the coefficient of v5 vanish.

Case (2): If a1 ̸= 0 we can assume that a1 = 2, ε = − a4
a1−1

with T ε
4 then we can make the coefficient of v4 vanish.

so v is reduced:
2v1 + v3,

If a1 = 0 we can assume that ε = a4 with T ε
4 then we can make the coefficient of v4 vanish. So v is reduced:

v3,

If a3 = 0 we can assume that a1 = 1, ε =
a5
a1

with T ε
2 then we can make the coefficient of v2 vanish.

Case (3): If a4 ̸= 0 we can assume that ε = a4 with T ε
4 then we can make the coefficient of v4 vanish. So v is

reduced:
v1,

If a4 = 0 with T ε
5 we can make the coefficient of v5 vanish. so v is reduced:

v1,

We have found an optimal system of one-dimensional subalgebras to be those spanned by,

v1 = t∂t,

v3 = x∂x + u∂u,

2v1 + v3 = 2t∂t + x∂x + u∂u,

And the proof is complete.

5. Similarity Reduction and group-invariant solutions of H-S equation

In this section, the one-dimensional flow equation will be reduced by expressing it in the new coordinates. The H-S
equation is expressed in the coordinates (x, t, u),we must search for this equations form in the suitable coordinates for
reducing it. These new coordinates will be obtained by looking for independent invariants (z, w, f) corresponding to
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the generators of the symmetry group. For solving this equation, the following associated characteristic ODE must be
solved:

dx
x

=
dt
2t

=
du
2u

Hence, three functionally independent invariant z = tx−2, w = tu−1 and f = ux−2 are obtained. The reduced
equations are obtained as follows:

ffzz +
fz

2

z
= 0,

fw +
f2

2
= 0,

f2

2
= 0,

The solutions to the above equations in terms of (z, w, f) variables are as follows:

f (z) =

(
3

2
(c1z + c2)

)2

3
,

f (w) =
2

2c1 + w
,

f (z) = 0.

And finally, we found group-invariant solutions of H-S equation.

f
(
tx−2

)
=

(
3

2

(
c1tx

−2 + c2
))2

3
,

f
(
tu−1

)
=

2

2c1 + tu−1
,

f
(
tx−2

)
= 0.

6. conclusion

In this paper, by using the theory of Infinitesimal criterion and the influence of prolonged on the vector field v we
compute the Lie symmetry group of H-S equation. Also, by determining equation of functions η, τ, ϕ one-parameter
groups generator and optimal system of symmetry are obtained for H-S equation, five flows are acquired which two
of them are dilatation, another one is time translation and the last one is space translation. Finally, we achieved to
the G-invariant solutions of H-S equation under symmetry group G. Also, by using the adjoint representation of the
symmetry group on its lie algebra, we have constructed an optimal system of one-dimensional subalgebras. Moreover,
we have obtained the similarity reduced equations for each element of optimal system as well as its group invariant
solutions of H-S equation.
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Abstract

In this paper, a summary of concepts from the Chaos and Fractals theory and some basic theory
to understand how the Chaos and Fractal theory fundamentals work, for more to explain how is
related the chaos theory with mathematics application.We find homeomorphisms between The
Koch andmanifolds. We can use this homeomorphisms to endow such fractals with the structure
of smooth manifolds.

1. The Chaos theory

Tien Yien Li and James Yorke’s 1975 paper, “Period three implies chaos”, contained the first instance of this usage of
chaos in the scientific literature, and led ultimately to the creation of a new science, chaos theory. [8]
The chaos theory is for some concepts that they offer an alternative that describes and explanations how is the behavior
of some nonlinear systems (which are basically almost all naturally occurring physical, chemical, biological or social
structures or systems). The name “Chaos” comes from the fact that nonlinear systems seem to behave chaotically
or randomly from a traditional linear point of view. There are many natural systems whose behavior that can’t be
described and explained by simply dividing the whole into its parts and study them separately from the rest of the
system. For example, studying the behavior of an individual bee may not provide any insight into a beehive as a
system because the bees colony’s behavior is driven by the cooperation and pheromone interaction between flowers.
In a different example, of course the movement of water molecules in process of boiling the water might seem chaotic
and random, but there are patterns of movements that change over time and tend to form similar structure.
Most natural systems change over time and this change does not happen in proportional and regular manner. A con-
cept of proportional change is an idealization because real life phenomena change differently sometimes smoothly,
sometimes not smoothly. The Chaos theory provides a theoretical framework and a set of tools for conceptualizing
change and the changing system may have appeared to be chaotic from traditional (linear) perspective while it exhibits
coherence, structure and patterns of motion from the global and nonlinear perspective.
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Chaos is a fundamental property that possesses nonlinearity and it is very sensitive on initial conditions. Because of
the nonlinearity in a chaotic system it becomes very difficult to make an exact or accurate predictions about the system
over a given time interval. Weather forecasting is an example of how chaos theory effects the accuracy of predictions
over a given time interval, but using the similar structured a meteorologist can predict how is going to move a hurri-
cane. Through analyzing a weather pattern over time and different structures, meteorologists have been able to make
better predictions of future weather based on this theory. [2]
The dictionary definition of chaos is turmoil, unpredicted, turbulence, primordial abyss, and undesired randomness,
but scientists will tell you that chaos is something extremely sensitive to initial conditions. Chaos also refers to the
question of whether or not it is possible to make good long-term predictions about how a system will act. A chaotic
system can actually develop in a way that appears very smooth and ordered. Determinism is the belief that every action
is the result of preceding actions. It began as a philosophical belief in Ancient Greece thousands of years ago and was
introduced into science around 1500 A.D. with the idea that cause and effect rules. Newton was closely associated
with the establishment of determinism in modern science. His laws were able to predict systems very accurately.
They were deterministic at their core because they implied that everything that would occur would be based entirely
on what happened right before. Henry Adams has described like this ”Chaos often breeds life, when order breeds
habit”. Henri Poincaré was really the ”Father of Chaos [Theory],”. Chaos theory describes complex motion and the
dynamics of sensitive systems. Chaotic systems are mathematically deterministic but is hard or impossible to predict.
Chaos is more evident in long-term systems than in short-term systems. Behavior in chaotic systems is not periodic,
meaning that no variable describing the state of the system undergoes a regular repetition of values. A chaotic system
can actually develop gradually in a way that appears to be smooth and ordered, however. Chaos refers to the issue of
whether or not it is possible to make accurate long-term predictions of any system if the initial conditions are known to
an accurate degree. Chaos occurs when a system is very sensitive to initial conditions. Initial conditions are the values
of measurements at a given starting time. The phenomenon of chaotic motion was considered a mathematical oddity at
the time of its discovery, but now physicists know that it is very widespread and may even be the norm in the universe.
The weather is an example of a chaotic system. In order to make long-term weather forecasts it would be necessary to
take an infinite number of measurements, which would be impossible to do. Also, because the atmosphere is chaotic,
tiny uncertainties would eventually overwhelm any calculations and defeat the accuracy of the forecast. The presence
of chaotic systems in nature seems to place a limit on our ability to apply deterministic physical laws to predict motions
with any degree of certainty. [2]

2. Notations and Preliminaries

Helge von Koch was a Swedish mathematician who, in 1904, introduced what is now called the Koch curve ([8]).
Fitting together three suitably rotated copies of the Koch curve produces a figure, which for obvious reasons is called
the snowflake curve or the Koch island. The outline of the Koch snowflake (also called Koch island) is composed of
three congruent parts, each of which is a Koch curve as shown in figure. The Koch snowflake obviously has some

Fig. 1. The Koch snowflake.

similarities with real flakes, some of which are pictured here.
He defined the curve as the limit of an infinite sequence of increasingly wrinkly curves. The finished curve is infinitely
long, despite being contained in a finite area. It has no tangent or smoothness anywhere. Slicing the curve at certain
angles reveals an infinity of Cantor sets lurking within.
In the paper [The Koch curve as a smooth manifold, Chaos, Soliton and fractals, 38(2008)334-338] the authors try
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to find a homeomorphism between the Koch curve and the closed interval [0, 1] to endow the Koch curve with the
structure of a smooth manifold with boundary. The method which they used is complicated and strongly depended on
the structure of the Koch curve. We give a simple ordinary proof which can be used in similar cases. We first define
the family of “Exact limit fractals”, which involves many kinds of fractals, such as the Koch curve. Then we find
homeomorphisms between exact limit fractals and manifolds.
2. Exact limit fractals
In the following, the topology of the subsets ofRn are induced topology fromRn, and the usual distance of two points
x, y in Rn, is denoted by d(x, y).
Definition 2.1. Let F be a fractal subset of Rn and {A1, A2, ...} be a sequence of subsets of Rn. Then, F is called
an “Exact limit fractal”, with the starting set A1, and the function set {fi}, if the following assertions are true:
(1) For each i ≥ there exists a homeomorphism fi : Ai → Ai+1.
(2) For each x ∈ A1 the following sequence, which we call exact sequence, converges to a point in F

x1 = x, x2 = f1(x), ...., xn+1 = fn(xn), ...

(3) For each point y ∈ F there is a unique exact sequence {xn}, such that y = limn→∞xn .
(4) For each ϵ > 0, there is a number nϵ ∈ N such that for each x1 ∈ A1 we have:

m ≥ nϵ ⇒ d(xm, limn→∞xn) < ϵ

Theorem 2.2. Let F be an exact limit fractal inRn, with the starting setA1. IfA1 is compact then F is homeomorphic
to A1.
Proof: Consider {A1, A2, ...} and {f1, f2, ...} as definition 2.1, and for eachm ≥ 1 let f (m) = fm ◦ fm−1 ◦ ... ◦ f1.
Consider an exact sequence xm+1 = fm(xm),m ≥ 1. Define the function ψ : A1 → F by

ψ(x1) = limn→∞xn

We show that ψ is a homeomorphism. Let ϵ > 0 be given. By definition 2.1, there is nϵ ∈ N such that

m ≥ nϵ ⇒ d(xm, limn→∞xn) <
ϵ

3

Fix a numberm ≥ nϵ. Since f (m) : A1 → Am is a homeomorphism, there exists a δ > 0(related to ϵ), such that

d(y1, x1) < δ ⇒ d(f (m)(y1), f
(m)(x1)) <

ϵ

3
⇒ d(ym, xm) <

ϵ

3

Thus
d(ψ(y1), ψ(x1)) = d(limn→∞yn, limn→∞xn)

≤ d(limn→∞yn, ym) + d(ym, xm) + d(xm, limn→∞xn) ≤
ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ

That is
d(y1, x1) < δ ⇒ d(ψ(y1), ψ(x1)) < ϵ

Therefore, ψ is continuous. A1 is compact and by definition 2.1(3), ψ is injective and onto, so it is a homeomorphism
(because any continuous bijection from a compact space onto a Hausdorff space is a homeomorphism).
Remark 2.3. In the definition 2.1, let the conditions (1)-(3) are valid and there exists constant numbers 0 < α < 1
and β > 0, such that for each exact sequence {xn}, we have d(xn, xn+1) ≤ β(α)n. Then the condition (4) in the
definition 2.1 is valid.
Proof : Consider an exact sequence {xn}. Let x = limn→∞xn ∈ F . We have

d(xn, x) = limm→∞d(xn, xm) ≤ limm→∞(d(xn, xn+1) + ...+ d(xm−1, xm)) ≤ limm→∞β(α
n + ...+ αm−1)

= β
αn

1− α
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For given ϵ > 0, if we choose an Nϵ sufficiently large, then we would have

n ≥ Nϵ ⇒
βαn

1− α
< ϵ⇒ d(xn, x) ≤ ϵ

Example 2.4. The Koch curve with the induced topology from R2, is homeomorphic to [0, 1].
Proof: Denote the Koch curve by K. Let L be a line segment of the length a. Replace the middle third segment of
L by two sides of an equilateral triangle of the side length a

3 , to get the set L̂. For each x in L, let Lx be the line
perpendicular to L at the point x. Define the map gL as follows

gL : L→ L̂; gL(x) = Lx

⋂
L̂

Clearly gL is a homeomorphism and we have

d(gL(x), x) ≤
√
3

2
a

Now consider the usual method for constructing of the Koch curve, starting by the closed intervalA1 = [(0, 0), (0, 1)].
Then replacing the middle third by two sides of an equilateral triangle of side length 1

3 to getA2. Do the similar thing to
the line segments ofA2 to getA3, and so on. In fact for each n,An is a union of 4n−1 line segmentsLni

,1 ≤ i ≤ 4n−1,
of the length ( 13 )

n−1, and An+1 is the union of the sets L̂ni
. Consider the function fn : An → An+1, defined by

fn(x) = gLni
(x), x ∈ Lni

Clearly fn is a homeomorphism, and we have

d(fn(x), x) ≤
√
3

2
(
1

3
)n−1 =

3
√
3

2
(
1

3
)n

By using Definition 2.1 and Remark 2.3, we get that K is an exact limit fractal, with the starting set A1. Thus by
Theorem 2.2,K is homeomorphic to A1. This completes the proof.
In the example 2.4, if we start by four sides of a square, instead of closed interval, we can show in the similar way, that
the Koch snowflake is homeomorphic to the boundary of a square, so it is homeomorphic to a circle. Thus we have
the following corollary.
Corolarry 2.5 The Koch snowflake is homeomorphic to the circle S1.
There are many other fractals, which can be characterized from topological view point, by using the Theorem 2.2.
For instance, we can show that, the modified Koch curve ([4] page 121) and self affine curve ([4] page 151) are
homeomorhpic to [0, 1].

3. The Chaos Game

In the 1980s Michael Barnsley [3] discovered another way of generating a fractal. It’s a bit like dot-to-dot drawings,
only you don’t join the dots with lines. You just plot point after point according to some simple rules.
For example: draw three dots in a triangle, and a fourth dot at random, anywhere in the triangle, to be the stating point.
Now proceed as follows.
Step 1: Roll a die.
Step 2: If the top face is 1 or 2, draw another dot half-way from the starting point to the first point. If the top face
is 3 or 4, draw another dot half-way from the starting point to the second dot. If the top face is 5 or 6, draw another
dot half-way from the starting point to the third dot. This new dot then becomes the new stating point, and the whole
process is repeated, from Step 1. After a while, a pattern begins to emerge, a familiar pattern: the Sierpinski triangle.
It’s not much of a game. With only one player having just one move, the game does not allow for a great deal of
choice. After you have chosen your initial point, the future of the game is decided. As Michael Barnsley discovered,
if we had chosen different points, we could have generated a fern instead, or any other fractal – or any shape at all,
come to that. Every picture can be encoded as a fractal formula like this.



504 H.soroush / The 4th National Congress on Mathematics and Statistics



H.soroush / The 4th National Congress on Mathematics and Statistics 505

References

[1] M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A. 399 (1985),
243-275.

[2] M. F. Barnsley, Fractals Everywhere, Academic Press, New York, 1998.
[3] M. Espin and J. Sniatycki The Koch curve as a smooth manifold, Chaos, Soliton and fractals. 38 (2008), 334-338.
[4] K. Falconer, Fractal Geometry, Mathematical Foundations and Applications, J. John Wiley and sons, New york, 2014.
[5] H. Peitgen, H. Jürgens and D. Saupe, Chaos and Fractals, New Frontiers of Science Second Edition, Springer, 2004.
[6] B. B. Mandelbrot, The Fractal Geometry of Nature, New York, 1977.
[7] J. R. Munkres, Topology a first course, Appleton Century Crofts, 2000.
[8] N. Lesmoir-Gordon, W. Rood, Introducing Fractals: A Graphic Guide, London, 2013.



Gonbad Kavous University

The 4th National Congress on Mathematics and StatisticsThe 4th National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1402

The 4th National Congress on Mathematics and Statistics, GT–253, pp. 506–509

Clean rings on Cc(X)

Zahra Keshtkara,∗, Amir Veisib
aFaculty of Petroleum and Gas, Yasouj University, Gachsaran, Iran
bFaculty of Petroleum and Gas, Yasouj University, Gachsaran, Iran

Article Info

Keywords:
clean ring
Fc-space
Cc(X)

2020 MSC:
54C30
13B99

Abstract

In this article, clean elements of C(X, N) and C(X, Z) are determined. It is shown that for
every space X , Cc(X)(x), Qc(X), and qc(X) are clean rings. We prove that if X is an Fc-
space, and S is a multiplicative closed subset ofR(Cc(X)), then max

(
S−1Cc(X)

)
and β0X

are homeomorphic, where R(Cc(X)) is the set of non-zerodivisor elements of Cc(X). Fur-
thermore, S−1Cc(X) is a clean ring. It is also observed that Cc(X)[x] is not clean although
Cc(X)[[x]] is clean.

1. Introduction

As usual, all topological spaces in this article are infinite Hausdorff completely regular (i.e., infinite Tychonoff spaces).
We recall that a zero-dimensional space is a Hausdorff space with a base consisting of clopen sets. We denote byC(X)
the ring of all real-valued, continuous functions on a spaceX . The subring ofC(X) consisting of those functions with
countable image, which is denoted by Cc(X) is an R-subalgebra of C(X). The ring Cc(X) is introduced and studied
in [2], [4], [5], and [8]. The Banaschewski compactification of a zero-dimensional topological space X is denoted
by β0X . It is observed in [2] that β0X is the maximal ideal space of Cc(X). We say that a space X is an Fc-space
whenever the prime ideals of Cc(X) contained in a given maximal ideal form a chain. An element a in a commutative
ring R is called a clean element if a is a sum of a unit and an idempotent in R, and R is called clean if every element
in R is clean. R is said to be zero-dimensional if every prime ideal in R is maximal. Also, R is called regular if, for
every a ∈ R, there exists b ∈ R such that a = a2b. We remind that a topological space X is called a CP -space if
Cc(X) is a regular ring. In the following, Z represents the set of integers, and N = {0, 1, 2, 3, . . .}.

2. Topics and results

Recall that e ∈ C(X) is idempotent if and only if for a clopen subset A of X; e(x) =

{
1 x ∈ A

0 x ∈ X \A
. It is

easily seen that the idempotent elements of C(X), C(X, N), and C(X, Z) are the same.
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Proposition 2.1. u ∈ C(X, N) is a unit if and only if u = 1. Moreover, f ∈ C(X, N) is clean if and only if f = 1+e,
where e is an idempotent element of C(X).

Proof. Since u is a unit, there exists 0 ̸= v ∈ C(X, N) such that u(x) v(x) = 1 for every x ∈ X . Then u(x) =
1

v(x) ∈ N. So v(x) = 1 and hence u(x) = 1 for every x ∈ X , i.e., u = 1. The second part is clear.

Proposition 2.2. u ∈ C(X, Z) is a unit if and only if u(X) ⊆ {−1, 1}. Also, f ∈ C(X, Z) is clean if and only if for

an idempotent e ∈ C(X) and a clopen subset A of X , we have f =

{
e+ 1 on A

e− 1 on X \A.

Proof. If u is a unit, then there exists 0 ̸= v ∈ C(X, Z) such that u(x) v(x) = 1 for every x ∈ X . Then u(x) =
1

v(x) ∈ Z. So v(x) = 1 or v(x) = −1. Hence, u(x) = 1 or u(x) = −1, for every x ∈ X , i.e., u(X) ⊆ {−1, 1}. The
converse is clear.
Let f be clean. Then f = u+ e, where u is a unit and e is an idempotent element of C(X, Z). So u(X) ⊆ {−1, 1}.
If we put A = {x ∈ X : u(x) = 1}, then A is a clopen set. Therefore,

f(x) =

{
e+ 1 x ∈ A

e− 1 x ∈ X \A
, and we are done. Now, suppose that for a clopen set A ⊆ X and an idempotent

e ∈ C(X), we have f =

{
e+ 1 on A

e− 1 on X \A
. Let u(x) =

{
1 x ∈ A

−1 x ∈ X \A
, then u is a unit element of

C(X,Z), and f = u+ e is clean, as desired.

The next result determines the general form of clean elements of C(X, N) and C(X, Z).

Corollary 2.3. An element f ∈ C(X, N) is clean if and only if there exists a clopen set A of X such that

f(x) =

{
2 x ∈ A

1 x ∈ X \A
.

An element f ∈ C(X, Z) is clean if and only if there exist clopen sets A,B of X such that

f(x) =


2 x ∈ A ∩B

1 x ∈ A \B
0 x ∈ B \A
−1 x ∈ X \ (A ∪B).

The content ideal of a polynomial p(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0 ∈ Cc(X)[x] is the ideal of Cc(X) gen-
erated by coefficients an, an−1, ..., a1, a0. We denoted the content ideal p(x) by c(p). Let S =

{
p(x) ∈ Cc(X)[x] :

c(p) = Cc(X)
}
. Clearly, S is closed under multiplication. The localization of Cc(X)[x] with respect to S is denoted

by Cc(X)(x).

Theorem 2.4. For every space X , Cc(X)(x) is a clean ring.

Proof. Let a ∈ Cc(X)(x). Then there exist p(x), q(x) ∈ Cc(X)[x] such that a = p(x)
q(x) and c(q) = Cc(X). So we

can take
f0, f1, . . . , fn, g0, g1, . . . , gn, α1, α2, . . . αn ∈ Cc(X)

such that

p =
n∑

i=0

fi x
i, q =

n∑
i=0

gi x
i, and

n∑
i=0

αigi = 1.

Let f = 1−
∑n

i=0 αi fi. Then f ∈ Cc(X) and hence f(X) ̸= (0, 1). So there exists r ∈ (0, 1) such that r /∈ f(X).
Set U = f−1((r, +∞)) = f−1([r, +∞)) and define e, h : X → R as follows:

e(x) =

{
1 x ∈ U

0 x ∈ X \ U,
and h(x) =

{
−1
f x ∈ U
1

1−f x ∈ X \ U.
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Since U (and hence X \ U ) is a clopen set, e and h are continuous, and so they belong to Cc(X). Furthermore, e is
idempotent. Hence, for every x ∈ X we obtain

∑n
i=0 h(x)αi(x)

(
fi(x) − e(x)gi(x)

)
= 1. Therefore, the ideal of

Cc(X) which is generated by the set
{
fi − egi : 0 ≤ i ≤ n

}
is the Cc(X). Now, let

k = p− eq =
∑n

i=0

(
fi − egi

)
xi.

Then c(k) = Cc(X). Hence, k
q ∈ Cc(X)(x). Since c(q) = Cc(X), we get k

q is a unit. On the other hand, idempotent
elements of Cc(X)(x) and Cc(X) are the same. So e is an idempotent in Cc(X)(x). Therefore,

k

q
+ e = a.

This yields a is a clean element in Cc(X)(x), and we are done.

The ring Cc(X) < x > is the localization of the polynomial ring Cc(X)[x] concerning the set of monic polynomials.

Proposition 2.5. For any topological space X , the following are equivalent.

(1) X is a CP -space.
(2) Cc(X) is a regular ring.
(3) Cc(X) is zero-dimensional.
(4) Cc(X) < x > is zero-dimensional.
(5) Cc(X) < x > is a clean ring.
(6) Cc(X) < x >= Cc(X)(x).

Proof. By [4, Theorem 5.8], (1), (2), and (3) are equivalent. By [7, Theorem 8], (3), (4), (5), and (6) are equivalent.
So the result holds.

Theorem 2.6. Let X be an Fc-space, R(Cc(X)) be the set of non-zerodivisors elements of Cc(X), and let S be a
multiplicative closed set ofR(Cc(X)). Then the following hold.

(i) max
(
S−1Cc(X)

)
and β0X are homeomorphic.

(ii) S−1Cc(X) is a clean ring.

Proof. (i). The proof is similar to the proof of [3, Proposition 3.2], and so we eliminate it.
(ii). First, we note that Cc(X) is a pm-ring (i.e., every prime ideal of Cc(X) is contained in a unique maximal ideal).
Hence, S−1Cc(X) is a is pm-ring. By (i), max

(
S−1Cc(X)

)
≃ β0X , and the fact that β0X is zero-dimensional, we

obtain max
(
S−1Cc(X)

)
is zero-dimensional. Now, [6, Theorem 1.7] gives S−1

(
Cc(X)

)
is a clean ring, and we are

done.

The maximal ring of quotients and the classical ring of quotients of Cc(X) are denoted by Qc(X) and qc(X) respec-
tively. These rings have been identified in [8, Theorem 2.12] as follows:

Qc(X) = lim−→
{
Cc(V ) : V is dense open inX

}
, and qc(X) = lim−→

{
Cc(coz f) : f ∈ Cc(X) and coz f = X

}
.

Proposition 2.7. Let X be zero-dimensional. Then Qc(X) and qc(X) are clean rings.

Proof. According to [8, Corollary 2.17], Qc(X) is regular and therefore it is clean since a regular ring is a clean ring.
On the other hand, qc(X) is a direct limit of the rings Cc(V ) where V ranges over dense cozerosets of X . By [2,
Corollary 2.8], Cc(V ) is clean. Now, [3, Proposition 2.4] gives qc(X) is also clean, and we are done.

Note that R[x] is never clean for any ring R ([1, Proposition 12]). Therefore, Cc(X)[x] is not clean. Furthermore,
R is clean if and only if R[[x]] is clean, by [1, Proposition 12]. Now, since Cc(X) is clean, Cc(X)[[x]] is also clean.
This fact is emphasized in the following statement.

Proposition 2.8. For any topological space X , Cc(X)[[x]] is a clean ring.
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Abstract

In this paper, we deal with the existence of a non-trivial solution for the following fractional
discrete boundary-value problem for any k ∈ [1, T ]N0{

T+1∇α
k (k∇α

0 (u(k))) + k∇α
0 (T+1∇α

k (u(k))) = λh(k)g(u(k))− u(k), k ∈ [1, T ]N0 ,

u(0) = u(T + 1) = 0,

where 0 < α < 1 and k∇α
0 is the left nabla discrete fractional difference and T+1∇α

k is the
right nabla discrete fractional difference f : [1, T ]N0 ×R → R is a continuous function, λ > 0
is a parameter. The technical method is variational approach for differentiable functionals. An
example is included to illustrate the main results.

1. Introduction

The first concepts of fractional nabla differences traces back to the works of Gray and Zhang [14]. Discrete fractional
calculus with the nabla operator studied in [3]. In [4] authors studied two-point boundary value problems for finite
fractional difference equations. This kind of problems play a fundamental role in different fields of research, for
example in biological, Atici and Şengül introduced and solved Gompertz fractional difference equation for tumor
growth models [5].
We refer the reader to the recent monograph on the introduction to fractional nabla calculus [10].
Also we refer the reader to the new monograph [18] that works for differential and integral equations and systems and
for many theoretical and applied problems in mathematics, mathematical physics, probability and statistics, applied
computer science and numerical methods.
It is well known that variational methods is an important tool to deal with the problems for differential and difference
equations. Fractional difference equations with boundary value conditions have appeared in [9, 16] by using variational
methods. More, recently, in [8, 11, 12], the existence andmultiplicity of solutions for nonlinear discrete boundary value
problems have been investigated by adopting variational methods.
In last decades, some researchers investigated q-fractional difference equations. Later, q-fractional boundary value
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problems considered by many researchers; see for instance, [17] and references therein. The other important tool in
the study of nonlinear difference equations is fixed point methods. Morse theory is also other tool in the study of
nonlinear fractional differential equations [13].
The aim of this paper is to establish the existence of non-trivial solution for the following discrete boundary-value
problem {

T+1∇α
k (k∇α

0 (u(k))) + k∇
α
0

(
T+1∇α

k (u(k))
)
= λf(k, u(k))− u(k), k ∈ [1, T ]N0

,

u(0) = u(T + 1) = 0,
(1)

where 0 < α < 1 and k∇α
0 is the left nabla discrete fractional difference and T+1∇α

k is the right nabla discrete
fractional difference and ∇u(k) = u(k) − u(k − 1) is the backward difference operator f : [1, T ]N0 × R → R
is a continuous function, λ > 0 is a parameter and T ≥ 2 is fixed positive integer and N1 = {1, 2, 3, · · · } and
TN = {· · · T − 2, T − 1, T} and [1, T ]N0

is the discrete set {1, 2, · · · , T − 1, T} = N1

∩
TN.

In this paper, based on a local minimum theorem (Theorem 2.4) due to Bonanno [6], we ensure an exact interval of
the parameter λ, in which the problem (1) admits at least a non-trivial solution. As an example, here, we point out the
following special case of our main results.

Theorem 1.1. Let h : [1, T ] → R be a positive and essentially bounded function and g : R → R be a nonnegative
continuous function and

lim
d→0+

g(d)

d
= +∞, lim

c→+∞

g(c)

c
= 0.

Then for any
λ ∈

]
0,+∞

[
,

the problem{
T+1∇α

k (k∇α
0 (u(k))) + k∇

α
0

(
T+1∇α

k (u(k))
)
= λh(k)g(u(k))− u(k), k ∈ [1, T ]N0

,

u(0) = u(T + 1) = 0,
(2)

has at least one non-trivial solution in the space {u : [0, T + 1] → R : u(0) = u(T + 1) = 0}.

2. Preliminaries

The following definitions will be helpful to our discuss.

Definition 2.1. [2] (i) Letm be a natural number, then them rising factorial of t is written as

tm =

m−1∏
k=0

(t+ k), t0 = 1. (3)

(ii) For any real number, the α rising function is increasing on N0 and

tα =
Γ(t+ α)

Γ(t)
, such that t ∈ R\{· · · ,−2,−1, 0}, 0α = 0. (4)

Definition 2.2. Let f be defined on Na−1

∩
b+1N, a < b, α ∈ (0, 1), then the nabla discrete new (left Gerasimov-

Caputo) fractional difference is defined by

(
C
k ∇α

a−1f
)
(k) =

1

Γ(1− α)

k∑
s=a

∇sf(s)(k − ρ(s))−α, k ∈ Na, (5)
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and the right Gerasimov-Caputo one by

(
C
b+1∇α

kf
)
(k) =

1

Γ(1− α)

b∑
s=k

(−∆sf)(s)(s− ρ(k))−α, k ∈ bN, (6)

and in the left Riemann-Liouville sense by

(
R
k ∇α

a−1f
)
(k) =

1

Γ(1− α)
∇k

k∑
s=a

f(s)(k − ρ(s))−α, k ∈ Na, (7)

=
1

Γ(−α)

k∑
s=a

f(s)(k − ρ(s))−α−1, k ∈ Na, (8)

and the right Riemann-Liouville one by

(
R
b+1∇α

kf
)
(k) =

1

Γ(1− α)
(−∆k)

b∑
s=k

f(s)(s− ρ(k))−α, k ∈ bN, (9)

=
1

Γ(−α)

b∑
s=k

f(s)(s− ρ(k))−α−1, k ∈ bN, (10)

where ρ(k) = k − 1 be the backward jump operator.

So, for convenience, from now on we will use the symbol∇α instead of R∇α or C∇α.
Now we present summation by parts formula in new discrete fractional calculus.

Theorem 2.3. ( [1, Theorem 4.4] Integration by parts for fractional difference) For functions f and g defined on
Na

∩
bN, a ≡ b (mod 1), and 0 < α < 1, one has

b∑
k=a

f(k)
(
k∇α

a−1g
)
(k) =

b∑
k=a

g(k)
(
b+1∇α

kf
)
(k). (11)

Our main tool is a local minimum theorem due to Bonanno (see [6, Theorem 5.1]), which is recalled below (see also
[6, Proposition 2.1]). Such a result is more general than [15, Theorem 2.5] since the critical point, surely, is not zero.
First, for given Φ, Ψ : X → R, we defined the following functions

β(r1, r2) = inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[)
Ψ(u)−Ψ(v)

r2 − Φ(v)
, (12)

and

ρ(r1, r2) = sup
v∈Φ−1(]r1,r2[)

Ψ(v)− supu∈Φ−1(]−∞,r1[)
Ψ(u)

Φ(v)− r1
, (13)

for all r1, r2 ∈ R, with r1 < r2.

Theorem 2.4. ([6, Theorem 5.1]) LetX be a reflexive real Banach space,Φ : X → R a sequentially weakly semicon-
tinuous coercive and continuously Gâteaux differentiable functional whose Gâteaux derivative admits a continuous
inverse onX∗ andΨ : X → R a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact.
Put Iλ = Φ− λΨ and assume that there are r1, r2 ∈ R, with r1 < r2, such that

β(r1, r2) < ρ(r1, r2),

where β and ρ are given by (12) and (13). Then, for each

λ ∈ Λ =

]
1

ρ(r1, r2)
,

1

β(r1, r2)

[
,

there is u0,λ ∈ Φ−1(]r1, r2[) such that Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(]r1, r2[) and I ′λ(u0,λ) = 0.
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In order to give the variational formulation of the problem (1), let us define the finite T−dimensional Banach space

W := {u : [0, T + 1]N0
→ R : u(0) = u(T + 1) = 0},

which is equipped with the norm

∥u∥ :=

(
T∑

k=1

|u(k)|2
) 1

2

.

Let Φ : W → R be the functional

Φ(u) :=
1

2

T∑
k=1

| (k∇α
0u) (k)|2 + |

(
T+1∇α

ku
)
(k)|2 + 1

2

T∑
k=1

|u(k)|2. (14)

An easy computation ensures that Φ turns out to be of class C1 onW and Gateaux differentiable with

Φ′(u)(v) =
T∑

k=1

(k∇α
0 (u(k))) (k∇α

0 v(k)) +
(
T+1∇α

k (u(k))
) (

T+1∇α
kv(k)

)
+

T∑
k=1

|u(k)|p−2u(k)v(k),

for all u, v ∈ W . To study the problem (1), for every λ > 0, we consider the functional Iλ : W → R defined by

Iλ(u) := Φ(u)− λΨ(u), Ψ(u) :=
T∑

k=1

F (k, u(k)), (15)

where F (k, u) =
∫ u

0
f(k, t)dt.

Lemma 2.5. The function u be a critical point of Iλ in W , iff u be a solution of the problem (1).

3. Auxiliary inequalities

Now we provide some inequalities used throughout the paper, which hold on the spaceW . In the sequel, we will use
the following inequality.

Lemma 3.1. For every u ∈ W , we have

∥u∥∞ := max
k∈[1,T ]

|u(k)| ≤ ∥u∥. (16)

Lemma 3.2. For every u ∈ W , we have

1

2
∥u∥2 ≤ Φ(u) ≤ 2T (T + 1)∥u∥2 + 1

2
∥u∥2. (17)

4. Main Results

First, let us introduce a function for convenience. For given two non-negative constants c and d, put

ad(c) :=

∑T
k=1max|ξ|≤c F (k, ξ)−

∑T
k=1 F (k, d)

(c)2

2 − d2

(Γ(1−α))2

∑T
k=1

(
(k)−α

)2 − Td2

2

.

We state our main result as follows.
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Theorem 4.1. Assume that there exist a non-negative constant c1 and two positive constants c2 and d with

(A0) (c1)
2

2 < d2

(Γ(1−α))2

∑T
k=1

(
(k)−α

)2
+ Td2

2 < (c2)
2

2 ,

such that

(A1) ad(c2) < ad(c1).

Then for any λ ∈] 1
ad(c1)

, 1
ad(c2)

[ the problem (1) has at least one non-trivial solution u0 ∈ W .

Proof. Our aim is to apply Theorem 2.4 to our problem. To this end, take X = W , and put Φ, Ψ and Iλ as in (14)
and (15). We know Φ is a nonnegative continuously Gâteaux differentiable and sequentially weakly lower semicon-
tinuous functional whose Gâteaux derivative admits a continuous inverse on X∗, and Ψ is a continuously Gâteaux
differentiable functional whose Gâteaux derivative is compact. By similar arguing in [7], put

v̄(k) =

{
d k ∈ [1, T ]N0

,

0 k = 0, T + 1,

r1 = (c1)
2

2 and r2 = (c2)
2

2 . Clearly v̄ ∈ W . Since v̄ vanishes at the end points that is v̄(0) = 0 = v̄(T + 1), thus its
nabla Riemann-Liouville and Gerasimov-Caputo fractional differences coincide, hence for any k ∈ N1

∩
TN

(
T+1∇α

k v̄
)
(k) =

(
R
T+1∇α

k v̄
)
(k) =

(
C
T+1∇α

k v̄
)
(k) =

d(T + 1− k)−α

Γ(1− α)
,

(k∇α
0 v̄) (k) =

(
R
k ∇α

0 v̄
)
(k) =

(
C
k ∇α

0 v̄
)
(k) =

d(k)−α

Γ(1− α)
.

So, we have

Φ(v̄) =
1

2

T∑
k=1

| (k∇α
0 v̄) (k)|2 + |

(
T+1∇α

k v̄
)
(k)|2 + 1

2

T∑
k=1

|v̄(k)|2

=
1

2

T∑
k=1

| d(k)−α

Γ(1− α)
|2 + |d(T + 1− k)−α

Γ(1− α)
|2 + Td2

2

=
d2

2 (Γ(1− α))
2

T∑
k=1

|(k)−α|2 + |(T + 1− k)−α|2 + Td2

2

=
d2

(Γ(1− α))
2

T∑
k=1

|(k)−α|2 + Td2

2

=
d2

(Γ(1− α))
2

T∑
k=1

(
(k)−α

)2
+

Td2

2
,

and

Ψ(v̄) =
T∑

k=1

F (k, v̄(k)) =
T∑

k=1

F (k, d).

Moreover, for all u ∈ W such thatΦ(u) < ri, i = 1, 2, taking (3.1) and (17) into account, one has maxk∈[1,T ] |u(k)| ≤
ci, i = 1, 2. Therefore,

sup
u∈Φ−1(−∞,ri)

Ψ(u) = sup
Φ(u)<ri

T∑
k=1

F (k, u(k)) ≤
T∑

k=1

max
|ξ|≤ci

F (k, u(k)), i = 1, 2.
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By (A0), v̄ ∈ Φ−1(r1, r2), hence,

0 ≤ β(r1, r2) ≤
supu∈Φ−1(r1,r2)

Ψ(u)−Ψ(v̄)

r2 − Φ(v̄)

≤
supu∈Φ−1(−∞,r2)

Ψ(u)−Ψ(v̄)

r2 − Φ(v̄)

≤
∑T

k=1max|ξ|≤c2 F (k, ξ)−
∑T

k=1 F (k, d)
(c2)p

p(T+1)
p(p−2)

4

− d2

(Γ(1−α))2

∑T
k=1

(
(k)−α

)2 − Tdp

2

= ad(c2).

On the other hand, one has

ρ(r1, r2) ≥
Ψ(v̄)− supu∈Φ−1(−∞,r1)

Ψ(u)

Φ(v̄)− r1

≥
∑T

k=1 F (k, d)−
∑T

k=1max|ξ|≤c1 F (k, ξ)

d2

(Γ(1−α))2

∑T
k=1

(
(k)−α

)2
+ Tdp

2 − (c1)p

p

≥
∑T

k=1max|ξ|≤c1 F (k, ξ)−
∑T

k=1 F (k, d)
(c1)p

2 − d2

(Γ(1−α))2

∑T
k=1

(
(k)−α

)2 − Tdp

2

= ad(c1).

Hence, from Assumption (A1), we get β(r1, r2) < ρ(r1, r2).
Therefore, owing to Theorem 2.4, for each λ ∈] 1

ad(c1)
, 1
ad(c2)

[, the functional Iλ admits one critical point u0 ∈ W

such that r1 < Φ(u0) < r2. Hence, the proof is completed.

Here we point out an another immediate consequence of Theorem 4.1 as follows.

Theorem 4.2. Let f : [1, T ]N0×R → R be a nonnegative continuous function and assume that there exist two positive
constants c and d with

(A0) d2

(Γ(1−α))2

∑T
k=1

(
(k)−α

)2
+ Tdp

2 < (c)p

p ,

such that

(A1)
∑T

k=1 F (k,d)
d2

(Γ(1−α))2

∑T
k=1((k)−α)

2
+Tdp

2

> p(T + 1)
p(p−2)

4

∑T
k=1 max|ξ|≤c F (k,ξ)

cp .

Then for any

λ ∈

 d2

(Γ(1−α))2

∑T
k=1

(
(k)−α

)2
+ Tdp

2∑T
k=1 F (k, d)

,
cp

p(T + 1)
p(p−2)

4

∑T
k=1max|ξ|≤c F (k, ξ)

 ,

the problem (1) has at least one non-trivial solution inW .

Proof. Applying Theorem 4.1, we have the conclusion, by picking c1 = 0 and c2 = c. Indeed, owing to our assump-
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tions, one has

ad(0) =

∑T
k=1 F (k, d)

d2

(Γ(1−α))2

∑T
k=1

(
(k)−α

)2
+ Tdp

2

>

∑T
k=1max|ξ|≤c F (k, ξ)−

∑T
k=1 F (k, d)

(c)p

p − d2

(Γ(1−α))2

∑T
k=1

(
(k)−α

)2 − Tdp

2

= ad(c).

Hence, the proof is completed.

Theorem 4.3. Let h : [1, T ] → R be a positive and essentially bounded function and g : R → R be a nonnegative con-

tinuous function and assume that there exist two positive constants c and dwith d2
(

2
(Γ(1−α))2

∑T
k=1

(
(k)−α

)2
+ T

)
<

c2,

such that ∫ d

0
g(t)dt

d2
>

(
2

(Γ(1− α))
2

T∑
k=1

(
(k)−α

)2
+ T

) ∫ c

0
g(t)dt

c2
.

Then for any

λ ∈

 2
(Γ(1−α))2

∑T
k=1

(
(k)−α

)2
+ T

2
∑T

k=1 h(k)

d2∫ d

0
g(t)dt

,
1

2
∑T

k=1 h(k)

c2∫ c

0
g(t)dt

 ,

the problem (2) has at least one non-trivial solution in the space {u : [0, T + 1] → R : u(0) = u(T + 1) = 0}.

Remark 4.4. We point out Theorem 4.3 is an immediate consequence of Theorem 4.2, by selecting p = 2 and
f(k, t) = h(k)g(t) for all (k, t) ∈ [1, T ]N0 × R be separable variable which satisfies (A0) and (A1).

Proof of Theorem 1.1:
For fixed λ > 0 as in the conclusion, the condition limd→0+

g(d)
d = +∞ implies limd→0+

∫ d
0

g(t)dt

d2 = +∞, therefor
there exists positive fixed constant d such that

2
(Γ(1−α))2

∑T
k=1

(
(k)−α

)2
+ T

2
∑T

k=1 h(k)

d2∫ d

0
g(t)dt

< λ.

On the other hand for fixedλ < +∞ as in the conclusion, the condition limc→+∞
g(c)
c = 0 implies limc→+∞

∫ c
0
g(t)dt

c2 =
0, so for fixed d a positive constant c satisfying

d2

(
2

(Γ(1− α))
2

T∑
k=1

(
(k)−α

)2
+ T

)
< c2,

can be chosen such that
λ <

1

2
∑T

k=1 h(k)

c2∫ c

0
g(t)dt

.

Hence, the conclusion follows from Theorem 4.3. Finally we present an example of Theorem 1.1.

Example 4.5. The following discrete boundary-value problem{
T+1∇α

k (k∇α
0 (u(k))) + k∇

α
0

(
T+1∇α

k (u(k))
)
= λ(2− tanh2 u(k))− u(k), k ∈ [1, T ]N0

,

u(0) = u(T + 1) = 0,
(18)
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for any λ ∈
]
0,+∞

[
, has at least one non-trivial solution u0, since limc→+∞

2−tanh2 c
c = 0 and limd→0+

2−tanh2 d
d =

∞.
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Abstract

In this article, we propose drug modeling based on the principles of mathematical epidemiology.
We are investigating under what conditions this epidemic can be eradicated and under what
conditions it continues. Also, the backward bifurcation and the global stability of the proposed
model have been investigated.

1. Introduction

Epidemiological modeling has made great progress in recent years, but unfortunately, not much has been done in the
field of drugs, as we know that drug use harms the physical, mental, or social health of an individual, family, or the
whole. Therefore, since the treatment of this disease is very expensive and imposes a psychological burden on the
society, it is better to provide solutions for prevention before the disease occurs. The White-Comiskey model in [6] ,
on heroin epidemics, was one of the first mathematical modeling of drugs, and this model was reviewed by Malone
and Straughan in [9].
The mathematical epidemiology of infectious diseases is well developed and can be found in the works of Bailey [2],
Anderson and May [1], Murray [5] and Brauer and Castillo-Chavez [3].

In this paper, we have upgraded White-Comiskey’s model to four compartments. Then we examined the threshold
quantity, backward bifurcation and overall stability of the new model.

2. Model Formulation and Basic Properties

[>=stealth,scale=0.9]
[ thick, ->] (0,-1)–(2,-1); (1,-0.5) node Λ;
[ thick, ->] (4,-1)–(6,-1); (5,-0.5) node βIS;
[ thick, ->] (8,-1)–(10,-1); (9,-0.5) node αE;

∗Talker
Email address: ebadi.zahra@semnan.ac.ir (Zahra Ebadi)



Zahra Ebadi & A Model of the Heroin Epidemic / The 4th National Congress on Mathematics and Statistics 519

[ thick, ->] (12,-1)–(14,-1); (13,-0.5) node γI;
[ thick] (2,0)–(4,0)–(4,-2)–(2,-2)–(2,0); (3,-1) node S;

[ thick, ->] (3,0)–(3,1.5); (3,0.75) node[right] µ;
[ thick] (6,0)–(8,0)–(8,-2)–(6,-2)–(6,0); (7,-1) node E;

[ thick, ->] (7,0)–(7,1.5); (7,0.75) node[right] µ;
[ thick] (10,0)–(12,0)–(12,-2)–(10,-2)–(10,0); (11,-1) node I;

[ thick, ->] (11,0)–(11,1.5); (11,0.75) node[right] µ;
[ thick] (14,0)–(16,0)–(16,-2)–(14,-2)–(14,0); (15,-1) node T ;

[ thick, ->] (15,0)–(15,1.5); (15,0.75) node[right] µ;

In this model, society is divided into four compartments: S susceptible individuals at risk of using drugs,E the exposed
stage, the stage that the patient himself denies, I drug users, and T drug users under treatment. S(t), E(t), I(t), and
T (t) show the number of compartments respectively.
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Table 1: Model parameters
Symbol Description

Λ Recruitment of susceptible population.
µ Natural mortality rate.
β Probability of drug user per unit time.
α Progression rate for addiction.
γ The rate of treatment of drug users.

According to the model flow diagram in the figure on the previous page, The ODE system (1) obtained:

dS

dt
= Λ− βSI − µS

dE

dt
= βSI − (µ+ α)E

dI

dt
= αE − (µ+ γ)I

dT

dt
= γI − µT

(1)

We first prove the positivity of solution (1)

Theorem 2.1. If initial data S(0) > 0, E(0) > 0, I(0) > 0 and T (0) > 0, then the solution (S(t), E(t), I(t), T (t))
of (1) is positive for all t ≥ 0

Proof. Let (S(t), E(t), I(t), T (t)) be the solution of the system (1) with initial data S(0) > 0, E(0) > 0, I(0) > 0
and T (0) > 0. Suppose that the conclusion is not true, then there is a t∗ > 0 such that,

min{S(t∗), E(t∗), I(t∗), T (t∗)} = 0

and
min{S(t), E(t), I(t), T (t)} > 0

for all t ∈ [0, t∗). Ifmin{S(t∗), E(t∗), I(t∗), T (t∗)} = S(t∗), then we have,
dS

dt
≥ −βSI − µS, for all t ∈ [0, t∗). Hence,

0 = S(t∗) ≥ S(0)exp(−
∫ t∗

0

(βI(t)+µ) dt) > 0, which leads to a contradiction. Similarly, we can obtain contradic-

tions when,min{S(t∗), E(t∗), I(t∗), T (t∗)}, is equal to other variables of the system. This completes the proof.

This system has a unique DFE P0 = (S∗, E∗, I∗, T ∗) = (
Λ

µ
, 0 , 0, 0) and has a Jacobian matrix of P0 as follows:

J(P0) =



−µ 0 −β Λ
µ 0

0 −(µ+ α) β Λ
µ 0

0 α −(µ+ γ) 0

0 0 γ −µ


−µ, −µ and (µ + α)(µ + γ) − αβ Λ

µ are the eigenvalues of the Jacobin matrix. We define the basic reproduction

number as R0 =
αβΛ

µ(µ+ α)(µ+ γ)
.

Theorem 2.2. DFE P0 is unstable when R0 > 1 and DFE P0 is asymptotically stable when R0 < 1.
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3. Endemic Equilibrium and Backward bifurcation

The endemic equilibrium points of (1) satisfy the following system,

Λ− βS∗I∗ − µS∗ = 0

βS∗I∗ − (µ+ α)E∗ = 0

αE∗ − (µ+ γ)I∗ = 0

γI∗ − µT ∗ = 0

(2)

We have (2) relations

E∗ =
µ+ γ

α
I∗, T ∗ =

γ

µ
I∗, S∗ =

(µ+ α)(µ+ γ)

αβ
=

Λ

µR0
, I∗ =

Λ

βS∗ − µ

β
=

µ

β
(R0 − 1)

In R0 > 1, there is exactly one endemic equilibrium point.

Which yields that, I∗ is the positive root of

F (I∗) = A(I∗)2 +BI∗ + C = 0 (3)

Where

A = −β2
( 1

R0
(µ+ α) + βΛ(µ+ γ)

)
B = β2Λ2 − µ

( 1

R0
(µ+ α) + βΛ(µ+ γ)

)
C = 0

The endemic steady state exists when roots of (3) are positive real numbers. Now since A < 0, we must have B ≥ 0,
∆ > 0. Consider the discriminant,∆ = B2 − 4AC = B2 > 0, solving ∆ = 0, (B = 0) in terms of R0, we obtain:

Rc
0 =

µ(µ+ α)

βΛ
(
βΛ− µ(µ+ γ)

)
Theorem 3.1. If R0 > 1, system (1) has a unique endemic equilibrium point, and when Rc

0 < R0 < 1 it has two
endemic equilibrium points.

Typically in most epidemics, ifR0 < 1 and the initial values of all model compartments are in the area of attraction of
the DFE P0, the disease can be eliminated. Also, in some epidemiological models in the range R0 < 1, there are also
endemic balance points that indicate that R0 < 1 is not enough to eliminate the disease. In such problems, backward
bifurcation occurs. You can refer to [8]. Now, we use the Castillo-Chavez and Song theorem, see [4], to determine the
conditions for the occurrence of backward bifurcation in (1).
Let s = x1, I = x2, E = x3 and T = x4. System (1) transforms to the following system:

dx1

dt
= Λ− βx1x2 − µx1 = f1

dx2

dt
= αx3 − (µ+ γ)x2 = f2

dx3

dt
= βx1x2 − (µ+ α)x3 = f3

dx4

dt
= γx2 − µx4 = f4

(4)



522 Zahra Ebadi & A Model of the Heroin Epidemic / The 4th National Congress on Mathematics and Statistics

Now we apply Castillo-Chavez and Song theorem to show that in (4), backward bifurcation occurs whenR0 = 1. The

relation R0 = 1 can be interpreted in term of β, as β = β∗ =
µ(µ+ α)(µ+ γ)

αΛ
. The eigen values of the Jacobian

matrix,

J(P0, β
∗) =



−µ −β∗ Λ
µ 0 0

0 β∗ Λ
µ −(µ+ α) 0

0 −(µ+ γ) α 0

0 γ 0 −µ


Letv = (v1, v2, v3, v4) , be the left eigenvector of A associated with zero eigenvalue is founded by, vA = 0 , and
turns out to be

v = (0, α, α+ µ, 0)

On the other hand, w = (w1, w2, w3, w4)
T , be the right eigenvector ofA associated with eigenvalue λ4 = 0 , founded

by, Aw = 0. Computation of the solution of this linear system yields: w = (− (µ+ α)(µ+ γ)

αµ
, α, µ+ γ, γ)T .

Now we compute the quantities a and b of Castillo-Chavez and Song theorem , that is,

a =
n∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(P0, β

∗),

=
4∑

i,j=1

αwiwj
∂2f2

∂xi∂xj
(P0, β

∗) +
4∑

i,j=1

(µ+ α)wiwj
∂2f3

∂xi∂xj
(P0, β

∗)

= 2(µ+ α)w1w2 = −2
(µ+ α)2(µ+ γ)

µ
< 0

and

b =
n∑

k,i=1

vkwi
∂2fk
∂xi∂ϕ

(P0, β
∗) =

4∑
i=1

wi
∂2f2
∂xi∂β

(P0, β
∗) +

4∑
i=1

wi
∂2f3
∂xi∂β

(P0, β
∗)

= w1x2 + w2x1 = w2
Λ

µ
=

αΛ

µ
> 0

We observe that b is positive, and a is negative, Using part (4) in the Castillo-Chavez and Song theorem, the back
bifurcation occurs.

4. Global stability of equilibrium points

Theorem 4.1. If R0 < 1, then the system (1) has a unique disease-free equilibrium point, which is globally asymp-
totically stable. If R0 > 1, then the endemic equilibrium is globally asymptotically stable.

Proof. We define the following Lyapunov function for R0 < 1.

V = κ
(
S − S∗ − S∗ ln

S

S∗

)
+

1

µ+ α
E +

1

α
I (5)
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Where κ > 0.

dV

dt
=

∂V

∂S
.
dS

dt
+

∂V

∂E
.
dE

dt
+

∂V

∂I
.
dI

dt
= κ

(
1− S∗

S

)
S′ +

1

µ+ α
E′ +

1

α
I ′

= κ
(
1− S∗

S

)
(Λ− βSI − µS) +

( 1

µ+ α

)
(βSI − (µ+ α)E) +

1

α
(αE − (µ+ γ)I) (6)

= 2κΛ− βκSI − κµS − Λ2κ

µS
+

Λβκ

µ
I +

β

µ+ α
SI − µ+ γ

α
I

By choosing κ =
1

µ+ α
, we have

dV

dt
= −κΛ

( Λ

µS
+

µS

Λ
− 2

)
+

µ+ γ

α
(R0 − 1)I

Assume A =
Λ

µS
> 0, We have A +

1

A
− 2 =

A2 − 2A+ 1

A
=

(A− 1)2

A
> 0. Hence we have V ′ < 0 for all

(S,E, I) ̸= (S∗, 0, 0). So, by Lyapunov’s theorem, the disease-free equilibrium is globally asymptoticlly stable.

We define the following Lyapunov function for R0 > 1.

V = κ1

(
S − S∗ − S∗ ln

S

S∗

)
+ κ2

(
E − E∗ − E∗ ln

E

E∗

)
+ κ3

(
I − I∗ − I∗ ln

I

I∗

)
(7)

Where κ1, κ2, κ3 > 0.

dV

dt
=

∂V

∂S
.
dS

dt
+

∂V

∂E
.
dE

dt
+

∂V

∂I
.
dI

dt

= κ1

(
1− S∗

S

)
S′ + κ2

(
1− E∗

E

)
E′ + κ3

(
1− I∗

I

)
I ′

= κ1

(
1− S∗

S

)
(Λ− βSI − µS) + κ2

(
1− E∗

E

)
(βSI − (µ+ α)E) (8)

+ κ3

(
1− I∗

I

)
(αE − (µ+ γ)I)

By placement Λ = βS∗I∗ + µS∗ and κ1 = κ2 ; κ3 = κ2
µ+α
α , We have

dV

dt
= −κ1

(S − S∗)2

S
+ κ1βS

∗I∗
(
3− S∗

S
− E∗SI

ES∗I∗
− I∗E

IE∗

)
+ (κ1βS

∗ − κ3(µ+ γ))I + (κ3α− κ2(µ+ α))E (9)

by choose κ1 = κ2 = 1, So κ3 =
µ+ α

α

dV

dt
= − (S − S∗)2

S
+ βS∗I∗

(
3− S∗

S
− E∗SI

ES∗I∗
− I∗E

IE∗

)
(10)

supposex1 = S∗

S , x2 = E∗SI
ES∗I∗ , x3 = I∗E

IE∗ , We have x1+x2+x3

3 ≥ 3
√
x1 x2 x3 = 1 in the result 3−S∗

S − E∗SI
ES∗I∗− I∗E

IE∗ ≤
0, So dV

dt ≤ 0

Now we check when dV
dt = 0 is equal to zero, it has two states S∗ ̸= S ,It is obvious. And when S∗ = S in the result

2− E∗I

EI∗
− I∗E

IE∗ = 0 ⇒ 2−A− 1

A
= 0 ⇒ A = 1 ⇒ I = I∗, E = E∗.
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Suppose that in the system (1), there exists a unique endemic equilibrium point. In system (1), the Jacobian matrix at
point (S, E, I, T ) is as follows:

J =
∂f

∂x
=

 −βI − µ 0 −βS 0
βI −(µ+ α) βS 0
0 α −(µ+ γ) 0
0 0 γ −µ

 (11)

The second order complex matrix of J = ∂f
∂x , is in the form ofM = J [2] =

[
Bij

]
6×6

. Its arrays are as follows:
M11 = −βI − 2µ− α, M12 = βS, M14 = −βS, M13 = M15 = M16 = 0,
M21 = α, M22 = −βI − 2µ− γ, M23 = M24 = M25 = M26 = 0,
M32 = γ, M33 = −βI − 2µ, M36 = −βS, M31 = M33 = M35 = 0
M42 = β1I, M44 = −2µ− α− γ, M41 = M43 = M45 = M46 = 0,
M53 = βI, M54 = γ, M55 = −2µ− α, M56 = βS, M51 = M52 = 0
M65 = α, M66 = −2µ− γ, M61 = M62 = M63 = M64 = 0.
Consider the matrix function P = [pij ], where p11 = p22 = p44 = p55 = 1

I , p33 = p66 = 1 and the rest of the arrays

are zero. Therefore this matrix is obtained PfP
−1 = −diag(

I
′

I
,
I

′

I
, 0,

I
′

I
,
I

′

I
, 0), thus, Q = PfP

−1 + PMP−1 =[
Aij

]
6×6

, in which

A11 = −βI − µ− α− αE
I + γ, A12 = βS, A14 = −βS, A13 = A15 = A16 = 0,

A21 = α, A22 = −βI − µ− αE
I , A23 = A24 = A25 = A26 = 0,

A32 = γ, A33 = −βI − 2µ, A36 = −βS, A31 = A33 = A35 = 0
A42 = β1I, A44 = −µ− α− αE

I , A41 = A43 = A45 = A46 = 0,

A53 = βI, A54 = γ, A55 = −µ− α− αE
I + γ, A56 = βS, A51 = A52 = 0

A65 = α, A66 = −2µ− γ, A61 = A62 = A63 = A64 = 0.
Now, using the norm introduced in [7],

Lemma 4.2. There is a constant χ > 0, for which D+ ∥ z ∥≤ −χ ∥ z ∥ for all z ∈ R6 and all S, E, I, T , where z
is the solution of dz

dt = Q(ϕt(l))z , provided that 0 < β − γ < −(µ+ α)

Theorem 4.3. Suppose the inequalities in Lemma 4.2 holds, then:
(1) when the only equilibrium point is the drug-free equilibrium P0, then all solutions tend to P0;
(2) when R0 > 1, then all solutions of (1) tends to the unique endemic equilibrium point;
(3) when there are two endemic equilibrium points, which occurs when Rc

0 < R0 < 1, solutions of the system either
tend to the drug-free equilibrium P0 or tend to the upper equilibrium point.

5. Numerical Simulation

In this section, we will simulate the system using MATLAB software, so that the obtained analytical results can be
seen numerically. We present two cases.
Case 1. µ(µ+α)

βΛ

(
βΛ−µ(µ+γ)

) < R0 < 1.

We choose Λ = 1000, µ = 10−1, α = 10−1,β = 10−5, γ = 3 × 10−1. In this case, R0 ≃ 0.125 and
µ(µ+α)

βΛ

(
βΛ−µ(µ+γ)

) ≃ −2.08. See figure 1. Case 2. R0 > 1, 0 < β − γ < −(µ+ α) . See figure 2.
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(a) (b) (c)

Fig. 1. (a) shows the plot of the solution of system. (b) shows the sensitivity of I(t) with respect to β respectively. (c) shows the convergence of
the I(t), (infectious compartment) of five solution curve of the system to the DFE.

Fig. 2. shows the plot of the solution of system.

6. Conclusion

In this article, we have added two compartments to the model of White and Comiskey heroin epidemics for hard drug
users and light drug users. We scrutinized the existence and local stability, and global stability of the model. We have
shown that DFE is stable locally and globally in suitable conditions. We obtained sufficient conditions for the local
stability and global stability of endemic equilibrium points using compound matrices. We also proved the occurrence
of backward bifurcation. Backward bifurcation indicates that the presence of R0 < 1 is not sufficient to control the
epidemic.
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Abstract

In this work, we consider a conformable fractional Sturm-Liouville equationwith spectral bound-
ary conditions which includes conformable fractional derivatives. We prove the uniqueness the-
orem for the inverse problem of the conformable fractional Sturm-Liouville equation from the
Weyl function.

1. Introduction

Inverse problems for Sturm-Liouville equations are widely used in various models of quantum and classical mechanics
to express physical phenomena and natural sciences [5]. The conformable derivative has been employed in various
fields such as the control theory of dynamical systems and other areas, and for this reason, the research has increased
in this field in the recent years (see [2] ).
The inverse problem for fractional Sturm-Liouville equations is a topic that we can work on it. In this paper, we
investigate the inverse spectral problem for the fractional Sturm-Liouville equation which includes the conformable
derivative of order α ∈ (0, 1]. By the spectral mappings method, we study the inverse spectral problem for the
conformable fractional Sturm-Liouville equation.
We remark that some definitions and properties of the conformable fractional calculus can be found in [6, 7].

2. Preliminaries and main results

Let us consider the conformable fractional Sturm-Liouville equation

−Dα
xD

α
xy + q(x)y = λy, x ∈ (0, π), (1)

∗Talker
Email address: y.khalili@sanru.ac.ir (Yasser Khalili)
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with the spectral boundary conditions

U(y) := Dα
xy(0)− (h1ρ+ h0)y(0) = 0, (2)

V (y) := Dα
xy(π) = 0. (3)

Here Dα
x is the conformable fractional derivative of order α ∈ (0, 1]. The coefficients h0, h1 are complex numbers

and λ = ρ2 is a spectral parameter. The complex-valued function q(x) is continuous on [0, π]. The boundary value
problem (1)-(3) is denoted by Lα = Lα(q(x), h0, h1).
Let φ(x, ρ) be the solution of Eq. (1) under the initial conditions

φ(0, ρ) = 1, Dα
xφ(0, ρ) = h1ρ+ h0.

For each fixed x, this function and its derivative with respect to x are entire in ρ. From [1], we have the following
asymptotic formulae for sufficiently large |ρ| and x ∈ [0, π],

φ(x, ρ) =
√
1 + h21 cos

( ρ
α
xα − σ1

)
+O

(
1

ρ
exp

(
|ℑρ|
α

xα
))

, (4)

Dα
xφ(x, ρ) = −ρ

√
1 + h21 sin

( ρ
α
xα − σ1

)
+O

(
exp

(
|ℑρ|
α

xα
))

, (5)

where σ1 = 1
2i ln

i−h1

i+h1
.

Consider the characteristic function of Lα as

∆α(ρ) = Dα
xφ(π),

which is the entire function in ρ. Therefore by using (4) and (5), we can give for sufficiently large |ρ|,

∆α(ρ) = ρ
√
1 + h21 sin

( ρ
α
πα − σ1

)
+O

(
exp

(
|ℑρ|
α

πα

))
. (6)

Assume that δ > 0 be fixed and Cδ > 0 be a constant. Put Gδ := {ρ; | ρ− ρn |≥ δ, ∀n}. Taking (6) and the known
technique [3], one gets

|∆α(ρ)| ≥ Cδ|ρ| exp
(
|ℑρ|
α

πα

)
, ρ ∈ Gδ. (7)

By the Rouche’s theorem [4] and the known technique [3], one can give that the roots of the characteristic function
∆α(ρ) have the asymptotics

ρn =
α

πα
(nπ + σ1) + o (1) ,

for large enough n.
Let ψ(x, ρ) and S(x, ρ) be the solution of Eq. (1) under the initial conditions

ψ(π, ρ) = 1, Dα
xψ(π, ρ) = 0,

S(0, ρ) = 0, Dα
xS(0, ρ) = 1.

Define the meromorphic function

ϕ(x, ρ) = −ψ(x, ρ)
∆α(ρ)

, (8)

which is called the Weyl solution of the boundary value problem Lα. Also considering the initial conditions at x = 0,
we can give

ϕ(x, ρ) = S(x, ρ) +M(ρ)φ(x, ρ), (9)

in which
M(ρ) := ϕ(0, ρ),
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and is called the Weyl function of the boundary value problem Lα.
Problem Given the Weyl functionM(ρ), construct the coefficients of the boundary value problem Lα.

To show the uniqueness theorem in this section, alongside Lα = Lα(q, h1, h0), a boundary value problem L̃α =

Lα(q̃, , h̃1, h̃0) of the similar form (1)-(3) is considered. We suppose that if α signifies an object relevant to L, then α̃
will signify the similar object relevant to L̃.

Theorem 2.1. LetM(ρ) = M̃(ρ). Then q(x) = q̃(x), a.e. on (0, π) and h0 = h̃0, h1 = h̃1.

Proof. Let us consider the matrix P (x, ρ) = (Pj,k(x, ρ))j,k=1,2 and then

φ(x, ρ) = P11(x, ρ)φ̃(x, ρ) + P12(x, ρ)D
α
x φ̃(x, ρ), (10)

ϕ(x, ρ) = P11(x, ρ)ϕ̃(x, ρ) + P12(x, ρ)D
α
x ϕ̃(x, ρ). (11)

Since the Wronskian of the functions φ(x, ρ) and ϕ(x, ρ) is one, we have

P11(x, ρ) = φ(x, ρ)Dα
x ϕ̃(x, ρ)− ϕ(x, ρ)Dα

x φ̃(x, ρ), (12)

P12(x, ρ) = ϕ(x, ρ)φ̃(x, ρ)− φ(x, ρ)ϕ̃(x, ρ). (13)

Taking (9) and the hypothesis of the theorem, we result that P1k(x, ρ), k = 1, 2 are entire in ρ for each fixed x. Also
by using (12) and the property of the Wronskian for φ(x, ρ) and ϕ(x, ρ), we will have

P11(x, ρ)− 1 = (φ(x, ρ)− φ̃(x, ρ))Dα
x ϕ̃(x, ρ)− (ϕ(x, ρ)− ϕ̃(x, ρ))Dα

x φ̃(x, ρ). (14)

Denote G0
δ = Gδ ∩ G̃δ. By taking (7), (8), (13) and (14), we get as sufficiently large ρ ∈ G0

δ ,

|P11(x, ρ)− 1| ≤ Cδ|ρ|−1, |P12(x, ρ)| ≤ Cδ|ρ|−1.

Therefore P11(x, ρ) = 1 and P12(x, ρ) = 0. Now together with (10) and (11), this yields φ(x, ρ) = φ̃(x, ρ) and
ϕ(x, ρ) = ϕ̃(x, ρ) for all x, ρ. Thus q(x) = q̃(x) a.e. on (0, π) and h0 = h̃0, h1 = h̃1. The proof is completed. □
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Abstract

In this paper, we use the fractional Laplace transform to solving a class of ordinary differential
equations (ODEs) as well as conformable fractional differential equations (CFDEs). We ap-
plying the fractional Laplace transform to convert some of (ODEs) of second-order, as well as
conformable fractional differential equations into linear differential equation of first-order. This
is done by using of the fractional Laplace transform of (α+ β) order.

1. Introduction

Fractional calculus has garnered significant attention from researchers in the past and present centuries. However,
in recent decades, there has been substantial progress in both the theory and application of fractional calculus and
fractional differential equations, thanks to their potential for powerful applications. One particular area that requires
further investigation is the conformable fractional derivative. In our study, we explored the fractional Laplace trans-
form, which is compatible with this type of fractional derivative. Unlike traditional fractional calculus, the conformable
fractional derivative exhibits favorable behavior in the product rule and chain rule, with less complicated formulas.
We present new findings that are valuable in the theory of conformable fractional differential equations. Additionally,
we have developed the fractional Laplace transform method as a robust approach for obtaining exact solutions to dif-
ferential equations, specifically conformable time fractional differential equations. By utilizing the fractional Laplace
transform, we can convert certain ordinary differential equations and conformable fractional differential equations into
first-order ordinary differential equations.

1.1. Basic definitions of fractional derivative and fractional Laplace transform
While fractional derivatives have gained popularity in recent years, their origins can be traced back to the late 17th
century. Over time, various definitions for fractional derivatives have been proposed. One notable definition is the
conformable fractional derivative, which was initially introduced by Khalil et al. [2]. Subsequently, Abdeljawad [1]
extended the concept by presenting fractional versions of the chain rule, exponential functions, Gronwall’s inequal-
ity, Taylor power series expansions, and the fractional Laplace transform specifically designed for the conformable
derivative. In their work [2], Khalil et al. introduced a novel type of fractional derivatives, outlined as follows:

Definition 1.1. The left conformable fractional derivative of order 0 < α ≤ 1 starting from a ∈ R of function
u : [a,+∞) → R, is defined by

(tT
a
αu)(t) = lim

ϵ→0

u
(
t+ ϵ(t− a)1−α

)
− u(t)

ϵ
. (1)
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When a = 0, we have:

(tT
0
αu)(t) = tTαu(t) = lim

ϵ→0

u
(
t+ ϵt1−α

)
− u(t)

ϵ
.

If (T a
αu)(t) exists on (a,+∞), then (T a

αu)(a) = limt→a+(T a
αu)(t). If (T a

αu)(t0) exists and is finite, then we say that
u is left α−differentiable at t0.
The right conformable fractional derivative of order 0 < α ≤ 1 terminating at b ∈ R of function
u : (−∞, b] → R, is defined by

(bTαu)(t) = − lim
ϵ→0

u
(
t+ ϵ(b− t)1−α

)
− u(t)

ϵ
. (2)

If (bTαu)(t) exists on (−∞, b), then (bTαu)(a) = limt→b−(
bTαu)(t). If (bTαu)(t0) exists and is finite, then we say

that u is right α−differentiable at t0.

Definition 1.2. The conformable fractional Laplace transform (CFLT) of function u : [0,∞) → R for t > 0, of order
0 < α ≤ 1, starting from a of u is defined by

La
α{u(t)} =

∫ ∞

a

e−s
(t−a)α

α u(t)(t− a)α−1dt = Ua
α(s). (3)

If a=0, we have

L0
α{u(t)} =

∫ ∞

0

e−s tα

α u(t)tα−1dt = U0
α(s) = Uα(s). (4)

In particular, if α = 1, then Eq. (4) is reduced to the definition of the Laplace transform

L {u(t)} =

∫ ∞

0

e−stu(t)dt = U(s). (5)

Theorem 1.3. Let 0 < α ≤ 1, and f, g be left(right) α−differentiable functions. Then,(T a
αf) (t) = (t− a)1−αf ′(t),(

bTαf
)
(t) = −(b− t)1−αf ′(t), where f ′(t) = limϵ→0

(
f(t+ϵ)−f(t)

ϵ

)
.

Theorem 1.4. Let u : [a,∞) → R be differentiable real valued function and 0 < α ≤ 1. Then

La
α {tT a

α(u)(t)} = sUa
α(s)− u(a). (6)

Proof. See [1].

Theorem 1.5. Let u is piecewise continuous on [0,∞) and La
α{u(t)} = Ua

α(s), then

L0
α {tnαu(t)} = (−1)nαn dn

dsn
[
U0
α(s)

]
, n ∈ N. (7)

Proof. See [4].

Theorem 1.6. [3]. Let u : [a,∞) → R be twice differentiable on (a,∞), α, β > 0 and α+ β ≤ 1, then

tTβ [tTαu(t)] = (1− α)t
1−(α+β)

u′(t) + t2−(α+β)u′′(t). (8)

Theorem 1.7. [3]. Let u : [a,∞) → R be twice differentiable on (a,∞), α, β > 0 and α+ β ≤ 1, then

1)

∫ ∞

0

e−s tα+β

α+β

(
tu′′(t)

)
dt = u(0) + s

∫ ∞

0

tα+βu′(t)e−s tα+β

α+β dt− sU(α+β)(s).

2)

∫ ∞

0

(
1−α+stα+β

)
u′(t)e−s tα+β

α+β dt = (α−1)u(0)−(α+β)sU(α+β)(s)+(1−α)sU(α+β)(s)−(α+β)s2U ′
(α+β)(s).
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Theorem 1.8. [3]. Let u : [a,∞) → R be twice differentiable on (a,∞), α, β > 0 and α+ β ≤ 1, then

1) L0
(α+β)

{
tTβ

(
tTαu(t)

)}
= αu(0)− (2α+ β)sU(α+β)(s)− (α+ β)s2U

′

(α+β)(s).

2) L0
(α+β)

{
tTβ

(
tTαu(t)

)
+ tTα

(
tTβu(t)

)}
= (α+ β)u(0)− (3α+ 3β)sU(α+β)(s)− (2α+ 2β)s2U

′

(α+β)(s).

Theorem 1.9. [3]. Let s, α, β > 0 be and α+ β ≤ 1, then we have

1) L0
α+β

{
t−β

(
tTαu(t)

)}
= −u(0) + sU(α+β)(s).

2)L0
α+β

{
tα
(

tTαu(t)
)}

= L0
α+β

{
tu

′
(t)

}
= L0

α+β

{
tα+β

(
tTα+βu(t)

)}
= −(α+β)U(α+β)(s)−(α+β)sU ′

(α+β)(s).

Theorem 1.10. Let s, α > 0, be and α ≤ 1 such that L0
α{g(t)} = Gα(s), then

L0
α

{
tTαg(t) + t2−αg

′′
(t)

}
= −αsGα(s)− αs2G

′

α(s). (9)

Proof. From Eq. (7), we have

L0
α

{
f(t) +

t

α
f

′
(t)

}
= L0

α {f(t)}+ 1

α
L0
α

{
tα
(

tTαf(t)
)}

= Fα(s) +
1

α
(−α)

(
sFα(s)− f(0)

)′

= −sF
′

α(s).

Now, by substituting f(t) = tTαg(t) and using Theorem 1.4, we can write

L0
α

{
tTαg(t) +

t

α

(
tTαg(t)

)′}
= −s

(
sGα(s)− g(0)

)′

= −sGα(s)− s2G
′

α(s).

Since, tTαg(t) +
t
α

(
tTαg(t)

)′

= 1
α t

1−αg
′
(t) + 1

α t
2−αg

′′
(t), we obtain

L0
α

{
tTαg(t) + t2−αg

′′
(t)

}
= L0

α

{
t1−αg

′
(t) + t2−αg

′′
(t)

}
= −αsGα(s)− αs2G

′

α(s).

Therefore, if α, β > 0 be and α+ β ≤ 1, we have

L0
α+β

{(
tT(α+β)u(t)

)
+ t2−(α+β)u

′′
(t)

}
= L0

α+β

{
t1−(α+β)u

′
(t) + t2−(α+β)u

′′
(t)

}
= −(α+ β)sU(α+β)(s)− (α+ β)s2U

′

(α+β)(s).

2. applications

Proposition 2.1. Suppose that u(t) be twice differentiable on (0,∞) and α, β > 0 be such that α+ β ≤ 1. Then, the
following CFDE

tTβ

(
tTαu(t)

)
+
(

tTα+βu(t)
)
+ t2−(α+β)u

′′
(t) = q(t), (10)

is given by

u(t) =
(
L0
α+β

)−1
{( 1

s
3α+2β
2α+2β

)(∫
αu(0)−Qα+β(s)

2(α+ β)s
α+2β
2α+2β

ds+ C
)}

.
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Proof. Applying L0
α+β to the both sides of equation (10) and using Theorems 1.8 and 1.10, we have

αu(0)− (2α+ β)sU(α+β)(s)− s2(α+ β)U ′
(α+β)(s)− (α+ β)sU(α+β)(s)− (α+ β)s2U

′

(α+β)(s) = Q(α+β)(s).

Above differential equation can be written as

2(α+ β)s2U
′

(α+β)(s) + (3α+ 2β)sU(α+β)(s) = αu(0)−Q(α+β)(s).

So, we can write

U
′

(α+β)(s) +
( α

(2α+ 2β)s
+

1

s

)
U(α+β)(s) =

αu(0)−Q(α+β)(s)

(2α+ 2β)s2
.

By solving the above ODE of first order, we obtain

Uα+β(s) =
(
e−

∫
( α
(2α+2β)s

+ 1
s )ds

)(∫
αu(0)−Qα+β(s)

(2α+ 2β)s2
e
∫
( α
(2α+2β)s

+ 1
s )dsds+ C

)
=

1

s
3α+2β
2α+2β

(∫
αu(0)−Qα+β(s)

2(α+ β)s
α+2β
2α+2β

ds+ C
)
.

Thus, solution u(t) results from the CF inverse transform.

In particular, when α = β = 1
2 , and u(0)=1, the solution to the following CFDE

tT 1
2

(
tT 1

2
u(t)

)
+ tT 1

2+
1
2
u(t) + t2−( 1

2+
1
2 )u

′′
(t) = (

3

2
+ 2t)et,

is given by

u(t) = L−1

{
1

s1+
1
4

( s
5
4

s− 1
+ C

)}
= L−1

{
1

s− 1

}
+CL−1

{
1

s1+
1
4

}
= et +C

(2√2Γ( 34 )t
1
4

π

)
.

Proposition 2.2. If α, β > 0, be such that α+ β ≤ 1, a, b, m, n∈ R and a ̸= 0, then the following ODE of second
order,

at2−(α+β)u
′′
(t) + bt1−(α+β)u

′
(t) +mu(t) = nq(t), (11)

is given by

u(t) =
(
L0
α+β

)−1
{( e

−m
a(α+β)s

s1−
b−a

a(α+β)

)(∫
(a− b)u(0)− nQα+β(s)

a(α+ β)s1+
b−a

a(α+β)

e
m

a(α+β)s ds+ C
)}

.

Proof. Applying the CF Laplace transform (L0
α+β) to the both sides of equation (11) and using Theorem ??, we have

a
{(

−1− (α+β)
)
sUα+β(s)+u(0)− (α+β)s2U

′

α+β(s)
}
+ b

{
−u(0)+ sUα+β(s)

}
+mUα+β(s) = nQα+β(s).

Therefore we can write

U
′

α+β(s) +
(a(α+ β)s− bs+ as−m

a(α+ β)s2

)
Uα+β(s) =

(a− b)u(0)− nQα+β(s)

a(α+ β)s2
.

By solving the above ODE of first order, we obtain

Uα+β(s) =
( e

−m
a(α+β)s

s1−
b−a

a(α+β)

)(∫
(a− b)u(0)− nQα+β(s)

a(α+ β)s1+
b−a

a(α+β)

e
m

a(α+β)s ds+ C
)
.

Thus, solution u(t) results from the CF inverse transform.
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In particular by substituting α = β = 1
2 in equation (11), the following ODE of second order,

atu′′(t) + bu′(t) +mu(t) = nq(t),

is given by

u(t) = L−1

( e
−m

a( 1
2
+ 1

2
)s

s
1− b−a

a( 1
2
+ 1

2
)

)(∫ (a− b)u(0)− nQ 1
2+

1
2
(s)

a( 12 + 1
2 )s

1+ b−a

a( 1
2
+ 1

2
)

e
m

a( 1
2
+ 1

2
)s ds+ C

)
= L−1

{
e

−m
as

s2−
b
a

(∫
(a− b)u(0)− nQ(s)

as
b
a

e
m
as ds+ C

)}
.

For example, if a=b=m=n=1, then the following differential equation

tu′′(t) + u′(t) + u(t) = te−t,

is given by

u(t) = L−1
{e

−1
s

s

(∫
− 1

(s+ 1)2s
e

1
s ds+ C

)}
= L−1

{e
−1
s

s

( se
1
s

s+ 1
+ C

)}
= L−1

{ 1

s+ 1

}
+ L−1

{
C
e

−1
s

s

}
= e−t + CBesselJ

(
0, 2

√
t
)
.
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Abstract

In this paper, we discuss on the new generalized fractional operator, and we will discuss some of
its properties. The introduced method is the generalization of conformable fractional derivatives
which was previously introduced by Kalil et al. and Katugampola. This operator similarly
conformable derivative satisfies properties such as the sum, product/quotient, and chain rule

1. Introduction and Preliminaries

The creation of the concept of fractional calculus was formed by L’Hopital in a letter to Leibniz in 1695. The interest
in fractional differential equations grew rapidly, and various types of definitions were introduced. One thing that all
these have in common, is that they are consist of integral with different singular kernels. The most popular of them,
we can mention to Grünwald-Letnikov, Riemann-Liouville, Caputo and Riesz, etc. Although fractional operators are
linear, Unfortunately, this class of fractional derivatives is unsatisfying in some properties, such as product rule, quo-
tient rule, chain rule and compositions rule. In 2014, Kalil et al.[1] and Also Katugampola, [2] by modifying the limit
definition on the classic derivative, introduced a simple and local type of fractional derivative called conformable
fractional derivative. These new definitions are complies with the computational relationship of the first derivative.
Recently Mingarelli et al. [3] introduced the so-called ”Generalized Conformable Fractional Derivative”(GCFD) as a
unifying framework for conformable fractional methods. M.Jafari and et al. [4] have discussed GCFD for the 4-order
fractional Sturm Liouville problem.
Here, we recall some definitions, notations and properties of fractional calculus theory used in this work.

Definition 1.1. (Ref [1]) The conformable fractional derivative of a function f : [0,∞] → R is defined as:

Dαf(t) = lim
h→0

f(t+ ht1−α)− f(t)

h
, t > 0, (1)

where 0 < α ≤ 1. Also Katugampola present the following definition [2].
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Definition 1.2. Let f : [0,∞] → R. Then the fractional derivative of f of order 0 < α ≤ 1 is defined by,

Dαf(t) = lim
h→0

f(teht
−α

)− f(t)

h
, t > 0. (2)

In both definitions, if (Dαf)(t) exists on (0,∞), then Dαf(0) = limt→0+ Dαf(t).

2. Generalized Fractional Derivative

Mingarelli [3] extended the mentioned definition of compatible derivative and proposed it in a form .

Definition 2.1. For a given function f : I ⊆ R → R, defined on the range of an appropriate real valued function
p : Uδ → R where Uδ = {t, h) : t ∈ I = (a, b), |h| < δ}, by means of the limit

Dα
p f(t) = lim

h→0

f(p(t, h, α))− f(t)

h
, (3)

whenever the limit exists and is finite, be called the (α− p)-derivative of f at t or f is (α− p)-differentiable at t.

The function p must be satisfies in the following conditions.
H1+ for t ∈ I and for all sufficiently small ε > 0, the equation p(t, h) = t+ ε has a solution h = h(t, ε). In addition,
h → 0 as ε → 0.
H1− for t ∈ I and for all sufficiently small ε > 0, the equation p(t, h) = t− ε has a solution h = h(t, ε). In addition,
h → 0 as ε → 0.
H2

1
ph(.,0)

∈ L(I) ={f: f is Lebesgue integrable function}.
Under the above conditions, if f, g are (α− p) - differential at t ∈ I , then
(i) ( The Sum Rule)

Dα
p

(
f + g

)
(t) = Dα

p f(t) +Dα
p g(t).

(ii) (The Product Rule)
Dα

p

(
f.g

)
(t) = g(t).Dα

p f(t) + f(t).Dα
p g(t).

(iii) (The Quotient Rule)

Dα
p

(f
g

)
(t) =

g(t).Dα
p f(t)− f(t).Dα

p g(t)

g2(t)
.

(iv) ( The Chain Rule)
Dα

p

(
f ◦ g

)
(t) = g′

(
f(t)

)
Dα

p f(t).

(v)(The relationship between differentiability and (α− p)-differentiability) For ∂p(t,0,α)
∂h = ph(t, 0, α) ̸= 0 we have

Dα
p f(t) = ph(t, 0, α)f

′(t), (4)

that 0 < α < 1. For more details, the reader can refer to [3].

Example 2.2.

a) Dα
p (

∫ t

a

ds

ph(s, 0, α)
) = 1,

b) Dα
p (

∫ t

a

ds

ph(s, 0, α)
)n = n(

∫ t

a

ds

ph(s, 0, α)
)n−1,

c) Dα
p (e

c
∫ t
a

ds
ph(s,0,α) ) = ce

c
∫ t
a

ds
ph(s,0,α) ,

d) Dα
p sin(

∫ t

a

ds

ph(s, 0, α)
) = a cos(

∫ t

a

ds

ph(s, 0, α)
),

e) Dα
p cos(

∫ t

a

ds

ph(s, 0, α)
) = −a sin(

∫ t

a

ds

ph(s, 0, α)
).
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The Wroneskian and Abel’s Formula

Here we discuss about the fractional Wroneskian of two functions.

For two functions y1 and y2, satisfying Dα
p

(
Dα

p y
)
+ p(x)Dα

p y + q(x)y = 0 we set

Wα
p (y1, y2) =

∣∣∣∣ y1 y2
Dα

p y1 Dα
p y2

∣∣∣∣
thus

Wα
P (y1, y2) = y1D

α
p y2 − y2D

α
p y1 = y1y2ph(t, 0, α)− y2y1ph(t, 0, α)

= ph(t, 0, α)(y1y
′
2 − y2y

′
1) = phW (y1, y2).

Generalized Fractional Laplace and Integrals

Definition 2.3. In this section we start with the definition of (α, p) - fractional integral of f in the following sense.

Iαp (f(t)) =

∫ t

a

f(s)dα(s) =

∫ t

a

f(s)

ph(s, 0, α)
ds.

In the sequel we state some theorems that their proofs are routine and we leave for the reader.
If f is a continuous function in the domain of Iαp , then we have
(1)

Dα
p
(
Iαp (f(t))

)
= f(t),

(2)
Iαp D

α
p (f(t)) = f(t)− f(a).

Also we have ∫ b

a

f(t)Dα
p (g(t))dα(t) = f(t)g(t)|ba −

∫ b

a

g(t)Dα
p (f(t))dα(t).

The following definition gives us the adapted Laplace transform to the (α, p)− fractional derivative.

Definition 2.4. The fractional Laplace transform is defined by

Lα
p (f(t)) =

∫ ∞

0

e
−s

∫ t
0

d
ph(s,0,α)

ph(t, 0, α)
f(t)dt = Fα

p (s).

Theorem 2.5. If f(t) is (α, p)-differentiable and
∫ t

0
ds

ps(s,0,α)
> 0 then we have

Lα
p
(
Dα

p (f(t))
)
= sFα

p (s)− f(0).

Lα
p
(
Dα

p
(
Dα

p f(t)
))

= s2Fα
p (s)− sf(0)− ph(0, 0, α)f

′(0).

Proof. We prove the first part by the definition (2.4) and item (v), proof of the second part is similar,so we have

Lα
p
(
Dα

p (f(t))
)
=

∫ ∞

0

e
−Ω

∫ 1
0

d
ph(t,0,α)

ph(t, 0, α)
ph(t, 0, α)f

′(t)dt,

now by means of integration by parts
= sFα

p (s)− f(0).
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.
If f(t) is (α, p)-differentiable, the following relations are immediately concluded.

1) Lα
p

(
Iαp (f(t))

)
=

Fα
p (s)

s
,

2) Lα
p

(
e
a
∫ ε
0

d
pk(t,0,a) f(t)

)
= Fα

p (s− a),

3) Lα
p

(∫ t

0

ds

ph(s, 0, α)
f(t)

)
= − d

ds
Fα
p (s).

Example 2.6. We have the following formulae (By using u =
∫ t

0
ds

pt(s,0,α) for the proof) then
(a)

Lα
p (1) =

∫ ∞

0

e
−s

∫ z
0

du
pb(π,v,α)

Ph(t, 0, α)
dt =

∫ ∞

0

e−sudu =
1

s
.

(b)

L α
p

(
e
a
∫ ε
0

dA
DB(x,0)

)
=

∫ ∞

0

e−(s−a)udu =
1

8− a
.

(c)

Lα
p

(
sin a

∫ t

0

ds

pn(s, 0, α)

)
=

∫ ∞

0

e−su sin audu =
a

s2 + a2
.

(d)

Lα
p

(
cos a

∫ e

0

ds

ph(s, 0, α)

)
=

∫ ∞

0

e−su cos audu =
s

s2 + a2
.

(e)

Lα
p

(
e
a
∫ a
0

d,
ph(s,u,α) cos b

∫ t

0

ds

ph(8, 0, α)

)
=

∫ ∞

0

e−(s−a)u cos budu =
8− a

(8− a)2 + b2
.

Example 2.7. Consider the fractional initial value problem

Dα
p y(t) = λy(t), y(0) = C.

Apply the Laplace transform and item (b) to the above equation to obtain

Y α
p (s) =

C

s− λ
,

and hence, y(t) = Ce
λ
∫ t
0

dt
pk(t,0,a) . We also can solve the equation by another method, indeed by above property (iv)

we have
Dα

p y(t) = ph(t, 0, α)y
′(t) = λy(t).

Then
y′(t)

y(t)
=

λ

ph(t, 0, α)
,

by integration both sides
y = Ce

λ
∫ t
0

dt
ph(t,0,α) .

Remark 2.8. It is important to note that if we take p such that ph(t, 0, α) = t1−α, 0 < α < 1 then t results of all
above examples are agreement with [1, 2].
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Example 2.9. Consider the fractional initial value problem

−Dα
p

(
Dα

p y(t)
)
= λy(t), y(0) = c, y′(0) = d.

Apply the Laplace transform to the above equation to obtain

−s2Y α
P (s) + sy(0) + ph(0, 0, α)y

′(0) = λY α
P (s),

and hence,
Y a
p (s) =

As+B

s2 + λ
.

Now by item (c) and (d) we have

y(t) = A sin
(√

λ

∫ t

a

1

ph(s, 0)
ds

)
+B cos

(√
λ

∫ t

a

1

ph(s, 0)
ds

)
.

where A,B are constants and we fix the determination of the square root if λ < 0.
Remark 2.10. Indeed, in [3] under H2 the general solution of −Dα

p

(
Dα

p y(t)
)
= λy(t) for λ ̸= 0 is obtained by

Carathéodory solutions.
Example 2.11. Consider the fractional initial value problem

Dσ
p

(
Dα

p y(t)
)
= 0, y(0) = c, y′(0) = d.

Apply the Iβp to the above equation, we obtain

Iβp
(
Dβ

p
(
Dα

p y(t)
))

= 0,

and hence,
Iαp

(
Dα

p y(t)
)
= Iαp (A).

Now
y(t)− y(0) =

∫ t

0

A

ph(t, 0, α)
dt

then
y(t) = A

∫ t

0

1

ph(t, 0, α)
dt+B

Remark 2.12. The reader notice that if we take p such that pn(t, 0, α) = t1−α, 0 < α < 1 then the solution of the
equation

Dσ
p

(
Da

p y(t)
)
= 0, y(0) = c, y′(0) = d,

is y(t) = A tα

α +B.
Example 2.13. Consider the fractional initial value problem

Dβ
p
(
Dα

p y(t)
)
= λy(t), y(0) = c, y′(0) = d.

Applying the property (v) to the above equation we obtain

ph(t, 0, α) (ph(t, 0, β)y
′(t))

′
= λy(t).

and hence,

(pn(t, 0, β)y
′(t))

′
=

λy(t)

ph(t, 0, α)
.
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Abstract

This study explores the effectiveness of different optimization functions for approximating the
solution of Burger’s–Fisher equation with initial and boundary conditions based on neural net-
works. It compares and analyzes the performance of nine common optimization functions, em-
phasizing computational accuracy. Extensive experiments show that the choice of appropriate
optimization function significantly influences the performance of neural network-based solvers
for approximating the solution of Burger’s–Fisher equation with initial and boundary conditions.
The findings provide valuable insights and practical recommendations for researchers applying
neural networks to solve Berger’s equation in fields such as fluid dynamics and heat transfer.

1. Introduction

Neural networks are a type of machine learning algorithm that are inspired by the structure and function of the human
brain. They are used to learn patterns in data and make predictions based on those patterns. In addition to numerical
methods, neural networks can be used to approximate the solutions of equations, they differ in their approach. Numer-
ical methods rely on mathematical models to approximate solutions, while neural networks learn the solution directly
from data.
Neural networks have been used for solving differential equations for recent decades. One of the key papers in this
area is the 1998 work of Lagaris et al. [7], in which they presented a technique for solving differential equations with
neural networks.
Nonlinear partial differential equations are significant in the realms of physical science and engineering. One of the key
advantages of using neural networks for solving differential equations is their ability to handle complex and non-linear
systems, which are often challenging for traditional numerical methods. Additionally, neural networks can learn from
data and adapt to new situations, making them particularly well-suited for solving differential equations in real-world
applications.
The Burger equation is a highly nonlinear equation that combines convection, diffusion, and reaction mechanisms.
Here we review several notable research efforts focused on employing neural networks to solve the Burger equation.
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Wen and Chaolu [16] introduced a neural network approach based on Lie series within Lie groups of differential
equations for solving Burgers–Huxley equations, incorporating initial or boundary value terms in the loss functions.
Cheng and Zhang [2] proposed a method that integrates the Physical Informed Neural Network (PINN) with Resnet
blocks to address the Navier-Stokes and Burger’s equations, incorporating these equations into the loss function of
the deep neural network to guide the model. Additionally, the loss function accounts for the inclusion of initial and
boundary conditions. Ye et al. [17] presented the modified PINN method for time-fractional Burger’s-type equations,
introducing locally adaptive activation functions and two effective weighting strategies to enhance solution accuracy.
Lu et al. [10] introduced a residual-based adaptive refinement method to improve the training efficiency of PINNs
for approximating solutions of differential equations, including the Burger’s equation. This paper emphasizes the
significance of optimizer function selection in improving the approximation of Burger’s–Fisher equation with initial
and boundary conditions.
Adaptive gradient methods play a pivotal role in deep learning. Despite stochastic gradient descent (SGD) being a
long-standing favorite, it grapples with challenges related to ill-conditioning and the time needed to train deep neural
networks with large datasets. Consequently, more sophisticated algorithms have emerged to address the limitations
of SGD. Currently, optimization algorithms for deep learning dynamically adapt their learning rates during training.
Adaptive gradient methods essentially fine-tune the learning rate for each parameter, reducing it when gradients of
specific parameters are large, and vice versa. Several adaptive methods have been introduced recently, emerging as
predominant alternatives to SGD.
In this paper, the authors compare various optimization functions, including SGD [14], Rprop, RMSprop [13], RAdam
[8], AdaGrad, Nadam [3], Adam [6], AdamW [9], and Adamax [6], for training neural networks to approximate the
solution of the Burger’s–Fisher equation with initial and boundary conditions. They evaluate the performance of these
optimizers in terms of accuracy.
The paper’s structure is as follows: Section 2 introduces the Burger’s-Fisher equation with initial and boundary condi-
tions. Section 3 describes the neural network used to approximate the solution of the Burger’s-Fisher equation. Section
4 is dedicated to comparing the performance of different optimizer functions. Finally, the conclusion is presented.

2. Description of Burger’s–Fisher equation

The generalized Burger’s–Fisher equation has been applied in various fields including gas dynamics, number theory,
heat conduction, and elasticity [18]. The generalized Burger’s–Fisher equation is as follows.

ut = αuδux − uxx = βu(1− uδ), a ⩽ x ⩽ b, t ≥ 0 (1)

By assuming appropriate initial and boundary conditions, the exact solution is

u(x, t) = (
1

2
+

1

2
tanh(θ1(x− θ2)))

δ (2)

where,

θ1 =
−αδ

2(1 + δ)
, θ2 =

α

1 + δ
+

β(1 + δ)

α

To test the accuracy of the approximate solution obtained by the neural network, the initial and boundary conditions
are determined by the exact solution. Numerous researchers have investigated this equation to approximate its solution
with numerical methods [12], [4], [15], [11], [5].

3. Description of used Neural Network

The initial step in solving a differential equation using neural networks (NNs) involves reframing the problem as an
optimization task, based on the definition of the loss function. Subsequently, the architecture of the neural network
needs to be designed. This entails determining the number of hidden layers, the number of neurons in each layer, the
volume of training data, the selection of activation function, the number of epochs, and the selection of optimization
functions and other relevant parameters. Once the architecture is established, the neural network must be trained using
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an appropriate dataset. During the training process, the loss function is used to measure the disparity between the
network’s predictions and the actual values. The network’s parameters (weights and biases) are iteratively adjusted
using optimization algorithms such as gradient descent to minimize the loss function. Upon completion of training,
the neural network can approximate the solution to the given differential equation for unseen inputs.
In this paper, the idea of Chen and his colleague [1] is used to formulate the loss function. Our neuron network
comprises an input layer with two variables x and t, an output layer with variable u(x,t), and an intermediate structure
of five hidden layers, each containing 32 neurons. We employ the GELU activation function. Also, 32 points as x
and 16 points as t are used for training. The maximum number of epoches is considered 5000, in other cases it is
mentioned. A suitable optimization function should be determined to update the network parameters based on the
gradients calculated through the backpropagation method.

4. Comparing the accuracy of different optimizer functions

In this section, our objective is to identify the ideal optimization function for training the proposed neural network.
For this purpose, the infinity norm and one norm of approximation error is defined, respectively as follows.

∥E∥∞ = Max1≤i≤N |uanai
− uneti |,

∥E∥1 =

∑N
i=1 |uanai − uneti |

N
,

where uanai and uneti represent the exact solution and neural network’s approximate solution at (xi, ti) respectively,
and the N is the total number of points used for error computation, set to N = 10000.
We conducted a series of experiments using the neural network described in the preceding section to explore the
efficacy of nine optimization algorithms, namely SGD [14], Rprop, RMSprop [13], RAdam [8], AdaGrad, Nadam [3],
Adam [6], AdamW [9], and Adamax [6]. Each algorithm represents a unique case used to approximate the solution of
equation 1 with specific initial and boundary conditions.
In the first test, to ensure statistical reliability, each of these 9 cases was run 30 times, and the average of ∥E∥∞ and
∥E∥1 of the resulting 30 runs were computed. Table 1 presents the average of ∥E∥∞ and ∥E∥1 for each optimizer
function, by assuming α = 1, β = 1, and δ = 2, with x ∈ [−10, 20] and t ∈ [0, 1]. The columns representing
the infinity norm of the error and the one norm of the error are arranged in ascending order. The table indicates that
Adamax, AdamW, and Radam provide more accurate approximations, while RMSprop yields less accurate results.

Table 1. Average of ∥E∥∞ and ∥E∥1 for Each Optimizer Function

Optimizer ∥E∥∞ Optimizer ∥E∥1
Adamax 1.64708244050343 × 10−6 Adamax 7.85898779760152 × 10−6

AdamW 2.52910249324498 × 10−6 Radam 1.46709472871244 × 10−5

Radam 2.82038610701581 × 10−6 AdamW 1.48394629333827 × 10−5

Adagrad 3.00686953460146 × 10−6 Adagrad 1.57488386856474 × 10−5

SGD 5.90508594510665 × 10−6 SGD 2.58074128027252 × 10−5

Adam 6.33155090038516 × 10−6 Adam 3.55779421131220 × 10−5

Rprop 8.64033769476345 × 10−6 Rprop 4.46275454700967 × 10−5

Nadam 4.44236498029124 × 10−5 Nadam 2.87230686660080 × 10−4

RMSprop 3.19363565259401 × 10−2 RMSprop 2.27806677748135 × 10−1

For the second test, Tables 2 displays ∥E∥1 of each optimizer function by assuming α = 1, β = 1, and δ = 2, with
x ∈ [−10, 20] and t ∈ [0, 1] and under different conditions, including a maximum of 10000 and 20000 epochs. The
results consistently show that Adamax, AdamW, and Radam lead to more accurate approximations, while RMSprop
produces less accurate results.
The results of another test are presented in Table 3, showcasing ∥E∥1 of each optimizer function by assuming α = 2,
β = 4, and δ = 2, with x ∈ [−10, 20] and t ∈ [0, 1]. Once again, this table shows that Adamax, AdamW, and Radam
lead to more accurate approximations, while RMSprop produces less accurate results.
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Table 2. ∥E∥1 for Each Optimizer Function with 10000 and 20000 Epochs by assuming α = 1, β = 1, and δ = 2

Optimizer ∥E∥1 (Max of epoche=10000) Optimizer ∥E∥1 (Max of epoche=10000)

Radam 5.35030649640497× 10−6 Adamax 2.35291704558418× 10−6

AdamW 5.35423608295110× 10−6 AdamW 2.41199352109394× 10−6

Adamax 5.46882189079660× 10−6 Radam 3.04817965468302× 10−6

Adagrad 8.93723642925836× 10−6 Adagrad 5.15871498623183× 10−6

Rprop 9.93681627194604× 10−6 Adam 5.83348527166089× 10−6

SGD 9.96818089713675× 10−6 SGD 2.64993640289539× 10−5

Adam 1.34757426205124× 10−5 Rprop 2.65192343763965× 10−5

Nadam 1.36896577896813× 10−4 Nadam 3.59266351531136× 10−5

RMSprop 2.48884376692317× 10−4 RMSprop 1.72365296041790× 10−4

Table 3. ∥E∥1 for Each Optimizer Function by assuming α = 2, β = 4, and δ = 2

Optimizer ∥E∥1
Adamax 7.57195157904586 × 10−5

Radam 3.40890863500638 × 10−4

AdamW 3.89393208257223 × 10−4

Adam 4.12877173177112 × 10−4

Nadam 4.35333281243569 × 10−4

Adagrad 4.80405060820108 × 10−4

SGD 1.64000379193429 × 10−3

Rprop 1.65260399241475 × 10−3

RMSprop 4.66357137269634 × 10−3

The final test results are presented in Table 4, showcasing the ∥E∥1 of each optimizer function by assuming α = 3,
β = 2, and δ = 2, with x ∈ [−10, 20] and t ∈ [0, 1]. Once again, findings of table 4 show that Adamax, AdamW, and
Radam lead to more accurate approximations, while RMSprop produces less accurate results.

Table 4. ∥E∥1 for Each Optimizer Function by assuming α = 3, β = 2, and δ = 2

Optimizer ∥E∥1
Adamax 2.09975415513011 × 10−5

AdamW 2.96310587707187 × 10−5

Radam 3.36089030061656 × 10−5

SGD 3.96262605974220 × 10−5

Rprop 4.02997607315718 × 10−5

Adagrad 5.41389936737727 × 10−5

Nadam 7.69479337684435 × 10−5

Adam 1.22248478864545 × 10−4

RMSprop 2.29861196186085 × 10−3

In summary, the results from Tables 1-4 confirm that Adamax, AdamW, and Radam are the most suitable optimizers
for approximating the Berger-Fisher equation, while RMSprop consistently yields less accurate approximations.

5. Conclusions

In conclusion, this study presented a comprehensive analysis of various optimization functions for approximating the
solution of the Burger’s-Fisher equation with initial and boundary conditions using neural networks. Through exten-
sive experiments and comparisons, it was demonstrated that the choice of optimization function significantly impacts
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the performance of neural network-based solvers for this complex equation. The findings highlight the effectiveness of
Adamax, AdamW, and Radam as the most suitable optimizers for accurately approximating the Burger’s-Fisher equa-
tion with initial and boundary conditions, while RMSProp consistently yielded less accurate results. These insights
provide valuable guidance for researchers applying neural networks to solve challenging equations in fluid dynam-
ics and heat transfer fields. The study contributes to advancing neural network applications in solving differential
equations.
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Abstract

This paper investigates rational solutions of an extended Hirota bilinear equation, a foundational
mathematical model for studying nonlinear phenomena in shallow water and fluid mechanics.
By leveraging the Hirota bilinear equation and employing symbolic computation method, we
derive higher-order rational and generalized rational solutions and scrutinize their dynamic char-
acteristics. The derived solutions reveal two distinct waveforms: multi-rogue and multi-soliton.
Generalized multi-rogue waves encompass three, six, eight, and ten rogue waves, while multi-
soliton waves comprise one to five soliton waves. These waveforms are visually depicted in
the paper. Furthermore, we analyze the roots of the rational solutions, uncovering a compelling
relationship between these complex roots and solutions of well-known Painlevé II and IV equa-
tions.

1. Introduction

Rogue waves, also called freak or monster waves, are notable for their sudden appearance and disappearance, featuring
dangerously steep crests that endanger ships at sea [1]. The study of rogue waves spans various fields like nonlinear
science, optical communications, and fluid dynamics[2, 3]. Several methods, including the Hirota bilinear, Darboux
transformation and inverse scattering methods, have been used to model rogue waves. While progress has been made
in understanding single rogue waves, higher-order ones, with multiple rogue wave interactions, remain challenging,
influencing phase shifts and energy distribution [4–6].
Symbolic computation method plays a pivotal role in the study of rogue wave phenomena in nonlinear differential
equations with constant coefficients. This method, utilizing computer algebra systems, is particularly effective for
intricate equations lacking analytical solutions. Notable advancements include rational solutions for equations like the
nonlinear Schrödinger (NLS) equation and exploring multiple rogue waves in equations like the Boussinesq equation.
On the way, Clarkson et al. [7] utilized the symbolic computation approach to obtain solutions for the Boussinesq
equation, which is known to be solvable using the inverse scattering method. Expanding on earlier research, they
derived rational solutions for the Boussinesq equation. These solutions exhibit algebraic decay and are characterized
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by two arbitrary parameters. The expressions for these solutions involve special polynomials derived from a bilin-
ear equation. Notably, these rational solutions display resemblances to the rogue wave solutions found in the NLS
equation.
The primary objective of this article is to investigate a novel (3+ 1)-dimensional Hirota bilinear (HB) equation [8] in
fluid dynamics, expressed as

Uyt + c1

(
Uxxxy + 3(2UxUy + UxyU) + 3Uxx

∫ x

Uydx
′
)
+ c2Uyy + c3Uzz = 0, (1)

where U = U(x, y, z, t) and c1, c2, and c3 are arbitrary constants. It is worth noting that when considering c3 = 0, the
above (3+1)-dimensional HB equation reduces to the (2+1)-dimensional HB equation [9]. Equation (1) serves as a
valuable mathematical and physical model for studying nonlinear phenomena in the fields of shallow water and fluid
mechanics. By incorporating higher-dimensionality, Eq. (1) provides a more precise description of complex motion
laws and offers a more comprehensive explanation for various physical problems.
The findings of our study indicate that the model is not Painlevé integrable. However, upon further investigation, we
discovered that the model can achieve integrability when setting c2 = c3 = 0. This integrable reduction, leads us to a
previously discovered equation known as the (2 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation,
as referenced in [10]. It is worth mentioning that by the following variable transformations: y, z → x, t → −t,
c2 = −c3 and ux → u, Eq. (1) can be further reduced to the (1 + 1)−dimensional pioneering Korteweg–de Vries
(KdV) equation. Additionally, the model (1) exhibits multiple-soliton solutions.
Numerous solutions have been obtained for Eq (1) through various approaches. For instance, Ref. [8] explored
the Bäcklund transformation, Hirota bilinear form, and lump-type solution. Ref. [11] discussed the lump-N-soliton
solutions, lump-periodic solutions, and multilump solutions. Additionally, Ref. [12] employed the long-wave limit
method and selected specific parameters to derive solutions such as M-lump solutions, rogue waves, breathers, and
interaction solutions.
The main research focus of this study revolves around obtaining exact multi-rogue wave solutions for equation (1)
using the Hirota bilinear technique and symbolic computation method. The study also explores generalized multi-
rogue waves, which are controllable rogue waves with adjustable characteristics.
This work is structured as follows: In Section 2, we delve into the investigation of multiple-rogue waves. We explore
the characteristics and behavior of these waves. Moreover, we examine the roots of the rational solutions, revealing an
intriguing correlation between these intricate roots and the solutions found in renowned Painlevé II and IV equations.
Moving on to Section 3, we shift our focus to the study of generalized controllable rogue waves. Finally, in Section 4,
we present the conclusion of our study.

2. Multiple rogue waves

In this section, we outline the approach utilized to verify the proposed rogue wave solution, known as the symbolic
computation technique. We start by considering a nonlinear partial differential equation of the form

N(U,Ux, Uy, Ut, Uz, Utx, Uxx, . . . ) = 0, U = U(x, y, t, z). (2)

To initiate the analysis, we conduct the Painlevé analysis and introduce the transformation

U = T (f), (3)

where f = f(x, y, t, z) is a dependent variable function. Substituting Eq. (3) into Eq. (2), we obtain the resulting
equation in Hirota bilinear form

B(Dζ , Dz; f) = 0, (4)

where ζ = x+γy−νt, and γ and ν are real parameters. Here,Dζ andDz are expressed as the Hirota bilinear operator
[13].
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Let

f =

n(n+1)/2∑
m=0

m∑
j=0

aj,mζ2jz2(m−j). (5)

By inserting Eq. (5) into Eq. (4) and setting all the coefficients of different powers of ζmzn, (m,n = 0, 1, 2, . . . )
to zero, we obtain a system of algebraic equations. Solving this system will yield the values of the coefficients ai.
Finally, by substituting the obtained values of the coefficients ai into the test function (5), and subsequently inserting
this updated function into the logarithmic transformation (4), one can achieve an n−rogue wave solution to Eq. (2).
To obtain multiple-rogue waves for Eq. (1), we setX = x+ δy−ηt and Y = z in Eq. (1). This transformation yields

(δ2c2 − ηδ)UXX + c1δ(UXXXX + 6U2
X + 6UUXX) + c3UY Y = 0, (6)

where δ and η are two real parameters. By applying the logarithmic transformation

Un = 2 ln(Fn)XX , n ≥ 1. (7)

Eq. (1) can be equivalently expressed as

[(δ2c2 − ηδ)D2
X + c1δD

4
X + c3D

2
Y ]Fn.Fn = 0. (8)

Here, Fn = Fn(X,Y ) ̸= 0 is mentioned in expression (5), and it is a polynomial of degree 1
2n(n+ 1) inX2 and Y 2,

with a total degree of 1
2n(n+ 1). The constants aj,m are unknown constants that need to be determined.

Utilizing upon procedure, one can obtain

F1(X,Y ) = − X2a0,1L3

δ (−δL2 + η)
+ Y 2a0,1 −

3a0,1L3L1

δ (−δL2 + η)
2 . (9)

Consequently, the one-rogue wave solution for the reduced Eq. (6) is constructed as

U1 = −
4L3 (δL2 − η)

(
(δL2L3 − ηL3)X

2 +
(
−δ3L2

2 + 2δ2L2η − δ η2
)
Y 2 + 3L3L1

)
((δL2L3 − ηL3)X2 + (δ3L2

2 − 2δ2L2η + δ η2)Y 2 − 3L3L1)
2 . (10)

It is worth mentioning that this rogue wave exhibits the following characteristics:

lim
X→±∞

U1(X,Y ) = 0, lim
Y→±∞

U1(X,Y ) = 0. (11)

Moreover, the function U1(X,Y ) possesses the following three critical points.

(X,Y ) = (0, 0), (X,Y ) =

(
3
√
− (δL2 − η)L1

δL2 − η
, 0

)
, (X,Y ) =

(
−
3
√

− (δL2 − η)L1

δL2 − η
, 0

)
, (12)

From the expression provided above, it is evident that the amplitude of the peak of one-rogue wave is given by
Apeak = −4δL2+4η

3L1
, and the amplitudes of the two troughs can be determined as Atrough = ± δL2−η

6L1
. The dynamic

characteristics of the one-rogue wave solutions are illustrated in Figure 1 (a).
By following the earlier process, for n = 2, 3, 4, 5, we derive the following expressions for two, three, four, and
five-rogue waves:

F2(X,Y ) =

(
3Y 2L2

3

δ2 (−δL2 + η)2
−

25L3
3L1

δ3 (−δL2 + η)4

)
X

4
+

(
−

3Y 4L3

δ (−δL2 + η)
+

90Y 2L2
3L1

δ2 (−δL2 + η)3
+

125L2
1L

3
3

δ3 (−δL2 + η)5

)
X

2

−
X6L3

3

δ3 (−δL2 + η)3
+ Y

6 −
17Y 4L3L1

δ (−δL2 + η)2
+

475Y 2L2
3L

2
1

δ2 (−δL2 + η)4
−

1875L3
3L

3
1

δ3 (−δL2 + η)6
, (13)
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F3(X,Y ) =

(
98L1L

6
3

δ6 (−δL2 + η)7
−

6L5
3Y

2

δ5 (−δL2 + η)5

)
X

10
+

(
−

690L1L
5
3Y

2

δ5 (−δL2 + η)6
+

735L6
3L

2
1

δ6 (−δL2 + η)8
+

15L4
3Y

4

δ4 (−δL2 + η)4

)
X

8

+
L6

3X
12

(−δ7L2 + δ6η)6
+

(
−

18620L2
1L

5
3Y

2

δ5 (−δL2 + η)7
+

1540L1L
4
3Y

4

δ4 (−δL2 + η)5
+

75460L6
3L

3
1

3δ6 (−δL2 + η)9
−

20L3
3Y

6

δ3 (−δL2 + η)3

)
X

6

+

(
37450L2

1L
4
3Y

4

δ4 (−δL2 + η)6
−

220500Y 2L5
3L

3
1

δ5 (−δL2 + η)8
−

1460L1L
3
3Y

6

δ3 (−δL2 + η)4
−

5187875L6
3L

4
1

3δ6 (−δL2 + η)10
+

15L2
3Y

8

δ2 (−δL2 + η)2

)
X

4
+ Y

12 (14)

+

(
−

35420L2
1L

3
3Y

6

δ3 (−δL2 + η)5
−

14700Y 4L4
3L

3
1

δ4 (−δL2 + η)7
−

565950Y 2L5
3L

4
1

δ5 (−δL2 + η)9
+

570L2
3L1Y

8

δ2 (−δL2 + η)3
+

159786550L6
3L

5
1

3δ6 (−δL2 + η)11
−

6L3Y
10

δ (−δL2 + η)

)
X

2

+
878826025L6

1L
6
3

9δ6 (−δL2 + η)12
+

16391725Y 4L4
3L

4
1

3δ4 (−δL2 + η)8
−

58L3L1Y
10

δ (−δL2 + η)2
+

4335L2
3L

2
1Y

8

δ2 (−δL2 + η)4
−

798980Y 6L3
1L

3
3

3δ3 (−δL2 + η)6
−

300896750Y 2L5
3L

5
1

3δ5 (−δL2 + η)10
.

For the specific selection of values of parameters δ = 2, η = 3, L1 = 1, L2 = −3, L3 = −1, the expressions for F4

and F5 are presented in the Appendix.
Based on the expression of Fn, (n = 1, . . . , 5) available, according to transformation (7), we can obtain various types
of waves by choosing different coordinates. For instance, when using (X,Y ) coordinates, we can derive multi-rogue
waves, while (x, y) coordinates are suitable for multi-soliton waves solitons. Figure 1 (a,...,e) illustrates the n−rogue
wave solutions, displaying two, three, four and five-rogue respectively. The two-rogue wave solution U2(X,Y ) ex-
hibits two separated peaks, while U3(X,Y ) has one sharper peak in the middle surrounded by two shorter peaks. In
the case of U4(X,Y ), there are four divided peaks, with two in the middle and two on the periphery. finally, U5(X,Y )
has one sharper peak in the middle surrounded by four peaks. It is evident that the n−rogue solution Un(X,Y ) con-
sists of n separated peaks, with the maximum value located at Y = 0 and n maximum values of Un(X,Y ). On the
other hand, Figures 1 (f,...,j) showcase multi-soliton wave. From the evolutionary plots, we observe that these waves
originate from a plane wave background and reach their maximum amplitude at y = 0 before eventually dissipating
with time.

(a) U1(X,Y ) (b) U2(X,Y ) (c) U3(X,Y ) (d) U4(X,Y ) (e) U5(X,Y )

(f) U1(x, y, z, t) (g) U2(x, y, z, t) (h) U3(x, y, z, t) (i) U4(x, y, z, t) (j) U1(x, y, z, t)

Fig. 1. Panels (a, b, c, d, e): the n−rogue wave Un(X,Y ) with δ = 2, η = 3, L1 = 1, L2 = −3, L3 = −1. Panels (f, g, h, i , j): the
n−soliton wave Un(x, y, z, t) with the same parameters as well as z = 0 and t = 0.

In the context of the connection between the polynomial Fn and the rational solution Un, and the role of complex roots
in wave formation, it is essential to first understand the solutions of Painlevé Equations II and IV. These equations are
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typically represented in the following forms, respectively.

PII :=w′′ = 2w3 + zw + θ, (15)

PIV :=w′′ =
(w′)2

2w
+

3

2
w3 + 4zw2 + 2(z2 − θ)w +

δ

w
, (16)

where w = w(z) is a analytic function, θ and δ are real constants.
The rational solutions of PII (15) were originally expressed in terms of polynomials by Vorob’ev and Yablonskii [14].
These polynomials, now known as the Yablonskii–Vorob’ev polynomials, have been further studied by Clarkson and
Mansfield [15]. Similarly, Okamoto [16] derived related polynomials, known as the Okamoto polynomials, which
are associated with certain rational solutions of PIV (16). The results of Okamoto were subsequently generalized by
Noumi and Yamada [17], who demonstrated that all rational solutions of PIV can be represented using logarithmic
derivatives of two sets of special polynomials: the generalized Hermite polynomials and the generalized Okamoto
polynomials.
The Yablonskii–Vorob’ev polynomials possess several distinctive characteristics. Firstly, they are monic polynomials
with integer coefficients, having a degree of 1

2n(n+1). Secondly, all roots of these polynomials are simple, resulting in
N(N+1)/2 distinct roots. The arrangement of these roots forms a consistently structured triangle, and they are located
on circles with the origin as the center. On the other hand, the Okamoto polynomials exhibit different characteristics.
They are polynomials of degree n(n− 1) and are monic polynomials in

√
2z with integer coefficients. Additionally,

these polynomials are even, specifically monic polynomials in 2z2 with a degree of 1
2n(n − 1). The roots of the

Okamoto polynomials are arranged in symmetrically reflected triangles along the real axis.

Remark 2.1. The rational solutions of Eq. (1) can be obtained using the Yablonskii–Vorob’ev and generalized
Okamoto polynomials.

Fig. 2. Complex roots of Fn for n = 2; 3; 4; 5 with Y = 0 (black) and Y = 2n (red) and Y = 3n (green).

The graphical representations in Figure 2 reveal intriguing patterns in the complex roots of Fn for Y = 0, Y = 2n and
Y = 3n. Notably, the roots form roughly equilateral triangles reminiscent of Pascal triangles, hinting at underlying
geometric relationships. Surprisingly, these roots deviate from straight lines, instead aligning along curves. This
property arises because these roots are obtained from polynomials with non-integer coefficients. Moreover, the plots
exhibit symmetrical properties, remaining unchanged under rotations through 2

3π and reflections in the real axis. As
the parameter Y increases, the roots gradually shift away from the real axis, indicating a dynamic behavior. Particularly
striking is the arrangement of roots along concentric circles encircling the imaginary axis, suggesting a deeper structural
organization within the polynomial solutions. These observations offer valuable insights into the intricate behavior of
Fn polynomials under varying conditions, enriching our understanding of their complex dynamics.
In Figure 3, plots depict the trajectories of the complex roots of F5, with the solution u6 superimposed. These plots
demonstrate that as the roots move away from the real axis, the solution decays to zero.

3. Generalized rogue wave solutions (Controllable rogue waves)

In the preceding section, we examined the rational solutions of Eq (1) and investigated the inherent connection between
the bilinear equation and the rational solution. Now, we will proceed to construct the generalized rational solutions
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(a) Y=0 (b) Y=0.5 (c) Y=1 (d) Y=2 (e) Y=10

Fig. 3. Plots of the loci of the complex roots of F5(X,Y ) (black) with the solution U5(X,Y ) (red) superimposed , for different values of Y .

of Eq (1) by introducing two additional parameters, α and β. These parameters possess more intricate characteristics
compared to their counterparts. As a result, the generalized rational solution exhibits multi-rogue solutions with two
control parameters α and β. By utilizing the bilinear form (8), we can derive the generalized rational solution of the
equation using the following theorem.

Theorem 3.1. Equation (1) has generalized rational solution

Ũn(X,Y ;α, β) = 2 ln
(
F̃n(X,Y ;α, β)

)
XX

, (17)

with

F̃n+1(X,Y ;α, β) = Fn+1(X,Y ) + 2αtPn(X,Y ) + 2βxQn(X,Y ) + (α2 + β2)Fn−1(X,Y ), (18)

where Fn(X,Y ) ̸= 0 is given by (5) and F0 = 1, F−1 = 0 and

Pn(X,Y ) =

n(n+1)/2∑
m=0

m∑
i=0

bj,mX2jY 2(m−j), Qn(X,Y ) =

n(n+1)/2∑
m=0

m∑
i=0

cj,mX2jY 2(m−j), (19)

where bj,m and cj,m are real parameters, and P0 = Q0 = 0.

By substituting the expression F̃n into Eq. (17) and equating the coefficients of all powers of X and Y to zero, we
can obtain the expressions for Qn and Pn. These expressions are derived by solving the resulting system of algebraic
equations. With the expressions for Fn obtained in Section 2, we can then obtain the general rational solution Ũn by
substituting the solutions for Fn, Qn and Pn into the appropriate equation.
In the subsequent equations, we express Qn and Pn for n = 2, ..., 5 as shown below:

p1 =

√
−β2δ2L2L3 + β2δηL3 + 9β2L2

3 + 9α2L2
3 X2

(δL2 − η)αδ
−
√

L3 ((9β2 + 9α2)L3 + β2δ (−δL2 + η))Y 2

3αL3

−
5L1

√
L3 ((9β2 + 9α2)L3 + β2δ (−δL2 + η))

3 (−δL2 + η)2 αδ
,

p2 =

(
9L3Y

4

δ (−δL2 + η)
−

190L2
3L1Y

2

δ2 (−δL2 + η)3
+

665L2
1L

3
3

δ3 (−δL2 + η)5

)
X

2
+ Y

6
+

7L1L3Y
4

δ (−δL2 + η)2
−

245L2
1L

2
3Y

2

δ2 (−δL2 + η)4
,−

18865L3
1L

3
3

3δ3 (−δL2 + η)6

−
5L3

3X
6

δ3 (−δL2 + η)3
+

(
−

5L2
3Y

2

δ2 (−δL2 + η)2
−

105L1L
3
3

δ3 (−δL2 + η)4

)
X

4
,

q1 =
L3X

2

3δ (−δL2 + η)
+ Y

2 −
L1L3

3δ (−δL2 + η)2
, (20)

q2 = −
√

δ (δL2 − η)L3β2 L3
3X

6

δ4 (−δL2 + η)4 β
−

9
√

δ (δL2 − η)L3β2 L2
3X

4Y 2

δ3 (−δL2 + η)3 β
+

5
√

δ (δL2 − η)L3β2 L3X
2Y 4

δ2 (−δL2 + η)2 β
−

5
√

δ (δL2 − η)L3β2 Y 6

δ (δL2 − η) β

−
13
√

δ (δL2 − η)L3β2 L1L
3
3X

4

δ4 (−δL2 + η)5 β
−

230L2
3L1

√
δ (δL2 − η)L3β2 X2Y 2

δ3 (−δL2 + η)4 β
−

45L1L3

√
δ (δL2 − η)L3β2 Y 4

δ2 (−δL2 + η)3 β

+
245
√

δ (δL2 − η)L3β2 L2
1L

3
3X

2

δ4 (−δL2 + η)6 β
+

535
√

δ (δL2 − η)L3β2 L2
1L

2
3Y

2

δ3 (−δL2 + η)5 β
−

12005
√

δ (δL2 − η)L3β2 L3
1L

3
3

3δ4 (−δL2 + η)7 β
.
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For the specific selection of values of parameters δ = 2, η = 3, L1 = 1, L2 = −3, L3 = −1, the expressions for Qn

and Pn, (n = 3, 4) are presented in the Appendix. Plots of the solutions Ũn(X,Y ;α, β), n = 1, . . . , 4 of Eq. (6) for
specific values of the parameters α and β are given in Figure 4.

(a) Ũ1(X,Y ; 30, 30) (b) Ũ2(X,Y ; 1000, 1000) (c) Ũ3(X,Y ; 107, 107) (d) Ũ3(X,Y ; 109, 109)

Fig. 4. General rogue wave solutions Ũn(X,Y, α, β), with δ = 1, η = 1, L1 = 1, L2 = −3, L3 = −1.

As observed in Figure 5, for |α|, |β| > 0, the peaks of each solution are arranged along a specific circle. The circles
Cn(X,Y, r) corresponding to the choices of parametersα andβ are asC1(−0.03238, 0.01011, 5.0719),C2(−0.0022,−0.0040, 6.2942),
C3(−0.0022,−0.0040, 19.5882) and C4(2.35× 10−6,−2.98× 10−12, 19.7346). As the values of α and β increase,
the spacing between the peaks becomes larger, and the peaks themselves move along distinct paths in a straight line.
These paths correspond to three, five, seven, and so on, different trajectories. For Ũn these trajectories are:

Ũ1 : [Y1 = 2.159X1 + 0.080, Y2 = 0.077X2 + 0.0126, Y3 = −1.529X3 − 0.039],

Ũ2 : [Y1 = 1.044X1 − 0.0016, Y2 = −2.1242X2 − 0.008, Y3 = 0.1566X3 − 0.003, Y4 = 7.0X4 + 0.011,

Y5 = −0.514X5 − 0.005],

Ũ3 : [Y1 = 0.6476X1 − 0.0054, Y2 = 2.9925X2 + 0.002, Y3 = 0.3594X3 − 0.0032, Y4 = −1.659X4 − 0.007, (21)
Y5 = −0.1156X5 − 0.0042, Y6 = 1.0366X6 − 0.001, Y7 = −9.3081X7 − 0.0247],

Ũ4 : [Y1 = −5.951× 10−9X1 − 2.975× 10−12, Y2 = 0.8420X2 − 1.99× 10−6, Y3 = 5.926X3 − 0.00001,

Y4 = −1.7782X4 + 4.20× 10−6, Y5 = −0.3584X5 + 8.45× 10−7, Y6 = 0.3584X6 − 8.46× 10−7,

Y7 = 1.778X7 − 4.19× 10−6, Y8 = −5.92656X8 + 0.00001, Y9 = −0.8420X9 + 1.99× 10−6].

4. Conclusion

This paper investigates multiple-rogue wave solutions arising from a novel extension of the Hirota bilinear equation,
a crucial model for understanding nonlinear phenomena in shallow water and fluid mechanics. Utilizing the bilinear
equation and symbolic computation methods, we have derived rational and generalized rational solutions. Plotting
these solutions in various planes reveals two distinct waveforms: multi-rogue and multi-soliton waves, as demon-
strated in Figures 1 and 4, which showcases occurrences of two, three, four, and five-rogue waves. Furthermore,
Figures 1 illustrate the multi-soliton wave, highlighting the presence of multiple-order line rogue waves. Our nu-
merical simulations unveil that these waves emerge from a background of plain waves. Additionally, we analyze the
trajectory of each peak in the first to fifth-order controllable rogue waves.
Moreover, we delve into the intrinsic relationship between Fn andUn by scrutinizing the connection between the com-
plex roots of Fn and wave formation. Interestingly, our exploration reveals that these roots align with the Yablonskii–
Vorob’ev and generalized Okamoto polynomials, further emphasizing the importance of these polynomials in under-
standing wave dynamics.
This article presents clear and easily digestible ideas, distinguishing itself from methods such as Darboux transforma-
tion and KP-reduction. Our approach facilitates the creation of arbitrary n-order rogue wave solutions, enticing explo-
ration into higher-dimensional nonlinear equations. Despite the complexity of the calculations, the conceptual clarity
of our method endures. These findings promise a deeper understanding of nonlinear phenomena in high-dimensional
systems, propelling further advancements in the field.
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(a) Ũ1(X,Y ; 100, 100) (b) Ũ2(X,Y ; 104, 104) (c) Ũ3(X,Y ; 109, 109) (d) Ũ4(X,Y ; 1010, 1010)

(e) Ũ1(X,Y ;α, β) (f) Ũ2(X,Y ;α, β) (g) Ũ3(X,Y ;α, β) (h) Ũ4(X,Y ;α, β)

Fig. 5. Panels (a, b, c, d): The peaks of each solution Ũn(X,Y, α, β) are arranged along a specific circle. Panels (e, f, g, h): The Trajectories of
each peak (red lines) in the solutions Ũn(X,Y, α, β). with δ = 1, η = 1, L1 = 1, L2 = −3, L3 = −1.
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Abstract

In this paper, we introduce novel constrained conditions intoN−soliton solutions for a (2+1)-
dimensional extended Kadomtsev–Petviashvili equation. This integration results in the deriva-
tion of lump waves. To investigate the interaction between higher-order lumps and soliton
waves, as well as breather waves, we employ the long wave limit method. We analyze the tra-
jectory equations governing the motion before and after the collision of lumps and other waves,
and identify conditions under which the lump wave avoids collision with other waves. Several
figures are included to illustrate the physical behavior of these solutions.

1. Introduction

The Hirota bilinear method [1] is a powerful technique for solving nonlinear evolution equations. It has gained popu-
larity among scholars due to its directness and simplicity in constructing multiple soliton solutions for nonlinear partial
differential equations [2–4].
Lump waves, which are rational function waves localized in all directions in space and time, have attracted significant
attention. Various methods such as inverse scattering transformation [5], Grammian determinant method [6], Darboux
transformation [7], and the long wave limit method [8] have been developed to study lump waves.
The interaction between lumps and other nonlinear waves, including soliton and breather [9–11], is an active research
area, particularly focusing on elastic and inelastic collisions. However, there is still much to understand about the
movement of lumps before and after collisions, phase shifts in lumps, and the trajectory equations governing their
motion. Further exploration is needed. Additionally, it is worth investigating other forms of interaction between lump
waves and other waves, such as scenarios where they never collide or always collide and never separate.
Reference [12] has explored an extended (2 + 1)-dimensional Kadomtsev–Petviashvili (eKP) equation as follows:

γ1Uxt + γ2U
2
xx + γ3Uxxxx + γ4Uyy + α1Uxx = 0, (1)
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where U = U(x, y, t) is an unknown differentiable function, and γi, i = 1, . . . , 4, are real arbitrary parameters. The
eKP equation (1) finds applications in nonlinear wave phenomena, plasma physics, optical fiber communications, fluid
dynamics, and mathematical physics.
It is noteworthy that Eq. (1) simplifies to the KP equation [1] when α1 = 0. Ref. [12] explores the integrability and
soliton solutions for Eq. (1). The Painlevé test is utilized to assess their integrability, and it is found that the equation
successfully passes the Painlevé test.
The focus of this study lies in obtaining exact solutions for Eq.(1) using the Hirota bilinear technique. This approach
yields Soliton and Lump solutions, as well as hybrid solutions containing solito-lump and breather-lump configura-
tions. Additionally, the research introduces a novel method for tracking the trajectory of a lump wave before and
after collisions with other wave types. Specifically, the study establishes and elucidates the conditions under which
the entire process ensures that a lump wave either avoids collisions with other waves or, if collisions occur, remains
unchanged in its state.
The paper is organized as follows: Section 2 delves into the Hirota bilinear representation and soliton solution of Eq.
(1). In Section 3, the focus shifts to the N -lump solution and their dynamics. Moving on to Section 4, we examine
hybrid solutions of lump waves and soliton and breather waves, along with the trajectory of the lump wave before and
after interaction. Finally, Section 5 presents the conclusions.

2. N−soliton solution

In this section, we aim to construct anN−soliton solution to Eq. (1). To achieve this, we first bilinearize the equation
using the logarithmic transformation U = 6γ3

γ2
ln(f)xx, which can be expressed as(

γ1DxDt + γ3D
4
x + γ4D

2
y + α1D

2
x

)
f.f = 0. (2)

Then, we choose the function f in the form

f =
∑

µ∈{0,1}N

exp

 N∑
i=1

µiχi +
N∑
i<j

µiµj lnΥij

 , (3)

where
∑

µ∈{0,1}N represents the summation over all possible combinations of µj , µs = 0, 1, j, s = 1, 2, . . . , N , and
the wave variables are

χi = kix+ piy + wit+ ϕi. (4)

As a result, the dispersion relation and the phase shifts are listed below, respectively.

wi = −γ3k
4
i + k2i α1 + γ4p

2
i

kiγ1
, (5)

Υi,j =
3k2i k

4
jγ3 − 6k3i k

3
jγ3 +

(
3k4i γ3 − p2i γ4

)
k2j + 2kikjpipjγ4 − k2i p

2
jγ4

3k2i k
4
jγ3 + 6k3i k

3
jγ3 + (3k4i γ3 − p2i γ4) k

2
j + 2kikjpipjγ4 − k2i p

2
jγ4

. (6)

By incorporating formulas (5) and (6) into the function f and then applying it to the logarithmic transformation, an
N−soliton solution to Eq. (1) can be derived.

3. Lump waves

The objective of this section is to offer a comprehensive explanation of how the asymptotic behavior of the soliton
solution (3) results in the formation of lump waves. By meticulously choosing appropriate values for these parame-
ters, one can create wave functions that demonstrate the desired lump-like behavior. These parameters significantly
influence the characteristics of the resulting lump solution, including its amplitude, velocity, and position.
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Theorem 3.1. To obtain N th-order lump solutions, we apply the long wave limit while considering the following
conditions in N -soliton solution (3).

N = 2m, ki = Kiϵ, pi = Piϵ, eϕi = −1, ϵ → 0,

K1 = K∗
2 , . . . ,K2m−1 = K∗

2m P1 = P ∗
2 , . . . , P2m−1 = P ∗

2m. (7)

The notation ϵ → 0 indicates that, after substituting the revised values of the parameters ki and pi into expression (3),
an evaluation is performed to determine the limiting behavior of the resulting function.
Put more simply, the comprehensive solutions for the N -th order lump can be expressed as the subsequent form.

U
(N)
L =

6γ3
γ2

ln(fN )xx. (8)

Where the function fN is represented by the following expression.

fN =
N∏
s=1

θs +
1

2

N∑
j,s

Bjs

N∏
p ̸=j,s

θp + ...+
1

m!2m

N∑
l,s,..,m,n

m︷ ︸︸ ︷
BlsBjk...Bmn

N∏
q ̸=l,s,..,m,n

θq + ..., (9)

where

θi = −
(
K2

i α1 + P 2
i γ4
)
t

Kiγ1
+ xKi + yPi, Bij =

12K3
i K

3
j γ3

γ4 (KiPj −KjPi)
2 . (10)

The m-th lump wave in the solution (8) is characterized by the following properties:

• The trajectory of the m-th lump wave is given by

y =
γ4 (K2m−1P2m +K2mP2m−1)

K2m−1K2mα1 − P2m−1P2mγ4
x, (11)

• The amplitude formula is

A[N ]
m =

γ4 (K2m−1P2m −K2mP2m−1)
2

γ2K2
2m−1K

2
2m

, (12)

• Velocity of the lump wave are determined by

V [N ]
m =

√
(K2m−1K2mα1 − P2m−1P2mγ4)

2

K2
2mγ2

1K
2
2m−1

+
γ2
4 (K2m−1P2m +K2mP2m−1)

2

K2
2mγ2

1K
2
2m−1

. (13)

To achieve a single lump, one can substituteN = 2 into the formula (9). This substitution results in the expression of
U1 as shown below:

U1 =
6γ3
γ2

ln(θ1θ2 +B1,2)xx, (14)

where, θi and Bi,j are represented in (10). Figure 1 (a) illustrates the dynamics of the one-lump solution (14). With
specific parameter selections, the amplitude and velocity of the wave are A[1]

1 = 3.43.408284 and V [1]
1 = 0.6369421,

respectively. Furthermore, Figure 1 (d) displays the trajectory of the wave over time. For N = 4, 6, the two and
three-lump solutions are presented in Figure 1 (b,c). As observed in the figure, the two-lump solution exhibits two
separate peaks that move away from each other as time increases. The amplitude and velocity of the first wave are
V

[2]
1 = 5.4589 and A

[2]
1 = 1.583, respectively, while for the second wave, these values are V [2]

2 = 1.36 and A
[2]
2 =

1.498, respectively. Moreover, in the three-lump solution, there are three separate peaks with the following amplitudes
and velocities: V

[3]
1 = 0.66899, V [3]

2 = 4.60977, V [3]
3 = 3.2811 and A

[3]
1 = 3.07, A[3]

2 = 6.25, A[3]
3 = 8.134.

Additionally, the trajectory of each peak in the aforementioned solution is clearly represented in Figure 1 (e,f).
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(a) t = 0 (b) t = 15 (c) t = 5

(d) t = −100, 0, 100 (e) t = −20, 20 (f) t = −35, 35

Fig. 1. Panels (a, d): One-lump soution with, K1 = K∗
2 = 2 + 3 I, P1 = P∗

2 = 4. Trajectory of lump y = − 16
29x (blue line). Panels (b, e): Two-lump

solution with,K1 = K∗
2 = 2 + 4 I, K3 = K∗

4 = 1 + 4 I, P1 = P∗
2 = 3, P3 = P∗

4 = 3. Trajectory of the first lump y = − 24
13x (orange line) and the second

lump y = 15
8 x (blue line). Panels (c, f): Three-lump solution with, K1 = K∗

2 = 1.5 + 4.0 I, K3 = K∗
4 = −1 + I, K5 = K∗

6 = 2 + 2 I, P1 = P∗
2 =

4, P3 = P∗
4 = 3, P5 = P∗

6 = 5. Trajectory of the first lump y = 6
7x (blue line), the second lump y = − 20

17x (red line) and the third lump y = 19
5 x (black

line). For the same selection of α1 = 1, γ1 = 1, γ2 = 1, γ3 = −1, γ4 = 1.

4. Interaction between lump and soliton waves

In this section, we delve into the development of a unique hybrid solution that merges both lump and other wave
forms. This hybrid solution is attained through the utilization of the long wave limit method [8] based on the N -
soliton solution (3). Employing this method allows us to derive a range of semi-rational solutions that incorporate
blends of lumps and soliton lines, as well as combenation of lumps and breathers.

Proposition 4.1. To obtain a hybrid solution comprising L lump waves and S soliton waves, we can take the long
wave limit with the following restrictions in Eq. (3).

N = 2L+ S, m = 1, 2, ..., 2L, km = Kmϵ, pm = Pmϵ, ϕm = πi, ϵ → 0, (15)
K1 = K∗

2 , K3 = K∗
4 , . . . ,K2L−1 = K∗

2L, P1 = P ∗
2 , P3 = P ∗

4 , . . . , P2L−1 = P ∗
2L.

Studying the trajectory equations of lump waves and soliton lines before and after collision [10], enhances our under-
standing of their complex interaction. In the following, we discuss this issue further.

Theorem4.2. For themixed solution comprisingL-lumpwaves andS-soliton lines, under the conditionλ3, λ4, . . . , λ2+S ̸=
0, and based on conditions (15), the trajectory equations of an arbitrary lump wave are provided below:

(xb, yb) =

(
X +

N∑
s=2L+1

hb(λs)κs, Y +
N∑

s=2L+1

hb(λs)ϑs

)
,

(xa, ya) =

(
X +

N∑
s=2L+1

ha(λs)κs, Y +
N∑

s=2L+1

ha(λs)ϑs

)
, (16)
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where

(X,Y ) =

(
(K2m−1K2mα1 − P2m−1P2mγ4)

K2mγ1K2m−1
t,
γ4 (K2m−1P2m +K2mP2m−1)

K2mγ1K2m−1
t

)
, (17)

κs =
−B2m−1,sP2m +B2m,sP2m−1

K2m−1P2m −K2mP2m−1
, ϑs =

B2m−1,sK2m −B2m,sK2m−1

K2m−1P2m −K2mP2m−1
. (18)

λs =
−K2m−1K2mk4sγ3 − P2m−1P2mk2sγ4 + psγ4 (K2m−1P2m +K2mP2m−1) ks −K2m−1K2mp2sγ4

K2mγ1K2m−1ks
, (19)

hb(x) =

{
1, x < 0

0, x ≥ 0
, ha(x) =

{
0, x ≤ 0

1, x > 0
, (20)

For 1 ≤ i < j ≤ 2L, Bi,j are presented in (10) and for 1 ≤ i ≤ 2L and j > 2L it is as fallows:

Bi,j =
12K3

i k
3
jγ3

3K2
i k

4
jγ3 −K2

i p
2
jγ4 + 2KiPikjpjγ4 − P 2

i k
2
jγ4

. (21)

The change in the phase of the lump wave before and after the collision can be expressed as

∆b =
N∑

s=2L+1

sign(λs)∆bs, (22)

where

∆bs =
−B2m,sK

2
2m−1K2mα1 +B2m−1,s

(
K2

2mα1 + P 2
2mγ4

)
K2m−1 −B2m,sK2P

2
2m−1γ4

(K2m−1P2m −K2mP1) (K2m−1K2mα1 − P2m−1P2mγ4)
. (23)

However, the amplitude and velocity of the peak do not change before and after the collision, and they are represented
by formula (12) and (13), respectively.

Proof. To prove this theorem, we consider solutions that consist of a lump wave and a soliton line. The proof for the
other situations remains the same, and we will omit their proof for brevity.
First, let us consider a mixed solution consisting of a lump wave and a soliton wave based on the conditions (15) as
follows:

U
(1)
LS =

6γ3
γ2

ln(f (1)
LS )xx. (24)

with

f
(1)
LS = θ1θ2 +B1,2 + (B1,3B2,3 + θ2B1,3 + θ1B2,3 + θ1θ2 +B1,2) eχ3 . (25)

Regarding the lump wave’s path in (11), we assume it follows a straight line before and after collision. Hence, the
function f (1)

LS is bound by the subsequent conditions.

(x, y) =

(
(K1K2α1 − P1P2γ4)

K2γ1K1
t+ c1,

γ4 (K1P2 +K2P1)

K2γ1K1
t+ c2

)
. (26)

Substituting (26) into (25) yields

f
(1)
LS =et λ3+β3 (B1,3B2,3 +B1,3ζ2 +B2,3ζ1 + ζ1ζ2 +B1,2) +B1,2 + ζ1ζ2, (27)
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where

ζ1 = K1c1 + P1c2, ζ2 = K2c1 + P2c2, β3 = c1k3 + c2p3 + ϕ3.

When limt→±∞ f
(1)
LS we can derive the following approximate expressions.

Case I: For λ3 > 0.

fb = B1,2 + ζ1ζ2, fa = B1,3B2,3 +B1,3ζ2 +B2,3ζ1 + ζ1ζ2 +B1,2. (28)

By substituting the values of c1 and c2 from (26) into (28), we obtain the following expressions:

fb = θ1θ2 +B1,2, fa = B1,3B2,3 +B1,3θ2 +B2,3θ1 + θ1θ2 +B1,2. (29)

These expressions feature the functions fb and fa, representing the states of the lump peak and soliton before and after
the collision, respectively. It is crucial to highlight that these functions adhere to the bilinear Eq. (2).
Substituting (29) into (24) and equating the derivatives of the solutions with respect to x and y to zero allows us to
ascertain the trajectories of the peak before and after the collision:

(xb, yb) =

(
(K1K2α1 − P1P2γ4)

K2γ1K1
t,
γ4 (K1P2 +K2P1)

K2γ1K1
t

)
,

(xa, ya) =

(
(K1K2α1 − P1P2γ4)

K2γ1K1
t+

−B1,3P2 +B2,3P1

K1P2 −K2P1
,
γ4 (K1P2 +K2P1)

K2γ1K1
t+

B1,3K2 −B2,3K1

K1P2 −K2P1

)
. (30)

In this scenario, the validity of expressions (35) is confirmed. Additionally, the phase change (22) can be easily
determined by comparing the peak’s trajectories before and after the collision, without involving the time parameter.
When substituting the values of xb, yb, xa, and ya into (24), it becomes apparent that the peak’s amplitude remains
unchanged following the collision.
Case II: Let us consider the scenario where λ3 < 0. The proof follows a similar approach to the previous one, but
with a notable distinction: limt→±∞ f

(1)
LS yields the following expressions:

fb = B1,3B2,3 +B1,3ζ2 +B2,3ζ1 + ζ1ζ2 +B1,2, fa = B1,2 + ζ1ζ2. (31)

In this particular case, the trajectory after the collision precisely mirrors the trajectory before the collision in the
previous case. Conversely, the trajectory before the collision in this case aligns with the trajectory after the collision
in Case I.

Corollary 4.3. The condition for the avoidance of collision or the preservation of wave states during the interaction
between a lump wave and a soliton wave arises when λs = 0. Simply put, this condition is met when the velocity of
the lump wave matches the velocity of the soliton line, given by:

VL = VS , (32)

where VS =
[
− wiki

k2
i+p2

i
,− wipi

k2
i+p2

i

]
, and wi, VL, and λs are defined in (5), (13), and (19), respectively.

We investigate three scenarios of wave collisions for clearer insight. Firstly, we analyze the collision between a soliton
wave and a lump wave. Secondly, we explore the collision of two soliton waves and a lump wave. Lastly, we examine
the collision between one soliton wave and two lump waves.

Example 4.4. The interaction between a lump wave and a soliton wave solution (24), is illustrated in Figure 5. Upon
evaluating Eq. (19), we ascertain λ3 = −4.0771635 < 0. Consequently, we deduce hb(λ3) = 1 and ha(λ3) = 0.
Consequently, the lump wave initially follows the trajectory y = 0.3741x − 0.7167 before colliding with the soliton
wave. However, post-collision, the lump wave alters its course, shifting to y = 0.3741x. Additionally, the change
in phase, denoted by ∆b3 = 0.7167. Notably, the lump wave maintains consistent velocity and amplitude pre and
post collision, with V

[1]
1 = 0.5386 and A

[1]
1 = 1.964. Moreover, based on Corollary 4.3, specific conditions are

established to ensure that the interaction between lump and soliton waves never results in a collision. This phenomenon
is illustrated in Figure 3.
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(a) t = −10 (b) t = 0 (c) t = 10 (d)

Fig. 2. Superposition of a lump and a soliton wave with K1 = K∗
2 = 2

7 − 3 I, P1 = P∗
2 = 3

2 , α1 = 1, k3 = 4
5 , p3 = 4

3 , ϕ3 = 0, γ1 = 1, γ2 =
−1, γ3 = −1, γ4 = 2. Panel c: Trajectory of lump before the interaction y = 0.3741x− 0.7167 (orange line) and after the interaction y = 0.3741x (blue line)
for t = −20 (crimson) and t = 20 (cadet blue).

(a) t = −40 (b) t = 0 (c) t = 40

Fig. 3. In the superposition of a lump and a soliton wave these waves nevere colid if: K1 = K∗
2 = 2

7 − 3 I, P1 = P∗
2 = 3

2 , α1 = 1, k3 = 4
5 , p3 =

0.5402102468ϕ3 = −50, γ1 = 1, γ2 = −1, γ3 = −1, γ4 = 1.

Example 4.5. The solution represented by U (2)
LS = 6γ3

γ2
ln(f (2)

LS )xx, where

f
(2)
LS = eχ3 (B1,3B2,3 +B1,3θ2 +B2,3θ1 + θ1θ2 +B1,2) + eχ4 (B1,4B2,4 +B1,4ϖ2 +B2,4θ1 + θ1θ2 +B1,2)

+ Υ3,4eχ3+χ4(B1,3B2,3 +B1,3B2,4 +B1,3θ2 +B1,4B2,3 +B1,4B2,4 +B1,4θ2 +B2,3θ1 +B2,4θ1 + θ1θ2 +B1,2)

+ θ1θ2 +B1,2, (33)

combines one lump wave and two solitons. This solution is shown in Figure 4 for various times. After computation,
we confirm that λ3 = −1.834791667 < 0 and λ4 = −1.37944 < 0. Following Theorem 4.2, the trajectories of the
lump wave before and after the interaction are visually illustrated in Figure 4 (d), with the phase shift indicated by
∆b3 = 0.3986457101. Notably, the velocity and amplitude of the lump wave remain constant before and after the
collision, with values of V [2]

1 = 1.4422 and A[2]
1 = 6.48, respectively.

Example 4.6. To achieve a composite solution involving two lump waves and a line soliton we setN = 6, S = 1, and
L = 2 according to conditions (15). This results in the emergence of a novel solution denoted as U (3)

LS , as depicted in
Figure 5. For the first lump wave, we determine λ5 = −7

10 , while for the second lump wave, λ5 = 11
2 . As per Theorem

4.2, the trajectories before and after the collision of the first and second lump waves are delineated in Figure 5 (c).
The velocity and amplitude of the first lump wave are quantified as V [3]

1 = 5.4589 and A
[3]
1 = 2.88, respectively.

Correspondingly, for the second lump wave, we compute A[3]
2 = 0.72 and V [3]

2 = 1.36.

In this part, we present a method for examining the interaction between lump waves and breather waves. To obtain a
combined solution comprising L lump waves and B breather waves for Eq. (1), we start by setting N = 2(B + L)
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(a) t = −20 (b) t = 0 (c) t = 20 (d)

Fig. 4. Superposition of a lump and two soliton waves with K1 = K∗
2 = 1

2 − 3 I
2 , P1 = P∗

2 = 3
2 , α1 = 1, k3 = 3

4 , k4 = 1
2 , p3 = − 2

5 , ϕ3 = 30, ϕ4 =
−20, γ1 = 1, γ2 = −1, γ3 = −1, γ4 = 2. Panel c: Trajectory of the lump before the interaction y = −1.5x + 0.3986 (orange line) and after the interaction
y = −1.5x (blue line). for t = −10 (crimson) and t = 10 (cadet blue).

(a) t = −20 (b) t = 0 (c) t = 20 (d)

Fig. 5. Superposition of two lumps and a soliton wave with K1 = K∗
2 = 2 − I, K3 = K∗

4 = 1 − I, P1 = P∗
2 = 3, P3 = 3

5 , P4 = 3
5 , α1 = 1, k5 =

1, p5 = 1
2 , ϕ5 = −70, γ1 = 1, γ2 = −1, γ3 = −1, γ4 = 2 . Panel c: Trajectory of the first lump before the interaction y = 1.875x + 5.9343 (orange line)

and after the interaction y = 1.875x (blue line). Trajectory of the second lump before the interaction y = −1.8461x − 8.405 (black line) and after the interaction
y = −1.8461x (red line) for t = −15 (crimson) and t = 15 (cadet blue).

and then impose specific constraints on the N -soliton solution (3) as follows:

1 ≤ m ≤ 2L, k2m−1 = k∗2m = K2m−1ϵ, p2m−1 = p∗2m = P2m−1ϵ, ϕ2m−1 = ϕ2m = πi, ϵ → 0,

k2L+1 = k∗2L+2, ..., k2L+2B−1 = k∗2L+2B, p2L+1 = p∗2L+2, ..., p2L+2B−1 = q∗2L+2B,

ϕ2L+1 = ϕ∗
2L+2, ..., ϕ2L+2B−1 = ϕ∗

2L+2B. (34)

In a similar manner as previously, we can formulate a theorem delineating the path followed by the lump wave before
and after its interaction with the breather wave.

Proposition 4.7. The equations governing the trajectory of a lump wave before and after colliding with breather waves
for λs ̸= 0 are listed as follows:

(xb, yb) =

(
X +

N∑
s=2L+1

hb(Re(λs))κs, Y +
N∑

s=2L+1

hb(Re(λs))ϑs

)
,

(xa, ya) =

(
X +

N∑
s=2L+1

ha(Re(λ)s)κs, Y +
N∑

s=2L+1

ha(Re(λs))ϑs

)
, (35)

where X , Y , κs, ϑs, λs, hb and ha are given by Eqs. (17)-(20) and Re(λs) denotes the real part of λs.

Example 4.8. For N = 4, which corresponds to L = 1 and B = 1 according to conditions (34), a hybrid solution
comprising a breather wave and a lump wave can be derived. To visually illustrate the collision between these waves,
Figure 6 depicts the physical behavior of this interaction.
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(a) t = −10 (b) t = 0 (c) t = 10 (d)

Fig. 6. Superposition of a lump and a breather wave with K1 = K∗
2 = 3

7 + I
5 , P1 = P∗

2 = 1 − 2 I, α1 = 1, k3 = k∗
4 = 1

12 − I
8 , p3 = p∗

4 =

− 1
8 − I

6 , γ1 = 1, γ2 = 3, γ3 = 1, γ4 = 1, ϕ3 = ϕ∗
4 = 0. Panel c: Trajectory of the lump before the interaction y = −0.01196x − 0.01509 (red line) and

after the interaction y = −0.01196x (blue line). for t = −7 (crimson) and t = 7 (cadet blue),

The collision behavior observed in the superposition of the lump and soliton, as explored in Corollary 4.3, similarly
occurs here. That is, the lump wave and the breather wave either do not collide, or if they do, they remain in the same
state.

Corollary 4.9. When the condition Re(λs) = 0 is satisfied, lump and breather waves either do not collide or remain
in a collided state. This condition signifies that the velocity of the lump wave equals the velocity of the breather wave,
expressed as

VL = VB, (36)

where VB =
[
− Re(wi)Re(ki)

(Re(ki))2+(Re(pi)2
,− Re(wi)Re(pi)

(Re(pi))2+(Re(pi))2

]
, and wi and VL are defined in (5) and (13).

The collision between the lump wave and the breather wave, illustrated in Figure 7, occurs in such a way that the two
waves pass through each other without any interference or interaction. This behavior is achieved through carefully
chosen parameters that meet the conditions outlined in Corollary 4.9.

(a) t = −1 (b) t = 0 (c) t = 1

Fig. 7. In the superposition of a lump and a breather wave these waves nevere colid if: K1 = K∗
2 = 3

7 + I
5 , P1 = P∗

2 = 1 − 2 I, α1 = 1, k3 = k∗
4 =

1
12 − I

8 , p3 = p∗
4 = 0.6014984038 + 0.3775372501 I, ϕ3 = ϕ∗

4 = −10, γ1 = 1, γ2 = 3, γ3 = 1, γ4 = 1.

5. Conclusion

In this study, we obtainedN−soliton solution for Eq. (1) to investigate the dynamics of lumpwaves. By leveraging the
asymptotic behavior of soliton solutions and employing the long wave limit method, we successfully derived multiple
lump solutions. We also examined the interactions between lump waves and other wave types, including soliton
and breather waves. Notably, we calculated the trajectory of the peak before and after each collision, and identified
conditions under which the lump wave avoids collision with other waves. Furthermore, we demonstrated that if a
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collision occurs, the lump wave remains unchanged. Our research includes a comprehensive graphical analysis of the
solutions, accompanied by detailed explanations of key parameters such as velocity, amplitude, and peak location for
each wave.
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Abstract

In this paper, we investigate the existence of weak solutions for a second-order boundary value
problem. We show that problems in the following form{

−v′′ + p(x)v′ + q(x)v = λs1(x)f1(v) + s2(x)f2(v), α < x < β,

v(α) = 0 = v(β)

have at least four weak solutions.

1. Introduction

In this paper we study the existence of weak solutions for the following boundary value problem{
−v′′ + p(x)v′ + q(x)v = λs1(x)f1(v) + s2(x)f2(v), α < x < β,

v(α) = 0 = v(β)
(1)

where 0 ≤ α < β, λ ∈ R+, f1, f2 : R → R are non-constant continuous functions, s1, s2 ∈ L1(R), p, q ∈ L∞([α, β])
such that

ess infx∈[α,β]q(x) > − π2

(β − α)2
.

The boundary value problem discussed in this paper finds applications in diverse scientific and engineering fields,
including biology, mechanical engineering, chemical engineering, and physics. To address the problem, we utilize a
combination of functional analysis methods and variational techniques. Our approach to studying problem (1) builds
upon the multiplicity result previously established in [4, 5]. For the convenience of the reader, we provide this result
below.
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Theorem 1.1 ([4, Theorem 1]). Assume that Y be a real reflexive Banach space; J : Y → R be a coercive and sequen-
tially weakly lower semicontinuousC1 functional whose derivative admits a continuous inverse on Y ∗, I1, I2 : Y → R
are C1 functionals with compact derivative. Let there exist two points u⋄, v⋄ ∈ Y with the following properties:

(i) u⋄ is a strict local minimum of J and J(u⋄) = I1(u
⋄) = I2(u

⋄) = 0;

(ii) Φ(v⋄) ≤ Ψ1(v
⋄) and Ψ2(v

⋄) > 0.

Also, let for some σ ∈ R either

supλ>0 infv∈Y (λ(J(v)− I1(v)− σ)− I2(v))

< infv∈Y supλ>0(λ(J(v)− I1(v)− σ)− I2(v)) (2)

or

supλ>0 infv∈Y (J(v)− I1(v)− λ(σ + I2(v)))

< infv∈Y supλ>0(J(v)− I1(v)− λ(σ + I2(v))), (3)

and suppose that

max
{

lim sup
∥v∥→+∞

I1(v)

J(v)
, lim sup

v→u⋄

I1(v)

I(v)

}
< 1 (4)

and

max
{

lim sup
∥v∥→+∞

I2(v)

J(v)
, lim sup

v→u⋄

I2(v)

J(v)

}
≤ 0. (5)

Under such hypotheses, there exists λ∗ > 0 such that the equation J ′ = I ′1 + λ∗I ′2 has at least four solutions in
Y. More precisely, among them, one is u⋄ as a strict local, not global minimum and two are global minima of the
functional J − I1 − λ∗I2.

Remark 1.2. It is important to remark that, in view of Theorem 1 of [3], condition (2) is equivalent to the existence
of u⋄⋄, v⋄⋄ ∈ X satisfying

J(u⋄⋄)− I1(u
⋄⋄) < σ < J(v⋄⋄)− I1(v

⋄⋄)

and
sup(J−I1)−1(]−∞,σ]) I2 − I2(u

⋄⋄)

σ − J(u⋄⋄) + I1(u⋄⋄)
<

sup(J−I1)−1(]−∞,σ]) I2 − I2(v
⋄⋄)

σ − J(v⋄⋄) + I1(v⋄⋄)
.

Likewise, condition (3) is equivalent to the existence of u1, v1 ∈ X satisfying

I2(v
⋄⋄) < σ < J2(u

⋄⋄)

and
J(u⋄⋄)− I1(u

⋄⋄)− infI−1
2 ([σ,+∞[)(J − I1)

I2(u⋄⋄)− σ
<

J(v⋄⋄)− I1(v
⋄⋄)− infI−1

2 ([σ,+∞[)(J − I1)

I2(v⋄⋄)− σ
.

In the Sobolev space Y = W 1,2
0 ([α, β]), we adopt a norm defined as:

∥v∥ =

(∫ β

α

e−P (x)|v′(x)|2dx+

∫ β

α

e−P (x)q(x)|v(x)|2dx

) 1
2

,

where P (x) =
∫ x

0
p(t)dt for all x ∈ [α, β].
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Remark 1.3. In view of Proposition 2.1 in [1], we have

c1∥v∥Y ≤ ∥v∥ ≤ c2∥v∥Y

where

c1 =


(
minx∈[α,β] e

−P (x)
) 1

2 if ess infx∈[α,β]q(x) ≥ 0,[
minx∈[α,β] e

−P (x)
(
1 + ess infx∈[α,β]q(x)

(β−α)2

π2

)2] 1
2

if ess infx∈[α,β]q(x) < 0,

c2 =


[
maxx∈[α,β] e

−P (x)
(
1 + ess supx∈[α,β]q(x)

(β−α)2

π2

)2] 1
2

if ess supx∈[α,β]q(x) ≥ 0,(
maxx∈[α,β] e

−P (x)
) 1

2 if ess supx∈[α,β]q(x) < 0,

and ∥v∥Y =
(∫ β

α
|v′(x)|2dx

) 1
2

. Also, for all v ∈ Y

max
x∈[α,β]

|v(x)| ≤
√
β − α

2c1
∥v∥.

The following lemma of [2, 6] is useful in the proof of our results.

Lemma 1.4. Let s : [α, β] → [0,+∞[ be a non-zero function in L1([α, β]) and let f : R → R be a continuous
non-zero function, we define the functional Zs,f on Y as

Zs,f (v) =

∫ β

α

s(x)f(v(x))dx

for all v ∈ Y . Then, the following hold:

lim sup
∥v∥→0

Zs,f (v)

∥v∥2
≤ β − α

2c21
∥s∥L1([α,β]) max

{
0, lim sup

t→0

f(t)

|t|2

}
(6)

and
lim sup
∥v∥→+∞

Zs,f (v)

∥v∥2
≤ β − α

2c21
∥s∥L1([α,β]) max

{
0, lim sup

|t|→+∞

f(t)

|t|2

}
. (7)

Furthermore, if we define the functional Zs,F on Y by Zs,F (v) =
∫ β

α
s(x)F (v(x))dx, where F (t) =

∫ t

0
f(ξ) dξ for

all t ∈ R, then Zs,F is in C1(Y,R) and its derivative is given by

Z ′
s,F (v)(u) =

∫ β

α

s(x)f(v(x))u(x)dx

for all u, v ∈ Y . Also, due to the compact embedding ofY inC0([α, β]),we can infer that the mappingZ ′
s,F : Y → Y ∗

is a compact operator.

The weak solution to problem (1) can be characterized by the critical points of the functional

1

2
∥v∥2 − λZs1,F1

(v)− Zs2,F2
(v),

where v ∈ Y . In other words, a function v belongs to Y as a weak solution to problem (1) if and only if it is a critical
point of the given functional.
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2. Main result

Here, you will find the main result stated.

Theorem 2.1. Suppose f1, f2 : R → R are two continuous non-constant functions, and s1, s2 : [α, β] → [0,+∞[
are two non-constant functions in L1([α, β]). Let the following conditions hold:

(f1) max

{
lim sup
|t|→+∞

∫ t

0

f1(ξ) dξ

|t|2
, lim sup

t→0

∫ t

0

f1(ξ) dξ

|t|2

}
≤ 0,

(f2) supt∈R

∫ t

0

f2(ξ) dξ < +∞, lim sup
t→0

∫ t

0

f2(ξ) dξ

|t|2
<

4c21
(β − α)∥s2∥L1([α,β])

.

Additionally, suppose there are ρ >
√
β−α
2c1

max
{
1, (∥s2∥L1([α,β]) supR F2)

1
2

}
and a ∈ R satisfying the following

conditions:

(f3) 0 <

∫ a

0

f1(ξ) dξ = sup
|t|≤ρ

∫ t

0

f1(ξ) dξ < sup
t∈R

∫ t

0

f1(ξ) dξ,

(f4) |a|2 ≤ β − α

5c22
∥s2∥L1([α,β])

∫ a

0

f2(ξ) dξ.

Under these assumptions, there exists λ∗ > 0 such that the problem{
−v′′ + p(x)v′ + q(x)v = λ∗s1(x)f1(v) + s2(x)f2(v), α < x < β,

v(α) = 0 = v(β)

has at least four weak solutions.

Proof. Our objective is to apply Theorem 1.1. Let I1, I2 equal, respectively, to Zs2,F2
, Zs1,F1

as defined in Section 1.
For any v ∈ Y , let the functional J : Y → R we define the functional J : Y → R as follows

J(v) :=
1

2
∥v∥2.

The functional J is continuously differentiable, and its differential at any point v ∈ Y is given by:

J ′(v)(u) =

∫ β

α

e−P (x)(v′(x)u′(x) + q(x)v(x)u(x))dx

for all u ∈ Y. Also, J is sequentially weakly lower semicontinuous. Consider u⋄ = 0 and define v⋄(x) as follows:

v⋄(x) =


5a x−α

β−α , α ≤ x < α+ β−α
5 ,

a, α+ β−α
5 ≤ x ≤ β − β−α

5 ,

5a β−x
β−α , β − β−α

5 < y ≤ β.

So,

∥v⋄∥2Y =

∫ β

α

|v⋄′(x)|2dx =
10a2

β − α
.

It is evident that assumption (i) of Theorem 1.1 holds.
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Furthermore, in view of (f3) and (f4), we observe that

J(v⋄) ≤ 5c22a
2

β − α
≤ ∥s2∥L1([α,β])

∫ a

0

f2(ξ) dξ = Zs2,F2(v
⋄)

and
Zs1,F1(v

⋄) = ∥s1∥L1([α,β])

∫ a

0

f1(ξ) dξ > 0,

thus condition (ii) of Theorem 1.1 holds. For any v belonging to Y , it can be observed that

Zs2,F2
(v)

J(v)
=

2Zs2,F2
(v)

∥v∥2
,

and according to Lemma 1.4, we obtain

lim sup
∥v∥→+∞

Zs2,F2
(v)

J(v)
≤ β − α

2c21
∥s2∥L1([α,β]) max

{
0, lim sup

|t|→+∞

∫ t

0
f2(ξ) dξ

|t|2

}
≤ 0.

Furthermore, considering Lemma 1.4 and (f2), one has

lim sup
∥v∥→0

Zs2,F2
(v)

J(v)
≤ β − α

2c21
∥s2∥L1([α,β]) max

{
0, lim sup

ξ→0

∫ t

0
f2(ξ) dξ

|t|2

}
< 1.

Thus, (4) is satisfied. Similarly, based on Lemma 1.4 and (f1), we have

lim sup
∥v∥→+∞

Zs1,F1(v)

J(v)
≤ β − α

2c21
∥s1∥L1([α,β]) max

{
0, lim sup

|t|→+∞

∫ t

0
f1(ξ) dξ

|t|2

}
≤ 0

and

lim sup
∥v∥→0

Zs1,F1(v)

J(v)
≤ β − α

2c21
∥s1∥L1([α,β]) max

{
0, lim sup

t→0

∫ t

0
f1(ξ) dξ

|t|2

}
≤ 0.

Now, we verify the satisfaction of (2). With ρ >
√
β−α
2c1

, it is evident that

1− ∥s2∥L1([α,β]) sup
R

F2 <
2ρ2c21
β − α

− ∥s2∥L1([α,β]) sup
R

F2.

Thus, there exists σ ∈ R such that

max
{
0, 1− ∥s2∥L1([α,β]) sup

R
F2

}
< σ <

2ρ2c21
β − α

− ∥s2∥L1([α,β]) sup
R

F2

}
.

Suppose v belongs to Y such that J(v)− Zs2,F2(v) ≤ σ. Consequently, we obtain

∥v∥ ≤
(
2σ + ∥s2∥L1([α,β]) sup

R
F2

) 1
2

≤ 2ρc1√
β − α

.

Therefore, due to the fact that Y is embedded in C0([α, β]), one has{
v ∈ Y : J(v)− Zs2,F2

(v) ≤ σ
}
⊆
{
v ∈ Y : sup

x∈[α,β]

|v(x)| ≤ ρ

}
. (8)

To satisfy the equivalent form of (2) mentioned in Remark 1.2, select u⋄⋄ = v⋄ and set v⋄⋄ any constant d satisfying
F1(d) > sup[−ρ,ρ] F1. The existence of such a d is guaranteed by (f3). By virtue of (f4), we obtain

J(u⋄⋄)− Zs2,F2
(u⋄⋄) ≤ 5c22a

2

β − α
− ∥s2∥L1([α,β])

∫ a

0

f2(ξ) dξ ≤ 0 < σ.
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Furthermore, it is necessary that J(v⋄⋄)− Zs2,F2
(v⋄⋄) is strictly greater than σ. Otherwise, from (8), we would have

|d| ≤ ρ and F1(d) ≤ sup[−ρ,ρ] F1, which leads to a contradiction. Therefore, by virtue of (f3) and the selection of d,
we can easily deduce that

sup
(J−Zs2,F2

)−1(]−∞,ρ])

Zs1,F1
≤ Zs1,F1

(u⋄⋄)

and
sup

(J−Zs2,F2
)−1(]−∞,σ])

Zs1,F1
≤ Zs1,F1

(v⋄⋄).

Thus, the following inequalities are valid:

sup(J−Zs2,F2
)−1(]−∞,σ]) Zs1,F1 − Zs1,F1(u

⋄⋄)

σ − J(u⋄⋄) + Zs2,F2
(u⋄⋄)

< 0 <
sup(J−Zs2,F2

)−1(]−∞,σ]) Zs1,F1 − Zs1,F1(v
⋄⋄)

ρ− Φ(v1) + Tb,G(v1)

furthermore, with each assumption of Theorem 1.1 being met, the proof is now finished

.
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Abstract

This paper examines an integro-differential equation that incorporates a positive parameter. By
employing the variational method and critical point theory, we demonstrate that when the con-
trol parameter is within a suitable range, our problem possesses a nontrivial weak solution. It is
important to emphasize that the outcomes of our findings do not rely on any symmetry assump-
tions.

1. Introduction

In this study, we investigate the existence of weak solutions for the following Dirichlet boundary value problem{
−(a(x)u′(x))′ + σb(x)

∫ β

α
b(x)u(x)dx = λg(x, u(x)) in (α, β),

u(α) = 0 = u(β).
(1)

Here, we consider a positive parameter λ, 0 ≤ α < β, and an L1-Carath’eodory function g : [α, β]× R → R.
Furthermore, the coefficient a belongs to the class C1([α, β]) and satisfies a− := ess, infx∈[α,β] a(x) > 0. Similarly,
the coefficient b is anL2 function defined on the interval [α, β], with the condition that b is not identically zero. Finally,
we introduce a real constant σ that satisfies the inequality:

σ > − π2a−

(β − α)2∥b∥2L2

. (2)

Our aim is to establish the existence of weak solutions for the given boundary value problem, taking into account the
specified conditions and constraints. For this purpose, we will rely on the variational principles proposed by Ricceri
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2Email address: fatemehnohtani210@gmail.com
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and Bonanno [8, Theorem 2.5] (also see [3, Theorem 5.1 and Proposition 2.1]). With the reader’s convenience in
consideration, we would like to present the following theorem, derived from Theorem 5.1 and Proposition 2.1 in the
paper [3], as the main tool for establishing the results in the next section.
For X ̸= ∅, Φ,Ψ : X → R, we define the functions

β(r1, r2) := inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[)
Ψ(u)−Ψ(v)

r2 − Φ(v)
(3)

and

ρ(r1, r2) := sup
v∈Φ−1(]r1,r2[)

Ψ(v)− supu∈Φ−1(]−∞,r1])
Ψ(u)

Φ(v)− r1
(4)

for all r1, r2 ∈ R, with r1 < r2.

Theorem 1.1 ([3, Theorem 5.1]). LetX be a real Banach space and let Φ,Ψ : X → R be two continuously Gâteaux
differentiable functions. Assume that there are r1, r2 ∈ R, with r1 < r2, such that

β(r1, r2) < ρ(r1, r2),

where β and ρ are given by (3) and (4), and for each λ ∈
]

1
ρ(r1,r2)

, 1
β(r1,r2)

[
the functional Iλ = Φ − λΨ satisfies

[r1](PS)[r2]-condition. Then, for eachλ ∈
]

1
ρ(r1,r2)

, 1
β(r1,r2)

[
there isu0,λ ∈ Φ−1(]r1, r2[) such that Iλ(u0,λ) ≤ Iλ(u)

for all u ∈ Φ−1(]r1, r2[) and I ′λ(u0,λ) = 0.

To facilitate comprehension in the next section, we will now introduce some notations that will be utilized later in the
paper. Put

H1
0 ([α, β]) :=

{
u ∈ L2([0, 1]) : u′ ∈ L2([α, β]), u(α) = u(β) = 0

}
.

Consider X = H1
0 ([α, β]) equipped with the standard norm defined as follows:

∥u∥ :=

(∫ β

α

|u′(x)|2 dx

)1/2

.

Let λ1 represent the first eigenvalue of the problem{
−u′′ = λu in (α, β),
u(α) = 0 = u(β),

Based on a well-known result, we have

λ1 = min
u∈X, u ̸=0,

∥u′∥L2

∥u∥L2

=
π2

(β − α)2
. (5)

Proposition 1.2. Consider (2). Then, the norm ∥u∥σ defined by

∥u∥σ =

∫ β

α

a(x)|u′(x)|2 + σ

(∫ β

α

b(x)u(x)

)2
1/2

serves as a norm on X and is equivalent to the standard norm. Specifically, one has

c1∥u∥ ≤ ∥u∥σ ≤ c2∥u∥
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for all u ∈ X, where c1, c2 with 0 < c1 ≤ c2, are given by

c1 =

(
a− +min

{
0,

σ(β − α)2∥b∥2L2

π2

})1/2

,

c2 =

(
a+ +max

{
0,

σ(β − α)2∥b∥2L2

π2

})1/2

,

where a+ = ess supx∈[α,β] a(x).

The article [9] contains the proof for the proposition stated above.

Remark 1.3. The scalar product

⟨u, v⟩σ =

∫ β

α

a(x)u′(x)v′(x)dx+ σ

∫ β

α

b(x)u(x)dx

∫ β

α

b(x)v(x)dx

clearly defines the norm ∥.∥σ .

Remark 1.4. By utilizing Proposition 2.1 of [1] and Proposition (1.2), we can derive the following inequality:

max
x∈[α,β]

|u(x)| ≤
√
β − α

2c1
∥u∥σ

for all u ∈ X.

A function u ∈ X is considered a weak solution of problem (1) if it meets the following criterion:∫ β

α

a(x)u′(x)v′(x) dx+ σ

∫ β

α

b(x)u(x)dx

∫ β

α

b(x)v(x)dx− λ

∫ β

α

g(x, u(x))v(x) dx = 0

for all v ∈ X .

2. Main result

This section focuses on the main outcomes.
Let ν be a given non-negative constant and τ be a positive constant such that c1ν ̸= 2c2τ.We define

Tτ (ν) :=

∫ β

α
sup|t|≤ν G(x, t) dx−

∫ β− β−α
4

α+ β−α
4

G(x, τ) dx

2c21ν
2

β−α − 4c22τ
2

β−α

.

Theorem 2.1. Suppose that condition (2) holds, and let there exist a non-negative constant ν1 and two positive con-
stants ν2 and τ satisfying ν1 <

√
2 τ and τ < c1√

2c2
ν2. Additionally, assume the following properties:

(A1) G(x, t) ≥ 0 for all (x, t) ∈ ([α, α+ β−α
4 ] ∪ [β − β−α

4 , β])× [0, τ ];

(A2) Tτ (ν2) < Tτ (ν1).

Then, for each λ ∈] 1
Tτ (ν1)

, 1
Tτ (ν2)

[, problem (1) possesses at least one nontrivial weak solution u0 ∈ X such that

2c1ν1√
β − α

< ∥u0∥σ <
2c1ν2√
β − α

.
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Proof. To utilize Theorem 1.1, we define the functionals Φ,Ψ : X → R for any u ∈ X as follows

Φ(u) :=
1

2
∥u∥2σ, Ψ(u) :=

∫ β

α

G(x, u(x)) dx.

The functionalsΦ andΨ are well-defined and continuously differentiable. At the point u ∈ X , their derivativesΦ′(u)
and Ψ′(u) are operators defined as:

Φ′(u)(v) =

∫ β

α

a(x)u′(x)v′(x) dx+ σ

∫ β

α

b(x)u(x)dx

∫ β

α

b(x)v(x)dx,

Ψ′(u)(v) =

∫ β

α

g(x, u(x))v(x) dx

for any v ∈ X, respectively. In addition, the derivative Φ′ has a continuous inverse on X∗.
Also, sinceΨ is sequentially weakly upper semicontinuous,Ψ′ is a compact operator. Hence, according to Proposition
(4), Φ− λΨ satisfies [r1](PS)[r2]-condition where r1 =

2c21ν
2
1

β−α and r2 =
2c21ν

2
2

β−α .
Now, we define v ∈ X as follows:

v(x) =


4τ x−α

β−α , x ∈
[
α, α+ β−α

4

[
,

τ, x ∈
[
α+ β−α

4 , β − β−α
4

]
,

4τ β−x
β−α , x ∈

]
β − β−α

4 , β
]
.

The following inequalities hold, which can be easily verified:

4c21τ
2

β − α
≤ Φ(v) ≤ 4c22τ

2

β − α
. (6)

From the conditions ν1 <
√
2 τ and τ < c1√

2c2
ν2 it follows r1 < Φ(w) < r2.

Considering the definition of Φ, we note that

Φ−1(]−∞, r[) = {u ∈ X : Φ(u) < r2}
⊆ {u ∈ X : ∥u∥2σ < 2r2}
⊆ {u ∈ X : |u(x)| < ν2 for all x ∈ [α, β]} .

Hence, we can conclude that

sup
u∈Φ−1(]−∞,r2[)

Ψ(u) = sup
u∈Φ−1(]−∞,r2[)

∫ β

α

G(x, u(x)) dx

≤
∫ β

α

sup
|t|≤ν2

G(x, t) dx.

By employing the same reasoning as earlier, we obtain

sup
u∈Φ−1(]−∞,r1[)

Ψ(u) ≤
∫ β

α

sup
|t|≤ν1

G(x, t) dx.

Given that 0 ≤ v(x) ≤ τ for each x ∈ [α, β], the condition (A1) guarantees that∫ α+ β−α
4

α

G(x, v) dx+

∫ β

β− β−α
4

G(x, v) dx ≥ 0,
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and so,

Ψ(w) ≥
∫ β− β−α

4

α+ β−α
4

G(x, τ) dx.

Consequently, we deduce that

β(r1, r2) ≤
supu∈Φ−1(]−∞,r2[)

Ψ(u)−Ψ(v)

r2 − Φ(v)∫ β

α
sup|t|≤ν2

G(x, t) dx−
∫ β− β−α

4

α+ β−α
4

G(x, τ) dx

2c21ν
2
2

β−α − 4c22τ
2

β−α

= Tτ (ν2).

In addition, one has

ρ(r1, r2) ≥
Ψ(v)− supu∈Φ−1(]−∞,r1])

Ψ(u)

Φ(v)− r1

≥

∫ β

α
sup|t|≤ν1

G(x, t) dx−
∫ β− β−α

4

α+ β−α
4

G(x, τ) dx

2c21ν
2
1

β−α − 4c22τ
2

β−α

= Tτ (ν1).

Therefore, considering assumption (A2), we can infer that β(r1, r2) < ρ(r1, r2). Consequently, by applying Theo-
rem 1.1, we can conclude that for every λ ∈] 1

Tτ (ν1)
, 1
Tτ (ν2)

[, considering that the weak solutions of the problem (1)
correspond precisely to the solutions of the equation Φ′(u)− λΨ′(u) = 0, the desired conclusion follows.

We now present the following result, which directly follows from Theorem 2.1:

Theorem 2.2. Let ν and d be positive constants satisfying τ < c1√
2c2

ν, and assume that the conditions (A1) and (2)
are fulfilled. Additionally, suppose the following assumptions hold:

(A3)
∫ β
α

sup|t|≤ν G(x,t) dx

ν2 <
c21
2c22

∫ β− β−α
4

α+
β−α

4

G(x,τ) dt

τ2 ,

(A4) G(x, 0) = 0 for every x ∈ [α, β].

Then, for each

λ ∈

 4c22τ
2

β−α∫ β− β−α
4

α+ β−α
4

G(x, τ) dx
,

2c21ν
2

β−α∫ β

α
sup|t|≤ν G(x, t) dx

 ,

there exists at least one nontrivial weak solution u0 ∈ X to problem (1) such that |u0(x)| < ν for all x ∈ [α, β].

Proof. By setting ν1 = 0 and ν2 = ν, we can establish the desired result by utilizing Theorem 2.1. Specifically,
considering assumption (A3), we have:

Tτ (ν) <

(
1−

4c22τ2

β−α

2c21ν2

β−α

)∫ β

α
sup|t|≤ν G(x, t) dx

2c21ν
2

β−α − 4c22τ
2

β−α

=

∫ β

α
sup|ν|≤ν G(x, t) dx

2c21ν
2

β−α

.
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In addition, considering assumption (A4), we have the following:

Tτ (0) =

∫ β− β−α
4

α+ β−α
4

G(x, τ) dx

2c21ν
2

β−α

.

Therefore, the conclusion can be derived directly from Theorem 2.1.
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Abstract

Practical stability of the fractional discrete-time linear systems by the state feedback matrix is
investigated. First our system by the definitions of fractional order and a new state vector is
simplified to a standard system, and it is one of the advantages of our method, because working
with standard systems is easier than. Then by putting a state feedback in standard system, closed-
loop of standard system is determined. It is enough to assign desired eigenvalues to the last
system by similarity transformation. At the end it is showed which inputs and states converge
to zero by an example.

1. Introduction

Fractional discrete-time and continuous-time linear systems have been of great interest recently among researches.
Especially in the last few decades there has been an explosion of research activities on the application of fractional
calculus in various fields of science such as physics, mechanics, chemistry, engineering, hydrology application, poly-
mer theology, system biology and etc [1–4].
The problem of stability of positive fractional discrete-time linear systems is addressed in the papers [9–12]. But in
many applications, just stability of controlled object is not enough, and it is required that the poles of the closed-loop
system should lie in a certain restricted region of stability. Some recent contributions to the theory of fractional dif-
ferential equations can be found in [5–8].
In this paper we investigate a method for finding the solution of fractional discrete-time linear systems with the state
feedback. In section2 the fractional linear system is converted to a standard linear system by the definition of fractional
order system and defining a new state vector and then by a state feedback a closed-loop of standard system is defined.
In section 3 a method based on similarity transformation for assigning of eigenvalues to standard system is displayed.

∗Talker
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In section 4 for more intuitive steps is written an algorithm and a numerical example.
The method in this paper has some superiority that we do not have in papers [9, 11, 17] like, no have difficult equations
to take our time and make some errors. Also we deal with standard system which working with this system is surely
easier than fractional system. In last section we bring a numerical example and show that our method is applicable
and all states and inputs converge to the balanced point, i.e., zero.

2. Positive fractional systems

In this paper the following definition of the fractional discrete derivative

∆αxk =
k∑

j=0

(−1)j
(
α

j

)
xk−j , 0 < α < 1 , (1)

will be used [8], where α ∈ R is the order of the fractional difference, and(
α

j

)
=

{
1 j = 0
α(α−1)···(α−j+1)

j! j = 1, 2, · · · (2)

Consider the fractional discrete linear system, described by the state-space equation

∆αxk+1 = Axk +Buk , k ∈ Z+ (3)

where xk ∈ Rn, uk ∈ Rm are respectively the state and input vectors, A,B are real matrixes of appropriate dimen-
sions.
Using the definition (1) we may write the equation (3) in the form

xk+1 +

k+1∑
j=1

(−1)j
(
α

j

)
xk−j+1 = Axk +Buk (4)

From (2) it follows that the coefficients

cj = cj(α) = (−1)j
(

α

j + 1

)
, j = 1, 2, · · · (5)

Strongly decrease for increasing j and they are positive for 0 < α < 1. In practical problems it is assumed that j is
bounded by some natural number h.

In this case the equation (4) takes the form

xk+1 = Aαxk +

h∑
j=1

cjxk−j +Buk , k ∈ Z+ (6)

where
Aα = A+ Inα. (7)

Note that the equation (6) describe a linear discrete-time system with h delays in state.

Definition 2.1. [8] The positive fractional system (4) is called practically stable if and only if the system (6) is asymp-
totically stable.

Defining the new state vector

x̄k =


xk

xk−1

...
xk−h

 (8)
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we may write the equation (6) in the form

x̄k+1 = Āx̄k + B̄uk , k ∈ Z+ (9)

where

Ā =


Aα c1In · · · ch−1In chIn
In 0 · · · 0 0
0 In · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · In 0

 ∈ Rn̄×n̄
+

B̄ =


B
0
...
0

 ∈ Rn̄×m
+ , n̄ = (1 + h)n. (10)

3. Problem statement

Consider the linear system (9) with rank(B̄) = m, and with the state feedback

uk = Kxk (11)

whereK ∈ Rm×n
+ is a gain matrix.

By substituting (11) in (9) we obtain the closed-loop system

x̄k+1 = (Ā+ B̄K)x̄k = Γx̄k (12)

In fact K is chosen, such that the closed-loop system eigenvalues placed inside the unit circle then the system (12) is
asymptotically stable.

4. Similarity transformation

Consider the state transformation
x̄k = T x̃k (13)

where T can be obtained by elementary similarity operations as described in [9]. By substituting (13) in (9) vector
companion equation is

x̃ = Ãx̃k + B̃uk.

In this way, Ã = T−1ĀT and B̃ = T−1B̄ are in a compact canonical form known as vector companion form:

Ã =

 G0

· · · · · · · · ·
In̄−m On̄−m×m

 , B̃ =

 B0

· · · · · ·
On̄−m×m


Here G0 is anm× n̄ matrix and B0 is anm×m upper triangular matrix. Note that if the Kronecker invariants of the
pair (B̄, Ā) are regular, then Ã and B̃ are always in the above form [9]. In the case of irregular Kronecker invariants,
some rows of In̄−m in Ã are displaced [10]. It may also be concluded that if the vector companion form of Ã obtained
from similarity operations has the above structure, then the Kronecker invariants associated with the pair (B̄, Ā) are
regular [9].
The state feedback matrix which assigns all the eigenvalues to zero, for the transformed pair (B̃, Ã), is then chosen as

u = −B−1
0 G0x̃ = F̃ x̃ (14)
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which results in the primary state feedback matrix for the pair (B̄, Ā) defined as

Fp = F̃ T−1 (15)

Therfore the transformed closed-loop matrix Γ̃0 = Ã+ B̃F̃ assumes a compact Jordan form with zero eigenvalues

Γ̃0 =

 Om×n

· · · · · ·
In−m On−m×m


Theorem 4.1. Let D be a block diagonal matrix in the form

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 (16)

If such block diagonal matrix D with self conjugate eigenvalue spectrum Λ = {λ1, λ2, · · · , λn} is added to the
transformed closed-loop matrix Γ̃0, then the eigenvalues of the resulting matrix is the eigenvalues in the spectrum.

Proof. The sum of Γ̃0 with D has the form:

Aλ = Γ̃0 +D =

 Om×n

· · · · · ·
In−m On−m×m

+


λ1 · · · 0
0 · · · 0
...

. . .
...

0 · · · λn



=



λ1 0 · · · 0 0 · · · 0
0 λ2 · · · 0 0 · · · 0
...

. . .
... 0 0

...
...

0 0 · · · λk 0 · · · 0
I1 0 · · · 0 λk+1 · · · 0
...

. . . · · · 0 0
. . .

...
0 · · · Ir 0 0 · · · λn


By expanding det(Aλ−λI) along the first row it is obvious that the eigenvalues ofAλ are the same as the eigenvalues
of D.
For the case of irregular Kronecker invariants [10] only some of the unit columns of In−m are displaced, since the
unit elements are always below the main diagonal, the proof applies in the same manner.

Hence, the matrix Ãλ thus obtained will be in primary vector companion form such that:

Ãλ =

 Gλ

· · · · · ·
In−m O


where G0 is anm× n matrix.

Let
K̃λ = B−1

0 Gλ

and
K̃ = F̃ + K̃λ = B−1

0 (−G0 +Gλ)
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.
then the feedback matrix of the pair (Ã, B̃) is defined by:

K = K̃T−1 = B−1
0 (−G0 +Gλ)T

−1 (17)

If the above conditions are satisfied then the problem of stabilization can be solved by using the following algorithm:

5. Algorithm

In this section we first give an algorithm for finding a state feedback matrix which assigns zero eigenvalues to the
closedloop system. Then we determine a state feedback matrix which assigns the closed-loop eigenvalues in specified
spectrum.

Input: The controllable pair (A,B) and the primary state feedback Fp, B
−1
) and T−1 which are calculated by the

algorithm proposed by Karbassi and Bell [9, 10].

Step 1. Construct the block diagonal matrix D in the form (16).

Step 2. Find set Aλ = Γ̃0 +D

Step 3. Transform Aλ to primary vector companion form Ãλ as in (18) using elementary similarity operations as spec-
ified in corollary of theorem (4.1) .

Step 4. Using the formula (17) compute the state feedback matrixK.

Example 5.1. Consider the fractional system

∆αxk+1 = Axk +Buk , K ∈ Z+

with α = 0.9, h = 2 and matrixes

A =

 1 2 3
−2 1 −1
4 −1 2

 , B =

 1 2 1
−1 1 −1
1 1 0

 .

the state feedback is chosen so that so that the eigenvalues of the closed loop system are placed in the spectrum.

Sincem,n = 3, using (5), (7) and (10) we obtain

c1 =
−α(α− 1)

2
= 0.45 , c2 = 0.0165 ,

n̄ = (1 + h).n = 9
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and

Ā =



1.9 2 3 0.045 0 0 0.0165 0 0
−2 1.9 −1 0 0.045 0 0 0.0165 0
4 −1 2.9 0 0 0.045 0 0 0.0165
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0


9×9

B̄ =



1 2 1
−1 1 −1
1 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


3×9

The open loop eigenvalues are

{5.5393, 1.7027,−0.5272, 0.1904,−0.1644,−0.0043± 0.0544i,−0.0161± 0.0971i}

which some of them are outside unit circle then system is unstable. In order to locate them inside the unit circle, first
the feedback matrix where assigns zero to the eigenvalues of the closed loop system we obtain

Fp =

−4.0333 2.3 −2.2333 0.015 0.015 −0.045 0.0055 0.0055 −0.0165
0.0333 −1.3 −0.6667 −0.015 −0.015 0 −0.0055 −0.0055 0
2.0667 −1.7 0.5667 −0.03 0.015 0.045 −0.011 0.0055 0.0165


Now we obtain the feedback matrix so that the eigenvalues of the closed loop system are placed in the spectrum

Λ = {0.1− 0.2 i, 0.3 i, −0.5 + 0.1 i, 0.1 + 0.2 i, −0.3 i, −0.5− 0.1 i, 0.6, −0.4, 0.9}

Using (36) we obtain the state feedback matrix

K =

−4.3 2.0333 −1.4333 0.0717 0.0717 −0.2150 −0.0045 −0.0045 0.0135
−0.1 −1.4333 −0.6667 −0.045 −0.045 0 −0.0175 −0.0175 0
2 −1.6667 0.6667 0.3967 −0.1983 −0.595 0.1450 −0.0725 −0.2175


It can be verified that the eigenvalues of the closed-loop system are inside the unit circle the specified spectrum.
The following forms state and input vectors to move your balance point.
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Fig. 1. State vectors to move your balance point

6. Concluding remarks

Amethod for finding the solution of fractional discrete-time linear systems with the state feedback is investigated. First
by the definition of fractional order system and defining a new state vector, the fractional linear system is converted
to a standard linear system. This is one of the advantages of this method, because we deal with standard system and it
is more comfortable than using fractional systems. Second a method based on similarity transformation for assigning
of eigenvalues to standard system is used. Finally an algorithm and an example for more intuitive is written and
convergence of all inputs and states to zero is showed.
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Abstract

Let ∆ be a simplicial complex on vertex set [n]. It is shown that if ∆ is cohen macaulay sim-
plicial complexes of codimension 2, then ∆ is vertex decomposable and Stanley’s conjecture
holds forK[∆]. As a consequence we show that if∆ is a quasi-forest simplicial complex,Then
∆∨ is vertex decomposable.

1. Introduction

Let ∆ be a simplicial complex on vertex set [n] = {1, · · · , n}, i.e. ∆ is a collection of subsets of [n] with the the
property that if F ∈ ∆, then all subsets of F are also in ∆. An element of ∆ is called a face of ∆, and the maximal
faces of∆ under inclusion are called facets. We denote by F(∆) the set of facets of∆. The dimension of a face F is
defined as dimF = |F | − 1, where |F | is the number of vertices of F . The dimension of the simplicial complex∆ is
the maximum dimension of its facets. A simplicial complex∆ is called pure if all facets of∆ have the same dimension.
Otherwise it is called non-pure. We denote the simplicial complex ∆ with facets F1, . . . , Ft by ∆ = ⟨F1, . . . , Ft⟩.
A simplex is a simplicial complex with only one facet. For the simplicial complexes ∆1 and ∆2 defined on disjoint
vertex sets, the join of∆1 and∆2 is ∆1 ∗∆2 = {F ∪G : F ∈ ∆1, G ∈ ∆2}.
For the face F in ∆, the link, deletion and star of F in ∆ are respectively, denoted by link∆F , ∆ \ F and star∆F
and are defined by link∆F = {G ∈ ∆ : F ∩ G = ∅, F ∪ G ∈ ∆} and ∆ \ F = {G ∈ ∆ : F ⊈ G} and
star∆F = ⟨F ⟩ ∗ link∆F .
Let R = K[x1, . . . , xn] be the polynomial ring in n indeterminates over a field K. To a given simplicial complex ∆
on the vertex set [n], the Stanley–Reisner ideal is the squarefree monomial ideal whose generators correspond to the
non-faces of∆. We say the simplicial complex∆ is Cohen–Macaulay, ifK[x1, . . . , xn]/I∆ is Cohen–Macaulay .
The facet ideal of ∆ is the squarefree monomial ideal generated by monomials xF =

∏
i∈F xi where F is a facet

of ∆ and is denoted by I(∆). The complement of a face F is [n] \ F and is denoted by F c. Also, the complement
of the simplicial complex ∆ = ⟨F1, . . . , Fr⟩ is ∆c = ⟨F c

1 , . . . , F
c
r ⟩. The Alexander dual of ∆ is defined by ∆∨ =
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{F c : F ̸∈ ∆}. It is known that for the complex∆ one has I∆∨ = I(∆c). Also we callK[∆] := S/I∆ the Stanley-
Reisner ring of∆. One of interesting problems in combinatorial commutative algebra is the Stanley’s conjectures. The
Stanley’s conjectures are studied by many researchers. Let R be a Nn- graded ring and M a Zn- graded R- module.
Then Stanley [2] conjectured that

depth (M) ≤ sdepth (M).

He also conjectured in [3] that each Cohen-Macaulay simplicial complex is partitionable. Herzog, Soleyman Jahan and
Yassemi in [5] showed that the conjecture about partitionability is a special case of the Stanley’s first conjecture. In this
paper, we show that if ∆ is cohen macaulay simplicial complexes of codimension 2, then ∆ is vertex decomposable
and Stanley’s conjecture holds forK[∆].

2. Preliminaries

In this section we fix some notation and recall some definitions. For a monomial u = xa1
1 . . . xan

n in R, we denote the
support of u by supp (u) and it is the set of those variables xi that ai ̸= 0. Letm be another monomial in R. If for all
xi ∈ supp (u), xai

i ∤ m then we set [u,m] = 1, otherwise we set [u,m] ̸= 1.
For a monomial ideal I ⊂ R we set Iu = (mi ∈ G(I) : [u,mi] ̸= 1) and
Iu = (mi ∈ G(I) : [u,mi] = 1).
The concept of sheddingmonomial and k-decomposablemonomial ideals was first introduced byRahmati andYassemi
in [7].

Definition 2.1. Let I be a monomial ideal and G(I) = {m1, . . . ,mr}. The monomial u = xa1
1 . . . xan

n is called a
shedding monomial of I if Iu ̸= 0 and for each mi ∈ G(Iu) and each xl ∈ supp (u) there exists mj ∈ G(Iu) such
that ⟨mj : mi⟩ = ⟨xl⟩.

Definition 2.2. Let I be a monomial ideal and G(I) = {m1, . . . ,mr}. Then I is a k-decomposable ideal if r = 1 or
else has a shedding monomial u with | supp (u) |≤ k + 1 such that the ideals Iu and Iu are k-decomposable. Note
that since | G(I) | is finite, the recursion procedure will stop.

A0-decomposable ideal is called variable decomposable. Also, amonomial ideal is decomposable if it is k-decomposable
for some k ≥ 0.

Definition 2.3. A simplicial complex ∆ is recursively defined to be vertex decomposable, if it is either a simplex, or
else has some vertex v so that,

(a) Both∆ \ v and link∆(v) are vertex decomposable, and

(b) No face of link∆(v) is a facet of∆ \ v.

A vertex v which satisfies in condition (b) is called a shedding vertex.

A monomial ideal I ⊂ R = K[x1, . . . , xn] generated in a single degree is called polymatroidal if for any u, v ∈ G(I)
such that degxi

(u) > degxi
(v) there an index j with degxj

(u) < degxj
(v) such that xj(u/xi) ∈ G(I). A squarefree

polymatroidal ideal is called matroidal. Also, a monomial ideal I is called weakly polymatroidal if for every two
monomials u = xa1

1 . . . xan
n > v = xb1

1 . . . xbn
n in G(I) such that a1 = b1, . . . , at−1 = bt−1 and at > bt, there exists

j > t such that xt(v/xj) ∈ I . It is clear from the definition that a polymatroidal ideal is weakly polymatroidal.
The following results from [7] are crucial in this paper.

Theorem 2.4. [7, Theorem 2.10] Let ∆ be a (not necessarily pure) d-dimensional simplicial complex on vertex set
[n]. Then ∆ is k-decomposable if and only if I∆∨ is k-decomposable, where k ≤ d.

Proposition 2.5. [7, Lemma 3.8] If I is an squarefree monomial ideal generated in degree 2 which has a linear
resolution, then after suitable renumbering of the variables, I is weakly polymatroidal.

Theorem 2.6. [7, Theorem 3.5] Let I ⊂ R be a weakly polymatroidal ideal. Then I is 0-decomposable.
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3. Vertex decomposability of cohen macaulay simplicial complexes of codimension 2

As the main result of this section, it is shown that if∆ is cohen macaulay simplicial complexes of codimension 2, then
∆ is vertex decomposable and Stanley’s conjecture holds forK[∆].

Theorem 3.1. If ∆ is a Cohen-Macaulay simplicial complex of codimension 2, then ∆ is vertex decomposable.

Proof. Since ∆ is Cohen-Macaulay simplicial complex of codimension 2, by a result of Eagon and Reiner [6], I∆∨

is a squarefree monomial ideal which has 2-linear resolution. Hence by Proposition 2.5 and Theorem 2.6, I∆∨ is
0-decomposable. It follows from Theorem 2.4 that∆ is vertex decomposable.

As an immediate consequence we have the following:

Corollary 3.2. Let ∆ be a quasi-forest simplicial complex which is not a simplex. Then ∆∨ is vertex decomposable.

Proof. It is proved in [8] that each quasi-forest is a flag complex. So I∆ is generated by quadratic monomials and
hence ht(I∆∨) = 2. Since ∆ is quasi-forest by [8, Corollary 5.5], we have pd (K[∆∨]) = 2. Therefore ∆∨ is
Cohen-Macaulay of codimension 2 and by Theorem 3.1, ∆∨ is vertex decomposable.

Stanley conjectured in [2] the upper bound for the depth ofK[∆] as the following:

depth (K[∆]) ≤ sdepth (K[∆]).

Also we recall another conjecture of Stanley. Let ∆ be again a simplicial complex on {x1, . . . , xn} with facets
G1, . . . , Gt. The complex ∆ is called partitionable if there exists a partition ∆ =

∪t
i=1[Fi, Gi] where Fi ⊆ Gi are

suitable faces of ∆. Here the interval [Fi, Gi] is the set of faces {H ∈ ∆ : Fi ⊆ H ⊆ Gi}. In [3] and [4] re-
spectively Stanley conjectured each Cohen-Macaulay simplicial complex is partitionable. This conjecture is a special
case of the previous conjecture. Indeed, Herzog, Soleyman Jahan and Yassemi [5] proved that for Cohen-Macaulay
simplicial complex∆ on {x1, . . . , xn} we have that depth (K[∆]) ≤ sdepth (K[∆]) if and only if∆ is partitionable.
Since each vertex decomposable simplicial complex is shellable and each shellable complex is partitionable. Then as
a consequence of our results we obtain :

Corollary 3.3. Let ∆ be a cohen macaulay simplicial complexes of codimension 2 on vertex set [n]. Then ∆ is
partitionable and Stanley’s conjecture holds for K[∆].

Proof. Since each vertex decomposable simplicial complex is shellable and each shellable complex is partition-
able.Therefore by theorem 3.1 proof is completed.
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Abstract

In this paper, the notions Fully cancellation and fully cocancellation S-act of monoid S-acts is
studied. The behaviour of these is investigate. Also, the relation between fully cancellation and
fully cocancellaetion S-acts is studied.

1. Introduction and preliminaries

Acts over monoids, as universal algebras with unary operations, appear as basic mathematical models of some im-
portant notions in theoretical computer science and physics like automata, dynamical systems, etc. In [1] and [2] the
notions fully cancellation and fully cocancellation modules is studied. In this study, we study these notions , in cate-
gory of S-acts on monoids and investigate some properties of them.
First we give some preliminary needed in the following.
Suppose that S be a monoid. By a (right) S-act or act over S, we mean a non-empty set A jointly a map A × S →
A, (a, s) 7→ as, so that for all a ∈ A, s, r ∈ S, (as)r = a(sr) and a1 = a.
A subset B ⊆ A that is non-empty is called a subact of A if for all b ∈ B and s ∈ S, bs ∈ B. Let A and B be two
S-acts. A mapping f : A → B is called a homomorphism if for all a ∈ A, s ∈ S, f(as) = f(a)s . The category
of all S-acts as well as all homomorphisms between them is denoted by Act-S. In this category, monomorphisms are
exactly injective homomorphisms.
A non-empty subset I of a monoid S is called a right ideal of S if xs ∈ I for any x ∈ I and s ∈ S. An element θ ∈ A
for which θs = θ for all s ∈ S is said to be a zero or fixed element ofA. A congruence on an S-actA is an equivalence
relation ρ on A for which aρa′ implies that (as)ρ(a′s) for a, a′ ∈ A and s ∈ S. An S-act A is called decomposable
if there exist subacts B and C of A such that A = B ∪ C and B ∩ C = ∅. Otherwise, A is called indecomposable.
A left zero semigroup is a semigroup S with sr = s for all s, r ∈ S. A right zero semigroup is defined similarly.
Throughout, S stands for a monoid unless otherwise stated. For more see [3].
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2. Fully cancellation and fully cocancellation S-act

In this section, we define two notion fully cancellation and fully cocancellation and study some properties of these two
notions. Also, we prove the condition which under it, two notion fully cancellation and fully cocancellation S-act is
same.

Definition 2.1. Let A be an S-act. A is called fully cancellation if for any non-zero ideal I of S and for every subact
B and C of A, if BI = CI , then we have B = C.

Example 2.2. The S-act Z on monoid (Z, .) with usual multiplication is fully cancellation. But Z-act Z4 is not fully
cancellation.

Remark 2.3. Any subact of fully cancellation S-act is fully cancellation.
The homomorphism image of the fully cancellation S-act is not fully cancellation. For example, consider the homo-
morphism π : Z −→ Z4 on monoid (Z, .). Clearly, Z is fully cancellation and Z4 is not fully cancellation.
Suppos that f : A −→ B be an one-to-one homomorphism.The inverse image of fully cancellation is fully cancel-
lation. For this, consider an one-to-one homomorphism f : A −→ B and fully cancellation subact B′ of B. We
show that F−1(B′) is fully cancellation. Let A1, A2 be subacts of f−1(B′) and I be a non-zero ideal of S so that
A1I = A2I . We have f(A1I) = f(A2I). So, we have f(A1)I = f(A2)I . Since B′ is fully cancellation, we have
f(A1) = F (A2) and therefore A1 = A2.
LetA be a simple S-act. IfA is fully cancellation, then it is faithful. For this, consider 0 ∈ Ann(A). We haveAs = θ.
Suppose that B ba proper subact of A. So, We have Bs = θ. Therefore As = Bs. Since A is fully cancellation, we
have A = B, which is contradiction.

Proposition 2.4. LetA be a fully cancellation and cancellation S-act. Then every non-zero ideal of S is a cancellation
ideal.

Proof. Suppos that I be a non-zero ideal of S, J1 and J2 be subacts of I such that IJ1 = IJ2. We have I(J1A) =
I(J2A). Since A is fully cancellation, J1A and J2A is fully cancellation, so J1A = J2A. Now, we have J1 = J2,
since A is cancellation.

Corollary 2.5. Suppos that A be a multiplication cancellation S-act. Then A is fully cancellation if and only if any
non-zero ideal of S is a cancellation ideal.

Proof. Sufficieny is follows from Proposition 2.4. For conversely, letA1, A2 be two subacts ofA and I be a non-zero
ideal of S such that A1I = A2I . We show that A1 = A2. We have A1 = (A1 : A)A = (A2 : A)A = A2, as the
result.

Theorem 2.6. Suppos that (Aj)j∈J be a family of S-acts. Then
∏

j∈J Aj is fully cancellation if and only if for any
j ∈ J , Aj is fully cancellation.

The next corollary is clear by Theorem 2.6.

Corollary 2.7. Suppose that (Bj)j∈J be a family of S-acts. Then
⊕

j∈J Bj is fully cancellation if and only if Bj is
fully cancellation, for any j ∈ J .

Definition 2.8. Let B be an S-act. B is a fully cocancellation if for subacts C1 and C2 of B and non-zero ideal J of
S, if (C1 :B J) = (C2 :B J), implies C1 = C2.

Remark 2.9. Any homomorphism image of fully cocancellation S-act is fully cocancellation.

Theorem 2.10. Let (Bj)j∈J be a family of S-acts. If
∏

j∈J Bj is fully cocancellation S-act then for any j ∈ J , Bj

is fully cocancellation.

Lemma 2.11. Suppos that A be an S-act and B be an subact of A, C and D be subacts of B and J be a non-zero
idempotent ideal of S so that (C :B J) = (D :B J). So, we have (C :A J) = (D :A J).
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Proposition 2.12. Suppos that S be a regular monoid. Then any subact of fully cancellation S-act is fully cocancel-
lation.

Theorem 2.13. Suppose that A be an S-act. Then A is a fully cocancellation if and only if (B :A I) ⊆ (C :A I),
implies B ⊆ C, for any subacts B,C of S-act A and non-zero ideal I of S.

Theorem 2.14. Suppose that S be a group. Then any S-act is fully cocancellation.

Lemma 2.15. Suppose that A is a comultiplication S-act. If (θ :A I) ⊆ (θ :A J) for two ideals I and J of S, then
JA ⊆ IA.

We have the duality of the pervious lemma for multiplication S-act, i.e, if A is multiplication S-act and (IA ⊆ JA),
then (θ :A J) ⊆ (θ :A I).

Theorem 2.16. Let A be a multiplication and comultiplication S-act. Then A is a fully cancellation S-act if and only
if A is a fully cocancellation S-act.

Proof. Suppose thatA is a fully cancellation S-act and (B :A I) = (C :A I), for subactsB,C ofA and non-zero ideal
I of S. Since A is comultiplication S-act, there exist ideals J andK of S such that B = (θ :A J) and C = (θ :A K).
Therefore, (θ :A JI) = (θ :A KI) and so by Lemma 2.15, we have JIA = KIA. SinceA is fully cancellation S-act,
we can conclude JA = KA. Now by duality of Lemma 2.15, we haveB = (θAJ) = (θ :A K) = C. For conversely,
suppose that BI = CI for subacts B and C of A and ideal I of S. Since A is multiplication S-act, there exist ideals
J and K of S so that B = AJ and C = AK. Now by Lemma 2.15, we have (θ :A JI) = (θ :A KI). Since A is a
fully cocancellation S-act, we have (θ :A J) = (θ :A K). Therefore by Lemma 2.15, we have B = C.
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Abstract

In this paper, the notion comultiplication of monoid S-acts is studied. The behaviour of comul-
tiplication is investigate. Also, it is shown that the product of a family of comultiplication S-acts
is comultiplication.

1. Introduction and preliminaries

Acts over monoids, as universal algebras with unary operations, appear as basic mathematical models of some impor-
tant notions in theoretical computer science and physics like automata, dynamical systems, etc. In [2] , Ansari-toroghy
and Farshadifar study the notion comultiplication modules. In this research we study new notion comultiplication, in
category of S-acts on monoids and investigate some properties of them.
First, we give some preliminary needed in the following.

Let S be a monoid. A (right) S-act is a non-empty set A together with a map A× S → A, (a, s) 7→ as, such that for
all a ∈ A, s, t ∈ S, (as)t = a(st) and a1 = a. A non-empty subset B ⊆ A is called a subact of A if bs ∈ B for all
b ∈ B and s ∈ S. An element θ in an S-act A is said to be a zero or fixed element if θs = θ for all s ∈ S. Let A and
B be two S-acts. A mapping f : A → B is called an S-homomorphism if f(as) = f(a)s, for all a ∈ A, s ∈ S. The
category of all S-acts and homomorphisms between them is denoted by Act-S. We recall category Act0-S in which
all monoids contain zero 0. In this category, monomorphisms are exactly injective homomorphisms.
A non-empty subset I of a monoid S is called a right ideal of S if xs ∈ I for any x ∈ I and s ∈ S.
An element θ ∈ A for which θs = θ for all s ∈ S is said to be a zero or fixed element of A. A congruence on an S-act
A is an equivalence relation ρ on A for which aρa′ implies that (as)ρ(a′s) for a, a′ ∈ A and s ∈ S.
A left zero semigroup is a semigroup S with sr = s for all s, r ∈ S. A right zero semigroup is defined similarly.
Throughout, S stands for a monoid unless otherwise stated. For undefined terms and notions about S-acts used here,
we refer to [3]. In the all of this paper S is a monoid (with zero) and all S-acts are centered.
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2. Comultiplication S-act

In this section we define the notion of comultiplication S-act and study the behaviour of this notion with respect to
product. Also, we results some properties of this notion.

We recall that an S-act A is said to be a multiplication S-act if for any subact B of A, there exists a two sided ideal I
of S such that, B = AI . For more, see[1].
Definition 2.1. An S-act A is called comultiplication S-act , if for any subact B of A, there exists a two sided ideal
I of S such that B = (θ :A I).
Example 2.2. Consider Z-act Z(p∞) on monoid (Z, .) with usual multiplication, which clearly is comultiplication
S-act. But Z-act Z is not comultiplication.
Remark 2.3. We recall that , in the category of S-acts, subacts of multiplication S-act is not necessarily multiplication
and it is true for pure subacts of multiplication S-act are multiplication.
Now, we claim subact of comultiplication S-ct is comultiplication.
For this, let A be a comultiplication S-act and B be subact of A. Then, since A is comultiplication, there exists a two
sided ideal Iof S such that B = (θ :A I). Now, we have B = (θ :A I) = (θ :A I). So, B is a comultiplication S-act.
Remark 2.4. Consider homomorphism f : A −→ B. If A is comultiplication S-act then f(A) is comultiplication.
For this, consider subact C of f(A). We show that there exists a two sided ideal I of S such that C = (θB :f(A) I).
Since A is comultiplication S-act, there is a two sided ideal I ′ of S so that f−1(C) = (θA :A I ′). So, we have
C = (θB :f(A) I

′).
We recall that in the Act-S, the product of a family of S-acts is their cartesian product with the componentwise action,
i.e, if (Ai)i∈I is a family of S-acts, then the product

∏
i∈I Ai is cartesian product of this family with projections

morphisms ρi :
∏

i∈I Ai −→ Ai by ρj((xi)i∈I) = Xj , j ∈ I, (xi)i∈I ∈
∏

i∈I Ai.
Theorem 2.5. Suppose that (Bj)j∈J is a family of S-acts. Then Bj is comultiplication, for any j ∈ J if

∏
j∈J Bj is

comultiplication. The conversely for finite family of S-acts is correct.
Proof. Suppose that

∏
j∈J Bj is comultiplication S-act. We show that for any j ∈ J , Bi is a comultiplication S-act.

Consider Cj as a subact of S-act Bj .
Let C = (θ1, θ2, · · · , θj−1, cj , θj+1, · · · ) ≤

∏
j∈J Bi. Since

∏
j∈J Bi is comultiplication S-act, there exists a two

sided ideal I of S such that C = (θ∏
j∈J Bj

:∏
j∈J Bj

I). So, we have CjI = θj . Hence, Cj = (θj :Bj
I). For

conversely, consider subact D = {(d1, d2, d3, · · · , dn)|dj ∈ Bj} of
∏

j∈J Bi. Clearly, for any j ∈ J , we have
〈di〉 = (θj :Bj

Jj). Now, letK = {j1j2 · · · jn|jj ∈ Jj}. Clearly, J is an ideal of S and C = (θ∏
j∈J Bj

:∏
j∈J Bj

J).

We recall that for any subact B of A, the notion annihilator of B is denoted by AnnS(B) = {s ∈ S|Bs = θ}.
Proposition 2.6. Let A be an S-act . Then A is a comultiplication S-act if and only if for any subact B of A,
B = (θA :A Ann(B)).
Proof. Sufficieny is clear.
For conversely, Since A is a comultiplication S-act, there is a two sided ideal I of S such that B = (θA :A I). So,
I ⊆ Ann(B) and we have (θA :A Ann(B)) ⊆ (θA :A I) = B.

Proposition 2.7. LetB be a comultiplication S-act and {Cj}j∈J be a family of subacts of S-actB so that
∩

j∈J Cj =
θ. For any subact D of A, we have D =

∩
j∈J(D ∪ Cj).

Proposition 2.8. Let A be an S-act. Then if A is a comultiplication prime S-act, the A is a simple S-act.
Proposition 2.9. Let A be an S-act. Then the following are equivalent.
(i) A is a comultiplication S-act.
(ii) For any subact B of A and any two sided ideal J of S with B ⊆ (θ :A J), there exists a two sided ideal K of S
such that J ⊂ K and B ⊆ (θ :A K).
Lemma 2.10. Let A be a comultiplication S-act. Let J be a minimal two sided ideal of S such that (θ :A J) = θ,
then A is cyclic.
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Abstract

Finding the simplest modeling for extracting the exact analytical solutions of nonlinear partial
differential equations has become one of the most important topics in the field. In this study
we obtain the soliton solutions of the fractional Boussinesq equation by using the three wave
method. To show the accuracy of our results, we discuss some special cases by adjusting some
potential parameters and also compute the graphical simulation of the results. Our results agree
well with the results obtained via other methods.

1. Introduction

Exact or approximate solutions for the NLPDEs and Schrödinger equation play a fundamental role in many branches
of physics and chemistry [1, 2]. Even though it was propounded about a century ago, the equation remains very chal-
lenging to solve analytically (even more so since the beginning of quantum mechanics). Theoretical physicists have
strived to obtain exact or approximate solutions for the Schrödinger equation for various potentials of physical interest
[3-5]. This is because the solution contains all the necessary information needed for a full description of a quantum
state, including the probability density and entropy of the system [6-8]. Different investigations have been considered
by researchers using this potential, some of which include the recent one by Durmus [9-10]. This importance has made
the traces to such equations tangible in many branches of science, including mathematics, physics [1-3], electrical en-
gineering, astronomy, mechanics, economics, and many other existing disciplines [4]-[6]. Based on these remarkable
effects, several analytical methods have been successfully applied to obtain exact solutions of such equations. Some
of these methods are homotopy analysis method [7], the variational iteration method [8], the exp-function method [9],
Logistic function method [10], the generalized G’/G-expansion [11], the elliptic finder method [12]-[14], the expo-
nential rational function idea [15], the modified Kudryashov technique [16] and sub-equation method [17]. To see
more methods, please refer to [18]-[20]. These authors calculated the normalized radial wave functions and obtained
an analytical formula of phase shifts. They also investigated the corresponding bound states by studying the analytical
properties of the scattering amplitude.
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A brief description of fractional coupled Boussinesq equation is provided in the second section of this paper. In section
three application of the method[21] to the FBE and graphical behavior of solutions introduced. Finally, conclusions
are presented in the last section of the article.

2. Basic structure of the fractional coupled Boussinesq equation

we consider the following time fractional coupled Boussinesq equation (BE){
∂αu
∂tα + uux + vx + quxx = 0
∂αv
∂tα + (uv)x + puxxx − qvxx = 0

, 0 ≤ α < 1. (1)

Wherep, q ∈ R. Using the transformationu (x, t) = U (ξ) , v (x, t) = V (ξ); where ξ = kx+ω tα

α and once integrating
respect toξ, Eq. (1) becomes an following ordinary differential equation,

ωU + k
2U

2 + kV + qk2U ′ = R1,
ωV + kUV + pk3U ′′ − qk2V ′ = R2,

(2)

Where R1and R2 are the integration constants of first- and second-equation of system (2), respectively. From first-
equation of system (2), we get

V =
1

k

(
R1 − ωU − k

2
U2 − qkU ′

)
, (3)

By substituting Eq. (3) into the second-equation of system (2), and for simplifying we set R1 = 0andR2 = 0, we get
the following covering equation

−ω2

k
U − 3

2
ωU2 − k

2
U3 + k3

(
p+ q2

)
U ′′ = 0, (4)

A brief application of the method to the FBE is provided in the second section of this paper. In section three graphical
behavior of solutions introduced. Finally, conclusions are presented in the last section of the article.

3. Three wave approache to the FBE

Primis, we suppose that Eq. (??) has the following three-wave solutions
U (ξ) = γ1e

δξ + γ2 cos (λ1ξ) + γ3e
−δξ + 2γ4 cosh (λ2ξ) . (5)

Where γ1, .., γ4, δ, λ1, λ2are unfamiliar constants to be determined later. With substituting (5) into (4) and collect
coefficients of eiδξ, cos (λ1ξ) , cosh (λ2ξ) , sin (λ1ξ) , sinh (λ2ξ) ,i = −2,−1, 0, 1, 2 and let them equal to zero. So
we obtain the algebraic equations and by solving these equations we have:

Set 1: γ1 = 0, γ3 = 0, γ2 ̸= 0, γ4 ̸= 0 then by solving algebraic equation we have
γ2 =

1

2
, γ4 = −1

2
, w = −1

2

√
q2 + pk2, k = k (6)

So we have general solutions of eq. (1) as follows

u1 (x, t) =
1

2
cos
(
λ1

(
kx− 1

2

√
q2 + pk2

tα

α

))
− cosh

(
λ2

(
kx− 1

2

√
q2 + pk2

tα

α

))
So from (3) we directly obtain

v1 (x, t) =
[
R1 − w

2 cos
(
λ1

(
kx− 1

2

√
q2 + pk2 tα

α

))
+ w cosh

(
λ2

(
kx− 1

2

√
q2 + pk2 tα

α

))
−

k
2

(
1
2 cos

(
λ1

(
kx− 1

2

√
q2 + pk2 tα

α

))
− cosh

(
λ2

(
kx− 1

2

√
q2 + pk2 tα

α

)))2
+

1
2qk sin

(
λ1

(
kx− 1

2

√
q2 + pk2 tα

α

))
+ qk sinh

(
λ2

(
kx− 1

2

√
q2 + pk2 tα

α

))]
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3D-Plot for (α = 0.3) 3D-Plot for (α = 0.9)

2D-Plot for (α = 0.3) 2D-Plot for (α = 0.9)

Density Plot for (α = 0.3) Density Plot for (α = 0.9)

Fig. 1: geraphical behavior of u1(x, t)for , α = 0.3 (A,C and E) and α = 0.9
(B,D and F)

Set 2: γ2 = 0, γ4 = 0, γ1 ̸= 0, γ3 ̸= 0 then by solving algebraic equation we have

γ1 =
2

3

δ2k4q2 + δ2k4p− w2

k2γ3
, γ3 = γ3, w =

√
q2 + pk2δ, k = k (7)

So we have
u2 (x, t) =

2

3

δ2k4q2 + δ2k4p− w2

k2γ3
e
δ
(
kx+

√
q2+pk2δ tα

α

)
+ γ3e

−δ
(
kx+

√
q2+pk2δ tα

α

)

From (3) we have
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v2 (x, t) =
2
3
δ2k4q2+δ2k4p−w2

k3γ3
e
δ
(
kx+

√
q2+pk2δ tα

α

)
+ γ3

k e
−δ

(
kx+

√
q2+pk2δ tα

α

)
−

− 1
2

(
2
3
δ2k4q2+δ2k4p−w2

k2γ3
e
δ
(
kx+

√
q2+pk2δ tα

α

)
+ γ3e

−δ
(
kx+

√
q2+pk2δ tα

α

))2

−

q

(
2
3δ

δ2k4q2+δ2k4p−w2

k2γ3
e
δ
(
kx+

√
q2+pk2δ tα

α

)
− γ3δe

−δ
(
kx+

√
q2+pk2δ tα

α

))

Set 3: γ1 = 0, γ2 = 0, γ3 ̸= 0, γ4 ̸= 0 then by solving algebraic equation we have

γ4 =
2

3

λ2
2k

4q2 + λ2
2k

4p− w2

kw
, γ3 = γ3, w = w, k =

√√
q2 + pδw√
q2 + pδ

(8)

So
u3 (x, t) = γ3e

−δ(kx+ω tα

α ) +
4

3

λ2
2k

4q2 + λ2
2k

4p− w2

kw
cosh

(
λ2

(
kx+ ω

tα

α

))
and

v3 (x, t) =
1
k

(
R1 − ωU − k

2U
2 − qkU ′) ,

R1

k − γ3

k e−δ(kx+ω tα

α ) − 4
3
λ2
2k

4q2+λ2
2k

4p−w2

k2w cosh
(
λ2

(
kx+ ω tα

α

))
−

wγ3e
−δ(kx+ω tα

α ) − 4
3
λ2
2k

4q2+λ2
2k

4p−w2

k cosh
(
λ2

(
kx+ ω tα

α

))
−

1
2

(
γ3e

−δ(kx+ω tα

α ) + 4
3
λ2
2k

4q2+λ2
2k

4p−w2

kw cosh
(
λ2

(
kx+ ω tα

α

)))2
+

γ3

k δe−δ(kx+ω tα

α ) − 4λ2

3
λ2
2k

4q2+λ2
2k

4p−w2

k2w sinh
(
λ2

(
kx+ ω tα

α

))
Set 4: γ1 ̸= 0, γ2 = 0, γ3 ̸= 0, γ4 ̸= 0 then by solving algebraic equation we have

γ4 = 4
3
δ2k4q2+δ2k4p−w2

k2 , γ3 = 1
2 , γ1 = γ1, w = w,

k =

√√
2δ2q2−q2λ2

2+2δ2p−pλ2
2w√

2δ2q2−q2λ2
2+2δ2p−pλ2

2w
,

(9)

u4 (x, t) = γ1e
δ

√√
2δ2q2−q2λ2

2+2δ2p−pλ2
2w√

2δ2q2−q2λ2
2+2δ2p−pλ2

2w
x+w tα

α


+ 1

2e
−δ

√√
2δ2q2−q2λ2

2+2δ2p−pλ2
2w√

2δ2q2−q2λ2
2+2δ2p−pλ2

2w
x+w tα

α


+

8
3
δ2k4q2+δ2k4p−w2

k2 cosh

(
λ2

(√√
2δ2q2−q2λ2

2+2δ2p−pλ2
2w√

2δ2q2−q2λ2
2+2δ2p−pλ2

2w
x+ w tα

α

))
Now from (3) we have

v4 (x, t) =
1
kR1 − 1

kγ1we
δ

√√
2δ2q2−q2λ2

2+2δ2p−pλ2
2w√

2δ2q2−q2λ2
2+2δ2p−pλ2

2w
x+w tα

α


− 1

2kwe
−δ

√√
2δ2q2−q2λ2

2+2δ2p−pλ2
2w√

2δ2q2−q2λ2
2+2δ2p−pλ2

2w
x+w tα

α


−

8w
3

δ2k4q2+δ2k4p−w2

k3 cosh

(
λ2

(√√
2δ2q2−q2λ2

2+2δ2p−pλ2
2w√

2δ2q2−q2λ2
2+2δ2p−pλ2

2w
x+ w tα

α

))
−

1
2

γ1eδ
√√

2δ2q2−q2λ2
2+2δ2p−pλ2

2w√
2δ2q2−q2λ2

2+2δ2p−pλ2
2w

x+w tα

α


+ 1

2e
−δ

√√
2δ2q2−q2λ2

2+2δ2p−pλ2
2w√

2δ2q2−q2λ2
2+2δ2p−pλ2

2w
x+w tα

α


+

8
3
δ2k4q2+δ2k4p−w2

k2 cosh

(
λ2

(√√
2δ2q2−q2λ2

2+2δ2p−pλ2
2w√

2δ2q2−q2λ2
2+2δ2p−pλ2

2w
x+ w tα

α

))]2
−

γ1δqe
δ

√√
2δ2q2−q2λ2

2+2δ2p−pλ2
2w√

2δ2q2−q2λ2
2+2δ2p−pλ2

2w
x+w tα

α


+ qδ

2 e
−δ

√√
2δ2q2−q2λ2

2+2δ2p−pλ2
2w√

2δ2q2−q2λ2
2+2δ2p−pλ2

2w
x+w tα

α


−

8qλ2

3
δ2k4q2+δ2k4p−w2

k2 cosh

(
λ2

(√√
2δ2q2−q2λ2

2+2δ2p−pλ2
2w√

2δ2q2−q2λ2
2+2δ2p−pλ2

2w
x+ w tα

α

))
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3D-Plot for (α = 0.3) 3D-Plot for (α = 0.9)

2D-Plot for (α = 0.3) 2D-Plot for (α = 0.9)

E F

Density Plot for (α = 0.3) Density Plot for (α = 0.9)

Fiq. 2: geraphical behavior of u3(x, t)for , α = 0.3 (A,C and E) and α = 0.6
(B,D and F)

4. Concluding remarks

In this article, we solved the coupled fractional Boussinesq equation using three wave method. We also presented
the graphical behaviour of the solutions. It was found that our results agree with the existing literature. Finally, this
study has many applications in different areas of physics and chemistry, such as atomic physics, molecular physics, and
chemistry. The structure considered for the equation consists of a series of arbitrary parameters that lead to many well-
knownmodels by considering certain options for them. One of the main advantages of this method is the determination
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of different categories of solutions for the equation in a single framework; This means that the method can determine
different types of solutions for the equation in a single process.
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Abstract

Software-defined networking (SDN) enables flexible network management by decoupling the
control plane from the data forwarding plane. However, as network scale and traffic demands
grow, effective multi-controller deployment becomes crucial for improving control plane scal-
ability and reliability. Existing schemes for controller placement mainly focus on minimiz-
ing propagation delays or maximizing resilience, failing to adequately consider controller load
balancing requirements. In this paper, we propose a dynamic load balancing scheme for multi-
controller SDN deployment based on traffic propagation delays and controller processing capac-
ities. We formulate an optimization problem to jointly minimize intra-domain and inter-domain
communication costs subject to delay and capacity constraints. We model the switch-controller
interactions as M/M/1 queues and use propagation clustering algorithm to determine the optimal
number of controllers and their mapping to switches. Extensive simulations on Internet OS3E
topologies demonstrate that our scheme achieves superior balanced multi-controller deployment
compared to affinity propagation and genetic algorithms, while maintaining low control plane
latencies under fluctuating traffic conditions through dynamic load balancing across controllers.

1. Introduction

The software-defined networking (SDN) paradigm has emerged as a promising architecture to revolutionize traditional
network infrastructure. By decoupling the control plane that governs network intelligence from the underlying data
forwarding plane, SDN facilitates flexible programmability, simplified management, and fostered innovation through
logically centralized control [1]. However, the logically centralized control plane designed around a single controller
raises significant concerns regarding resilience, scalability, and reliability as networks continue to expand in scale and
traffic demands [2]. Consequently, multi-controller deployment has become an integral part of effective SDN control
plane design for large-scale production networks.
Deploying multiple distributed controllers partitions the control plane into distinct control domains, with each con-
troller managing a subset of network switches. This distribution of intelligent control functionalities aims to enhance
network resilience through elimination of single points of failure [3]. Furthermore, multi-controller architectures alle-
viate the load on any individual controller, thereby improving control plane scalability and responsiveness. However,
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the performance benefits of multi-controller SDN critically depend on the strategic placement of controllers and the
mapping of switches to respective control domains.
Inappropriate controller placement resulting in suboptimal mappings between switches and controllers can lead to
excessive propagation delays, load imbalances across controllers, and increased communication overhead between
control domains for state synchronization [4]. Therefore, substantial research efforts have been dedicated to developing
efficient algorithms for optimized multi-controller deployment. Existing schemes have predominantly focused on
minimizing worst-case or average propagation latencies between switches and their assigned controllers. Other work
has aimed to maximize resilience through backup controller mapping or ensuring path diversity. However, these
schemes largely overlook the load balancing requirements across controllers, which is a pivotal consideration for
scalable SDN control planes handling dynamic traffic patterns.
Suboptimal load distribution across controllers can severely degrade control plane performance. An overloaded con-
troller processing an excessive number of flow setup requests experiences increased queuing delays, resulting in higher
latencies for path establishment and flow rule installation. This not only impacts overall network throughput but can
also lead to transient loops or packet losses during the delay window before new flows are programmed [5]. Con-
versely, underutilized controllers represent inefficient use of provisioned resources. Therefore, balanced load distri-
bution is critical for responsive and efficient SDN operations.
Furthermore, existing approaches predominantly focus on optimizing static controller deployments based on predicted
traffic patterns. However, the increasingly dynamic nature of modern networks, with fluctuating demands and evolving
application requirements, necessitates adaptive load balancing schemes that can dynamically adjust control domains
based on the current network state. Static controller mappings inevitably lead to load imbalances under shifts in spatio-
temporal traffic distribution. Dynamically reassigning switch-to-controller mappings becomes essential to ensure load
distribution equilibrium and consistent control plane performance.
In this context, we present a novel load balancing scheme for multi-controller SDN deployment that holistically ac-
counts for traffic propagation latencies and controller processing capacities under dynamic network conditions. We
formulate an optimization problem to minimize the combined communication costs of intra-domain interactions be-
tween switches and controllers, as well as inter-domain coordination overhead between controllers. Our objective is
subject to crucial constraints on maximum tolerable propagation delays and controller capacity limits. Specifically,
our major contributions are as follows:
1) We develop a comprehensive model that jointly considers traffic propagation delays and controller processing
capacities as pivotal factors influencing themulti-controller deployment problem. We transform the flow setup requests
into an M/M/1 queuing model to quantify the experienced latencies at each controller.
2) For the initial static deployment phase, we propose a modified affinity propagation clustering algorithm (PSOAP)
that leverages particle swarm optimization to intelligently adjust the clustering parameters and determine the appro-
priate number of control domains.
The rest of the paper is organized as follow. Related works of the CPP are presented in following section. In Section
3, Model and Formulation are presented. Algorithm design and a thorough presentation of its operators are brought
in Section 4. Section 5 explores the simulation and evaluation. Conclusion and future works are explained in final
section.

2. Related Works

The placement of SDN controllers is an essential consideration in optimizing network performance. Several papers
propose different approaches to address this issue. Jeya et al. introduce the use of SDN architecture in smart grids and
propose a method to find the optimal solution for controller placement in a smart grid using SDN architecture [6]. The
paper discusses the challenges of placing controllers in a smart grid implementing SDN architecture, but it does not
specifically mention the use of latency and other metrics for controller placement.
Authors in [7] propose a deep reinforcement learning-based model to dynamically adjust the controller placement in a
virtualized environment to minimize OpenFlow latency. In this article , a novel deep reinforcement learning model is
introduced to dynamically adjust the controller’s position, aiming to minimize delay within a virtualized environment.
Outcomes reveal that the introduced method outperforms both random and generic strategies. The primary objective
of the model is to enhance performance in a virtualized setting, but it did not explore other latencies metrics.
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In [8], a thorough investigation of the MCPP in Software-Defined Networking is conducted, focusing on aspects such
as load balancing, reliability, and dynamic techniques. The study encompasses a categorization of these techniques,
simplifying researchers’ grasp of their underlying principles. The paper contributes to addressing the network man-
agement issues faced by traditional networking in the context of increasing Internet usage and evolving technologies.
The authors in [9] propose a linear programming method to attain a trade-off between setting-up cost and delay in the
placement of SDN controllers in large scale networks. The introduced method specifies the location, and the minimum
number of demanded controllers based on the topology, processing capacity of controllers, and setup cost. The result
shows that proposed method attains the lowest setting-up cost and average delay of controlling traffic compared to
previousmethods. It also identifies the switches associatedwith each suggested controller in actual network topologies.
However, the study did not consider other factors such as reliability, energy consumption, or load balancing.

3. Model and Formulation

In this section, we explore the issue of controller load imbalance during the deployment of multiple controllers in a
distributed network. We establish amathematical model that encompasses various performance parameters influencing
the controller deployment process. We develop a comprehensive model for the multi-controller deployment problem in
software-defined networks that jointly considers traffic propagation latencies and controller processing capacities. Our
objective is to determine an optimized mapping of switches to controllers that minimizes the combined communication
overhead while ensuring delay guarantees and balanced load distribution across controllers.

3.1. Network Model
Wemodel the SDN network topology as an undirected graphG = (V, E), whereV represents the set of nodes comprising
switches and controllers, andEdenotes the set of bidirectional links interconnecting the nodes. LetMbe the number of
controllers in the network with the set of controllers denoted asC = {C1, C2, ..., CM}. Similarly, we define N as the
number of switches andS = {S1, S2, ..., SN}as the set of switches in the network. Therefore, the total number of nodes
is|V| = M + N.
We assume the traffic follows a dynamic model whereλt

irepresents the flow setup request rate generated by the ith
switchSiduring the time slott. The variabledijdenotes the shortest path distance between switchSiand controllerCj, cal-
culated as the sumof theweights of the links traversed along theminimum cost path. We define a binary variablext

ijsuch
thatxt

ij = 1if theithswitch is assigned to the jth controller during time t, andxt
ij = 0otherwise.

3.2. Controller Capacity Model
The capacity of each controller, representing its ability to process incoming flow setup requests, is determined by fac-
tors such as CPU performance, memory, and network bandwidth. We denote the processing capacity of thejthcontroller
asAj. However, controllers must also reserve a fraction of their resources for critical control plane operations such as
state synchronization with other controllers for resilience. We account for this overhead by introducing a redundancy
factorLM ϵ [0, 1]that is common across all controllers.
To characterize the load on each controller, we model the switch-controller interactions as an M/M/1 queuing system,
which is an appropriate representation for independent and memoryless arrival of flow setup requests [10] The total
flow request rate that thejthcontroller needs to process during time t is given by:

ϕt
j =

∑N

i=1
λt
ix

t
ij

Assuming the flow request processing times at each controller follow an exponential distribution with a mean of 1/Aj,
we can apply queuing theory to derive the average sojourn time ωtj experienced by a flow request at the jth controller:

ωt
j =

1

Aj − ϕt
j

Furthermore, considering the compute time for route computation is proportional to the network size |V|, we can
express the average response time∆tj for the jth controller as:

∆tj = ωt
j .|v|2
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3.3. Communication Cost Model
The communication cost for the multi-controller deployment comprises two key components: the intra-domain cost
arising from interactions between switches and their assigned controllers, and the inter-domain cost due to coordination
between controllers for state synchronization.
1) Intra-domain Communication Cost: When a new flow arrives at a switch, it generates a packet-in message to its
managing controller. The controller computes the routing path, installs the corresponding flow rules on the switches
along the path, and issues packet-out messages.
2) Inter-domain Communication Cost: In multi-controller SDN deployments, controllers synchronize network state
information among themselves to maintain a consistent global view.

3.4. Optimization Problem Formulation
Our goal is to determine an optimized mapping of switches to controllers that minimizes the total communication
cost, while ensuring the maximum propagation delay between any switch-controller pair remains below an accept-
able threshold δ, and no controller is overloaded beyond its redundancy-adjusted capacity. Formally, we define the
following optimization problem:

minTotal = γDreq + (1− γ)Dsyn

s.t.
∑
j∈M

xt
ij = 1

Φ (t) ≤ LjAj

D (t) ≤ δ

xt
ij ∈ {0, 1}

The weight γ ϵ [0, 1] allows adjusting the tradeoff between prioritizing intra-domain vs. inter-domain communica-
tion costs. The constraints ensure each switch is mapped to exactly one controller, no controller load exceeds its
redundancy-adjusted capacity, and the overall network-wide average delay is below the threshold δ.
This formulation coherently captures the crucial factors impactingmulti-controller SDN deployments, including traffic
dynamics, controller capacities, propagation latencies, and communication overheads. However, solving this NP-hard
problem exactly is computationally intractable for large networks. Therefore, we propose efficient heuristic algorithms.

4. Algorithm Design

We propose two complementary algorithms to address the multi-controller deployment problem in SDNs - one for the
initial static scenario and another for dynamic traffic-aware load balancing. For the former, we present PSOAP, a mod-
ified affinity propagation clustering algorithm that leverages particle swarm optimization to determine the appropriate
number of control domains and optimize the switch-to-controller mapping.

4.1. PSOAP: Particle Swarm Optimization based Affinity Propagation
Affinity Propagation (AP) is a well-established clustering algorithm that identifies representative exemplars among the
data points themselves, rather than requiring the number of clusters to be pre-specified [11]. AP operates by exchanging
real-valued responsibility and availability messages between data points until a set of exemplars and corresponding
clusters gradually emerges.
LetS = {s1, s2, ..., sN}represent the set of switches in the network, treated as the data points for clustering. The
similaritys(i,j)between switchessiandsjis defined based on the communication costλ (t)i d (i, j)xij , which captures
the traffic rateλtigenerated atsiand the shortest path distancedijto the potential controller atsj. The higher this cost, the
more dissimilar the switches.
AP aims to maximize the net similarity summed over all data points, subject to self-similaritiess(i,i) = pserving as
preferable clustering biases. Initially, availabilitiesa(i,j)are set to zero, while responsibilitiesr(i,j)measure how well sj
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serves as an exemplar forsi, compared to other candidates. Messages are iteratively updated as:

R (i, j) = S (i, j)−max
{
A
(
i, j‘

)
+ S(i, j‘)

}
A (i, j) = min (0, R (j, j)) +

∑
max

{
0, R(i‘, j)

}
These ”responsibilities” (1) and ”availabilities” (2) are combined into a single matrix indicating the clustering affil-
iations. However, AP’s convergence is sensitive to the preference values p and the damping factor λ that prevents
numerical oscillations during updates.
Our PSOAP algorithm treats p and λ as particle positions in a multi-dimensional search space, which are iteratively
tuned via particle swarm optimization (PSO) [12] to intelligently identify the near-optimal preferences and damping
leading to superior clustering quality. Each particle maintains a velocity v that governs its movement, which gets
updated based on the particle’s previous best position pbest and the global best gbest across all particles as:

Vid = ωVid + η1rand() (Pid −Xid) + η2rand()(Pgd −Xid)

Here, ω is the inertia weight controlling exploration versus exploitation, while η1 and η2 are the cognitive and social
learning rates. r1 and r2 are uniformly random numbers in [0,1].
The fitness of each particle position (p, λ) is evaluated by executing the AP clustering procedure using those preference
and damping parameters, then computing the overall communication cost as per the objective function defined in
Section 2. PSOAP continually explores the search space, identifying the (p, λ) parameters minimizing this cost while
adhering to the delay and capacity constraints outlined earlier. This yields the optimal number of control domains as
well as the switch-to-controller mapping by treating the identified cluster exemplars as controller locations.
Algorithm 1 summarizes the steps of PSOAP, integrating PSO and AP until convergence. In each PSO iteration, AP is
executed for every particle position using the specified (p, λ) preferences and damping. Particle fitnesses are evaluated
based on the resulting communication costs, and personal/global bests are updated. Velocities are then calculated as
per (3) to adjust particle positions for the next iteration until the desired solution quality is attained or the maximum
number of iterations is reached.
Here is the pseudocode for the Particle Swarm Optimization based Affinity Propagation (PSOAP) algorithm:
Input: G(V,E) - Network graph with switches V and links E, λ - Traffic rates of switches, A - Controller processing
capacities, L - Controller redundancy factors
Output: X - Switch-to-controller mapping matrix
1: Initialize particle swarm with random positions (p, λ) and velocities
2: while termination condition not met do
3: for each particle (p, λ) do
4: // Run Affinity Propagation (AP) with current p, λ
5: Compute similarity matrix S based on λ, link costs
6: Initialize responsibilities R and availabilities A
7: repeat
8: Update R using equation (1)
9: Update A using equation (2)
10: until convergence
11: Get exemplar switches as controller locations from R, A
12: Obtain switch-controller mapping X
13: Evaluate particle fitness = Communication Cost(X)
14: end for
15: Update personal best positions pbest
16: Update global best position gbest
17: // Update particle positions and velocities
18: for each particle (p, λ) do
19: Calculate new velocity v using equation (3)
20: Update particle position (p, λ) using equation (4)
21: end for
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Fig. 1. Load balancing rate

22: end while
23: Return X with minimum Communication Cost
The algorithm takes the network graph, switch traffic rates, controller capacities and redundancy factors as inputs
(line 1). It initializes a swarm of particles, where each particle represents a candidate solution with preference p
and damping λ parameters for Affinity Propagation (AP) clustering (line 1). The main loop (lines 2-22) runs until a
termination condition is met, e.g., maximum iterations or convergence. For each particle (p, λ) (line 3): It runs the
Affinity Propagation clustering procedure by first computing the similarity matrix S based on traffic and link costs
(line 5). It initializes the responsibility R and availability A matrices (line 6). It iteratively updates R and A using the
standard AP equations (1) and (2) until convergence (lines 7-10). Finally, it returns the switch-controller mapping X
with the minimum communication cost (line 23).

5. Simulation and Evaluation

To comprehensively evaluate the efficacy of our proposed multi-controller deployment scheme, we conduct extensive
simulations across diverse scenarios and benchmark against state-of-the-art approaches. This section delineates the
simulation environment, parameter configurations, and quantitative performance analyses carried out to validate our
algorithms.
Network Topologies: We evaluate our algorithms on two topologies representing contrasting network scales and char-
acteristics:
1) Internet OS3E Topology [12]: This topology models a regional IP/MPLS backbone network comprising 34 nodes
and 42 bidirectional links spanning the western United States. Its moderate size allows assessing our schemes across
a wide range of scenarios.
2) GScaleBBTopology [13]: To analyze the performance on large-scale networks, we use this national backbone topol-
ogy consisting of 774 nodes and 1016 links distributed across the United States. Its substantial size poses significant
computational challenges for controller placement algorithms.
Controller Implementation: Our simulations incorporate a real SDN controller platform by integrating the widely-
adopted OpenDaylight controller and instrumenting its application layer with custom modules implementing our
PSOAP and CDAA algorithms.
Benchmarks: We compare the performance of our PSOAP and CDAA algorithms against the following state-of-the-art
multi-controller deployment schemes:
1) Affinity Propagation (AP): The standard AP clustering algorithm that minimizes propagation delays.
2) Genetic Algorithm (GA): A heuristic evolutionary algorithm for the multi-objective controller placement problem
considering propagation delays and load balancing.
3) Static Mapping (SM): A baseline approach that statically maps switches to their closest controllers without any
dynamic remapping, representing traditional SDN with a fixed control plane partitioning.
For all simulations, we implement each algorithm in Java and execute them on an Intel Xeon E5-2680 v2 server with
128GB RAM, averaging results over 20 independent runs.
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Fig. 2. Response time under different traffic loads in OS3E

Performance Metrics: We quantify the efficacy using the following key metrics:
1) Communication Cost: The combined intra-domain and inter-domain communication overheads as per our objective
function, indicative of the overall control plane efficiency.
2) Load Balancing Ratio: Ratio of the maximum controller load to the minimum, lower values indicating better load
distribution across controllers.
3) Control Plane Latency: The average and 99th percentile response times experienced by flow setup requests at the
controllers, directly impacting application performance.
4) Reassignment Overheads: For dynamic schemes, the frequency and volume of switch remappings between con-
trollers, capturing consistency and stability factors.
Through meticulous simulations spanning these diverse scenarios, metrics, benchmarks, and sensitivity analyses,
we comprehensively evaluate our schemes to validate their effectiveness in achieving optimized yet resilient multi-
controller deployments for large-scale SDN control planes.

6. CONCLUSION

This paper proposed a novel multi-controller deployment framework for software-defined networks (SDNs) that jointly
optimizes traffic propagation delays and dynamic load balancing across controllers. We developed PSOAP, a modified
affinity propagation clustering algorithm using particle swarm optimization for initial controller placement, and CDAA
for dynamic remapping of switches to balance loads based on current traffic conditions and controller capacities mod-
eled asM/M/1 queues. Extensive simulations across diverse topologies demonstrated the superiority of our load-aware
scheme over existing affinity propagation, genetic algorithms, and static mapping approaches, achieving lower com-
munication costs, balanced controller utilization, and sub-10ms control plane latencies even under fluctuating traffic.
The holistic framework ensures responsive and scalable SDN control planes for large production networks. Future
work includes extending to cloud-edge infrastructures and online learning for proactive traffic-aware adaptation.
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Abstract

In this paper, we prove the existence of at least three solutions for some 2n-th-order impulsive
equations. A particular case and an example are then presented.

1. Introduction

Let n ∈ N− {1}. In this paper, we consider the 2n-th-order impulsive boundary-value problem
(−1)nu(2n)(t) + · · ·+ u(4)(t)− (p(t)u′(t))

′
+ q(t)u(t) = λf(t, u(t)), t 6= tj , t ∈ [0, 1]

u(0) = u(1) = u′(0) = u′(1) = · · · = u(n−2)(0) = u(n−2)(1) = 0 = u(n)(0) = u(n)(1)

(−1)i−1∆
(
u(n+i−1)(tj)

)
= µIij

(
u(i−1)(tj)

)
, i = 1, 2, . . . , n, j = 1, 2, . . . ,m

(1)

where p ∈ C1 ([0, 1]× [0,+∞)), q ∈ L∞([0, 1]), f : [0, 1]×R → R is anL1-Carathéodory function, λ, µ are positive
constants, 0 = t0 < t1 < t2 < · · · < tn < tn+1 = 1, ∆(u(tj)) = u(t+j ) − u(t−j ) = limt→t+j

u(t) − limt→t−j
u(t)

and Iij : R → R are continuous for every i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Let p− = ess inft∈[0,1] p(t) and q− = ess inft∈[0,1] q(t) and suppose that the condition

min
{
p−

π2
,
q−

π4
,
p−

π2
+

q−

π4

}
> −1 (2)

is satisfied in problem (1). We set

σ = min
{
p−

π2
,
q−

π4
,
p−

π2
+

q−

π4
, 0

}
∈ (−1, 0], δ =

√
1 + σ ∈ (0, 1]
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The study of impulsive boundary-value problems is important due to its various applications in which abrupt changes
at certain times in the evolution process appear. The dynamics of evolving processes is often subjected to abrupt
changes such as shocks, harvesting and natural disasters. Often these short-term perturbations are treated as having
acted instantaneously or in the form of impulses. Such problems arise in physics, population dynamics, biotechnology,
pharmacokinetics and industrial robotics. Many researchers pay their attention to impulsive differential equations by
variational method and critical point theory, for example in [2], the existence of at least one non-trivial classical solution
to the nonlinear Dirichlet impulsive boundary-value problem

−(p(t)u′(t))′ + q(t)u(t) = λf(t, u(t)), t ∈ [0, T ], t 6= tj

u(0) = u(T ) = 0

∆u′(tj) = λIj(u(tj)), j = 1, 2, . . . , n

is established. Also in [1], the existence of three classical solutions for the fourth-order impulsive bandary-value
problem 

u(iv)(t) +Au′′(t) +Bu(t) = λf(t, u(t)) + µg(t, u(t)), t 6= tj , t ∈ [0, 1]

∆(u′′(tj)) = I1j(u
′(tj)), j = 1, 2, . . . , n

−∆(u′′′(tj)) = I2j(u(tj)), j = 1, 2, . . . , n

u(0) = u(1) = u′′(0) = u′′(1) = 0

is proved, where A ≤ 0 ≤ B are real constants.

2. PRELIMINARIES

We now state two critical point theorems established by Bonanno and coauthors [3, 4] which are the main tools for the
proofs of our results.

Theorem 2.1 ([4, Theorem 2.6]). Let X be a reflexive real Banach space; Φ : X → R be a sequentially weakly
lower semicontinuous, coercive and continuously Gâteaux differentiable functional whose Gâteaux derivative admits
a continuous inverse on X∗,Ψ : X → R be a sequentially weakly upper semicountinuous, continuously Gâteaux
differentiable functional whose Gâteaux derivative is compact, such that Φ(0) = Ψ(0) = 0.
Assume that there exist r > 0 and x̄ ∈ X , with r < Φ(x̄) such that

(i) supΦ(x)≤r Ψ(x) < rΨ(x̄)
Φ(x̄) ,

(ii) for each λ in,

Λr :=

(
Φ(x̄)

Ψ(x̄)
,

r

supΦ(x)≤r Ψ(x)

)
,

the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr the functional Φ− λΨ has at least three distinct critical points in X .

Theorem 2.2 ([3, Theorem 3.2]). Let X be a reflexive real Banach space; Φ : X → R be a convex, coercive and
continuously Gâteaux differentiable functional whose Gâteaux derivative admits a continuous inverse on X∗,Ψ :
X → R be a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact, such that

inf
x∈X

Φ(x) = Φ(0) = Ψ(0) = 0.

Assume that there exist two positive constants r1, r2 > 0 and x̄ ∈ X , with 2r1 < Φ(x̄) < r2
2 , such that

(j) supΦ(x)<r1
Ψ(x)

r1
<
(
2
3

) Ψ(x̄)
Φ(x̄) ,
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(jj) supΦ(x)<r2
Ψ(x)

r2
<
(
1
3

) Ψ(x̄)
Φ(x̄) ,

(jjj) for each λ in,

Λr1,r2 :=

(
3

2

Φ(x̄)

Ψ(x̄)
,min

{
r1

supΦ(x)<r1
Ψ(x)

,
r2

2 supΦ(x)<r2
Ψ(x)

})
and for every x1, x2 ∈ X , which are local minima for the functional Φ − λΨ, and such that Ψ(x1) ≥ 0 and
Ψ(x2) ≥ 0, one has inft∈[0,1] Ψ(tx1 + (1− t)x2) ≥ 0.

Then, for each λ ∈ Λr1,r2 the functionalΦ−λΨ has at least three distinct critical points which lie inΦ−1((−∞, r2)).

Let us introduce some notations which will be used later. Consider the Sobolev spaces

Wn,2([0, 1]) =Hn([0, 1]) :=
{
u ∈ L2([0, 1]) : u′, u′′, . . . , u(n) ∈ L2([0, 1])

}
,

Wn−1,2
0 ([0, 1]) =Hn−1

0 ([0, 1]) :=
{
u ∈ L2([0, 1]) : u′, u′′, . . . , u(n−1) ∈ L2([0, 1]),

u(0) = u(1) = u′(0) = u′(1) = · · · = u(n−2)(0) = u(n−2)(1) = 0
}
.

Take

X =Hn([0, 1]) ∩Hn−1
0 ([0, 1]) :=

{
u ∈ L2([0, 1]) : u′, u′′, . . . , u(n) ∈ L2([0, 1]),

u(0) = u(1) = u′(0) = u′(1) = · · · = u(n−2)(0) = u(n−2)(1) = 0
}
.

Define the inner product

(u, v) =

∫ 1

0

u(n)(t)v(n)(t)dt+

∫ 1

0

u(n−1)(t)v(n−1)(t)dt+ · · ·

+

∫ 1

0

p(t)u′(t)v′(t)dt+

∫ 1

0

q(t)u(t)v(t)dt,

which induces the norm

‖u‖X =

(∫ 1

0

(
u(n)(t)

)2
dt+

∫ 1

0

(
u(n−1)(t)

)2
dt+ · · ·+

∫ 1

0

p(t) (u′(t))
2
dt+

∫ 1

0

q(t)(u(t))2dt

) 1
2

.

Also, we introduce the norm:

|||u||| =
(
‖u(n)‖22 + ‖u(n−1)‖22 + · · ·+ ‖u′′‖22

) 1
2

.

Then by [6, Lemma 2.3], the following Poincaré-inequalities hold for every u ∈ X:

‖u‖2 ≤ 1

π2
‖u′′‖2 (3)

‖u′‖2 ≤ 1

π
‖u′′‖2. (4)

Now, we have the following useful proposition.

Proposition 2.3. Let u ∈ X and D =
(
1 + ∥p∥∞

π2 + ∥q∥∞
π4

) 1
2 . Then

δ|||u||| ≤ ‖u‖X (5)
‖u‖X ≤ D|||u|||. (6)
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Proof. To prove of (5), we have four cases.
1. If p− ≥ 0, q− ≥ 0, then σ = 0 and δ = 1. Then we have

‖u‖2X =

∫ 1

0

(
|u(n)(t)|2 + · · ·+ |u′′(t)|2 + p(t)|u′(t)|2 + q(t)|u(t)|2

)
dt

≥
(
‖u(n)‖22 + · · ·+ ‖u′′‖22 + p−‖u′‖22 + q−‖u‖22

)
≥
(
‖u(n)‖22 + · · ·+ ‖u′′‖22

)
= |||u|||2.

So in this case we have δ|||u||| ≤ ‖u‖X .
2. If q− < 0 < p− then −1 < σ = q−

π4 < 0 and 0 < δ =
√
1 + q−

π4 < 1. Since q− < 0, by (3) we have{
q−

π4 ‖u′′‖22 ≤ q−‖u‖22 ≤
∫ 1

0
q(t)|u(t)|2dt

‖u′′‖22 ≤
∫ 1

0
|u′′(t)|2dt

Then by summing up inequalities, we have(
1 +

q−

π4

)
‖u′′‖22 ≤‖u′′‖22 +

∫ 1

0

q(t)|u(t)|2dt

⇒ δ2|||u|||2 =

(
1 +

q−

π4

)(
‖u′′‖22 + ‖u′′′‖22 + · · ·+ ‖u(n)‖22

)
≤
(
1 +

q−

π4

)
‖u′′‖22 + ‖u′′′‖22 + · · ·+ ‖u(n)‖22

≤
∫ 1

0

q(t)|u(t)|2dt+ ‖u′′‖22 + ‖u′′′‖22 + · · ·+ ‖u(n)‖22

≤
∫ 1

0

q(t)|u(t)|2dt+
∫ 1

0

p(t)|u′(t)|2dt+ ‖u′′‖22 + ‖u′′′‖22 + · · ·+ ‖u(n)‖22

=‖u‖2X .

So in this case we have δ|||u||| ≤ ‖u‖X .
3. If p− < 0 < q− then −1 < σ = p−

π2 < 0 and 0 < δ =
√
1 + p−

π2 < 1. Since p− < 0, by (4) we have{
p−

π2 ‖u′′‖22 ≤ p−‖u′‖22 ≤
∫ 1

0
p(t)|u′(t)|2dt

‖u′′‖22 ≤
∫ 1

0
|u′′(t)|2dt

Then by summing up inequalities, we have(
1 +

p−

π2

)
‖u′′‖22 ≤‖u′′‖22 +

∫ 1

0

p(t)|u′(t)|2dt

⇒ δ2|||u|||2 =

(
1 +

p−

π2

)(
‖u′′‖22 + ‖u′′′‖22 + · · ·+ ‖u(n)‖22

)
≤
(
1 +

p−

π2

)
‖u′′‖22 + ‖u′′′‖22 + · · ·+ ‖u(n)‖22

≤
∫ 1

0

p(t)|u′(t)|2dt+ ‖u′′‖22 + ‖u′′′‖22 + · · ·+ ‖u(n)‖22

≤
∫ 1

0

q(t)|u(t)|2dt+
∫ 1

0

p(t)|u′(t)|2dt+ ‖u′′‖22 + ‖u′′′‖22 + · · ·+ ‖u(n)‖22

=‖u‖2X .

So in this case we have δ|||u||| ≤ ‖u‖X .
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4. If p < 0, q < 0 then −1 < σ = p−

π2 + q−

π4 < 0 and 0 < δ =
√
1 + p−

π2 + q−

π4 < 1. So by (3) and (4) we have
q−

π4 ‖u′′‖22 ≤ q−‖u‖22 ≤
∫ 1

0
q(t)|u(t)|2dt

p−

π2 ‖u′′‖22 ≤ p−‖u′‖22 ≤
∫ 1

0
p(t)|u′(t)|2dt

‖u′′‖22 ≤
∫ 1

0
|u′′(t)|2dt

Then by summing up inequalities, we have(
1 +

p−

π2
+

q−

π4

)
‖u′′‖22 ≤

∫ 1

0

q(t)|u(t)|2dt+
∫ 1

0

p(t)|u′(t)|2dt+ ‖u′′‖22

⇒δ2|||u|||2 =

(
1 +

p−

π2
+

q−

π4

)(
‖u′′‖22 + ‖u′′′‖22 + · · ·+ ‖u(n)‖22

)
≤
(
1 +

p−

π2
+

q−

π4

)
‖u′′‖22 + ‖u′′′‖22 + · · ·+ ‖u(n)‖22

≤
∫ 1

0

q(t)|u(t)|2dt+
∫ 1

0

p(t)|u′(t)|2dt+ ‖u′′‖22 + ‖u′′′‖22 + · · ·+ ‖u(n)‖22

= ‖u‖2X .

So in this case we have δ|||u||| ≤ ‖u‖X . Then (5) is proved. To prove of (6), taking (3) and (4) into account,
we have

‖u‖2X =‖u(n)‖22 + · · ·+ ‖u′′‖22 +
∫ 1

0

p(t)(u′(t))2dt+

∫ 1

0

q(t)(u(t))2dt

≤‖u(n)‖22 + · · ·+ ‖u′′‖22 +
∫ 1

0

|p(t)|(u′(t))2dt+

∫ 1

0

|q(t)|(u(t))2dt

≤‖u(n)‖22 + · · ·+ ‖u′′‖22 + ‖p‖∞
∫ 1

0

(u′(t))2dt+ ‖q‖∞
∫ 1

0

(u(t))2dt

≤‖u(n)‖22 + · · ·+ ‖u′′‖22 +
‖p‖∞
π2

‖u′′‖22 +
‖q‖2∞
π4

‖u′′‖22

≤
(
1 +

‖p‖∞
π2

+
‖q‖∞
π4

)(
‖u(n)‖22 + · · ·+ ‖u′′‖22

)
=D2|||u|||2.

Then we have ‖u‖X ≤ D|||u||| and (6) is proved.

Remark 2.4. By (5) and (6) we have δ|||u||| ≤ ‖u‖X ≤ D|||u|||, i.e. the norms ||| · ||| and ‖ · ‖X are equivalent.
On the other, for the norm in Cn([0, 1]),

‖u‖∞ = max
{

max
t∈[0,1]

|u(t)|, max
t∈[0,1]

|u′(t)|, . . . , max
t∈[0,1]

|u(n)(t)|
}
,

by [7] we have ‖u‖∞ ≤ 1
2‖u

′‖2 then for every u ∈ X:

max
t∈[0,1]

|u(t)| ≤ ‖u‖∞ ≤ 1

2
‖u′‖2 ≤ 1

2π
‖u′′‖2 ≤ 1

2π
|||u||| ≤ 1

2πδ
‖u‖X . (7)

Here and in the sequel f : [0, 1] × R → R is an L1-Carathéodory function. We recall that f : [0, 1] × R → R is an
L1-Carathéodory function if
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(a) the mapping t 7→ f(t, x) is measurable for every x ∈ R;
(b) the mapping x 7→ f(t, x) is continuous for almost every t ∈ [0, 1];
(c) for every ρ > 0 there exists a function lρ ∈ L1([0, 1]) such that

sup
|x|≤ρ

|f(t, x)| ≤ lρ(t)

for almost every t ∈ [0, 1];

Corresponding to f we introduce the function F as follow

F : [0, 1]× R → R

(t, x) 7→ F (t, x) :=

∫ x

0

f(t, ε)dε.

We say that u ∈ C([0, 1]) is a classical solution of problem (1), if it satisfies the equation in (1) a.e. on [0, 1] \
{t1, t2, . . . , tm}, the limits u(i)(t+j ) and u(i)(t−j ), for every 1 ≤ i ≤ n, 1 ≤ j ≤ m, exist, satisfy n impulsive
conditions in (1) and the boundary conditions u(0) = u(1) = u′(0) = u′(1) = · · · = u(n−2)(0) = u(n−2)(1) = 0 =
u(n)(0) = u(n)(1).
On the other hand if the parts of equation in (1) multiplied by an arbitrary function v ∈ X and then integrated in
x ∈ [0, 1], then by n times integration by parts we have∫ 1

0

(
u(n)(t)v(n)(t) + · · ·+ u′′(t)v′′(t) + p(t)u′(t)v′(t) + q(t)u(t)v(t)

)
dt =

− µ

n∑
i=1

m∑
j=1

Iij

(
u(i−1)(tj)

)
v(n−i)(tj) + λ

∫ 1

0

f(t, u(t))v(t)dt

for all v ∈ X . Then we say that function u ∈ X in the above equality, is a weak solution of (1).

Lemma 2.5 ([5, Lemma 2.2]). The function u ∈ X is a weak solution of problem (1) if and if u is a classical solution
of problem (1).

Lemma 2.6. Assume that:

(H1) There exist positive constants αi, βi and σi ∈ [0, 1), i = 1, 2 . . . , n such that for all x ∈ R, i = 1, 2, . . . , n and
j = 1, 2, . . . ,m:

|Iij(x)| ≤ αi + βi|x|σi .

Then for any u ∈ X , we have∣∣∣∣∣∣
m∑
j=1

∫ u(i−1)(tj)

0

Iij(x)dx

∣∣∣∣∣∣ ≤ m

(
αi‖u‖∞ +

βi

σi + 1
‖u‖σi+1

∞

)
, ∀i = 1, 2, . . . , n.
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Proof. By (H1), for any i = 1, 2, . . . , n we deduce∣∣∣∣∣∣
m∑
j=1

∫ u(i−1)(tj)

0

Iij(x)dx

∣∣∣∣∣∣ ≤
m∑
j=1

∣∣∣∣∣
∫ u(i−1)(tj)

0

Iij(x)dx

∣∣∣∣∣
≤

m∑
j=1

∫ u(i−1)(tj)

0

|Iij(x)| dx

≤
m∑
j=1

∫ u(i−1)(tj)

0

(αi + βi|x|σi) dx

≤
m∑
j=1

(
αi|x|+

βi

σi + 1
|x|σi+1

)u(i−1)(tj)

x=0

=
m∑
j=1

(
αi

∣∣∣u(i−1)(tj)
∣∣∣+ βi

σi + 1

∣∣∣u(i−1)(tj)
∣∣∣σi+1

)

≤
m∑
j=1

(
αi‖u‖∞ +

βi

σi + 1
‖u‖σi+1

∞

)

=m

(
αi‖u‖∞ +

βi

σi + 1
‖u‖σi+1

∞

)
.

Thus the conclusion is achived.

3. MAIN RESULTS

Put

k =
4δ2π2

(n− 1)
(

(2n−2)!
(n−2)!

)2 (
1 + ∥p∥∞

π2 + ∥q∥∞
π4

) [
1

α2n−1 + 1
(1−β)2n−1

] ,
Γi,c =

αi

c
+

(
βi

σi + 1

)
cσi−1,

where 0 < α < β < 1 and c is a positive constant and αi, βi and σi, (i = 1, 2, . . . , n), are given by (H1).
We state our main result as follows:

Theorem3.1. Suppose that (H1) is satisfied and there exist two positive constants c, dwith c < (n−1) dπ

[
1
α3 + 1

(1−β)3

] 1
2 ,

such that
(A1) F (t, ε) ≥ 0 for all (t, ε) ∈ ([0, α] ∪ [β, 1])× [0, d],
(A2)

∫ 1
0
max|ε|≤c F (t,ε)dt

c2 <
k
∫ β
α

F (t,d)dt

d2 ,
(A3) lim sup|ε|→+∞

supt∈[0,1] F (t,ε)

ε2 ≤ π2
∫ 1
0
max|ε|≤c F (t,ε)dt

4c2 .
Then for every

λ ∈ Λ =

(
2δ2π2d2

k
∫ β

α
F (t, d)dt

,
2δ2π2c2∫ 1

0
max|ε|≤c F (t, ε)dt

)
,

there exists

ρ =
1

2m
min

1≤i≤n

2δ2π2c2 − λ
∫ 1

0
max|ε|≤c F (t, ε)dt

c2Γi,c
,
kλ
∫ β

α
F (t, d)dt− 2δ2π2d2

d2Γ
i,
(

d√
k

)


such that for each µ ∈ [0, ρ) the problem (1) has at least three distinct classical solutions.
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Proof. First, we observe that due to (A2) the interval Λ is non-empty and consequently, one has ρ > 0. Now, fix λ
and µ as in the conclusion. Our aim is to apply Theorem 2.1. We define the functionals Φ and Ψ as follows

Φ : X → R

u 7→ Φ(u) =
1

2
‖u‖2X ,

Ψ : X → R

u 7→ Ψ(u) =

∫ 1

0

F (t, u(t))dt− µ

λ

n∑
i=1

m∑
j=1

∫ u(i−1)(tj)

0

Iij(x)dx,

and for the fix λ ∈ Λ put

Eλ : X → R
u 7→ Eλ(u) = Φ(u)− λΨ(u). (8)

Using the property of f and the continuity of Iij , i = 1, 2, . . . , n and j = 1, 2, . . . ,m, we obtain thatΦ,Ψ ∈ C1(X,R)
and for any v ∈ X , we have

Φ′(u)(v) =

∫ 1

0

(
u(n)(t)v(n)(t) + · · ·+ u′′(t)v′′(t) + p(t)u′(t)v′(t) + q(t)u(t)v(t)

)
dt

and

Ψ′(u)(v) =

∫ 1

0

f(t, u(t))v(t)dt− µ

λ

n∑
i=1

m∑
j=1

Iij

(
u(i−1)(tj)

)
v(n−i)(tj).

Since any norm in a Banach space is a sequentially weakly lower semicontinuous functional then it is obvious that the
functional Φ is nonnegative, coercive, continuously Gâteaux differentiable and sequentially weakly lower semicon-
tinuous and Φ′ has a continuous inverse on X∗, also Ψ is continuously Gâteaux differentiable and Ψ′ is compact.
With standard arguments, we deduce that the critical points of the functionalEλ are the weak solutions of problem (1)
and so they are classical. We will verify (i) and (ii) of Theorem 2.1. Put r = 2(δπc)2. Taking (7) into account, for
every u ∈ X such that Φ(u) ≤ r, one has maxt∈[0,1] |u(t)| ≤ c. Consequently, from Lemma 2.6 it follows that

sup
Φ(u)≤r

Ψ(u) ≤
∫ 1

0

max
|ε|≤c

F (t, ε)dt+
µ

λ
m

n∑
i=1

(
αic+

βi

σi + 1
cσi+1

)
,

that is,

supΦ(u)≤r Ψ(u)

r
≤ 1

2δ2π2

[∫ 1

0
max|ε|≤c F (t, ε)dt

c2
+

µ

λ
m

n∑
i=1

Γi,c

]
.

Hence, bearing in mind that µ < ρ, one has

supΦ(u)≤r Ψ(u)

r
<

1

λ
. (9)

Put

w(t) =


d
∑n−1

i=0 (−1)n−1−i
(
2n−3−i
n−1−i

)(
2n−2

i

) (
x
α

)2n−2−i
, x ∈ [0, α)

d, x ∈ [α, β]
d

(1−β)2n−2

[(
2n−3
n−1

)
(2n− 2)

∑2n−3
i=0

(−1)n−1−i

2n−2−i

(∑min{i,n−2}
j=max{0,−n+1+i}

(
n−2

n−2−j

)(
n−1

n−1−i+j

)
βi−j

)
x2n−2−i +

∑2n−2
i=n−1(−1)i

(
2n−2

i

)
β2n−2−i

]
, x ∈ (β, 1]
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Clearly w ∈ X . Moreover, taking (3), (4) and (5) into account, one has

4(n− 1)2δ2d2
[
1

α3
+

1

(1− β)3

]
≤ ‖w‖2X

≤(n− 1)d2
(
(2n− 2)!

(n− 2)!

)2 [
1

α2n−1
+

1

(1− β)2n−1

](
1 +

‖p‖∞
π2

+
‖q‖∞
π4

)
=
4δ2π2d2

k
, (10)

and for all t ∈ [0, 1] we have 0 ≤ w(t) ≤ d.

So from c < (n− 1) dπ

[
1
α3 + 1

(1−β)3

] 1
2 , we obtain

r = 2(δπc)2 < 2δ2(n− 1)2d2
[
1

α3
+

1

(1− β)3

]
≤ 1

2
‖w‖2X = Φ(w).

Moreover, again from (10), we have Φ(w) < 2δ2π2d2

k .
Now, due to Lemma (2.6), (A1), (7) and (10) one has

Ψ(w) =

∫ 1

0

F (t, w(t))dt− µ

λ

n∑
i=1

m∑
j=1

∫ w(i−1)(tj)

0

Iij(x)dx

≥
∫ β

α

F (t, d)dt− µ

λ
m

n∑
i=1

(
αi‖w‖∞ +

βi

σi + 1
‖w‖σi+1

∞

)

≥
∫ β

α

F (t, d)dt− µ

λ
m
d2

k

n∑
i=1

Γ
i,
(

d√
k

).
So, we obtain

Ψ(w)

Φ(w)
≥

k
∫ β

α
F (t, d)dt− µ

λmd2
∑n

i=1 Γi,
(

d√
k

)
2(δπd)2

.

Since µ < ρ, one has

Ψ(w)

Φ(w)
>

1

λ
. (11)

Therefore, from (9) and (11), condition (i) of Theorem (3) is fulfilled, i.e.

sup
Φ(u)≤r

Ψ(u) < r
Ψ(w)

Φ(w)
.

Now, to prove the coercivity of the functional Eλ = Φ − λΨ, due to (A3) and the choice of λ in the conclusion, we
have

lim sup
|ε|→+∞

supt∈[0,1] F (t, ε)

ε2
<

(
π4d2

2

)
1

λ
.

So, we can fix η satisfying

lim sup
|ε|→+∞

supt∈[0,1] F (t, ε)

ε2
< η <

(
π4d2

2

)
1

λ
.
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Then, there exists a constant h such that

F (t, ε) ≤ η|ε|2 + h, ∀t ∈ [0, 1], ∀ε ∈ R.

Taking into account Lemma (2.6), (3), (5) and (7), it follows that for all u ∈ X , we have

Eλ(u) =Φ(u)− λΨ(u) =
1

2
‖u‖2X − λ

∫ 1

0

F (t, u(t))dt+ µ
n∑

i=1

m∑
j=1

∫ u(i−1)(tj)

0

Iij(x)dx

≥1

2
‖u‖2X − λη‖u‖22 − λh− µm

n∑
i=1

[
αi

2δπ
‖u‖X +

βi

σi + 1

(
1

2δπ

)σi+1

‖u‖σi+1
X

]

≥1

2
‖u‖2X − λη

π4
‖u′′‖22 − λh− µm

n∑
i=1

[
αi

2δπ
‖u‖X +

βi

σi + 1

(
‖u‖X
2δπ

)σi+1
]

≥1

2
‖u‖2X − λη

π4
|||u|||2 − λh− µm

n∑
i=1

[
αi

2δπ
‖u‖X +

βi

σi + 1

(
‖u‖X
2δπ

)σi+1
]

≥
(
1

2
− λη

δ2π4

)
‖u‖2X − λh− µm

n∑
i=1

[
αi

2δπ
‖u‖X +

βi

σi + 1

(
‖u‖X
2δπ

)σi+1
]
.

So, the functional Eλ = Φ− λΨ is coercive. Thus condition (ii) of Theorem 2.1 is satisfied. Now, the conclusion of
Theorem 2.1 can be used. It follows that, for every

λ ∈ Λ ⊆

(
Φ(w)

Ψ(w)
,

r

supΦ(u)≤r Ψ(u)

)
,

the functionalEλ = Φ−λΨ has at least three distinct critical points inX , which are the weak solutions and so classical
solutions of the problem (1). This completes the proof.

Corollary 3.2. Suppose that (H1) holds. LetΘ ∈ L1([0, 1]) be a non-negative and non-zero function and let l : R →
R be a continuous function. Put: θ0 =

∫ β

α
θ(t)dt, ‖θ‖1 =

∫ 1

0
θ(t)dt, L(ε) =

∫ ε

0
l(x)dx, ∀ε ∈ R. Assume that there

exist two positive constants c, d, with c < (n− 1) dπ

[
1
α3 + 1

(1−β)3

] 1
2 , such that

(A′
1) L(ε) ≥ 0, ∀ε ∈ [0, d];

(A′
2)

max|ε|≤c L(ε)

c2 ≤ 4π2θ0L(d)

(n−1)( (2n−2)!
(n−2)! )

2
∥θ∥1d2

[
1

α2n−1 + 1

(1−β)2n−1

] ;
(A′

3) lim sup|ε|→+∞
L(ε)
ε2 ≤ 0.

Then for every

λ ∈

 (n− 1)
(

(2n−2)!
(n−2)!

)2 [
1

α2n−1 + 1
(1−β)2n−1

]
d2

2θ0L(d)
,

2π2c2

‖θ‖1 max|ε|≤c L(ε)


there exists

ρ =
1

2m
min

1≤i≤n


2π2c2 − λ‖θ‖1 max|ε|≤c L(ε)

c2Γi,c
,

4λθ0π
2L(d)

(n−1)( (2n−2)!
(n−2)! )

2
[

1

α2n−1 + 1

(1−β)2n−1

] − 2π2d2

d2Γ
i,
(

d√
k

)


such that, for each µ ∈ [0, ρ) the problem
(−1)nu(2n)(t) + · · ·+ u(4)(t) = λθ(t)l(u(t)), t 6= tj , t ∈ [0, 1]

u(0) = u(1) = u′(0) = u′(1) = · · · = u(n−2)(0) = u(n−2)(1) = 0 = u(n)(0) = u(n)(1)

(−1)i−1∆
(
u(n+i−1)(tj)

)
= µIij

(
u(i−1)(tj)

)
, i = i, 2, . . . , n, j = 1, 2, . . . ,m

has at least three classical solutions.
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Proof. The proof follows from Theorem 3.1 by choosing f(t, x) = θ(t)l(x) and p(t) = 0 = q(t). Then we have
σ = 0 and δ = 1.

The following lemma will be crucial in our arguments.

Lemma 3.3. Suppose that f(t, x) ≥ 0 for all (t, x) ∈ [0, 1] × R and Iij(x) ≤ 0 for all x ∈ R, i = 1, 2, . . . , n and
j = 1, 2, . . . ,m. If u is a classical solution of (1), then u(t) ≥ 0 for all t ∈ [0, 1].

Proof. If u is a classical solution of (1), then for all v ∈ X we have

(−1)n
∫ 1

0

u(2n)(t)v(t)dt+ · · ·+
∫ 1

0

u(4)(t)v(t)dt−
∫ 1

0

(p(t)u′(t))′v(t)dt

+

∫ 1

0

q(t)u(t)v(t)dt− λ

∫ 1

0

f(t, u(t))v(t)dt = 0.

Let v(t) = max{−u(t), 0} for all t ∈ [0, 1], clearly v(t) ≥ 0, v ∈ X and by n times integration by parts we have

0 =(−1)n
m∑
j=1

∫ tj+1

tj

u(2n)(t)v(t)dt+ · · ·+
m∑
j=1

∫ tj+1

tj

u(4)(t)v(t)dt−
∫ 1

0

(p(t)u′(t))′v(t)dt

+

∫ 1

0

q(t)u(t)v(t)dt− λ

∫ 1

0

f(t, u(t))v(t)dt

=(−1)n
m∑
j=1

u(2n−1)(t)v(t)|tj+1

tj + (−1)n−1
m∑
j=1

u(2n−2)(t)v′(t)|tj+1

tj + · · · −
m∑
j=1

u(n)(t)v(n−1)(t)|tj+1

tj

+

∫ 1

0

u(n)(t)v(n)(t)dt+ · · ·+
∫ 1

0

u′′(t)v′′(t)dt+

∫ 1

0

p(t)u′(t)v′(t)dt

+

∫ 1

0

q(t)u(t)v(t)dt− λ

∫ 1

0

f(t, u(t))v(t)dt

=(−1)n−1
m∑
j=1

∆u(2n−1)(tj)v(tj) + (−1)n−2
m∑
j=1

∆u(2n−2)(tj)v
′(tj) + · · ·+

m∑
j=1

∆u(n)(tj)v
(n−1)(tj)

+

∫ 1

0

u(n)(t)v(n)(t)dt+ · · ·+
∫ 1

0

u′′(t)v′′(t)dt+

∫ 1

0

p(t)u′(t)v′(t)dt

+

∫ 1

0

q(t)u(t)v(t)dt− λ

∫ 1

0

f(t, u(t))v(t)dt

≤
m∑
j=1

µInj(u
(n−1)(tj)) +

m∑
j=1

µI(n−1)j(u
(n−2)(tj)) + · · ·+

m∑
j=1

µI1j(u(tj))

−
∫ 1

0

(v(n)(t))2dt− · · · −
∫ 1

0

(v′′(t))2dt−
∫ 1

0

p(t)(v′(t))2dt

−
∫ 1

0

q(t)(v(t))2dt− λ

∫ 1

0

f(t, u(t))v(t)dt

≤− ‖v‖2X ≤ 0.

So v(t) = 0 for t ∈ [0, 1].

Put

Gi,c =

m∑
j=1

min
|ε|≤c

∫ ε

0

Iij(x)dx, ∀c > 0, i = 1, 2, . . . , n.

Our other main result is as follows.
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Theorem 3.4. Assume that there exist three positive constants c1, c2, d with πc1

(n−1)
[

1
α3 + 1

(1−β)3

] 1
2
< d <

√
k
2 c2 such

that

(B1) f(t, x) ≥ 0, ∀(t, x) ∈ [0, 1]× [0, c2];

(B2)
∫ 1
0
F (t,c1)dt

c21
< 2

3k
∫ β
α

F (t,d)dt

d2 ;

(B3)
∫ 1
0
F (t,c2)dt

c22
< k

3

∫ β
α

F (t,d)dt

d2 .

Then for every

λ ∈ Λ′ =

(
3δ2π2d2

k
∫ β

α
F (t, d)dt

, δ2π2 min

{
2c21∫ 1

0
F (t, c1)dt

,
c22∫ 1

0
F (t, c2)dt

})
and for every non-positive continuous function Iij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m, there exists

ρ∗ =
1

2
min

1≤i≤n

{
λ
∫ 1

0
F (t, c1)dt− 2δ2π2c21

Gi,c1

,
λ
∫ 1

0
F (t, c2)dt− δ2π2c22

Gi,c2

}

such that, for each µ ∈ (0, ρ∗) the problem (1) has at least three classical solutions uq , q = 1, 2, 3, such that 0 ≤
‖uq‖∞ ≤ c2.

Proof. Without loss of generality, we can assume f(t, x) ≥ 0 for all (t, x) ∈ [0, 1] × R. Fix λ, Iij and µ as in the
conclusion and take X , Φ, Ψ and w as in the proof of Theorem 3.1. Put r1 = 2δ2π2c21 and r2 = 2δ2π2c22. Therefore,
one has 2r1 < Φ(w) < r2

2 and since µ < ρ∗, one has

1

r1
sup

Φ(u)<r1

Ψ(u) ≤ 1

2δ2π2c21

(∫ 1

0

F (t, c1)dt−
µ

λ
G1,c1 − · · · − µ

λ
Gn,c1

)

<
1

λ
<

k

3δ2π2

∫ β

α
F (t, d)dt

d2
≤ 2

3

Ψ(w)

Φ(w)
,

and

2

r2
sup

Φ(u)<r2

Ψ(u) ≤ 1

δ2π2c22

(∫ 1

0

F (t, c2)dt−
µ

λ
G1,c2 − · · · − µ

λ
Gn,c2

)

<
1

λ
<

k

3δ2π2

∫ β

α
F (t, d)dt

d2
≤ 2

3

Ψ(w)

Φ(w)
.

Therefore, conditions (j) and (jj) of Theorem 2.2 are satisfied. Finally, let u1 and u2 be two local minima for functional
Φ − λΨ. Then, u1 and u2 are critical points for Φ − λΨ, and so, they are weak solutions and so classical solutions
for the problem (1). Hence, owing to Lemma 3.3, we obtain u1(t) ≥ 0 and u2(t) ≥ 0 for all t ∈ [0, 1]. So, one has
Ψ(su1 + (1− s)u2) ≥ 0 for all s ∈ [0, 1]. From Theorem 2.2 the functional Φ− λΨ has at least three distinct critical
points which are weak solutions of (1). This completes the proof.

Example 3.5. Consider the following problem

(−1)nu(2n)(t) + · · ·+ u(4)(t)− u′′(t) + (t− 1)2u(t) = λu2(3− 4u) sin(πt), t 6= t1, t ∈ (0, 1)

∆(u(n)(t1)) = µ(1− 3
√

u(t1))

−∆(u(n+1)(t1)) = µ(1 +
√

u′(t1))

(−1)i∆(u(n+i)(t1)) = µ(1), i = 2, 3, . . . , n− 1

u(0) = u(1) = u′(0) = u′(1) = · · · = u(n−2)(0) = u(n−2)(1) = 0 = u(n)(0) = u(n)(1).
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It is sufficient to apply Theorem 3.1 by choosing c = 1
64 and d = 1

2 we have

δ = 1, ‖p‖∞ = 1, ‖q‖∞ = 1, k =
4π2

(n− 1)
(

(2n−2)!
(n−2)!

)2 (
1 + 1

π2 + 1
π4

) [
1

α2n−1 + 1
(1−β)2n−1

] .
Then for each

λ ∈ Λ =

 (2n− 2)
(

(2n−2)!
(n−2)!

)2 (
π + 1

π + 1
π3

) [
1

α2n−1 + 1
(1−β)2n−1

]
cos(απ)− cos(βπ)

, 2015


and for each 0 < µ < 9.8696−0.00489λ

76 , the above problem admits at least three non-trivial solutions.
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Abstract

This article presents a new approach for solving the Optimal Controls of linear time delay sys-
tems with a quadratic cost functional. In this study, the Artificial Neural Networks are employed
for convert delay optimal control problem to a unconstrained optimization problem. Then by us-
ing an optimization algorithm, the optimal control law is obtained. Finally, Illustrative examples
are included to demonstrate the validity and applicability of the technique.

1. Introduction

The control of systems with time-delay has been of considerable concern. Delays occur frequently in biological,
chemical, electronic, engineering, transportation systems and so on. Therefore, there are many attempts available in
the literature to approximately solve this problem.
Oǧuztöreli [6], in1963, was one of the pioneers in the analytical-based approach for time-delay Optimal Control Prob-
lems (OCPs). For the first time, Kharatishvili [4] generalized the Pontryagin maximum principle for this type of
problems. The system resulting his work is a two-point boundary value problem (TPBVP) involving both advance
and delay terms whose exact solution, except in very special cases, is very difficult. Therefore, the main object of all
computational aspects of optimal time-delay systems has been to devise a methodology to avoid the solution of the
mentioned TPBVP.
Also, Artificial Neural networks (ANNs) are considerable as a effective tools for function approximation, recently. For
the first time, in 1944, two researchers from Chicago University named McCullough and Walter Pitts presented the
first model of neural networks. The perceptron was the first trainable neural network proposed by Cornell University
psychologist Frank Rosenblatt in 1957. Mathematicians proved that continuous functions can be approximated by a
multi-layer perceptron on the basis of a compact set ofRn. In a theorem in [1], Gybenko proves that a Neural Network
approximation with a sigmoid active function can approximate continuous functions succesfully. For the first time, in
order to solve PDEs and ODEs, Lagaris et al. proposed using neural networks [2]. Effati and Pakdaman in [8] used
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ANNs for approximating the state, co-state, and control functions for optimal control problems. Sabouri et al. in [3]
can solve fractional optimal control problems with Neural Networks and etc. In another work Effati et al. Recently,
Bhagya and Dash in [7] discussed a variety of applications of ANN to the modeling of nonlinear problems in food
engineering.
Here, we attempt to implement the ability of neural networks to approximate time-delay OCPs. This paper is organized
as follow:
The main results are discussed in 2, in this section we design a new a new neural network for solving time-delay OCPs.
In 3, we give a numerical example to demonstrate the effectiveness and accuracy of the proposed technique. Finally,
with the conclusion in 4, we end the article.

2. Main results

Consider the linear system with delay in the state variable{
ẋ(t) = Ax(t) +A1x(t− τ) +Bu(t), t0 ≤ t ≤ tf ,

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0,
(1)

where u(t) in PC([t0, tf ],Rn) and x(t) in PC1([t0 − τ, tf ],Rn) are the control and state variables, respectively. In
fact, the parameter τ > 0 is nonnegative and indicates the time delay. Furthermore, the initial state function ϕ(t) is
continuous inC([t0−τ, t0],Rn), and finally, the matricesA,B, andA1 are real constants with appropriate dimensions.
For t ∈ [t0, tf ], our aim is to obtain, u∗(t), the optimal control law minimizing the quadratic cost function

J =
1

2

∫ tf

t0

(uT (t)Ru(t) + xT (t)Qx(t))dt+
1

2
xT (tf )Qfx(tf ), (2)

in which R ∈ Rm×n is a positive definite matrix and Q and Qf ∈ Rn×n are positive semi-definite matrices.
For time-delay OCPs, it follows from [4] that the pontryagin maximum principle provides necessary conditions of
optimality for the problem (1) and (2) as follows:

ẋ(t) = Ax(t) +A1x(t− τ)−BR−1BTλ(t), t0 ≤ t ≤ tf ,

λ̇(t) =

{
−Qx(t)−ATλ(t)−AT

1 λ(t+ τ), t0 ≤ t ≤ tf − τ,

−Qx(t)−ATλ(t), tf − τ < t ≤ tf ,

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0,

λ(tf ) = Qfx(tf ).

(3)

The Hamiltonian function from which the above conditions are derived is

H(x, u, λ, t) = λT (t)[Ax(t) +Bu(t) +A1x(t− τ) +
1

2
xT (t)Qx(t)+

1

2
uT (t)Ru(t)], (4)

where λ(t) ∈ PC1([t0, tf ],Rn) is called co-state vector. Moreover,

u∗(t) = −R−1BTλ(t), (5)

for t0 ≤ t ≤ tf , is the optimal control law. We recall that the system (3) is a TPBVP with both time-advance and
time-delay terms. Unfortunately, in general, this problem does not have any analytical solution. Therefore, providing
an efficient method for solving this difficult problem numerically is very important.
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For solving TPBVP (3), we suggested following approximations based on ANN for state and co-state variables:

xN (t,Wx) =

{
ϕ(t) + (ψ(t)− ψ(t0))Nx(t,Wx), t ≥ t0

ϕ(t), t ≤ t0

λN (t,Wλ) =

{
Nλ(t,Wλ), اگر Qf = 0

(t− tf )Nλ(t,Wλ) +Qfx(tf ), اگر Qf ̸= 0
(6)

(7)

where xN and λN are satisfying in initial and final conditions. Also,

N(t,W ) =
k∑

i=1

viσ(θi), θi = wit+ bi, (8)

is a perceptron ANN with two layers. Wx andWλ are weight vectors according to input, output and bias weightes for
x(t) and λ(t). σ is considered as an arbitrary activation function, here we implemented the sigmoid function in the
numerical examples, as follows:

σ(x) =
1

1 + e−x
, (9)

With proposing this approximation functions for x(t) and λ(t) and substituting them in TPBVP (3), we have

ẋN (t,Wx) = AxN (t,Wx) +A1xN (t− τ,Wx)− SλN (t,Wλ), t0 ⩽ t ⩽ tf ,

λ̇N (t,Wλ) =

{
−QxN (t,Wx)−ATλN (t,Wλ)−AT

1 λN (t+ τ,Wλ), t0 ⩽ t < tf − τ,

−QxN (t,Wx)−ATλN (t,Wλ), tf − τ ⩽ t ⩽ tf ,

xN (t) = ϕ(t), t0 − τ ≤ t ⩽ t0,

λN (tf ,Wλ) = QfxN (tf ,Wx),

(10)

For solving (10), we introduce the following error function

Ex(t,W ) =
(
ẋN (t,Wx)−

(
AxN (t,Wx) +A1xN (t− τ,Wx)− SλN (t,Wλ)

))2

,

t0 ⩽ t ⩽ tf ,

Eλ(t,W ) =


(
λ̇N (t,Wλ)−

(
−QxN (t,Wx)−ATλN (t,Wλ)−AT

1 λN (t+ τ,Wλ)
))2

,

t0 ⩽ t < tf − τ,(
λ̇N (t,Wλ)−

(
−QxN (t,Wx)−ATλN (t,Wλ)

))2

, tf − τ ⩽ t ⩽ tf ,

(11)

where W = (Wx,Wλ) contains all the weights of the approximate functions. Finally, we write the neural network
error function as

R(t,W ) = Ex(t,W ) + Eλ(t,W ) (12)

Now, in order to minimize the weights of the neural network, discretize the interval [t0, tf ] with m points tk, k =
1, 2, . . . ,m, then We are solving the following unconstrained optimization problem

minR(W ) =

m∑
k=1

Ex(tk,W ) + Eλ(tk,W ) (13)

Any classical mathematical optimization algorithm such as the fastest reduction, Newton, conjugate gradient,... and
heuristic approaches such as Genetic or Ant algorithms, can be used to solve this problem. We have used of matlab
optimization packages.
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3. Numerical results

Example 3.1. Consider the time-delay system{
ẋ = u(t)− x(t− 1), 0 ≤ t ≤ 1,

x(t) = 1, −1 ≤ t ≤ 0,
(14)

to minimize this quadratic cost functional

J =

∫ 1

0

[
1

2
x2(t) +

1

2
u2(t)]dt. (15)

Now, our aim is to obtain the optimal control, u(t), subject to (14) that minimizes (15).
the necessary conditions of optimality for the problem (14) and (15) are as follow

ẋ(t) = −x(t− 1) + u(t)

λ̇(t) =

{
−x(t) + λ(t+ 1), t = 0,

−x(t) 0 < t ≤ 1,

x(t) = 1, −1 ≤ t ≤ 0,

λ(1) = 0,

and the optimal control law is
u∗(t) = −λ(t)

With choosing ψ(t) = t. we have following approximation functions for x(t) and λ(t),

xN (t,Wx) =

{
1 + tNx(t,Wx), t ≥ 0

1, t ≤ 0,

λN (t,Wλ) = Nλ(t,Wλ), 0 ≤ t ≤ 1

To solve this problem, we trained the neural network in the interval [0, 1]with 100 training points and k = 10 neurons.
The exact solutions for u(t) and x(t) are, respectively, obtained as follows:

u∗(t) = 1 +
1

cosh(1)
(sinh(t− 1)− cosh(t)), (16)

x∗(t) =
1

cosh(1)
(cosh(t− 1)− sinh(t)). (17)

Moreover, it follows from [5] that the optimal value of cost functional is J∗ = 0.1480542786. It can be shown that
the approximate value of the cost functional calculated by the proposed َANN method is equal to J = 0.1480543001.
It is clear that the approximate value of J is very close to the optimal value. Also, we depict the simulation curves of
the trajectory of x(t), control variable u(t), and their exact values in Figs. 1 and 2.

4. Conclusion

In this paper, we propose approximation functions based on neural network model for stste and co-state variables, to
solve time-delay OCPs. This technique convert time-delay OCPs to a unconstrained optimization problem that can
be easily solved using an optimization algorithm. The numerical results were presented to illustrate the high accuracy
and efficiency of our proposed approach. Further research can be done on the extension of using Neural networks for
solving time-delay OCPs with time dependent delays in the control and state.
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Fig. 1. Approximation and exact values of state variable for Example 3.1

Fig. 2. Approximation and exact values of control variable for Example 3.1
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Abstract

The wave equation is a fundamental partial differential equation that describes the propagation
of waves, such as sound or light waves, through a medium. In this paper, a spectral collocation
method based on shifted Chebyshev polynomials and Gaussian nodes is applied to solve wave
equation. The obtained results show efficiency and performance of the method.

1. Introduction

Partial differential equations (PDEs) are useful tools for describing the natural phenomena of science and engineering
models. Because of this connection with phenomena in the physical world, PDEs are of widespread interest. For
instance, the heat flow and wave propagation are some phenomena in physics which are described via PDEs with initial
and boundary conditions. The diffusion of neutrons in nuclear reactor dynamics, population models, the dispersion of
a chemically reactive material, and many physical phenomena of fluid dynamics, quantum mechanics, electricity, and
so on are also governed by PDEs.
Scientists and mathematicians have become actively involved in the study of countless problems offered by PDEs.
The primary reason for this research was that it plays a vital role in modern mathematical sciences, mainly in applied
physics, mathematical modeling, and engineering. With the development of PDEs, several methods such as the char-
acteristics method, spectral methods, and perturbation techniques have been employed to get the solution of problems.
However, there is no general method to find analytical solutions of some PDEs. So, finding new numerical techniques
to obtain the solutions of equations is of concern. Traditional methods like finite differences or finite elements have
been widely used to solve PDEs. However, spectral methods offer a powerful alternative, particularly when dealing
with smooth problems or requiring high precision. Among spectral methods, those based on orthogonal functions
stand out for their accuracy and efficiency [1–3].
In this paper, we investigate a new numerical scheme for solving PDEs. The scheme is based on collocation method
based on Chebyshev polynomials.
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2. Governing equations

The wave equation, a fundamental partial differential equation (PDE) in physics, models how waveforms such as
sound or light propagate through different media. The prototype for all hyperbolic partial differential equations is the
one-way wave equation. It is an one-dimensional first-order linear PDE given by:

ut + cux = 0, (1)

where u(x, t) represents the wave function, c is a constant which is called the speed of propagation along the charac-
teristic, t is time, and x is the spatial variable. The subscript denotes differentiation, i.e., ut =

∂u
∂t and ux = ∂u

∂x .
The equation comes with appropriate initial and boundary conditions:

u(x, 0) = u0(x), a ≤ x ≤ b (2)
u(a, t) = u(b, t) = v(t), t ≥ 0 (3)

The exact solution of Eq. (1) is:
u(x, t) = u0(x− ct) (4)

The more general hyperbolic equation is:
ut + cux = f(x, t, u), (5)

3. Proposed method

In this paper, a new spectral collocation method is applied to solve PDEs. In traditional spectral methods, the unknown
function is expanded over spatial variable and other methods are applied for time parameter.
In this method, orthogonal functions are used in both time and spatial to approximate the function u(x, t). So, we have

u(x, t) ≈ uMN (x, t) =
M∑

m=0

N∑
n=0

am,nφn(t)ϕm(x). (6)

Here, φn(t) and ϕm(x) are appropriate orthogonal functions defined on the problem domain.
By choosing collocation nodes and substituting them on the governing equations, we have a set of algebraic equations
which can be solved by proper methods.

4. Numerical results

In this section, some numerical examples are given to show the efficiency of the method. In the examples, shifted
Chebyshev polynomials, are chosen as the both spatial and time trial functions in (6):

ϕm(x) = TS
m(x), (7)

φn(t) = TS
n (t). (8)

Also, shifted Chebyshev Gauss Lobatto and shifted Chebyshev Gauss Radau nodes are used for spatial collocation
and time collocation nodes, respectively:

sm :roots of TS
M+1(x)− TS

M−1(x), m = 0, 1, . . . ,M, (9)
τn :roots of TS

N+1(t) + TS
N (t), n = 0, 1, . . . , N, (10)

To solve the problems, at first, u(x, t) is substituted by the approximated function, uMN (x, t), in the governing equa-
tions. Then, the equations are evaluated at collocation nodes to construct the system of algebraic equations.
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Example 4.1. Consider the following problem:

ut + 2πux = 0, 0 ≤ x ≤ 2π, t ≥ 0, (11)
u(x, 0) = exp(sinx) 0 ≤ x ≤ 2π, (12)
u(0, t) = u(2π, t) = exp(sin(−2πt)), t ≥ 0. (13)

The exact solution of the problem is:
u(x, t) = exp(sin(x− 2πt)). (14)

The results forM = 32 and N = 16 are shown in Figs. 1 and 2.
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Fig. 1. Solution of Example 4.1.

0 π
2

π 3π
2

2π

0.5

1

1.5

2

2.5

x

u
(x
,t
)

τ4
τ8
τ12
τ16
Exact
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Fig. 2. Obtained results for Example 4.1.
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Example 4.2. Consider the following problem:

ut + 2πux = x+ t, 0 ≤ x ≤ π, t ≥ 0, (15)
u(x, 0) = 0 0 ≤ x ≤ π, (16)
u(0, t) = 0, u(π, t) = πt, t ≥ 0. (17)

The exact solution of the problem is:
u(x, t) = xt. (18)

The results forM = 32 and N = 16 are shown in Figs. 3 and 4.
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Fig. 3. Solution of Example 4.2.
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Fig. 4. Obtained results for Example 4.2.

5. Conclusion

In this article, we explored the application of a new numerical scheme for solving partial differential equations using
a collocation method based on Chebyshev polynomials.
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The proposed spectral collocation method utilizes orthogonal functions in both spatial and temporal dimensions to
approximate the solution u(x, t). By selecting appropriate collocation nodes and solving the resulting algebraic equa-
tions, accurate solutions to PDEs are obtained.
Numerical examples demonstrate the efficiency of this method, with shifted Chebyshev polynomials serving as trial
functions. Overall, spectral methods based on orthogonal functions provide a powerful tool for tackling complex PDEs
in diverse fields.
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