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Abstract

In this manuscript, we investigate a class of hybrid Langevin inclusion along with variable
coefficient involving the generalized q-derivative. In fact, based on the famous fractional q-
derivative that depends on other function ℷ, namely ℷ-Caputo fractional q-derivative, the pro-
posed inclusion containing a variable coefficient is generalized. According to instructions of
Dhage’s fixed point theorem, we examine the required conditions for the existence of a solution
for the hybrid q-differential Langevin inclusion, which includes checking variable coefficients.
Presenting some practical examples at the end, together with the conclusion, will stimulate the
theoretical achievements.

1. Introduction

It has been suggested to all researchers that fractional calculus is a better simulation for solving phenomena problems
such as industrial engineering, environmental and biological studies [2, 6, 10, 11, 13]. The fractional equation of
Langevin type (𝔽L𝔼) generalizes the public L𝔼 by fractional derivative and integral. This characterization useful for
describing more complex problems, which are not well defined by the general L𝔼. In 1908, Langevin introduced an
integer-order equation 𝑙1𝕪″(ρ) = −𝑙2𝕪′(ρ) + ℏ(ρ) with parameters the mass of a Brownian particle 𝑙1, the viscous
force−𝑙2𝕪′(ρ)with coefficient and the fluctuating forceℏ(ρ). The general form𝔽L𝔼 alongwith necessary parameters,
is given as

𝑙1
d℘1𝕪(ρ)
dρ℘1 = −𝑙2

d℘2𝕪(ρ)
dρ𝑞 + ℏ(ρ) +𝒲(𝕪(ρ)).

It is natural, having variable coefficients in the L𝔼, It will increase the range of investigation of complex equations of
Langevin type [8, 13, 17].

As a valuable generalization with q-fractional differential inclusions (q-𝔽𝔻𝕀s) involving Caputo derivative of order
𝛼 > 0, CqD℘𝕪(ρ) ∈ 𝒲(ρ, 𝕪(ρ)) where𝒲(ρ, 𝕪(ρ)) is a set-valued map, we aim to study the following hybrid q-𝔽𝔻𝕀,

ቐ
C
qD

𝑟,ℷ
l1
൬CqD℘,ℷ

l1
൬ 𝕪(ρ)
𝜒(ρ,𝕪(ρ))൰ + ℏ(ρ)𝕪(ρ)൰ ∈ 𝒲(ρ, 𝕪(ρ)), 0 < 𝑟,℘ < 1,

𝕪 (l1) = 0, 𝕪 (l2) = ∑ℵ
�̊�=1 ϶�̊�

RL
qI

𝑠�̊� ,ℷ𝕪 (𝜂�̊�) , 𝑠�̊� > 0,
(1)

∗Talker
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for ρ ∈ 𝐸 ∶= [l1, l2], with a set-valued map𝒲 ∶ 𝐸 × ℝ → 𝒫(ℝ), where 𝒫(ℝ) = ൛𝐴 ⊂ ℝ ∶ 𝐴 ≠ ∅ൟ, ℏ ∈ 𝐶(ℝ+), and
𝜒 ∈ 𝐶൫𝐸 × ℝ,ℝ ∖ ൛0ൟ൯.

2. Auxiliary notations and lemmas

The objects [℘]q (q-number) and (℘ − q𝑣)(�̊�) (q-factorial function), are expressed for ℘, 𝑣 ∈ ℝ, by 1−q℘

1−q
and

(℘ − q𝑣)(�̊�) = ൝
∏�̊�−1
𝑙=0(℘ − q𝑙𝑣), ̊𝚥 ∈ ℕ,

1, ̊𝚥 = 0,
(2)

respectively [1, 9]. Clearly, (1 − q)(�̊�) = ∏�̊�−1
𝑙=0 ൫1 − q𝑙+1൯ for ̊𝚥 ∈ ℕ whenever ℘ = 1, 𝑣 = q. For check related

algorithms, see [16]. Further,

(℘ − q𝑣)(ϱ) = ℘ϱ
∞

ෑ
𝑙=0

℘−q𝑙𝑣
℘−qϱ+𝑙𝑣 , ϱ ∈ [0,∞), ℘, 𝑣 ∈ ℝ, (3)

and℘(ϱ) = ℘ϱ whenever 𝑣 = 0 [7]. The fractional q-integral and q-derivative of RL type for the function 𝕥 ∈ 𝐶(ℝ>0)
are expressed as [3, 14],

qI
℘
0 𝕥(ϱ) = ቐ න

ϱ

0
(ϱ − q𝑟)(℘−1) 𝕥(𝑟)

Γq(℘)
dq𝑟, ℘ > 0,

𝕥(ϱ), ℘ = 0,
(4)

and

qD
℘
0 𝕥(ϱ) = න

ϱ

0
(ϱ − q𝑟)(ℵ−℘−1) 𝕥(𝑟)

Γq(ℵ−℘)
dq𝑟, ℵ − 1 < ℘ < ℵ, (5)

respectively, s.t. ℵ = [℘] along with the famous q-Gamma function, Γq (℘) =
(1−q)(℘−1)

(1−q)℘−1
, ∀℘ ∈ ℝ∖ ൛⋯ ,−2,−1, 0ൟ,

and the relation Γq (℘ + 1) = [℘]qΓq(℘) holds [7, 9]. In the sense of Caputo, the fractional q-derivative is given for
ϱ ∈ W𝜏 as [14],

C
qD

℘
0 𝕥(ϱ) = ൝ qI

[℘]−℘
0 ቂqD[℘]

0 𝕥(ϱ)ቃ , ℘ > 0,
𝕥(ϱ), ℘ = 0.

(6)

Lemma2.1 ([3, 14]). For function 𝕥 ∶ W𝜏 → ℝ and℘1, ℘2 ∈ ℝ≥0, we have C
qD

℘1
0 ቂqI℘1

0 𝕥(ϱ)ቃ = 𝕥(ϱ), qI
℘1
0 ቂqI℘2

0 𝕥(ϱ)ቃ =
qI

℘1+℘2
0 𝕥(ϱ), and

qI
℘1
0 ቂCqD℘1

0 𝕥(ϱ)ቃ = 𝕥(ϱ) −
[℘1]−1


�̊�=0

ϱ�̊�
Γq(�̊�+1) qD

�̊�
0𝕥(ϱ) (0) ,

qI
℘1
0 ቂqD℘2

0 𝕥(ϱ)ቃ = qD
℘2
0 ቂqI℘1

0 𝕥(ϱ)ቃ −
[℘2]−1


�̊�=0

ϱ℘1−℘2+�̊�
Γq(℘1+�̊�−℘2+1) qD

�̊�
0𝕥(0). (7)

The RL type fractional q-integral for function 𝕥 is get by [16],

න
ϱ

0
(ϱ − q𝑟)(℘−1) 𝕥(𝑟)

Γq(℘)
dq𝑟 =

ϱ℘(1−q)
Γq(℘)

∞


�̊�=0

q�̊�
∞

ෑ
�̊�=0

1−q�̊�+�̊�

1−q℘+�̊�+�̊�−1
𝕥 ൫ϱq�̊�൯ . (8)

See [16, Algorithm 2], to can calculate fractional q-integral (8). For ℘ ≥ 0 and 𝜘 > −1, we have

൫qD
℘
0 ൣ(ϱ − 𝜅)(𝜘)൧൯ (ϱ) = Γq(𝜘+1)

Γq(℘+𝜘+1)
(ϱ − 𝜅)(℘+𝜘), 0 < 𝜅 < ϱ, (9)

and in particular ൫qD
℘
0 1൯ (ϱ) =

1
Γq(℘+1)

ϱ(℘) [15].
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Theorem 2.2 ([4, 5]). Assume that 𝑌 be a Banach algebra and consider the single-valued and multi-valued operators
𝔒sv ∶ 𝑌 → 𝑌 and 𝔒mv ∶ 𝑌 → 𝒫cl,cv(𝑌), with 𝒫cl,cv(𝑌) as the family of subset 𝐴 ∈ 𝒫(𝑌) s.t., 𝐴 is closed, bounded,
and convex, is satisfied I) 𝔒sv is Lipschitz; II) 𝔒mv is compact and upper semicontinuous; III) 2𝔲𝔑 < 1 with
𝔲 ∶= ‖𝔒sv(𝑌)‖ and 𝔑 ∶= ‖𝔒mv(𝑌)‖. Then either a) the operator inclusion 𝕪 ∈ 𝔒sv 𝕪𝔒mv𝕪 has a solution; or b)
Σ = ൛𝕪 ∈ 𝑌 ∶ γ𝕪 ∈ 𝔒sv𝕪𝔒mv𝕪, 1 < γൟ is unbounded.

3. Main results

First, we consider the below mentioned key lemma.

Lemma 3.1. The function 𝕪(ρ) can be considered as a solution of the hybrid q-𝔽𝔻𝕀
C
qD

𝑟,ℷ
l1
൬CqD℘,ℷ

l1
൬ 𝕪(ρ)
𝜒(ρ,𝕪(ρ))൰ + ℏ(ρ)𝕪(ρ)൰ = 𝜛(ρ), (10)

for ρ ∈ 𝐸, under conditions 𝕪 (l1) = 0 and 𝕪 (l2) = ∑ℵ
�̊�=1 ϶�̊�

RL
qI

𝑠�̊� ,ℷ𝕪 (𝜂�̊�), if and only if

𝕪(ρ) = 𝜒(ρ, 𝕪(ρ))ቊ RL
qI

𝑟+℘,ℷ𝜛(ρ) − RL
qI

℘,ℷℏ(ρ)𝕪(ρ) + ൫ℷl1 (ρ)൯
℘

ΩΓq(℘+1)
ቂ𝜒 (l2, 𝕪 (l2)) RLqI𝑟+℘,ℷ𝜛 (l2)

− RL
qI

℘,ℷ𝜒 (l2, 𝕪 (l2)) ℏ (l2) 𝕪 (l2) −
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) RLqI𝑟+℘+𝑠�̊� ,ℷ𝜛 (𝜂�̊�)

+
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) RLqI℘+𝑠�̊� ,ℷℏ (𝜂�̊�) ቃቋ. (11)

where ℷ𝑣(𝑧) ∶= ℷ(𝑧) − ℷ(𝑣) and

Ω ∶=
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�))
൫ℷl1 ൫𝜂�̊�൯൯

℘+𝑠�̊�

Γq൫℘+𝑠�̊�+1൯
+ 𝜒 (l2, 𝕪 (l2))

൫ℷl1 (l2)൯
℘

Γq(℘+1)
. (12)

Proof. Employing to Lemma 2.1 and taking RL
qI

𝑟,ℷ on hybrid q-𝔽𝔻𝕀 (10), for ρ ∈ 𝐸, imply that,

C
qD

℘,ℷ
l1

൬ 𝕪(ρ)
𝜒(ρ,𝕪(ρ))൰ + ℏ(ρ)𝕪(ρ) = RL

qI
𝑟,ℷ𝜛(ρ) + �̃�0, �̃�0 ∈ ℝ. (13)

Again, due to the same two previous instructions, with RL
qI

℘,ℷ on Eq. (13), we get,

𝕪(ρ)
𝜒(ρ,𝕪(ρ)) =

RL
qI

𝑟+℘,ℷ𝜛(ρ) − RL
qI

℘,ℷℏ(ρ)𝕪(ρ) + �̃�0
Γq(𝑟+1)

൫ℷl1(ρ)൯
℘ + �̃�1, �̃�1 ∈ ℝ. (14)

Thanks to condition 𝕪(l1) = 0, Eq. (14) implies that �̃�1 = 0. Thus, we can write,

𝕪(ρ) = 𝜒(ρ, 𝕪(ρ)) ൜RLqI𝑟+℘,ℷ𝜛(ρ) − RL
qI

℘,ℷℏ(ρ)𝕪(ρ) + �̃�0
Γq(𝑟+1)

൫ℷl1(ρ)൯
℘ൠ . (15)

Now, by examining the condition 𝕪 (l2) = ∑ℵ
�̊�=1 ϶�̊�

RL
qI

𝑠�̊� ,ℷ𝕪 (𝜂�̊�), we obtain

�̃�0 =
1
Ωቊ

RL
qI

𝑟+℘,ℷ𝜛(ρ) − RL
qI

℘,ℷℏ(ρ)𝕪(ρ) −
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) RLqI𝑟+℘+𝑠�̊� ,ℷ𝜛 (𝜂�̊�)

+
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) RLqI℘+𝑠𝑖 ,ℷℏ (𝜂�̊�) ቋ.

The obtained �̃�0 in Eq. (15) yields the solution which is given by Eq. (11).
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Definition 3.2. We say an element 𝕪 ∈ 𝐶(𝐸) can be a solution of hybrid q-𝔽𝔻𝕀 (1), whenever 𝕪 (l1) = 0, 𝕪 (l2) =
∑ℵ
�̊�=1 ϶�̊�

RL
qI

𝑠�̊� ,ℷ𝕪 (𝜂�̊�), and exists 𝜛 ∈ 𝐿1(𝐸) belongs to𝒲(ρ, 𝕪(ρ)) a.e. on 𝐸 s.t.,

𝕪(ρ) = 𝜒(ρ, 𝕪(ρ))ቊ RL
qI

𝑟+℘,ℷ𝜛(ρ) − RL
qI

℘,ℷℏ(ρ)𝕪(ρ) + ൫ℷl1 (ρ)൯
℘

ΩΓq(℘+1)
ቂ𝜒 (l2, 𝕪 (l2)) RLqI𝑟+℘,ℷ𝜛 (l2)

− RL
qI

℘,ℷ𝜒 (l2, 𝕪 (l2)) ℏ (l2) 𝕪 (l2) −
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) RLqI𝑟+℘+𝑠�̊� ,ℷ𝜛 (𝜂�̊�)

+
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) RLqI℘+𝑠𝑖 ,ℷℏ (𝜂�̊�) ቃቋ.

For 𝕪 ∈ 𝐶(𝐸), we consider the below mentioned set of selections of𝒲,

S𝒲,𝕪 ∶= ቄ𝜛 ∈ 𝐿1(𝐸) ∶ 𝜛 ∈ 𝒲(ρ, 𝕪(ρ)), for a.e 𝕪(ρ) ∈ 𝐸 ቅ. (16)

Lemma 3.3 ([12]). For a linear continuous function Ψ ∶ 𝐿1(𝐸, 𝒢) → 𝐶(𝐸, 𝒢), the composite function Ψ ∘ S𝒲,𝕪 ∶
𝐶(𝐸, 𝒢) → 𝒫cl,bd(𝐶(𝐸, 𝒢)), is a closed graph operator in 𝐶(𝐸, 𝒢) × 𝐶(𝐸, 𝒢).
Theorem 3.4. Consider the below mentions assumptions:

P1) 𝜒 ∈ 𝐶൫𝐸 × ℝ,ℝ ∖ ൛0ൟ൯, the bounded function 𝛼(ρ) > 0 for ρ ∈ 𝐸 and for 𝕪1, 𝕪2 ∈ ℝ

|𝜒(ρ, 𝕪1(ρ)) − 𝜒(ρ, 𝕪2(ρ))| ≤ 𝛼(ρ)|𝕪1(ρ) − 𝕪2(ρ)|.

P2) 𝒲 ∈ 𝐶 ∶ 𝐸 × ℝ → 𝒫(ℝ) is 𝐿1-Carathéodory and possesses nonempty convex values, and for every 𝕪 ∈ 𝐶(𝐸),
S𝒲,𝕪 ≠ ∅ is convex.

P3) |𝒲(ρ, 𝕪)| ∶= sup ൛|𝜛| ∶ 𝜛 ∈ 𝒲(ρ, 𝕪)ൟ ≤ 𝛽(ρ)(𝕪) for each ρ ∈ 𝐸 and 𝕪 ∈ 𝐶(𝐸), s.t., 𝛽 ∈ 𝐿1(𝐸,ℝ+) and
∇ ∶ ℝ+ → [0,+∞) is a continuous, bounded, and nondecreasing function.

Then, hybrid q-𝔽𝔻𝕀 (1) possesses at least one solutions on 𝐸 whenever Δ ∶= ‖𝛼‖ (‖𝛽‖∇(‖𝕪‖)Υ + Υℏ) <
1
2 , where

Υ = ൫ℷl1 (l2)൯
𝑟+℘

Γq(𝑟+℘+1)
+ ൫ℷl1 (l2)൯

℘

|Ω|Γq(℘+1)
ቈ�̂� ൫ℷl1 (l2)൯

𝑟+℘

Γq(𝑟+℘+1)
+ �̂�

ℵ


�̊�=1

|϶�̊�|
൫ℷl1 (𝜂�̊�)൯

𝑟+℘+𝑠�̊�

Γq(𝑟+℘+𝑠�̊�+1)
,

Υℏ = RL
qI

℘,ℷ หℏ(l2)ห +
൫ℷl1 (l2)൯

℘

|Ω|Γq(℘+1)
ቈ�̂� RL

qI
𝑟,ℷ|ℏ(l2)| + �̂�

ℵ


�̊�=1

|϶�̊�| RLqI𝑟+𝑠�̊� ,ℷ หℏ(𝜂�̊�)ห , (17)

and �̂� = max ൛ ห𝜒(l2, 𝕪(l2))ห , ห𝜒(𝜂�̊�, 𝕪(𝜂�̊�))ห ൟ, ̊𝚤 = 1, 2, … , ℵ.
Proof. We aim to convert the hybrid q-𝔽𝔻𝕀 (1) into a fixed point problem. In this case, we introduce the multivalued
map Ψ ∶ 𝐶(𝐸) → 𝒫(𝐶(𝐸)), by

Ψ𝕪 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝔱 ∈ 𝐶(𝐸) ∶

𝔱(ρ) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜒(ρ, 𝕪(ρ))ቊ RL
qI

𝑟+℘,ℷ𝜛(ρ) − RL
qI

℘,ℷℏ(ρ)𝕪(ρ)

+ ൫ℷl1 (ρ)൯
℘

ΩΓq(℘+1)
ቈ RLqI𝑟+℘,ℷ𝜒 (l2, 𝕪 (l2))𝜛 (l2) − RL

qI
℘,ℷ𝜒 (l2, 𝕪 (l2)) ℏ (l2) 𝕪 (l2)

−∑ℵ
�̊�=1 ϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�))

RL
qI

𝑟+℘+𝑠�̊� ,ℷ𝜛 (𝜂�̊�)

+∑ℵ
�̊�=1 ϶�̊�

RL
qI

℘+𝑠𝑖 ,ℷ𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) ℏ (𝜂�̊�) 𝕪 (𝜂�̊�) ቋ, ρ ∈ 𝐸, 𝜛 ∈ S𝒲,𝕪

⎫
⎪
⎪

⎬
⎪
⎪
⎭

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎭

. (18)
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Further, we define two operators 𝔒sv ∶∶ 𝐶(𝐸) → 𝐶(𝐸) and 𝔒mv ∶ 𝐶(𝒪) → 𝒫(𝐶(𝐸)) with following definitions:
𝔒sv𝕪(ρ) = 𝜒൫ρ, 𝕪(ρ)൯, and

𝔒mv(𝕪) = ቊ𝔱 ∈ 𝐶(𝐸) ∶ 𝔱(ρ) = RL
qI

𝑟+℘,ℷ𝜛(ρ) − RL
qI

℘,ℷℏ(ρ)𝕪(ρ)

+ ൫ℷl1 (ρ)൯
℘

ΩΓq(℘+1)
ቈ RLqI𝑟+℘,ℷ𝜒 (l2, 𝕪 (l2))𝜛 (l2) − RL

qI
℘,ℷ𝜒 (l2, 𝕪 (l2)) ℏ (l2) 𝕪 (l2)

−
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) RLqI𝑟+℘+𝑠�̊� ,ℷ𝜛 (𝜂�̊�) +
ℵ


�̊�=1

϶�̊� RL
qI

℘+𝑠𝑖 ,ℷ𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) ℏ (𝜂�̊�) 𝕪 (𝜂�̊�) , 𝜛 ∈ S𝒲,𝕪ቋ.

Now, we establish the operator Ψ𝕪 = 𝔒sv𝕪𝔒mv𝕪 and check Theorem 2.2 for these operators. To do this, we continue
the proof process in several steps.
Step 1. Let 𝕪1, 𝕪2 ∈ 𝐶(𝐸), ρ ∈ 𝐸 and utilizing (P1) in Theorem 3.4, we have

ห𝔒sv𝕪1(ρ) − 𝔒sv𝕪2(ρ)ห ≤ |𝜒(ρ, 𝕪1(ρ)) − 𝜒(ρ, 𝕪2(ρ))| ≤ |𝛼(ρ)| |𝕪1(ρ) − 𝕪2(ρ)| ≤ 𝛼∗|𝕪1 − 𝕪2|, (19)

where 𝛼∗ = supρ∈𝐸 |𝛼(ρ)|. Thus, ฮ𝔒sv𝕪1(ρ) − 𝔒sv𝕪2(ρ)ฮ ≤ 𝛼∗‖𝕪1 − 𝕪2‖ which implies that 𝔒sv is Lipschitzian.
Step 2. For 𝔱𝑗 ∈ 𝔒mv𝕪, there is 𝜛𝑗 ∈ S𝒲,𝕪, 𝑗 = 1, 2, s.t.,

𝔱𝑗(ρ) = RL
qI

𝑟+℘,ℷ𝜛𝑗(ρ) − RL
qI

℘,ℷℏ(ρ)𝕪(ρ) + ൫ℷl1 (ρ)൯
℘

ΩΓq(℘+1)
ቈ RLqI𝑟+℘,ℷ𝜒 (l2, 𝕪 (l2))𝜛𝑗 (l2)

− RL
qI

℘,ℷ𝜒 (l2, 𝕪 (l2)) ℏ (l2) 𝕪 (l2) −
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) RLqI𝑟+℘+𝑠�̊� ,ℷ𝜛𝑗 (𝜂�̊�)

+
ℵ


�̊�=1

϶�̊� RL
qI

℘+𝑠𝑖 ,ℷ𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) ℏ (𝜂�̊�) 𝕪 (𝜂�̊�) , ∀ρ ∈ 𝐸.

Hence, by assuming 0 ≤ 𝓁 ≤ 1, we obtain

𝓁𝔱1(ρ) − (1 − 𝓁)𝔱2(ρ) = RL
qI

𝑟+℘,ℷ (𝓁𝜛1(ρ) − (1 − 𝓁)𝜛2(ρ)) − RL
qI

℘,ℷℏ(ρ)𝕪(ρ)

+ ൫ℷl1 (ρ)൯
℘

ΩΓq(℘+1)
ቈ RLqI𝑟+℘,ℷ𝜒 (l2, 𝕪 (l2)) (𝓁𝜛1 (l2) − (1 − 𝓁)𝜛2 (l2)) − RL

qI
℘,ℷ𝜒 (l2, 𝕪 (l2)) ℏ (l2) 𝕪 (l2)

−
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) RLqI𝑟+℘+𝑠�̊� ,ℷ (𝓁𝜛1 (𝜂�̊�) − (1 − 𝓁)𝜛2 (𝜂�̊�))

+
ℵ


�̊�=1

϶�̊� RL
qI

℘+𝑠𝑖 ,ℷ𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) ℏ (𝜂�̊�) 𝕪 (𝜂�̊�) , ∀ρ ∈ 𝐸.

Thanks to the convexity𝒲, 𝓁𝔱1(ρ) − (1 − 𝓁)𝔱2(ρ) ∈ 𝔒mv(𝕪).
Step 3. Consider the bounded ball 𝐵𝑝 = ൛𝕪 ∈ 𝐶(𝐸) ∶ ‖𝕪‖ ≤ 𝑝ൟ, 𝑝 > 0. Then ∀ 𝔱 ∈ 𝔒mv(𝕪) and 𝕪 ∈ 𝐵𝑝, there is
𝜛 ∈ S𝒲,𝕪 in which

𝔱(ρ) = RL
qI

𝑟+℘,ℷ𝜛(ρ) − RL
qI

℘,ℷℏ(ρ)𝕪(ρ) + ൫ℷl1 (ρ)൯
℘

ΩΓq(℘+1)
ቈ RLqI𝑟+℘,ℷ𝜒 (l2, 𝕪 (l2))𝜛 (l2)

− RL
qI

℘,ℷ𝜒 (l2, 𝕪 (l2)) ℏ (l2) 𝕪 (l2) −
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) RLqI𝑟+℘+𝑠�̊� ,ℷ𝜛 (𝜂�̊�)

+
ℵ


�̊�=1

϶�̊� RL
qI

℘+𝑠𝑖 ,ℷ𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) ℏ (𝜂�̊�) 𝕪 (𝜂�̊�) .
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It means that,

|𝔱(ρ)| ≤ sup
ρ∈𝐸

ቤ RLqI𝑟+℘,ℷ𝜛(ρ) − RL
qI

℘,ℷℏ(ρ)𝕪(ρ) + ൫ℷl1 (ρ)൯
℘

ΩΓq(℘+1)
ቈ RLqI𝑟+℘,ℷ𝜒 (l2, 𝕪 (l2))𝜛 (l2)

− RL
qI

℘,ℷ𝜒 (l2, 𝕪 (l2)) ℏ (l2) 𝕪 (l2) −
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) RLqI𝑟+℘+𝑠�̊� ,ℷ𝜛 (𝜂�̊�)

+
ℵ


�̊�=1

϶�̊� RL
qI

℘+𝑠𝑖 ,ℷ𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) ℏ (𝜂�̊�) 𝕪 (𝜂�̊�) ቤ

≤ ‖𝛽‖∇ (‖𝕪‖) ቊ ൫ℷl1 (l2)൯
𝑟+℘

Γq(𝑟+℘+1)
+ ൫ℷl1 (l2)൯

℘

|Ω|Γq(℘+1)
ቈ�̂� ൫ℷl1 (l2)൯

𝑟+℘

Γq(𝑟+℘+1)
+ �̂�

ℵ


�̊�=1

|϶�̊�|
൫ℷl1 (𝜂�̊�)൯

𝑟+℘+𝑠�̊�

Γq(𝑟+℘+𝑠�̊�+1)
ቋ

+ ‖𝕪‖ቊ RL
qI

℘,ℷ หℏ(ρ)𝕪(ρ)ห + ൫ℷl1 (l2)൯
𝑟

|Ω|Γq(℘+1)
ቈ�̂� RL

qI
℘,ℷ หℏ(𝜂�̊�)𝕪(𝜂�̊�)ห + �̂�

ℵ


�̊�=1

RL
qI

℘+𝑠�̊� ,ℷ |϶�̊�| หℏ(𝜂�̊�)𝕪(𝜂�̊�)ห ቋ

≤ ‖𝛽‖∇(‖𝕪‖)Υ + ‖𝕪‖Υℏ ≤ ‖𝛽‖∇(𝑝)Υ + 𝛽Υℏ.

Indeed 𝔒mv is bounded.
Step 4. For given arbitrary ρ1, ρ2 ∈ 𝐸 with ρ1 < ρ2, 𝕪 ∈ 𝐵𝑝, 𝔱 ∈ 𝔒mv𝕪, there is 𝜛 ∈ S𝒲,𝕪 s.t.,

ห𝔱(ρ2) − 𝔱(ρ1)ห ≤
1

Γq(𝑟+℘)
ቤන

ρ1

l1
ℷ′(𝜉)ቂ ൫ℷ𝜉(ρ2)൯

𝑟+℘−1 − ൫ℷ𝜉(ρ1)൯
𝑟+℘−1 ቃ𝜛(𝜉) d𝜉

+ න
ρ2

ρ1
ℷ′(𝜉) ൫ℷ𝜉(ρ2)൯

𝑟+℘−1𝜛(𝜉) d𝜉ቤ + 1
Γq(℘)

ቤන
ρ1

l1
ℷ′(𝜉)ቂ ൫ℷ𝜉(ρ2)൯

℘−1

− ൫ℷ𝜉(ρ1)൯
℘−1 ቃℏ(𝜉)𝕪(𝜉) d𝜉 + න

ρ2

ρ1
ℷ′(𝜉) ൫ℷ𝜉(ρ2)൯

℘−1 ℏ(𝜉)𝕪(𝜉) d𝜉ቤ

+ ቚ൫ℷl1 (ρ2)൯
℘−൫ℷl1 (ρ1)൯

℘ቚ
|Ω|Γq(℘+1)

ቈ‖𝜛(𝜉)‖�̂� ൫ℷl1 (l2)൯
𝑟+℘

Γq(𝑟+℘+1)
+ ‖𝕪(l2)‖ RL

qI
℘,ℷ�̂�|ℏ(l2)|

+ ‖𝜛(𝜉)‖�̂�
ℵ


�̊�=1

|϶�̊�|
൫ℷl1 (𝜂�̊�)൯

𝑟+℘+𝑠�̊�

Γq(𝑟+℘+𝑠�̊�+1)
+ ‖𝕪(𝜂�̊�)‖�̂�

ℵ


�̊�=1

|϶�̊�|
൫ℷl1 (𝜂�̊�)൯

℘+𝑠�̊�

Γq(℘+𝑠�̊�+1)
หℏ(𝜂�̊�)ห 

≤ ‖𝛽‖∇(𝑝)
Γq(𝑟+℘)

ቤන
ρ1

l1
ℷ′(𝜉)ቂ ൫ℷ𝜉(ρ2)൯

𝑟+℘−1 − ൫ℷ𝜉(ρ1)൯
𝑟+℘−1 ቃ d𝜉

+ න
ρ2

ρ1
ℷ′(𝜉) ൫ℷ𝜉(ρ2)൯

𝑟+℘−1
d𝜉ቤ + 𝑝

Γq(℘)
ቤන

ρ1

l1
ℷ′(𝜉)ቂ ൫ℷ𝜉(ρ2)൯

℘−1

− ൫ℷ𝜉(ρ1)൯
℘−1 ቃℏ(𝜉) d𝜉 + න

ρ2

ρ1
ℷ′(𝜉) ൫ℷ𝜉(ρ2)൯

℘−1 ℏ(𝜉) d𝜉ቤ

+ ቚ൫ℷl1 (ρ2)൯
℘−൫ℷl1 (ρ1)൯

℘ቚ
|Ω|Γq(℘+1)

ቈ�̂�‖𝛽‖∇(𝑝) ൫ℷl1 (l2)൯
𝑟+℘

Γq(𝑟+℘+1)

+ 𝑝�̂� RL
qI

℘,ℷ|ℏ(l2)| �̂�‖𝛽‖∇(𝑝)
ℵ


�̊�=1

|϶�̊�|
൫ℷl1 (𝜂�̊�)൯

𝑟+℘+𝑠�̊�

Γq(𝑟+℘+𝑠�̊�+1)
+ 𝑝�̂�

ℵ


�̊�=1

|϶�̊�|
ቀℷl1 (ρ𝑗)ቁ

℘+𝑠�̊�

Γq(℘+𝑠�̊�+1)
|ℏ(𝜂�̊�)|.

The obtained inequalities imply 𝕪 ∈ 𝐵𝑝 approach to zero when ρ1 tends to ρ2 which confirms equicontinuity of 𝔒mv.
Step 5. Consider converges sequences 𝕪𝑛 → 𝕪∘ and 𝔱𝑛 → 𝔱∘, 𝔱𝑛 ∈ 𝔒mv(𝕪∘). For 𝔱𝑛 ∈ 𝔒mv(𝕪𝑛), there is 𝜛𝑛 ∈ S𝒲,𝕪𝑛
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s.t., ∀ρ ∈ 𝐸,

𝔱𝑛(ρ) = RL
qI

𝑟+℘,ℷ𝜛𝑛(ρ) − RL
qI

℘,ℷℏ(ρ)𝕪𝑛(ρ) +
൫ℷl1 (ρ)൯

℘

ΩΓq(℘+1)
ቈ RLqI𝑟+℘,ℷ𝜒 (l2, 𝕪𝑛 (l2))𝜛𝑛 (l2)

− RL
qI

℘,ℷ𝜒 (l2, 𝕪𝑛 (l2)) ℏ (l2) 𝕪𝑛 (l2) −
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪𝑛 (𝜂�̊�)) RLqI𝑟+℘+𝑠�̊� ,ℷ𝜛𝑛 (𝜂�̊�)

+
ℵ


�̊�=1

϶�̊� RL
qI

℘+𝑠𝑖 ,ℷ𝜒 (𝜂�̊�, 𝕪𝑛 (𝜂�̊�)) ℏ (𝜂�̊�) 𝕪𝑛 (𝜂�̊�) .

Now, we define an operator 𝑇 ∶ 𝐿1(𝐸) → 𝐶(𝐸), 𝜛 → 𝑇(𝜛)(ρ) as

𝑇(𝜛)(ρ) = RL
qI

𝑟+℘,ℷ𝜛(ρ) + ൫ℷl1 (ρ)൯
℘

ΩΓq(℘+1)
ቈ RLqI𝑟+℘,ℷ𝜒 (l2, 𝕪 (l2))𝜛 (l2) −

ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�))𝜛 (𝜂�̊�) .

Lemma ?? implies that 𝑇 ∘ S𝒲,𝕪 is a closed graph operator and so, 𝔱𝑛 ∈ 𝑇(S𝒲,𝕪𝑛). From 𝕪𝑛 → 𝕪∘ and 𝔱𝑛 → 𝔱∘, one
can conclude there is 𝜛∘ ∈ S𝒲,𝕪∘ s.t., for each ρ ∈ 𝐸,

𝔱∘(ρ) = RL
qI

𝑟+℘,ℷ𝜛∘(ρ) − RL
qI

℘,ℷℏ(ρ)𝕪∘(ρ) +
൫ℷl1 (ρ)൯

℘

ΩΓq(℘+1)
ቈ RLqI𝑟+℘,ℷ𝜒 (l2, 𝕪∘ (l2))𝜛𝑛 (l2)

− RL
qI

℘,ℷ𝜒 (l2, 𝕪∘ (l2)) ℏ (l2) 𝕪∘ (l2) −
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪∘ (𝜂�̊�)) RLqI𝑟+℘+𝑠�̊� ,ℷ𝜛∘ (𝜂�̊�)

+
ℵ


�̊�=1

϶�̊� RL
qI

℘+𝑠𝑖 ,ℷ𝜒 (𝜂�̊�, 𝕪∘ (𝜂�̊�)) ℏ (𝜂�̊�) 𝕪∘ (𝜂�̊�) .

Consequently, 𝔒mv possesses the upper semicontinuity and compactness properties.
Step 6. In this level, we show that 2𝔲𝔑 < 1. From Step 3, we have

𝔑 = ‖𝔒mv(𝐶(𝐸))‖ = sup ቄ|𝔒mv(𝕪)| ∶ 𝕪 ∈ 𝐶(𝐸)ቅ ≤ ‖𝛽‖∇(𝑝)Υ + 𝑝Υℏ. (20)

Thanks to (P4), we get ‖𝛼‖(‖𝛽‖∇(𝑝)Υ + 𝑝Υℏ) <
1
2 , which implies that 2𝔲𝔑 < 1, where 𝔲 = ‖𝛼‖.

Step 7. Consider the set Σ = ൛𝕪 ∈ 𝐶(𝐸) ∶ 𝜃𝕪 ∈ 𝔒sv𝕪𝔒mv𝕪, 𝜃 > 1ൟ and 𝕪 ∈ Σ. The, 𝜃𝕪 ∈ 𝔒sv𝕪𝔒mv𝕪 and so there
is 𝜛 ∈ S𝒲,𝕪, s.t.,

𝕪(ρ) = 𝜃−1𝜒(ρ, 𝕪(ρ))ቊ RL
qI

𝑟+℘,ℷ𝜛(ρ) − RL
qI

℘,ℷℏ(ρ)𝕪(ρ) + ൫ℷl1 (ρ)൯
℘

ΩΓq(℘+1)
ቂ𝜒 (l2, 𝕪 (l2)) RLqI𝑟+℘,ℷ𝜛 (l2)

− RL
qI

℘,ℷ𝜒 (l2, 𝕪 (l2)) ℏ (l2) 𝕪 (l2) −
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) RLqI𝑟+℘+𝑠�̊� ,ℷ𝜛 (𝜂�̊�)

+
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) RLqI℘+𝑠�̊� ,ℷℏ (𝜂�̊�) ቃቋ.
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Hence,

|𝕪(ρ)| ≤ 𝜃−1|𝜒(ρ, 𝕪(ρ))|ቤ RLqI𝑟+℘,ℷ𝜛(ρ) − RL
qI

℘,ℷℏ(ρ)𝕪(ρ) + ൫ℷl1 (ρ)൯
℘

ΩΓq(℘+1)
ቂ𝜒 (l2, 𝕪 (l2)) RLqI𝑟+℘,ℷ𝜛 (l2)

− RL
qI

℘,ℷ𝜒 (l2, 𝕪 (l2)) ℏ (l2) 𝕪 (l2) −
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) RLqI𝑟+℘+𝑠�̊� ,ℷ𝜛 (𝜂�̊�)

+
ℵ


�̊�=1

϶�̊� 𝜒 (𝜂�̊�, 𝕪 (𝜂�̊�)) RLqI℘+𝑠�̊� ,ℷℏ (𝜂�̊�) ቃቤ

≤ ቂ‖𝛼‖ ‖𝕪‖ + 𝜒∗ቃ‖𝛽‖∇(‖𝕪‖)ቊ ൫ℷl1 (l2)൯
𝑟+℘

Γq(𝑟+℘+1)
+ ൫ℷl1 (l2)൯

℘

|Ω|Γq(℘+1)
ቈ�̂� ൫ℷl1 (l2)൯

𝑟+℘

Γq(𝑟+℘+1)

+ �̂�
ℵ


�̊�=1

|϶�̊�|
൫ℷl1 (𝜂�̊�)൯

𝑟+℘+𝑠�̊�

Γq(𝑟+℘+𝑠�̊�+1)
ቋ + ‖𝕪‖ቊ RL

qI
℘,ℷ หℏ(ρ)𝕪(ρ)ห

+ ൫ℷl1 (l2)൯
𝑟

|Ω|Γq(℘+1)
ቈ�̂� RL

qI
℘,ℷ หℏ(𝜂�̊�)𝕪(𝜂�̊�)ห + �̂�

ℵ


�̊�=1

RL
qI

℘+𝑠�̊� ,ℷ |϶�̊�| หℏ(𝜂�̊�)𝕪(𝜂�̊�)ห ቋ

≤ ቂ‖𝛼‖ ‖𝕪‖ + 𝜒∗ቃ‖𝛽‖∇(‖𝕪‖)Υ + ‖𝕪‖Υℏ,

where 𝜒∗ = supρ∈𝐸 |𝜒(ρ, 0)| > 0. Indeed, ‖𝕪‖ ≤ 𝜒∗‖𝛽‖∇(‖𝕪‖)Υ
1−‖𝛼‖ ‖𝛽‖∇(‖𝕪‖)Υ−Υℏ

. We examine Σ is bounded in 𝐶(𝐸). Suppose
it is not so. Since, ∇ is bounded, i.e. exists 𝑘 > 0 s.t., ∇(‖𝕪‖) < 𝑘, we obtain,

lim
‖𝕪‖→0

𝜒∗‖𝛽‖𝑘Υ
‖𝕪‖(1−‖𝛼‖ ‖𝛽‖𝑘Υ−Υℏ)

≥ 1,

which is contradiction. Thus, Σ is bounded. By summarizing the seven steps, Ψ has at least one fixed point according
to Theorem 2.2 which is follows that the Caputo hybrid q-𝔽𝔻𝕀 (1) admits a solution.

4. Relative examples

Example 4.1. In view of hybrid q-𝔽𝔻𝕀 (1) consider

⎧

⎨
⎩

C
qD

1/2,𝑒ρ/2
0 ቆCqD

1/5,𝑒ρ/2
0 ቆ 𝕪(ρ)

ρ
20 sin𝕪(ρ)+√30

ቇ + ρ2
2 𝕪(ρ)ቇ ∈ ቂ |𝕪(ρ)|

2൫𝕪(ρ)2+√5൯ +
ρ
3 ,

|𝕪(ρ)|
|𝕪(ρ)|+√7 +

ρ
5 ቃ,

𝕪(0) = 0, 𝕪(1) = 1
2
RL

qI
2/3,𝑒ρ/2𝕪 ቀ14ቁ +

1
3
RL

qI
6/7,𝑒ρ/2𝕪 ቀ19ቁ ,

(21)

for ρ ∈ 𝐸 = [l1, l1], l1 = 0, l2 = 1 and three values of q ∈ ൛18 ,
1
3 ,

1
2 ൟ ⊆ (0, 1), where 𝑟 = 1

2 , ℘ = 1
5 , ℷ(ρ) =

𝑒ρ
2 ,

ℵ = 2, 𝜂1 =
1
4 , 𝜂2 =

1
9 , ϶1 =

1
2 , ϶2 =

1
3 , 𝑠1 =

2
3 , 𝑠2 =

6
7 , and ℏ(ρ) =

ρ2
2 . Take multi-valued map𝒲 ∶ 𝐸×ℝ → 𝒫(ℝ)

by
(ρ, 𝕪) → 𝒲(ρ, 𝕪) = ቂ |𝕪(ρ)|

2൫൫𝕪(ρ)2+√5൯൯ +
ρ
3 ,

|𝕪(ρ)|
|𝕪(ρ)|+√7 +

ρ
5 ቃ.

Then, |𝜛| ≤ max ቄ |𝕪(ρ)|
2൫൫𝕪(ρ)2+√5൯൯+

ρ
3 ,

|𝕪(ρ)|
|𝕪(ρ)|+√7+

ρ
5ቅ ≤

6
5 , for𝜛 ∈ 𝒲(ρ, 𝕪), and �̂� ≃ 5.5192. Therefore, ‖𝒲(ρ, 𝕪)‖ =

sup ൛|𝜛| ∶ 𝜛 ∈ 𝒲(ρ, 𝕪)ൟ ≤ 6
5 = 𝛽(ρ)∇(‖𝕪‖) for 𝕪 ∈ ℝ, where 𝛽(ρ) = 1 and ∇(‖𝕪‖) = 6

5 . If we take 𝜒(ρ, 𝕪) =ρ
20 sin𝕪(ρ) + √30, then for any 𝕪1, 𝕪2 ∈ ℝ, we obtain,

ห𝜒(ρ, 𝕪1) − 𝜒(ρ, 𝕪2)ห = ቚ ρ20 sin𝕪1(ρ) + √30 − ቀ ρ
20 sin𝕪2(ρ) + √30ቁቚ < 1

20 |𝕪1 − 𝕪2| = 𝛼(ρ)|𝕪1 − 𝕪2|. (22)



Somayeh Nazari & Mohammad Esmael Samei / The 5th National Congress on Mathematics and Statistics 9

Now, by using these data, from Eqs. (12) and (17), we can calculate Ω, Υ and Υℏ as follow:

Ω ≃ ൞
2.379, q = 1

8 ,
1.489, q = 1

3 ,
1.019, q = 1

2 ,
Υ ≃ ൞

1.290, q = 1
8 ,

0.905, q = 1
3 ,

0.650, q = 1
2 ,

Υℏ ≃ ൞
−0.065, q = 1

8 ,
−0.107, q = 1

3 ,
−0.134, q = 1

2 .

These date are shown in Table 1, for ρ ∈ 𝐸 and iterative 𝑛. Further, the curves in Figs. 1a, 1b and 1c show the
status of Ω, Υ and Υℏ for three values of q. As q increases to 1

2 , all three values Ω, Υ and Υℏ decrease. Then Δ =

Itrative n, ρ ∈ [0, 1]
1 2 3 4 5 6 7 8 9 10

Ω

1

1.2

1.4

1.6

1.8

2

2.2

2.4

q=1/8

q=1/3

q=1/2

(a) Ω
Itrative n, ρ ∈ [0, 1]

1 2 3 4 5 6 7 8 9 10

Υ

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

q=1/8

q=1/3

q=1/2

(b) Υ
Itrative n, ρ ∈ [0, 1]

1 2 3 4 5 6 7 8 9 10

Υ
h

-0.22

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

q=1/8

q=1/3

q=1/2

(c) Υℏ

Fig. 1. Ω, Υ and Υℏ for hybrid q-𝔽𝔻𝕀 (21) in Example 4.1.

‖𝛼‖ (‖𝛽‖∇(‖𝕪‖)Υ + Υℏ) ≃ 0.074, 0.049, 0.032 < 1
2 for q = 1

8 ,
1
3 ,

1
2 , respectively. Thus, all the conditions of

Table 1. Numerical values of Ω, Υ and Υℏ for hybrid q-𝔽𝔻𝕀 (23) in Example 4.1.
𝑛 q = 1

8q = 1
8q = 1
8 q = 1

3q = 1
3q = 1
3 q = 1

2q = 1
2q = 1
2

Ω Υ Υℏ Δ Ω Υ Υℏ Δ Ω Υ Υℏ Δ
1 2.397 1.293 −0.067 0.074 1.586 0.932 −0.132 0.049 1.197 0.706 −0.208 0.032
2 2.381 1.290 −0.066 0.074 1.519 0.914 −0.114 0.049 1.097 0.676 −0.165 0.032
3 2.379 1.290 −0.065 0.074 1.499 0.908 −0.109 0.049 1.056 0.663 −0.148 0.032
4 2.379 1.290 −0.065 0.074 1.492 0.906 −0.108 0.049 1.037 0.656 −0.140 0.032
5 2.379 1.290 −0.065 0.074 1.490 0.905 −0.107 0.049 1.028 0.653 −0.137 0.032
6 2.379 1.290 −0.065 0.074 1.489 0.905 −0.107 0.049 1.023 0.652 −0.135 0.032
7 2.379 1.290 −0.065 0.074 1.489 0.905 −0.107 0.049 1.021 0.651 −0.134 0.032
8 2.379 1.290 −0.065 0.074 1.489 0.905 −0.107 0.049 1.020 0.650 −0.134 0.032
9 2.379 1.290 −0.065 0.074 1.489 0.905 −0.107 0.049 1.019 0.650 −0.134 0.032
10 2.379 1.290 −0.065 0.074 1.489 0.905 −0.107 0.049 1.019 0.650 −0.134 0.032

Theorem 3.4 hold which one can confirm that the hybrid q-𝔽𝔻𝕀 (21) has at least one solution on 𝐸.
Example 4.2. Consider next q-𝔽𝔻𝕀 (1) as form

⎧

⎨
⎩

C
qD

2/5,𝑒ρ
0 ቆCqD

1/5,𝑒ρ
0 ቆ 𝕪(ρ)

ρ
2 sin𝕪(ρ)+3ቇ + ρ𝕪(ρ)ቇ ∈ ቂ |𝕪(ρ)|

6(|𝕪(ρ)|+1) +
ρ
3 ,

| cos𝕪(ρ)|
6(| cos𝕪(ρ)|+1) +

ρ
6 ቃ,

𝕪(0) = 0, 𝕪(1) = 1
3
RL

qI
3/4,𝑒ρ𝕪 ቀ14ቁ +

2
3
RL

qI
3/7,𝑒ρ2𝕪 ቀ27ቁ ,

(23)

for ρ ∈ 𝐸 = [l1, l1], l1 = 0, l2 = 1 and three values of q ∈ ൛12 ,
2
3 ,

6
7 ൟ ⊆ (0, 1), where 𝑟 = 2

5 , ℘ = 1
5 , ℷ(ρ) = 𝑒ρ,

ℵ = 2, 𝜂1 =
1
4 , 𝜂2 =

2
7 , ϶1 =

1
3 , ϶2 =

2
3 , 𝑠1 =

3
4 , 𝑠2 =

3
7 , and ℏ(ρ) = ρ. Take multi-valued map𝒲 ∶ 𝐸×ℝ → 𝒫(ℝ)

by
(ρ, 𝕪) → 𝒲(ρ, 𝕪) = ቂ |𝕪(ρ)|

6(|𝕪(ρ)|+1) +
ρ
3 ,

| cos𝕪(ρ)|
6(| cos𝕪(ρ)|+1) +

ρ
6 ቃ.

Then, |𝜛| ≤ max ቄ |𝕪(ρ)|
6(|𝕪(ρ)|+1) +

ρ
3 ,

| cos𝕪(ρ)|
6(| cos𝕪(ρ)|+1) +

ρ
6ቅ ≤

1
3 , for 𝜛 ∈ 𝒲(ρ, 𝕪), and �̂� ≃ 0.2091. Therefore, by taking

𝛽(ρ) = 1 and ∇(‖𝕪‖) = 2
3 , we have ‖𝒲(ρ, 𝕪)‖ = sup ൛|𝜛| ∶ 𝜛 ∈ 𝒲(ρ, 𝕪)ൟ ≤ 1

3 = 𝛽(ρ)∇(‖𝕪‖) for 𝕪 ∈ ℝ. If we
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take 𝜒(ρ, 𝕪) = ρ
2 sin𝕪(ρ) + 3, then for any 𝕪1, 𝕪2 ∈ ℝ, we obtain,

ห𝜒(ρ, 𝕪1) − 𝜒(ρ, 𝕪2)ห = ቚρ2 sin𝕪1(ρ) + 3 − ቀρ2 sin𝕪2(ρ) + 3ቁቚ < 𝛼(ρ)|𝕪1 − 𝕪2|, 𝛼(ρ) = 1
2 . (24)

Now, by using the se data, from Eqs. (12) and (17), we can calculate Ω, Υ and Υℏ as follow:

Ω ≃ ൞
0.055, q = 1

2 ,
0.035, q = 2

3 ,
0.014, q = 6

7 ,
Υ ≃ ൞

0.881, q = 1
2 ,

0.564, q = 2
3 ,

0.650, q = 6
7 ,

Υℏ ≃ ൞
−1.367, q = 1

2 ,
−1.258, q = 2

3 ,
−0.763, q = 6

7 .

These date are shown in Table 2, for ρ ∈ 𝐸 and iterative 𝑛. Further, the curves in Figs. 2a, 2b and 2c show the status

Table 2. Numerical values of Ω, Υ and Υℏ for hybrid q-𝔽𝔻𝕀 (23) in Example 4.2.
𝑛 q = 1

2q = 1
2q = 1
2 q = 2

3q = 2
3q = 2
3 q = 6

7q = 6
7q = 6
7

Ω Υ Υℏ Δ Ω Υ Υℏ Δ Ω Υ Υℏ Δ
1 0.064 0.982 −2.085 0.715 0.048 0.709 −2.683 1.105 0.030 0.400 −3.278 1.506
2 0.059 0.929 −1.671 0.526 0.042 0.648 −1.998 0.783 0.025 0.351 −2.326 1.046
3 0.057 0.906 −1.507 0.452 0.039 0.616 −1.684 0.637 0.022 0.322 −1.842 0.814
4 0.056 0.895 −1.434 0.419 0.037 0.597 −1.518 0.560 0.020 0.302 −1.554 0.676
5 0.056 0.889 −1.400 0.404 0.036 0.585 −1.422 0.516 0.019 0.288 −1.365 0.587
6 0.056 0.887 −1.383 0.396 0.036 0.578 −1.363 0.489 0.018 0.277 −1.234 0.525
7 0.055 0.885 −1.375 0.392 0.035 0.573 −1.327 0.472 0.017 0.269 −1.138 0.479
8 0.055 0.885 −1.371 0.391 0.035 0.570 −1.303 0.462 0.016 0.262 −1.066 0.445
9 0.055 0.884 −1.369 0.390 0.035 0.568 −1.288 0.455 0.016 0.257 −1.010 0.419
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
44 0.055 0.884 −1.367 0.389 0.035 0.564 −1.258 0.441 0.014 0.232 −0.764 0.304
45 0.055 0.884 −1.367 0.389 0.035 0.564 −1.258 0.441 0.014 0.232 −0.763 0.304
46 0.055 0.884 −1.367 0.389 0.035 0.564 −1.258 0.441 0.014 0.232 −0.763 0.304

of Ω, Υ and Υℏ for three values of q. Then |Δ| ≃ 0.389, 0.441, 0.304 < 1
2 for q = 1

2 ,
2
3 ,

6
7 , respectively. Thus, all the
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Fig. 2. Ω, Υ and Υℏ for hybrid q-𝔽𝔻𝕀 (23) in Example 4.2.

conditions of Theorem 3.4 hold which one can confirm that the hybrid q-𝔽𝔻𝕀 (23) has at least one solution on 𝐸.
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Abstract

In this paper we will study some properties of Hopfian and co-Hopfian acts over a monoid 𝑆.
First recalling the concept of Hopfian and co-Hopfian acts, several conditions are given for an
𝑆-act to be Hopfian (co-Hopfian). Also, by considering the properties that are preserved under
isomorphism, we study conditions under which an 𝑆-act is Hopfian (co-Hopfian).

1. Introduction and Preliminaries

In this paper, 𝑆 is a monoid and an 𝑆-act 𝐴𝑆 (or 𝐴) is a unitary right 𝑆-act. From [1], an 𝑆-act 𝐴 is called 𝐻𝑜𝑝𝑓𝑖𝑎𝑛
(𝑐𝑜-𝐻𝑜𝑝𝑓𝑖𝑎𝑛) if any epimorphism (monomorphism) of 𝐴 is an isomorphism. The study of Hopfian and co-Hopfian
acts was initiated by Farsad et al ([1]) and continued in some other papers. In [4] some properties of these concepts
are studied over a group 𝑆 and in [5] their interrelationship with some other concepts is investigated so that this study
provided several equivalent conditions for a quasi-projective (quasi-injective) act to be Hopfian (co-Hopfian). The
purpose of this paper is to investigate some additional important properties of these acts. First let us review some
concepts which are needed in the sequel. An equivalence relation 𝜌 on an 𝑆-act 𝐴 is called a 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒 on 𝐴 if
𝑥 𝜌 𝑦 implies (𝑥𝑠) 𝜌 (𝑦𝑠) for every 𝑥, 𝑦 ∈ 𝐴, 𝑠 ∈ 𝑆. If 𝐵 is a subact of 𝐴, then the congruence (𝐵 × 𝐵) ∪ Δ𝐴 on 𝐴
is called the 𝑅𝑒𝑒𝑠 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒 by the subact 𝐵 and is denoted by 𝜌𝐵. The set of all congruences on 𝐴 is denoted by
Con(𝐴). Clearly ∇𝐴 = 𝐴 × 𝐴 and Δ𝐴 = {(𝑎, 𝑎)| 𝑎 ∈ 𝐴} are trivial elements of Con(𝐴). Also by 𝐸(𝐴) we mean the
injective envelope of an 𝑆-act 𝐴. We encourage the reader to see [3] for basic results and definitions relating to acts
over monoids.

2. Main Results

Proposition 2.1. Suppopse 𝐴 is an 𝑆-act. Then the following conditions are equivalent:
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(i) 𝐴 is Hopfian.
(ii) If {𝑓𝑖}𝑖∈𝐼 is a family of epimorphisms of 𝐴, then the sequence 𝑘𝑒𝑟(𝑓1) ⊆ 𝑘𝑒𝑟(𝑓2) ⊆ ... is stationary.
(iii) For any epimorphism 𝑓 ∶ 𝐴 ⟶ 𝐴, the sequence 𝑘𝑒𝑟(𝑓) ⊆ 𝑘𝑒𝑟(𝑓2) ⊆ ... is stationary.

Proof. The implications (i)⇒ (ii)⇒ (iii) are clear. (iii)⇒ (i) If 𝑓 ∶ 𝐴 ⟶ 𝐴 is an epimorphism then we can easily see
that there exists 𝑛 ∈ ℕ such that Ker𝑓𝑛 ∩ 𝜌Im𝑓𝑛 = Δ𝐴. Thus 𝑓𝑛 is a monomorphism and so 𝑓 is a monomorphism as
desired.

Proposition 2.2. Suppose 𝐴 is an 𝑆-act. Then the following conditions are equivalent:
(i) 𝐴 is co-Hopfian.
(ii) If {𝑓𝑖}𝑖∈𝐼 is a family of monomorphisms of 𝐴, then the sequence 𝐼𝑚(𝑓1) ⊇ 𝐼𝑚(𝑓2) ⊇ ... is stationary.
(iii) For any monomorphism 𝑓 ∶ 𝐴 ⟶ 𝐴, the sequence 𝐼𝑚(𝑓) ⊇ 𝐼𝑚(𝑓2) ⊇ ... is stationary.

Proof. We only prove (iii) ⇒ (i). Suppose 𝑓 ∶ 𝐴 ⟶ 𝐴 is a monomorphism. By assumption, there exists 𝑛 ∈ ℕ such
that Ker𝑓𝑛 ∨ 𝜌Im𝑓𝑛 = ∇𝐴 = 𝐴 × 𝐴 and consequently 𝑓𝑛 is an epimorphism which implies that 𝑓 is an epimorphism
and the result follows.

Recall that a subact 𝐵 of an 𝑆-act 𝐴 is called 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 in 𝐴 denoted by 𝐵 ⊆′ 𝐴, if any 𝑆-morphism 𝑔 ∶ 𝐴 ⟶ 𝐶 such
that 𝑔|𝐵 is a monomorphism is itself a monomorphism (see [3]). Also from [6], an 𝑆-act 𝐴 is called 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 𝑓𝑟𝑒𝑒 if
for any 𝑠 ∈ 𝑆 and any elements 𝑥, 𝑦 ∈ 𝐴, the equality 𝑥𝑠 = 𝑦𝑠 implies that 𝑥 = 𝑦. Additionally, from [6], an 𝑆-act 𝐴
is called quasi-injective if for any 𝑆-morphism 𝑓 ∶ 𝐵 ⟶ 𝐴, there exists an 𝑆-morphism ℎ ∶ 𝐴 ⟶ 𝐴 such that ℎ|𝐵 = 𝑓
where 𝐵 is a subact of 𝐴.
It can be easily checked that for an 𝑆-act 𝐴, if a monomorphism 𝑓 ∶ 𝐴 ⟶ 𝐴 can be extended to an isomorphism
̄𝑓 ∶ 𝐸(𝐴) ⟶ 𝐸(𝐴), then 𝑓(𝐴) ⊆′ 𝐴. Rgarding this observation we have the following result.

Proposition 2.3. Suppose 𝐴 is a quasi-injective torsion free 𝑆-act. If 𝐸(𝐴) is co-Hopfian then 𝐴 is co-Hopfian.

Proof. By assumption any monomorphism 𝑓 ∶ 𝐴 ⟶ 𝐴 can be extended to an isomorphism ̄𝑓 ∶ 𝐸(𝐴) ⟶ 𝐸(𝐴). Since
𝐴 ⊆′ 𝐸(𝐴) and ̄𝑓 is an isomorphism, ̄𝑓(𝐴) ⊆′ 𝐸(𝐴). Moreover, ̄𝑓(𝐴) = 𝑓(𝐴) ⊆ 𝐴. Thus 𝑓(𝐴) ⊆′ 𝐴 and by Theorem
2.16 of [5] the proof is completed.

From [2], an 𝑆-act 𝐴 is called 𝑛𝑜𝑒𝑡ℎ𝑒𝑟𝑖𝑎𝑛 (𝑎𝑟𝑡𝑖𝑛𝑖𝑎𝑛) if the set of congruences of 𝐴 satisfies the ascending (de-
scending) chain condition. For the sake of simplicity, we denote “ascending chain condition” and “ descending chain
condition” by “a.c.c” and “d.c.c ”, respectively.

Proposition 2.4. Suppose 𝒫 is a property of 𝑆-acts which is preserved under isomorphism and 𝐴 is an 𝑆-act which
has this property. If 𝐴 satisfies a.c.c on congruences 𝜆 ∈ 𝐶𝑜𝑛(𝐴) such that 𝐴/𝜆 has the property𝒫, then 𝐴 is Hopfian.

Proof. Byway of contradiction, suppose𝐴 is not Hopfian. Thus there exists a non-diagonal congruences 𝜎1 ∈ 𝐶𝑜𝑛(𝐴)
such that 𝐴 ≅ 𝐴/𝜎1. Thus 𝐴/𝜎1 has the property and is not Hopfian. By a similar way we can find a non-diagonal
congruences 𝜎2 ∈ 𝐶𝑜𝑛(𝐴) such that 𝜎1 ⊂ 𝜎2. Repeating this process yields an ascending chain of congruences of the
form 𝜎1 ⊂ 𝜎2 ⊂ 𝜎3 ⊂ ... such that for any 𝑖 = 1, 2, 3, .. , 𝐴/𝜎𝑖 has the property 𝒫, a contradiction.

Corollary 2.5. Suppose 𝐴 is an 𝑆-act which satisfies a.c.c on congruences 𝜆 ∈ 𝐶𝑜𝑛(𝐴) such that 𝐴/𝜆 is not Hopfian,
then 𝐴 is Hopfian.

Proof. By Propositin 2.4 if 𝒫 is the property of being not Hopfian, then the result follows.

Proposition 2.6. Suppose 𝒫 is a property of 𝑆-acts which is preserved under isomorphism and 𝐴 is an 𝑆-act which
has this property. If 𝐴 satisfies d.c.c on subacts with property 𝒫, then 𝐴 is co-Hopfian.

Proof. If 𝐴 is not co-Hopfian, then by a routine argument, we can obtain a strictly descending chain of proper subacts
with the property 𝒫 that cntradicts our hypothesis.

Corollary 2.7. Let 𝐴 be an 𝑆-act which has d.c.c on its non-co-Hopfian subacts, then 𝐴 is co-Hopfian.
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Proof. By Propositin 2.6 it is sufficient to let 𝒫 the property of being non-co-Hopfian.

From [5], an 𝑆-act 𝐴 is said to be𝑚𝑜𝑛𝑜-𝑢𝑛𝑖𝑓𝑜𝑟𝑚 if for any monomorphism 𝑓 ∶ 𝐴 ⟶ 𝐴, 𝑓(𝐴) ⊆′ 𝐴.

Proposition 2.8. Suppose 𝐴 is an 𝑆-act which satisfies d.c.c on its nonessential subacts, then 𝐴 is mono-unifrom.

Proof. The proof is similar to the proof of Proposition 2.6.
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Abstract

Soft sets present an exceptionally effective approach to addressing issues of uncertainty. Among
the various hyperstructures, the hypergroupoid stands out as a significant entity. In this paper,
we introduce the notion of soft hypergroupoids, a concept that emerges from the foundational
ideas of soft hypergroups and soft hypergroupoids. We meticulously define this concept and
elucidate its properties, supported by illustrative examples that enhance understanding.

1. Introduction

To solve uncertainty problems, various methods have been stated and studied. Fuzzy set theory [7] and rough set
theory [5], are among the famous theories that can be mentioned in this passage. For further reading, refer to [2, 3, 6].
These methods, with all the positive things they have, also have some problems. To improve the previous methods
and solve problems in the study of uncertainty problems, in 1999, the concept of soft sets was presented by Molodtsov
[4].
Let 𝑈 be an initial universe set and 𝐸 be a set of parameters. 𝒫(𝑈) denotes the power set of 𝑈 and 𝐴 ⊆ 𝐸.
Definition 1.1. A pair (𝐹, 𝐴) is called a soft set over 𝑈, where 𝐹 is a mapping given by 𝐹 ∶ 𝐴 ⟶ 𝒫(𝑈). In fact, a soft
set over 𝑈 is a parameterized family of subsets of the universe 𝑈. For 𝛼 ∈ 𝐴, 𝐹(𝛼) may be considered as the set of
𝛼-approximate elements of the soft set (𝐹, 𝐴).

2. Soft hypergroupoids

We have highlighted the significant role of algebraic hyperstructures and acknowledged the significance of soft alge-
braic structures. One of the key outcomes of this section is the derivation of the concept of soft hypergroupoid from
the definition of a soft groupoid. Subsequently, we will delve into exploring various results and properties stemming
from this definition. An intriguing aspect to be explored is the relationship between soft sets and soft hypergroupoids,
which promises to be engaging. Additionally, investigating the connection between soft hypergroups and soft hyper-
groupoids is deemed valuable and will provide useful insights.
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Definition 2.1. Suppose 𝐻 is a non-empty set and ∗ ∶ 𝐻 × 𝐻 → 𝒫∗(𝐻) is a hyperoperation, such that 𝒫∗(𝐻) is the
family of non-empty subsets of 𝐻, then the couple (𝐻, ∗) is called a hypergroupoid.
Remark 2.2. For any two non-empty subsets 𝑃 and 𝑄 of 𝐻, and ℎ ∈ 𝐻, we have

𝑃 ∗ 𝑄 = ራ
𝑝 ∈ 𝑃
𝑞 ∈ 𝑄

𝑝 ∗ 𝑞, 𝑃 ∗ ℎ = 𝑃 ∗ {ℎ}, ℎ ∗ 𝑄 = {ℎ} ∗ 𝑄.

Remark 2.3. If (𝐻, ∗) is a hypergroupoid and 𝐾 is a non-empty subset of𝐻, then (𝐾, ∗) is called a subhypergroupoid,
when (𝐾, ∗) is an hypergroupoid. Also, if {(𝐻𝑖 , ∗𝑖) | 𝑖 ∈ Ω} is a family of hypergroupoids, then ( ∏

𝑖∈Ω
𝐻𝑖 , ∗) by the

hyperoperation
(ℎ𝑖) ∗ (ℎ′𝑖) = {(𝑘𝑖) | 𝑘𝑖 ∈ ℎ𝑖 ∗𝑖 ℎ′𝑖 , 𝑖 ∈ Ω}

is a hypergroupoid. In addition, if (𝐻, ∗), (𝐻′, ∗′) are two hypergroupoids, then the map 𝑓 ∶ 𝐻 → 𝐻′ is called a
good homomorphism, when, for all ℎ1, ℎ2 ∈ 𝐻 we have 𝑓(ℎ1 ∗ ℎ2) = 𝑓(ℎ1) ∗′ 𝑓(ℎ2), and is called an inclusion
homomorphism, if

𝑓(ℎ1 ∗ ℎ2) ⊆ 𝑓(ℎ1) ∗′ 𝑓(ℎ2).
Definition 2.4. If𝐻 is a hypergroupoid and𝒫(𝐻) is the set of all subhypergroupoids of𝐻, and 𝑆 is a set of parameters,
then a pair (ℱ, 𝑆) is called a soft hypergroupoid over 𝐻, if ℱ(𝜈) is a subhypergroup of 𝐻 for all 𝜈 ∈ 𝑆, where ℱ is a
mapping given by ℱ ∶ 𝑆 → 𝒫(𝐻).
Example 2.5. If 𝐻 = {𝑟, 𝑠, 𝑡} is a set, and ”∗” is a hyperoperation on 𝐻 as follows:

* r s t
r {r,s,t} {r,s} {r,t}
s {r,s} {r,s,t} {s,t}
t {r,t} {s,t} {r,s,t}

then (𝐻, ∗) is a hypergroupoid. If we defines ℱ ∶ ℤ → 𝒫∗(𝐻) by

ℱ(𝑧) = ൝{𝑟, 𝑠}, 2 ∣ 𝑧
{𝑟, 𝑠, 𝑡}, 2 ∤ 𝑧

then (ℱ, 𝑆) is a soft hypergroupoid over 𝐻.
Remark 2.6. If ℱ(𝜈) is transitive as a hypergroupoid, for all 𝜈 ∈ 𝑆, then the soft hypergroupoid 𝐻 is called transitive.
Remark 2.7. If ℱ(𝜈) is totally intransitive as a hypergroupoid, for all 𝜈 ∈ 𝑆, then the soft hypergroupoid 𝐻 is called
intransitive.
Proposition 2.8. Every soft set can indeed be viewed as a soft hypergroupoid.

Proof. Suppose (ℱ, 𝑆) is a soft set over 𝑋. It is clear that (ℱ, 𝑆) is a soft hypergroupoid. Since by definition Ob(𝐻) =
𝑋, hyperoperation as follows:

𝑟 ∗ 𝑠 = ൝{Id𝑟}, 𝑟 = 𝑠
∅, 𝑟 ≠ 𝑠

for all 𝑟, 𝑠 ∈ 𝑋. But (ℱ, 𝑆) is a soft set over 𝑋, hence ℱ(𝜈) is a subset of 𝑋, for all 𝜈 ∈ 𝑆. Therefore, ℱ(𝜈) with its
identity morphism, is a subhypergroupoid of the hypergroupoid 𝐻. Hence, (ℱ, 𝑆) is a soft hypergroupoid over 𝐻.
This perspective offers a valuable insight into the relationship between soft sets and soft hypergroupoids, showcasing
the versatility and applicability of soft hypergroupoid concepts in a variety of contexts.
Proposition 2.9. Every soft hypergroup (𝒢, ℱ, 𝑆), can be considered as a soft hypergroupoid.

Proof. It is clear that, ℱ(𝜈) is a subhypergroup of 𝒢 for all 𝜈 ∈ 𝑆. On the other hand, from the hypergroupoid theory,
every hypergroup is a hypergroupoid with only one object. In addition, the hypergroup 𝒢 andℱ(𝜈) are hypergroupoids
for all 𝜈 ∈ 𝑆. Hence ℱ(𝜈) is a subhypergroupoid of the hypergroupoid 𝐻 = 𝒢, for all 𝜈 ∈ 𝑆. Thus, the (𝐻, ℱ, 𝑆) is a
soft hypergroupoid.
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3. Soft action hypergroupoid

In this section, we establish the definition of soft action hypergroupoids and delve into exploring various results derived
from them. Additionally, we aim to direct readers towards the category of soft hypergroupoids, which presents a
promising avenue for research and exploration for those interested in this domain.

Definition 3.1. If (𝐻, ℱ, 𝑆) is a soft hypergroup and (𝑋, ℱ′, 𝑆) is a soft set, then, we can establish the following
mappings:

𝐹 ∶ 𝑆 ⟶ 𝒫(𝐻)
𝜈 ⟼ ℱ(𝜈) and ℱ′ ∶ 𝑆 ⟶ 𝒫(𝑋)

𝜈 ⟼ ℱ′(𝜈)
Hence we can define:

ℱ″ ∶ 𝑆 ⟶ 𝒫(𝐻 × 𝑋)
𝜈 ⟼ ℱ″(𝜈) = ℱ(𝜈) × ℱ′(𝜈)

where is the hypergroup 𝐻 acts on the set 𝑋, the as follows:

∘ ∶ 𝐻 × 𝑋 ⟶ 𝒫∗(𝑋)
(ℎ, 𝑥) ⟼ ℎ ∘ 𝑥,

in addition, for all ℎ𝑖 ∈ 𝐻 and 𝑥𝑖 ∈ 𝑋,

(ℎ𝑖)(𝑥𝑖) = {(𝑦𝑖) ∣ 𝑦𝑖 ∈ ℎ𝑖 ∘ 𝑥𝑖} .

If (ℎ, 𝑥) and (ℎ′, 𝑥′) ∈ 𝐻 × 𝑋, then we can defines:

(ℎ, 𝑥) ∗ (ℎ′, 𝑥′) = {(𝑟, 𝑠) ∣ 𝑟 ∈ ℎℎ′, 𝑠 = 𝑥}

When combining the soft hypergroup (𝐻, ℱ, 𝑆) and the soft set (𝑋, ℱ′, 𝑆), the resulting structure (𝐻 ×𝑋,ℱ″, 𝑆) forms
a soft hypergroupoid known as a soft action hypergroupoid. This concept of a soft action hypergroupoid demonstrates
the interplay between soft hypergroup theory and soft set theory, showcasing their compatibility and utility in modeling
mathematical structures.

Definition 3.2. Suppose (ℱ, 𝑆) and (ℱ′, 𝑆′) are two non-empty soft hypergroupoids over 𝐻1 and 𝐻2, respectively.
In addition (𝑓, 𝑔) is a soft function from (ℱ, 𝑆) to (ℱ′, 𝑆′). Then (𝑓, 𝑔) is considered a soft inclusion (resp.good)
homomorphism of hypergroupoids, when 𝑓 is an inclusion (resp.good) homomorphism from 𝐻1 to 𝐻2.

Example 3.3. Suppose that 𝑃 = {𝑒, 𝑟, 𝑠, 𝑡} is a set, with a hyperoperation ∗ as follows:

* e r s t
e {e} {r} {s} {t}
r {r} {e, r} {t} {s, t}
s {s} {t} {e} {r}
t {t} {s, t} {r} {e,r}

and 𝑄 = {𝑒} × 𝑃 with a hyperoperation • as follows:

• (e,e) (e,r) (e,s) (e,t)
(e,e) {(e,e)} {(e,r)} {(e,s)} {(e,t)}
(e,r) {(e,r)} {(e,e),(e,r)} {(e,t)} {(e,s),(e,t)}
(e,s) {(e,s)} {(e,t)} {(e,e)} {(e,r)}
(e,t) {(e,t)} {(e,s),(e,t)} {(e,r)} {(e,e),(e,r)}

Consider sets 𝑆 and 𝑇 as follows:

𝑆 = {𝑒, 𝑟}, 𝑇 = {(𝑒, 𝑒), (𝑒, 𝑟)}.
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In addition, the the functions ℱ, 𝒢 are as follows:

ℱ ∶ 𝑆 ⟶ 𝒫(𝑃)
𝜈 ⟼ ℱ(𝜈) = {𝑧 ∈ 𝑃 ∣ 𝑧 ∈ 𝜈2}

for 𝜈 ∈ 𝑆, and

𝒢 ∶ 𝑇 ⟶ 𝒫(𝑄)
(𝑒, 𝛽) ⟼ 𝒢((𝑒, 𝛽)) = {(𝑒, 𝑧) ∈ 𝑄 ∣ (𝑒, 𝑧) ∈ (𝑒, 𝛽)2}

for all (𝑒, 𝛽) ∈ 𝑇. If we consider functions 𝑓 and 𝑔 as follows:

𝑓 ∶ 𝑃 ⟶ 𝑄
𝑝 ⟼ ℱ(𝑝) = (𝑒, 𝑝)

for 𝑝 ∈ 𝑃, and

𝑔 ∶ 𝑆 ⟶ 𝑇
𝜈 ⟼ 𝑔(𝜈) = (𝑒, 𝜈)

for 𝜈 ∈ 𝑆, then, 𝑓 is a strong isomorphism, and 𝑔 is bijective. On the other hand, 𝑓(ℱ(𝑒)) = {(𝑒, 𝑒)} = 𝑓(𝑒),
𝑓(ℱ(𝑟)) = {(𝑒, 𝑒), (𝑒, 𝑟)} = 𝑓({𝑒, 𝑟}), 𝒢(𝑔(𝑒)) = {(𝑒, 𝑒)} = 𝒢((𝑒, 𝑒)), 𝒢(𝑔(𝑟)) = {(𝑒, 𝑒), (𝑒, 𝑟)} = 𝒢((𝑒, 𝑟)).
Therefore, we have 𝑓(ℱ(𝜈)) = 𝒢(𝑔(𝜈)), for all 𝜈 ∈ 𝑆. As a result, (𝑓, 𝑔) is a soft isomorphism, and hence (ℱ, 𝑆) ≃
(𝒢, 𝑇).

Remark 3.4. From definition 3.2., we have a new category. The category whose objects are soft hypergroupoids and
morphisms are soft hypergroupoid homomorphisms between them is formally known as the category of soft hyper-
groupoids, denoted by SHGD. This category serves as a structured framework for studying and analyzing the properties
and relationships within soft hypergroupoids, offering a systematic approach to exploring their characteristics and
behaviors through the lens of morphisms and homomorphisms.

Proposition 3.5. If (𝑓, 𝑔) is a soft functor between the soft hypergroupoid (𝐻, ℱ, 𝑆) and the soft category (𝐻′, ℱ′, 𝑆′),
then (𝐻′, ℱ′, 𝑆′) is a soft hypergroupoid.

Proof. 𝑔 functor is full. Hence 𝑔 is over the morphisms (𝐻′, ℱ′, 𝑆′), and the soft category has a soft hypergroupoid
structure.

Theorem3.6. Suppose (𝑓, 𝑔) be a soft functor between the soft hypergroupoid (𝐻, ℱ, 𝑆) and the soft category (𝐻′, ℱ′, 𝑆′),
then (𝐻′, ℱ′, 𝑆′) is a soft hypergroupoid.

Proof. If (𝑓, 𝑔) is a soft functor, then, the functor 𝑓 is full (surjection over morphisms), hence the soft category
(𝐻′, ℱ′, 𝑆′) is a soft hypergroupoid.

Theorem 3.7. If (𝑓, 𝑔) is a soft hypergroupoid homomorphism between soft hypergroupoids (𝐻, ℱ, 𝑆) and (𝐻′, ℱ′, 𝑆′),
then, for all ℎ ∈ Mor(ℱ(𝜈)), 𝜈 ∈ 𝑆, we have:

1. 𝑓(ℎ−1) = [𝑓(ℎ)]−1;
2. 𝑓−1(ℎ) ≅ 𝑓−1(ℎ−1).

Proof. 1. 𝑓 is a functor, and ℱ(𝜈) is a hypergroupoid for all 𝜈 ∈ 𝑆. Since (𝑓, 𝑔) is a soft hypergroupoid homo-
morphism, hence, we have

𝑓(ℎ−1)𝑓(ℎ) = 𝑓(ℎ−1ℎ) = 𝑓(1) = 1, and 𝑓(ℎ)𝑓(ℎ−1) = 𝑓(ℎℎ−1) = 𝑓(1) = 1,

for ℎ ∈ Mor(ℱ(𝜈)). Thus, 𝑓(ℎ−1) = [𝑓(ℎ)]−1.
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2. For all ℎ′ ∈ 𝑓−1(ℎ), we define:

𝑓ℎ′ ∶ 𝑓−1(ℎ) ⟶ 𝑓−1(ℎ−1)
ℎ′ ⟼ ℎ′−1.

Mapping 𝑓ℎ′ is a bijection. Therefore 𝑓ℎ′ is an isomorphism. Hence 𝑓−1(ℎ) ≅ 𝑓−1(ℎ−1).

Definition 3.8. If (𝐻, ℱ, 𝑆) and (𝐻′, ℱ′, 𝑆′) are two soft hypergroupoid, then (𝐻′, ℱ′, 𝑆′) is called a soft subhyper-
groupoid of (𝐻, ℱ, 𝑆), when
(i) 𝑆′ ⊂ 𝑆;

(ii) ℱ′(𝜈′) is a subgroupoid of ℱ′(𝜈) for all 𝜈′ ∈ 𝑆′.
Example 3.9. If (𝐻, ℱ, 𝑆) is a soft hypergroupoid, then (𝐻, ℱ, 𝑆) is a soft subhypergroupoid from (𝐻, ℱ, 𝑆).
Definition 3.10. If (𝐻′, ℱ′, 𝑆′) is a soft subhypergroupoid of soft hypergroupoid (𝐻, ℱ, 𝑆), then
(i) (𝐻′, ℱ′, 𝑆′) is called a full soft hypergroupoid, if ℱ′(𝜈′) is a full subhypergroupoid of ℱ′(𝜈), for all 𝜈′ ∈ 𝑆′;

(ii) (𝐻′, ℱ′, 𝑆′) is called a wide soft subhypergroupoid of ℱ(𝜈′), for all 𝜈′ ∈ 𝑆′;

(iii) (𝐻′, ℱ′, 𝑆′) is called a normal soft subhypergroupoid, if ℱ′(𝜈′) is a normal subhypergroupoid of ℱ(𝜈′), for all
𝜈′ ∈ 𝑆′.

Definition 3.11. If the totally intransitive soft hypergroupoid (𝐻′, ℱ′, 𝑆′) a normal soft subhypergroupoid of (𝐻, ℱ, 𝑆),
then, the soft quotient hypergroupoid ( 𝐻

𝐻1
, ℱ″, 𝑆′) is as follows:

ℱ″ ∶ 𝑆″ ⟶ 𝒫( 𝐻𝐻′ )

𝜈 ⟼ ℱ″(𝜈) = ℱ(𝜈)
ℱ′(𝜈)

Definition 3.12. If (𝐻, ℱ, 𝑆) is a soft hypergroupoid, and ℱ(𝜈) has an initial object as a hypergroupoid for all 𝜈 ∈ 𝑆,
then (𝐻, ℱ, 𝑆) is called a soft hypergroupoid with initial objects.
Definition 3.13. If (ℱ,𝐻, 𝑆) is a soft hypergroupoid, and ℱ(𝜈) has a terminal object as a hypergroupoid for all 𝜈 ∈ 𝑆,
then (𝐻, ℱ, 𝑆) is called a soft hypergroupoid with terminal objects.
Theorem 3.14. If (𝐻, ℱ, 𝑆) is a soft hypergroupoid with initial (terminal) objects, then any two initial (terminal)
objects in (𝐻, ℱ, 𝑆) are isomorphic.

Proof. If soft hypergroupoid (𝐻, ℱ, 𝑆) has the initial objects 𝑟 and 𝑠, then ℱ(𝜈) has the initial objects 𝑟, 𝑠, such that
can be as a hypergroupoid for all 𝜈 ∈ 𝑆. We define morphisms 𝑓 ∶ 𝑟 → 𝑡 and 𝑔 ∶ 𝑠 → 𝑡, for all 𝑡 ∈ ℱ(𝜈). But ℱ(𝜈) is
a hypergroupoid, hence 𝑓 and 𝑔 are isomorphisms, that is to say 𝑟 ≅ 𝑡 and 𝑠 ≅ 𝑡, that means 𝑟 ≅ 𝑠. This completes
the proof.

Remark 3.15. In a soft hypergroupoid, the objects of the same type, are isomorphic.

4. Conclusion

In this paper, we delved into the realm of hypergroupoids as a generalization of hypergroups, focusing specifically
on the study of soft hypergroupoids as an extension of soft hypergroups. Towards the conclusion, we guided readers
towards exploring the category of soft hypergroupoids, which presents a promising avenue for further research and
investigation for enthusiasts in this field. Additionally, akin to the developments in soft groupoid theory, we introduced
the concept of trivial soft hypergroupoids.
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Abstract

The purpose of this paper is to introduce a new family measures of noncompactness in the space
𝐿𝑝𝑙𝑜𝑐(ℝ+) (1 ≤ 𝑝 < ∞) and study its properties. The technique of measure of noncompactness
by applying fixed point theorem is the main tool in carrying out our proof.

1. Introduction

The notion of a measure of noncompactness (MNC) was introduced by Kuratowski [18] in 1930. In 1955, Darbo pre-
sented a fixed point theorem [11]associated with the measure of noncompactness. This result was applied, by many
authers to study existence and behavior of solutions in considerable literatures to many classes of integral equations in
the Banach space 𝐵𝐶(ℝ+) (consisting of all real functions defined, bounded, and continuous onℝ+ ( see, for example,
[2, 3, 5, 7, 9, 10, 12–14, 17, 20]). Later, Banas and Goebel [8] generalized and extended this notion axiomatically,
which is more convenient in applications. Thereafter, Aghajani et al. [4], constructed a measure of non compact-
ness on 𝐿𝑝(ℝℕ) and Olszowy [19] presented a family of measure of noncompactness in 𝐿1𝑙𝑜𝑐(ℝ+) (consisting of all
functions locally integrable on(ℝ+)). In this paper we introduce a new family measures of noncompactness in the
space 𝐿𝑝𝑙𝑜𝑐(ℝ+). The structure of this article is as follows. In Section 2, some preliminaries and concepts are recalled.
Section 3 is devoted to introduce a new family measure of noncompactness on the spaces 𝐿𝑝𝑙𝑜𝑐(ℝ+).

2. Preliminaries

First, we introduce some notations and definitions which are used throughout this paper. Let 𝐿𝑝(ℝ+) denote the space
of Lebesgue integrable functions on ℝ+ with the standard norm

‖𝑥‖𝑝 = ቀන
∞

0
|𝑥(𝑡)|𝑝𝑑𝑡ቁ

1
𝑝 .

∗Talker
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We say that a function 𝑓 ∶ ℝ+ ⟶ ℝ belongs to 𝐿𝑝𝑙𝑜𝑐(ℝ+) if 𝜒𝐾𝑓 ∈ 𝐿𝑝(ℝ+) for every compact set 𝐾 ⊂ ℝ+. Let us
consider the set 𝐿𝑝𝑙𝑜𝑐(ℝ+) equipped with the family of seminorms ‖𝜒[0,𝑇]𝑓‖𝑝 for each 𝑇 > 0. 𝐿𝑝𝑙𝑜𝑐(ℝ+) becomes a
Fr�́�chet space furnished with the distance

𝑑(𝑥, 𝑦) = sup ቄ 12𝑛 min{1, ‖𝜒[0,𝑛](𝑥 − 𝑦)‖𝑝} ∶ 𝑛 ∈ ℕቅ = sup ቄ 12𝑛 min{1, ቀන
𝑛

0
|𝑥(𝑡) − 𝑦(𝑡)|𝑝𝑑𝑡ቁ

1
𝑝 } ∶ 𝑛 ∈ ℕቅ.

If X is a subset of 𝐿𝑝𝑙𝑜𝑐(ℝ+), then 𝑋 and 𝐶𝑜𝑛𝑣𝑋 denote the closure and closed convex hull of 𝑋, respectively. A
nonempty subset 𝑋 ⊂ 𝐿𝑝𝑙𝑜𝑐(ℝ+) is said to be bounded if

sup{‖𝜒[0,𝑇]𝑓‖𝑝 = ቀන
𝑇

0
|𝑓(𝑡)|𝑝𝑑𝑡ቁ

1
𝑝 ∶ 𝑓 ∈ 𝑋} < ∞

Further, let 𝔐𝐿𝑝𝑙𝑜𝑐
denote the family of all nonempty and bounded subsets of 𝐿𝑝𝑙𝑜𝑐(ℝ+) and 𝔑𝐿𝑝𝑙𝑜𝑐

the family of all
relatively compact subsets of 𝐿𝑝𝑙𝑜𝑐(ℝ+).

Let us recall a fact, which we need in our considerations.
A sequence (𝑥𝑛) is convergent to 𝑥 in 𝐿𝑝𝑙𝑜𝑐(ℝ+) if and only if for each 𝑇 > 0, (𝑥𝑛) is convergent to 𝑥 in 𝐿𝑝[0,𝑇](ℝ+).
Definition 2.1. ([8]) A family of functions {𝜇𝑇}, where 𝜇𝑇 ∶ 𝔐𝐿𝑝𝑙𝑜𝑐(ℝ+)

⟶ ℝ+, is said to be a family of measures of
noncompactness in 𝐿𝑝𝑙𝑜𝑐(ℝ+) if it satisfies the following conditions:
1∘ The family ker{𝜇𝑇} = {𝑋 ∈ 𝔐𝐿𝑝𝑙𝑜𝑐(ℝ+)

∶ 𝜇𝑇(𝑋) = 0 𝑓𝑜𝑟 𝑇 > 0} is nonempty and ker 𝜇 ⊆ 𝔑𝐿𝑝𝑙𝑜𝑐(ℝ+)
.

2∘ 𝑋 ⊂ 𝑌 ⟹ 𝜇(𝑋) ≤ 𝜇(𝑌).

3∘ 𝜇𝑇(𝑋) = 𝜇𝑇(𝑋) for 𝑇 ≥ 0.
4∘ 𝜇𝑇(𝐶𝑜𝑛𝑣𝑋) = 𝜇𝑇(𝑋) for 𝑇 ≥ 0.
5∘ 𝜇𝑇(𝜆𝑋 + (1 − 𝜆)𝑌) ≤ 𝜆𝜇𝑇(𝑋) + (1 − 𝜆)𝜇𝑇(𝑌), for 𝜆 ∈ [0, 1] and 𝑇 ≥ 0.
6∘ If {𝑋𝑛} is a sequence of closed sets from𝔐𝐸 such that 𝑋𝑛+1 ⊂ 𝑋𝑛, for 𝑛 = 1, 2,⋯ and if lim

𝑛→∞
𝜇𝑇(𝑋𝑛) = 0 for

each 𝑇 ≥ 0 then 𝑋∞ = ∩∞𝑛=1𝑋𝑛 ≠ ∅.
We say that a measure of noncompactness is regular [8 ], if it additionally satisfies the following conditions:

7∘ 𝜇(𝑋 ∪ 𝑌) = 𝑚𝑎𝑥{𝜇(𝑋), 𝜇(𝑌)}.
8∘ 𝜇(𝑋 + 𝑌) ≤ 𝜇(𝑋) + 𝜇(𝑦).
9∘ 𝜇(𝜆𝑋) = |𝜆|𝜇(𝑋) for 𝜆 ∈ ℝ+.

10∘ ker 𝜇 = 𝔑𝐸 .

The Hausdorff and Kuratowski measures of noncompactness satisfy all the above conditions (see [6, 8].

3. Main results

Before introducing a new measures of noncompactness on the spaces 𝐿𝑝(ℝ+), we need to characterize the compact
subsets of 𝐿𝑝(ℝ+).
Theorem 3.1. ([16]) Let ℱ be a bounded subset in 𝐿𝑝𝑙𝑜𝑐(ℝ+), 1 ≤ 𝑝 < ∞. Then ℱ is relatively compact if and only if
for every 𝑇 > 0 and 𝜀 > 0, there exists 𝛿 > 0 such that

ቀන
𝑇

0
|𝑓(𝑡) − 𝑓(𝑡 + ℎ)|𝑝𝑑𝑡ቁ

1
𝑝 ≤ 𝜀

for all 𝑓 ∈ ℱ and |ℎ| < 𝛿.
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Now, we are ready to define a new measure of noncompactness on the spaces 𝐿𝑝𝑙𝑜𝑐(ℝ+). Let 𝑋 be a bounded subset
of the space 𝐿𝑝𝑙𝑜𝑐(ℝ+), 1 ≤ 𝑝 < ∞. For 𝑥 ∈ 𝑋, and 𝜀 > 0. Let us denote

𝜔𝑇(𝑥, 𝜀) = sup{ቀන
𝑇

0
|𝑥(𝑡 + ℎ) − 𝑥(𝑡)|𝑝𝑑𝑡ቁ

1
𝑝 ∶ |ℎ| < 𝜀},

𝜔𝑇(𝑋, 𝜀) = sup{𝜔𝑇(𝑥, 𝜀) ∶ 𝑥 ∈ 𝑋},

𝜔𝑇(𝑋) = lim
𝜀→0

𝜔𝑇(𝑋, 𝜀)

We have the following fact.

Theorem 3.2. The family of mappings {𝜔𝑇}, where 𝜔𝑇 ∶ 𝔐𝐿𝑝𝑙𝑜𝑐(ℝ+)
⟶ℝ+ is a family of measure of noncompactness

on 𝐿𝑝𝑙𝑜𝑐(ℝ+) and ker{𝜔𝑇} = 𝔑𝐿𝑝𝑙𝑜𝑐(ℝ+)
.

Proof. First we show that {𝜔𝑇} satisfies condition 1∘. Let 𝑋 ∈ 𝔐𝐿𝑝𝑙𝑜𝑐(ℝ+)
such that {𝜔𝑇} = 0. Since {𝜔𝑇} = 0, then

lim𝜀→0𝜔𝑇(𝑋, 𝜀) = 0. Thus, for all 𝑇 > 0 and 𝜀 > 0, there exists 𝛿 > 0 such that

ቀන
𝑇

0
|𝑥(𝑡) − 𝑥(𝑡 + ℎ)|𝑝𝑑𝑡ቁ

1
𝑝 ≤ 𝜀

for all 𝑥 ∈ 𝑋 and |ℎ| < 𝛿.
Therefore, from Theorem 3.1 we infer that the closure of 𝑋 in 𝐿𝑝𝑙𝑜𝑐(ℝ+) is compact and ker 𝜇 ⊆ 𝔑𝐿𝑝𝑙𝑜𝑐(ℝ+)

.
Satisfying {𝜔𝑇} in condition 2∘, is obvious.
Now, we prove that condition 3∘ holds. Suppose that 𝑋 ∈ 𝔐𝐿𝑝𝑙𝑜𝑐(ℝ+)

and 𝑥 ∈ 𝑋. Therefore, a sequence 𝑥𝑛 in 𝑋 exists

such that 𝑥𝑛 → 𝑥 ∈ 𝑋 in 𝐿𝑝𝑙𝑜𝑐(ℝ+). From definition of 𝜔𝑇(𝑋, 𝜀), we have

ቀන
𝑇

0
|𝑥𝑛(𝑡 + ℎ) − 𝑥𝑛(𝑡)|𝑝𝑑𝑡ቁ

1
𝑝 ≤ 𝜔𝑇(𝑋, 𝜀),

for any 𝑛 ∈ ℕ, 𝑇 > 0 and |ℎ| < 𝜀. By letting 𝑛 → ∞, we obtain

ቀන
𝑇

0
|𝑥(𝑡 + ℎ) − 𝑥(𝑡)|𝑝𝑑𝑡ቁ

1
𝑝 ≤ 𝜔𝑇(𝑋, 𝜀)

Therefore,

lim
𝜀→0

𝜔𝑇(𝑋, 𝜀) ≤ lim
𝜀→0

𝜔𝑇(𝑋, 𝜀),

Consequently,

𝜔𝑇(𝑋, 𝜀) ≤ 𝜔𝑇(𝑋, 𝜀).
From 2∘, we infer that 𝜔𝑇(𝑋) = 𝜔𝑇(𝑋) , and thus condition 3∘ holds.
For proof conditions 4∘ and 5∘, in a similar manner , we use the inequality

ቀන
Ω
|𝜆𝑥(𝑡) + (1 − 𝜆)𝑦(𝑡)|𝑝𝑑𝑡ቁ

1
𝑝 ≤ 𝜆ቀන

Ω
|𝑥(𝑡)|𝑝𝑑𝑡ቁ

1
𝑝 + (1 − 𝜆)ቀන

Ω
|𝑦(𝑡)|𝑝𝑑𝑡ቁ

1
𝑝 ,

where, Ω ∈ ℝ+ and 𝜆 ∈ [0, 1]. Now, we prove that condition 6∘ satisfies in Definition 2.1. Suppose {𝑋𝑛} is a sequence
of closed and nonempty sets from 𝐿𝑝𝑙𝑜𝑐(ℝ+) such that 𝑋𝑛+1 ∈ 𝑋𝑛, for 𝑛 = 1, 2,⋯, and lim𝑛→∞𝜔𝑇(𝑋𝑛) = 0. For any
𝑛 ∈ ℕ take an 𝑥𝑛 ∈ 𝑋𝑛. In the first step, we prove that ℱ = {𝑥𝑛} is a compact set in 𝐿𝑝𝑙𝑜𝑐(ℝ+). Equivalently, we need
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to check that 𝜔𝑇(ℱ) = 0, where 𝑇 > 0. Suppose 𝜀 > 0 be fixed and since lim𝑛→∞𝜔𝑇(𝑋𝑛) = 0, 𝑘 ∈ ℕ exists such
that 𝜔𝑇(𝑋𝑘) < 𝜀. Thus, we can find 𝛿1 > 0 and 𝑇 > 0 such that

𝜔𝑇(𝑋𝑘 , 𝛿1) < 𝜀.

Thus, for 𝑛 ≥ 𝑘 and |ℎ| < 𝛿1, we can write

ቀන
𝑇

0
|𝑥𝑛(𝑡 + ℎ) − 𝑥𝑛(𝑡)|𝑝𝑑𝑡ቁ

1
𝑝 ≤ 𝜔𝑇(𝑋𝑛 , 𝜀) < 𝜀.

Since the set {𝑥1, 𝑥2, ⋯ , 𝑥𝑘−1} is compact, then 𝛿2 > 0 and 𝑇 > 0 exist such that

ቀන
𝑇

0
|𝑥𝑛(𝑡 + ℎ) − 𝑥𝑛(𝑡)|𝑝𝑑𝑡ቁ

1
𝑝 ≤ 𝜀,

for all 𝑛 = 1, 2,⋯ , 𝑘 and |ℎ| < 𝛿2.
Therefore, we obtain 𝜔𝑇(ℱ, 𝛿) < 𝜀, for 𝛿 < min{𝛿1, 𝛿2} and for all 𝑇 > 0.We Know that

𝜔𝑇(ℱ) = lim
𝛿→0

𝜔𝑇(ℱ, 𝛿)

Then, 𝜔𝑇(ℱ) = 0. Which means that ℱ is compact. Therefore, a subsequence {𝑋𝑛𝑗} and 𝑥0 ∈ 𝐿𝑝𝑙𝑜𝑐(ℝ+) exist such
that 𝑋𝑛𝑗 → 𝑥0. Because 𝑥𝑛 ∈ 𝑋𝑛, 𝑋𝑛+1 ⊂ 𝑋𝑛 and 𝑋𝑛 is closed for all 𝑛 ∈ ℕ, then we obtain

𝑥0 ∈ ∩∞𝑛=1𝑋𝑛 = 𝑋∞,

which completes the proof of condition 6∘.
Finally, we show that 𝑘𝑒𝑟𝜇 = 𝔑𝐿𝑝𝑙𝑜𝑐(ℝ+)

. From condition 1∘, we know that 𝑘𝑒𝑟𝜇 ⊆ 𝔑𝐿𝑝𝑙𝑜𝑐(ℝ+)
.We need to prove that

𝔑𝐿𝑝𝑙𝑜𝑐(ℝ+)
⊆ 𝑘𝑒𝑟𝜇. For this aim, let 𝑋 ∈ 𝔑𝐿𝑝𝑙𝑜𝑐(ℝ+)

. Therefore, the closure of 𝑋 in 𝐿𝑝𝑙𝑜𝑐(ℝ+) is compact and hence from
Theorem 3.1, for any 𝜀 > 0 and 𝑇 > 0 there exists 𝛿 > 0 such that

ቀන
𝑇

0
|𝑥(𝑡 + ℎ) − 𝑥(𝑡)|𝑝𝑑𝑡ቁ

1
𝑝 ≤ 𝜀

for all 𝑥 ∈ 𝑋 and |ℎ| < 𝛿.
Thus,
for all 𝑥 ∈ 𝑋, we have

𝜔𝑇(𝑥, 𝛿) = sup ቄቀන
𝑇

0
|𝑥(𝑡 + ℎ) − 𝑥(𝑡)|𝑝𝑑𝑡ቁ

1
𝑝 ∶ |ℎ| < 𝛿ቅ ≤ 𝜀.

Therefore,

𝜔𝑇(𝑋, 𝛿) = sup{𝜔𝑇(𝑥, 𝛿) ∶ 𝑥 ∈ 𝑋} ≤ 𝜀.

This proves that
lim
𝛿→0

𝜔𝑇(𝑋, 𝛿) = 0.

Since 𝜔𝑇(𝑋) = 0, then we infer that 𝔑𝐿𝑝𝑙𝑜𝑐(ℝ+)
⊆ 𝑘𝑒𝑟𝜇. Thus, we have

𝑘𝑒𝑟𝜇 = 𝔑𝐿𝑝𝑙𝑜𝑐(ℝ+)
.
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Theorem 3.3. The familly measure of noncompactness {𝜔𝑇} defined in Theorem 3.2 is regular.

Proof. Let 𝑋, 𝑌 ∈ 𝔐𝐿𝑝𝑙𝑜𝑐(ℝ+)
. Since for every 𝜀 > 0, 𝜆 > 0 and 𝑇 > 0 we have

• 𝜔𝑇(𝑋 ∪ 𝑌, 𝜀) ≤ 𝑚𝑎𝑥{𝜔𝑇(𝑋, 𝜀), 𝜔𝑇(𝑌, 𝜀)},

• 𝜔𝑇(𝑋 + 𝑌, 𝜀) ≤ 𝜔𝑇(𝑋, 𝜀) + 𝜔𝑇(𝑦, 𝜀),

• 𝜔𝑇(𝜆𝑋, 𝜀) ≤ |𝜆|𝜔𝑇(𝑋, 𝜀) for 𝜆 ∈ ℝ+,

then the conditions 7∘, 8∘ and 9∘ hold and the condition 10∘ in Theorem 3.2 was proved.

Now we state some fixed point theorems which are used in the following.

Theorem 3.4. Let C be a nonempty, bounded, closed, and convex subset of the space 𝐿𝑝𝑙𝑜𝑐(ℝ+) and let 𝐹 ∶ 𝐶 → 𝐶 be
continuous. Let 𝐶0 = 𝐶 and 𝐶𝑛+1 = 𝐶𝑜𝑛𝑣(𝐹𝐶𝑛) for 𝑛 = 0, 1, 2, …. If lim𝑛→∞𝜔𝑇(𝐶𝑛) = 0, for each 𝑇 ≥ 0, where
{𝜔𝑇} is a family of measure of noncompactness on the spaces 𝐿𝑝𝑙𝑜𝑐(ℝ+) then 𝐹 has a fixed point.

Proof. From properties 1∘ - 6∘ of the {𝜔𝑇} we have 𝐶∞ = ∩∞𝑛=1𝐶𝑛 is nonempty, closed, convex and compact in
𝐿𝑝𝑙𝑜𝑐(ℝ+). Moreover 𝐹 is mapping 𝐶∞ → 𝐶∞. Applying Tichonov fixed point principle we infer that 𝐹 has at least
one fixed point.

Theorem 3.5. [11] Let Q be a nonempty, bounded, closed, and convex subset of the space 𝐿𝑝𝑙𝑜𝑐(ℝ+) and let 𝐹 ∶ 𝑄 → 𝑄
be continuous mapping. Suppose that there exist numbers 𝐾𝑇 ∈ [0, 1) for 𝑇 > 0 such that

𝜔𝑇(𝐹𝑋) ≤ 𝐾𝑇𝜔𝑇(𝑋)

for nonempty 𝑋 ⊂ 𝑄 and 𝑇 ≥ 0. Then 𝐹 has at least one fixed point in the set 𝑄.
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Abstract

This study introduces optimal designs for the Exponential nonlinear model using nonparametric
Bayesian approaches. Nonlinear regression models find extensive applications across various
scientific disciplines. It is vital to accurately fit the optimal nonlinear model while considering
the biases of the Bayesian optimal design. By utilizing theDirichlet process as a prior, we present
a Bayesian optimal design. In this research paper we employ a representation to approximate
the D-optimality criterion considering the Dirichlet process as a functional tool. Through this
approach, we aim to identify a Nonparametric Bayesian optimal design.

1. Introduction

Within the realm of experimental design, the concept of optimal design refers to a specific category of designs that are
classified based on certain statistical criteria.
Optimal designs are sought using optimality criteria, typically based on the information matrix. In nonlinear models,
the presence of unknown parameters introduced complexities in the design problem, as the optimality criteria depends
on these unknown parameters [3, 6]. To address this challenge, researchers proposed various solutions, including local
optimal designs [1, 8, 12, 19, 30], sequential optimal designs, minimax optimal designs, Bayesian optimal designs [28,
21-25], and pseudo-Bayesian designs [26]. Chernoff [8] introduced the concept of local optimality, which involves
specifying fixed values for the unknown parameters and optimizing a function of the information matrix to determine
the design for these specified parameter values. This approach aimed to overcome the difficulties associated with
the dependence of the design problem on unknown parameters in nonlinear models. It’s important to note that local
designs for nonlinear models are derived subsequent to an initial linearization of the model, using the parameter set as
a reference point.
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The selection of unknown parameters in local designs is typically obtained from previous studies or experiments specif-
ically conducted for this purpose. The effectiveness of local designs heavily relies on the appropriate selection of these
parameters. However, a significant challenge arises when the investigated problem lacks robustness in relation to weak
parameter estimation. To address this, an alternative approach for local optimal designs involves utilizing a prior dis-
tribution for the unknown parameters instead of relying solely on initial guess. In the Bayesian method, the first step
is to represent the available information in the form of a probability distribution for the model parameter, known as
the prior distribution. A Bayesian optimal design aims to maximize the relevant optimality criterion over this prior
distribution. Nevertheless, it is crucial to acknowledge that the selection of the prior distribution within the Bayesian
framework can be problematic and may potentially lead to erroneous results. The choice of the prior distribution is
subjective, relying on the researcher’s beliefs, and it significantly influences the final outcome. Unfortunately, the
Bayesian approach lacks a definitive method for selecting the prior distribution. Numerous researchers have investi-
gated the effect of the prior distribution on determining design points in various types of optimal designs. For instance,
Chaloner and Larentz [11], Chaloner and Duncan [9], Burghaus and Dette [5], Chaloner and Vardinelli [10], Pronzato
and Walter [29], Mukhopadhyay and Haines [26], Dette and Ngobauer [13,14], Fedorov [15,16], and Firth and Hinde
[18] have contributed extensively to this field. Chapter 18 of Atkinson et al.’s book [3] provides further reading on
this topic. Moreover, in situations where there is insufficient evidence from previous studies on the topic of interest,
specifying an appropriate prior distribution becomes challenging. In such cases, subjective or noninformative prior
distributions are used, incorporating all available information regarding the uncertainty of the parameter values. For
more information, refer to Burghaus and Dette [5].
This research paper presents the optimal design for nonlinear models in section 2. In Section3, the nonparametric
Bayesian D-optimal design for exponential regresion model is presented. Finally, Section 4 concludes the paper with
some closing remarks.

2. Introduction to optimal designs in nonlinear models

In the realm of nonlinear experimental design, a common scenario arises where in the relationship between the response
variable 𝑦 and the independent variable 𝑥 is given by the equation 𝑦 = 𝜂(𝑥, 𝜃)+𝜖 where 𝑥 ∈ 𝜒 ⊆R and 𝑦 is a response
variable and 𝜃 ∈ Θ is the unknown parameter vector and 𝜖 is a normally distributed residual value with mean 0 and
known variance 𝜎2 > 0. For simplicity, we assume 𝜎2 = 1 in this problem. If 𝜂(𝑥, 𝜃) is differentiable with respect
to 𝜃 then, the information matrix𝑀(𝜉, 𝜃) at a given point 𝑥 can be represented as follows:

𝐼(𝜉, 𝜃) = 𝜕
𝜕𝜃𝜂(𝑥, 𝜃)

𝜕
𝜕𝜃𝑇

𝜂(𝑥, 𝜃). (1)

There exist several optimality criteria used to obtain the optimal design, including D-optimality and A-optimality.
These criteria are functions of the information matrix and can be expressed as follows:

Ψ𝐷(𝜉, 𝜃) =− log(det(𝑀(𝜉, 𝜃))) , Ψ𝐴(𝜉, 𝜃) = 𝑡𝑟(𝑀−1(𝜉; 𝜃)),
where 𝜉 denotes a design with two components; the first component represents specific values from the design space
𝜒 and the second component corresponds to the weights assigned to these values, so that design 𝜉 can be defined as
follows:

� = ቊ 𝑥1 𝑥2 … 𝑥𝓁
𝑤1 𝑤2 … 𝑤𝓁

ቋ∈ Ξ, (2)

where 𝑝 represents the number of model parameters [25], and

Ξ = {𝜉 ∣ 0 ≤ 𝑤𝑗 ≤ 1;
𝓁
∑
𝑗=1

𝑤𝑗 = 1, 𝑥 ∈ 𝜒}, 𝑝 ≤ 𝓁 ≤ 𝑝(𝑝 + 1)
2 .

When considering a discrete probability measure 𝜉 with finite support, the information function of 𝜉 can be expressed
as follows [3]:

𝑀(𝜉, 𝜃) =
𝓁


𝑗=1

𝑤𝑗𝐼(𝑥𝑗 , 𝜃). (3)
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Because of the dependence of the information matrix 𝑀(𝜉, 𝜃) to the unknown parameter 𝜃, one approach to address
this issue is to employ the Bayesian method and incorporate a prior distribution of the parameter vector. The Bayesian
D-optimality criterion can be formulated as follows:

ΨΠ(𝜉) = 𝐸(𝜓(𝜉; 𝜃)) = න
Θ
𝜓(𝜉; 𝜃)𝑑Π(𝜃) = න

Θ
− log(det(𝑀(𝜉, 𝜃)))𝑑Π(𝜃), (4)

where Π represents the prior distribution for 𝜃 and the Bayesian D-optimal design is attained by minimizing (2.4).
In certain situations, specifying a prior distribution on the parameter spaceΘ can be challenging for the experimenter. In
such cases, an alternative approach is to consider an unknown prior distributionΠ for the parameter 𝜃. In this condition,
Π is treated as a parameter itself. Consequently, equation (2.4) becomes a random functional, and it becomes necessary
to determine its distribution or approximation. From a Bayesian perspective, we construct a prior distribution on the
space of all distribution functions to address this issue. To achieve this objective, Ferguson [17] introduced the concept
of the DP that an overview of it will be provided in the following.

2.1. Nonparametric Bayesian D-optimal design
Nonparametric models constitute an approach to model selection and fitting, where the size of the models is allowed
to grow with the size of the data. It is unlike parametric models that use a fixed number of parameters. In this section,
we introduce the nonparametric Bayesian optimal design. In the nonparametric Bayesian framework, it is assumed
that 𝜃 ∣ 𝑃 ∼ 𝑃, where 𝑃 is a random probability distribution and 𝑃 ∼ Π. General method of construction a random
measure is to start with the stochastic processes. Ferguson [17] formulated the requirements which must be imposed
on a prior distribution and proposed a class of prior distributions, named DP. One of the main argument in using the
Dirichlet distribution in practical applications is based on the fact that this distribution is a good approximation of many
parametric probability distributions. Bondesson [6], Sethuraman [30], and Zarepour and Al Labadi [31] are among
those who have contributed to this area. A method of producing samples from the Dirichlet process is to use the Polya
urn process that in the upcoming section, we will discuss about it. Then the nonparametric Bayesian D-optimal design
for the Exponential regresion model is discussed.

2.2. Polya Urn Scheme
Polya Urn Scheme was used by Blackwell and McQueen (1973) to demonstrate the existence of the Dirichlet process.
The method of producing a sample of the Dirichlet process is to use a Polya Urn Scheme [19]. Consider a Polya urn
with 𝑎(𝜒) balls of which 𝑎(𝑖) are of color 𝑖 ; 𝑖 = 1, 2, ..., 𝑘.[For the moment assume that 𝑎(𝑖) are whole numbers or
0]. Draw balls at random from the urn, replacing each ball drawn by two balls of the same color. Let 𝑋𝑖 = 𝑗 if the 𝑖 th
ball is of color 𝑗. Then:

𝑃(𝑋1 = 𝑗) = 𝑎(𝑗)
𝑎(𝜒) , (5)

𝑃(𝑋2 = 𝑗 ∣ 𝑋1) =
𝑎(𝑗) + 𝛿𝑋1(𝑗)
𝑎(𝜒) + 1 , (6)

and in general

𝑃(𝑋𝑛+1 = 𝑗 ∣ 𝑋1, 𝑋2, ..., 𝑋𝑛) =
𝑎(𝑗) +

𝑛
∑
1
𝛿𝑋𝑖(𝑗)

𝑎(𝜒) + 𝑛 , (7)

That 𝑛 is the number of extracted balls and 𝛿𝑋𝑖(𝑗) is equal to one if 𝑋𝑖 = 𝑗, otherwise it is equal to zero.

3. Nonparametric Bayesian D-optimal design for Exponential regresion model with Respect to Prior Pro-
cesses(with Polya Urn Scheme as the base measure)

Suppose we have the following regression model:

𝐸(𝑦|𝑥) = 𝜂(𝑥, 𝜃) = exp(−𝜃𝑥), 𝑥 > 0, 𝜃 > 0. (8)
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therefore, the Bayesian D-optimality criterion, denoted as ΨΠ(𝜉) can be expressed as follows:

ΨΠ(𝜉) = 𝐸(𝜓(𝜉; 𝜃)) = න
Θ
𝜓(𝜉; 𝜃)𝑑Π(𝜃) = න

Θ
− log

𝓁


𝑗=1

𝑤𝑗𝑥2𝑗 [exp(−2𝜃𝑥𝑗)])𝑑Π(𝜃) (9)

where Π is the prior distribution for 𝜃. The Bayesian D-optimal design is attained by minimizing equation (3.2). In
the nonparametric Bayesian framework, we consider 𝑃 ∼ DP(𝛼,𝑃0) and its collective representation as 𝑃(.) =

∞
∑
𝑖=1

𝑝𝑖
𝛿𝜃𝑖(.). In this context, the optimality criterion can be expressed as follows:

ΨΠ(𝜉) =
∞


𝑖=1

𝑝𝑖(− log
𝓁


𝑗=1

𝑤𝑗𝑥2𝑗 [exp(−2𝜃𝑖𝑥𝑗)]). (10)

Chernoff [8] demonstrated that when searching for a local optimal design, there exists an optimal design where all the
mass is concentrated at a single point within the design supports. Caratheodory’s theorem also confirms the existence
of a one-point optimal design. However, when employing the Bayesian optimality criterion, a more complex situation
arises. Dette [13] showed that with a uniform prior distribution, as the support of the prior distribution increases, the
number of optimal design points for the single-parameter model also increases. Chaloner and Verdinelli [10] suggested
that if the researcher aims to obtain a one-point optimal design, it is advisable to consider a small support for the uniform
prior distribution. The same principle applies to nonparametric Bayesian designs. In this case, assuming a uniform
distribution over the interval [0, B] as the basic distribution, the one-point optimal design can be achieved.
Equation (3.2) is a stochastic function of the DP. According to Ferguson’s definition of the DP, the calculation (3.2) is
not easily possible, so to address this challenge and obtain an approximation of the optimal nonparametric Bayesian
criterion, methods such as the stick-breaking process is employed. Sethuraman (1994) introduced this method as
a significant approach for generating realizations of the DP. Another method has been presented by Zarepour and
Ellabadi [33] whose simulation speed and accuracy is much higher than the stick breaking process. We used this
method in this paper.
Now, in this section we consider Polya Urn Scheme as the base measure in DP. We get the results by using a nonlinear
optimization programing with R package Rsolnp. To better understanding of the effect of the 𝛼 parameter, we tabulate
the results for four different values of 𝛼=1, 5, 10, 50, in Tables 1-4. Without loss of generality, we consider a bounded
design space 𝜒=[0, 1]. Tables 1-4 represent the results when the concentration parameter and uncertainty in the base
measure increase.

Table 1. Nonparametric Bayesian D-optimal design when 𝛼=1.

𝑃𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝐷𝑒𝑠𝑖𝑔𝑛 𝑇𝑤𝑜 − 𝑝𝑜𝑖𝑛𝑡 𝑇ℎ𝑟𝑒𝑒 − 𝑝𝑜𝑖𝑛𝑡
𝑈[0, 50] 𝑥 0.054440 0.260513 0.030685 0.209087 0.387580

𝑤 0.876842 0.123158 0.908720 0.002113 0.089167
𝑈[0, 100] 𝑥 0.023030 0.219612 0.017941 0.195164 0.320225

𝑤 0.905494 0.094506 0.977778 0.010774 0.009128
𝑈[0, 300] 𝑥 0.008303 0.197470 0.008225 0.193860 0.306556

𝑤 0.948465 0.051535 0.986071 0.010698 0.003231
𝑈[0, 1000] 𝑥 0.003043 0.195013 0.002832 0.195338 0.299104

𝑤 0.975145 0.024855 0.992532 0.007418 0.000050

According to the results, as the value of 𝛼 increases, the support points in two-point design do not change significantly.
The weight of the minimum point increases rapidly and the smallest point will have the most weight that this weight
almost increases or remains fixed by increasing the concentration parameter.

4. Concluding Remarks And Future Works

Nonlinear regression models are widely used in various scientific fields, and the Bayesian method is commonly em-
ployed to obtain optimal designs in such models. However, one of the challenges in the Bayesian framework is the
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Table 2. Nonparametric Bayesian D-optimal design when 𝛼=5.

𝑃𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝐷𝑒𝑠𝑖𝑔𝑛 𝑇𝑤𝑜 − 𝑝𝑜𝑖𝑛𝑡 𝑇ℎ𝑟𝑒𝑒 − 𝑝𝑜𝑖𝑛𝑡
𝑈[0, 50] 𝑥 0.034587 0.388024 0.032450 0.236545 0.498389

𝑤 0.811363 0.188637 0.894985 0.014646 0.090369
𝑈[0, 100] 𝑥 0.018340 0.268389 0.018546 0.196677 0.374871

𝑤 0.867598 0.132402 0.948225 0.017276 0.034499
𝑈[0, 300] 𝑥 0.006756 0.190899 0.006666 0.172643 0.318524

𝑤 0.922931 0.077069 0.948950 0.040386 0.010664
𝑈[0, 1000] 𝑥 0.002193 0.194242 0.002133 0.188004 0.313534

𝑤 0.966823 0.033177 0.977844 0.018185 0.003971

Table 3. Nonparametric Bayesian D-optimal design when 𝛼=10.

𝑃𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝐷𝑒𝑠𝑖𝑔𝑛 𝑇𝑤𝑜 − 𝑝𝑜𝑖𝑛𝑡 𝑇ℎ𝑟𝑒𝑒 − 𝑝𝑜𝑖𝑛𝑡
𝑈[0, 50] 𝑥 0.036680 0.421636 0.034412 0.213537 0.559561

𝑤 0.821632 0.178368 0.868929 0.029632 0.101439
𝑈[0, 100] 𝑥 0.018490 0.271066 0.017731 0.194647 0.448192

𝑤 0.867274 0.132726 0.932293 0.022384 0.045323
𝑈[0, 300] 𝑥 0.006569 0.193873 0.006490 0.175472 0.333920

𝑤 0.919503 0.080497 0.952076 0.035164 0.012760
𝑈[0, 1000] 𝑥 0.002029 0.186047 0.002075 0.177670 0.307947

𝑤 0.969009 0.030991 0.970351 0.025391 0.004258

Table 4. Nonparametric Bayesian D-optimal design when 𝛼=50.

𝑃𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝐷𝑒𝑠𝑖𝑔𝑛 𝑇𝑤𝑜 𝑝𝑜𝑖𝑛𝑡𝑠 𝑇ℎ𝑟𝑒𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
𝑈[0, 50] 𝑥 0.037439 0.511531 0.037144 0.211627 0.671521

𝑤 0.898396 0.101604 0.895857 0.028447 0.075696
𝑈[0, 100] 𝑥 0.018731 0.347769 0.018396 0.184127 0.565521

𝑤 0.912504 0.087496 0.933661 0.020097 0.046242
𝑈[0, 300] 𝑥 0.006397 0.200206 0.006329 0.141265 0.384839

𝑤 0.934723 0.065277 0.951399 0.035986 0.012615
𝑈[0, 1000] 𝑥 0.001972 0.170471 0.001942 0.153639 0.315340

𝑤 0.962347 0.037653 0.961299 0.033890 0.004811

subjective selection of the prior distribution, which can potentially lead to incorrect results. By adopting a nonparamet-
ric Bayesian approach and utilizing the Dirichlet process, we aim to address the challenges associated with selecting
the prior distribution in Bayesian optimal design construction. This allows us to account for uncertainty and mitigate
the impact of restrictive parametric assumptions, providing more flexible and robust designs for nonlinear regression
models.
In this study, we focus on utilizing the Polya Urn Scheme as the base distribution in the Dirichlet process. To better
understand the influence of the concentration parameter 𝛼, we present the results in tables for four different values of
𝛼=1, 5, 10, 50.
In the investigated range, the results reveal interesting findings. As the uncertainty in the base measure and the con-
centration parameter in the Dirichlet process increase, the support points in the two-point designs do not undergo sig-
nificant changes. The weight of the smallest point increases rapidly, and it becomes the point with the highest weight.
This weight tends to either increase or remain relatively stable with an increase in the concentration parameter.
It is important to note that this approach can be applied to other optimality criteria and various models with two or
more parameters. For example, nonparametric Bayesian optimal designs using the A- or E-optimality criterion for the
nonlinear model discussed in this paper, along with a Dirichlet process prior, hold potential for further research. We
hope to report new results in this area in the near future.
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Abstract

In this study, we delve into the intricate relationship between crossed hypermodule frame-
works and hypergroups by constructing a novel crossed hypermodule structure derived from
a whiskered hypergroupoid, where the underlying object set is defined as a hypergroup. This
innovative approach employs a standard functor that serves to bridge the categorical realms
of crossed hypermodules and cat1-hypergroups. Additionally, we establish a corresponding
whiskered hypergroupoid structure, wherein the object set is represented as a hypergroup, orig-
inating from a crossed hypermodule of hypergroups. The paper further elucidates the criteria
necessary for bimorphisms within the context of a whiskered hypergroupoid, while also exam-
ining the interconnections between this structure and internal hypergroupoids situated within
the category of whiskered hypergroupoids, specifically where the object set is a hypergroup.
Moreover, we conduct a thorough investigation into the relationships that exist between the
category of crossed hypermodules associated with hypergroups and the category of whiskered
hypergroupoids. This exploration aims to uncover deeper insights into the theoretical under-
pinnings and applications of these mathematical constructs, fostering a greater understanding of
their interplay and significance in the broader framework of hypergroup theory.

1. Introduction

The notion of whiskering applied to a groupoid emerges from the foundational principles of the tensor product of
crossed complexes within the context of groupoids. In the realm of group theory, the pioneering work of Brown and
Higgins [3] introduced a formal definition for the tensor product applicable to the category of crossed complexes over
groupoids. Consider a crossed complex denoted as𝐻, which is composed of hypergroupoids and equipped with a self-
tensor product𝑤 ∶ 𝐻⊗𝐻 ⟶ 𝐻. By implementing a 1-truncation of𝐻 that incorporates the biactions of the object set
on the morphism sets, we can derive a whiskered groupoid. This construction not only enriches the structure of 𝐻 but
also facilitates a deeper understanding of the interactions between its components, thereby enhancing the theoretical
framework surrounding whiskered groupoids and their applications in higher algebraic contexts. Therefore, we have
𝑤0,1 ∶ 𝐻0 × 𝐻1 ⟶ 𝐻1, 𝑤1,0 ∶ 𝐻1 × 𝐻0 ⟶ 𝐻1 and 𝑤0,0 ∶ 𝐻0 × 𝐻0 ⟶ 𝐻0 called whiskerings where 𝐻0 is the set of
objects and 𝐻1 is the set of morphisms between objects. The operations 𝑤0,1 and 𝑤1,0 give the left and right actions
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of 𝐻0 on 𝐻1, respectively. Furthermore, the operation 𝑤0,0 gives a monoid structure over 𝐻0. A crossed complex
𝐻 over groupoids, along with the tensor product ⊗ over 𝐻, can be seen as a crossed differential graded algebra as
defined by Baues in [4] and further investigated by Baues-Tonks in [5]. Therefore, the first component of a crossed
differential graded algebra can also represent a whiskered groupoid. Essentially, the purpose of defining whiskering
operations is to examine the conditions under whiHh the composition of morphisms exhibits commutativity for any
given category. In the case of a group 𝐺, if the commutators within 𝐺 are trivial, then 𝐺 is considered an Abelian
group. To define the notion of commutativity for any category 𝐻, considering the whiskering operations in 𝐻, the left
and right multiplications have been introduced by Brown in [6]. In the case 𝐻 ∶= (𝐻1, 𝐻0) is a groupoid together
with the whiskering 𝑤1,0 ∶ 𝐻1 × 𝐻0 ⟶ 𝐻1 and 𝑤0,1 ∶ 𝐻0 × 𝐻1 ⟶ 𝐻1, the commutator of 𝑎 ∶ 𝑥 ⟶ 𝑦 and
𝑏 ∶ 𝑢 ⟶ 𝑣 in 𝐻 Han be defined by [𝑎, 𝑏] = 𝑤10(𝑎, 𝑢)−1 ∘ 𝑤1,0(𝑦, 𝑏)−1 ∘ 𝑤1,0(𝑎, 𝑣) ∘ 𝑤0,1(𝑥, 𝑏). In this equality,
the left and right multiplications are given by 𝑙(𝑎, 𝑏) = 𝑤0,1(𝑦, 𝑏) ∘ 𝑤1,0(𝑎, 𝑢) and 𝑟(𝑎, 𝑏) = 𝑤1,0(𝑎, 𝑣) ∘ 𝑤0,1(𝑥, 𝑏).
Thus, the commutator of the morphisms 𝑎, 𝑏 ∈ 𝐻 is [𝑎, 𝑏] = 𝑙(𝑎, 𝑏)−1𝑟(𝑎, 𝑏). In the case 𝑙(𝑎, 𝑏) = 𝑟(𝑎, 𝑏), the
groupoid 𝐻 is called a commutative groupoid [6], and then 𝐻 is a strict monoidal category. On the other hand, if 𝐻 is
a groupoid, then the automorphism structure 𝐴𝑢𝑡(𝐻) is equivalent to a crossed module introduced by Whitehead in
[12]; 𝜕 ∶ 𝑆𝑐(𝐻) ⟶ 𝐴𝑢𝑡(𝐻) where 𝑆𝑐(𝐻) is the set of sections of the source map 𝑠 and the target map is a bijection
on 𝐻0. Then the set 𝑆𝑐(𝐻) has a group structure with the Ehresmannian composition. By utilizing this composition,
we establish the connection between crossed modules and whiskered groupoids with the object set in a group. In a
2-dimensional context, if 𝐻 is a crossed module, then 𝐴𝑢𝑡(𝐻) possesses a braided regular crossed module structure
as defined by Brown and Gilbert [7]; refer to [8] for more information on this structure. The reduced cases of this
structure in other contexts can be found in [2, 9]. This structure Han be viewed as a whiskered 2-groupoid with the
object set as a group. Further exploration of this concept will be conducted in a separate paper. Brown also introduced
the notion of whiskering for any R-category in [6]. Considering an R-algebroid as a small R-category, by employing
the results from [11], the R-algebroid version of the results mentioned herein can be investigated.

2. Whiskered hypergroupoids and crossed hypermodules

According [10], a polygroup is a multi-valued system ℳ =< 𝑃, ∘, 𝑒, −1 >, with 𝑒 ∈ 𝑃, −1 ∶ 𝑃 ⟶ 𝑃, ∘ ∶ 𝑃 × 𝑃 ⟶
𝒫∗(𝑃), where the following axioms hold, for all 𝑟, 𝑠, 𝑡 ∈ 𝑃:

1. (𝑟 ∘ 𝑠) ∘ 𝑡 = 𝑟 ∘ (𝑠 ∘ 𝑡)
2. 𝑒 ∘ 𝑟 = 𝑟 ∘ 𝑒 = 𝑟
3. 𝑟 ∈ 𝑠 ∘ 𝑡 implies 𝑠 ∈ 𝑟 ∘ 𝑡−1 and 𝑡 ∈ 𝑠−1 ∘ 𝑟.

𝒫∗(𝑃) is the set of all the non-empty subsets of 𝑃, and also if 𝑥 ∈ 𝑃 and 𝑅, 𝑇 are non-empty subsets of 𝑃, then we
have 𝑅 ∘ 𝑇 = ⋃

𝑏∈𝑇
𝑎∈𝑅

𝑎 ∘ 𝑏, 𝑥 ∘ 𝑇 = {𝑥} ∘ 𝑇 and 𝑅 ∘ 𝑥 = 𝑅 ∘ {𝑥}.

The following, are the facts that are clearly concluded from the principles of the polygroups: 𝑒 ∈ 𝑟 ∘ 𝑟−1 ∩ 𝑟−1 ∘ 𝑟,
𝑒−1 = 𝑒 and (𝑟−1)−1 = 𝑟.

Example 2.1. If we consider the set 𝑃 as 𝑃 = {𝑒, 𝑟, 𝑠}, then 𝑃 =< 𝑃, ∘, 𝑒, −1 > along with polyaction which have
shown in the Table 2.1. is a polygroup.

∘ 𝑒 𝑟 𝑠
𝑒 𝑒 𝑟 s
𝑟 𝑟 {𝑒, 𝑠} {𝑟, 𝑠}
𝑠 𝑠 {𝑟, 𝑠} {𝑒, 𝑟}

Table 2.1.

Definition 2.2. A crossed hypermodule 𝜒 = (𝐶, 𝑃, 𝜕, 𝜅) is consists of hypergroups< 𝐶, ∗, 𝑒, −1 > and< 𝑃, ∘, 𝑒, −1 >
together with a strong homomorphism 𝜕 ∶ 𝐶 ⟶ 𝑃 and a (left) action 𝜅 ∶ 𝑃×𝐶 ⟶ 𝒫∗(𝐶) on 𝐶, satisfying the following
conditions:

1. 𝜕( 𝑝𝑐) = 𝑝 ∘ 𝜕(𝑐) ∘ 𝑝−1, for all 𝑐 ∈ 𝐶 and 𝑝 ∈ 𝑃,
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2. 𝜕(𝑐)𝑐′ = 𝑐 ∗ 𝑐′ ∗ 𝑐−1, for all 𝑐, 𝑐′ ∈ 𝐶.

Example 2.3. 1. In every hyperygroup, the set containing only the identitymember is always a subhypergroup, and
this subhypergroup is normal in the hypergroup. Therefore, we have crossed hypermodule (1, 𝑃) = (1, 𝑃, 𝑐1, 𝑖𝑑 ∣𝑐1
).

2. Every hypergroup 𝑃 contains the whole hypergroup 𝑃 as a normal subhypergroup. So, we always have crossed
hypermodule (𝑃, 𝑃) = (𝑃, 𝑃, 𝑐, 𝑖𝑑𝑃).

3. Consider the following hypergroup morphisms of an abelian hypergroup 𝑃, written multiplicatively,

l ∶ 1 → 𝐴𝑢𝑡(𝑃) 𝑖 → 𝑖𝑑𝑃 k ∶ 𝑃 → 1 𝑝 → 1

So, we have a crossed hypermodule (𝑃, 1) = (𝑃, 1, l, k).

Example 2.4. 1. [1] A conjugation crossed hypermodule is an inclusion of a normal subhypergroup 𝑁 of 𝑃, with
action given by conjugation. In fact, for any hypergroup 𝑃, the identity map id𝑃 ∶ 𝑃 ⟶ 𝑃 is a crossed hyper-
module with the action of 𝑃 on itself by conjugation. Indeed, there are two canonical ways a hypergroup 𝑃 may
be regarded as a crossed hypermodule: via the identity map or the inclusion of the trivial subhypergroup.

2. If 𝐶 is a 𝑃-hypermodule, then there is a well defined action 𝜅 of 𝑃 on 𝐶. This, together with the zero homomor-
phisms, creates a crossed hypermodule (𝐶, 𝑃, 𝜕, 𝜅).

Definition 2.5. Consider the crossed hypermodules 𝜒 = (𝐶, 𝑃, 𝜕, 𝜅) and 𝜒′ = (𝐶′, 𝑃′, 𝜕′, 𝜅′). A crossed hypermodule
morphism 𝑓 = (𝜆, Γ) ∶ 𝜒 → 𝜒′ is a tuple of strong homomorphism, such that the diagram

𝐶 𝜆 //

𝜕
��

𝐶′

𝜕′
��

𝑃 Γ
// 𝑃′

commutes, and 𝜆(𝑝𝜅𝑐) = Γ(𝑝)𝜅′𝜆(𝑐), for all 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶.

Suppose that𝐻 is a (small) category with set of morphisms (or 1-Hells) written by𝐻1 and the set of objects (or 0-cells)
written by 𝐻0. In 𝐻1, particularly, the set of morphisms 𝑎 ∶ 𝑥 ⟶ 𝑦 from 𝑥 to 𝑦 is denoted by 𝐻1(𝑥, 𝑦), and 𝑥, 𝑦 are
called the source and target of the morphism a, respectively. The source and target maps are written 𝑠, 𝑡 ∶ 𝐻1 ⟶ 𝐻0.
Then, for 𝑎 ∈ 𝐻1(𝑥, 𝑦), we have 𝑠(𝑎) = 𝑥 and 𝑡(𝑎) = 𝑦. The category composition in 𝐻 of morphisms 𝑎 ∶ 𝑥 ⟶ 𝑦
and 𝑏 ∶ 𝑦 ⟶ 𝑧 can be defined by 𝑏 ∘ 𝑎 ∶ 𝑥 ⟶ 𝑧. In this case, clearly, 𝑠(𝑏 ∘ 𝑎) = 𝑠(𝑎) and 𝑡(𝑏 ∘ 𝑎) = 𝑡(𝑏). We will
write 𝐻1(𝑥, 𝑥) as 𝐻1(𝑥).

Definition 2.6. A whiskering on a category 𝐻 ∶= (𝐻1, 𝐻0) consists of operations 𝑤𝑖,𝑗 ∶ 𝐻𝑖 × 𝐻𝑗 ⟶ 𝐻𝑖+𝑗 , 𝑖, 𝑗 =
0, 1, 𝑖 + 𝑗 ≤ 1 satisfying the following axioms:

• Whisk 1: 𝑤0,0 gives a monoid structure on 𝐻0;

• Whisk 2: 𝑤0,1 ∶ 𝐻0 × 𝐻1 ⟶ 𝐻1 is a left action of the monoid 𝐻0 on the category 𝐻 in the sense that, if
𝑥 ∈ 𝐻0 and 𝑎 ∶ 𝑢 ⟶ 𝑣 in 𝐻1, then 𝑤0,1(𝑥, 𝑎) ∶ 𝑤0,0(𝑥, 𝑢) ⟶ 𝑤0,0(𝑥, 𝑣), in 𝐻, so that: 𝑤0,1(1, 𝑎) =
𝑎,𝑤0,1(𝑤0,0(𝑥, 𝑦), 𝑎) = 𝑤0,1(𝑥, 𝑤0,1(𝑦, 𝑎)),
and
𝑤0,1(𝑥, 𝑎 ∘ 𝑏) = 𝑤0,1(𝑥, 𝑎) ∘ 𝑤0,1(𝑥, 𝑏), 𝑤0,1(𝑥, 1𝑦) = 1𝑥𝑦 ,

• Whisk 3: 𝑤1,0 ∶ 𝐻1 × 𝐻0 ⟶𝐻1 is a right action of the monoid 𝐻0 on 𝐻1 with analogous rules,

• Whisk 4: 𝑤0,1(𝑥, 𝑤1,0(𝑎, 𝑦)) = 𝑤1,0(𝑤0,1(𝑥, 𝑎), 𝑦), for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝐻0, 𝑎, 𝑏 ∈ 𝐻1.

A category 𝐻 together with a whiskering is called a whiskered category.
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In a whiskered category, for 𝑎 ∶ 𝑥 ⟶ 𝑦, 𝑏 ∶ 𝑢 ⟶ 𝑣, there are two multiplications given by 𝑙(𝑎, 𝑏) ∶= 𝑚0,1(𝑦, 𝑏) ∘
𝑚1,0(𝑎, 𝑢) and 𝑟(𝑎, 𝑏) ∶= 𝑚1,0(𝑎, 𝑣) ∘ 𝑚0,1(𝑥, 𝑏).
It is well-known that a hypergroupoid is a small category in which every arrow (or morphisms or 1-cells) is an iso-
morphism. That is, for any morphism a, there is a (necessarily unique) morphism 𝑎−1 such that 𝑎 ∘ 𝑎−1 = 𝑒𝑠(𝑎)
and 𝑎−1 ∘ 𝑎 = 𝑒𝑡(𝑎) where 𝑒 ∶ 𝐻0 ⟶ 𝐻1 gives the identity morphism at any object. We denote a hypergroupoid as
𝐻 ∶= (𝐻1, 𝐻0), where 𝐻0 is the set of objects and 𝐻1 is the set of morphisms. For any hypergroupoid 𝐻, if 𝐻1(𝑥, 𝑦)
is empty whenever 𝑥, 𝑦 are distinct (that is, if 𝑠 = 𝑡) then 𝐻 is called totally disconnected hypergroupoid. A hyper-
groupoid 𝐻 ∶= (𝐻1, 𝐻0) together with the whiskering operations 𝑤𝑖,𝑗 ∶ 𝐻𝑖 × 𝐻𝑗 ⟶ 𝐻𝑖+𝑗 for 𝑖 + 𝑗 ≤ 1 satisfying the
above conditions is called a whiskered hypergroupoid. We will denote a whiskered hypergroupoid by (𝐻,𝑤). In a
whiskered hypergroupoid, if the object set 𝐻0 is a group with the multiplication given by 𝑤0,0, we say that (𝐻1, 𝐻0)
is a regular hypergroupoid. We will use the notation𝑊𝐺 to denote the category of whiskered hypergroupoids whose
set of objects is a polygroup with the operation 𝑤0,0.

3. Bimorphisms within Whiskered (Regular) Groupoids

In this section, we aim to clarify the profound relationship between the category of crossed hypermodules associated
with polygroups and the category of whiskered hypergroupoids, where the object set is defined as a polygroup. The
concept of crossed hypermodules was first introduced by Alp and Davvaz [1] in their seminal work, which laid the
groundwork for understanding these structures in a broader mathematical context. Crossed hypermodules provide
a robust algebraic framework that serves as a model for homotopy connected 2-types of topological spaces. This
connection is pivotal, as it allows for the exploration of how algebraic properties can reflect and inform the topological
characteristics of spaces. By examining the interplay between crossed hypermodules and whiskered hypergroupoids,
we can uncover insights into the underlying structures that govern these mathematical entities. The implications of
this relationship extend beyond mere theoretical curiosity; they offer a pathway to understanding complex interactions
within algebraic topology and provide tools for analyzing the homotopical aspects of polygroups.
Let 𝜕 ∶ 𝑀 ⟶ 𝑁 be a crossed polymodule. We will obtain a whiskered hypergroupoid 𝐻 ∶= (𝐻1, 𝐻0) together
with the operations 𝑤1,0 and 𝑤0,1. Let 𝐻0 = 𝑁. By using the action of 𝑁 on 𝑀, we can consider the semi-direct
product polygroup𝑀⋊𝑁 with the polygroup operation given by (𝑚, 𝑛)(𝑚′, 𝑛′) = (𝑚(𝑛𝑚′), 𝑛𝑛′) for𝑚,𝑚′ ∈ 𝑀 and
𝑛, 𝑛′ ∈ 𝑁. Then, by taking𝐻0 = 𝑁 and𝐻1 = 𝑀⋊𝑁, we can create a whiskered hypergroupoid as follows: The source
and target maps from𝐻1 to𝐻0 are given by 𝑠(𝑚, 𝑛) = 𝑛 and 𝑡(𝑚, 𝑛) = 𝜕(𝑚)𝑛 for all (𝑚, 𝑛) ∈ 𝐻1. The hypergroupoid
composition is given by (𝑚′, 𝑛′)∘(𝑚, 𝑛) = (𝑚′𝑚, 𝑛) if 𝑛′ = 𝜕(𝑚)𝑛. Finally, the whiskering operations𝑤0,1 and𝑤1,0
are given by respectively 𝑤0,1(𝑝, (𝑚, 𝑛)) = (𝑝𝑚, 𝑝𝑛) and 𝑤1,0((𝑚, 𝑛), 𝑝) = (𝑚, 𝑛𝑝) for all 𝑚 ∈ 𝑀, 𝑛, 𝑝 ∈ 𝑁. For
these operations, we have 𝑠(𝑤0,1(𝑝, (𝑚, 𝑛))) = 𝑠(𝑝𝑚, 𝑝𝑛) = 𝑝𝑛 = 𝑝𝑠(𝑚, 𝑛) and 𝑡(𝑤0,1(𝑝, (𝑚, 𝑛))) = 𝑡(𝑝𝑚, 𝑝𝑛) =
𝜕(𝑝𝑚)𝑝𝑛 = 𝑝𝜕(𝑚)𝑝−1𝑝𝑛 (Since 𝜕 is crossed module) = 𝑝𝜕(𝑚)𝑛 = 𝑝𝑡(𝑚, 𝑛) Similarly, we obtain easily that
𝑠(𝑤1,0((𝑚, 𝑛), 𝑝)) = 𝑠(𝑚, 𝑛𝑝) = 𝑛𝑝 = 𝑠(𝑚, 𝑛)𝑝 and 𝑡(𝑤1,0((𝑚, 𝑛), 𝑝)) = 𝑡(𝑚, 𝑛𝑝) = 𝜕(𝑚)𝑛𝑝 = 𝑡(𝑚, 𝑛)𝑝 for
all (𝑚, 𝑛) ∈ 𝐻1 and 𝑛, 𝑝 ∈ 𝐻0. Consequently, we obtain a whiskered hypergroupoid. In this structure, the operation
𝑤0,0 be taken as the group operation of 𝐻0 = 𝑁. Hence, a functor can be defined from the category of crossed
polymodules of polygroups to the category of whiskered hypergroupoids with objects set in a polygroup. We denote
it by 𝑆 ∶ 𝑋𝑀 ⟶𝑊𝐺.
Let 𝐻 ∶= (𝐻1, 𝐻0, 𝑤𝑖,𝑗) be a whiskered hypergroupoid with the set of objects 𝐻0 is a polygroup according to the
multiplication given by the operation 𝑤00. In this case, we can say, using the Ehresmannian composition, that the set
𝐾 = {𝑎 ∈ 𝐻1 ∶ 𝑠(𝑎) = 1𝐻0} is a polygroup with the polygroup operation given by 𝑎 ⊙ 𝑏 = 𝑤10(𝑎, 𝑡(𝑏)) ∘ 𝑏 for any
𝑎 ∶ 1𝐻0 ⟶ 𝑦 and 𝑏 ∶ 1𝐻0 ⟶ 𝑣 in 𝐾, 𝑦, 𝑣 ∈ 𝐻0, and the target map 𝑡 from 𝐾 to 𝐻0 is a homomorphism of polygroups.
For 1𝐻0 ∈ 𝐻0, we have 𝑒(1𝐻0) ∶ 1𝐻0 ⟶ 1𝐻0 is the identity element of𝐾. Indeed for any 𝑎 ∶ 1𝐻0 ⟶ 𝑦 ∈ 𝐾, we obtain
𝑎 ⊙ 𝑒(1𝐻0) = 𝑤10(𝑎, 1𝐻0) ∘ 1𝐻0 = 𝑎 = 𝑒(1𝐻0) ⊙ 𝑎 The inverse of 𝑎 ∶ 1𝐻0 ⟶ 𝑦 is 𝑎−1 ∶ 1𝐻0 ⟶ 𝑦−1 where 𝑦−1
is the inverse of 𝑦 in the ploygroup 𝐻0. Thus, we have 𝑎 ⊙ 𝑎−1 = 𝑤1,0(𝑎, 𝑦−1) ∘ 𝑎−1 = 𝑒(1𝐻0). We show that the
target map 𝑡 is a homomorphism of polygroups from 𝐾 to𝐻0. For 𝑎 ∶ 1𝐻0 ⟶ 𝑦 and 𝑏 ∶ 1𝐻0 ⟶ 𝑣 in 𝐾, and 𝑦, 𝑣 ∈ 𝐻0,
we obtain 𝑡(𝑎 ⊙ 𝑏) = 𝑡(𝑤1,0(𝑎, 𝑡𝑏)) ∘ 𝑏 = 𝑦𝑣 = 𝑡(𝑎)𝑡(𝑏). The polygroup action of 𝑝 ∈ 𝐻0 on 𝑎 ∶ 1𝐻0 ⟶ 𝑦 ∈ 𝐾
is given by 𝑝𝑎 = 𝑤1,0(𝑒(𝑝), 𝑣𝑝−1) ∘ 𝑤1,0(𝑎, 𝑝−1) ∘ 𝑒(𝑝). The polygroup 𝐻0 is acting on itself by conjugation. Thus,
we obtain that the homomorphism t is 𝐻0-equivariant relative to the action of 𝐻0 on 𝐾 given above. Indeed, we have
𝑡(𝑝𝑎) = 𝑝𝑣𝑝−1 = 𝑝𝑡(𝑎)𝑝−1 for 𝑝 ∈ 𝐻0 and 𝑎 ∈ 𝐾, and so 𝑡 is a pre-crossed polymodule of polygroups. Furthermore,
for any 𝑎 ∶ 1𝐻0 ⟶ 𝑦, 𝑏 ∶ 1𝐻0 ⟶ 𝑣 ∈ 𝐾, we have 𝑎 ⊙ 𝑏 ⊙ 𝑎−1 = 𝑤1,0(𝑎, 𝑣𝑦−1) ∘ 𝑤10(𝑏, 𝑦−1) ∘ 𝑎−1. Therefore,
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we obtain 𝑡(𝑎)𝑏 = 𝑤1,0(𝑒(𝑡(𝑎)), 𝑣𝑦−1) ∘ 𝑤1,0(𝑏, 𝑦−1) ∘ 𝑒(𝑡(𝑎))−1 = 𝑤1,0(𝑎, 𝑣𝑦−1) ∘ 𝑤1,0(𝑏, 𝑦−1) ∘ 𝑒(𝑡(𝑎))−11 =
𝑎 ⊙ 𝑏 ⊙ 𝑎−1 and this is the second crossed-ploymodule axiom. So, we can say that t is a crossed ploymodule of
polygroups. Thus, we have a crossed polymodule 𝑡 ∶ 𝐾 ⟶ 𝐻0 from the whiskered groupoid (𝐻,𝑤) ∶= (𝐻1, 𝐻0, 𝑤𝑖,𝑗).
We can define a functor from the category of whiskered hypergroupoids with objects set a polygroup to the category
of crossed polymodules as 𝐹 ∶ 𝑊𝐺 ⟶ 𝑋𝑀.
Now, we by employing the axioms of the crossed polymodule, we will delineate the bimorphism conditions in the
whiskered hypergroupoid derived from a crossed polymodule.

Definition 3.1. Let 𝐻 be a category. A bimorphism 𝑚 ∶ (𝐻,𝐻) ⟶ ♢𝐻 (where ♢𝐻 is the double category) assigns
to each pair of morphisms 𝑎, 𝑏 ∈ 𝐻 a square 𝑚(𝑎, 𝑏) ∈ ♢𝐻 such that if 𝑎𝑑, 𝑏𝑐 are defined in 𝐻 then 𝑚(𝑎𝑑, 𝑐) =
𝑚(𝑎, 𝑐) ∘1 𝑚(𝑑, 𝑐) and𝑚(𝑎, 𝑏𝑐) = 𝑚(𝑎, 𝑏) ∘2 𝑚(𝑎, 𝑐).
Theorem 3.2. For the regular hypergroupoid

(𝐻1, 𝐻0) ∶= ൭𝐻1 = 𝑀 ⋊𝑁
𝑠,𝑡
⟶⟶⟵
𝑒
𝐻0 = 𝑁, ∘, 𝑤𝑖,𝑗൱

which is obtained from the crossed polymodule 𝜕 ∶ 𝑀 ⟶ 𝑁, the multiplication 𝑎 ⋆ 𝑏 given by:

𝑚(𝑎, 𝑏) = 𝑎 ∗ 𝑏 = ቆ𝑤0,1((𝑚, 𝑛), 𝑛′)
𝑤0,1(𝑛, (𝑚′, 𝑛′))

𝑤0,1(𝜕(𝑚)𝑛, (𝑚′, 𝑛′)) 𝑤0,1((𝑚, 𝑛), 𝜕(𝑚′)𝑛′)ቇ

is a bimorphism for 𝑎 = (𝑚, 𝑛), 𝑏 = (𝑚′, 𝑛′) ∈ 𝑀 ⋊ 𝑁.
Theorem 3.3. In the whiskered hypergroupoid

(𝐻1, 𝐻0) ∶= ൭𝐻1 = 𝑀 ⋊𝑁
𝑠,𝑡
⟶⟶⟵
𝑒
𝐻0 = 𝑁, ∘, 𝑤𝑖,𝑗൱

associated to the crossed polymodule 𝜕 ∶ 𝑀 ⟶ 𝑁, we have 𝑙(𝑎, 𝑏) = 𝑟(𝑎, 𝑏) so this category is a strict monoidal
category.

Theorem 3.4. In the whiskered hypergroupoid

(𝐻1, 𝐻0) ∶= ൭𝐻1 = 𝑀 ⋊𝑁
𝑠,𝑡
⟶⟶⟵
𝑒
𝐻0 = 𝑁, ∘, 𝑚𝑖𝑗൱

associated to the crossed polymodule 𝜕 ∶ 𝑀 ⟶ 𝑁, the interchange law is hold:

(𝑎∘𝑐)⋆(𝑏∘𝑑) = (𝑎⋆𝑏)∘(𝑐⋆𝑑). Thus, (𝐻1, 𝐻0, ) is an internal category in the category of whiskered hypergroupoids.

4. Conclusion

In this paper, we established a significant connection between crossed polymodules and whiskered hypergroupoids
with the object set as a group. Consequently, we observe that a whiskered hypergroupoid can be viewed as a crossed
polymodule of polygroups. If H is a crossed polymodule, then the automorphism structure Aut(H), possesses a braided
regular crossed polymodule structure. This structure can therefore be interpreted as a whiskered 2-hypergroupoid with
the object set in a polygroup. In a forthcoming study, as a two-dimensional analogue of the findings presented here,
the concept of a whiskered 2-hypergroupoid could be introduced by utilizing the properties of the braiding map on a
crossed module. An R-algebroid can be seen as a small R-category. It is also plausible to investigate the R-algebroid
version of the results.
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Abstract

Suppose𝐺 be a group, also𝑉 a K-vector space. We know that a K-linear representation of𝐺 with
representstion space 𝑉 is a homomorphism Φ ∶ 𝐺 → 𝐺𝐿(𝑉). Also if Φ is a representation of 𝐺,
then the characterΦ is defined for 𝑔 ∈ 𝐺 as𝜓𝑔(𝜙) = 𝑇𝑟(𝜙(𝑔)). Concept of symmetric crossed
polymodule studied by Dehghanizadeh. In this paper we study the representstion of crossed
polymodules. Our results extend the classical results of representation of crossed module to
crossed polymodules.

1. Introduction

The Yang-Baxter equation plays a fundamental role in various areas of mathematics. In fact, this equation plays a
fundamental role in such apparently distant fields as statistical mechanics, particle physics, quantum field theory and
quantum group. Its solutions, called braidings, are built, among others,
1) from Yetter-Drinfel’d modules over a Hopf algebra,
2) from self-distributive structures,
3) from crossed modules of groups.
Also, Crossed modules and its applications play very important roles in category theory, homology and cohomology
of groups, homotopy theory, algebra, k-theory etc. Therefore, study crossed modules and its all kinds automorphisms
at least through this is very important. This is in fact one of the motivations of recent half-century studies in this field.
We recall some definitions and properties of the crossed module category. A crossed module (𝑇, 𝐺, 𝜕) consist of a
group homomorphism 𝜕 ∶ 𝑇 ⟶ 𝐺 together with an action (𝑔, 𝑡) ⟶ 𝑔𝑡 of 𝐺 on 𝑇 satisfying 𝜕(𝑔𝑡) = 𝑔𝜕(𝑡)𝑔−1
and 𝜕(𝑠)𝑡 = 𝑠𝑡𝑠−1, for all 𝑔 ∈ 𝐺 and 𝑠, 𝑡 ∈ 𝑇 [1–4, 21]. Nilpotent, Solvable, n-Complete and Representations
of crossed modules was studied by Dehghanizadeh and Davvaz[16–20]. Polygroups were studied by Comer[12],
also see [13]. Specially, Comer and Davvaz developed the algebraic theory for polygroups. Alp and Davvaz in [4],
introduced the notion of crossed polymodule of polygroups and they given some of its properties. Also they introduce
new important classes by the fundamental relations. Alp and Davvaz, introduce the concept of pullback and pushout
crossed polymodules and describe the construction of pullback and pushout crossed polymodules. Arvasi, Porter and
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Onarh in [5–8] , introduce the notion of an (co)-induced 2-crossed module, which extends the notion of an (co)-induced
crossed module which were defined by Brown, Gilbert, Loday and Mosa [9–11]. In [14, 15] Dehghanizadeh, Davvaz
and Alp, introduce the notion of crossed polysquare.
In addition to the inner automorphism map 𝜏 ∶ 𝑁 → 𝐴𝑢𝑡(𝑁); other standard examples of crossed modules are:
- The inclusion of a normal subgroup 𝑁 → 𝐺;
- A 𝐺-module𝑀 with the zero homomorphism𝑀 → 𝐺
- And any epimorphism 𝐸 → 𝐺 with central kernel.
In [18] Dehghanizadeh and Davvaz studied the reperesentations and characters of CaT1−groups and crossed modules.
In this paper we study the representation of crossed polymoduls.

2. polygroups and representation of polygroups

A polygroup is a completely regular, reversible in itself multigroup. According [12], a polygroup is a multi-valued
systemℳ =< 𝑃, ∘, 𝑒, −1 >, with 𝑒 ∈ 𝑃, −1 ∶ 𝑃 ⟶ 𝑃, ∘ ∶ 𝑃 × 𝑃 ⟶ 𝒫∗(𝑃), where the following axioms hold for all
𝑥, 𝑦, 𝑧 in 𝑃:

1. (𝑥 ∘ 𝑦) ∘ 𝑧 = 𝑥 ∘ (𝑦 ∘ 𝑧)
2. 𝑒 ∘ 𝑥 = 𝑥 ∘ 𝑒 = 𝑥
3. 𝑥 ∈ 𝑦 ∘ 𝑧 implies 𝑦 ∈ 𝑥 ∘ 𝑧−1 and 𝑧 ∈ 𝑦−1 ∘ 𝑥.

In this definition, 𝒫∗(𝑃) is the set of all the non-empty subsets of 𝑃, and if 𝑥 ∈ 𝑃 and 𝐴, 𝐵 are non-empty subsets of
𝑃, then 𝐴 ∘ 𝐵 = ⋃𝑎∈𝐴,𝑏∈𝐵 𝑎 ∘ 𝑏, 𝑥 ∘ 𝐵 = {𝑥} ∘ 𝐵 and 𝐴 ∘ 𝑥 = 𝐴 ∘ {𝑥}.
The following elementary facts about polygroups follow easily from the axioms: 𝑒 ∈ 𝑥 ∘ 𝑥−1 ∩ 𝑥−1 ∘ 𝑥, 𝑒−1 = 𝑒 and
(𝑥−1)−1 = 𝑥.
If 𝐾 is a non-empty subset of 𝑃, then 𝐾 is called a subpolygroup of 𝑃 if 𝑒 ∈ 𝐾 and < 𝐾, ∘, 𝑒, −1 > is a polygroup.
The subpolygroup 𝑁 of 𝑃 is said to be normal in 𝑃 if 𝑎−1 ∘ 𝑁 ∘ 𝑎 ⊆ 𝑁, for every 𝑎 ∈ 𝑃. There are several kinds
of homomorphisms between polygroups[13]. In this paper, we apply only the notion of strong homomorphisms.
Let < 𝑃, ∘, 𝑒, −1 > and < 𝑃′, ∗, 𝑒, −1 > be two polygroups. A mapping 𝜙 from 𝑃 into 𝑃′ is said to be a strong
homomorphism if 𝜙(𝑒) = 𝑒 and for all 𝑎, 𝑏 ∈ 𝑃, 𝜙(𝑎 ∘ 𝑏) = 𝜙(𝑎) ∗ 𝜙(𝑏) for all 𝑎, 𝑏 ∈ 𝑃. A strong homomorphism
𝜙 is said to be an isomorphism if 𝜙 is one to one and onto.

Definition 2.1. Let 𝒫 =< 𝑃, ∘, 𝑒,−1> be a polygroup and Ω be a non-empty set. A map 𝛼 ∶ 𝑃 × Ω ⟶ 𝒫∗(Ω), where
𝛼(𝑝, 𝜔) ∶=𝑝 𝜔 is called a (left) polygroupaction on Ω if the following axioms hold:

1. 𝑒𝜔 = 𝜔,
2. ℎ(𝑝𝜔) =ℎ∘𝑝 𝜔, where 𝑝𝐴 =ራ

𝑎∈𝐴

𝑝𝑎 and 𝐵𝜔 =ራ
𝑏∈𝐵

𝑏𝜔 for all 𝐴 ⊆ Ω and 𝐵 ⊆ 𝑃,

3. ራ
𝜔∈Ω

𝑝𝜔 = Ω,

4. for all 𝑝 ∈ 𝑃, 𝑎 ∈ 𝑝𝑏 ⇒ 𝑏 ∈ 𝑝−1𝑎.

Example 2.2. Every polygroup P has its trivial subpolygroup 1 consisting of just the identity element of P.
This subpolygroup is always a normal subpolygroups. Thereforewe have crossed polymodule (1, 𝑃) = (1, 𝑃, 𝑐1, 𝑖𝑑𝑐 ∣1
).

Example 2.3. Every polygroup P contains the whole polygroup P as a normal subpolygroup. Therefore, we have
crossed polymodule (𝐺, 𝐺) = (𝐺, 𝐺, 𝑐, 𝑖𝑑𝐺).

Definition 2.4. A hyperring in the general sense is the largest class of multivalued systems that satisfies the ring-like
axioms.
(𝑅,+, .) is a hyperring if (𝑅,+) is a hypergroup, is associative hyper operation and the distributive laws

𝑥.(𝑦 + 𝑧) = 𝑥.𝑦 + 𝑥.𝑧
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(𝑥 + 𝑦).𝑧 = 𝑥.𝑧 + 𝑦.𝑧
are satisfied for every 𝑥, 𝑦, 𝑧 ∈ 𝑅.
(𝑅,+, .) is called a semihyperring if (+, .) are associative hyperoperations, where . is distributive with respect to +.

Definition 2.5. [13] A hypermatrix is a matrix with entries from a semihyperring. The hyperproduct of two hyper-
matrices (𝑎𝑖𝑗) , (𝑏𝑖𝑗) which are of type𝑚 × 𝑛 and 𝑛 × 𝑟 respectively, is defined in the usual manner

(𝑎𝑖𝑗)(𝑏𝑖𝑗) = ቐ(𝑐𝑖𝑗) ∣ 𝑐𝑖𝑗 ∈
𝑛


𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗ቑ

Definition 2.6. [13] If 𝑃 =< 𝑃, ∘, 𝑒, −1 > be a polygroup, and 𝑅 a semihyperring, with identity and 𝑀𝑅 = {(𝑎𝑖𝑗) ∣
𝑎𝑖𝑗 ∈ 𝑅}, then a map 𝑇 ∶ 𝑃 → 𝑀𝑅 is called a representation if
(1) 𝑇(𝑥1 ∘ 𝑥2) = {𝑇(𝑥) ∣ 𝑥 ∈ 𝑥1 ∘ 𝑥2} = 𝑇(𝑥1)𝑇(𝑥2) for all 𝑥1, 𝑥2 ∈ 𝑃.
(2) T(e)=I, where I is the identity matrix. If instead of the first condition, we have the condition 𝑇(𝑥1 ∘ 𝑥2) ⊆
𝑇(𝑥1)𝑇(𝑥2) for all 𝑥1, 𝑥2 ∈ 𝑃, then 𝑇 is called an inclusion representation.

Example 2.7. Suppose that 𝑃 = {𝑒, 𝑎, 𝑏} is a set, and 𝑃 =< 𝑃, ∘, 𝑒, −1 > by the multiplication table

∘ 𝑒 𝑎 𝑏
𝑒 𝑒 𝑎 b
𝑎 𝑎 {𝑒, 𝑏} {𝑎, 𝑏}
𝑏 𝑏 {𝑎, 𝑏} {𝑒, 𝑎}

is a polygroup. Then in 𝑍3, we define a hyperoperation⊕ as follows.
1 ⊕ 1 = {0, 2}, 2 ⊕ 2 = {0, 1}, 1 ⊕ 2 = 2⊕ 1 = {1, 2} and⊕ = + be the usual sum for the other cases, and let
⊙ be the usual product in 𝑍3.
Now (Ω3,⊕,⊙) is a semihyperring and the map 𝑇 ∶ 𝑃 → 𝑀𝑅 with

𝑇(𝑒) = ቌ
1 0 0
0 1 0
0 0 1

ቍ , 𝑇(𝑎) = ቌ
1 0 1
0 1 0
0 0 1

ቍ , 𝑇(𝑏) = ቌ
1 0 2
0 1 0
0 0 1

ቍ

is a representation of the polygroup 𝑃.
Generally, if we choose 𝑖0, 𝑗0, 𝑖0 ≠ 𝑗0, 0 ≤ 𝑖0, 𝑗0 ≤ 𝑛 and then put 𝑇(𝑒) = 𝐼𝑛, 𝑇(𝑎) = 𝐴𝑛 and 𝑇(𝑏) = 𝐵𝑛, where

𝐴𝑛 = (𝑎𝑖𝑗) 𝑤𝑖𝑡ℎ ൞
𝑎𝑖𝑖 = 1 𝑓𝑜𝑟 𝑖 = 1, 2, ..., 𝑛
𝑎𝑖0𝑗0 = 1
𝑎𝑖𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐵𝑛 = (𝑏𝑖𝑗) 𝑤𝑖𝑡ℎ ൝𝑏𝑖𝑗 = 𝑎𝑖𝑗 𝑖𝑓 𝑖 ≠ 𝑖0 , 𝑗 ≠ 𝑗0
𝑏𝑖0𝑗0 = 2

then, 𝑇 is a representation of 𝑃.

3. Representation of crossed polymodules

In section we introduced the concept of representation of crossed polymodules. One should note that we have in-
deed to a definition of the symmetric crossed polymodule. Concept of symmetric crossed polymodule studied by
Dehghanizadeh and according, we have:
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Theorem 3.1. Suppose 𝜒 = (𝑀𝑜𝑟(𝜒), 𝑂𝑏(𝜒), (𝑠, 𝑖, 𝑡), •) be a category of polygroups. Also, consider the set

𝑄𝜒 = 𝐴𝑢𝑡(𝜒) = {𝐹 ∣ 𝐹 ∶ 𝜒 ⟶ 𝜒, 𝐹 𝑖𝑠 𝑎𝑛 𝑎𝑢𝑡𝑜𝑝𝑙𝑜𝑦𝑓𝑢𝑛𝑐𝑡𝑜𝑟}

together with the composition of functors (*), and 𝑃𝑄𝜒 = 𝑄𝜒 ∪ {𝐻} such that 𝐻 ∉ 𝑄𝜒 . Then 𝑃𝑄𝜒 is polygroup by a the
appropriate hyperoperations.

Theorem 3.2. Suppose 𝜒 = (𝑀𝑜𝑟(𝜒), 𝑂𝑏(𝜒), (𝑠, 𝑖, 𝑡), •) be a category of polygroups. Consider the set

𝑃𝜒 = {(𝑖𝑑𝜒
𝑎⟶ 𝐹) ∶ 𝐹 ∈ 𝐴𝑢𝑡(𝜒) 𝑎𝑛𝑑 𝑎 𝑖𝑠 𝑎𝑛 𝑖𝑠𝑜𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛}

and on 𝑃𝜒, we define a multiplication by

(𝑖𝑑𝜒
𝑎⟶
∼
𝐹) ∗ (𝑖𝑑𝜒

𝑏⟶
∼
𝐺) ∶= (𝑖𝑑𝜒

𝑎≠𝑏⟶
∼
𝐹𝐺) = 𝑎 • (𝐹𝑏) = 𝑏 • (𝑎𝐺),

then 𝑃𝑃𝜒 = 𝑃𝜒 ∪ {𝐻} such that 𝐻 ∉ 𝑃𝜒 , by a the appropriate hyperoperation is polygroup.

Theorem 3.3. Suppose 𝜒 = (𝑀𝑜𝑟(𝜒), 𝑂𝑏(𝜒), (𝑠, 𝑖, 𝑡), •) be a category of polygroups, and suppose given functors

𝐹, 𝐺 ∶ 𝜒 ⟶ 𝜒. Let given transformations (𝑖𝑑𝜒
𝑎⟶ 𝐹) and (𝑖𝑑𝜒

𝑏⟶ 𝐹) such that 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑖𝑑𝑖𝑑𝜒 holds, then
(1) We have 𝐹, 𝐺 ∈ 𝐴𝑢𝑡(𝜒), 𝑖.𝑒. the functors 𝐹 and 𝐺 are autofunctors, and we have 𝐺 = 𝐹−1.
(2) The transformations a and b are isotransformations.

Theorem 3.4. Let 𝜒 = (𝑀𝑜𝑟(𝜒), 𝑂𝑏(𝜒), (𝑠, 𝑖, 𝑡), •) be a category of polygroups, and 𝑉 = (𝑃, 𝑄, 𝛼, 𝑓) be a crossed
polymodule. Also 𝑄𝜒 = 𝐴𝑢𝑡(𝜒)

𝑃𝜒 = {(𝑖𝑑𝜒
𝑎⟶ 𝐹) ∣ 𝐹 ∈ 𝐴𝑢𝑡(𝜒) 𝑎𝑛𝑑 𝑎 𝑖𝑠 𝑎𝑛 𝑖𝑠𝑜𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛}.

Then we have a polyaction of 𝑄𝜒 on 𝑃𝜒 , given by the polygroup morphism

𝛼𝜒 ∶ 𝑄𝜒 ⟶ 𝐴𝑢𝑡(𝑃𝜒)

𝑄 → (𝑖𝑑𝜒
𝑎⟶
∼
𝐹) → (𝑖𝑑𝜒

𝑄−1𝑎𝑄−−−−−→
∼

𝑄−1𝐹𝑄)

and a polygroup morphism
𝑓𝜒 ∶ 𝑃𝜒 ⟶𝑄𝜒

(𝑖𝑑𝜒
𝑎⟶
∼
𝐹) → 𝐹.

Then (𝑃𝜒 , 𝑄𝜒 , 𝛼𝜒 , 𝑓𝜒) is a crossed polymodule, (Symmetric Crossed Polymodule on 𝜒,) and we write

𝑆𝜒 ∶= (𝑃𝜒 , 𝑄𝜒 , 𝛼𝜒 , 𝑓𝜒).

Also we write, for 𝑄 ∈ 𝑄𝜒 and (𝑖𝑑𝜒
𝑎⟶
∼
𝐹) ∈ 𝑃𝜒 ,

𝑎𝑄 = (𝑎)(𝑄𝛼𝜒) = 𝑄−1𝑎𝑄 ∶ 𝑖𝑑𝜒 → 𝐹𝑄 = 𝑄−1𝐹𝑄

for the polyaction of 𝑄 on 𝑎.

Definition 3.5. (𝑃𝜒 , 𝑄𝜒 , 𝛼𝜒 , 𝑓𝜒) is a crossed polymodule, and called the Symmetric Crossed Polymodule on 𝜒, and we
write

𝑆𝜒 ∶= (𝑃𝜒 , 𝑄𝜒 , 𝛼𝜒 , 𝑓𝜒)
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Theorem 3.6. If 𝑆𝜒 = (𝑃𝜒 , 𝑄𝜒 , 𝛼𝜒 , 𝑓𝜒) be the symmetric crossed polymodule on 𝜒, then

𝑃𝑅𝜒 = {𝜒 𝐹⟶𝜒 ∣ 𝐹 𝑖𝑠 𝑎𝑛 𝑅 − 𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑢𝑡𝑜𝑓𝑢𝑛𝑐𝑡𝑜𝑟 } = { 𝐹 ∈ 𝑃𝜒 ∣ 𝐹 𝑖𝑠 𝑅 − 𝑙𝑖𝑛𝑒𝑎𝑟 } ≤ 𝑃𝜒

and
𝑄𝑅𝜒 = {𝑖𝑑𝜒

𝑎⟶𝜒 ∣ 𝐹 ∈ 𝑃𝑅𝜒 𝑎𝑛𝑑 𝑎 𝑖𝑠 𝑎𝑛 𝑖𝑠𝑜𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 } ≤ 𝑄𝜒
Theorem 3.7. If 𝑆𝜒 = (𝑃𝜒 , 𝑄𝜒 , 𝛼𝜒 , 𝑓𝜒) be the symmetric crossed polymodule on 𝜒, and

𝛼𝑅𝜒 ∶ 𝑄𝑅𝜒 ⟶ 𝑃𝑅𝜒
(𝑖𝑑𝜒

𝑎⟶
∼
𝐹) → 𝐹

𝑓𝑅𝜒 ∶ 𝑃𝑅𝜒 ⟶ 𝐴𝑢𝑡(𝑄𝑅𝜒 )

𝑃 ⟼ ቆ(𝑖𝑑𝜒
𝑎⟶
∼
𝐹) ⟶ (𝑖𝑑𝜒

𝑃−1𝑎𝑃⟶
∼

𝑃−1𝐹𝑃)ቇ

be maps, then we have a crossed subpolymodule

𝐴𝑢𝑡𝐶𝑃𝑀𝑅 (𝜒) = 𝐴𝑢𝑡𝑅(𝜒) = ൫𝑄𝑅𝜒 , 𝑃𝑅𝜒 , 𝑓𝑅𝜒 , 𝛼𝑅𝜒൯ ≤ 𝑆𝜒 .

The upper index CPM in 𝐴𝑢𝑡𝐶𝑃𝑀𝑅 (𝜒) should merely indicate the 𝐴𝑢𝑡𝐶𝑃𝑀𝑅 (𝜒) is a crossed polymodule, and we call
𝐴𝑢𝑡𝐶𝑃𝑀𝑅 (𝜒) the automorphism crossed polymodule of 𝜒.

Remark 3.8. Consider the 𝜒−polycrossed category 𝜒𝑃𝑐𝑎𝑡 = (𝑄 ⋉ 𝑃, 𝑄, (𝑠, 𝑖, 𝑡), •); the composition in the category
𝜒𝑃𝑐𝑎𝑡 is given by

(𝑞, 𝑝) • (𝑞𝑝𝛼, 𝑝′) = {(𝑞, 𝑦) | 𝑦 ∈ 𝑝𝑝′}

Definition 3.9. A crossed polymodule 𝑃 = (𝜆, Γ) ∶ 𝜒 → 𝐴𝑢𝑡𝐶𝑃𝑀𝑅 (𝜒) is called a representation of 𝜒 on𝑀𝑅, where𝑀𝑅
be an R-linear category.

4. Conclusion

In this paper, we introduced the representstion of crossed polymodules. Our results extended the classical results of
representation of crossed module to crossed polymodules.
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Abstract

The harmonic (resp. p-harmonic) maps played a substantial role also in the recent studies in
non-linear analysis, differential geometry, and geometric variational problems. The study of
harmonic maps, which are critical points of a particular energy functional, has a long tradition
onRiemannianmanifolds. They can be generalized to p-harmonicmaps, which have a parameter
𝑝 to finesse harmonic maps where 2 < 𝑝 < ∞, allowing for this framework to be adapted to
more intricate environments. Such maps have been central to many incidence - type problems,
stability properties, and energy minimization in geometric systems.
In this paper, we investigate p-harmonic maps in the context of Finsler geometry, a general
framework to study non-quadratic metrics. The Finsler manifolds have the richer geometric
structure and are well-suited for the study of higher-order variational problems. Stability and
Liouville-type theorems for p-harmonic maps in this more general setting. In this context, sta-
bility is studied as the behavior of the energy functional under small perturbations of the map. In
Riemannian geometry, classical results have shown that there are no (say, non-constant) stable
harmonic maps between certain compact manifolds or from Euclidean 𝑛-spheres 𝑛 ≥ 3 into
compact Riemannian manifold satisfying proper curvature conditions.
In this paper, based on this main results, we prove the stability of p-harmonic maps 𝜓 ∶ 𝕊𝑛 ⟶
(𝑁, 𝐹), where (𝑁, 𝐹) is a Finsler manifold with positive constant flag curvature. Moreover, if
𝐹 is a locally Minkowski manifold (a special class of Finsler manifolds with local flatness), the
stability of p-harmonic maps from the standard 𝑛 -dimensional unit sphere 𝕊𝑛 into (𝑁, 𝐹) is
retained. On the other hand, thinking about hypersurfaces 𝑀𝑛−1 in Riemannian manifolds 𝑁𝑛,
if 𝜓 ∶ (𝑀𝑛−1, 𝑔) → (𝑁𝑛, ℎ) is a totally geodesic isometric immersion and 𝑅𝑖𝑐𝑁 ≥ 0, then it is
shown that 𝜓 is p-unstable.
In this paper, we establish the existence and uniqueness of generalized solutions of p-harmonic
maps between Finsler manifolds underaction through explicit regularization and limits of sur-
jective maps results through long-wave approximation in explicit curvature conditions. The
implications of this may govern energy distributions in Finsler manifolds, calling into question
the ways in which we use energy densities for stability and minimization results.
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Abstract

P-harmonic maps are a generalization of harmonic maps that have been studied in differential
geometry and analysis and are based on the notion of the p-energy functional which is the p-th
power of the norm of the differential of a map. It allows the investigation of the maps in various
geometric and analytic settings, depending on the value of p, and has important applications
to geometric analysis, mathematical physics and nonlinear partial differential equations. For
instance, in physics, p-harmonic maps can describe minimal energy configurations and equilib-
rium states, showing features of elastic materials, fluid dynamic flows and general relativity.
They are also useful in applied sciences, including image processing, where they are involved
in denoising and image restoration.
We prove several main results concerning p-harmonic maps. To this end, we first show that
any p-harmonic map into a codomain which admits a conformal vector field with a positive
potential function is constant. Second, given a harmonic map 𝜓 from a compact Riemannian
manifold (𝑀𝑚, 𝑔) to a Riemannian manifold (𝑁𝑛, ℎ) with non-positive sectional curvature, we
prove that there exists a smooth metric �̄� conformally equivalent to 𝑔, �̄� = 𝑒2𝑓(𝑔), such that
𝜓 becomes p-harmonic. Third, we show that 𝜓 is p-harmonic if and only if 𝑀 is a minimal
submanifold in 𝑁 (a generalization of this definition when 𝑝 = 2 is an isometric embedding).
Finally, the p-harmonic maps from a Riemannian manifold of negative sectional curvature into
any Riemannian manifold admitting a nontrivial conformal vector field is shown to be constant.
In addition to these results, there are many more outstanding results in the field of p-harmonic
maps. In particular, there has been a large amount of regularity theory developed regarding
p-harmonic maps, which has produced important information regarding the smoothness and
singularity structures of solutions. Moreover, existence outcomes are obtained with respect to
different boundary conditions and typologies, which broaden their applicability. Substantial
work has also been done studying the interactions of p-harmonic maps with geometric flows
including the heat flow of p-energy functionals, leading to dynamic techniques for constructing
and studying such maps. Additionally, relations among p-harmonic maps and other variational
problems, such as quasiconformal mappings and elastic deformations, have also paved the way
for the interdisciplinary study. P-harmonic maps thus reflect a wide applicability and deep ele-
gance as a mathematical tool addressing intricate problems spanning both mathematics and the
applied sciences at large.
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Abstract

Theorems of Liouville-type are main tools in differential geometry and analysis of partial dif-
ferential equations as they reveal important rigidity phenomena or classify solutions subject to
certain geometric and analytic conditions. The present work is concerned with an important sub-
class of harmonic maps called exponential harmonic maps, which arise from the minimization
of an energy functional involving an exponential term and that can describe a variety of topics
from elasticity theory and liquid crystal modeling to generalized minimal surface theory.
We prove three main results which point out the subtle interplay between geometry and analysis
in this context. We begin with some rigidity results: We first prov that any exponential harmonic
map 𝜓 ∶ (𝑀, 𝑔) ⟶ (𝑁, ℎ) where (𝑀, 𝑔) is a complete Riemannian manifold and (𝑁, ℎ) is a
target manifold of non-positive sectional curvature is in fact constant. Second, we establish that
exponentially harmonic maps, other non-harmonic maps and weakly conformal maps𝜓 ∶ 𝕊2 ⟶
𝑁𝑛 are the maps with non-minimal immersions, which provide structural information about the
energy aspects of these maps. Finally, we obtain a conservation law for the exponential energy-
momentum tensor of exponentially harmonic maps, which bears an intrinsic geometric quality
and relates to their definition.
To obtain these results, wemake use of sophisticated apparatus like the Bochner formula, integral
estimates and various tools from geometric analysis. All together, this paper highlights the great
importance of Liouville-type theorems in understanding the qualitative behavior of exponential
harmonic maps, as well as their geometric and analytic foundations.

∗Talker
Email address: m.kazemi@ub.ac.ir (Seyed Mehdi Kazemi Torbaghan)



Gonbad Kavous University

The 5th National Congress on Mathematics and StatisticsThe 5th National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1403

The 5th National Congress on Mathematics and Statistics, TP–139, pp. 47–52

Uniform Topology on Rings of Countable Pointfree Functions

Mostafa Abedi

Esfarayen University of Technology, Esfarayen, North Khorasan, Iran.

Article Info

Keywords:
𝑢𝑐-topology
Countably pseudocompact
Countable pointfree functions
Tpological ring

2020 MSC:
06D22
54C40

Abstract

Letℛ𝐿 be the ring of continuous real-valued functions on a frame 𝐿, and letℛ𝑐𝐿 be its subring of
functions with countable images. We investigate ℛ𝑐𝐿 as a topological ring under 𝑢𝑐-topology.
A frame 𝐿 is called countably pseudocompact if every element of ℛ𝑐𝐿 is bounded. We show
that a frame 𝐿 is countably pseudocompact if and only if the set of units of ℛ𝑐𝐿 is open in the
𝑢𝑐-topology, which is equivalent to ℛ𝑐𝐿 begin a topological ring under the 𝑢𝑐-topology, and
also to it begin a topological vector space over ℚ in the 𝑢𝑐-topology.

1. Introduction

Let 𝐶(𝑋) be the ring of all real-valued continuous functions on a Tychonoff (completely regular and Hausdorff) topo-
logical space 𝑋 (see [6] for more details). We denote by 𝐶𝑐(𝑋) the subring of 𝐶(𝑋) consisting of those functions with
countable images (see [5] for more details). As noted in [7], for a function 𝑓 ∈ 𝐶𝑐(𝑋) and each positive real number
𝜖, we define the set 𝑈𝑐(𝑓, 𝜖) as follows:

𝑈𝑐(𝑓, 𝜖) = {𝑔 ∈ 𝐶𝑐(𝑋) ∶ |𝑔(𝑥) − 𝑓(𝑥)| ≤ 𝜖, for all 𝑥 ∈ 𝑋}.

The family {𝑈𝑐(𝑓, 𝜖) ∶ 𝑓 ∈ 𝐶𝑐(𝑋), 𝜖 ∈ ℝ+} forms a base for the neighborhood system of 𝑓, leading to the 𝑢𝑐-topology
on 𝐶𝑐(𝑋). The topological ring structure of 𝐶𝑐(𝑋) with respect to the 𝑢𝑐-topology is studied in [7].
A frame is a complete lattice 𝐿 in which the distributive law

𝑎 ∧ሧ𝑆 =ሧ
𝑠∈𝑆

𝑎 ∧ 𝑠.

holds for all 𝑎 ∈ 𝐿 and 𝑆 ⊆ 𝐿. We write 0 and 1 for the bottom and the top element of 𝐿, respectiveliy. A frame
homomorphism is a lattice homomorphism ℎ ∶ 𝐿 → 𝑀 that preserves the bottom element, top element, binary meets,
and arbitrary Joins.
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A lattice-ordered ring is a ring 𝐴 with a lattice structure satisfying

𝑎 + (𝑏 ∨ 𝑐) = (𝑎 + 𝑏) ∨ (𝑎 + 𝑐) or, equivalently, 𝑎 + (𝑏 ∧ 𝑐) = (𝑎 + 𝑏) ∧ (𝑎 + 𝑐)

for all 𝑎, 𝑏, 𝑐 ∈ 𝐴. Additionally, it holds that 𝑎𝑏 ≥ 0 whenever 𝑎 ≥ 0, 𝑏 ≥ 0. Immediate consequences include:

−(𝑏 ∨ 𝑐) = (−𝑎) ∧ (−𝑏), −(𝑏 ∧ 𝑐) = (−𝑎) ∨ (−𝑏), and 𝑎 ≤ 𝑏 ⟹ −𝑏 ≤ −𝑎.

Defining |𝑎| = 𝑎 ∨ (−𝑎), we get:

|𝑎| ≥ 0, |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|, and |𝑎𝑏| ≤ |𝑎||𝑏|.

Now, an 𝑓-ring is a lattice-ordered ring 𝐴 that satisfies |𝑎𝑏| = |𝑎||𝑏| for all 𝑎, 𝑏 ∈ 𝐴.
Recall [4] that the frame ℒ(ℝ) of reals is constructed using ordered pairs (𝑝, 𝑞) of rational numbers as generators and
the following relations:
(R1) (𝑝, 𝑞) ∧ (𝑟, 𝑠) = (𝑝 ∨ 𝑟, 𝑞 ∧ 𝑠)
(R2) (𝑝, 𝑞) ∨ (𝑟, 𝑠) = (𝑝, 𝑠) whenever 𝑝 ≤ 𝑟 < 𝑞 ≤ 𝑠
(R3) (𝑝, 𝑞) = ⋁{(𝑟, 𝑠) ∶ 𝑝 < 𝑟 < 𝑠 < 𝑞}
(R4) 1 = ⋁{(𝑝, 𝑞) ∶ 𝑝, 𝑞 ∈ ℚ}.
For any frame 𝐿, the ring ℛ𝐿 consists of frame homomorphisms ℒ(ℝ) → 𝐿. It is a reduced 𝑓-ring, meaning that it has
no nonzero nilpotent element. Refer to [3] and [4] for properties of the ring ℛ𝐿.
For each continuous operation ⋄ ∶ ℚ2 → ℚ (including+, ., ∧, ∨), there is a corresponding operation onℛ𝐿, also denoted
by ⋄, defined as follows:

𝛼 ⋄ 𝛽(𝑝, 𝑞) =ሧ{𝛼(𝑟, 𝑠) ∧ 𝛽(𝑢, 𝑤) ∶ ⟨𝑟, 𝑠⟩ ⋄ ⟨𝑢, 𝑤⟩ ≤ ⟨𝑝, 𝑞⟩},

where
⟨𝑝, 𝑞⟩ = {𝑡 ∈ ℚ ∶ 𝑝 < 𝑡 < 𝑞} and ⟨𝑟, 𝑠⟩ ⋄ ⟨𝑢, 𝑤⟩ = {𝑥 ⋄ 𝑦 ∶ 𝑥 ∈ ⟨𝑟, 𝑠⟩, 𝑦 ∈ ⟨𝑢, 𝑤⟩}.

For any 𝛼 ∈ ℛ𝐿, The map −𝛼 is define by (−𝛼)(𝑝, 𝑞) = 𝛼(−𝑞,−𝑝), where 𝑝, 𝑞 ∈ ℚ. The constant frame map
r ∈ ℛ𝐿, where 𝑟 ∈ ℝ, is given by

r(𝑝, 𝑞) = ൝1 if 𝑝 < 𝑟 < 𝑞
0 otherwise.

The identity element and the zero element of ℛ𝐿 are denoted by 1 and 0, respectively.
The cozero map coz ∶ ℛ𝐿 → 𝐿 is given by coz(𝛼) = 𝛼((−, 0) ∨ (0, −)), where

(0, −) =ሧ{(0, 𝑞)) ∶ 0 < 𝑞 ∈ ℚ}, and (−, 0) =ሧ{(𝑝, 0)) ∶ 0 > 𝑝 ∈ ℚ}.

For properties of the cozero map, refer to [3] and [4].
For any 𝛼 ∈ ℛ𝐿, let 𝑅𝛼 ∶= {𝑟 ∈ ℝ ∶ coz(𝛼 − r) = 𝛼(−, 𝑟) ∨ 𝛼(𝑟, −) ≠ 1} as defined [9], where

(−, 𝑟) ∶=ሧ
𝑞∈ℚ
𝑞<𝑟

(−, 𝑞) and (𝑟, −) ∶= ሧ
𝑝∈ℚ
𝑟<𝑝

(𝑝.−).

Then 𝑅𝛼 is the extension to arbitrary ℛ𝐿 of the familiar correspondence between functions on spaces and their images
(see [1, Irtroduction]). An element 𝛼 in the ring ℛ𝐿 has a countable pointfree image if 𝑅𝛼 is countable. We denote
the subring consisting of those functions with countable pointfree images by ℛ𝑐𝐿. This ring, viewed as the pointfree
topology counterpart of 𝐶𝑐(𝑋), is introduced and analyzed in [9], where the authors prove that ℛ𝑐(𝔒𝑋) ≅ 𝐶𝑐(𝑋) for
any space 𝑋. The frame of open subsets of 𝑋 is denoted by 𝔒𝑋.
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2. The uniform topology on ℛ𝑐𝐿

Let us remind the reader that for a set 𝑋, if each 𝑥 ∈ 𝑋 has an associated collection 𝒜𝑥 of subsets satisfying the
following conditions:

(i) If 𝑈 ∈ 𝒜𝑥, then 𝑥 ∈ 𝑈.
(ii) If 𝑈1, 𝑈2 ∈ 𝒜𝑥, then there exists 𝑈3 ∈ 𝒜𝑥 such that 𝑈3 ⊆ 𝑈1 ∩ 𝑈2.
(iii) If 𝑈 ∈ 𝒜𝑥, there is some 𝑉 ∈ 𝒜𝑥 such that 𝑦 ∈ 𝑉, then there is some𝑊 ∈ 𝒜𝑦 with𝑊 ⊆ 𝑈.
Then a topology can be defined on 𝑋 such that𝒜𝑥 is a base neighborhood at each point 𝑥 ∈ 𝑋. Additionally, a subset
𝐺 ⊆ 𝑋 is open if it contains a basic neighborhood for every point in 𝐺.
The uniform topology onℛ𝐿 (briefly, 𝑢-topology) is defined in [4]. Similarly, we define the uniform topology onℛ𝑐𝐿
by assigning basic neighborhoods to points in ℛ𝑐𝐿, using its structure as an 𝑓-ring.
Let 𝛼 ∈ ℛ𝑐𝐿. For each 𝑟 ∈ ℚ+, let

𝐵𝑐(𝛼, 𝑟) = {𝜑 ∈ ℛ𝑐𝐿 ∶ |𝜑 − 𝛼| ≤ r}
We verify that this is a valid assignment of basic neighborhoods. Let us first observe that for any 𝛼, 𝛽 ∈ ℛ𝑐𝐿, we have
|𝛼 + 𝛽| ≤ |𝛼| + |𝛽| (see [4]).
(i) Clearly, 𝛼 ∈ 𝐵𝑐(𝛼, 𝑟) for any 𝛼 ∈ ℛ𝑐𝐿) and 𝑟 ∈ ℚ+.
(ii) For any 𝑟, 𝑠 ∈ ℚ+, we have 𝐵𝑐(𝛼,

𝑟+𝑠
2 ) ⊆ 𝐵𝑐(𝛼, 𝑟) ∩ 𝐵𝑐(𝛼, 𝑠).

(iii) Consider 𝐵𝑐(𝛼, 𝑟), and let 𝐺 = 𝐵𝑐(𝛼,
𝑟
2). Now if 𝛿 ∈ 𝐺 and 𝜑 ∈ 𝐵𝑐(𝛿,

𝑟
2), then we have

|𝜑 − 𝛼| = |(𝜑 − 𝛿) + (𝛿 − 𝛼)| ≤ |𝜑 − 𝛿| + |𝛿 − 𝛼| ≤ r
2 +

r
2 = r.

Thus, 𝐵𝑐(𝛿,
𝑟
2) ⊆ 𝐺.

The following proposition is a direct consequence of the preceding discussion:

Proposition 2.1. Let 𝐿 be a frame. Then the family {𝐵𝑐(𝛼, 𝑟) ∶ 𝑟 ∈ ℚ+} is a base neighborhood at 𝛼, for each
𝛼 ∈ ℛ𝑐𝐿.

Now, similar to the classical case for 𝐶𝑐(𝑋), we present the following definition.

Definition 2.2. Let 𝐿 be a frame. The topology defined in the previous proposition is called the 𝑢𝑐-topology on ℛ𝑐𝐿.

An element 𝛼 of ℛ𝐿 is bounded if there exist 𝑝 ∈ ℚ+ such that 𝛼(−𝑝, 𝑝) = 1. The subring of bounded elements
in ℛ𝐿 is denoted by ℛ∗𝐿. Similarly, the subring of bounded elements in ℛ𝑐𝐿 is denoted by ℛ∗

𝑐𝐿. We note that
ℛ∗
𝑐𝐿 = ℛ𝑐𝐿 ∩ ℛ∗𝐿.

Following the approach from the discussion before proposition 2.1, We can similarly define the uniform topology on
ℛ∗
𝑐𝐿. Let 𝜓 ∈ ℛ∗

𝑐𝐿. For each 𝑟 ∈ ℚ+, let

𝐵∗𝑐 (𝜓, 𝑟) = {𝜑 ∈ ℛ∗
𝑐𝐿 ∶ |𝜑 − 𝜓| ≤ r}.

As in the earlier discussion before Proposition 2.1, it is straightforward to confirm that this assignment of basic
neighborhoods is valid. Therefore, there is a unique topology on ℛ∗

𝑐𝐿 for which for any 𝜓 ∈ ℛ∗
𝑐𝐿, the family

{𝐵∗𝑐 (𝜓, 𝑟) ∶ 𝑟 ∈ ℚ+} forms a base for the neighborhood system of 𝜓. This topology is called the 𝑢∗𝑐-topology on
ℛ∗
𝑐𝐿.

Proposition 3.3.1 in [3] states that an element 𝛼 has inverse in ℛ𝐿 if and only if coz(𝛼) = 1. Additionally, Lemma
8.1 in [9] indicates that if 𝛼 has inverse in ℛ𝐿 and 𝛼 ∈ ℛ𝑐𝐿, then 𝛼−1 ∈ ℛ𝑐𝐿. The following lemma directly follows
from this Proposition and this Lemma.

Lemma 2.3. Let 𝐿 be a frame. Then an element 𝛼 has inverse in ℛ𝑐𝐿 if and only if coz(𝛼) = 1.
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The set of all units ℛ𝑐𝐿 is denoted by Inv(ℛ𝑐𝐿). Therefore, we have

Inv(ℛ𝑐𝐿) = {𝛼 ∈ ℛ𝑐𝐿 ∶ coz(𝛼) = 1}.

We present a lemma analogous to Lemma 3.3 in [2]. Based on the proof of Proposition 3.3.1 in [3], it is easy to verify
the equivalence of the first two parts. Additionally, it is straightforward to demonstrate that the second and third parts
are also equivalent using the facts below.

1. 𝛼 ≤ 𝛽 if and only if 𝛼(𝑝,−) ≤ 𝛽(𝑝,−) for all 𝑝 ∈ ℚ (see [4, Lemma 4]), and
2. (𝛼 ∨ 𝛽)(𝑝, −) = 𝛼(𝑝,−) ∨ 𝛽(𝑟, −) for all 𝑝 ∈ ℚ (see [8, Ch. XIV, 5.3.3]).

Lemma 2.4. Let 𝐿 be a frame. The following statements are equivalent for an element 𝛼 ∈ ℛ∗
𝑐𝐿.

1. The element 𝛼 has inverse in ℛ∗
𝑐𝐿.

2. There exists 𝑟 ∈ ℚ+ such that 𝛼(−,−𝑟) ∨ 𝛼(𝑟, −) = 1.
3. There exists 𝑟 ∈ ℚ+ such that r ≤ |𝛼|.

The set of all units ℛ∗
𝑐𝐿 is denoted by Inv(ℛ∗

𝑐𝐿). Therefore, we have

Inv(ℛ∗
𝑐𝐿) = {𝛼 ∈ ℛ∗

𝑐𝐿 ∶ 𝛼(−,−𝑟) ∨ 𝛼(𝑟, −) = 1 for some 𝑟 ∈ ℚ}.

In the proof of the next theorem, we use the fact that ||𝑥| − |𝑦|| ≤ |𝑥 − 𝑦| holds in a totally ordered ring, and, thus in
every 𝑓-ring.

Theorem 2.5. Let 𝐿 be a frame. Then Inv(ℛ∗
𝑐𝐿) is an open subset of ℛ∗

𝑐𝐿 in the 𝑢∗𝑐-topology.

Proof. Let 𝛼 ∈ Inv(ℛ∗
𝑐𝐿). By Lemma 2.4, there exists 𝑟 ∈ ℚ+ such that r ≤ |𝛼|. We will show that 𝐵∗𝑐 (𝛼,

𝑟
2) ⊆

Inv(ℛ∗
𝑐𝐿). For 𝛽 ∈ 𝐵∗𝑐 (𝛼,

𝑟
2), by the discussion before theorem, it is easy to show that |𝛽| ≥ r

2
. Applying Lemma 2.4

again, we conclude that 𝛽 ∈ Inv(ℛ∗
𝑐𝐿). Therefor, we have 𝐵∗𝑐 (𝛼,

𝑟
2) ⊆ Inv(ℛ∗

𝑐𝐿), indicating that Inv(ℛ∗
𝑐𝐿) is an open

subset of ℛ∗
𝑐𝐿 .

The ring ℛ𝐿 is called a topological ring if it is endowed with a topology and the operations (𝛼, 𝛽) ↦ 𝛼 + 𝛽 and
(𝛼, 𝛽) ↦ 𝛼𝛽 are continuous. Let us remind the reader that an element 𝜑 of ℛ𝐿 is bounded if and only if there exist
𝑛 ∈ ℕ such that |𝜑| ≤ n (see [4]).

Theorem 2.6. Let 𝐿 be a frame. Then ℛ∗
𝑐𝐿 is a topological ring under the 𝑢∗𝑐-topology.

Proof. We need to demonstrate the continuity of the operations (𝛼, 𝛽) ↦ 𝛼 + 𝛽 and (𝛼, 𝛽) ↦ 𝛼𝛽 on ℛ∗
𝑐𝐿. To prove

that addition is continuous, let 𝛼 and 𝛽 be arbitrary elements ofℛ∗
𝑐𝐿, and let 𝑟 be an arbitrary positive rational number.

Consider the neighborhoods 𝐵∗𝑐 (𝛼,
𝑟
2) and 𝐵

∗
𝑐 (𝛽,

𝑟
2). The product 𝐵

∗
𝑐 (𝛼,

𝑟
2)×𝐵

∗
𝑐 (𝛽,

𝑟
2) forms a neighborhood of (𝛼, 𝛽)

in ℛ∗
𝑐𝐿 × ℛ∗

𝑐𝐿. For any (𝛼1, 𝛽1) ∈ 𝐵∗𝑐 (𝛼,
𝑟
2) × 𝐵∗𝑐 (𝛽,

𝑟
2), it is easy to show that 𝛼1 + 𝛽1 ∈ 𝐵∗𝑐 (𝛼 + 𝛽, 𝑟), proving that

addition is continuous at (𝛼, 𝛽) and, consequently, throughout ℛ∗
𝑐𝐿 × ℛ∗

𝑐𝐿.
Next, To show that multiplication is continuous, let 𝛼, 𝛽, and 𝑟 be as defined above. Since 𝛼, 𝛽 ∈ ℛ∗

𝑐𝐿, there exist
natural numbers 𝑚, 𝑛 such that |𝛼| ≤ n and |𝛽| ≤ m. Define 𝑝 = 𝑟

2(1+𝑚+𝑛+𝑟) , which is positive and satisfies 𝑝 ≤ 𝑟.
Consider the neighborhoods 𝐵∗𝑐 (𝛼, 𝑝) and 𝐵∗(𝛽, 𝑝). For any 𝛼1 ∈ 𝐵∗𝑐 (𝛼, 𝑝) and 𝛽1 ∈ 𝐵∗𝑐 (𝛽, 𝑝), it is straightforward to
check that |𝛼1𝛽1−𝛼𝛽| ≤ r. This shows that 𝛼1𝛽1 ∈ 𝐵∗𝑐 (𝛼𝛽, 𝑟), establishing the continuity of multiplication at (𝛼, 𝛽)
and throughout ℛ∗

𝑐𝐿 × ℛ∗
𝑐𝐿. Therefore, ℛ∗

𝑐𝐿 is a topological ring.

The following corollary directly follows from Theorem 2.5 Theorem 2.6.

Corollary 2.7. The following statements hold for a frame 𝐿.
1. The closure of any ideal of ℛ∗

𝑐𝐿 with 𝑢∗𝑐-topology is a ideal.
2. The closure of any proper ideal of ℛ∗

𝑐𝐿 with 𝑢∗𝑐-topology is a proper ideal. Thus, maximal ideals in ℛ∗
𝑐𝐿 are

closed.
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If ℛ𝐿 is considered a vector space (with scalar multiplication given as (𝑟, 𝛼) ↦ r𝛼 ), it qualifies as topological vector
space if equipped with a topology where the operations (𝛼, 𝛽) ↦ 𝛼+𝛽 and (𝑟, 𝛼) ↦ r𝛼 are continuous. The following
corollary directly follows from the preceding theorem.

Corollary 2.8. For any frame 𝐿, the ring ℛ∗
𝑐𝐿 with the 𝑢∗𝑐-topology is a topological vector space over ℚ.

The subring of bounded elements in 𝐶𝑐(𝑋) is denoted by 𝐶𝑐(𝑋)∗. A space 𝑋 is called countably pseudocompact
(briefly, 𝑐-pseudocompact) if 𝐶𝑐(𝑋) = 𝐶∗𝑐 (𝑋). Now, we present the next definition.

Definition 2.9. A frame 𝐿 is called countably pseudocompact (briefly, 𝑐-pseudocompact) if ℛ𝑐𝐿 = ℛ∗
𝑐𝐿.

For any space𝑋, 𝐶𝑐(𝑋) ≅ ℛ𝑐(𝔒(𝑋)) indicates that𝑋 is a 𝑐-pseudocompact space if and only𝔒(𝑋) is a 𝑐-pseudocompact
frame.
A frame 𝐿 is called pseudocompact ifℛ𝐿 = ℛ𝐿∗. In [2], the authors characterize pseudocompact frames 𝐿 through the
𝑢-topology on the ringsℛ𝐿. Similarly, we will characterize 𝑐-pseudocompact frames 𝐿 using the 𝑢𝑐-topology onℛ𝑐𝐿.
We begin by presenting the next lemma. First, note that for any 𝛼, 𝛽, and 𝛿 ofℛ𝑐𝐿, we have−(𝛼∨𝛽) = (−𝛼)∧(−𝛽)
and 𝛼 + (𝛽 ∧ 𝛿) = (𝛼 + 𝛽) ∧ (𝛼 + 𝛿) (see [4]).

Lemma 2.10. For any 𝛼 ∈ ℛ𝑐𝐿 and 𝑟 ∈ ℚ, the map (𝛼 − r) ∨ 0 belong to 𝐵𝑐(𝛼, 𝑟).

Proof. Since

|𝛼 − ((𝛼 − r) ∨ 0)| = |𝛼 + ((r− 𝛼) ∧ 0)| = |(�+ r−�) ∧ (�+ 0)| = |r ∧�| ≤ r,

we have ((𝛼 − r) ∨ 0) ∈ 𝐵𝑐(𝛼, 𝑟).

Proposition 11 in [4] state any 𝛼 ≥ 1 in ℛ𝐿 has an inverse. Next, if 𝛼 is an unbounded element in ℛ𝐿, then |𝛼| is also
unbounded since 𝛼 ≤ |𝛼|. Consequently, 1+ |𝛼| is an unbounded positive unit in ℛ𝐿.

Lemma 2.11. When 𝐿 is not a pseudocompact frame, the following statements are true.

1. Inv(ℛ𝑐𝐿) is not an open subset of ℛ𝑐𝐿 with respect to the 𝑢𝑐-topology.
2. ℛ𝑐𝐿 is not a topological ring under the 𝑢𝑐-topology.
3. ℛ𝑐𝐿 with the 𝑢𝑐-topology is not a topological vector space over ℚ.

Proof. (1). Since 𝐿 is not 𝑐-pseudocompact, there exists a positive unit 𝛼 ofℛ𝑐𝐿 that is not a unit inℛ∗
𝑐𝐿. By Lemmas

2.3 and 2.10, for any positive rational 𝑟, we have 𝛼(−,−𝑟) ∨ 𝛼(𝑟, −) ≠ 1 and ((𝛼 − r) ∨ 0) ∈ 𝐵𝑐(𝛼, 𝑟). It is apparent
that (𝛼 − r) ∨ 0 ∉ Inv(ℛ𝑐𝐿). Consequently, for 𝛼 ∈ Inv(ℛ𝑐𝐿), the neighborhood 𝐵𝑐(𝛼, 𝑟) ) cannot be a subset of
Inv(ℛ𝑐𝐿), indicating that Inv(ℛ𝑐𝐿) is not an open subset of ℛ𝑐𝐿.
(2) Since 𝐿 is not 𝑐-pseudocompact, there exists an unbounded element 𝛼 in ℛ𝑐𝐿. We will demonstrate that the
multiplication in ℛ𝑐𝐿 is not continuous at the point (0, 𝛼). Consider the neighborhood 𝐵𝑐(0, 1) = {𝛽 ∈ ℛ𝑐𝐿 ∶ |𝛽| =
|𝛽 − | ≤ 1}. We need to show that for any neighborhood 𝐵𝑐(0, 𝑟) × 𝐵𝑐(𝛼, 𝑠) of (0, 𝛼) in ℛ𝑐𝐿 × ℛ𝑐𝐿, it holds that
𝐵𝑐(0, 𝑟).𝐵𝑐(𝛼, 𝑠) ⊈ 𝐵𝑐(0, 1). Take (

r
2
, 𝛼) ∈ 𝐵𝑐(0, 𝑟) × 𝐵𝑐(𝛼, 𝑠). It is easy to prove that

r
2
𝛼 ∉ 𝐵𝑐(0, 1).

The following theorem is derived by combining Theorems 2.5 and 2.6 with the preceding Lemma.

Theorem 2.12. The following statements are equivalent for a frame 𝐿.
1. 𝐿 is 𝑐-pseudocompact.
2. The set Inv(ℛ𝑐𝐿) is open subset of ℛ𝑐𝐿 equipped with the 𝑢𝑐-topology.
3. The ring ℛ𝑐𝐿 equipped with the 𝑢𝑐-topology is a topological ring.
4. the ring ℛ𝑐𝐿 equipped with the 𝑢𝑐-topology is a topological vector space over ℚ.
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Abstract

A module is said to be uniserial if its submodules are linearly ordered by inclusion. Also an
𝑅-module 𝑀 is called weakly uniserial if for any two submodules 𝑁, 𝐾 of 𝑀, Hom𝑅(𝑁, 𝐾) or
Hom𝑅(𝐾,𝑁) contains an injective element. Here, we are interested in modules whose submod-
ules are comparable in coverage. In fact, a module is called epic-submodules if for any two its
submodules there is an epimorphism from one to the other. In this note, we first give some prop-
erties of these modules, then we show that if 𝑅 is a local right hereditary ring or is a principal
right ideal domain, then every projective right 𝑅-module is epic-submodules. Then we prove
that a ring 𝑅 is an Artinian simple ring if and only if every right 𝑅-module is epic-submodules.

1. Definitions, Examples and some properties of epic-submodules

In this note we use the following concepts;
A ring 𝑅 is local if 𝑅/rad(𝑅) is a division ring, where rad(𝑅) denotes the Jacobson radical of 𝑅. This is equivalent to
this ring has a unique maximal left (right) ideal. A ring 𝑅 is called right hereditary, if any right ideal of 𝑅 is projective
as a right 𝑅-module. Also a module is called hereditary if any its submodule is projective. A nonzero ring 𝑅 is said
to be simple ring if (0) and 𝑅 are the only ideals in 𝑅. This requires that for any nonzero element 𝑎 in 𝑅, the ideal
generated by 𝑎 is 𝑅. A ring 𝑅 is said to be right (left) Artinian if it satisfies ascending chain condition on right (left)
ideals. A semisimple module is called homogeneous semisimple if any two its simple submodules are isomorphic.
For any two 𝑅-modules𝑀 and𝑁 if there exists an 𝑅-epimorphism from𝑀 to𝑁, we write𝑀 ↠ 𝑁, otherwise we write
𝑀↠̸𝑁.
Example 1.1. (i) If𝑀 is epic-submodules, then every submodule of𝑀 is also epic-submodules.
(ii) ℤ and ℤ𝑝𝑛 are ℤ-epic-submodules, where 𝑝 is a prime number.
(iii) Any homogeneous semisimple module is epic-submodules; in particular any vector space is epic-submodules.
(iv) If 𝑅 is a commutative principal ideal domain, then for any index set 𝐼, it is well-known that any submodule of
⊕𝐼𝑅 is free. So⊕𝐼𝑅 is epic-submodules as an 𝑅-module.
(v) ℚ is not epic-submodules as a ℤ-module. For see this if we consider two submodules 𝐻𝑝 = { 𝑎

𝑝𝑘 | 𝑎 ∈ ℤ, 𝑘 ∈
ℕ ∪ {0}} and 𝐻𝑞 = { 𝑎

𝑞𝑘 | 𝑎 ∈ ℤ, 𝑘 ∈ ℕ ∪ {0}}, where 𝑝 and 𝑞 are two distinct prime numbers, then we can show that
Homℤ(𝐻𝑝, 𝐻𝑞) = Homℤ(𝐻𝑝, 𝐻𝑞) = 0.
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Proposition 1.2. A semisimple right 𝑅-module𝑀 is epic-submodules if and only if𝑀 is homogeneous semisimple.

Proof. Suppose that𝑀 is homogeneous semisimple. Then we may set𝑀 = ⊕𝐼𝑆, where 𝑆 is a simple right 𝑅-module.
Now if 𝑁 and 𝐾 are two submodules of𝑀, then 𝑁 ≅ ⊕𝐼1𝑆 and 𝐾 ≅ ⊕𝐼2𝑆, for some two index subsets 𝐼1 and 𝐼2 of 𝐼.
Without loss of generality we assume that |𝐼1| ≥ |𝐼2|. Then there exists an onto function 𝐼1 ↠ 𝐼2 and this implies that
𝑁 ↠ 𝐾. Therefore 𝑀 is epic-submodules. Conversely, suppose that 𝑀 = ⊕𝑖∈𝐼𝑆𝑖 is a semisimple epic-submodules.
Then for any 𝑖, 𝑗 ∈ 𝐼; 𝑆𝑖 ↠ 𝑆𝑗 or 𝑆𝑗 ↠ 𝑆𝑖. In any case 𝑆𝑖 ≅ 𝑆𝑗 and hence𝑀 is homogeneous semisimple.

Proposition 1.3. (i) A projective module over a principal right ideal domain is epic-submodules.
(ii) A projective module over a local right hereditary ring is epic-submodules.

An 𝑅-module 𝑀 is called weakly prime (semiprime) if for any nonzero submodule 𝑁 of 𝑀, Ann𝑅(𝑁) is a prime
(semiprime) ideal of 𝑅.

Proposition 1.4. Let𝑀 be a semiprime right 𝑅-module. If𝑀 is epic-submodules, then𝑀 is weakly prime.

Proof. Suppose that 𝑁 is a nonzero submodule of𝑀. We prove that Ann𝑅(𝑁) is prime. Let 𝐼𝐽 ⊆ Ann𝑅(𝑁) such that
𝐼 ⊈ Ann𝑅(𝑁) and 𝐽 ⊈ Ann𝑅(𝑁), where 𝐼 and 𝐽 are ideals of 𝑅. Then;

𝑁(𝐽𝐼)2 = 𝑁𝐽𝐼𝐽𝐼 ⊆ 𝑁𝐼𝐽𝐼 = 0 ⇒ (𝐽𝐼)2 ⊆ Ann𝑅(𝑁)
⇒ 𝐽𝐼 ⊆ Ann𝑅(𝑁)
⇒ 𝑁𝐽𝐼 = 0.

Now since𝑀 is epic-submodules, 𝑁𝐼 ↠ 𝑁𝐽 or 𝑁𝐽 ↠ 𝑁𝐼. If 𝑁𝐼 𝑓↠ 𝑁𝐽, then;

𝑁𝐽 = 𝑓(𝑁𝐼) ⇒ 𝑁𝐽2 = 𝑓(𝑁𝐼)𝐽 = 𝑓(𝑁𝐼𝐽) = 𝑓(0) = 0
⇒ 𝐽2 ⊆ Ann𝑅(𝑁).

Since Ann𝑅(𝑁) is semiprime, 𝐽 ⊆ Ann𝑅(𝑁). Similarly if 𝑁𝐽 ↠ 𝑁𝐼, we have 𝐼 ⊆ Ann(𝑁).

Proposition 1.5. Let 𝑅 be a ring such that all 2-generated right 𝑅-modules are epic-submodules. Then
(i) All simple right 𝑅-modules are isomorphic;
(ii) All ideals of 𝑅 are comparable.

If 𝑋 is a submodule of a right 𝑅-module 𝑀, then the ideal {𝑟 ∈ 𝑅 | 𝑋𝑟 = 0} is denoted by Ann𝑅(𝑋). An 𝑅-module
𝑀 is called coprime if𝑀 ≠ 0 and for any proper submodule 𝑁 of𝑀, Ann𝑅(𝑀) = Ann𝑅(

𝑀
𝑁 ). Also an ideal 𝑃 of 𝑅 is

called an attached prime of𝑀 if there exists a submodule 𝑁 of𝑀 such that 𝑁 is coprime and 𝑃 = Ann𝑅(𝑁). The set
of all attached primes of𝑀 is denoted by Att(𝑀) (see [3]).

Lemma 1.6. Let 𝑀 be a right 𝑅-module and 𝑁 ⊆ 𝑀 be a coprime as an 𝑅-module. If 𝑀 is epic-submodules, then
AnnR(N) is a maximal element of the set {Ann(𝐾) | 0 ≠ 𝐾 ⊆ 𝑀}.

Proof. Suppose that Ann𝑅(𝑁) ⊆ Ann𝑅(𝐾), where 0 ≠ 𝐾 ⊆ 𝑀. Since 𝑀 is epic-submodules, 𝑁 ↠ 𝐾 or 𝐾 ↠ 𝑁. If
𝑁 𝑓↠ 𝐾, then Ann𝑅(𝑁) ⊆ Ann𝑅(𝐾). On the other hand

𝑁
ker𝑓 ≅ 𝐾 and since 𝑁 is coprime, Ann𝑅(𝑁) = Ann𝑅(𝐾). If

𝐾 ↠ 𝑁, then Ann𝑅(𝐾) ⊆ Ann𝑅(𝑁) and by hypothesis, Ann𝑅(𝐾) = Ann𝑅(𝑁).

Proposition 1.7. If a right 𝑅-module 𝑀 is epic-submodules, then |Att(𝑀)| ≤ 1. In addition if 𝑅 satisfies in the
ascending chain condition on two-sided ideals, then |Att(𝑀)| = 1.

The converse of Proposition 1.7 is not true in general. For example ℚ is not epic-submodules, but Att(ℚ) = {(0)}.

Recall that a ring 𝑅 is normal if any idempotent of 𝑅 is central. Also a module is called hereditary if any its submodule
is projective.
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Proposition 1.8. (i) Any hereditary module over a local ring is epic-submodules.
(ii) Any normal von Neumann regular ring that is epic-submodules as a right (left) module over itself is a division ring.

Proposition 1.9. Let 𝑅 be a commutative epic-submodules ring and 𝐼𝑛 = {𝑎 ∈ 𝑅 | 𝑎𝑛 = 0}, for any 𝑛 ∈ ℕ. Then
(i) 𝐼𝑛 is an ideal of 𝑅 and (𝐼𝑛)𝑛 = 0, for any 𝑛 ∈ ℕ.
(ii) 𝑅

𝐼 is a commutative epic-submodules ring where 𝐼 ∈ {Nil(𝑅), 𝐼1, 𝐼2, …}.

Theorem 1.10. Let 𝑅 be a simple ring. The following statements are equivalent:
(𝑎) 𝑅 is left Artinian.
(𝑏) 𝑅 is (left) semisimple.
(𝑐) 𝑅 has a minimal left ideal.
(𝑑) 𝑅 ≅ 𝑀𝑛(𝐷), for some natural number 𝑛 and some division ring 𝐷.

Proof. [4, Theorem 3.10].

Theorem 1.11. A ring 𝑅 is an Artinian simple ring if and only if every right 𝑅-module is epic-submodules.

In this note we have used [1, 2, 5, 6].
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Abstract

In this paper, we investigate the concept of∩-exact sequenceswithin 𝑆-acts and 𝑆-homomorphisms,
focusing on their structural properties and applications. By introducing the notions of intersec-
tion large subacts and∩-epic homomorphisms, we establish fundamental definitions and provide
illustrative examples. Additionally, we examine the preservation of ∩-exactness under localiza-
tion and study the interplay between homomorphisms and intersection large subacts through
various propositions and theorems.

1. Introduction

The study of 𝑆-acts, which are algebraic structures defined over monoids, has garnered significant attention in recent
decades due to their wide-ranging applications in category theory, semigroup theory, and universal algebra. An 𝑆-act
is essentially a set equipped with a right action of a monoid 𝑆, providing a versatile framework for studying morphisms
and substructures. See [4].
In particular, the investigation of exact sequences in 𝑆-acts has been a central theme in understanding the relationships
between various subacts and homomorphisms. See, [1], [2], and [3].
Building upon earlier works that introduced notions like kernels, images, and exactness in modules and monoids,
researchers have developed specialized concepts, such as intersection large subacts and ∩-exact sequences, to extend
these ideas to the realm of 𝑆-acts. This paper aims to contribute to this growing body of research by analyzing ∩-
exact sequences in depth, presenting new results that generalize previous findings, and examining their properties
under localization and homomorphism mappings. The following section delves into the main definitions and results,
offering a clearer understanding of these algebraic constructs. Let 𝑆 be a monoid with zero. A non-empty set 𝐴 is
called right 𝑆-act if there exists an action 𝐴×𝑆 → 𝐴, (𝑎, 𝑠) ↦ 𝑎𝑠 such that 𝑎(𝑠𝑡) = (𝑎𝑠)𝑡 for any 𝑎 ∈ 𝐴 and 𝑠, 𝑡 ∈ 𝑆,
and 𝑎.1 = 𝑎 for all 𝑎 ∈ 𝐴. A subact 𝐵 of 𝑆-act 𝐴 is a subset 𝐵 of 𝐴 such that for any 𝑏 ∈ 𝐵 and 𝑠 ∈ 𝑆, 𝑏𝑠 ∈ 𝐵. A
subset 𝐼 of monoid 𝑆 is right ideal of 𝑆 if it is subact of 𝑆, as right 𝑆-act. An element 𝜃 ∈ 𝐴 is called fixed element of
𝐴 if for all 𝑠 ∈ 𝑆, 𝜃𝑠 = 𝜃. In this study, all 𝑆-acts are right 𝑆-act and have a unique fixed element. Recall that a subset
𝐵 of a right 𝑆-act 𝐴 is called intersection large if 𝐵 ∩ 𝐶 ≠ 𝜃𝐴, for each non-zero subact 𝐶 of 𝐴.
Clearly, if 𝐵 is intersection large subact of 𝐴, for any 𝜃𝐴 ≠ 𝑎 ∈ 𝐴, there exists 0𝑆 ≠ 𝑠 ∈ 𝑆 such that 𝜃𝐴 ≠ 𝑎𝑠 ∈ 𝐵.

Email address: Masoomeh.hezarjaribi@pnu.ac.ir (Masoomeh Hezarjaribi)



Masoomeh Hezarjaribi / The 5th National Congress on Mathematics and Statistics 57

Let 𝐴 and 𝐵 be two right 𝑆-acts. A function 𝑓 ∶ 𝐴 → 𝐵 is called 𝑆-homomorphism if for any 𝑎 ∈ 𝐴 and 𝑠 ∈ 𝑆,
𝑓(𝑎𝑠) = 𝑓(𝑎)𝑠.
Let 𝑇 be a multiplicatively closed subset of a monoid 𝑆, i.e 1 ∈ 𝑇 and 𝑎𝑏 ∈ 𝑇 for any 𝑎, 𝑏 ∈ 𝑆. Define 𝑇−1𝑆 to be a
monoid with elements 𝑠

𝑡 , 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, where 𝑠
𝑡 =

𝑠′
𝑡′ if there is an element 𝑢 ∈ 𝑇 such that 𝑢(𝑠𝑡′) = 𝑢(𝑠′𝑡). The

multiplication in 𝑇−1𝑆 is induced by 𝑠, ( 𝑠𝑡 )(
𝑠′
𝑡′ ) =

𝑠𝑠′
𝑡𝑡′ . The monoid 𝑇

−1𝑆 is called the localization of 𝑆 at 𝑇.
Let 𝐴 be an 𝑆-act. Then 𝑇−1𝐴, is the localization of 𝐴 at 𝑇 is the localization of 𝐴 at 𝑇 is the 𝑇−1𝑆-act with elements 𝑎

𝑡 ,

𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇, where 𝑎
𝑡 =

𝑎′
𝑡′ when 𝑢(𝑡

′𝑎) = 𝑢(𝑡𝑎′) for some 𝑢 ∈ 𝑇. The action of 𝑇−1𝑆 on 𝑇−1𝐴 is (𝑎𝑡 )(
𝑠
𝑡′ ) =

𝑎𝑠
𝑡𝑡′ .

2. Main Result

In this section, the study provides a comprehensive analysis of ∩-exact sequences in the context of 𝑆-acts. Through
detailed definitions and propositions, we establish the foundational properties of intersection large subacts and ∩-epic
homomorphisms. These results demonstrate how ∩-exactness is preserved under localization and how it relates to
homomorphism mappings.

Definition 2.1. A sequence of 𝑆-acts and 𝑆-homomorphisms

⋯ → 𝐴𝑖−1
𝑓𝑖−1→ 𝐴𝑖

𝑓𝑖→ 𝐴𝑖+1 → ⋯ ,

is said to be intersection large exact, briefly ∩-exact at 𝐴𝑖, if 𝐼𝑚 𝑓𝑖−1 is intersection large subact of ker 𝑓𝑖. It is called
∩-exact if it is ∩-exact at each 𝐴𝑖.

In particular, a sequence of 𝑆-acts and 𝑆-homomorphisms 0 → 𝐴1
𝑓1→ 𝐴2

𝑓2→ 𝐴3 → 0 is a short ∩-exact sequence if and
only if ker 𝑓1 = 0, 𝐼𝑚 𝑓1 is intersection large subact of ker 𝑓2, and 𝐼𝑚 𝑓2 is intersection large subact of 𝐴3.

Definition 2.2. An 𝑆-homomorphism 𝑓 ∶ 𝐴 → 𝐵 is called ∩-epic if 𝐼𝑚 𝑓 is ∩-large subact of 𝐵.

Example 2.3. The following sequence is ∩-exact sequence

0 → 4ℤ
𝑓
↪ ℤ 𝑔→ ℤ

2ℤ.

We recall that the set 𝐸(𝑆) is the set of idempotent elements of monoid 𝑆.

Lemma 2.4. Let 𝑆 be a commutative monoid and 𝑒 ∈ 𝐸(𝑆). If 0 → 𝐴1
𝑓1→ 𝐴2

𝑓2→ 𝐴3 → 0 is ∩-exact sequence, then
0 → 𝐴1𝑒

�̄�→ 𝐴2𝑒
�̄�→ 𝐴3𝑒 → 0 such that ̄𝑓 = 𝑓|𝐴1𝑒, �̄� = 𝑔|𝐴2𝑒, is ∩-exact sequence.

Proof. We show that the sequence 0 → 𝐴1𝑒
�̄�→ 𝐴2𝑒

�̄�→ 𝐴3𝑒 → 0 is ∩-exact. Clearly, ker ̄𝑓 = 0. We show that 𝐼𝑚 ̄𝑓 is
an intersection large subact of ker �̄�. Let 𝜃 ≠ 𝑎2𝑒 ∈ ker �̄�, for arbitrary element 𝑎2 ∈ 𝐴2. Obviously 𝜃 ≠ 𝑎2𝑒 ∈ ker �̄�.
Now, since 𝐼𝑚𝑓 is an intersection large subact of ker𝑔, we have 𝐼𝑚 𝑓 ∩ 𝑎2𝑒𝑆 ≠ 𝜃. So, there exists, 𝑎′2 ∈ 𝐴2 and
𝑡 ∈ 𝑆 such that 𝑓(𝑎′2) = 𝑎2𝑒𝑡.
Thus 𝑓(𝑎′2𝑒) = 𝑎2𝑒𝑡𝑒 = 𝑎2𝑒𝑒𝑡 = 𝑎2𝑒𝑡. Therefore, 𝐼𝑚 ̄𝑓 ∩ 𝑎2𝑒𝑆 ≠ 𝜃. Now, we show that 𝐼𝑚�̄� is an intersection
large subact of 𝐴3𝑒. For this, consider non-zero element 𝑎3𝑒 ∈ 𝐴3𝑒. Since 𝐼𝑚 𝑔 ∩𝑎3, there exists 𝑎2 ∈ 𝐴2 and 𝑡 ∈ 𝑆
such that 𝑔(𝑎2) = 𝑎3𝑒𝑡. So, �̄�(𝑎2𝑒) = 𝑎3𝑒𝑡𝑒 = 𝑎3𝑒𝑡 and the proof is complete.
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Proposition 2.5. Consider the following commutative digram of 𝑆-acts and 𝑆-homomorphisms

0 // 𝐴1
𝑓 //

𝛼
��

𝐴2
𝑓 //

𝛽
��

𝐴3 //

𝛾
��

0

0 // 𝐵1 𝑓′
// 𝐵2 𝑔′

// 𝐵3 // 0

where 𝛼, 𝛽 and 𝛾 are isomorphism.
Then the above sequence is ∩-exact if and only if the below sequence is ∩-exact.

Proposition 2.6. Consider the following commutative digram of 𝑆-acts and 𝑆-homomorphisms with ∩-exact sequence
in the rows.

0 // 𝐴1
𝑓 //

𝛼
��

𝐴2
𝑓 //

𝛽
��

𝐴3 //

𝛾
��

0

0 // 𝐵1 𝑓′
// 𝐵2 𝑔′

// 𝐵3 // 0

Then the sequence

0 → ker𝛼 𝑘→ ker𝛽 ℎ→ ker 𝛾,
which 𝑘(𝑥) = 𝑓(𝑥), for any 𝑥 ∈ ker𝛼, and ℎ(𝑦) = 𝑔(𝑦), for any 𝑦 ∈ ker𝛽
is also ∩-exact sequence.
Proof. We show that ker 𝑘 = 0 . For this, let 𝑥 ∈ ker 𝑘. So, we have 𝑓(𝑥) = 𝑘(𝑥) = 0. Then 𝑥 = 0, since ker 𝑓 = 0.
Now, we show that 𝐼𝑚 𝑘 is an intersection large subact of kerℎ. Consider non-zero element 𝑦 ∈ kerℎ. So, we
have ℎ(𝑦) = 𝑔(𝑦) = 0. Thus, 𝑦 ∈ ker𝑔 and so there exists element 𝑥 ∈ 𝐴1 and 𝑠 ∈ 𝑆, such that 𝑓(𝑥) = 𝑦𝑠.
Therefore 𝑘(𝑥) = 𝑓(𝑥) = 𝑦𝑠 and we have 𝐼𝑚𝑘 ∩ ⟨𝑦⟩ ≠ 𝜃. It is sufficient to show that 𝑥 ∈ ker𝛼. We have
𝑓′𝛼(𝑥) = 𝛽𝑓(𝑥) = 𝛽(𝑦𝑠) = 𝜃. So, 𝛼(𝑥) ∈ ker 𝑓′ = 𝜃 and we can conclude 𝑥 ∈ ker𝛼.

Proposition 2.7. Consider the ∩-exact sequence 0 → 𝐴1
𝑓1→ 𝐴2

𝑓2→ 𝐴3 → 0.
Then the sequence

0 → 𝑇−1𝐴1
𝑇−1𝑓1⟶ 𝑇−1𝐴2

𝑇−1𝑓2⟶ 𝑇−1𝐴3 → 0,
is also ∩-exact sequence.
Theorem 2.8. The sequence of 𝑆-acts and 𝑆-homomorphisms

0 → 𝐴1
𝑓1→ 𝐴2

𝑓2→ 𝐴3
is ∩-exact if and only if for any 𝑆-act 𝐵, the sequence

0 → 𝐻𝑜𝑚(𝐵, 𝐴1)
̄𝑓1→ 𝐻𝑜𝑚(𝐵, 𝐴2)

̄𝑓2→ 𝐻𝑜𝑚(𝐵, 𝐴3)

is ∩-exact for any 𝑆-act 𝐵.

Theorem 2.9. Let 𝑆 be cancellable monoid. Consider the ∩-exact sequence 0 → 𝐴1
𝑓1→ 𝐴2

𝑓2→ 𝐴3.
Then for any torsion free 𝑆-act 𝐵, the sequence

0 → 𝐻𝑜𝑚(𝐴3, 𝐵)
̄𝑓2→ 𝐻𝑜𝑚(𝐴2, 𝐵)

̄𝑓1→ 𝐻𝑜𝑚(𝐴1, 𝐵)

is ∩-exact.
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Abstract

An 𝑅-module 𝑀 is said to be weakly uniserial if its submodules are comparable regarding em-
bedding, i.e., for every pair 𝑁,𝐾 of submodules of 𝑀, 𝑁 ↪ 𝐾 or 𝐾 ↪ 𝑁, where 𝑁 ↪ 𝐾
means that 𝑁 is embedded in 𝐾. Here we introduce and study the dual of this concept. In fact
an 𝑅-module 𝑀 is said to be co-weakly uniserial if for every pair 𝑁,𝐾 of submodules of 𝑀,
𝑀/𝑁 ↠ 𝑀/𝐾 or 𝑀/𝐾 ↠ 𝑀/𝑁, where 𝑀/𝑁 ↠ 𝑀/𝐾 means that an epimorphism from 𝑀/𝑁
to 𝑀/𝐾. In this note, we first give some properties of these modules, then we show that we
show that a ring 𝑅 is homogeneous semisimple if and only if every (projective) right 𝑅-module
is co-weakly uniserial. Also if 𝑅 is a semi-Artinian ring 𝑅, then 𝑅 is simple Artinian if and only
if every 2-generated right 𝑅-module is co-weakly uniserial.

1. Examples and properties of co-weakly uniserial modules

In this note 𝑅 is a ring with nonzero identity element and𝑀 is a unitary right 𝑅-module. We use the notation 𝑁 ≤ 𝑀,
when𝑁 is a submodule of𝑀. Also𝑁 ≤ 𝑀 is called essential, denoted by𝑁 ≤𝑒 𝑀, if for any nonzero submodule 𝐾 of
𝑀, 𝐾∩𝑁 ≠ 0. The right singular ideal and the Jacobson radical of 𝑅 are denoted by 𝑍(𝑅𝑅) and 𝐽(𝑅), respectively. We
usually write 𝐸(𝑀), 𝑍(𝑀) and 𝑆𝑜𝑐(𝑀) for the injective hull, the singular submodule and the socle of𝑀 respectively.
Also, if 𝑋 is a subset of 𝑀, the annihilator of 𝑋 in 𝑅 is the right ideal 𝐴𝑛𝑛𝑟(𝑋) = {𝑟 ∈ 𝑅|𝑋𝑟 = 0}. In this note we
have used [1–7].

Example 1.1. (1) Any homogeneous semisimple module is co-weakly uniserial. In particular, any vector space is a
co-weakly uniserial.
(2) It is easy to see that any uniserial module is co-weakly uniserial. In particular, ℤ𝑝𝑛 and ℤ𝑝∞ are co-weakly uniserial
ℤ-modules where 𝑝 is a prime number and 𝑛 ≥ 0 is an integer number.
(3) In a right co-weakly uniserial ring, every two ideals are comparable. Because if 𝐴 and 𝐵 are two ideals in a right
co-weakly uniserial ring 𝑅, then we may assume 𝑅 ⁄ 𝐴 ↠ 𝑅 ⁄ 𝐵 and so 𝐴 = 𝑎𝑛𝑛𝑟(𝑅 ⁄ 𝐴) ⊆ 𝑎𝑛𝑛𝑟(𝑅 ⁄ 𝐵) = 𝐵.
(4) A commutative ring is co-weakly uniserial if and only if it is uniserial.
(5) ℤ𝑛 is a co-weakly uniserial ℤ-module if and only if 𝑛 is a power of a prime.
(6) ℤ𝑚 ⊕ℤ𝑛 is a co-weakly uniserial ℤ-module if and only if either𝑚 = 𝑛 is a prime number or𝑚 = 𝑛 = 1.
(7) ℤ𝑛1 ⊕ ⋯ ⊕ ℤ𝑛𝑘 is a co-weakly uniserial ℤ-module if and only if either 𝑛1 = ⋯ = 𝑛𝑘 is a prime number or
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𝑛1 = ⋯ = 𝑛𝑘 = 1.
(8) If 𝐷 is a division ring and 𝑛 ≥ 2, then the ring𝑀𝑛(𝐷) is co-weakly uniserial while neither left nor right uniserial.

A ring 𝑅 is called simple Artinian if 𝑅 ≅ 𝑀𝑛(𝐷), for some division ring 𝐷. Also the direct sum of all minimal right
ideals of 𝑅 is denoted by 𝑆𝑜𝑐(𝑅𝑅)

Proposition 1.2. Let 𝑅 be a right co-weakly uniserial ring. Then 𝐽(𝑅) is a maximal ideal and 𝑅 is simple Artinian or
𝑆𝑜𝑐2(𝑅𝑅) = 0.

Proof. Since𝑅 is a right co-weakly uniserial ring, for any twomaximal right ideals𝑚1 and𝑚2 of𝑅, we have 𝑎𝑛𝑛𝑟(𝑅⁄
𝑚1) = 𝑎𝑛𝑛𝑟(𝑅 ⁄𝑚2). Thus 𝐽(𝑅) = 𝑎𝑛𝑛𝑟(𝑅 ⁄𝑚), where𝑚 is a maximal right ideal of 𝑅. Now if 𝐼 is a proper ideal
of 𝑅, then 𝐼 ⊆ 𝑚 for some maximal right ideal 𝑚 of 𝑅. Thus 𝐼 = 𝑎𝑛𝑛𝑟(𝑅 ⁄ 𝐼) ⊆ 𝑎𝑛𝑛𝑟(𝑅 ⁄ 𝑚) and hence 𝐼 ⊆ 𝐽(𝑅).
Also, if 𝑅 ≠ 𝑆𝑜𝑐(𝑅𝑅), then 𝑆𝑜𝑐(𝑅𝑅) ⊆ 𝐽(𝑅) and so 𝑆𝑜𝑐2(𝑅𝑅) = 0.

Proposition 1.3. Let 𝑅 be a commutative principal ideal domain and 𝑄 be its quotient field. Then 𝑅 is local if and
only if 𝑄 is co-weakly uniserial as an 𝑅-module.

Corollary 1.4. The field of rational numbers is not co-weakly uniserial as a ℤ-module.

Proposition 1.5. Being co-weakly uniserial is a Morita invariant property.

Let 𝑀 be a nonzero right 𝑅-module. Recall that 𝑀 is said to be coprime (or second) if 𝑎𝑛𝑛𝑟(𝑀) = 𝑎𝑛𝑛𝑟(𝑀 ⁄ 𝑁),
for any proper submodule 𝑁 of 𝑀. A submodule 𝑁 of 𝑀 is called coprime if 𝑀 ⁄ 𝑁 is a coprime 𝑅-module. Also 𝑀
is called weakly coprime (or weakly second) if for any 𝑁 ⪇ 𝑀, 𝑎𝑛𝑛𝑟(𝑀 ⁄ 𝑁) is a prime ideal of 𝑅. Moreover, 𝑀 is
called semicoprime if for any𝑁 ⪇ 𝑀, 𝑎𝑛𝑛𝑟(𝑀⁄𝑁) is a semiprime ideal of 𝑅. An ideal 𝑃 of 𝑅 is an attached prime of
𝑀 if 𝑃 = 𝑎𝑛𝑛𝑟(𝑀 ⁄𝑁), for some coprime submodule 𝑁 of𝑀. The set of attached primes of𝑀 is denoted by 𝐴𝑡𝑡(𝑀)
(for more details see [1,5,8]).

Proposition 1.6. (1) A co-weakly uniserial right 𝑅-module is semicoprime if and only if it is weakly coprime.
(2) A right co-weakly uniserial ring 𝑅 is semiprime if and only if it is prime.

Proof. (1). Assume that𝑀 is a semicoprime co-weakly uniserial right𝑅-module. Let𝑁 ⊆ 𝑀 and 𝐼𝐽 ⊆ 𝑎𝑛𝑛𝑟(𝑀⁄𝑁)),
where 𝐼 and 𝐽 are ideals of 𝑅. Then 𝑀𝐼𝐽 ⊆ 𝑁 and so (𝐽𝐼)2 = 𝐽𝐼𝐽𝐼 ⊆ 𝐼𝐽 ⊆ 𝑎𝑛𝑛𝑟(𝑀 ⁄ 𝑁). Since 𝑀 is semicoprime,
𝐽𝐼 ⊆ 𝑎𝑛𝑛𝑟(𝑀 ⁄ 𝑁). On the other hand since 𝑀 is co-weakly uniserial, 𝑀 ⁄ 𝑀𝐼 ↠ 𝑀 ⁄ 𝑀𝐽 or 𝑀 ⁄ 𝑀𝐽 ↠ 𝑀 ⁄ 𝑀𝐼.
If 𝑀 ⁄ 𝑀𝐼 ↠ 𝑀 ⁄ 𝑀𝐽, then 𝑎𝑛𝑛𝑟(𝑀 ⁄ 𝑀) ⊆ 𝑎𝑛𝑛𝑟(𝑀 ⁄ 𝑀𝐽) and hence 𝑀𝐼 ⊆ 𝑀𝐽. Thus 𝑀𝐼2 ⊆ 𝑀𝐽𝐼 ⊆ 𝑁 and so
𝐼 ⊆ 𝑎𝑛𝑛𝑟(𝑀⁄𝑁), because𝑀 is semicoprime. Similarly, if𝑀⁄𝑀𝐽 ↠ 𝑀⁄𝑀𝐼, then 𝐽 ⊆ 𝑎𝑛𝑛𝑟(𝑀⁄𝑁). The converse
is clear.
(2). Suppose that 𝑅 is a semiprime right co-weakly uniserial ring and 𝐼𝐽 = 0, where 𝐼 and 𝐽 are two ideals of 𝑅. By
Example 1.1(3), 𝐼 ⊆ 𝐽 or 𝐽 ⊆ 𝐼. Thus 𝐼2 ⊆ 𝐼𝐽 = 0 or 𝐽2 ⊆ 𝐼𝐽 = 0. Since 𝑅 is semiprime, 𝐼 = 0 or 𝐽 = 0, as desired.
The converse is clear.

Corollary 1.7. For any semiprime right co-weakly uniserial ring 𝑅, 𝑆𝑜𝑐(𝑅𝑅) = 0 or 𝐽(𝑅) = 𝑍(𝑅𝑅) = 0.

Lemma 1.8. Let 𝑅 be a ring such that every 2-generated right 𝑅-module is co-weakly uniserial. Then:
(1) all simple right 𝑅-modules are isomorphic.
(2) every two ideals of 𝑅 are comparable.
(3) 𝑅 has only one maximal ideal.

Proof. Proof. (1). It is clear because 𝑆1 ⊕𝑆2 is co-weakly uniserial for any two simple right 𝑅-modules 𝑆1 and 𝑆2.
(2). Since 𝑅 ⁄ 𝐼 ⊕ 𝑅 ⁄ 𝐽 is co-weakly uniserial, for any two ideals 𝐼 and 𝐽, we may assume that 𝑅 ⁄ 𝐼 ↠ 𝑅 ⁄ 𝐽 and
hence 𝐼 ⊆ 𝐽.
(3). Follows from (2).
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Theorem 1.9. For any ring 𝑅, the following statements are equivalent:
(1) 𝑅 ≅ 𝑀𝑛(𝐷), where 𝐷 is a division ring.
(2) Every right 𝑅-module is co-weakly uniserial.
(3) Every projective right 𝑅-module is co-weakly uniserial.
(4) The left-right symmetric of (b) and (c).

A ring 𝑅 is right semi-Artinian if every right 𝑅-module contains a simple submodule. Also 𝑅 is called a right V-ring,
if every simple right 𝑅-module is injective.

Theorem 1.10. Let 𝑅 be a right semi-Artinian ring. If every 2-generated right 𝑅-module is co-weakly uniserial, then
𝑅 ≅ 𝑀𝑛(𝐷) for some division ring 𝐷.

Proof. Let 𝑚1, 𝑚2 be two right maximal ideals in 𝑅. Then 𝑅/𝑚1 ⊕ 𝑅/𝑚2 is co-weakly uniserial and so 𝑅/𝑚1 ↠
𝑅/𝑚2 or 𝑅/𝑚2 ↠ 𝑅/𝑚1. In any case we conclude that 𝑅/𝑚1 ≅ 𝑅/𝑚2. Thus 𝑅 has only one simple right 𝑅-module
(up to isomorphism), say 𝑆. Now we show that 𝑆 in injective. Suppose that 𝑆 ⊊ 𝐸(𝑆), where 𝐸(𝑆) is the injective
hull of 𝑆 and 𝑥 ∈ 𝐸(𝑆) − 𝑆. Since 𝑆 ⊕ 𝑥𝑅 is 2-generated right 𝑅-module, 𝑆 ↠ 𝑥𝑅 or 𝑥𝑅 ↠ 𝑆. If 𝑆 ↠ 𝑥𝑅, we
conclude that 𝑆 ≅ 𝑥𝑅 and so 𝑆 = 𝑥𝑅, a contradiction. Thus 𝑥𝑅 ↠ 𝑆. Also if 𝑚 is a maximal submodule of 𝑥𝑅, then
𝑆⊕𝑥𝑅/𝑚 ↠ 𝑥𝑅 or 𝑥𝑅 ↠ 𝑆⊕𝑥𝑅/𝑚. But 𝑥𝑟/𝑚 ≅ 𝑆 and since 𝑥𝑅 is uniform we have 𝑥𝑅 ↠ 𝑆⊕𝑆. By continuing
this way, we get 𝑆 ⊕ 𝑆⊕…⊕ 𝑆ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ

𝑛−𝑡𝑖𝑚𝑒𝑠
is cyclic, for any 𝑛, a contradiction. Thus 𝑆 = 𝐸(𝑆) and so 𝑆 is injective. Therefore

𝑅 is a V-ring and so 𝑆𝑜𝑐(𝑅𝑅)2 = 𝑆𝑜𝑐(𝑅𝑅). Since 𝑅 is semi-Artinian, 𝑆𝑜𝑐(𝑅𝑅) ≠ 0 and hence by Proposition 1.2
𝑅 ≅ 𝑀𝑛(𝐷) for some division ring 𝐷.
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Abstract

Let 𝐺 be a simple graph with the vertex set 𝑉(𝐺) = {1,… , 𝑛} and the edge set 𝐸(𝐺). In this
paper, we prove that the graph 𝐺 is vertex decomposable if it does not contain a 2𝐾2, 𝐶4, or
𝐶5 as an induced subgraph. As a consequence, we show that Stanley’s conjecture holds for the
Stanley-Reisner ring of independence complex of graph 𝐺.

1. Introduction

Let 𝑅 = 𝐾[𝑥1, … , 𝑥𝑛], where 𝐾 is a field. Let 𝐺 be a simple graph with the vertex set 𝑉(𝐺) = {1,… , 𝑛} and the edge
set 𝐸(𝐺). We associate to 𝐺 a quadratic squarefree monomial

𝐼(𝐺) = (𝑥𝑖𝑥𝑗 ∶ 𝑖𝑗 ∈ 𝐸(𝐺)) ⊂ 𝑅,

which is called the edge ideal of 𝐺. An independent vertex set of a graph 𝐺 is a set of vertices of the graph in which no
two vertices are adjacent. The independence complex of𝐺, denoted by Δ(𝐺), is the set of independent sets of𝐺. One of
interesting problems in combinatorial commutative algebra is the Stanley’s conjectures. The Stanley’s conjectures are
studied by many researchers. Let 𝑅 be aℕ𝑛- graded ring and𝑀 a ℤ𝑛- graded 𝑅- module. Then Stanley [8] conjectured
that

(𝑀) ≤ (𝑀)
He also conjectured in [9] that each Cohen-Macaulay simplicial complex is partitionable. Herzog, Soleyman Jahan and
Yassemi in [4] showed that the conjecture about partitionability is a special case of the Stanley’s first conjecture. This
paper is organized as follows. In next Section we recall several definitions and terminology which we need later. In
Section 3, we show that graph 𝐺 is vertex decomposable if it does not contain a 2𝐾2, 𝐶4, or 𝐶5 as an induced subgraph.
Also, as a consequence, it is shown that Stanley’s conjecture holds for 𝐾[Δ(𝐺)].
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2. Preliminaries

In this section we recall some definitions and results which will be needed later.

Definition 2.1. A simplicial complex Δ over a set of vertices 𝑉 = {𝑥1, … , 𝑥𝑛}, is a collection of subsets of 𝑉, with the
property that:

(a) {𝑥𝑖} ∈ Δ, for all 𝑖;

(b) if 𝐹 ∈ Δ, then all subsets of 𝐹 are also in Δ (including the empty set).

An element of Δ is called a face of Δ and complement of a face 𝐹 is 𝑉∖𝐹 and it is denoted by 𝐹𝑐. Also, the complement
of the simplicial complex Δ = ⟨𝐹1, … , 𝐹𝑟⟩ is Δ𝑐 = ⟨𝐹𝑐1 , … , 𝐹𝑐𝑟 ⟩. The dimension of a face 𝐹 of Δ, dim𝐹, is |𝐹|−1where,
|𝐹| is the number of elements of 𝐹 and dim∅ = −1. The faces of dimensions 0 and 1 are called vertices and edges,
respectively. A non-face of Δ is a subset 𝐹 of 𝑉 with 𝐹 ∉ Δ. we denote by𝒩(Δ), the set of all minimal non-faces of
Δ. The maximal faces of Δ under inclusion are called facets of Δ. The dimension of the simplicial complex Δ, dimΔ,
is the maximum of dimensions of its facets. If all facets of Δ have the same dimension, then Δ is called pure.
Letℱ(Δ) = {𝐹1, … , 𝐹𝑞} be the facet set ofΔ. It is clear thatℱ(Δ) determinesΔ completely andwewriteΔ = ⟨𝐹1, … , 𝐹𝑞⟩.
A simplicial complex with only one facet is called a simplex. A simplicial complex Γ is called a subcomplex of Δ, if
ℱ(Γ) ⊂ ℱ(Δ).
For 𝑣 ∈ 𝑉, the subcomplex of Δ obtained by removing all faces 𝐹 ∈ Δ with 𝑣 ∈ 𝐹 is denoted by Δ ∖ 𝑣. That is,

Δ ∖ 𝑣 = ⟨𝐹 ∈ Δ∶ 𝑣 ∉ 𝐹⟩.

The link of a face 𝐹 ∈ Δ, denoted by linkΔ(𝐹), is a simplicial complex on 𝑉 with the faces, 𝐺 ∈ Δ such that, 𝐺∩𝐹 = ∅
and 𝐺 ∪ 𝐹 ∈ Δ. The link of a vertex 𝑣 ∈ 𝑉 is simply denoted by linkΔ(𝑣).

linkΔ(𝑣) = ൛𝐹 ∈ Δ∶ 𝑣 ∉ 𝐹, 𝐹 ∪ {𝑣} ∈ Δൟ.

Definition 2.2. Let Δ be a simplicial complex over 𝑛 vertices {𝑥1, … , 𝑥𝑛}. For 𝐹 ⊂ {𝑥1, … , 𝑥𝑛}, we set:

x𝐹 = ෑ
𝑥𝑖∈𝐹

𝑥𝑖 .

We define the facet ideal of Δ, denoted by 𝐼(Δ), to be the ideal of 𝑆 generated by {x𝐹 ∶ 𝐹 ∈ ℱ(Δ)}. The non-
face ideal or the Stanley-Reisner ideal of Δ, denoted by 𝐼Δ, is the ideal of 𝑆 generated by square-free monomials
{x𝐹 ∶ 𝐹 ∈ 𝒩(Δ)}. Also we call 𝐾[Δ] ∶= 𝑆/𝐼Δ the Stanley-Reisner ring of Δ.
Definition 2.3. A simplicial complex Δ is recursively defined to be vertex decomposable, if it is either a simplex, or
else has some vertex 𝑣 so that,

(a) Both Δ ∖ 𝑣 and linkΔ(𝑣) are vertex decomposable, and

(b) No face of linkΔ(𝑣) is a facet of Δ ∖ 𝑣.
A vertex 𝑣 which satisfies in condition (b) is called a shedding vertex.

Definition 2.4. A simplicial complex Δ is shellable, if the facets of Δ can be ordered 𝐹1, … , 𝐹𝑠 such that, for all
1 ≤ 𝑖 < 𝑗 ≤ 𝑠, there exists some 𝑣 ∈ 𝐹𝑗 ∖ 𝐹𝑖 and some 𝑙 ∈ {1, … , 𝑗 − 1} with 𝐹𝑗 ∖ 𝐹𝑙 = {𝑣}.
Definition 2.5. A graph 𝐺 is called vertex decomposable, if the independence complex Δ(𝐺) is vertex decomposable.

Definition 2.6. A graded 𝑆-module𝑀 is called sequentially Cohen-Macaulay (over𝐾), if there exists a finite filtration
of graded 𝑆-modules,

0 = 𝑀0 ⊂ 𝑀1 ⊂ ⋯ ⊂ 𝑀𝑟 = 𝑀
such that each𝑀𝑖/𝑀𝑖−1 is Cohen-Macaulay, and the Krull dimensions of the quotients are increasing:

dim(𝑀1/𝑀0) < dim(𝑀2/𝑀1) < ⋯ < dim(𝑀𝑟/𝑀𝑟−1).
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A simplicial complex Δ is called (sequentially) Cohen-Macaulay over 𝐾, if the ring 𝐾[Δ] = 𝑆/𝐼Δ is (sequentially)
Cohen-Macaulay. A simplicial complex Δ is called disconnected, if the vertex set 𝑉 of Δ is a disjoint union 𝑉 = 𝑉1∪𝑉2
such that no face of Δ has vertices in both 𝑉1 and 𝑉2. Otherwise Δ is connected.

Definition 2.7. A graph 𝐺 is chordal if every cycle of length strictly greater than three has a chord.

A chord of a cycle is an edge joining two nonconsecutive vertices of the cycle.

Definition 2.8. Suppose that 𝑉1 be a subset of the vertex set 𝑉 of a graph 𝐺. Then the subgraph of 𝐺 whose vertex set
is 𝑉1 and whose edge set is the set of edges of 𝐺 that have both end vertices in 𝑉1 is denoted by 𝐺[𝑉] called a vertex
induced subgraph (induced subgraph) of 𝐺.

3. Vertex decomposability of the independence complexes of graphs

As the main result of this section, we show that graph 𝐺 is vertex decomposable if it does not contain a 2𝐾2, 𝐶4, or 𝐶5 as
an induced subgraph. Also, as a consequence, it is shown that Stanley’s conjecture holds for 𝐾[Δ(𝐺)]. Dochtermann
and Engrstrom in[2] showed that if 𝐺 is a chordal graph then the independence complex Δ(𝐺) is vertex decomposable.
Now, we are ready that prove one of the main result of this paper.

Theorem 3.1. Let 𝐺 be a simple graph. If the graph 𝐺 does not contain a 2𝐾2, 𝐶4, or 𝐶5 as an induced subgraph then
𝐺 is vertex decomposable.

Proof. We first prove that 𝐺 is chordal. Suppose 𝐺 does not contain a 2𝐾2, 𝐶4, or 𝐶5 as an induced subgraph. Be-
cause any 𝐶𝑛, 𝑛 > 5 contains a 2𝐾2 as an induced subgraph, 𝐺 must not contain any induced cycles larger than 𝐶3.
Therefore, 𝐺 is chordal. So by [2] independence complex Δ(𝐺) is vertex decomposable. This implies that 𝐺 is vertex
decomposable

Let 𝑅 be any standard graded 𝐾- algebra over an infinite field 𝐾, 𝑖.𝑒, 𝑅 is a finitely generated graded algebra 𝑅 =
⨁𝑖≥0 𝑅𝑖 such that𝑅0 = 𝐾 and𝑅 is generated by𝑅1. There are several characterizations of the depth of such an algebra.
We use the one that (𝑅) is the maximal length of a regular 𝑅- sequence consisting of linear forms. Let 𝑥𝐹 = ⊓𝑖∈𝐹𝑥𝑖
be a squarefree monomial for some 𝐹 ⊆ [𝑛] and 𝑍 ⊆ {𝑥1, … , 𝑥𝑛}. The 𝐾- subspace 𝑥𝐹𝐾[𝑍] of 𝑆 = 𝐾[𝑥1, … , 𝑥𝑛] is the
subspace generated by monomials 𝑥𝐹𝑢, where 𝑢 is a monomial in the polynomial ring 𝐾[𝑍]. It is called a squarefree
Stanley space if {𝑥𝑖 ∶ 𝑖 ∈ 𝐹} ⊆ 𝑍. The dimension of this Stanley space is |𝑍|. Let Δ be a simplicial complex on
{𝑥1, … , 𝑥𝑛}. A squarefree Stanley decomposition 𝒟 of 𝐾[Δ] is a finite direct sum ⨁𝑖 𝑢𝑖𝐾[𝑍𝑖] of squarefree Stanley
spaces which is isomorphic as a ℤ𝑛- graded 𝐾- vector space to 𝐾[Δ], 𝑖.𝑒.

𝐾[Δ] ≅ໄ
𝑖

𝑢𝑖𝐾[𝑍𝑖].

We denote by (𝒟) the minimal dimension of a Stanley space in 𝒟 and we define (𝐾[Δ]) = max{(𝒟)}, where 𝒟 is a
Stanley decomposition of 𝐾[Δ]. Stanley conjectured in [8] the upper bound for the depth of 𝐾[Δ] as the following:

(𝐾[Δ]) ≤ (𝐾[Δ]).

Also we recall another conjecture of Stanley. Let Δ be again a simplicial complex on {𝑥1, … , 𝑥𝑛}with facets 𝐺1, … , 𝐺𝑡.
The complex Δ is called partitionable if there exists a partition Δ = ⋃𝑡

𝑖=1[𝐹𝑖 , 𝐺𝑖] where 𝐹𝑖 ⊆ 𝐺𝑖 are suitable faces of Δ.
Here the interval [𝐹𝑖 , 𝐺𝑖] is the set of faces {𝐻 ∈ Δ ∶ 𝐹𝑖 ⊆ 𝐻 ⊆ 𝐺𝑖}. In [9] and [10] respectively Stanley conjectured
each Cohen-Macaulay simplicial complex is partitionable. This conjecture is a special case of the previous conjecture.
Indeed, Herzog, Soleyman Jahan andYassemi [4] proved that for Cohen-Macaulay simplicial complexΔ on {𝑥1, … , 𝑥𝑛}
we have that (𝐾[Δ]) ≤ (𝐾[Δ]) if and only if Δ is partitionable. Since each vertex decomposable simplicial complex
is shellable and each shellable complex is partitionable. Then as a consequence of our results we obtain :

Corollary 3.2. Let 𝐺 be a simple graph. If the graph 𝐺 does not contain a 2𝐾2, 𝐶4, or 𝐶5 as an induced subgraph
then Δ(𝐺) is partitionable and Stanley’s conjecture holds for 𝐾[Δ(𝐺)].
Proof. Since each vertex decomposable simplicial complex is shellable and each shellable complex is partitionable.
By theorem 3.1 proof is completed.
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Abstract

Let 𝐺 be a simple graph with the vertex set 𝑉(𝐺) = {1,… , 𝑛} and the edge set 𝐸(𝐺). In this
paper, we prove that the clique complex 𝐶𝐿(𝐺) is vertex decomposable if the graph 𝐺 does not
contain a 2𝐾2, 𝐶4, or 𝐶5 as an induced subgraph. As a consequence, we show that Stanley’s con-
jecture holds for𝐾[𝐶𝐿(𝐺)]. Finally, we introduce a class of vertex decomposable flag simplicial
complexes.

1. Introduction

Let 𝑅 = 𝐾[𝑥1, … , 𝑥𝑛], where 𝐾 is a field. Let 𝐺 be a simple graph with the vertex set 𝑉(𝐺) = {1,… , 𝑛} and the edge
set 𝐸(𝐺). We associate to 𝐺 a quadratic squarefree monomial

𝐼(𝐺) = (𝑥𝑖𝑥𝑗 ∶ 𝑖𝑗 ∈ 𝐸(𝐺)) ⊂ 𝑅,

which is called the edge ideal of 𝐺. An independent vertex set of a graph 𝐺 is a set of vertices of the graph in which
no two vertices are adjacent. The independence complex of 𝐺, denoted by Δ(𝐺), is the set of independent sets of 𝐺.
The clique complex 𝐶𝐿(𝐺) is the simplicial complex whose faces are complete subgraphs of 𝐺. One of interesting
problems in combinatorial commutative algebra is the Stanley’s conjectures. The Stanley’s conjectures are studied by
many researchers. Let 𝑅 be a ℕ𝑛- graded ring and𝑀 a ℤ𝑛- graded 𝑅- module. Then Stanley [8] conjectured that

(𝑀) ≤ (𝑀)

He also conjectured in [9] that each Cohen-Macaulay simplicial complex is partitionable. Herzog, Soleyman Jahan and
Yassemi in [4] showed that the conjecture about partitionability is a special case of the Stanley’s first conjecture. This
paper is organized as follows. In next Section we recall several definitions and terminology which we need later. In
Section 3, we show that the clique complex 𝐶𝐿(𝐺) is vertex decomposable if the graph 𝐺 does not contain a 2𝐾2, 𝐶4, or
𝐶5 as an induced subgraph. Also, as a consequence, it is shown that Stanley’s conjecture holds for 𝐾[𝐶𝐿(𝐺)]. Finally,
we show that there exist a class of vertex decomposable flag simplicial complexes.
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2. Preliminaries

In this section we recall some definitions and results which will be needed later.

Definition 2.1. A simplicial complex Δ over a set of vertices 𝑉 = {𝑥1, … , 𝑥𝑛}, is a collection of subsets of 𝑉, with the
property that:

((a) {𝑥𝑖} ∈ Δ, for all 𝑖;

(b) if 𝐹 ∈ Δ, then all subsets of 𝐹 are also in Δ (including the empty set).

An element of Δ is called a face of Δ and complement of a face 𝐹 is 𝑉∖𝐹 and it is denoted by 𝐹𝑐. Also, the complement
of the simplicial complex Δ = ⟨𝐹1, … , 𝐹𝑟⟩ is Δ𝑐 = ⟨𝐹𝑐1 , … , 𝐹𝑐𝑟 ⟩. The dimension of a face 𝐹 of Δ, dim𝐹, is |𝐹|−1where,
|𝐹| is the number of elements of 𝐹 and dim∅ = −1. The faces of dimensions 0 and 1 are called vertices and edges,
respectively. A non-face of Δ is a subset 𝐹 of 𝑉 with 𝐹 ∉ Δ. we denote by𝒩(Δ), the set of all minimal non-faces of
Δ. The maximal faces of Δ under inclusion are called facets of Δ. The dimension of the simplicial complex Δ, dimΔ,
is the maximum of dimensions of its facets. If all facets of Δ have the same dimension, then Δ is called pure.
Letℱ(Δ) = {𝐹1, … , 𝐹𝑞} be the facet set ofΔ. It is clear thatℱ(Δ) determinesΔ completely andwewriteΔ = ⟨𝐹1, … , 𝐹𝑞⟩.
A simplicial complex with only one facet is called a simplex. A simplicial complex Γ is called a subcomplex of Δ, if
ℱ(Γ) ⊂ ℱ(Δ).
For 𝑣 ∈ 𝑉, the subcomplex of Δ obtained by removing all faces 𝐹 ∈ Δ with 𝑣 ∈ 𝐹 is denoted by Δ ∖ 𝑣. That is,

Δ ∖ 𝑣 = ⟨𝐹 ∈ Δ∶ 𝑣 ∉ 𝐹⟩.

The link of a face 𝐹 ∈ Δ, denoted by linkΔ(𝐹), is a simplicial complex on 𝑉 with the faces, 𝐺 ∈ Δ such that, 𝐺∩𝐹 = ∅
and 𝐺 ∪ 𝐹 ∈ Δ. The link of a vertex 𝑣 ∈ 𝑉 is simply denoted by linkΔ(𝑣).

linkΔ(𝑣) = ൛𝐹 ∈ Δ∶ 𝑣 ∉ 𝐹, 𝐹 ∪ {𝑣} ∈ Δൟ.

Definition 2.2. Let Δ be a simplicial complex over 𝑛 vertices {𝑥1, … , 𝑥𝑛}. For 𝐹 ⊂ {𝑥1, … , 𝑥𝑛}, we set:

x𝐹 = ෑ
𝑥𝑖∈𝐹

𝑥𝑖 .

We define the facet ideal of Δ, denoted by 𝐼(Δ), to be the ideal of 𝑆 generated by {x𝐹 ∶ 𝐹 ∈ ℱ(Δ)}. The non-
face ideal or the Stanley-Reisner ideal of Δ, denoted by 𝐼Δ, is the ideal of 𝑆 generated by square-free monomials
{x𝐹 ∶ 𝐹 ∈ 𝒩(Δ)}. Also we call 𝐾[Δ] ∶= 𝑆/𝐼Δ the Stanley-Reisner ring of Δ.
Definition 2.3. A simplicial complex Δ is recursively defined to be vertex decomposable, if it is either a simplex, or
else has some vertex 𝑣 so that,

(a) Both Δ ∖ 𝑣 and linkΔ(𝑣) are vertex decomposable, and

(b) No face of linkΔ(𝑣) is a facet of Δ ∖ 𝑣.
A vertex 𝑣 which satisfies in condition (b) is called a shedding vertex.

Definition 2.4. A simplicial complex Δ is shellable, if the facets of Δ can be ordered 𝐹1, … , 𝐹𝑠 such that, for all
1 ≤ 𝑖 < 𝑗 ≤ 𝑠, there exists some 𝑣 ∈ 𝐹𝑗 ∖ 𝐹𝑖 and some 𝑙 ∈ {1, … , 𝑗 − 1} with 𝐹𝑗 ∖ 𝐹𝑙 = {𝑣}.
Definition 2.5. A simplicial complex is called a flag complex if all minimal non-faces are two element sets.

Definition 2.6. A graded 𝑆-module𝑀 is called sequentially Cohen-Macaulay (over𝐾), if there exists a finite filtration
of graded 𝑆-modules,

0 = 𝑀0 ⊂ 𝑀1 ⊂ ⋯ ⊂ 𝑀𝑟 = 𝑀
such that each𝑀𝑖/𝑀𝑖−1 is Cohen-Macaulay, and the Krull dimensions of the quotients are increasing:

dim(𝑀1/𝑀0) < dim(𝑀2/𝑀1) < ⋯ < dim(𝑀𝑟/𝑀𝑟−1).
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A simplicial complex Δ is called (sequentially) Cohen-Macaulay over 𝐾, if the ring 𝐾[Δ] = 𝑆/𝐼Δ is (sequentially)
Cohen-Macaulay. A simplicial complex Δ is called disconnected, if the vertex set 𝑉 of Δ is a disjoint union 𝑉 = 𝑉1∪𝑉2
such that no face of Δ has vertices in both 𝑉1 and 𝑉2. Otherwise Δ is connected.

Definition 2.7. A graph 𝐺 is chordal if every cycle of length strictly greater than three has a chord.

A chord of a cycle is an edge joining two nonconsecutive vertices of the cycle.

Definition 2.8. (Induced subgraph) Suppose that 𝑉1 be a subset of the vertex set 𝑉 of a graph 𝐺. Then the subgraph
of 𝐺 whose vertex set is 𝑉1 and whose edge set is the set of edges of 𝐺 that have both end vertices in 𝑉1 is denoted by
𝐺[𝑉] called a vertex induced subgraph (induced subgraph) of 𝐺.

3. Vertex decomposability on the clique complexes

As the main result of this section, we show that the clique complex 𝐶𝐿(𝐺) is vertex decomposable if the graph 𝐺 does
not contain a 2𝐾2, 𝐶4, or 𝐶5 as an induced subgraph. Also, as a consequence, it is shown that Stanley’s conjecture
holds for 𝐾[𝐶𝐿(𝐺)]. Dochtermann and Engrstrom in[2] showed that if 𝐺 is a chordal graph then the independence
complex Δ(𝐺) is vertex decomposable. Now, we are ready that prove one of the main result of this paper.

Theorem 3.1. Let 𝐺 be a simple graph. If the graph 𝐺 does not contain a 2𝐾2, 𝐶4, or 𝐶5 as an induced subgraph then
the clique complex 𝐶𝐿(𝐺) is vertex decomposable.

Proof. We first prove that 𝐺 is chordal. Suppose 𝐺 does not contain a 2𝐾2, 𝐶4, or 𝐶5 as an induced subgraph. Because
any 𝐶𝑛, 𝑛 > 5 contains a 2𝐾2 as an induced subgraph, 𝐺must not contain any induced cycles larger than 𝐶3. Therefore,
𝐺 is chordal. Similarly, we prove that the complement of graph𝐺(𝐺′) is chordal. Since 𝐶′4 = 2𝐾2 and 𝐶′5 = 𝐶5, 𝐺′ also
does not contain 2𝐾2, 𝐶4, or 𝐶5 as induced subgraphs. By the same argument, 𝐺′ is chordal. So by [2] independence
complexes Δ(𝐺) and Δ(𝐺′) are vertex decomposable. It is well-known that Δ(𝐺′) = 𝐶𝐿(𝐺). Hence 𝐶𝐿(𝐺) is vertex
decomposable.

Let 𝑅 be any standard graded 𝐾- algebra over an infinite field 𝐾, 𝑖.𝑒, 𝑅 is a finitely generated graded algebra 𝑅 =
⨁𝑖≥0 𝑅𝑖 such that𝑅0 = 𝐾 and𝑅 is generated by𝑅1. There are several characterizations of the depth of such an algebra.
We use the one that (𝑅) is the maximal length of a regular 𝑅- sequence consisting of linear forms. Let 𝑥𝐹 = ⊓𝑖∈𝐹𝑥𝑖
be a squarefree monomial for some 𝐹 ⊆ [𝑛] and 𝑍 ⊆ {𝑥1, … , 𝑥𝑛}. The 𝐾- subspace 𝑥𝐹𝐾[𝑍] of 𝑆 = 𝐾[𝑥1, … , 𝑥𝑛] is the
subspace generated by monomials 𝑥𝐹𝑢, where 𝑢 is a monomial in the polynomial ring 𝐾[𝑍]. It is called a squarefree
Stanley space if {𝑥𝑖 ∶ 𝑖 ∈ 𝐹} ⊆ 𝑍. The dimension of this Stanley space is |𝑍|. Let Δ be a simplicial complex on
{𝑥1, … , 𝑥𝑛}. A squarefree Stanley decomposition 𝒟 of 𝐾[Δ] is a finite direct sum ⨁𝑖 𝑢𝑖𝐾[𝑍𝑖] of squarefree Stanley
spaces which is isomorphic as a ℤ𝑛- graded 𝐾- vector space to 𝐾[Δ], 𝑖.𝑒.

𝐾[Δ] ≅ໄ
𝑖

𝑢𝑖𝐾[𝑍𝑖].

We denote by (𝒟) the minimal dimension of a Stanley space in 𝒟 and we define (𝐾[Δ]) = max{(𝒟)}, where 𝒟 is a
Stanley decomposition of 𝐾[Δ]. Stanley conjectured in [8] the upper bound for the depth of 𝐾[Δ] as the following:

(𝐾[Δ]) ≤ (𝐾[Δ]).

Also we recall another conjecture of Stanley. Let Δ be again a simplicial complex on {𝑥1, … , 𝑥𝑛}with facets 𝐺1, … , 𝐺𝑡.
The complex Δ is called partitionable if there exists a partition Δ = ⋃𝑡

𝑖=1[𝐹𝑖 , 𝐺𝑖] where 𝐹𝑖 ⊆ 𝐺𝑖 are suitable faces of Δ.
Here the interval [𝐹𝑖 , 𝐺𝑖] is the set of faces {𝐻 ∈ Δ ∶ 𝐹𝑖 ⊆ 𝐻 ⊆ 𝐺𝑖}. In [9] and [10] respectively Stanley conjectured
each Cohen-Macaulay simplicial complex is partitionable. This conjecture is a special case of the previous conjecture.
Indeed, Herzog, Soleyman Jahan andYassemi [4] proved that for Cohen-Macaulay simplicial complexΔ on {𝑥1, … , 𝑥𝑛}
we have that (𝐾[Δ]) ≤ (𝐾[Δ]) if and only if Δ is partitionable. Since each vertex decomposable simplicial complex
is shellable and each shellable complex is partitionable. Then as a consequence of our results we obtain :
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Corollary 3.2. Let 𝐺 be a simple graph. If the graph 𝐺 does not contain a 2𝐾2, 𝐶4, or 𝐶5 as an induced subgraph
then the clique complex 𝐶𝐿(𝐺) is partitionable and Stanley’s conjecture holds for 𝐾[𝐶𝐿(𝐺)].

Proof. Since each vertex decomposable simplicial complex is shellable and each shellable complex is partitionable.
By theorem 3.1 proof is completed.

We know that the clique complex of any graph 𝐺 is flag complex. Therefore, we introduce a class of vertex decom-
posable flag simplicial complexes as the following:

Corollary 3.3. Let 𝐺 be a simple graph. If the graph 𝐺 does not contain a 2𝐾2, 𝐶4, or 𝐶5 as an induced subgraph
then the clique complex 𝐶𝐿(𝐺) is a vertex decomposable flag simplicial complex.
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Abstract

The notion of nil reversible ring is a generalization of reversible rings. The aim of this paper, is to
provide conditions under which the polynomial ring over a nil reversible ring is nil reversible.
We see that a semiprime ring 𝑅 is nil reversible if and only if the polynomial ring 𝑅[𝑥] is a
reduced ring. Also, we show that a semiprime ring 𝑅 is nil reversible if and only if 𝑅[𝑥] is
nil reversible. Further, if 𝑅 is a von Neumann ring and 𝑋 is a multiplicatively closed subset
of 𝑅 which consists of central regular elements, then nil reversibility of 𝑅 is equivalent to nil
reversibility of 𝑅[𝑥] and is equivalent to nil reversibility of 𝑅𝑋−1.

1. Introduction

Throughout this work, all rings are associative with identity. A ring 𝑅 is called reversible if for any 𝑠, 𝑡 ∈ 𝑅, 𝑠𝑡 = 0
implies 𝑡𝑠 = 𝑜. Semiprime ring is a ring 𝑅 in which 𝐼2 = 0 implies 𝐼 = 0, for all ideal 𝐼 of 𝑅. If a ring 𝑅 has
no nonzero nilpotent element, then 𝑅 is called reduced. Also, a ring in which for each 𝑟 ∈ 𝑅 there is 𝑥 ∈ 𝑅 so that
𝑟 = 𝑟𝑥𝑟, then 𝑅 is named von Neumann ring.
In this article, we study a generalization of reversible ring named nil reversible ring. The concept of nil reversible ring
was first introduced in [5]. A ring 𝑅 in which for all 𝑟 ∈ 𝑅 and for each nilpotent element 𝑎, 𝑟𝑎 = 0 iff 𝑎𝑟 = 0,
is called nil reversible ring. We first study some properties of nil reversible rings. We note that the polynomial ring
over a ring 𝑅 is written by 𝑅[𝑥]. We inquire conditions under which the polynomial ring of a nil reversible ring is nil
reversible. A ring in which every nilpotent element is central, is said to be central reduced. Also, if for all 𝑥, 𝑦, 𝑧 of a
ring 𝑅, 𝑥𝑦𝑧 = 0 yields 𝑦𝑥𝑧 = 0, 𝑅 is called symmetric ring . It is obvious that central reduced and symmetric rings
are nil reversible. We show that in a semiprime ring 𝑅 the concepts central reduced, symmetric and nil reversible are
equivalent. Also, we show that a semiprime ring 𝑅 is nil reversible if and only if the polynomial ring 𝑅[𝑥] is reduced.
Finally, we prove that a semiprime ring 𝑅 is a nil reversible ring if and only if 𝑅[𝑥] is nil reversible. This result tells us
that nil reversibility of a von Neumann ring 𝑅 is equivalent to reversibility of 𝑅[𝑥] and is equivalent to nil reversibility
of 𝑅𝑋−1 when 𝑋 is a multiplicatively closed subset of 𝑅 which consists of central regular elements.
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1.1. Some properties of nil reversible rings
In here, we begin by reminding the definition of nil reversible rings. In the following, we state some properties of nil
reversible rings.

Definition 1.1. A ring 𝑅 is called nil reversible, if for any its nilpotent element 𝑎 and 𝑟 ∈ 𝑅, we have 𝑟𝑎 = 0 if and
only if 𝑎𝑟 = 0.
Example 1.2. 1. Clearly, commutative rings and reversible rings are nil reversible ring.
2. Any subring of a nil reversible ring is nil reversible.
3. Let 𝑅 = ℤ2[𝑥, 𝑦] such that 𝑥𝑦 ≠ 𝑦𝑥 and 𝐿 =< 𝑥𝑦, 𝑦𝑥2, 𝑦2𝑥 >. Then 𝑇 = 𝑅

𝐿 is a nil reversible ring. Because, the
set of all nilpotent elements of 𝑇 is {0 + 𝐿, 𝑦𝑥 + 𝐿}. Hence, we can see easily that 𝑇 is nil reversible.
4. The set of all 2 × 2 matrices over a nil reversible ring is not nil reversible. For example, if 𝑅 = 𝑀2(ℤ) then
ቆ 0 1
0 0 ቇ is a nilpotent element of 𝑅 and

ቆ 0 1
0 0 ቇቆ 1 0

0 0 ቇ = 0.

But
ቆ 1 0
0 0 ቇቆ 0 1

0 0 ቇ = ቆ 0 1
0 0 ቇ ≠ 0.

Thus 𝑅 is not nil reversible.

In Example 1.2, was stated that reversible rings are nil reversible. But, a nil reversible ring is not necessarily reversible.
The ring 𝑇 in the Example 1.2 is a nil reversible ring but, it is not reversible. The next Example shows that the quotient
ring of a nil reversible ring is not necessarily nil reversible.

Example 1.3. Let 𝐹 be a division ring and 𝑅 = 𝐹[𝑥, 𝑦] such that 𝑦𝑥 ≠ 𝑥𝑦. Since 𝑅 is a domin, 𝑅 is nil reversible.
Assume 𝐿 is the ideal generated by 𝑥𝑦 and 𝑇 = 𝑅

𝐿 . It is clear that 𝑦𝑥 + 𝐿 is a nilpotent element of 𝑇. On the other
hand,

(𝑥 + 𝐿)(𝑦𝑥 + 𝐿) = 𝑥𝑦𝑥 + 𝐿 = 0.
But,

(𝑦𝑥 + 𝐿)(𝑥 + 𝐿) = (𝑦𝑥2 + 𝐿) ≠ 0.
This tells us 𝑇 is not a nil reversible ring.

Lemma 1.4. Any finite direct product of nil reversible rings is a nil reversible ring.

2. Main results

In this section, we study polynomial ring over nil reversible rings. We provide conditions that polynomial ring over a
nil reversible ring is nil reversible.First, we study [1, P.P 361] in the following Lemma.

Lemma 2.1. For a reduced ring 𝑅, the following hold:
1. 𝑅 is a symmetric ring.
2. 𝑅 is a reversible ring.

We know that each reduced ring is nil reversible. In [3, Proposition 2.2] we saw that in semiprime rings the notions of
nil reversible ring and reduced ring coincide. To refer to this result, we state the following Lemma.

Lemma 2.2. Let 𝑅 be a semiprime ring. Then 𝑅 is nil reversible ring if and only if 𝑅 is reduced.

Proof. If 𝑅 is a reduced ring, then Lemma 2.1 tells us that 𝑅 is reversible and so 𝑅 is nil reversible. Conversely, assume
𝑅 is nil reversible and for 𝑎 ∈ 𝑅, 𝑎2 = 0. Then 𝑟𝑎 = 𝑎𝑟, by nil reversibility of 𝑅. So 0 = 𝑟𝑎2 = 𝑟𝑎𝑎 = 𝑎𝑟𝑎, for all
𝑟 ∈ 𝑅. From this 𝑎 = 0, since 𝑅 is semiprime. Therefore 𝑅 is reduced.
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Lemma 2.3. Let 𝑅 be a semiprime ring. Then the following sets coincide:

1. 𝑅 is reduced.
2. 𝑅 is symmetric.
3. 𝑅 is reversible.
4. 𝑅 is nil reversible.

Proof. 1 ⇒ 2. Every reduced ring is symmetric, by Lemma 2.1.
2 ⇒ 3. It is easily seen that every symmetric ring is reversible.
3 ⇒ 4. It is clear.
4 ⇒ 1.We obtain this result by Lemma 2.2.

Note that a ring 𝑅 is called central reduced if every nilpotent element of 𝑅 is central. It is clear that symmetric ring
and central reduced ring are nil reversible. In Theorem 2.4, we see that in a semiprime ring the notions symmetric,
central reduced and nil reversible are equivalent.

Theorem 2.4. Let 𝑅 be a semiprime ring. Then the following conditions are equivalent:

1. 𝑅 is a symmetric ring.
2. 𝑅 is a reversible ring.
3. 𝑅 is a reduced ring.
4. 𝑅 is a nil reversible ring.
5. 𝑅 is a central reduced ring.

Proof. We conclude this result from Lemma 2.3 and [2, Proposition 2.1].

In the following, we study Theorem 2.9 from [2] which is needed here.

Theorem 2.5. Let 𝑅 be a semiprime ring. Then the following sets are equivalent:

1. 𝑅 is a symmetric ring.
2. 𝑅 is a reduced ring.
3. 𝑅 is a central reduced ring.
4. 𝑅[𝑥] is a reduced ring.

The next Theorem follows from Theorems 2.5 and 2.4.

Theorem 2.6. For a semiprime ring 𝑅, the following conditions are equivalent:
1. 𝑅 is a symmetric ring.
2. 𝑅 is a reduced ring.
3. 𝑅 is a nil reversible ring.
4. 𝑅 is a central reduced ring.
5. 𝑅[𝑥] is a reduced ring.

Corollary 2.7. In any semiprime ring 𝑅, the following sets coincide:
1. 𝑅 is a nil reversible ring.
2. 𝑅[𝑥] is a nil reversible ring.

Proof. If𝑅 is nil reversible, then Theorem 2.6 yields𝑅[𝑥] is reduced. From this𝑅[𝑥] is nil reversible ring. Conversely,
since 𝑅 is a subring of 𝑅[𝑥], if 𝑅[𝑥] is nil reversible ring then 𝑅 is nil reversible.

Remind that a ring 𝑅 is named von Neumann, if for any 𝑟 ∈ 𝑅 there exists 𝑥 ∈ 𝑅 that 𝑟 = 𝑟𝑥𝑟. It is easy to see that
von Neumann rings are semprime. From this we have the below result.
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Corollary 2.8. A von Neumann ring 𝑅 is nil reversible if and only if 𝑅[𝑥] is nil reversible.

Let 𝑅 be a ring and 𝑋 a multiplicative set of regular elements in 𝑅. We recall 𝑅𝑋−1 is the right ring of fractions for 𝑅
with respect to 𝑋. In here, we study [4, Corollary 2.3] which we use in Theorem 2.10.

Lemma 2.9. Let 𝑅 be a von Neumann ring and 𝑋 be a multiplicatively closed subset of 𝑅 which consists of central
regular elements. Then the following conditions coincide:

1. 𝑅 is reversible.
2. 𝑅 is nil reversible.
3. 𝑅𝑋−1 is reversible.
4. 𝑅𝑋−1 is nil reversible.

In the following, we study conditions that nil reversibility of 𝑅[𝑥] is equivalent to nil reversibility of 𝑅𝑋−1.

Theorem 2.10. Let 𝑅 be a von Neumann ring and 𝑋 a multiplicatively closed subset of 𝑅 which consists of central
regular elements. If there exists the right ring of fractions 𝑅𝑋−1, then the following sets are equivalent:

1. 𝑅 is reversible
2. 𝑅 is nil reversible.
3. 𝑅[𝑥] is nil reversible.
4. 𝑅𝑋−1 is reversible.
5. 𝑅𝑋−1 is nil reversible.

Proof. Lemma 2.3 yields statemens 1, 2 are equivalent. Also, Corollary 2.8 leads to 2 and 3 coincide. Further, we
conclude from Lemma 2.9, the statemens 1, 2, 4, 5 are equivalent. Therefore all of the above statemens are equivalent.
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Abstract

In this paper, some properties and characterizations of bilinear module actions over quasi-ideals
of a Banach algebra has been taken into account. We apply our results to the quasi-ideals of the
group algebra 𝑀(𝐺) and prove that 𝑀(𝐺) is isomorphic to a subspace of ℬ𝑚𝑜𝑑(𝐿1(𝐺)∗) of all
bilinear and separately continuous right module actions over 𝐿1(𝐺)∗.

1. Introduction

In [21, 22], Rieffel thoroughly investigated the Banach module hom𝐴(𝐴, 𝑋), which represents the space of continuous
homomorphisms between 𝐴 and 𝑋.
Consider 𝐸 and 𝑋 as topological left 𝐴−modules, where 𝐸 and 𝑋 are topological vector spaces (TVS), and 𝐴 is a
topological algebra. Let hom𝐴(𝐸, 𝑋) represent the vector space of continuous linear left 𝐴−module homomorphisms
from 𝐸 to 𝑋.When 𝐸 is an 𝐴−bimodule, the operation (𝑎 ∗ 𝑇)(𝑥) = 𝑇(𝑥 ⋅ 𝑎) defines a left 𝐴−module structure on
hom𝐴(𝐸, 𝑋). In particular, for any 𝑏 ∈ 𝐴 and 𝑥 ∈ 𝐸, this satisfies the relation:

(𝑎 ∗ 𝑇)(𝑏 ⋅ 𝑥) = 𝑇(𝑏 ⋅ 𝑥) ⋅ 𝑎 = 𝑇(𝑏 ⋅ (𝑥 ⋅ 𝑎)) = 𝑏 ⋅ 𝑇(𝑥 ⋅ 𝑎) = 𝑏 ⋅ (𝑎 ∗ 𝑇)(𝑥).

Notably, hom𝐴(𝐴, 𝑋) also acquires a left 𝐴−module structure under this definition. Furthermore, if 𝐴 is commutative,
the operation (𝑇 ∗ 𝑎)(𝑥) = 𝑇(𝑎 ⋅ 𝑥) gives hom𝐴(𝐸, 𝑋) a right 𝐴−module structure. If 𝐸 = 𝑋 = 𝐴, then hom𝐴(𝐴, 𝐴)
is the usual multiplier algebra of 𝐴, and is denoted by𝑀(𝐴). Indeed, a strong correlation exists between the concepts
of module homomorphisms, multipliers and quasi-multipliers.
For any Banach space 𝑋, by 𝑋∗ we denote the first dual space of 𝑋 and for each 𝑥 ∈ 𝑋 and 𝜁 ∈ 𝑋∗, by ⟨𝑥, 𝜁⟩ (and also
⟨𝜁, 𝑥⟩) we denote the natural duality between 𝑋 and 𝑋∗.We always consider 𝑋 as naturally embedded into 𝑋∗∗ through
the mapping 𝜋, which is given by ⟨𝜋(𝑥), 𝜁⟩ = ⟨𝜁, 𝑥⟩ (𝑥 ∈ 𝑋, 𝜁 ∈ 𝑋∗).
Let 𝐴 be a Banach algebra. On 𝐴∗∗ there exist two natural multiplications called the first and second Arens products.
In this paper, we equip 𝐴∗∗ with the first Arens product whose definition are recalled below. Let 𝑎 ∈ 𝐴, 𝜁 ∈ 𝐴∗, and
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𝐹, 𝐺 ∈ 𝐴∗∗ be arbitrary. Then one defines 𝜁 ⋅ 𝑎 and 𝐺 ⋅ 𝜁 as ⟨𝜁 ⋅ 𝑎, 𝑏⟩ = ⟨𝜁, 𝑎𝑏⟩ and ⟨𝐺 ⋅ 𝜁, 𝑏⟩ = ⟨𝐺, 𝜁 ⋅ 𝑏⟩, where 𝑏 ∈ 𝐴
is arbitrary. Now, the first Arens product of 𝐹 and 𝐺 is an element 𝐹 ∘𝐺 in 𝐴∗∗ which is given by ⟨𝐹 ∘𝐺, 𝜁⟩ = ⟨𝐹, 𝐺 ⋅𝜁⟩,
where 𝜁 ∈ 𝐴∗ is arbitrary. The second Arens product, which we denote by ∘′, is defined in a similar way. Equipped
with these multiplications, 𝐴∗∗ is a Banach algebra and 𝐴 is a subalgebra of it.
A Banach algebra 𝐴 is called factorable if 𝐴𝐴 = 𝐴. By 𝐴∗𝐴 we denote the subspace {𝜁 ⋅ 𝑎; 𝜁 ∈ 𝐴∗, 𝑎 ∈ 𝐴} of 𝐴∗.
Similarly, 𝐴𝐴∗ = {𝑎 ⋅ 𝜁; 𝑎 ∈ 𝐴, 𝜁 ∈ 𝐴∗}. If 𝐴∗𝐴 = 𝐴∗, then we say that 𝐴∗ factors on the left. Similarly, 𝐴∗ factors on
the right if 𝐴𝐴∗ = 𝐴∗.
In [1], [2], [3], [4] and [5], we investigated the extent to which the study of quasi-multipliers could be made beyond
Banach algebras. We considered the notion of quasi-multipliers on various frameworks of 𝑓−algebra, 𝓁−algebra, dual
of a Banach algebra, general topological algebra setting and gave an account, how far one could get beyond Banach
algebras, using combination of standard methods.
In this paper, we define the quasi-multipliers on quasi-ideals of a Banach algebra and extend the notion of strict
topology on the space ℬ𝑚𝑜𝑑(𝐴∗) of all bilinear module actions over 𝐴∗.

2. A generalization of bilinear module actions

Definition 2.1. A bilinear mapping𝑚 ∶ 𝐴∗ × 𝐴 → 𝐴∗ is called a right bilinear module action over 𝐴∗ if

𝑚(𝑎 ⋅ 𝜁, 𝑏) = 𝑎 ⋅ 𝑚(𝜁, 𝑏) and 𝑚(𝜁, 𝑏𝑎) = 𝑚(𝜁, 𝑏) ⋅ 𝑎 (1)

hold for arbitrary 𝜁 ∈ 𝐴∗ and 𝑎, 𝑏 ∈ 𝐴.
Similarly, a bilinear mapping𝑚′ ∶ 𝐴 × 𝐴∗ → 𝐴∗ is called a left bilinear module action over 𝐴∗ if

𝑚′(𝑎𝑏, 𝜁) = 𝑎 ⋅ 𝑚′(𝑏, 𝜁) and 𝑚′(𝑏, 𝜁 ⋅ 𝑎) = 𝑚′(𝑏, 𝜁) ⋅ 𝑎

hold for arbitrary 𝜁 ∈ 𝐴∗ and 𝑎, 𝑏 ∈ 𝐴.
Let ℬ𝑚𝑜𝑑(𝐴∗) be the set of all bilinear and separately continuous right bilinear module actions over 𝐴∗. It is obvious
that ℬ𝑚𝑜𝑑(𝐴∗) is a linear space. Moreover, it is a Banach space with respect to the norm

||𝑚|| = sup{||𝑚(𝜁, 𝑎)||; 𝜁 ∈ 𝐴∗, 𝑎 ∈ 𝐴, ||𝜁|| ≤ 1, ||𝑎|| ≤ 1}.

Let 𝐴 be a general Banach algebra. Then a map 𝑇 ∶ 𝐴∗ → 𝐴∗ is called a right module action over 𝐴∗ if

𝑇(𝑎 ⋅ 𝜁) = 𝑎 ⋅ 𝑇(𝜁),

for all 𝜁 ∈ 𝐴∗, 𝑎 ∈ 𝐴.Withℳ𝑚𝑜𝑑(𝐴∗) we denote the space of all bounded linear right module actions over 𝐴∗.
Definition 2.2. A bounded approximate identity {𝑒𝜆 ∶ 𝜆 ∈ 𝐼} in a Banach algebra 𝐴 is said to be ultra∗−approximate
identity if, for all𝑚 ∈ ℬ𝑚𝑜𝑑(𝐴∗) and 𝜁 ∈ 𝐴∗, the net {𝑚(𝜁, 𝑒𝜆) ∶ 𝜆 ∈ 𝐼} is Cauchy in 𝐴∗.
Theorem 2.3. Let 𝐴 be factorable with an ultra∗−approximate identity {𝑒𝜆}. Then the mapping 𝜌 ∶ ℳ𝑚𝑜𝑑(𝐴∗) →
ℬ𝑚𝑜𝑑(𝐴∗), defined by

𝜌𝑇(𝜁, 𝑎) = (𝑇𝜁) ⋅ 𝑎 (𝑇 ∈ ℳ𝑚𝑜𝑑(𝐴∗), 𝜁 ∈ 𝐴∗, 𝑎 ∈ 𝐴),
is a bijective with norm ‖𝜌‖ ≤ 1. If {𝑒𝜆} is of norm one, then 𝜌 is an isometry.

Proof. Let 𝑇 ∈ ℳ𝑚𝑜𝑑(𝐴∗) be arbitrary. It is obvious that 𝜌𝑇 is a bilinear map from 𝐴∗×𝐴 to 𝐴∗ and that it is bounded
with ‖𝑇‖. For 𝜁 ∈ 𝐴∗, and 𝑎, 𝑏 ∈ 𝐴, we have

𝜌𝑇(𝑎 ⋅ 𝜁, 𝑏) = 𝑇(𝑎 ⋅ 𝜁) ⋅ 𝑏 = (𝑎 ⋅ 𝑇𝜁) ⋅ 𝑏 = 𝑎 ⋅ (𝑇𝜁 ⋅ 𝑏) = 𝑎 ⋅ 𝜌𝑇(𝜁, 𝑏)

and
𝜌𝑇(𝜁, 𝑏𝑎) = (𝑇𝜁) ⋅ (𝑏𝑎) = (𝑇𝜁 ⋅ 𝑏) ⋅ 𝑎 = 𝜌𝑇(𝜁, 𝑏) ⋅ 𝑎.

Thus, 𝜌𝑇 ∈ ℬ𝑚𝑜𝑑(𝐴∗). It follows from the definition that 𝜌 ∶ ℳ𝑚𝑜𝑑(𝐴∗) → ℬ𝑚𝑜𝑑(𝐴∗) is linear. Obviously, ‖𝜌𝑇‖ ≤
‖𝑇‖, which gives ‖𝜌‖ ≤ 1. If 𝜌𝑇 = 0, then we have (𝑇𝜁) ⋅ 𝑎 = 0 for every 𝜁 ∈ 𝐴∗ and 𝑎 ∈ 𝐴. So for each 𝑏 ∈ 𝐴,
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⟨𝑇𝜁 ⋅ 𝑎, 𝑏⟩ = ⟨𝑇𝜁, 𝑎𝑏⟩ = 0. Since 𝐴 is factorable, consequently 𝑇 = 0. Now, let 𝑚 ∈ ℬ𝑚𝑜𝑑(𝐴∗) be arbitrary. The
mapping 𝑇𝜁 = lim𝜆𝑚(𝜁, 𝑒𝜆) belong toℳ𝑚𝑜𝑑(𝐴∗) and 𝜌𝑇(𝜁, 𝑎) = (𝑇𝜁) ⋅ 𝑎 = lim𝜆𝑚(𝜁, 𝑒𝜆) ⋅ 𝑎 = 𝑚(𝜁, 𝑎) hold for
all 𝜁 ∈ 𝐴∗ and 𝑎 ∈ 𝐴.Which means that 𝜌 is onto.
At the end assume that {𝑒𝜆} is a approximate identity for𝐴 of norm one. Let 𝑇 ∈ ℳ𝑚𝑜𝑑(𝐴∗) and 𝜀 > 0 be arbitrary. Let
𝜁 ∈ 𝐴∗ is such that ‖𝜁‖ ≤ 1 and ‖𝑇‖−𝜀 < ‖𝑇𝜁‖. Since for arbitrary 𝑎 ∈ 𝐴, lim𝜆⟨𝑇𝜁⋅𝑒𝜆 , 𝑎⟩ = lim𝜆⟨𝑇𝜁, 𝑒𝜆 .𝑎⟩ = ⟨𝑇𝜁, 𝑎⟩,
we have

‖𝜌𝑇‖ ≥ lim
𝜆
‖𝜌𝑇(𝜁, 𝑒𝜆)‖ = lim

𝜆
‖𝑇𝜁 ⋅ 𝑒𝜆‖ > ‖𝑇‖ − 𝜀,

and so, 𝜌 is an isometry.

Let 𝐴 be factorable with an ultra∗−approximate identity. We may therefore use the Theorem 2.3 to define a multipli-
cation in ℬ𝑚𝑜𝑑(𝐴∗) making it a Banach algebra. We outline the details as follows.
Let 𝑚1, 𝑚2 ∈ ℬ𝑚𝑜𝑑(𝐴∗). By virtue of the above Theorem, there exist 𝑇1, 𝑇2 ∈ ℳ𝑚𝑜𝑑(𝐴∗) such that 𝑚1 = 𝜌𝑇1 and
𝑚2 = 𝜌𝑇2 . Then

𝑚1 ∘𝜌 𝑚2 = 𝜌𝑇1 ∘𝜌 𝜌𝑇2 ∶= 𝜌𝑇2𝑇1
gives a well defined multiplication.
Note that ℬ𝑚𝑜𝑑(𝐴∗) can be turned into an A-bimodule in the following way: For each𝑚 ∈ ℬ𝑚𝑜𝑑(𝐴∗) and 𝑎 ∈ 𝐴, the
products 𝑎 ∗ 𝑚 and𝑚 ∗ 𝑎 can be defined as mappings from 𝐴∗ × 𝐴 into 𝐴∗ by

(𝑎 ∗ 𝑚)(𝜁, 𝑏) = 𝑚(𝜁 ⋅ 𝑎, 𝑏),
(𝑚 ∗ 𝑎)(𝜁, 𝑏) = 𝑚(𝜁, 𝑎𝑏), 𝜁 ∈ 𝐴∗, 𝑏 ∈ 𝐴.

It is easy to see that 𝑎 ∗ 𝑚, 𝑚 ∗ 𝑎 ∈ ℬ𝑚𝑜𝑑(𝐴∗), so that ℬ𝑚𝑜𝑑(𝐴∗) is an 𝐴-bimodule.

Definition 2.4. The strict topology 𝛽 on ℬ𝑚𝑜𝑑(𝐴∗) is defined by the seminorm

𝑚 → ‖𝑚 ∗ 𝑎‖ (𝑎 ∈ 𝐴, 𝑚 ∈ ℬ𝑚𝑜𝑑(𝐴∗)).

Let 𝐴 and 𝐵 be two factorable Banach algebras with an ultra∗−approximate identity, and let 𝜑 ∶ 𝐵 → 𝐴 be a ho-
momorphism such that 𝜑∗ ∶ 𝐴∗ → 𝐵∗ be onto. We define 𝜑 ∶ ℬ𝑚𝑜𝑑(𝐴∗) → ℬ𝑚𝑜𝑑(𝐵∗) by [𝜑(𝑚)](𝜑∗(𝜁), 𝑏) =
𝜑∗(𝑚(𝜁, 𝜑(𝑏))) for each 𝜁 ∈ 𝐴∗ and 𝑏 ∈ 𝐵.

Theorem 2.5. Let 𝐴, 𝐵, 𝜑, 𝜑∗ and 𝜑 be as above and 𝛽𝐴 and 𝛽𝐵 denote the strict topology 𝛽 on ℬ𝑚𝑜𝑑(𝐴∗) and
ℬ𝑚𝑜𝑑(𝐵∗), respectively. If 𝜑 ∶ 𝐵 → 𝐴 is continuous, then so is 𝜑 ∶ (ℬ𝑚𝑜𝑑(𝐴∗), 𝛽𝐴) → (ℬ𝑚𝑜𝑑(𝐵∗), 𝛽𝐵) a continuous
homomorphism.

Definition 2.6. A subalgebra 𝐴 of an algebra 𝐵 is called a quasi-ideal of 𝐵 if 𝐴𝐵𝐴 ⊂ 𝐴.

Definition 2.7. Let 𝐴 be a quasi-ideal of the algebra 𝐵, then there is a linear mapping Ψ𝐵 ∶ 𝐵 → ℬ𝑚𝑜𝑑(𝐴∗) defined
by, for any 𝑏 ∈ 𝐵

Ψ𝐵(𝑏)(𝜁, 𝑎) = 𝜁 ⋅ 𝑏𝑎, for all 𝜁 ∈ 𝐴∗, 𝑎 ∈ 𝐴.

Note that for arbitrary 𝑎′ ∈ 𝐴, we may define ⟨𝜁 ⋅ 𝑏𝑎, 𝑎′⟩ = ⟨𝜁, 𝑎′𝑏𝑎⟩.

Definition 2.8. The topology {Ψ−1
𝐵 (𝜗) ∶ 𝜗 ∈ 𝛽𝐴} on 𝐵, will be denoted by 𝑢(𝐵,𝐴). A net 𝑏𝛼 in 𝐵 is 𝑢(𝐵,𝐴)−converges

to some 𝑏 ∈ 𝐵 precisely when lim𝛼 ‖𝜁 ⋅ 𝑏𝛼𝑎 − 𝜁 ⋅ 𝑏𝑎‖ = 0 for all 𝑎 ∈ 𝐴, 𝜁 ∈ 𝐴∗

Theorem 2.9. Let 𝐴 be factorable with an ultra∗−approximate identity {𝑒𝛼}. If 𝐴 is a quasi-ideal of an algebra 𝐵,
then the mapping Ψ𝐵 is a (𝑢(𝐵,𝐴), 𝛽𝐴)-continuous homomorphism of 𝐵 to ℬ𝑚𝑜𝑑(𝐴∗).

Corollary 2.10. If the mapping 𝜙𝐵 is one to one. Then the algebra 𝐵 may be regarded as a subset of ℬ𝑚𝑜𝑑(𝐴∗).
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Now, if we note that every ideal is a quasi-ideal and 𝐿1(𝐺) and 𝐿∞(𝐺) are quasi-ideals of𝑀(𝐺),we have the following
example.
Let 𝑀(𝐺) denote the convolution algebra of all bounded regular measures on 𝐺. Recall that the convolution product
of 𝑓 ∈ 𝐿1(𝐺) and 𝜇 ∈ 𝑀(𝐺) is defined by

𝑓 ∗ 𝜇(𝑥) = න
𝐺
𝑓(𝑥𝑦−1) 𝑑𝜇(𝑦).

Example 2.11. Let 𝐺 be a compact group and 𝐴 = 𝐿1(𝐺). Then the equation

(Ψ𝜇(𝜁, 𝑓) ∶= (𝜁 ∗ 𝜇) ∗ 𝑓 (𝜇 ∈ 𝑀(𝐺), 𝜁 ∈ 𝐿∞(𝐺), 𝑓 ∈ 𝐿1(𝐺)).

defines a linear isomorphism between𝑀(𝐺) and a subspace of ℬ𝑚𝑜𝑑(𝐴∗).

Proof. By the definition of module action, we have (𝜁 ∗ 𝜇) ∗ 𝑓 = 𝜁 ∗ (𝜇 ∗ 𝑓) which shows that Ψ𝜇 ∈ ℬ𝑚𝑜𝑑(𝐿1(𝐺)∗).
Clearly, Ψ ∶ 𝑀(𝐺) → ℬ𝑚𝑜𝑑(𝐿1(𝐺)∗) is a bounded linear map. We claim that Ψ is injective.To see this, accume
Ψ𝜇 = 0. This implies that (𝜁 ∗ 𝜇) ∗ 𝑓 = 0 for all 𝜁 ∈ 𝐿∞(𝐺) and 𝑓 ∈ 𝐿1(𝐺). Since 𝐿1(𝐺) has a bounded approximate
identity, it follows that 𝜁 ∘ 𝜇 = 0. Given that the measure algebra𝑀(𝐺) is the dual space of 𝐶0(𝐺) and has a bounded
approximate identity, it shows that 𝜇 = 0, as required.
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Abstract

In this paper, we generalize the concept of module actions over a general Banach algebra 𝐴.We
investigate the strict topology and quasi-strict topology on the space ℬ𝑚𝑜𝑑(𝐴∗), which encom-
passes all bilinear and separately continuous module actions over 𝐴∗. Additionally, we explore
the various properties of these topologies.

1. Introduction

In [21, 22], Rieffel thoroughly investigated the Banach module hom𝐴(𝐴,𝑊),which represents the space of continuous
homomorphisms between 𝐴 and𝑊.
Consider 𝑉 and 𝑊 as topological left 𝐴−modules, where 𝑉 and 𝑊 are topological vector spaces (TVS), and 𝐴 is a
topological algebra. Let hom𝐴(𝑉,𝑊) represent the vector space of continuous linear left 𝐴−module homomorphisms
from 𝑉 to𝑊.When 𝑉 is an 𝐴−bimodule, the operation (𝑎 ∗ 𝑇)(𝑣) = 𝑇(𝑣 ⋅ 𝑎) defines a left 𝐴−module structure on
hom𝐴(𝑉,𝑊). In particular, for any 𝑏 ∈ 𝐴 and 𝑣 ∈ 𝑉, this satisfies the relation:

(𝑎 ∗ 𝑇)(𝑏 ⋅ 𝑣) = 𝑇(𝑏 ⋅ 𝑣) ⋅ 𝑎 = 𝑇(𝑏 ⋅ (𝑣 ⋅ 𝑎)) = 𝑏 ⋅ 𝑇(𝑣 ⋅ 𝑎) = 𝑏 ⋅ (𝑎 ∗ 𝑇)(𝑣).

Notably, hom𝐴(𝐴,𝑊) also acquires a left 𝐴−module structure under this definition. Furthermore, if 𝐴 is commutative,
the operation (𝑇 ∗ 𝑎)(𝑣) = 𝑇(𝑎 ⋅ 𝑣) gives hom𝐴(𝑉,𝑊) a right 𝐴−module structure. If 𝑉 = 𝑊 = 𝐴, then hom𝐴(𝐴, 𝐴)
is the usual multiplier algebra of 𝐴, and is denoted by𝑀(𝐴). Indeed, a strong correlation exists between the concepts
of module homomorphisms, multipliers and quasi-multipliers.
For any Banach space 𝐴, by 𝐴∗ we denote the first dual space of 𝐴 and for each 𝑎 ∈ 𝐴 and 𝜁 ∈ 𝐴∗, by ⟨𝑎, 𝜁⟩ (and also
⟨𝜁, 𝑎⟩) we denote the natural duality between 𝐴 and 𝐴∗.We always consider 𝐴 as naturally embedded into 𝐴∗∗ through
the mapping 𝜋, which is given by ⟨𝜋(𝑎), 𝜁⟩ = ⟨𝜁, 𝑎⟩ (𝑎 ∈ 𝐴, 𝜁 ∈ 𝐴∗).
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Consider 𝐴 to be a Banach algebra. On the bidual space 𝐴∗∗, two natural types of multiplication are defined, referred to
as the first and second Arens products. In this paper, we focus on the first Arens product, whose definition is recalled
below. Let 𝑎 ∈ 𝐴, 𝜁 ∈ 𝐴∗, and 𝐹, 𝐺 ∈ 𝐴∗∗ be arbitrary. The elements 𝜁 ⋅ 𝑎 and 𝐺 ⋅ 𝜁 are defined as follows:

⟨𝜁 ⋅ 𝑎, 𝑏⟩ = ⟨𝜁, 𝑎𝑏⟩ and ⟨𝐺 ⋅ 𝜁, 𝑏⟩ = ⟨𝐺, 𝜁 ⋅ 𝑏⟩,
where 𝑏 ∈ 𝐴 is arbitrary. The first Arens product of 𝐹 and 𝐺, denoted 𝐹∘𝐺, is an element of 𝐴∗∗ defined by ⟨𝐹∘𝐺, 𝜁⟩ =
⟨𝐹, 𝐺 ⋅ 𝜁⟩, where 𝜁 ∈ 𝐴∗ is arbitrary. Similarly, the second Arens product, denoted by ∘′, is defined in an analogous
manner. With these two multiplications, 𝐴∗∗ becomes a Banach algebra, and 𝐴 forms a subalgebra of 𝐴∗∗.
A Banach algebra 𝐴 is called factorable if 𝐴𝐴 = 𝐴. Let 𝐴∗𝐴 denotes the subspace {𝜁 ⋅ 𝑎; 𝜁 ∈ 𝐴∗, 𝑎 ∈ 𝐴} of 𝐴∗.
Similarly, 𝐴𝐴∗ is defined as {𝑎 ⋅ 𝜁; 𝑎 ∈ 𝐴, 𝜁 ∈ 𝐴∗}. We say that 𝐴∗ factors on the left if 𝐴∗𝐴 = 𝐴∗, and we say that 𝐴∗
factors on the right if 𝐴𝐴∗ = 𝐴∗.
In [1], [2], [3], [4] and [5], we investigated the extent to which the study of quasi-multipliers could be made beyond
Banach algebras. We examined the notion of quasi-multipliers within the framework of 𝑓−algebra, 𝓁−algebra, dual
of a Banach algebra, general topological algebra and provided an analysis of the extent to which the theory can be
extended beyond Banach algebras through the application of standard methods.
In this paper, we extend the notion of module actions and introduce several notions of strict topology and quasi-strict
topology on the space ℬ𝑚𝑜𝑑(𝐴∗) of all bilinear module actions over 𝐴∗.

2. Generalized module actions

Definition 2.1. Let 𝐴 be a general Banach algebra. A bilinear mapping 𝑚 ∶ 𝐴∗ × 𝐴 → 𝐴∗ is called a right bilinear
module action over 𝐴∗ if the following condition hold for all 𝜁 ∈ 𝐴∗ and 𝑎, 𝑏 ∈ 𝐴 ∶

𝑚(𝑎 ⋅ 𝜁, 𝑏) = 𝑎 ⋅ 𝑚(𝜁, 𝑏) and 𝑚(𝜁, 𝑏𝑎) = 𝑚(𝜁, 𝑏) ⋅ 𝑎. (1)

Similarly, a bilinear map𝑚′ ∶ 𝐴 × 𝐴∗ → 𝐴∗ is called a left bilinear module action over 𝐴∗ if
𝑚′(𝑎𝑏, 𝜁) = 𝑎 ⋅ 𝑚′(𝑏, 𝜁) and 𝑚′(𝑏, 𝜁 ⋅ 𝑎) = 𝑚′(𝑏, 𝜁) ⋅ 𝑎

hold for arbitrary 𝜁 ∈ 𝐴∗ and 𝑎, 𝑏 ∈ 𝐴.
Let ℬ𝑚𝑜𝑑(𝐴∗) denotes the set of all bilinear and separately continuous right bilinear module actions over 𝐴∗. It is clear
that ℬ𝑚𝑜𝑑(𝐴∗) forms a linear space. Furthermore, it is a Banach space when equipped with the norm

||𝑚|| = sup{||𝑚(𝜁, 𝑎)||; 𝜁 ∈ 𝐴∗, 𝑎 ∈ 𝐴, ||𝜁|| ≤ 1, ||𝑎|| ≤ 1}.
Let 𝐴 be a general Banach algebra. A map 𝑇 ∶ 𝐴∗ → 𝐴∗ is called a right module action over 𝐴∗ if

𝑇(𝑎 ⋅ 𝜁) = 𝑎 ⋅ 𝑇(𝜁),
for all 𝜁 ∈ 𝐴∗, 𝑎 ∈ 𝐴. We denote by ℳ𝑚𝑜𝑑(𝐴∗), the space of all bounded linear right module actions over 𝐴∗. It is
clear that for each 𝑎 ∈ 𝐴, the right multiplication operator 𝑅𝑎 defined by 𝑅𝑎𝜁 = 𝜁 ⋅ 𝑎 is a right module action over 𝐴∗.
Definition 2.2. A bounded approximate identity {𝑒𝜆 ∶ 𝜆 ∈ 𝐼} in a Banach algebra 𝐴 is called ultra∗−approximate
identity if, for every𝑚 ∈ ℬ𝑚𝑜𝑑(𝐴∗) and 𝜁 ∈ 𝐴∗, the net {𝑚(𝜁, 𝑒𝜆) ∶ 𝜆 ∈ 𝐼} is Cauchy in 𝐴∗.
Theorem2.3. Let𝐴 be a factorable Banach algebrawith an ultra∗−approximate identity {𝑒𝜆}. Then themap𝜌 ∶ ℳ𝑚𝑜𝑑(𝐴∗) →
ℬ𝑚𝑜𝑑(𝐴∗), defined by

𝜌𝑇(𝜁, 𝑎) = (𝑇𝜁) ⋅ 𝑎 (𝑇 ∈ ℳ𝑚𝑜𝑑(𝐴∗), 𝜁 ∈ 𝐴∗, 𝑎 ∈ 𝐴),
is a bijective with ‖𝜌‖ ≤ 1. Furthermore, if {𝑒𝜆} is a bounded approximate identity with norm one, then 𝜌 is an
isometry.
Let 𝐴 be a factorable Banach algebra with an ultra∗−approximate identity. Using Theorem 2.3, we can define a
multiplication operation in ℬ𝑚𝑜𝑑(𝐴∗) that turns it into a Banach algebra. The procedure is outlined below:
Let𝑚1, 𝑚2 ∈ ℬ𝑚𝑜𝑑(𝐴∗). By the results of the previous theorem, there exist 𝑇1, 𝑇2 ∈ ℳ𝑚𝑜𝑑(𝐴∗) such that𝑚1 = 𝜌𝑇1
and𝑚2 = 𝜌𝑇2 . The multiplication of𝑚1 and𝑚2  is then given by

𝑚1 ∘𝜌 𝑚2 = 𝜌𝑇1 ∘𝜌 𝜌𝑇2 ∶= 𝜌𝑇2𝑇1 ,
which defines a well-defined multiplication in ℬ𝑚𝑜𝑑(𝐴∗).
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3. Strict topology and quasi-strict topology on ℬ𝑚𝑜𝑑(𝐴∗)
This section is dedicated to defining the strict topology and quasi-strict topology on ℬ𝑚𝑜𝑑(𝐴∗), and to extending
various related results from [6, 8, 10] to bilinear module actions.
Note that ℬ𝑚𝑜𝑑(𝐴∗) can be turned into an A-bimodule in the following way. Let 𝑚 ∈ ℬ𝑚𝑜𝑑(𝐴∗) and 𝑎 ∈ 𝐴. The
operations 𝑎 ∗ 𝑚 and𝑚 ∗ 𝑎 can be defined as functions that map from 𝐴∗ × 𝐴 to 𝐴∗, defined by

(𝑎 ∗ 𝑚)(𝜁, 𝑏) = 𝑚(𝜁 ⋅ 𝑎, 𝑏),
(𝑚 ∗ 𝑎)(𝜁, 𝑏) = 𝑚(𝜁, 𝑎𝑏), 𝜁 ∈ 𝐴∗, 𝑏 ∈ 𝐴.

It is easy to see that 𝑎 ∗ 𝑚, 𝑚 ∗ 𝑎 ∈ ℬ𝑚𝑜𝑑(𝐴∗), thus ℬ𝑚𝑜𝑑(𝐴∗) forms an 𝐴-bimodule.
In the following, 𝜏 represents the topology on ℬ𝑚𝑜𝑑(𝐴∗) generated by the norm.
Definition 3.1. The strict topology 𝛽 on ℬ𝑚𝑜𝑑(𝐴∗) is characterized by the seminorm

𝑚 → ‖𝑚 ∗ 𝑎‖ (𝑎 ∈ 𝐴, 𝑚 ∈ ℬ𝑚𝑜𝑑(𝐴∗)).
Definition 3.2. The quasi-strict topology 𝛾 on ℬ𝑚𝑜𝑑(𝐴∗) is characterized by the seminorm

𝑚 → ‖𝑚(𝜁, 𝑎)‖ (𝜁 ∈ 𝐴∗, 𝑎 ∈ 𝐴, 𝑚 ∈ ℬ𝑚𝑜𝑑(𝐴∗)).
Lemma 3.3. If 𝐴 is factorable, then 𝛾 ⊆ 𝛽 ⊆ 𝜏.
Proof. Consider the net {𝑚𝛼}𝛼∈𝐼 in ℬ𝑚𝑜𝑑(𝐴∗), which converges in the 𝛽-topology to 𝑚 ∈ ℬ𝑚𝑜𝑑(𝐴∗). Let 𝜁 ∈ 𝐴∗
be arbitrary. Since 𝐴 is factorable, for any 𝑎 ∈ 𝐴, there exist 𝑏, 𝑐 ∈ 𝐴 such that 𝑎 = 𝑏𝑐. By the definition of the
𝛽-topology, we have ||𝑚𝛼 ∗ 𝑏 − 𝑚 ∗ 𝑏|| → 0. Therefore,

||𝑚𝛼(𝜁, 𝑎) − 𝑚(𝜁, 𝑎)|| = ||𝑚𝛼(𝜁, 𝑏𝑐) − 𝑚(𝜁, 𝑏𝑐)||
= ||(𝑚𝛼 ∗ 𝑏)(𝜁, 𝑐) − (𝑚 ∗ 𝑏)(𝜁, 𝑐)|| → 0.

This implies that {𝑚𝛼}𝛼∈𝐼 is 𝛾-convergent to𝑚. Clearly, 𝛽 ⊆ 𝜏.
Proposition 3.4. Let 𝐴 be a factorable Banach algebra with an ultra∗−approximate identity. If 𝐴∗ factors on the right
then the map

𝜙𝐴 ∶ (𝐴, 𝜏) → (ℬ𝑚𝑜𝑑(𝐴∗), 𝛽)
defined by

(𝜙𝐴(𝑎))(𝜁, 𝑏) = 𝜁 ⋅ 𝑎𝑏
is a continuous monomorphism.

Proof. Consider a net {𝑎𝛼} in 𝐴, which converges to 𝑎 ∈ 𝐴 in the topology 𝜏. For each 𝜁 ∈ 𝐴∗ and 𝑏, 𝑐 ∈ 𝐴, we have
‖(𝜙𝐴(𝑎𝛼) ∗ 𝑏)(𝜁, 𝑐) − (𝜙𝐴(𝑎) ∗ 𝑏)(𝜁, 𝑐)‖ = ‖(𝜙𝐴(𝑎𝛼))(𝜁, 𝑏𝑐) − (𝜙𝐴(𝑎))(𝜁, 𝑏𝑐)‖

= ‖𝜁 ⋅ 𝑎𝛼𝑏𝑐 − 𝜁 ⋅ 𝑎𝑏𝑐‖ → 0.

Hence 𝜙𝐴(𝑎𝛼) →𝛽 𝜙𝐴(𝑎). Now, we show that 𝜙𝐴 is a multiplicative. Let 𝑎1, 𝑎2 ∈ 𝐴. According to Theorem 2.3,
there exist 𝑇1, 𝑇2 ∈ ℳ𝑚𝑜𝑑(𝐴∗) such that 𝜙𝐴(𝑎1) = 𝜌𝑇1 and 𝜙𝐴(𝑎2) = 𝜌𝑇2 . Therefore, for any 𝜁 ∈ 𝐴∗, 𝑏 ∈ 𝐴, we
obtain

𝑇1(𝜁) ⋅ 𝑏 = 𝜁 ⋅ 𝑎1𝑏 and 𝑇2(𝜁) ⋅ 𝑏 = 𝜁 ⋅ 𝑎2𝑏.
It follows

(𝜙𝐴(𝑎1) ∘𝜌 𝜙𝐴(𝑎2))(𝜁, 𝑏) = 𝜌𝑇2𝑇1(𝜁, 𝑏) = 𝑇2(𝑇1(𝜁)) ⋅ 𝑏 = 𝑇1𝜁 ⋅ (𝑎2𝑏)
= 𝜁 ⋅ 𝑎1𝑎2𝑏 = 𝜙𝐴(𝑎1𝑎2)(𝜁, 𝑏).

Assume that 𝜙𝐴(𝑎) = 0 for 𝑎 ∈ 𝐴. So for arbitrary 𝜁 ∈ 𝐴∗ and 𝑏 ∈ 𝐴, ⟨𝜁, 𝑎𝑏⟩ = 0 which show that ⟨𝜋(𝑎), 𝑏 ⋅ 𝜁⟩ =
⟨𝑏 ⋅ 𝜁, 𝑎⟩ = ⟨𝜁, 𝑎𝑏⟩ = 0. From the assumption that 𝐴∗ factors on the right, we deduce that 𝑎 = 0. Thus, 𝜙𝐴 is
injective.
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Proposition 3.5. Let 𝐴 be factorable with an ultra∗−approximate identity. If 𝐴∗ factors on the right then 𝜙𝐴(𝐴) is
closed in the 𝛽-topology.

Proof. Let𝑚 ∈ ℬ𝑚𝑜𝑑(𝐴∗)with𝑚 ∈ 𝛽−𝑐𝑙(𝜙𝐴(𝐴)). There exist a net {𝑎𝛼} such that𝜙𝐴(𝑎𝛼) →𝛽 𝑚. By the definition
of the 𝛽-topology, the net {𝑎𝛼} is 𝜏−Cauchy. Since 𝐴 is complete, there exist 𝑎 ∈ 𝐴 such that 𝑎𝛼 →𝜏 𝑎. By Proposition
3.4, 𝜙𝐴 is one to one and (𝜏, 𝛽)−continuous, it is clear that 𝑎𝛼 →𝜏 𝑎 iff 𝜙𝐴(𝑎𝛼) →𝛽 𝜙𝐴(𝑎). So for each 𝜁 ∈ 𝐴∗ and
𝑦 ∈ 𝐴,

𝑚(𝜁, 𝑦) = lim
𝛼
𝜑𝐴(𝑎𝛼)(𝜁, 𝑦) = 𝜙𝐴(𝑎)(𝜁, 𝑦).

This shows that𝑚 = 𝜙𝐴(𝑎), so 𝜙𝐴(𝐴) is 𝛽−closed.

Theorem 3.6. Assume that 𝐴 is a factorable algebra with an ultra∗−approximate identity. Then (ℬ𝑚𝑜𝑑(𝐴∗), 𝛾),
(ℬ𝑚𝑜𝑑(𝐴∗), 𝜏) and (ℬ𝑚𝑜𝑑(𝐴∗), 𝛽) have identical bounded sets.

Theorem 3.7. Suppose that 𝐴 is factorable and has an ultra∗-approximate identity.
(i) The space (ℬ𝑚𝑜𝑑(𝐴∗), 𝛾) is complete.
(ii) In the case where 𝐴 has an approximate identity of norm one, the space (ℬ𝑚𝑜𝑑(𝐴∗), 𝛽) is complete.
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Abstract

In this research, we first introduce intuitionistic fuzzy modules, which are a generalization of
fuzzy modules, and investigate their basic properties. Then, by introducing small intuitionistic
fuzzy submodules of a module, we study their relationship with small classical submodules. For
example, we will examine the relationship between a small intuitionistic fuzzy submodule and
its level sets in the classical case.

1. Introduction and Preliminaries

A map 𝜇 ∶ 𝑋 ⟶ [0, 1] is called a fuzzy subset of the nonempty set 𝑋. The complement of 𝜇, denoted by 𝜇𝑐, is a fuzzy
subset of 𝑋 defined by 𝜇𝑐(𝑥) = 1 − 𝜇(𝑥) for every 𝑥 ∈ 𝑋

Definition 1.1. ([1]) An intuitionistic fuzzy set (briefly an 𝐼𝐹𝑆) 𝐴 of a non-void set 𝑋 is an object having the form
𝐴 = {(𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)); 𝑥 ∈ 𝑋}, where the maps 𝜇𝐴 ∶ 𝑋 ⟶ [0, 1] and 𝜈𝐴 ∶ 𝑋 ⟶ [0, 1], are fuzzy subsets of 𝑋,
denote respectively the degree of membership namely 𝜇𝐴(𝑥) and the degree of non-membership namely 𝜈𝐴(𝑥) for
each element 𝑥 ∈ 𝑋, and 0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1 for all 𝑥 ∈ 𝑋.
For the sake of simplicity, we denote an 𝐼𝐹𝑆, 𝐴 = {(𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)); 𝑥 ∈ 𝑋} of the set 𝑋 by 𝐴 = (𝜇𝐴 , 𝜈𝐴) or briefly
𝐴, and the set of all 𝐼𝐹𝑆 of 𝑋 by 𝐼𝐹𝑆(𝑋).

([1]) Let {𝐴𝑖 = (𝜇𝐴𝑖 , 𝜈𝐴𝑖 )}𝑖∈𝐼 be a family of 𝐼𝐹𝑆 of 𝑋. Then
⋂𝑖∈𝐼 𝐴𝑖 = (𝜇(∩𝑖∈𝐼𝐴𝑖) , 𝜈(∩𝑖∈𝐼𝐴𝑖)) = {(𝑥, ⋀𝑖∈𝐼 𝜇𝐴𝑖 (𝑥), ⋁𝑖∈𝐼 𝜈𝐴𝑖 (𝑥)); 𝑥 ∈ 𝑋} and
⋃𝑖∈𝐼 𝐴𝑖 = (𝜇(∪𝑖∈𝐼𝐴𝑖) , 𝜈(∪𝑖∈𝐼𝐴𝑖)) = {(𝑥, ⋁𝑖∈𝐼 𝜇𝐴𝑖 (𝑥), ⋀𝑖∈𝐼 𝜈𝐴𝑖 (𝑥)); 𝑥 ∈ 𝑋}
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Email addresses: behnamtalaee@nit.ac.ir ( Behnam Talaee), motiee@nit.ac.ir (Mehran Motiee)



84 Talaee & Motiee / The 5th National Congress on Mathematics and Statistics

Definition 1.2. ([3]) Let 𝑀 be an 𝑅−module and 𝐴 = (𝜇𝐴 , 𝜈𝐴) an 𝐼𝐹𝑆 of 𝑀. Then 𝐴 is called an intuitionistic fuzzy
submodule of𝑀 if 𝐴 satisfies the following

1. 𝜇𝐴(0) = 1, 𝜈𝐴(0) = 0
2. 𝜇𝐴(𝑥 + 𝑦) ≥ 𝜇𝐴(𝑥) ∧ 𝜇𝐴(𝑦), for all 𝑥, 𝑦 ∈ 𝑀

𝜈𝐴(𝑥 + 𝑦) ≤ 𝜈𝐴(𝑥) ∨ 𝜈𝐴(𝑦), for all 𝑥, 𝑦 ∈ 𝑀
3. 𝜇𝐴(𝑟𝑥) ≥ 𝜇𝐴(𝑥), for all 𝑥 ∈ 𝑀 and 𝑟 ∈ 𝑅

𝜈𝐴(𝑟𝑥) ≤ 𝜈𝐴(𝑥), for all 𝑥 ∈ 𝑀 and 𝑟 ∈ 𝑅

Definition 1.3. ([1]) Let 𝐴 = (𝜇𝐴 , 𝜈𝐴) and 𝐵 = 𝜇𝐵 , 𝜈𝐵) be two 𝐼𝐹𝑆’s of 𝑀. Then the 𝐼𝐹𝑆, 𝐴 + 𝐵 of 𝑀 is
𝐴 + 𝐵 = {(𝑥, 𝜇𝐴+𝐵(𝑥), 𝜈𝐴+𝐵(𝑥); 𝑥 ∈ 𝑀} defined as

𝜇𝐴+𝐵(𝑥) =ሧ{𝜇𝐴(𝑦) ∧ 𝜇𝐵(𝑧) | 𝑥 = 𝑦 + 𝑧; 𝑦, 𝑧 ∈ 𝑀}

𝜈𝐴+𝐵(𝑥) =ሥ{𝜈𝐴(𝑦) ∨ 𝜈𝐵(𝑧) | 𝑥 = 𝑦 + 𝑧; 𝑦, 𝑧 ∈ 𝑀}

Definition 1.4. ([1]) Let𝑀 be an 𝑅-module, 𝑁 ⊆ 𝑀 and 𝛼 ∈ [0, 1]. Define the 𝐼𝐹𝑆 𝛼𝑁 = (𝜇𝛼𝑁 , 𝜈𝛼𝑁 ) of𝑀 as follows

𝜇𝛼𝑁 (𝑥) = ቊ 𝛼 𝑥 ∈ 𝑁
0 otherwise and ��N

(x) = ቊ 1 − 𝛼 x ∈ N
1 otherwise

for all 𝑥 ∈ 𝑀.

If 𝛼 = 1, then 𝜇𝛼𝑁 = 𝜒𝑁 and 𝜈𝛼𝑁 = 𝜒𝑐𝑁 , where 𝜒𝑁 denotes the characteristic function of 𝑁. In this case we write
𝛼𝑁 = 𝜒𝐼𝐹𝑁 = (𝜒𝑁 , 𝜒𝑐𝑁).
Let 𝐴 ⊆ 𝐵 be two 𝐼𝐹𝑀’s of the module𝑀. Define the quotient intuitionistic fuzzy module 𝐵

𝐴 as an 𝐼𝐹𝑀 of the module
𝑀
𝐴∗ by

𝐵
𝐴 = (𝜇𝐵

𝐴
, 𝜈𝐵

𝐴
) such that for every 𝑥 ∈ 𝐵∗

(𝜇𝐵
𝐴
)([𝑥]) =ሧ{𝜇𝐵(𝑧) | 𝑧 ∈ [𝑥]} and (𝜈𝐵

𝐴
)([𝑥]) =ሥ{𝜈𝐵(𝑧) | 𝑧 ∈ [𝑥]}

where [𝑥] = 𝑥 + 𝐴∗ ∈ 𝑀
𝐴∗ .

Definition 1.5. ([3]) Let𝑀,𝑁 be two 𝑅-modules and 𝑓 ∶ 𝑀 ⟶ 𝑁 an 𝑅-homomorphism. Let 𝐴 = (𝜇𝐴 , 𝜈𝐴) ≤𝐼𝐹 𝑀 and
𝐵 = (𝜇𝐵 , 𝜈𝐵) ≤𝐼𝐹 𝑁. Then 𝑓(𝐴) = (𝜇𝑓(𝐴) , 𝜈𝑓(𝐴)) and 𝑓−1(𝐵) = (𝜇𝑓−1(𝐵) , 𝜈𝑓−1(𝐵)) are 𝐼𝐹𝑀’s of𝑁 and𝑀 respectively,
such that for all 𝑦 ∈ 𝑁

(𝜇𝑓(𝐴))(𝑦) = ቊ ⋁{𝜇𝐴(𝑥)| 𝑦 = 𝑓(𝑥)} 𝑦 ∈ 𝐼𝑚(𝑓)
0 𝑦 ∉ 𝐼𝑚(𝑓)

and

(𝜈𝑓(𝐴))(𝑦) = ቊ ⋀{𝜈𝐴(𝑥)| 𝑦 = 𝑓(𝑥)} 𝑦 ∈ 𝐼𝑚(𝑓)
1 𝑦 ∉ 𝐼𝑚(𝑓)

and for every 𝑥 ∈ 𝑀
(𝜇𝑓−1(𝐵))(𝑥) = 𝜇𝐵(𝑓(𝑥)) and (𝜈𝑓−1(𝐵))(𝑥) = 𝜈𝐵(𝑓(𝑥))

2. Intuitionistic fuzzy small submodules

Definition 2.1. ([4]) Let 𝑀 be a module and 𝐾 ≤ 𝑀. 𝐾 is called a small submodule of 𝑀 (denoted by 𝐾 ≪ 𝑀) if,
𝐾 + 𝐿 ≠ 𝑀 for every proper submodule 𝐿 of𝑀.

In any module𝑀, trivially zero is a small submodule of𝑀 called trivial small submodule. Also𝑀 is not small in𝑀.
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Proposition 2.2. Let𝑀 be a module and 𝐾 ≤ 𝑁 ≤ 𝑀 and 𝐿 ≤ 𝑀. Then
1. 𝐿 + 𝐾 ≪ 𝑀 if and only if 𝐿 ≪ 𝑀 and 𝐾 ≪ 𝑀.
2. 𝑁 ≪ 𝑀 if and only if 𝐾 ≪ 𝑀 and 𝑁

𝐾 ≪ 𝑀
𝐾 .

3. If 𝐾 ≪ 𝑁, then 𝐾 ≪ 𝑀.
4. If𝑀 = 𝑀1 ⊕𝑀2 and 𝐾𝑖 ≤ 𝑀𝑖 for 𝑖 = 1, 2; then 𝐾1 ⊕𝐾2 ≪ 𝑀1 ⊕𝑀2 if and only if 𝐾1 ≪ 𝑀1 and 𝐾2 ≪ 𝑀2.

Now we define the concept of intuitionistic fuzzy small submodule.

Definition 2.3. Let𝑀 be an 𝑅-module. An 𝐼𝐹𝑀, 𝐴 = (𝜇𝐴 , 𝜈𝐴) is called an intuitionistic fuzzy small submodule of𝑀
(denoted by 𝐴 ≪𝐼𝐹 𝑀) if, 𝐴 + 𝐵 ≠ 𝜒𝐼𝐹𝑀 for ever 𝐼𝐹𝑀, 𝐵 ≠ 𝜒𝐼𝐹𝑀 . Equivalently if 𝐴 + 𝐵 = 𝜒𝐼𝐹𝑀 , then 𝐵 = 𝜒𝐼𝐹𝑀 .

Proposition 2.4. Let𝑀 be a module and 𝑁 ≤ 𝑀. Then 𝑁 ≪ 𝑀 if and only if 𝜒𝐼𝐹𝑁 ≪𝐼𝐹 𝑀.

Since 0 is a small submodule in any module𝑀, so 𝜒𝐼𝐹0 ≪𝐼𝐹 𝑀 by above proposition.

Example 2.5. 1. Consider the ℤ-module𝑀 = ℤ. For every 0 ≠ 𝑛 ∈ ℤ the submodule 𝑛ℤ is not small in𝑀. Hence
𝜒𝐼𝐹𝑛ℤ≪̸𝐼𝐹𝑀 for every 0 ≠ 𝑛 ∈ ℤ, by above proposition.

2. Consider the submodules 𝐾 = {0̄, 2̄, 4̄, 6̄, 8̄, ̄10} and 𝐿 = {0̄, 6̄} of 𝑀 = ℤ12 = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄6̄, 7̄, 8̄, 9̄, ̄10, ̄11}
as ℤ-module. It is easy to check that 𝐾≪̸𝑀 and 𝐿 ≪ 𝑀. So 𝜒𝐼𝐹𝐾 ≪̸𝐼𝐹𝑀 and 𝜒𝐼𝐹𝐿 ≪𝐼𝐹 𝑀, by above proposition.

Let 𝐴 = (𝜇𝐴 , 𝜈𝐴) and 𝐵 = (𝜇𝐵 , 𝜈𝐵) be two 𝐼𝐹𝑀’s of the module𝑀 such that 𝐴 ⊆ 𝐵. We say 𝐴 is an small intuitionistic
fuzzy submodule of 𝐵 (denoted by 𝐴 ≪𝐼𝐹 𝐵) if, 𝐴 ≪𝐼𝐹 𝐵∗; that is, for ever 𝐼𝐹𝑀, 𝐶 of 𝑀 satisfying 𝐶|𝐵∗ ≠ 𝜒𝐼𝐹𝐵∗ , we
have 𝐴|𝐵∗ + 𝐶|𝐵∗ ≠ 𝜒𝐼𝐹𝐵∗ , where 𝐴|𝐵∗ = (𝜇𝐴 |𝐵∗ , 𝜈𝐴 |𝐵∗ ) such that 𝜇𝐴 |𝐵∗ and 𝜈𝐴 |𝐵∗ are the restriction mapping of 𝜇𝐴
and 𝜈𝐴 on 𝐵∗ respectively.
Definition 2.6. Let 𝑀,𝑁 be any two modules over a ring 𝑅. An epimorphism 𝑓 ∶ 𝑀 ⟶ 𝑁 is called an intuitionistic
fuzzy small epimorphism if 𝑓−1(𝜒𝐼𝐹0 ) ≪𝐼𝐹 𝑀 so that 𝑓−1(𝜒𝐼𝐹0 ) = 𝜒𝐼𝐹𝐾𝑒𝑟(𝑓) clearly.
Proposition 2.7. Let𝑀 be a module and 𝐴 = (𝜇𝐴 , 𝜈𝐴) ≤𝐼𝐹 𝑀. Then 𝐴 ≪𝐼𝐹 𝑀 if and only if 𝐴∗ ≪ 𝑀.

Example 2.8. 1. Let𝑀 = ℤ6 and 𝑆 = {0̄, 2̄, 4̄}. Define the 𝐼𝐹𝑀, 𝐴 = (𝜇𝐴 , 𝜈𝐴) of ℤ6 by

𝜇𝐴 = ቊ
1 𝑥 ∈ 𝑆
1
2 otherwise and �A = ቊ

0 x ∈ S
1
3 otherwise

Then 𝐴∗ = 𝑆 is not a small submodule of𝑀 (𝑆 + {0̄, 3̄} = 𝑀), so by above proposition 𝐴≪̸𝐼𝐹𝑀.
2. Let𝑀 = 𝑍8 and 𝑆 = {0̄, 2̄, 4̄, 6̄} which is a small submodule of𝑀. Define the 𝐼𝐹𝑀, 𝐴 = (𝜇𝐴 , 𝜈𝐴)of𝑀 by

𝜇𝐴 = ቊ 1 𝑥 ∈ 𝑆
𝛼 otherwise and �A = ቊ 0 x ∈ S

𝛽 otherwise

where 0 < 𝛼 + 𝛽 < 1. Then 𝐴∗ = 𝑆 is small in𝑀, so 𝐴 ≪𝐼𝐹 𝑀 by above proposition.

Corollary 2.9. Let 𝐴, 𝐵 be two 𝐼𝐹𝑀’s of an 𝑅-module𝑀 such that 𝐴 ⊆ 𝐵. Then 𝐴 ≪𝐼𝐹 𝐵 if and only if 𝐴∗ ≪ 𝐵∗.

Example 2.10. Consider𝑀 = ℤ
24ℤ and 𝑁 = 12ℤ

24ℤ as ℤ-modules. Let 𝐴 = (𝜇𝐴 , 𝜈𝐴) and 𝐵 = (𝜇𝐵 , 𝜈𝐵) be two 𝐼𝐹𝑀’s of
𝑀 such that for every 𝑥 ∈ 𝑀:

𝜇𝐴(𝑥) = ቊ
1 𝑥 ∈ 𝑁
3
4 otherwise

𝜈𝐴(𝑥) = ቊ
0 𝑥 ∈ 𝑁
1
6 otherwise

and

𝜇𝐵(𝑥) = ൞
1 𝑥 = 0
3
4 𝑥 ∈ 𝑁 {0}
1
2 otherwise
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𝜈𝐵(𝑥) = ൞
0 𝑥 = 0
1
8 𝑥 ∈ 𝑁 {0}
1
4 otherwise

It is not difficult to check that 𝐴∗ = 𝑁,𝐵∗ = 𝑀 and 𝑁 ≪ 𝑀. So by Corollary 3.9, 𝐴 ≪𝐼𝐹 𝐵.

Lemma2.11. Let𝑀 be amodule and𝐴 = (𝜇𝐴 , 𝜈𝐴),𝐵 = (𝜇𝐵 , 𝜈𝐵) and𝐶 = (𝜇𝐶 , 𝜈𝐶) be 𝐼𝐹𝑀’s of𝑀. Then𝐴∩(𝐵+𝐶) ⊇
(𝐴 ∩ 𝐵) + (𝐴 ∩ 𝐶). Moreover if 𝐵 ⊆ 𝐴, then 𝐴 ∩ (𝐵 + 𝐶) = 𝐵 + (𝐴 ∩ 𝐶).

Definition 2.12. Let 𝑀 be a module and 𝐴, 𝐵, 𝐶 be 𝐼𝐹𝑀’s of 𝑀 such that 𝐵 ⊆ 𝐴 and 𝑐 ⊆ 𝐴. Then 𝐴 is called an 𝐼𝐹
direct sum of 𝐵 and 𝐶 if,

𝐴 = 𝐵 + 𝐶 and 𝐵 ∩ 𝐶 = 𝜒𝐼𝐹0
In this case we write 𝐴 = 𝐵⊕𝐼𝐹 𝐶 and say 𝐵, 𝐶 are 𝐼𝐹 direct summands of 𝐴.

If whenever 𝐴 ∩ 𝐵 = 𝜒𝐼𝐹0 for two 𝐼𝐹𝑀’s of any module𝑀, then we denote 𝐴⊕𝐼𝐹 𝐵 instead of 𝐴 + 𝐵.

Proposition 2.13. Let𝑀 be a module and 𝐴, 𝐵 two 𝐼𝐹𝑀’s of𝑀 such that 𝐴 ⊆ 𝐵. Then 𝐴 ≪𝐼𝐹 𝐵 if and only if 𝐴∗ ≪ 𝐵∗.

Lemma 2.14. Let𝑀 be a module and𝐴, 𝐵 be two 𝐼𝐹𝑀’s of𝑀 such that 𝜒𝐼𝐹𝑀 = 𝐴⊕𝐼𝐹𝐵. Then𝑀 = 𝐴∗⊕𝐵∗ = 𝐴∗⊕𝐵∗.

Proposition 2.15. Let 𝐴, 𝐵 be two 𝐼𝐹𝑀’s of any module 𝑀 such that 𝐴 ⊆ 𝐵 and 𝐵 is an 𝐼𝐹 direct summand of 𝑀.
Then 𝐴 ≪𝐼𝐹 𝑀 if and only if 𝐴 ≪𝐼𝐹 𝐵.

Let𝑀 = 𝑁⊕𝐾 be modules, then it is easy to see that 𝜒𝐼𝐹𝑀 = 𝜒𝐼𝐹𝑁 ⊕𝜒𝐼𝐹𝐾 .

Example 2.16. Let 𝑀 = ℤ
12ℤ and 𝑀1 =

3ℤ
12ℤ , 𝑀2 =

4ℤ
12ℤ . Put 𝐴 = 𝜒𝐼𝐹𝑀 , 𝐵 = 𝜒𝐼𝐹𝑀1 and 𝐶 = 𝜒𝐼𝐹𝑀2 . It is easy to see that

𝑁 = 6ℤ
12ℤ ≪ 𝑀, so 𝜒𝐼𝐹𝑁 ≪𝐼𝐹 𝑀 by Proposition 3.4. We have𝑀 = 𝑀1⊕𝑀2 and hence 𝜒𝐼𝐹𝑀 = 𝐴⊕𝐼𝐹 𝐵. Since 𝜒𝐼𝐹𝑁 ⊆ 𝐵,

so 𝜒𝐼𝐹𝑁 ≪𝐼𝐹 𝐵 by Proposition 3.17.

Lemma 2.17. Let 𝐴, 𝐵 be two 𝐼𝐹𝑀’s of the module𝑀. Then 𝐴 ≪𝐼𝐹 𝑀 and 𝐵 ≪𝐼𝐹 𝑀 if and only if 𝐴 + 𝐵 ≪𝐼𝐹 𝑀.

Proposition 2.18. Let 𝐴, 𝐵 be two 𝐼𝐹𝑀’s of𝑀 such that 𝐴⊕𝐼𝐹 𝐵 = 𝜒𝐼𝐹𝑀 . Moreover let 𝐶, 𝐷 be two 𝐼𝐹𝑀’s of𝑀 such
that 𝐶 ⊆ 𝐴 and 𝐷 ⊆ 𝐵. Then 𝐶 ⊕𝐼𝐹 𝐷 ≪𝐼𝐹 𝐴⊕𝐼𝐹 𝐵 if and only if 𝐶 ≪𝐼𝐹 𝐴 and 𝐷 ≪𝐼𝐹 𝐵.
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Abstract

In this paper, we derive generalized minimax inequality results by using an intersection theo-
rem related to set-valued maps. These theorems are stated under less restrictive closedness and
coercivity conditions than are typically needed, enabling us to solve problems that cannot be
addressed using standard closedness and compactness assumptions.

1. Introduction and Preliminaries

Finding a point of intersection associated with set-valued maps is of particular importance. Let 𝑋 and 𝑌 be two sets
and 𝑆, 𝑇 ∶ 𝑋 ⇉ 𝑌 be set-valued maps. One kind of intersection problems for the pair (𝑆, 𝑇), especially related to some
minimax inequalities in mathematical economics is to find a point 𝑦0 ∈ 𝑋 such that

𝑇(𝑦0) ∩ 𝑆(𝑥) ≠ ∅, ∀𝑥 ∈ 𝑋.

Liu [6] studied this problem and its applications to minimax inequalities, offering a new approach to KKM theory.
Later, Balaj [3] introduced weak KKM mappings and established intersection results. Due to the applications of this
problem, numerous studies have been done on this subject; see for example [1, 2].
Let 𝑋 be a convex subset of a vector space, 𝑌 be a nonempty set and 𝑆, 𝑇 ∶ 𝑋 ⇉ 𝑌 be set-valued mappings. Then 𝑆 is
called weak KKM with respect to 𝑇 if for any finite set 𝐴 ⊆ 𝑋 and 𝑦 ∈ conv𝐴,

𝑇(𝑦) ∩ራ
𝑡∈𝐴

𝑆(𝑡) ≠ ∅

where conv𝐴 denotes the convex hull of 𝐴.
This concept is a weaker version of generalized KKM mappings which is defined for the pair (𝑆, 𝑇). Clearly, if 𝑆 is
a weak KKM mapping with respect to the identity mapping, then this definition reduces to the standard definition of
KKMmappings. Recall that a set-valued mapping 𝑆 ∶ 𝑋 ⇉ 𝑋 is KKM if conv𝐴 ⊆ ⋃𝑡∈𝐴 𝑆(𝑡), for any finite set 𝐴 ⊆ 𝑋.
In [3], the following result was obtained.
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Theorem 1.1. Suppose that 𝑋 is a compact and convex subset of a topological vector space, 𝑌 is a nonempty set and
𝑆, 𝑇 ∶ 𝑋 ⇉ 𝑌 are set-valued mappings with nonempty values such that

(i) 𝑆 is a weak KKM mapping with respect to 𝑇;

(ii) for any 𝑥 ∈ 𝑋, the set {𝑦 ∈ 𝑋 ∶ 𝑇(𝑦) ∩ 𝑆(𝑥) ≠ ∅} is closed;

Then, there exists 𝑦0 ∈ 𝑋 such that 𝑇(𝑦0) ∩ 𝑆(𝑥) ≠ ∅, for each 𝑥 ∈ 𝑋.

In this paper, inspired by Theorem 1.1, we first present an intersection theorem for (𝑆, 𝑇) that relaxes the standard
compactness and closedness conditions. Then, by applying this result, we study the minimax inequalities under less
restrictive hypotheses.
Throughout this paper, the family of all nonempty finite subsets of a set 𝑋 is denoted by ⟨𝑋⟩.
Let 𝑋 and 𝑌 be topological spaces. A set-valued mapping 𝐹 ∶ 𝑋 ⇉ 𝑌 is said to be upper semicontinuous on 𝑋, if for
any open set 𝑉 ⊆ 𝑌, the set {𝑥 ∈ 𝑋 ∶ 𝐹(𝑥) ⊆ 𝑉} is open in 𝑋. In other words, for any closed subset 𝐵 of 𝑌 the set
{𝑥 ∈ 𝑋 ∶ 𝐹(𝑥) ∩ 𝐵 ≠ ∅} is closed.
The set-valued mapping 𝐹 is called to be intersectionally closed on 𝐴 ⊆ 𝑋, if

ሩ
𝑥∈𝐴

cl(𝐹(𝑥)) = cl(ሩ
𝑥∈𝐴

𝐹(𝑥))

2. An intersection result

In the following, we assume that 𝑋 is a nonempty convex subset of a Hausdorff topological vector space, 𝑌 is a
nonempty set and 𝑆, 𝑇 ∶ 𝑋 ⇉ 𝑌 are set-valued mappings. A nonempty set 𝐴 ⊆ 𝑋 is called to be 𝑐-compact if
conv(𝐾 ∪ 𝐴) is compact for each 𝐾 ∈ ⟨𝑋⟩.
Here, we introduce a new concept of topological pseudomonotonicity for a pair of set-valued mappings (𝑆, 𝑇).

Definition 2.1. A pair of set-valued mappings (𝑆, 𝑇) is called generalized topological pseudomonotone provided that
for all 𝑥, 𝑥0 ∈ 𝑋, and every net (𝑥𝛼) in 𝑋 converging to 𝑥0 with

𝑇(𝑥𝛼) ∩ 𝑆(𝑡𝑥 + (1 − 𝑡)𝑥0) ≠ ∅, ∀𝑡 ∈ [0, 1],

we have 𝑇(𝑥0) ∩ 𝑆(𝑥) ≠ ∅.

In the following definition, the concept of intersectionally closedness is generalized to the pair (𝑆, 𝑇).

Definition 2.2. Let 𝑆, 𝑇 ∶ 𝑋 ⇉ 𝑌 be set-valued mappings and 𝐴 ⊆ 𝑋. Then we call 𝑆 to be intersectionally closed on
𝐴 with respect to 𝑇 if for any 𝑦0 ∈ 𝐴, the implication presented below is satisfied.:
if there is a neighborhood 𝑈 of 𝑦0 in 𝐴 such that for all 𝑦 ∈ 𝑈 we have 𝑆(𝑥𝑦) ⊆ 𝑌 ∖ 𝑇(𝑦), for some 𝑥𝑦 ∈ 𝐴, then we
can find 𝑥0 ∈ 𝐴 and a neighborhood 𝑈′ of 𝑦0 in 𝐴 with 𝑆(𝑥0) ⊆ 𝑌 ∖ 𝑇(𝑥) for each 𝑥 ∈ 𝑈′.

In [4], KKM-type theorems for generalized KKM mappings were derived and their applications were investigated.
Here, inspired by this work, an intersection theorem for the pair of set-valued mappings under condition of weak
KKM is presented.

Theorem 2.3. Let 𝑆, 𝑇 ∶ 𝑋 ⇉ 𝑌 be set-valued mappings such that

(I) 𝑆 is weak KKM mapping with respect to 𝑇;

(II) 𝑆 is intersectionally closed on conv𝐴 with respect to 𝑇, for each 𝐴 ∈ ⟨𝑋⟩;

(III) (𝑆, 𝑇) is generalized topological pseudomonotone;

(IV) there exist a c-compact set 𝐴 and a nonempty and compact set 𝐶 ⊆ 𝑋 such that for each 𝑡 ∈ 𝑋 ∖ 𝐶, there is
𝑥 ∈ conv(𝐴 ∪ {𝑡}) such that 𝑇(𝑡) ∩ 𝑆(𝑥) = ∅.
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Then, we can find a point 𝑦0 ∈ 𝑋 such that for each 𝑥 ∈ 𝑋,

𝑇(𝑦0) ∩ 𝑆(𝑥) ≠ ∅.

Example 2.4. Let 𝑌 = ℝ, 𝑋 = (0, 2] and the mappings 𝑆, 𝑇 ∶ 𝑋 ⇉ 𝑌 are defined as follows:

𝑆(𝑥) = ቊ {1, 2}, 0 < 𝑥 < 1,
(1, 2], 1 ≤ 𝑥 ≤ 2.

and
𝑇(𝑥) = ቊ {1}, 0 < 𝑥 < 1,

{2}, 1 ≤ 𝑥 ≤ 2.
Then, one can easily verify that the coercivity condition (IV) in Theorem 2.3 holds. Moreover, other conditions of this
theorem are also satisfied but 𝑋 is not compact.

3. Minimax inequalities

Inspired by [4] we present the following definition.

Definition 3.1. Suppose that 𝑓 ∶ 𝑋 × 𝑌 → ℝ is a bifunction and 𝑇 ∶ 𝑋 ⇉ 𝑌 is a set-valued mapping, 𝐴 ⊆ 𝑋 and
𝛼 ∈ ℝ, then we say that 𝑓 is 𝛼-intersectionally upper continuous in the second argument with respect to 𝑇 on 𝐴 if for
each 𝑦0 ∈ 𝐾, the following implication holds:
if there is a neighborhood 𝑈 of 𝑦0 in 𝐴 such that for any 𝑦 ∈ 𝑈 there exists 𝑥𝑦 ∈ 𝐴 such that 𝑓(𝑥𝑦 , 𝑧) < 𝛼, for all
𝑧 ∈ 𝑇(𝑦), then we can find an 𝑥0 ∈ 𝐴 and a neighborhood 𝑈′ of 𝑦0 in 𝐴 such that

𝑓(𝑥0, 𝑧) < 𝛼, ∀𝑧 ∈ 𝑇(𝑈′).

Lemma 3.2. Let 𝑓 ∶ 𝑋 × 𝑌 → ℝ, 𝑇 ∶ 𝑋 ⇉ 𝑌 be a set-valued mapping, 𝐴 ⊆ 𝑋 and 𝛼 ∈ ℝ. Then 𝑓 is 𝛼-intersectionally
upper continuous in the second argument with respect to 𝑇 on 𝐴, if and only if 𝑆 ∶ 𝑋 ⇉ 𝑌 is intersectionally closed on
𝑌 with respect to 𝑇, where 𝑆(𝑥) = {𝑦 ∈ 𝑌 ∶ 𝑓(𝑥, 𝑦) ≥ 𝛼}.

Let 𝑓, 𝑔 ∶ 𝑋 × 𝑌 → ℝ be two bifunctions and𝑊 ⊆ 𝑌. Then, 𝑓 is 𝑔-quasiconvex in the first variable on 𝑋 ×𝑊, if for
each 𝑦 ∈ 𝑊 and any 𝐾 ∈ ⟨𝑋⟩, 𝑓(𝑥, 𝑦) ≤ min𝑡∈𝐾 𝑔(𝑡, 𝑦) for all 𝑥 ∈ conv𝐾.
Here, we present a generalization of Ky Fan’s Minimax inequality [5].

Theorem 3.3. Suppose that 𝑇 ∶ 𝑋 ⇉ 𝑌 is a set-valued mapping and 𝑓, 𝑔 ∶ 𝑋 × 𝑌 → ℝ are bifunctions with 𝛼0 =
inf𝑥∈𝑋 sup𝑦∈𝑇(𝑥) 𝑓(𝑥, 𝑦) > −∞. Suppose that the following conditions hold

(I) 𝑔 is 𝛼-intersectionally upper continuous in the second argument with respect to 𝑇 on conv𝐴, for each 𝛼 < 𝛼0
and 𝐴 ∈ ⟨𝑋⟩;

(II) 𝑓 is 𝑔-quasiconvex in the first variable on 𝑋 × 𝑇(𝑋);

(III) for each 𝛽 < 𝛼0, (𝑆, 𝑇) is generalized topological pseudomonotone, where 𝑆 ∶ 𝑋 ⇉ 𝑌 is defined by 𝑆(𝑥) ∶=
{𝑦 ∈ 𝑌 ∶ 𝑔(𝑥, 𝑦) ≥ 𝛽};

(IV) there exists a c-compact set 𝐴, there is 𝜆 < 𝛼0 and a nonempty and compact set 𝐶 ⊆ 𝑋 such that for each
𝑡 ∈ 𝑋 ∖ 𝐶, and 𝑧 ∈ 𝑇(𝑡), we have inf{𝑔(𝑥, 𝑧) ∶ 𝑥 ∈ conv(𝐴 ∪ {𝑡})} < 𝜆.

Then,
inf
𝑥∈𝑋

sup
𝑦∈𝑇(𝑥)

𝑓(𝑥, 𝑦) ≤ sup
𝑥∈𝑋

inf
𝑧∈𝑋

sup
𝑦∈𝑇(𝑥)

𝑔(𝑧, 𝑦).

Corollary 3.4. Suppose that 𝑌 be a topological space, 𝑇 ∶ 𝑋 ⇉ 𝑌 be an upper semicontinuous set-valued mapping
and 𝑓, 𝑔 ∶ 𝑋 × 𝑌 → ℝ are bifunctions with 𝛼0 = inf𝑥∈𝑋 sup𝑦∈𝑇(𝑥) 𝑓(𝑥, 𝑦) > −∞. Let the following conditions hold
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(I) for any 𝑥 ∈ 𝑋, 𝑔(𝑥, .) is upper semicontinuous;

(II) 𝑓 is 𝑔-quasiconvex in the first variable on 𝑋 × 𝑇(𝑋);

(III) there exists a c-compact set 𝐴 and there is 𝜆 < 𝛼0 and a nonempty and compact set 𝐶 ⊆ 𝑋 such that for each
𝑡 ∈ 𝑋 ∖ 𝐶, and 𝑧 ∈ 𝑇(𝑡), we have inf{𝑔(𝑥, 𝑧) ∶ 𝑥 ∈ conv(𝐴 ∪ {𝑡})} < 𝜆.

Then,
inf
𝑥∈𝑋

sup
𝑦∈𝑇(𝑥)

𝑓(𝑥, 𝑦) ≤ sup
𝑥∈𝑋

inf
𝑧∈𝑋

sup
𝑦∈𝑇(𝑥)

𝑔(𝑧, 𝑦).

Remark 3.5. Theorem 3.3 generalizes most of such Fan type minimax results such as [1, 6]. Indeed, the compactness
assumption of 𝑋 in similar results has been replaced by the coercivity condition (IV) which is weaker condition.
Moreover, in most of such minimax theorems, 𝑇 is upper semicontinuous and 𝑓 or 𝑔 is upper semicontinuous in the
second argument which have been replaced by weaker condition. For more information about applications of this kind
of minimax inequalities in game theory and mathematical economics, see [6].
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Abstract

We show in this paper that a 𝐶0-semigroup (𝑇𝑡)𝑡≥0 on a Hilbert space𝐻 satisfies the hypercyclic-
ity criterion if and only if the correspondingmultiplication semigroup satisfies the hypercyclicity
criterion on the algebra of the Hilbert-Schmidt operators. We state that if (𝑇𝑡)𝑡≥0 fulfills the hy-
percyclicity criterion, then 𝑇𝑡 fulfills the hypercyclicity criterion for any 𝑡 > 0. Furthermore, we
state some conditions for hypercyclicity of a 𝐶0-semigroup and its corresponding multiplication
semigroup.

1. Introduction and Preliminaries

Assume 𝐻 is a separable Hilbert space. The set of bounded and linear operators on 𝐻 is denoted by 𝐵(𝐻). Suppose
𝑇 ∈ 𝐵(𝐻). If there exists ℎ ∈ 𝐻 so that

𝑜𝑟𝑏(𝑇, ℎ) = {𝑇𝑛ℎ ∶ 𝑛 ≥ 0} = 𝐻,

then 𝑇 is called a hyercyclic operator [7]. Hypercyclicity of various types of operators have been investigated exten-
sively by mathematicians. One can see a good history of hypercyclicity in [8]. For some newer results one can see
[2].
Assume {𝑒𝑖} is a basis for 𝐻. For 𝑇 ∈ 𝐵(𝐻), ‖𝑇‖2 is defined by,

‖𝑇‖2 = (Σ∞𝑖=1‖𝑇𝑒𝑖‖2)
1
2 , (1)

is well defined and does not depend on the basis {𝑒𝑖} [6]. 𝐵2(𝐻) is described with

𝐵2(𝐻) = {𝑇 ∈ 𝐵(𝐻) ∶ ‖𝑇‖2 < ∞},

and it is named the algebra of Hilbert-Schmidt operators. Any 𝑇 ∈ 𝐵2(𝐻) is named a Hilbert-Schmidt operator [6].
𝐵2(𝐻) is a two sided ideal of𝐵(𝐻), and it is a Hilbert space with ‖.‖2. Moreover, any operator in𝐵2(𝐻) is compact [6,
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p. 267]. By [7, Theorem 5. 11], compact operators are not hypercyclic. So, 𝐵2(𝐻) contains no hypercyclic operator.
In this paper, we consider 𝐵2(𝐻) with ‖.‖2-topology that is defined by (1).
One of the notable operators that are defined on the 𝐵2(𝐻) is a (left) multiplication operator that is denoted by 𝐿𝑇.
𝐿𝑇 on 𝐵2(𝐻) is defined by 𝐿𝑇𝐴 = 𝑇𝐴, for any 𝐴 ∈ 𝐵(𝐻). If 𝑜𝑟𝑏(𝐿𝑇 , 𝐴) = {𝑇𝑛𝐴 ∶ 𝑛 ≥ 0} = 𝐵2(𝐻) for some
𝐴 ∈ 𝐵2(𝐻), then 𝐿𝑇 is hypercyclic by definition of hyercyclicity.
One can see some newer results about them in [10]. Hypercyclicity of 𝐿𝑇 and satisfying 𝑇 in hypercyclicity criterion
are related to each other as follows.

Theorem 1.1. ([12]) 𝑇 ∈ 𝐵(𝐻) fulfills the hypercyclicity criterion if and only if 𝐿𝑇 is hypercyclic on 𝐵2(𝐻) with
‖.‖2-topology.
Remember 𝑇 ∈ 𝐵(𝐻) satisfies the hypercyclicity criterion if two subsets 𝑋 and 𝑌 of𝐻 exist so that 𝑋 = 𝐻 and 𝑌 = 𝐻,
and a sequence (𝑛𝑘) of positive integers and maps 𝑆𝑛𝑘 ∶ 𝑌 → 𝐻 exist so that 𝑇𝑛𝑘𝑥 → 0 and 𝑆𝑛𝑘𝑦 → 0, where 𝑥 ∈ 𝑋
and 𝑦 ∈ 𝑌 are arbitrary, and 𝑇𝑛𝑘𝑆𝑛𝑘𝑦 → 𝑦 for any 𝑦 ∈ 𝑌 [7]. If 𝑇 satisfies the hypercyclicity criterion, then 𝑇⊕ 𝑇 is
hypercyclic [7, Theorem 3.12]. Recall that 𝑇⊕𝑇 is named the direct sum of 𝑇 with itself and for any (ℎ1, ℎ2) ∈ 𝐻⊕𝐻
is defined by (𝑇 ⊕ 𝑇)(ℎ1, ℎ2) = (𝑇ℎ1, 𝑇ℎ2). Clearly, hypercyclicity of 𝑇 ⊕ 𝑇 implies the hypercyclicity of 𝑇.
Now, this question arises that can we extend Theorem1.1 for the notable structure of operators that is named a 𝐶0-
semigroup? Recall that a 𝐶0-semigroup (𝑇𝑡)𝑡≥0 on 𝐻 is a family of operators on 𝐻 so that 𝑇0 = 𝐼 and for any 𝑠, 𝑡 ≥ 0
and any ℎ ∈ 𝐻,

𝑇𝑡+𝑠ℎ = 𝑇𝑡𝑇𝑠ℎ and 𝑙𝑖𝑚𝑠→𝑡𝑇𝑠ℎ = 𝑇𝑡ℎ.

As mentioned in [7], (𝑇𝑡)𝑡≥0 is hypercyclic on 𝐻 if for some ℎ ∈ 𝐻, 𝑜𝑟𝑏((𝑇𝑡)𝑡≥0, ℎ) = {𝑇𝑡ℎ ∶ 𝑡 ≥ 0} = 𝐻. Hyper-
cyclicity of 𝑇𝑡 for some 𝑡 > 0 indicates hypercyclicity of (𝑇𝑡)𝑡≥0 and vice versa [5, Theorem 2.3]. One can also see
[1] and [11] for more information. A criterion for 𝐶0-semigroups named hypercyclicity criterion can be found in [7,
Theorem 7.27]. Consider 𝑋 and 𝑌 are dense subsets of 𝐻. Assume that (𝑡𝑛) is an increasing sequence consisting of
positive integers. Then (𝑇𝑡)𝑡≥0 satisfies the hypercyclicity criterion if for any 𝑛 ∈ ℕ, 𝑆𝑡𝑛 ∶ 𝑌 → 𝐻 exist where for any
𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌,

lim𝑛→∞𝑇𝑡𝑛𝑥 = 0, lim𝑛→∞𝑆𝑡𝑛𝑦 = 0 and lim𝑛→∞𝑇𝑡𝑛𝑆𝑡𝑛𝑦 = 𝑦.

It is proved in [7, Theorem 7.28] that (𝑇𝑡)𝑡≥0 satisfies the hypercyclicity criterion if and only if (𝑇𝑡 ⊕ 𝑇𝑡)𝑡≥0 is
hypercyclic.
In this paper, we state a theorem similar to Theorem 1.1 for 𝐶0-semigroups. Furthermore, we state some equivalent
conditions for hypercyclicity of a 𝐶0-semigroup by using the multiplication semigroup.

2. Main Results

First, we assert three equivalent conditions as follows.

Theorem 2.1. For a 𝐶0-semigroup (𝑇𝑡)𝑡≥0 on 𝐻, the following conditions are equivalent:

(i) The hypercyclicity criterion is fulfilled by 𝑇𝑡 for any 𝑡 > 0.
(ii) The hypercyclicity criterion is fulfilled by 𝑇𝑡 for some 𝑡 > 0.
(iii) The hypercyclicity criterion for 𝐶0-semigroups is satisfied by (𝑇𝑡)𝑡≥0.

Proof. (𝑖) → (𝑖𝑖). is clear.
(𝑖𝑖) → (𝑖𝑖𝑖). By hypothesis, the hypercyclicity criterion is fulfilled by 𝑇𝑡 for some 𝑡 > 0. Thus, 𝑇𝑡⊕𝑇𝑡 is hypercyclic
for some 𝑡 > 0 [7, Theorem 3.15]. Hence, (𝑇𝑡 ⊕ 𝑇𝑡)𝑡≥0 is hypercyclic. Now, [7, Theorem 7.28] asserts that the
hypercyclicity criterion is fulfilled by (𝑇𝑡)𝑡≥0.
(𝑖𝑖𝑖) → (𝑖). By hypothesis, (𝑇𝑡)𝑡≥0 fulfills the hypercyclicity criterion. So, (𝑇𝑡 ⊕𝑇𝑡)𝑡≥0 is hypercyclic [7, Theorem
7.28]. Therefore, by [7, Theorem 2.3], 𝑇𝑡 ⊕ 𝑇𝑡 is hypercyclic for any 𝑡 > 0. Hence, the hypercyclicity criterion is
fulfilled by 𝑇𝑡 [7, Theorem 3.15], for every 𝑡 > 0.
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Applying Theorem 2.1, we can demonstrate the other main conclusion of this paper. First, we define multiplication
𝐶0-semigroup.
Consider 𝐶0-semigroup (𝑇𝑡)𝑡≥0 on 𝐻. Consider (𝐿𝑇𝑡)𝑡≥0, where 𝐿𝑇𝑡 ∶ 𝐵2(𝐻) → 𝐵2(𝐻) defines with 𝐿𝑇𝑡𝐴 = 𝑇𝑡𝐴 for
any 𝐴 ∈ 𝐵2(𝐻), and any 𝑡 ≥ 0. Then (𝐿𝑇𝑡)𝑡≥0 is a 𝐶0-semigroup on 𝐵2(𝐻) since, if 𝐼 indicates the identity operator
on 𝐻, and if 𝐴 is an arbitrary member of 𝐵2𝐻 and 𝑡, 𝑠 ≥ 0 are arbitrary, then:

(i) 𝐿𝑇0𝐴 = 𝑇0𝐴 = 𝐼𝐴 = 𝐴.

(ii) 𝐿𝑇𝑡+𝑠𝐴 = 𝑇𝑡+𝑠𝐴 = 𝑇𝑡𝑇𝑠𝐴 = 𝐿𝑇𝑡𝐿𝑇𝑠𝐴,

(iii) lim𝑡→𝑠𝐿𝑇𝑡𝐴 = lim𝑡→𝑠𝑇𝑡𝐴 = 𝑇𝑠𝐴.
We call (𝐿𝑇𝑡)𝑡≥0 a (left)multiplication 𝐶0-semigroup.
In the next theorem, we describe the relation between satisfying (𝑇𝑡)𝑡≥0 in the hypercyclicity criterion and hyper-
cyclicity of (𝐿𝑇𝑡)𝑡≥0 on 𝐵2(𝐻).
Theorem 2.2. Assume (𝑇𝑡)𝑡≥0 is a 𝐶0-semigroup on 𝐻. Then, (𝑇𝑡)𝑡≥0 satisfies the hypercyclicity criterion if and only
if (𝐿𝑇𝑡)𝑡≥0 is hyercyclic on 𝐵2(𝐻) with ‖.‖2-topology.
Proof. Presume that (𝐿𝑇𝑡)𝑡≥0 is a hypercyclic 𝐶0-semigroup on 𝐵2(𝐻). So, 𝐿𝑇𝑡 is hypercyclic for any 𝑡 > 0 [7,
Theorem 7.27]. Hence, Theorem 2.1 asserts that for any 𝑡 > 0, 𝑇𝑡 fulfills the hypercyclicity criterion. Hence, (𝑇𝑡)𝑡≥0
is hypercyclic because 𝑇𝑡 is hypercyclic.
Now, consider (𝑇𝑡)𝑡≥0 fulfills the hypercyclicity criterion. Theorem 2.1 asserts that there exists 𝑡0 > 0 so that 𝑇𝑡0
fulfills the hypercyclicity criterion. By Theorem 1.1, 𝐿𝑇𝑡0 is hypercyclic on 𝐵2(𝐻), and so (𝐿𝑇𝑡)𝑡≥0 is hypercyclic.

The subsequent corollary is obtained by exerting Theorem 2.1 and Theorem 2.2.

Corollary 2.3. Presume that (𝑇𝑡)𝑡≥0 is a 𝐶0-semigroup on 𝐻. If the hypercyclicity criterion is satisfied by 𝑇𝑡0 for
some 𝑡0 > 0, then (𝐿𝑇𝑡)𝑡≥0 is hypercyclic on 𝐵2(𝐻) with ‖.‖2-topology.
Proof. Assume that 𝑇𝑡0 fulfills the hypercyclicity criterion for some 𝑡0 > 0. Theorem 2.1 asserts that (𝑇𝑡)𝑡≥0 fulfills
the hypercyclicity criterion. Applying Theorem 2.2 finishes the proof.

Theorem2.4. Presume that (𝑇𝑡)𝑡≥0 is a𝐶0-semigroup on𝐻, and consider (𝐿𝑇𝑡)𝑡≥0 be the corresponding (left)multiplication
𝐶0-semigroup. If one of the following conditions occurs, then (𝑇𝑡 ⊕𝑇𝑡)𝑡≥0 is hypercyclic.
Especially, (𝑇𝑡)𝑡≥0 is a hypercyclic 𝐶0-semigroup.

(i) 𝑇𝑡 fulfills the hypercyclicity criterion for some 𝑡 > 0.

(ii) 𝑇𝑡 ⊕𝑇𝑡 is hypercyclic on 𝐻⊕𝐻 for some 𝑡 > 0.

(iii) there is some 𝑡 > 0 such that ⋃∞
𝑛=1𝑘𝑒𝑟(𝑇𝑛𝑡 ) = 𝐻, and 𝑇𝑡 is hypercyclic.

(iv) 𝐿𝑇𝑡 is hypercyclic on 𝐵2(𝐻) for some 𝑡 > 0.

(v) (𝐿𝑇𝑡)𝑡≥0 is hypercyclic on 𝐵2(𝐻).
Proof. (𝑖) Suppose that 𝑇𝑡 fulfills the hypercyclicity criterion for some 𝑡 > 0. Applying Theorem 2.1 indicates that
(𝑇𝑡)𝑡≥0 fulfills the hypercyclicity criterion. By [7, Theorem 7.28], (𝑇𝑡 ⊕𝑇𝑡)𝑡≥0 is hypercyclic.
(𝑖𝑖). The proof is done by considering the fact that hypercyclicity of 𝑇𝑡 ⊕𝑇𝑡 implies hypercyclicity of (𝑇𝑡 ⊕𝑇𝑡)𝑡≥0.
(𝑖𝑖𝑖). In this case, 𝑇𝑡 satisfies the hypercyclicity criterion by [3, Remark 2.6]. So, similar to part (𝑖), (𝑇𝑡 ⊕𝑇𝑡)𝑡≥0 is
hypercyclic.
(𝑖𝑣). Hypercyclicity of 𝐿𝑇𝑡 on 𝐵2(𝐻) for some 𝑡 > 0 points the hypercyclicity of (𝐿𝑇𝑡)𝑡≥0. Applying Theorem 2.2,
(𝑇𝑡)𝑡≥0 fulfills the hypercyclicity criterion. The remain of the proof is similar to the proof of the part (𝑖).
(𝑣). If (𝐿𝑇𝑡)𝑡≥0 is hypercyclic, then applying Theorem 2.2, (𝑇𝑡)𝑡≥0 fulfills the conditions of the hypercyclicity criterion
for 𝐶0-semigroups. The remain of the proof is the same as part (𝑖).



94 M. Moosapoor / The 5th National Congress on Mathematics and Statistics

Remark 2.5. If any of the conditions in Theorem 2.4 occurs for a 𝐶0-semigroup (𝑇𝑡)𝑡≥0, then by [5, Theorem 2.3],
𝑇𝑡 is hypercyclic for any 𝑡 > 0.

A hypercyclic operator 𝑇 is chaotic if it has a dense set of periodic points [7]. This operator fulfills the hypercyclicity
criterion [7, Theorem 3.1]. Now, the subsequent theorem can be resented.

Theorem 2.6. Assume that (𝑇𝑡)𝑡≥0 is a 𝐶0-semigroup on𝐻. Consider that 𝑇𝑡 is chaotic for some 𝑡 > 0. Then (𝐿𝑇𝑡)𝑡≥0
is hypercyclic on 𝐵2(𝐻).

Proof. Suppose that there is some 𝑡 > 0 such that 𝑇𝑡 is a chaotic operator on 𝐻. So, the hypercyclicity criterion is
satisfied by 𝑇𝑡[7, Theorem 3.1]. By Theorem 2.1, the hypercyclicity criterion is satisfied by (𝑇𝑡)𝑡≥0. Thus, Theorem
2.2 asserts that (𝐿𝑇𝑡)𝑡≥0 is hypercyclic.

A hypercyclic 𝐶0-semigroup is called a chaotic 𝐶0-semigroup if it has a dense set of periodic points [7, Definition
7.9]. Remember that ℎ ∈ 𝐻 is a periodic point for (𝑇𝑡)𝑡≥0 if 𝑇𝑡ℎ = ℎ for some 𝑡 > 0. It is not hard to see that if 𝑇𝑡
is chaotic for some 𝑡 > 0, then (𝑇𝑡)𝑡≥0 is chaotic. We assert that the chaoticity of (𝑇𝑡)𝑡≥0 indicates that it fulfills the
hypercyclicity criterion.

Lemma 2.7. Consider a a 𝐶0-semigroup (𝑇𝑡)𝑡≥0 on𝐻. If (𝑇𝑡)𝑡≥0 fulfills the hypercyclicity criterion, then it is chaotic.

Proof. (𝑇𝑡)𝑡≥0 is chaotic by hypothesis. By [7, Theorem 7.23] and proof of [7, Theorem 7.25], the hypercyclicity
criterion is satisfied by 𝑇𝑡 for some 𝑡 > 0. Thus, by Theorem 2.1, (𝑇𝑡)𝑡≥0 satisfies the conditions of the hypercyclicity
criterion for 𝐶0-semigroups. Now, Theorem 2.2 completes the proof.

For an operator 𝑇 on a Banach space, chaoticity of 𝑇 and 𝐿𝑇 are equivalent [9, Theorem 2.3]. Now, this question arises
that can we establish an statement same to Theorem 2.2 for chaotic semigroups?
Employing Lemma 2.7, we can say the next corollary.

Corollary 2.8. Assume that (𝑇𝑡)𝑡≥0 is a 𝐶0-semigroup on 𝐻. Then (𝐿𝑇𝑡)𝑡≥0 is hypercyclic on 𝐵2(𝐻), when (𝑇𝑡)𝑡≥0 is
chaotic.

Proof. Presume that (𝑇𝑡)𝑡≥0 is chaotic. Thus, Lemma 2.7 asserts that (𝑇𝑡)𝑡≥0 fulfills the hypercyclicity criterion.
Now, applying Theorem 2.2 asserts that (𝐿𝑇𝑡)𝑡≥0 is hypercyclic on 𝐵2(𝐻).
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Abstract

This paper is devoted to the problem of Bayesian estimation for the parameters of a new flexible
three-parameters distribution called the Lomax-Lindley distribution. The estimation of param-
eters are obtained by using the MCMC methods under squared error, linear-exponential, and
Stein’s loss functions. An application to real data set is provided for illustrative purposes. Fi-
nally, a Monte Carlo simulation study is conducted to investigate and compare the performance
of different types of Bayes estimators presented in this paper.

1. Introduction

The Lomax and Lindley distributions are two well-known distributions that have been extensively used over the past
decades for modeling data in many fields such as business, economics, actuarial modeling, queuing problems, biolog-
ical sciences, reliability and life testing problems. Although these distributions are very useful for modeling lifetime
data, they have monotone hazard rate functions. The hazard rate function (hrf) of Lomax distribution is decreasing
and that of Lindley distribution is increasing. Thus, these distributions may not provide a reasonable parametric fit for
modeling phenomena with non-monotone hazard rates such as the bathtub-shaped and unimodal hazard rates which
are often encountered in practice. As a solution, several authors have considered modified or generalized forms and
extensions of these distributions to give them more flexibility in describing various types of data. For instance, Mc-
Donald Lomax distribution by Lemonte and Cordeiro [4], Burr X exponentiated Lomax distribution by Aboraya [1],
new extended generalized lindley distribution by Maya and Irshad [5] and odd log-logistic Marshal-Olkin Lindley
distribution by Alizadeh et al. [2].
Recently, Tarvirdizade [6] has introduced a new flexible three-parameter distribution using the combination of the
Lomax and the Lindley distributions in a serial system which is called the Lomax-Lindley (L-L) distribution. The
cumulative distribution function (cdf) and the probability density function (pdf) of the L-L distribution with parameters
𝛼, 𝛽 and 𝜃 are given by

𝐹(𝑥) = 1 − (1 + 𝛽𝑥)−𝛼 ቆ1 + 𝜃𝑥
𝜃 + 1ቇ 𝑒

−𝜃𝑥 , 𝑥 > 0, 𝛼 > 0, 𝛽, 𝜃 ≥ 0, (1)

∗Talker
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and

𝑓(𝑥) = ቆ𝜃
2(1 + 𝑥)
1 + 𝜃 + 𝛼𝛽

1 + 𝛽𝑥 ቆ1 +
𝜃𝑥
𝜃 + 1ቇቇ (1 + 𝛽𝑥)−𝛼𝑒−𝜃𝑥 , 𝑥 > 0, 𝛼 > 0, 𝛽, 𝜃 ≥ 0, (2)

respectively. The L-L distribution could be applied effectively for analyzing different types of lifetime data since it
has a simple form of hrf which can accommodate decreasing, increasing, bathtub-shaped and unimodal hazard rates.
Some statistical properties and estimation of the parameters of the L-L distribution using maximum likelihood method
were studied by Tarvirdizade [6]. Also, it was shown that the L-L distribution provides a better fit than other three-
parameter distributions for data with a bathtub-shaped hazard rate while its hrf is very simple in comparison with
those of the competitor distributions. In this paper, we apply a Bayesian approach to estimate the parameters of the
L-L distribution based on a complete sample. First the likelihood function of the parameters are presented and then,
the Bayes estimates of the parameters based on symmetric and asymmetric loss functions are obtained.
The rest of the paper is organized as follows. In Section 2, the Bayes estimates of unknown parameters under the
squared error, linear-exponential (LINEX) and Stein loss functions via the Metropolis-Hastings method are obtained.
In Section 3, a real data set is analyzed to illustrate the estimation procedures discussed in the previous section. In
Section 4, to investigate and compare the performance of the different methods of estimation presented in this paper,
outcomes of a Monte Carlo simulation study are presented. Finally, some conclusions are provided in Section 5.

2. Bayesian Estimation

In this section, we discuss Bayesian estimation of the parameters of the L-L distribution under different loss functions.
One of the most commonly used loss function is squared error loss (SEL) function which is given by 𝐿(Θ, 𝛿(𝑋)) =
(𝛿(𝑋) − Θ)2, where 𝛿 is a decision rule based on the data and Θ is the unknown parameter. The symmetric nature
of SEL function gives equal weight to overestimation and underestimation of the parameters under consideration.
However, in life testing, overestimation may be more serious than underestimation or vice versa. In these cases, the
use of an asymmetric loss function which assigns greater importance to overestimation or underestimation may be
more appropriate. For this purpose, Varian [8] proposed a convex but asymmetric loss function which is known as
LINEX loss function and is defined as

𝐿(Θ, 𝛿) = 𝑒𝑑(𝛿−Θ) − 𝑑(𝛿 − Θ) − 1, 𝑑 ≠ 0 (3)

The shape parameter 𝑑 is known and gives the degree of asymmetry. If 𝑑 > 0, the overestimation is more serious than
underestimation and if 𝑑 < 0, underestimation is more serious than overestimation. If 𝑑 close to zero, the LINEX loss
is approximately SEL and therefore almost symmetric. Under the LINEX loss function (3), the Bayes estimator of Θ
that minimizes the posterior risk 𝐸 [𝐿(Θ, 𝛿(𝑋))|𝑋] is given by

𝛿𝐵𝐿(𝑋) = −1𝑑 log𝐸 ൫𝑒−𝑑Θ|𝑋൯ , (4)

provided that the expectation exists and is finite. Another useful asymmetric loss function is the Stein loss function
which is also known as entropy loss function. This loss function has the form

𝐿(Θ, 𝛿) = 𝛿
Θ − log

𝛿
Θ − 1, (5)

This loss is a convex function of 𝛿 and more penalized underestimation than overestimation. Under this loss function
the Bayes estimator 𝛿𝐵𝑆𝑇(𝑋) that minimizes the posterior risk 𝐸 [𝐿(Θ, 𝛿(𝑋))|𝑋] is given by

𝛿𝐵𝑆𝑇(𝑋) = ቊ𝐸 ቆ1Θ |𝑋ቇቋ
−1
, (6)

provided that the expectation exists.
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In Bayesian inference, we need to determine the likelihood function and prior distributions for unknown parameters.
Let x = (𝑥1, 𝑥2, ..., 𝑥𝑛) be 𝑛 observations of a random sample from the L-L(𝛼, 𝛽, 𝜃). The likelihood function of this
sample using (2) can be written as

𝐿(𝛼, 𝛽, 𝜃|𝑥) =
𝑛

ෑ
𝑖=1

ቆ𝜃
2(1 + 𝑥𝑖)(1 + 𝛽𝑥𝑖) + 𝛼𝛽(1 + 𝜃 + 𝜃𝑥𝑖)

1 + 𝜃 ቇ(1 + 𝛽𝑥𝑖)
−(𝛼+1)𝑒−𝜃𝑥𝑖 , (7)

The MLEs of 𝛼, 𝛽 and 𝜃, say �̂�, �̂� and �̂�, can be obtained through the solution of the three nonlinear equations which
are obtained by setting the first partial derivatives of the log-likelihood function with respect to 𝛼, 𝛽 and 𝜃 equal to
zero. These equations cannot be solved analytically and therefore, we have to solve the equations numerically. We can
use iterative techniques such as a Newton-Raphson type algorithm to obtain the MLEs of the parameters 𝛼, 𝛽 and 𝜃.
To find the standard error of the MLEs of the parameters 𝛼, 𝛽 and 𝜃, we can obtain the asymptotic variance-covariance
matrix of the MLEs, which need to calculate the observed information matrix. The variance-covariance matrix V can
be approximated by the reciprocal of the observed information matrix, i.e., V = 𝐼−1. Since V involves the parameters
𝛼, 𝛽 and 𝜃, we replace the parameters by the correspondingMLEs in order to obtain an estimate ofV, which is denoted
by

�̂� = ቌ
�̂�11 �̂�12 �̂�13
�̂�21 �̂�22 �̂�23
�̂�31 �̂�32 �̂�33

ቍ = ቌ
̂𝐼11 ̂𝐼12 ̂𝐼13
̂𝐼21 ̂𝐼22 𝐼23
̂𝐼31 ̂𝐼32 ̂𝐼33

ቍ

−1

, (8)

where ̂𝐼𝑖𝑗 is the (𝑖, 𝑗)th element of the observed information matrix 𝐼 with 𝛼, 𝛽 and 𝜃 replaced by �̂�, �̂� and �̂�, re-
spectively. The likelihood equations and the elements of the observed information matrix 𝐼 are given by Tarvirdizade
[6].
For the prior distributions, we assumed that𝛼, 𝛽 and𝜃 have independent gamma priors as𝐺𝑎𝑚𝑚𝑎(𝛾1, 𝜆1),𝐺𝑎𝑚𝑚𝑎(𝛾2, 𝜆2)
and 𝐺𝑎𝑚𝑚𝑎(𝛾3, 𝜆3), respectively, with the pdf’s given by

𝜋(Θ|𝛾𝑖 , 𝜆𝑖) =
𝜆𝛾𝑖𝑖 Θ𝛾𝑖−1𝑒−𝜆𝑖Θ

Γ(𝛾𝑖)
, Θ > 0, 𝛾𝑖 , 𝜆𝑖 > 0, (9)

where Θ can be each of the parameters 𝛼, 𝛽 and 𝜃 and the hyperparameters (𝛾𝑖 , 𝜆𝑖), 𝑖 = 1, 2, 3, are assumed to be
known. Now, using (7) and (9), the joint posterior density function of 𝛼, 𝛽 and 𝜃 can be written as

𝜋(𝛼, 𝛽, 𝜃|x) = 𝜋(𝛼)𝜋(𝛽)𝜋(𝜃)𝐿(𝛼, 𝛽, 𝜃|x)
∫𝜃 ∫𝛽 ∫𝛼 𝜋(𝛼)𝜋(𝛽)𝜋(𝜃)𝐿(𝛼, 𝛽, 𝜃|x)𝑑𝛼𝑑𝛽𝑑𝜃

∝
𝑛

ෑ
𝑖=1

ቆ𝜃
2(1 + 𝑥𝑖)(1 + 𝛽𝑥𝑖) + 𝛼𝛽(1 + 𝜃 + 𝜃𝑥𝑖)

(1 + 𝜃)(1 + 𝛽𝑥𝑖)𝛼+1
ቇ𝛼𝛾1−1𝛽𝛾2−1𝜃𝛾3−1𝑒

−𝜆1𝛼−𝜆2𝛽−(𝜆3+
𝑛
∑
𝑖=1

𝑥𝑖)𝜃 . (10)

Since the above multiple integrals can not be solved analytically, the expression for 𝜋(𝛼, 𝛽, 𝜃|x) in (10) can not be
written in a closed form. Therefore, we need a simulation technique to compute the Bayes estimate of the parameters.
We adopt the Gibbs sampling technique which requires a decomposition of the joint posterior distribution into full
conditional distributions for each parameter and then sampling from them. The full conditional distributions of 𝛼, 𝛽
and 𝜃 can be obtained as follows

𝜋(𝛼|𝛽, 𝜃, x) ∝
𝑛

ෑ
𝑖=1

ቆ𝜃
2(1 + 𝑥𝑖)(1 + 𝛽𝑥𝑖) + 𝛼𝛽(1 + 𝜃 + 𝜃𝑥𝑖)

(1 + 𝜃)(1 + 𝛽𝑥𝑖)𝛼+1
ቇ𝛼𝛾1−1𝑒−𝜆1𝛼 , (11)

𝜋(𝛽|𝛼, 𝜃, x) ∝
𝑛

ෑ
𝑖=1

ቆ𝜃
2(1 + 𝑥𝑖)(1 + 𝛽𝑥𝑖) + 𝛼𝛽(1 + 𝜃 + 𝜃𝑥𝑖)

(1 + 𝜃)(1 + 𝛽𝑥𝑖)𝛼+1
ቇ𝛽𝛾2−1𝑒−𝜆2𝛽 , (12)
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𝜋(𝜃|𝛼, 𝛽, x) ∝
𝑛

ෑ
𝑖=1

ቆ𝜃
2(1 + 𝑥𝑖)(1 + 𝛽𝑥𝑖) + 𝛼𝛽(1 + 𝜃 + 𝜃𝑥𝑖)

(1 + 𝜃)(1 + 𝛽𝑥𝑖)𝛼+1
ቇ𝜃𝛾3−1𝑒

−(𝜆3+
𝑛
∑
𝑖=1

𝑥𝑖)𝜃 . (13)

The full conditional distributions for 𝛼, 𝛽 and 𝜃 cannot be reduced analytically to well-known distributions and there-
fore it is not possible to sample directly by standard methods. In order to generate values of 𝛼, 𝛽 and 𝜃 from (11)–(13),
we use the Metropolis-Hastings algorithm into the Gibbs sampling algorithm as explained by Tierney [7]. Therefore,
we can use the following algorithm for Gibbs sampling:

Step 1. Start with an initial guess (𝛼(0), 𝛽(0), 𝜃(0)) and set t = 1.
Step 2. Using Metropolis-Hastings method, generate 𝛼(𝑡) from 𝜋(𝛼|𝛽(𝑡−1), 𝜃(𝑡−1), x) with the proposal distribution

𝑞(𝛼) ∝ 𝑁(𝛼(𝑡−1), 𝐶𝛼�̂�11)𝐼(𝛼 > 0),

where 𝐶𝛼 is a scaling factor, �̂�11 is given in (8) and 𝑁(𝜇, 𝜎2) 𝐼(𝛼 > 0) denote the normal distribution 𝑁(𝜇, 𝜎2)
truncated on (0,∞).
Step 3. Using Metropolis-Hastings method, generate 𝛽(𝑡) from 𝜋(𝛽|𝛼(𝑡), 𝜃(𝑡−1), x) with the proposal distribution

𝑞(𝛽) ∝ 𝑁(𝛽(𝑡−1), 𝐶𝛽�̂�22)𝐼(𝛽 > 0),

where 𝐶𝛽 is a scaling factor and �̂�22 is given in (8).
Step 4. Using Metropolis-Hastings method, generate 𝜃(𝑡) from 𝜋(𝜃|𝛼(𝑡), 𝛽(𝑡), x) with the proposal distribution

𝑞(𝜃) ∝ 𝑁(𝜃(𝑡−1), 𝐶𝜃�̂�33)𝐼(𝜃 > 0),

where 𝐶𝜃 is a scaling factor and �̂�33 is given in (8).
Step 5. Set t = t + 1.
Step 6. Repeat Steps 2–5, N times, and obtain the posterior sample (𝛼(𝑡), 𝛽(𝑡), 𝜃(𝑡)), 𝑡 = 1, ..., 𝑁.

After generating a sample from the above algorithm, we can compute the Bayes estimate of the parameters 𝛼, 𝛽 and
𝜃 under the SEL, LINEX and Stein loss functions as follow

Θ̃𝐵𝑆 = �̂�(Θ|𝑋) = 1
𝑁 −𝑀

𝑁


𝑖=𝑀+1

Θ(𝑖), (14)

Θ̃𝐵𝐿 = −1𝑑 log �̂�(𝑒−𝑑Θ|𝑋) = −1𝑑 logቌ 1
𝑁 −𝑀

𝑁


𝑖=𝑀+1

𝑒−𝑑Θ(𝑖)ቍ , (15)

Θ̃𝐵𝑆𝑇 = ቊ�̂� ቆ 1Θ|𝑋ቇቋ
−1

= ቐ 1
𝑁 −𝑀

𝑁


𝑖=𝑀+1

1
Θ(𝑖)ቑ

−1

, (16)

respectively, where𝑀 is the burn-in period and Θ can be each of the parameters 𝛼, 𝛽 and 𝜃.

3. Real Data Analysis

In this section, we analyze the real data to illustrate the use of our proposed estimation methods. We consider a real
data set consist of the times between failures (in hours) of load-haul-dump (LHD) machine used to pick up rock or
waste. The data has been used by Kumar et al. [3] and the TTT-plot presented by them for this data set exhibits
a bathtub-shaped hrf. Tarvirdizade [6] has fitted the L-L distribution to this data with the corresponding MLEs as
follows:

�̂� = 0.4658, �̂� = 0.0911, �̂� = 0.0207.
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To obtain Bayes estimates of the parameters 𝛼, 𝛽 and 𝜃, we used small values of the hyperparameters as (𝛾1, 𝜆1) =
(0.5, 0.25), (𝛾2, 𝜆2) = (0.75, 0.5) and (𝛾3, 𝜆3) = (1, 0.5) to reflect little prior information. We computed the Bayes
estimates of the parameters based on 𝑁 = 10000 MCMC samples and discard the first 𝑀 = 2000 values as burn-
in period. The simulated values and Histogram of the parameters 𝛼, 𝛽 and 𝜃 generated by the algorithm of Gibbs
sampling are plotted in Figure 1. Based on these simulated values, the Bayes estimate of the parameters 𝛼, 𝛽 and 𝜃
under the SEL function using (14) are computed as

�̃�𝐵𝑆 = 0.23594, �̃�𝐵𝑆 = 0.52337, �̃�𝐵𝑆 = 0.02631.

From (15), the Bayes estimate of the parameters 𝛼, 𝛽 and 𝜃 under the LINEX loss function for 𝑑 = 2 are given as

�̃�𝐵𝐿 = 0.22338, �̃�𝐵𝐿 = 0.40158, �̃�𝐵𝐿 = 0.02628,

and for 𝑑 = −1 are given as

�̃�𝐵𝐿 = 0.24318, �̃�𝐵𝐿 = 0.67735, �̃�𝐵𝐿 = 0.02632.

Also under the Stein loss function, the Bayes estimate of the parameters 𝛼, 𝛽 and 𝜃 using (16) are given as

�̃�𝐵𝑆𝑇 = 0.18617, �̃�𝐵𝑆𝑇 = 0.28926, �̃�𝐵𝑆𝑇 = 0.02527.
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Fig. 1. Simulated values and Histogram of the parameters 𝛼, 𝛽 and 𝜃

4. A Simulation Study

In this section, a Monte Carlo simulation study is conducted to investigate and compare the performance of the Bayes
estimators presented in Section 2. In this simulation study we generate the samples of size 𝑛 = 20, 50, 100 from
the L-L distribution with different parameter combinations (𝛼, 𝛽, 𝜃), namely (0.25, 1, 0.75), (1, 0.75, 0.5) and (0.5,
0.25, 1), respectively. To compute different Bayes estimates, we use the small hyperparameter values as (𝛾1, 𝜆1) =
(0.5, 0.75), (𝛾2, 𝜆2) = (1, 0.1) and (𝛾3, 𝜆3) = (0.25, 1). We generate 𝑁 = 10000 MCMC samples and discard
the first 𝑀 = 2000 values as burn-in period as described in Section 2. The performance of the Bayes estimators is
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compared in terms of their estimated risk (ER). When 𝜃 is estimated by �̂�, the ER of 𝜃 under the SEL function is given
by

𝐸𝑅𝐵𝑆(𝜃) =
1
𝑇

𝑇


𝑖=1

(�̂�𝑖 − 𝜃)2,

where 𝑇 is the number of replications and �̂�𝑖 is the estimate of 𝜃 in 𝑖th replication. Moreover, the ER of 𝜃 under the
LINEX and Stein loss functions are given by

𝐸𝑅𝐵𝐿(𝜃) =
1
𝑇

𝑇


𝑖=1

ቀ𝑒𝑑(�̂�𝑖−𝜃) − 𝑑(�̂�𝑖 − 𝜃) − 1ቁ,

𝐸𝑅𝐵𝑆𝑇(𝜃) =
1
𝑇

𝑇


𝑖=1

ቆ�̂�𝑖𝜃 − ln
�̂�𝑖
𝜃 − 1ቇ,

respectively. We report the average estimates and ER of the parameters in Tables 1–3. All the results are reported
based on 1000 replications.

Table 1. Average estimates and estimated risk (in parentheses) of the parameters with (𝛼 = 0.25, 𝛽 = 1, 𝜃 = 0.75).
𝑛 �̃�𝐵𝑆 �̃�𝐵𝐿(𝑑 = 2) �̃�𝐵𝐿(𝑑 = −1) �̃�𝐵𝑆𝑇
20 0.2934 (0.0321) 0.1906 (0.0335) 0.4882 (0.0879) 0.0308 (1.6352)
50 0.2748 (0.0158) 0.2126 (0.0134) 0.3632 (0.0183) 0.0513 (1.2645)
100 0.2674 (0.0098) 0.2414 (0.0089) 0.3247 (0.0116) 0.0983 (0.9903)

𝑛 �̃�𝐵𝑆 �̃�𝐵𝐿(𝑑 = 2) �̃�𝐵𝐿(𝑑 = −1) �̃�𝐵𝑆𝑇
20 1.4165 (0.4626) 1.0236 (0.1817) 1.7563 (0.3308) 0.8469 (0.1305)
50 1.2207 (0.1368) 0.9849 (0.1381) 1.3597 (0.1329) 0.8661 (0.1049)
100 1.1084 (0.1143) 0.9773 (0.1004) 1.2068 (0.0580) 0.8732 (0.0771)

𝑛 �̃�𝐵𝑆 �̃�𝐵𝐿(𝑑 = 2) �̃�𝐵𝐿(𝑑 = −1) �̃�𝐵𝑆𝑇
20 0.9378 (0.2132) 0.6534 (0.1824) 1.2182 (0.2180) 0.4178 (0.3305)
50 0.8301 (0.1357) 0.6481 (0.1499) 0.9913 (0.0979) 0.4268 (0.2883)
100 0.7798 (0.0833) 0.6609 (0.1152) 0.8781 (0.0608) 0.4347 (0.2007)

Table 2. Average estimates and estimated risk (in parentheses) of the parameters with (𝛼 = 1, 𝛽 = 0.75, 𝜃 = 0.5).
𝑛 �̃�𝐵𝑆 �̃�𝐵𝐿(𝑑 = 2) �̃�𝐵𝐿(𝑑 = −1) �̃�𝐵𝑆𝑇
20 0.8234 (0.6809) 0.3237 (0.7125) 1.4203 (0.4035) 0.2116 (1.3978)
50 0.6770 (0.3110) 0.3188 (0.4529) 0.9065 (0.1803) 0.2906 (1.0027)
100 0.5836 (0.2655) 0.3119 (0.3672) 0.7811 (0.1144) 0.3883 (0.8403)

𝑛 �̃�𝐵𝑆 �̃�𝐵𝐿(𝑑 = 2) �̃�𝐵𝐿(𝑑 = −1) �̃�𝐵𝑆𝑇
20 1.4824 (0.6326) 0.9346 (0.2514) 1.8847 (0.6891) 0.8619 (0.1406)
50 1.3913 (0.5805) 0.9801 (0.2032) 1.7036 (0.6329) 0.8932 (0.1185)
100 1.2703 (0.5132) 1.0033 (0.1856) 1.6330 (0.5905) 0.9707 (0.0902)

𝑛 �̃�𝐵𝑆 �̃�𝐵𝐿(𝑑 = 2) �̃�𝐵𝐿(𝑑 = −1) �̃�𝐵𝑆𝑇
20 0.9350 (0.3302) 0.6339 (0.1494) 1.2567 (0.4037) 0.3662 (0.4103)
50 0.6037 (0.0991) 0.5816 (0.0883) 0.8704 (0.1103) 0.3392 (0.3292)
100 0.5379 (0.0680) 0.4843 (0.0534) 0.5889 (0.0809) 0.2955 (0.1782)
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Table 3. Average estimates and estimated risk (in parentheses) of the parameters with (𝛼 = 0.5, 𝛽 = 0.25, 𝜃 = 1).
𝑛 �̃�𝐵𝑆 �̃�𝐵𝐿(𝑑 = 2) �̃�𝐵𝐿(𝑑 = −1) �̃�𝐵𝑆𝑇
20 0.2256 (0.1268) 0.1436 (0.2330) 0.3239 (0.0835) 0.0089 (1.5204)
50 0.2404 (0.0953) 0.1561 (0.2108) 0.2889 (0.0661) 0.0137 (1.1046)
100 0.2697 (0.0824) 0.1845 (0.1784) 0.2807 (0.0457) 0.0188 (0.9283)

𝑛 �̃�𝐵𝑆 �̃�𝐵𝐿(𝑑 = 2) �̃�𝐵𝐿(𝑑 = −1) �̃�𝐵𝑆𝑇
20 0.4417 (0.0596) 0.3932 (0.0903) 0.4725 (0.0326) 0.2813 (0.1308)
50 0.3789 (0.0321) 0.3510 (0.0473) 0.3883 (0.0158) 0.2846 (0.0976)
100 0.3514 (0.0156) 0.3255 (0.0274) 0.3606 (0.0079) 0.2868 (0.0858)

𝑛 �̃�𝐵𝑆 �̃�𝐵𝐿(𝑑 = 2) �̃�𝐵𝐿(𝑑 = −1) �̃�𝐵𝑆𝑇
20 1.0283 (0.1234) 0.8553 (0.1573) 1.1325 (0.0814) 0.6728 (0.1732)
50 1.0147 (0.0704) 0.8945 (0.0956) 1.0982 (0.0456) 0.7743 (0.0909)
100 0.9904 (0.0438) 0.9134 (0.0686) 1.0443 (0.0259) 0.7951 (0.0737)

From Tables 1–3, it can be seen that the ERs of all estimates decrease as the sample sizes increase in all cases, as
expected. The results shows that the performances of the Bayes estimators under various loss functions are different.
Also, it is clear that the Bayes estimates under the LINEX loss function are sensitive to the values of the shape parameter
𝑑. It can be observed that the performances of Bayes estimates under the LINEX loss function for small values of 𝑑
become close to the performances of Bayes estimates under the SEL function, as expected. In most of the cases, the
performances of Bayes estimates under Stein loss function are not suitable especially in the estimation of parameter
𝛼.

5. Conclusions

In this paper, the problem of Bayesian inference on the parameters of a three-parameters distribution, called the Lomax-
Lindley distribution, is considered. Bayesian estimation of the parameters under SEL, LINEX and Stein loss functions
are obtained by using the MCMC methods. A real lifetime data set is analyzed for illustrative purposes. Finally,
to investigate and compare the performance of different types of estimators presented in this paper a Monte Carlo
simulation study is conducted. Based on simulation results, we observed that the performance of the Bayes estimators
are different under various loss functions and the Bayes estimates under the LINEX loss function are sensitive to the
values of the shape parameter 𝑑. It is clear that the performance of the Bayes estimators under SEL and LINEX loss
functions are better than the Bayes estimators under Stein loss function in most of the cases.

References

[1] M. A. Aboraya. New extension of the Lomax distribution with properties and applications to failure times data. Pakistan Journal of Statistics
and Operation Research, 15:461–479, 2019.

[2] M. Alizadeh, G. Ozel, E. Altun, M. Abdi and G. G. Hamedani. The odd log-logistic Marshall-Olkin Lindley model for lifetime data. Journal
of Statistical Theory and Applications, 16:382–400, 2017.

[3] U. Kumar, B. Klefsjo and S. Granholm. Reliability investigation for a fleet of load haul dump machines in a Swedish mine. Reliability
Engineering and System Safety, 26:341–361, 1989.

[4] A. J. Lemonte and G. M. Cordeiro. An extended Lomax distribution. Statistics, 47:800–816, 2013.
[5] R. Maya, and M. R. Irshad. New extended generalized Lindley distribution: Properties and applications. Statistica, 77:33–52, 2017.
[6] B. Tarvirdizade. The Lomax-Lindley distribution: properties and applications to lifetime data.Communications Faculty of Sciences University

of Ankara Series A1 Mathematics and Statistics, 70:965–983, 2021.
[7] L. Tierney. Markov chains for exploring posterior distributions. The Annals of Statistics, 22:1701–1728, 1994.
[8] H. R. Varian. A Bayesian approach to real estate assessment. In: Finberg, S. E. and Zellner, A., Studies in Bayesian Econometrics and statistics

in honor of Leonard J. Savege. Amsterdam: North Holland, 195–208, 1975.



Gonbad Kavous University

The 5th National Congress on Mathematics and StatisticsThe 5th National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1403

The 5th National Congress on Mathematics and Statistics, AN–171, pp. 102–102

Supercyclicity of a 𝐶0-semigroup and Its Corresponding Left
Multiplication 𝐶0-semigroup

Mansooreh Moosapoora,∗
a Associate Professor, Department of Mathematics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.

Article Info

Keywords:
Supercyclicity
Semigroups
Left Multiplication

2020 MSC:
47A16
47B37

Abstract

Corresponding to each 𝐶0-semigroup (𝑇𝑡)𝑡≥0 on a Hilbert space 𝐻, we have the left multiplica-
tion 𝐶0-semigroup (𝐿𝑇𝑡)𝑡≥0 on 𝐵2(𝐻), the algebra of Hilbert-Schmidt operators. In this paper,
we investigate the supercyclicity of 𝐶0-semigroups and some relations between the supercyclic-
ity of a 𝐶0-semigroup and its left multiplication 𝐶0-semigroup. We show that for a 𝐶0-semigroup
(𝑇𝑡)𝑡≥0 on a Hilbert space𝐻 satisfying the supercyclicity criterion is equivalent to that (𝐿𝑇𝑡)𝑡≥0,
satisfies the supercyclicity criterion on 𝐵2(𝐻), with ‖.‖2-topology.
We state some conditions for supercyclicity of the direct sum of a 𝐶0-semigroup with itself.
We prove that if 𝐿𝑇𝑡 is supercyclic on 𝐵2(𝐻) for some 𝑡 > 0 or (𝐿𝑇𝑡)𝑡≥0 is supercyclic on
𝐵2(𝐻), then (𝑇𝑡⊕𝑇𝑡)𝑡≥0 is supercyclic. We state that the supercyclicity of (𝑇𝑡)𝑡≥0 is concluded
from the supercyclicity of (𝑇𝑡 ⊕ 𝑇𝑡)𝑡≥0. Also, we establish that if for some 𝑡0 > 0, we have
⋃∞
𝑛=1𝑘𝑒𝑟(𝑇𝑛𝑡0) = 𝐻 and 𝑇𝑡0 has a dense range, then (𝑇𝑡)𝑡≥0 is supercyclic.
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Abstract

The present paper aims to familiarize readers with recurrence plot, a tool for analyzing dynamical
systems by visualizing the recurrences of states in time series data. The recurrence plot trans-
forms an observed time series into an image and it provides new approaches to estimate various
nonlinear dynamical characteristics such as the Lyapunov exponent, information dimension, and
correlation dimension. In order to help better understand, the recurrence plots of some synthetic
and a real-world time series data are presented using the Python package pyts.

1. Introduction

The states of natural or technical systems frequently undergo changes over time, sometimes in a rather intricate manner.
The study of such complex dynamics is an important task within numerous scientific disciplines and their applications.
It is important for our daily life to understand, describe, and predict these changes [9]. Forecasting the weather, oil
price or mortality rate are just three examples among many.
Recurrence plots have been initially introduced by Eckmann et al. [2] as a visualization tool for the analysis of complex
systems. More recently, these plots have proven to be a powerful technique to quantify and reveal important dynamical
features in time series data. The recurrence plot is a simple visual and easily estimable tool to characterize the dynamics
of a system. It is based on the observed time series and it provides new approaches to estimate various nonlinear
dynamical characteristics such as the Lyapunov exponent, information dimension, and correlation dimension [5]. The
approaches based on recurrence plots are called recurrence quantification analysis. An important advantage of these
approaches over other nonlinear techniques is that they perform reasonably well for short and non-stationary time
series [5].
The recurrence plot-based approaches have been widely used in a variety of fields such as finance, physiology, cog-
nitive science, information technology, neuroscience, music, geophysics, astrophysics and engineering. One of in-
teresting applications of recurrence plots is the classification of time series. For this purpose, first, the time series is
transformed into an image using the recurrence plot. Then, deep learning methods, especially convolutional neural
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networks, are used to classify this imaged time series [6]. The review of all applications of recurrence plot-based
approaches is beyond the scope of this paper, thus we refer interested readers to [5, 9].
The aim of this article is to familiarize readers with recurrence plot. For this purpose, first, the theory of this technique
is briefly reviewed and then, the recurrence plots of some synthetic and a real-world data are presented. There are many
software and programs available for creation and application of recurrence plots and their quantitative analysis, which
some of them have been listed in [8]. In this paper, all calculations related to recurrence plot have been performed
using the free available Python package pyts. More details on this package can be found in [4].
The rest of the paper is organized as follows. A brief introduction to dynamical system is presented in Section 2. The
method of reconstruction of state space is explained in Section 3. Section 4 is dedicated towards introducing recurrence
plots and in Section 5, the recurrence plots of some synthetic and a real-world time series are presented.

2. What Is a Dynamical System?

The set of all possible states of a system is called state (or phase) space and denoted by 𝒳. A dynamical system is
given by following items:

1) a state space,
2) a continuous or discrete time,
3) a time evolution law.

Assume �⃗�(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑑(𝑡))
𝑇 is the state of a system at a fixed time 𝑡 that is specified by 𝑑 components

in the 𝑑-dimensional state space of the system. The vectors �⃗�(𝑡) define a trajectory in state space and the elements of
them could be, e.g., temperature, wind speed, air pressure, vapor pressure, relative humidity. The development of the
systems is described by these vectors.
In a broad context, the time-evolution law is a rule that allows determining the state of the system at each moment of
time 𝑡 from its states at all previous times. However, often these rules are restricted to time-evolution laws that enable
calculating all future states given a state at any particular moment [9].
Formally, the time-evolution law of a dynamical system can be formulated in terms of either (i) a system of differential
equations that result in flows, that is, continuous time-evolving trajectories, or (ii) a system of discrete iterative rules
often called maps [5]. For continuous-time systems, the time-evolution law (or flow) is given by a set of differential
equations [9]:

̇⃗𝑥(𝑡) = �⃗� (�⃗�(𝑡); 𝜃) , (1)

where �⃗� ∶ 𝒳 → 𝒳 is a 𝑑-dimensional function, which maps every point in 𝒳 ⊆ ℝ𝑑 to another point in 𝒳 itself, 𝜃 is
the set of parameters of the system, and ̇⃗𝑥(𝑡) indicates the first derivative of vector �⃗�(𝑡) with respect to time, that is,

̇⃗𝑥(𝑡) = 𝑑
𝑑𝑡 �⃗�(𝑡) = ቆ 𝑑

𝑑𝑡𝑥1(𝑡),
𝑑
𝑑𝑡𝑥2(𝑡), … , 𝑑𝑑𝑡𝑥𝑑(𝑡)ቇ

𝑇
.

Without loss of generality, Eq.(1) can be used to denote the dynamic of any flow. For example, the Rössler model is
described by the following differential equations system:

�̇� = −𝑦 − 𝑧,
�̇� = 𝑥 + 𝑎𝑦,
�̇� = 𝑏 + 𝑧(𝑥 − 𝑐),

(2)

where 𝜃 = {𝑎, 𝑏, 𝑐} is the set of parameters of the system. This model can be written in the form of Eq.(1) by setting
�⃗�(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))𝑇 ∈ 𝒳 ⊆ ℝ3 and �⃗� (�⃗�(𝑡); 𝜃) = (−𝑦 − 𝑧, 𝑥 + 𝑎𝑦, 𝑏 + 𝑧(𝑥 − 𝑐))𝑇 ∈ 𝒳 ⊆ ℝ3.
For discrete-time systems, the generic form of the time-evolution law (or map) is given by discrete iterative rules as
follows [5]:

�⃗�𝑡+1 = �⃗� (�⃗�𝑡; 𝜃) . (3)
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For example, the Hénon map is described by following set of discrete-time functions:

𝑥𝑡+1 = 1 − 𝑎𝑥2𝑡 + 𝑦𝑡 ,
𝑦𝑡+1 = 𝑏𝑥𝑡 ,

(4)

where 𝑥𝑡 denotes the value of 𝑥 at time 𝑡 and 𝜃 = {𝑎, 𝑏} is the set of parameters of the system. This map can be written
in the form of Eq.(3) by setting �⃗�𝑡 = (𝑥𝑡 , 𝑦𝑡)

𝑇 ∈ 𝒳 ⊆ ℝ2 and �⃗� (�⃗�𝑡; 𝜃) = ൫1 − 𝑎𝑥2𝑡 + 𝑦𝑡 , 𝑏𝑥𝑡൯
𝑇 ∈ 𝒳 ⊆ ℝ2.

The function �⃗�, which is called dynamic, indicates how to move from the state at a time 𝑡 to a next time 𝑡 + 𝛿𝑡
(continuous time) or 𝑡 + 1 (discrete time). The state space 𝒳 and the dynamic �⃗� together form a dynamical system
and denoted by ቀ𝒳, �⃗�ቁ.

3. Reconstruction of State Space

In experimental settings, it is often difficult to construct the state vector (�⃗�(𝑡) or �⃗�𝑡) because not all relevant components
are known or cannot be measured. Frequently, we are confronted with a discrete-time measurement of only one
observable. This produces a univariate discrete time series {𝑢𝑡}

𝑁
𝑡=1 [9]. In such a case, the state space has to be

reconstructed [10]. However, in what approaches can high dimensional dynamics be analyzed utilizing only univariate
time series?
A commonly usedmethod for the reconstruction of state space is the time-delay embedding approach that first proposed
by Takens in 1981 [13]. In this approach, a delay coordinates map �⃗� ∶ 𝒳 → ℝ𝑚 is defined, such that 𝑚 < 𝑑,
�⃗� (�⃗�𝑡) = �⃗�𝑡 ∈ ℝ𝑚, where

�⃗�𝑡 = ൫𝑢𝑡 , 𝑢𝑡+𝜏 , 𝑢𝑡+2𝜏 , … , 𝑢𝑡+(𝑚−1)𝜏൯
𝑇 , (5)

and𝑚 is the embedding dimension and 𝜏 is the time delay. Indeed, the embedding �⃗� maps a point �⃗�𝑡 in 𝑑-dimensional
state space 𝒳 to a point �⃗�𝑡 of the reconstructed state space in ℝ𝑚 with lower 𝑚 dimension. It has been shown that it
is possible to investigate and conceptualize the equilibrium dynamics of a high-dimensional system ቀ𝒳, �⃗�ቁ through
the utilization of a significantly reduced-dimensional embedding �⃗� [12, 13].

4. Recurrence Plots

In 1987, the recurrence plotswere introduced by Eckmann et al. [2] to visualize the recurrences of dynamical systems.
Let {�⃗�𝑖}

𝑁
𝑖=1 be a trajectory of the dynamical system ቀ𝒳, �⃗�ቁ. It is said that the system recurs when a state �⃗�𝑖 at time

𝑡 = 𝑖 is approximately close to a different state �⃗�𝑗 at time 𝑡 = 𝑗, that is, �⃗�𝑖 ≈ �⃗�𝑗 [5]. It is noteworthy that the notion
’approximately close’ is not clear. In order to eliminate ambiguity, a norm (e.g. the Euclidean norm, 𝐿1 norm or the
maximum norm) and a distance threshold should be determined.
The recurrence plot of the system is based on the recurrence matrix R that its elements are defined as follows:

𝑅𝑖𝑗 = ൝1 , �⃗�𝑖 ≈ �⃗�𝑗
0 , �⃗�𝑖 ≉ �⃗�𝑗

𝑖, 𝑗 = 1, 2, … , 𝑁. (6)

Formally, the entries of recurrence matrix in (6) can be expressed as follows:

𝑅𝑖𝑗 = Θ൫𝜀 − ฮ�⃗�𝑖 − �⃗�𝑗ฮ൯ , 𝑖, 𝑗 = 1, 2, … , 𝑁, (7)

where ‖⋅‖ is a proper norm, 𝜀 is distance threshold and Θ is the Heaviside function defined as follows:

Θ(𝑥) = ൝1 , 𝑥 ≥ 0
0 , 𝑥 < 0 . (8)

It is important to note that the distance threshold 𝜀 is necessary as systems often do not recur exactly to a previously
visited state but just approximately [9]. The recurrence matrix R consists of 1s and 0s and compares the states of a
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system at times 𝑖 and 𝑗. In this matrix, the 1s indicate pairs of time points where the states are similar and 0s denote
pairs of time points where the states are rather different. Therefore, the matrix R reveals that when similar states of
the underlying system occur [9]. This matrix is symmetric and all elements of its main diagonal are equal to one
(�⃗�𝑖 = �⃗�𝑖 , 𝑖 = 1, 2, … , 𝑁). It has been proved that, given a recurrence matrix R, the time evolution of the dynamical
system can be reconstructed up to a change in the coordinate system [11].
As mentioned in Section 3, in practice, often the state vector �⃗�𝑡 can not be measured. Instead of that, only a univariate
time series {𝑢𝑡}

𝑁
𝑡=1 is measured. In this case, first the time series is embedded using time-delay embedding approach

(Section 3) to obtain an embedded state-space trajectory {�⃗�𝑡}
𝐾
𝑡=1, where𝐾 = 𝑁−(𝑚−1)𝜏. Then, the recurrencematrix

R is estimated from the embedded trajectory �⃗�𝑡, which is defined in (5). In other words, the elements of recurrence
matrix R are estimated as follows:

ෝ𝑅𝑖𝑗 = Θ൫𝜀 − ฮ�⃗�𝑖 − �⃗�𝑗ฮ൯ , 𝑖, 𝑗 = 1, 2, … , 𝐾, (9)

where ෝ𝑅𝑖𝑗 indicates the estimation of 𝑅𝑖𝑗 defined in (7). We denote the estimated recurrence matrix by ෝR.
A recurrence plot is a visualization of the square 𝐾 × 𝐾 recurrence matrix ෝR. In this plot, black and white dots
correspond to 1 and 0, respectively. The recurrence plot enables us to investigate the 𝑑-dimensional state space trajec-
tory using a two-dimensional representation of its recurrences[8]. Reconstruction of time series is another interesting
application of recurrence plots [7].

5. Recurrence Plots of some Synthetic and Real-World Data

In this section, the recurrence plots of some synthetic and a real-world data are presented, based on the Euclidean
norm. For the first example, consider 𝑁 = 200 random samples drawn from standard normal (Gaussian) distribution.
The time series plot of these samples is shown on the top of Figure 1. Also, the recurrence plots are depicted on
the middle and bottom of this figure for different values of embedding dimension (𝑚) and time delay (𝜏), where the
distance threshold equals to 0.5 (𝜀 = 0.5). It can be easily seen from Figure 1 that there is not a recognizable pattern in
the recurrence plots for𝑚 = 2. In addition, the black anti-diagonal dots of recurrence plots disappear as𝑚 increases.

0 50 100 150 200

2

0

2

m = 2, = 1 m = 20, = 1

m = 2, = 5 m = 20, = 5

Fig. 1. The time series and recurrence plots of 200 random samples from standard normal distribution.
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For the second example, consider 𝑁 = 1000 data points of deterministic sine function, 𝑢𝑡 = sin(𝑡), 0 ≤ 𝑡 ≤ 4𝜋,
where 𝜀 = 𝜋

18 . The time series plot and recurrence plots of deterministic sine series are shown in Figure 2. As can be
seen in this figure, the recurrence plots have distinguishable patterns, especially for𝑚 = 2.

0 2
3
2 2 5

2 3 7
2 4

-1

0

1

m = 2, = 1 m = 20, = 1

m = 2, = 5 m = 20, = 5

Fig. 2. The time series and recurrence plots of deterministic sine series.

Now, let us add some noise that has a normal distribution with a mean of zero and a standard deviation of 0.2 to the
sine series. In other words, 𝑁 = 1000 samples are generated from the following stochastic sine series:

𝑢𝑡 = sin(𝑡) + 𝑛𝑡 , 0 ≤ 𝑡 ≤ 4𝜋, (10)

where 𝜀 = 𝜋
18 and 𝑛𝑡 ∼ 𝑁(0, 0.2). Figure 3 shows the time series plot and recurrence plots of this series. This figure is

slightly similar to Figure 2, with the difference that due to the presence of noise in the data, the patterns are somewhat
distorted.
For the forth example, the sum of two sinusoidal functions with different frequencies are considered. In other words,
the 𝑁 = 1000 data points of following model are obtained:

𝑢𝑡 = sin(𝑡) + sin(3𝑡), 0 ≤ 𝑡 ≤ 4𝜋, (11)

where 𝜀 = 𝜋
18 . The time series plot and recurrence plots of this series are depicted in Figure 4. Again, the recurrence

plots have obvious patterns, especially for𝑚 = 2.
What would happen if some noise were added to the time series defined in (11)? In order to answer this question, we
add Gaussian noise with a mean of zero and a standard deviation of 0.2 to the sum of two sine series defined in (11).
In other words, 𝑁 = 1000 samples are generated from the following stochastic sum of two sine series:

𝑢𝑡 = sin(𝑡) + sin(3𝑡) + 𝑛𝑡 , 0 ≤ 𝑡 ≤ 4𝜋, (12)

where 𝜀 = 𝜋
18 and 𝑛𝑡 ∼ 𝑁(0, 0.2). Figure 5 depicts the time series plot and recurrence plots of this series. As expected,

this figure is somewhat similar to Figure 4, with the difference that due to the presence of noise in the data, the patterns
have become slightly distorted.
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Fig. 3. The time series and recurrence plots of stochastic sine series.
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Fig. 4. The time series and recurrence plots for the sum of two sine series with different frequencies.

Now, let us consider a weather time series dataset recorded at the weather station at the Max Planck Institute for
Biogeochemistry in Jena, Germany [3]. This dataset includes fourteen different variables (such as temperature, airtight,
pressure, humidity, wind direction, and so on) that were recorded every 10 minutes over several years [1]. The original
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Fig. 5. The time series and recurrence plots for the stochastic sum of two sine series with different frequencies.

data goes back to 2003, but we use the subset of the data limited to 2009–2016. In particular, we utilize only monthly
mean temperature (in degrees Celsius) in this paper from 2009 to 2016. Figure 6 shows the time series plot and
recurrence plots of this time series, where 𝜀 = 7. Notice how the periodic pattern in the data is also reflected in this
figure. Also, the pattern of recurrence plots disappears as𝑚 increases.
As can be seen in Figures 1-6, the pattern appeared in the recurrence plot highly depends on the value of three param-
eters: embedding dimension (𝑚), time delay (𝜏), and distance threshold (𝜀). Therefore, choosing these parameters
correctly is very important. Until now, there are not unique rigorous mathematical methods to determine 𝑚, 𝜏, and
𝜀. Consequently, various heuristic methods are used to determine these parameters. For more information on these
methods see [5, 9].
As previously mentioned, the recurrence plot can visualize trajectories in state space and it yields important insights
into the time evolution of these trajectories. It is noteworthy that typical patterns in recurrence plots are linked to a
specific behavior of the dynamical system. There are very diverse patterns in recurrence plots that reviewing all of
them is beyond the purpose of this paper. More details on this topic can be found in [9].
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Abstract

Singular Spectrum Analysis (SSA) and Holt Winters (HW) methods are frequently utilized for
time series forecasting, which typically involves a comparative assessment of their accuracy and
appropriateness for the specific dataset being analysed. In this study, we applied both methods to
forecast road traffic accidents in Golestan province for the years 1400 and 1401 as a case study.
The objective is to assess and distinguish between these techniques by exploring their individual
strengths and limitations through the calculation of the root mean squared error (RMSE) and the
mean absolute percentage error (MAPE).

1. Introduction

Singular Spectrum Analysis (SSA) and Holt Winters (HW) are both effective methodologies for the analysis and
forecasting of time series data, yet they differ significantly in their approaches ([1], [2]). SSA is a non-parametric
technique that breaks down a time series into its fundamental components: trend, seasonal variations, and noise. This
method is especially advantageous for dealing with non-linear and non-stationary time series, and there has been a
growing interest in its application due to its promising predictive capabilities across various domains. Moreover,
SSA is adept at managing missing data, exhibits robustness against noise, and possesses the flexibility to capture
intricate patterns while effectively isolating different components of the time series. Holt Winters (HW) is widely
recognized as one of the leading methods for forecasting in time series analysis, in contrast to the SSA approach ([1],
[3]). This technique is extensively utilized across various time series applications, including monitoring tasks such as
anomaly detection and capacity planning. HW enhances the analysis of time series data by incorporating level, trend,
and seasonality through an updating equation, which facilitates multi-step forecasting via a straightforward linear
combination of these components. Additionally, HW method is particularly effective for seasonal data, enabling the
modelling of both trend and seasonality. Moreover, its advantages include simplicity and ease of implementation,
making it a well-established methodology with clear interpretations, especially effective for data exhibiting strong
seasonal patterns. Nevertheless, regarding to the SSA method, its limitations include the assumption of a constant

∗Babanezhad/Khorsha
Email addresses: m.babanezhad@gu.ac.ir (Manoochehr Babanezhad ), khorshah@yahoo.com (Hassan Khorsha)



112 Babanezhad & Khorsha / The 5th National Congress on Mathematics and Statistics

seasonal pattern,which may not be applicable to all datasets, and its sensitivity to outliers and data anomalies ([4],
[5]). A notable application of both methods lies in forecasting daily road traffic accidents, a responsibility that is
becoming increasingly vital in contemporary society. In this study, we employed both methodologies to forecast
road traffic accidents in Golestan province for the years 1400 and 1401 as a case study. The objective is to conduct
an empirical evaluation of these time series forecasting methodologies by analysing their individual strengths and
weaknesses through the computation of the root mean squared error (RMSE) and the mean absolute percentage error
(MAPE) [6].

2. Forecasting Methods

2.1. Singular Spectrum Analysis (SSA)
SSA is a model-independent method employed for the purposes of separating sources in the analysis of time series
data. It consists of four key stages: embedding, Singular Value Decomposition (SVD), eigentriple grouping, and
reconstruction. The SSA algorithm can be articulated in the following manner:
Consider a time series denoted as 𝑋𝑡 where 𝑡 = 1, 2, ..., 𝑁. An integer number L is selected such that 1 < 𝐿 < 𝑁
referred to as the window length. Let 𝐾 = 𝑁 − −𝐿 + 1 and define,𝑊𝑗 = [𝑋𝑗 , ..., 𝑋𝑗+𝐿−−1]𝑇 for 𝑗 = 1, ..., 𝐾 ([1], [2]).
The trajectory matrix𝑊 is formed as𝑊 = [𝑋1, ..., 𝑋𝑘].
SVD of matrix 𝑅 = 𝑊𝑊𝑇 with dimension 𝐿 × 𝐿 is computed. Let 𝜆1, ..., 𝜆𝐿 represent the eigenvalues arranged
in descending order, such that 𝜆1≥⋯≥𝜆𝐿, and 𝑈1, ..., 𝑈𝐿 being the corresponding eigenvectors. At the final step the
forecasting values of 𝑋𝑡 can be found based on the diagonal averaging algorithm transforms𝑊 into the reconstructed
time series ̂𝑋1, ..., ̂𝑋𝑁.

2.2. Holt Winters (HW)
The HW method, often known as triple exponential smoothing, is utilized for forecasting time series data that exhibit
both trends and seasonal fluctuations. This technique consists of three fundamental components: level, which denotes
the mean value of the series; trend, reflecting the directional movement over time; and seasonality, which identifies
the repetitive patterns occurring at consistent intervals. The method employs smoothing equations to refine these
components as time advances. For a given time series 𝑋𝑡, the updating equations for the HW method are outlined
below [3].

𝑎𝑡 = 𝜃(𝑋𝑡 − 𝑠𝑡−𝑝) + (1 − 𝜃)(𝑎𝑡−1 + 𝑏𝑡−1) (1)

𝑏𝑡 = 𝛽(𝑎𝑡 − 𝑎𝑡−1) + (1 − 𝛽)𝑏𝑡−1 (2)

𝑠𝑡 = 𝛾(𝑋𝑡 − 𝑎𝑡) + (1 − 𝛾)𝑠𝑡−𝑝 (3)

where 𝑎𝑡, 𝑏𝑡 and 𝑠𝑡 are the smoothed estimates of level, trend, and seasonality at time 𝑡, respectively. The parameters
𝜃, 𝛽 and 𝛾 serve as smoothing coefficients and 𝑝 represents a chosen duration.. These coefficients differentiate the
significance of recent observations from those that are older, with the influence of older observations diminishing
exponentially. The k-step forecasting equation for 𝑋𝑚+𝑘 at time𝑚 and for 𝑘 ≤ 𝑝 is:

�̂�𝑚+𝑘|𝑚 = 𝑎𝑚 + 𝑘𝑏𝑚 + 𝑠𝑚+𝑘−𝑝𝑘 (4)

3. Real time series data

The retrospective analysis encompasses all road traffic incidents documented by the Emergency Medical Services
(EMS 115) from 1400 to (1401 in Golestan province, situated in northeastern Iran. During this two-year time frame,
EMS 115 recorded a total of 37,409 accidents. An examination of daily time-series data can yield significant insights
into the trends, patterns, and possible influences on traffic accidents within the study region. The year variable indicates
the specific year during which each accident occurred, ranging from Farvardin, the first month of the year in Persian,
1400 to Esfand, the final month of the year in Persian, 1401. Table 1 presents the cumulative count of traffic accidents
occurring each month in Golestan province from Farvardin 1400 to Esfand 1401, with the month names referred to in
Persian.
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Table 1. The cumulative count of road traffic accidents occurring each month in Golestan province from Farvardin 1400 to Esfand 1401, with the
month names referred to in Persian.

Month Far. Ord. Kor. Tir Mor. Sha. Meh. Aba. Aza. Day Beh. Esf.
Year
1400 1193 1202 1667 1487 1231 1347 1490 1390 1418 1266 1130 1196

1401 1614 1711 1914 2221 1889 2009 2079 1743 1523 1496 1564 1630

3.1. Road traffic accidents analysis
We utilize SSA and HW time series forecasting methods on our dataset. Their performance is evaluated based on
various error statistics, including Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE).
The calculations for these two error statistics are conducted as follows.

𝑅𝑀𝑆𝐸 = ඨ∑
𝑡
𝑡=𝑘+1(𝑋𝑡 − �̂�𝑡)2

(𝑛 − 𝑘) (5)

𝑀𝐴𝑃𝐸 = (1𝑘

𝑘


𝑡=1

𝑋𝑡 − �̂�𝑡
𝑋𝑡

) × 100 (6)

where 𝑋𝑡 and �̂�𝑡 are the actual observed and the predicted value respectively for all time 𝑡, 𝑛 is the total number of
observations and a samples size of 𝑘 < 𝑛. RMSE effectively quantifies the square root of the mean of the squared
discrepancies between predicted and actual values. A lower RMSE signifies superior model performance. Similarly,
MAPE offers a percentage error metric, facilitating interpretation across various scales. Once more, lower values
reflect enhanced accuracy.

3.2. Empirical assessment
SSA offers greater flexibility for analysing complex time series that exhibit irregular patterns, making it particularly
suitable for exploratory data analysis and cases where seasonality is not consistently periodic. In contrast, the HW
method is favoured for time series characterized by pronounced seasonal trends, as it aims to generate forecasts based
on recognized patterns. When a time series displays distinct trends and seasonal behaviours, HW may be the more
appropriate option. However, for those dealing with intricate time series that may include non-linearities or irregular
seasonal variations, SSA should be considered. The efficacy of the HW approach in capturing stable seasonal patterns
is often observed in contexts with reliable production cycles. Conversely, SSAmay demonstrate superior performance
in situations where production is subject to unpredictable external influences, offering enhanced adaptability and pre-
cision. Ultimately, the selection between SSA and Holt Winters should be guided by the specific characteristics of the
time series, the existence of seasonal elements, and the computational resources at hand. Further, Table 2 shows that
the SSA method outperforms the HW method with respect to both RMSE and MAPE. A MAPE value of less than
10 signifies highly accurate predictions, while values between 10 and 20 indicate good forecasting. Values ranging
from 20 to 50 reflect reasonable forecasting, and values exceeding 50 suggest poor forecasting [6]. In order to further
understand the underlying trend and seasonality within the data, decomposition was used to divide the data into its
constituent parts. Figure 1 shows the decomposition plots for the road traffic accidents volume in Golestan province
from Farvardin 1400 to Esfand 1401. An upward trend in road traffic accidents has been noted throughout the exam-
ined period. Figure 1 further illustrates a significant increase in road accidents during the spring and summer months
over the years examined. Figure 2 illustrates the accident count for the year 1402, utilizing SSA and HW methods.
The data presented in this graph indicates that the SSA method foretasted a higher number of accidents compared to
the HW method. The SSA method might have detected emerging trends or changes in behaviour that the HW method
did not capture. Variability in data quality, seasonal effects, or recent changes in regulations or enforcement might
have influenced the SSA’s predictions more than the HW’s.
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4. Discussion

This study examined the daily incidence of traffic accidents, emphasizing the significance of forecasting accident
numbers during specific times of the year for effective traffic management in a particular region. The Singular Spec-
trum Analysis (SSA) method may have identified emerging trends or behavioural changes that the Holt Winters (HW)
method failed to recognize. Factors such as data quality variability, seasonal influences, or recent modifications in
regulations or enforcement may have had a greater impact on the predictions made by SSA compared to those made
by HW. Our findings suggest that SSA is not only a suitable method for analysing the characteristics of specific time
series data, such as road traffic accidents, but it may also prove to be more effective for future forecasting. The benefits
of SSA likely arise from its capacity to provide a clearer understanding of underlying trends, seasonality, and noise,
thereby improving predictive accuracy.

Table 2. Comparison of SSA and HW time series forecasting methods through RMSE and MAPE (%).

Methods RMSE MAPE (%)

SSA 14.93 10.25
HW 25.24 18.52
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Fig. 1. Decomposition plot for the cumulative count of road traffic accidents in Golestan province from Farvardin 1400 to Esfand 1401.
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Abstract

Let 𝐴𝑛 be the arithmetic mean of the first 𝑛 prime numbers. It is known that the sequence
(𝑛ඥ𝐴𝑛)𝑛⩾1 is strictly decreasing, or equivalently, the inequality 𝐴𝑛+1 < 𝐴1+1/𝑛𝑛 holds for any
𝑛 ⩾ 1. In this note we refine this fact by showing that

𝐴1+𝛽0/𝑛𝑛 ⩽ 𝐴𝑛+1 ⩽ 𝐴1+𝛼0/𝑛𝑛

holds for any 𝑛 ⩾ 1 with the best possible constants 𝛽0 = 0 and 𝛼0 = 𝑄(4), where 𝑄(𝑛) =
𝑛((log𝐴𝑛+1)/(log𝐴𝑛) − 1).

1. Introduction and main result

Let 𝑝𝑛 be the 𝑛-th prime number, 𝑆𝑛 be the sum of the first 𝑛 prime numbers, and 𝐴𝑛 = 𝑆𝑛/𝑛 be the arithmetic mean
of the first 𝑛 prime numbers. Motivated by the unsolved Firoozbakht conjecture (see [4, p. 185]) asserting that the
sequence (𝑛√𝑝𝑛)𝑛⩾1 is strictly decreasing, Sun in [6, Thm. 2.1] proved that the sequences (𝑛ඥ𝑆𝑛)𝑛⩾2 and (𝑛ඥ𝐴𝑛)𝑛⩾1
are strictly decreasing, hence confirming two averaged forms of Firoozbakht conjecture. In this paper, we read Sun’s
result on 𝐴𝑛 as the following inequality

𝐴𝑛+1 < 𝐴1+
1
𝑛𝑛 (𝑛 ⩾ 1). (1)

Our main motivation of writing this paper is to improve on the exponent 1/𝑛 by reducing it as may as possible.
Accordingly, first we consider the inequality

𝐴𝑛+1 ⩽ 𝐴1+
𝛼
𝑛𝑛 (𝑛 ⩾ 1). (2)

Following an argument like in [6], we observe that the inequality (2) is equivalent with

𝑆𝑛+1
𝑛 + 1 ⩽ ቆ𝑆𝑛𝑛 ቇ

1+𝛼
𝑛
.
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Since 𝑆𝑛+1 = 𝑆𝑛 + 𝑝𝑛+1, we have

𝑝𝑛+1 + 𝑆𝑛 ⩽ (𝑛 + 1)ቌ𝑆
1+𝛼

𝑛𝑛

𝑛1+
𝛼
𝑛
ቍ = 𝑛 + 1

𝑛1+
𝛼
𝑛
𝑆𝑛 𝑆

𝛼
𝑛𝑛 .

Thus, the inequality (2) is equivalent with

𝑝𝑛+1 ⩽ 𝑆𝑛 ቆ
𝑛 + 1
𝑛1+

𝛼
𝑛
𝑆
𝛼
𝑛𝑛 − 1ቇ .

Also, it is possible to obtain a similar equivalent to the inequality 𝐴1+𝛽/𝑛𝑛 ⩽ 𝐴𝑛+1. Hence, the double sided inequality

𝐴1+
𝛽
𝑛𝑛 ⩽ 𝐴𝑛+1 ⩽ 𝐴1+

𝛼
𝑛𝑛 , (3)

is equivalent with the following double sided inequality

𝑆𝑛 ൭
𝑛 + 1

𝑛1+
𝛽
𝑛
𝑆
𝛽
𝑛𝑛 − 1൱ ⩽ 𝑝𝑛+1 ⩽ 𝑆𝑛 ቆ

𝑛 + 1
𝑛1+

𝛼
𝑛
𝑆
𝛼
𝑛𝑛 − 1ቇ . (4)

To examine possibility of the validity of (4), we analyse asymptotic behaviour of sides of it as 𝑛 → ∞. Such an
analysis shed light to the inequalities (4) and then (3), and ends in the following result.

Proposition 1.1. For any positive fixed 𝛼0 > 0 there exists integer 𝑛0 ⩾ 1 such that the double sided inequality (3)
holds for 𝑛 ⩾ 𝑛0 with the best possible constants 𝛼 = 𝛼0 and 𝛽 = 0. Moreover, the left hand side inequality in (3) is
strict.

Sun’s result (1) asserts that the truth of the above proposition is true with 𝛼0 = 1 and 𝑛0 = 1, that is, with the value
𝛼0 = 1 the inequality (2) holds for the global range 𝑛 ⩾ 1. Computations show that this value of 𝛼0 is not the best
possible for global validity of (2). Regarding to this issue, we prove the following explicit result.

Theorem 1.2. The truth of the above proposition is true with

𝛼0 = 4ቌ
log 28

5
log 17

4
− 1ቍ ≊ 0.76258,

and 𝑛0 = 1.

Remark 1.3. Letting

𝑄(𝑛) = 𝑛 ቆ log𝐴𝑛+1log𝐴𝑛
− 1ቇ ,

the inequality (2) is equivalent with 𝑄(𝑛) ⩽ 𝛼. Moreover, we mention that the optimal value 𝛼0 in the above theorem
is actually 𝑄(4).

Remark 1.4. Very recently, Alzer and the author of this note [1] improved on the above double sided inequality by
proving validity of

𝐴1+ෝ𝛽0/(𝑛 log𝑛)
𝑛 ⩽ 𝐴𝑛+1 ⩽ 𝐴1+ෝ𝛼0/(𝑛 log𝑛)

𝑛 (5)

for any 𝑛 ⩾ 2 with the best possible constants ෝ𝛽0 = ෝ𝑄(2) and ෝ𝛼0 = ෝ𝑄(9), where ෝ𝑄(𝑛) = (log𝑛)𝑄(𝑛). Our result
here, however is weaker than (5), but its proof is simple and contains asymptotic analysis of the inequalities under
study.
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2. Proofs

Proof of Proposition 1.1. Let 𝑛 → ∞. First we observe that

𝑛 + 1
𝑛1+

𝛼
𝑛
= 1 + 1

𝑛 − 𝛼 log𝑛
𝑛 + 𝑂൭ log

2 𝑛
𝑛2 ൱ . (6)

Axler in [2, Thm. 1.4] obtained a full asymptotic for 𝑆𝑛, from which we get

𝑆𝑛 =
𝑛2
2 (log𝑛 + 𝑂(log log𝑛)) = 𝑛2 log𝑛

2 ቆ1 + 𝑂 ቆ log log𝑛log𝑛 ቇቇ . (7)

This implies that

log 𝑆𝑛 = 2 log𝑛 + log log𝑛 − log 2 + logቆ1 + 𝑂 ቆ log log𝑛log𝑛 ቇቇ

= 2 log𝑛 + log log𝑛 − log 2 + 𝑂 ቆ log log𝑛log𝑛 ቇ .

From the above last asymptotic, the following truncated form works for our purpose as well

log 𝑆𝑛 = 2 log𝑛 + 𝑂(log log𝑛). (8)

We deduce from (8) that

𝑆
𝛼
𝑛𝑛 = e

𝛼
𝑛 log 𝑆𝑛 = e

𝛼
𝑛 (2 log𝑛+𝑂(log log𝑛)) = e

2𝛼 log𝑛
𝑛 e

𝑂(log log𝑛)
𝑛

= ൭1 + 2𝛼 log𝑛
𝑛 + 𝑂൭ log

2 𝑛
𝑛2 ൱൱ቆ1 + 𝑂 ቆ log log𝑛𝑛 ቇቇ .

Thus,

𝑆
𝛼
𝑛𝑛 = 1 + 2𝛼 log𝑛

𝑛 + 𝑂 ቆ log log𝑛𝑛 ቇ . (9)

Multiplying asymptomatic relations (6) and (9) gives

𝑛 + 1
𝑛1+

𝛼
𝑛
𝑆
𝛼
𝑛𝑛 = 1 + 𝛼 log𝑛

𝑛 + 𝑂 ቆ log log𝑛𝑛 ቇ .

Thus,
𝑛 + 1
𝑛1+

𝛼
𝑛
𝑆
𝛼
𝑛𝑛 − 1 = 𝛼 log𝑛

𝑛 ቆ1 + 𝑂 ቆ log log𝑛log𝑛 ቇቇ .

Multiplying this last asymptotic and (7), eventually we obtain

𝑆𝑛 ቆ
𝑛 + 1
𝑛1+

𝛼
𝑛
𝑆
𝛼
𝑛𝑛 − 1ቇ = 𝛼

2 ቀ𝑛 log2 𝑛ቁ ቆ1 + 𝑂 ቆ log log𝑛log𝑛 ቇቇ . (10)

Thus, the exact order of the sides of (4) are respectively 𝛽
2 𝑛 log

2 𝑛 and 𝛼
2 𝑛 log

2 𝑛. Since 𝑝𝑛+1 ∼ 𝑛 log𝑛 as 𝑛 → ∞,
we deduce the desired result.

Proof of Theorem 1.2. In order to prove explicit bounds in Theorem 1.2 we need some explicit bounds for 𝑝𝑛 and 𝑆𝑛.
Regarding to 𝑝𝑛, Rosser and Schoenfeld in [5, Thm. 3] proved that

ℬቀ𝑛; 32ቁ < 𝑝𝑛 < ℬቀ𝑛; 12ቁ, (11)
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holds receptively for 𝑛 ⩾ 2 and 𝑛 ⩾ 20, with

ℬ(𝑛; 𝜂) ∶= 𝑛 (log𝑛 + log log𝑛 − 𝜂) .

Regarding to 𝑆𝑛, Dusart in [3, Lemme 1.7] proved that

𝑆𝑛 ⩾ 𝓁(𝑛), (12)

holds for 𝑛 ⩾ 305494 with

𝓁(𝑛) = 𝑛2
2 ቆlog𝑛 + log log𝑛 − 3

2ቇ .

Also, Axler in [2, Cor. 9.1] proved that
𝑆𝑛 < 𝑢(𝑛), (13)

holds for 𝑛 ⩾ 115149 with

𝑢(𝑛) = 𝓁(𝑛) + 𝑛2
2 ቌ

log log𝑛 − 5
2

log𝑛 ቍ .

Now, we have enough materials to prove our explicit results. Considering equivalency of the inequalities (3) and (4),
we need to find a lower bound for the function

𝑅(𝑛) ∶= 𝑆𝑛 ቆ
𝑛 + 1
𝑛1+

𝛼0
𝑛
𝑆
𝛼0
𝑛𝑛 − 1ቇ ,

and compare it with an upper bound for 𝑝𝑛+1. By using (12) we deduce that 𝑅(𝑛) ⩾ 𝑅𝓁(𝑛) for 𝑛 ⩾ 305494, where

𝑅𝓁(𝑛) = 𝓁(𝑛) ቆ 𝑛 + 1
𝑛1+

𝛼0
𝑛
𝓁(𝑛)

𝛼0
𝑛 − 1ቇ .

By computation, we observe that 𝑅𝓁(𝑛) > 0.38𝑛 log2 𝑛 holds for 𝑛 ⩾ 8. Thus, 𝑅(𝑛) > 0.38𝑛 log2 𝑛, for 𝑛 ⩾
305494. On the other hand, considering the upper bound in (11) we observe that ℬ(𝑛+1; 1/2) < 0.38𝑛 log2 𝑛 holds
for 𝑛 ⩾ 29. Thus, we get validity of 𝑝𝑛+1 < 𝑅(𝑛) for 𝑛 ⩾ 305494, and then by computation for 5 ⩽ 𝑛 ⩽ 305494
and 𝑛 = 1, 2, 3, too. Note that 𝑅(4) = 11 = 𝑝5. Thus, the right hand side inequality in (3) with 𝛼 = 𝛼0 is strict for
any positive integer 𝑛 ≠ 4, and the equality holds only for 𝑛 = 4.
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Abstract

For given integers 𝑎, 𝑏, 𝑛 with 𝑎, 𝑛 > 0, we provide an explicit method to exchange a solution of
the equation 𝑛𝑦 ≡ −𝑏 (mod 𝑎) in 𝑦 to a solution of the equation 𝑎𝑥 ≡ 𝑏 (mod 𝑛) in 𝑥. This
simple result allows us to reduce solving linear congruences with large moduli to some linear
congruences with smaller moduli.

1. Introduction

For odd distinct primes 𝑝 and 𝑞, the law of quadratic reciprocity (for example see [1]) connects, by means of the
Legendre symbol, the solubility of the following truncated quadratic congruences

𝑥2 ≡ 𝑝 (mod 𝑞), and 𝑥2 ≡ 𝑞 (mod 𝑝).

The significance of the above connection is when 𝑞 is larger than 𝑝. Hence, the left congruence is harder than the
right one. Indeed, the main point in the practical use of the law of quadratic reciprocity is to reduce the modulus of the
congruence to a smaller one. This point will be useful also for higher degree congruences, motivating the formulation
of several reciprocity laws such as cubic and quartic reciprocities [3].
Motivated by the usefulness of reducingmodulo in congruences, in [2] we provide a “linear reciprocity law” as follows.

Theorem 1.1. Let 𝑎, 𝑏, 𝑛 be integers and 𝑎, 𝑛 > 0. If 𝑦0 is a solution of the equation 𝑛𝑦 ≡ −𝑏 (mod 𝑎), then

𝑥0 =
𝑛𝑦0 + 𝑏

𝑎
is a solution of the equation 𝑎𝑥 ≡ 𝑏 (mod 𝑛).
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2. Proof and Examples

Our short proof of the above result is independent of the theory of linear congruences, and only relates the solutions
of the congruences 𝑛𝑦 ≡ −𝑏 (mod 𝑎) and 𝑎𝑥 ≡ 𝑏 (mod 𝑛) in the explicit manner, providing a way of reducing
moduli.

Proof of Theorem 1.1. Since 𝑛𝑦0 ≡ −𝑏 (mod 𝑎), we see that 𝑎|𝑛𝑦0 +𝑏. Hence, the ratio (𝑛𝑦0 +𝑏)/𝑎 is an integer.
Let us denote it by 𝑥0. We have

𝑎𝑥0 = 𝑛𝑦0 + 𝑏 ≡ 𝑏 (mod 𝑛).
This is the desired conclusion.

Example 2.1. As an example, we solve the congruence 5𝑥 ≡ 1 (mod 97). According to the above theorem, we
consider the congruence 97𝑦 ≡ −1 (mod 5), which is equivalent to 2𝑦 ≡ 4 (mod 5). Since gcd(2, 5) = 1, the last
congruence is equivalent to 𝑦 ≡ 2 (mod 5). Therefore 𝑦0 = 2 and consequently,

𝑥0 =
97 × 2 + 1

5 = 39.

This implies that the multiplicative inverse of 5 modulo 97 is 39.

Example 2.2. Let us give another example, providing the multiplicative inverse of 𝑛 modulo 𝑛!+1, for given integer
𝑛 ⩾ 1. We note that gcd(𝑛! + 1, 𝑛) = 1. Thus, the equation

𝑛𝑥 ≡ 1 (mod 𝑛! + 1)

has a unique solution. According to Theorem 1.1, we consider the congruence (𝑛!+1)𝑦 ≡ −1 (mod 𝑛). Since 𝑛|𝑛!,
we have 𝑦 ≡ −1 (mod 𝑛), and hence, 𝑦0 = 𝑛 − 1. We deduce that

𝑥0 = 𝑛! − (𝑛 − 1)! + 1

is the unique solution of the above congruence.
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Abstract

In this paper, we consider the Cayley graphΠ = 𝐶𝑎𝑦(𝔻2𝑛, Ω𝑘∪𝑆𝑚), where𝔻2𝑛 =< 𝑎, 𝑏 | 𝑎𝑛 =
𝑏2 = 1, 𝑏𝑎 = 𝑎𝑛−1𝑏 > is the dihedral group of order 2𝑛 (𝑛 ≥ 4), and Ω1 = {𝑏, 𝑎𝑛−1𝑏}, Ω2 =
Ω1 ∪ {𝑎𝑏, 𝑎𝑛−2𝑏}, ..., Ω𝑘 = Ω𝑘−1 ∪ {𝑎𝑘−1𝑏, 𝑎𝑛−𝑘𝑏} and 𝑆1 = {𝑎, 𝑎𝑛−1}, 𝑆2 = 𝑆1 ∪ {𝑎2, 𝑎𝑛−2},
..., 𝑆𝑚 = 𝑆𝑚−1 ∪ {𝑎𝑚, 𝑎𝑛−𝑚} are inverse closed subsets of 𝔻2𝑛 − {1} for any 𝑘,𝑚 ∈ ℕ,
1 ≤ 𝑘,𝑚 ≤ [𝑛2 ]. Also, we show that if 𝑛 is an odd integer, and (𝑘 = 𝑚 = [𝑛2 ]), then Π is an
integral graph. In addition, if 𝑛 is an even integer, and 𝑘 = 𝑛

2 ,𝑚 = 𝑛
2 −1, then Π is an integral

graph. Moreover, we determine the automorphism group of graph Π.

1. Introduction

Let Γ = (𝑉, 𝐸) be a simple connected graph with 𝑛 vertices, where 𝑉 = 𝑉(Γ) is the vertex set and 𝐸 = 𝐸(Γ)
is the edge set. We assume 𝑉(Γ) = {𝑣1, 𝑣2, ..., 𝑣𝑛}, where 𝑣1, 𝑣2, ..., 𝑣𝑛 are indexed in the non increasing order of
degrees. The adjacency matrix 𝐴 = 𝐴(Γ) = [𝑎𝑖𝑗] of a graph Γ is the 𝑛 × 𝑛 symmetric matrix with entries 0 and
1 whose rows and columns are indexed by the vertices of Γ, and where 𝐴𝑥𝑦 = 1 if and only if 𝑥 is adjacent to
𝑦, we write 𝑥 ∼ 𝑦. The characteristic polynomial of Γ with respect to the adjacency matrix 𝐴 is the polynomial
𝑃(Γ) = 𝑃(Γ, 𝜆) = 𝑑𝑒𝑡(𝜆𝐼𝑛 − 𝐴), where 𝐼𝑛 denotes the 𝑛 × 𝑛 identity matrix. The eigenvalues of a graph Γ are the
eigenvalues of the adjacency matrix of Γ. The spectrum of Γ is the list of the eigenvalues of the adjacency matrix of Γ
together with their multiplicities, and it is denoted by 𝑆𝑝𝑒𝑐(Γ). If all the eigenvalues of the adjacency matrix of graph
Γ are integers, then we say that Γ is an integral graph. The notion of integral graphs was first introduced by F. Harary
and A. J. Schwenk in 1974 [10]. In general, the problem of characterizing integral graphs seems to be very difficult.
Known characterizations of integral graphs are restricted to certain graph classes, see [1–3, 11–13].
Let 𝑇 = {𝑡1, ..., 𝑡𝑛} be a set and 𝐾 be a group then we write 𝐹𝑢𝑛(𝑇, 𝐾) to denote the set of all functions from 𝑇 into 𝐾,
we can turn 𝐹𝑢𝑛(𝑇, 𝐾) into a group by defining a product:

(𝑓𝑔)(𝑡) = 𝑓(𝑡)𝑔(𝑡) f𝑜𝑟 𝑎𝑙𝑙 𝑓, 𝑔 ∈ 𝐹𝑢𝑛(𝑇, 𝐾) a𝑛𝑑 𝑡 ∈ 𝑇,

where the product on the right is in 𝐾. Since 𝑇 is finite, the group 𝐹𝑢𝑛(𝑇, 𝐾) is isomorphic to 𝐾𝑛 (a direct product
of 𝑛 copies of 𝐾) via the isomorphism 𝑓 → (𝑓(𝑡1), ..., 𝑓(𝑡𝑛)). Let 𝐻 and 𝐾 be groups and suppose 𝐻 acts on the
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nonempty set 𝑇. Then the wreath product of 𝐾 by 𝐻 with respect to this action is defined to be the semidirect product
𝐹𝑢𝑛(𝑇, 𝐾) ⋊ 𝐻 where 𝐻 acts on the group 𝐹𝑢𝑛(𝑇, 𝐾) via

𝑓𝑥(𝑡) = 𝑓(𝑡𝑥−1) f𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝐹𝑢𝑛(𝑇, 𝐾), 𝑡 ∈ 𝑇 a𝑛𝑑 𝑥 ∈ 𝐻.

We denote this group by 𝐾𝑤𝑟𝑇𝐻. Consider the wreath product 𝐺 = 𝐾𝑤𝑟𝑇𝐻. If 𝐾 acts on a set Δ then we can define
an action of 𝐺 on Δ × 𝑇 by

(𝛿, 𝑡)(𝑓,ℎ) = (𝛿𝑓(𝑡), 𝛾ℎ) f𝑜𝑟 𝑎𝑙𝑙 (𝛿, 𝑡) ∈ Δ × 𝑇,

where (𝑓, ℎ) ∈ 𝐹𝑢𝑛(𝑇, 𝐾) ⋊ 𝐻 = 𝐾𝑤𝑟𝑇𝐻 [7].
Suppose Γ is a graph with automorphism group 𝐴𝑢𝑡(Γ), we say that Γ is vertex transitive if for any 𝑥, 𝑦 ∈ 𝑉(Γ), there
is some 𝜋 in 𝐴𝑢𝑡(Γ), the automorphism group of Γ, such that 𝜋(𝑥) = 𝑦. Also, we say that Γ is symmetric if, for
all vertices 𝑢, 𝑣, 𝑥, 𝑦 of Γ such that 𝑢 and 𝑣 are adjacent, also, 𝑥 and 𝑦 are adjacent, then there is an automorphism
𝜋 such that 𝜋(𝑢) = 𝑥 and 𝜋(𝑣) = 𝑦. We say that Γ is distance transitive if, for all vertices 𝑢, 𝑣, 𝑥, 𝑦 of Γ such that
𝜕(𝑢, 𝑣) = 𝜕(𝑥, 𝑦), there is an automorphism 𝜋 such that 𝜋(𝑢) = 𝑥 and 𝜋(𝑣) = 𝑦, where 𝜕(𝑢, 𝑣) denotes the distance
in Γ between the vertices 𝑢 and 𝑣. It is clear that we have a hierarchy of conditions: see [5].
distance transitive ⇒ symmetric ⇒ vertex transitive

Let 𝐺 be a finite group and Ω a subset of 𝐺 that is closed under taking inverses and does not contain the identity. A
Cayley graph Γ = 𝐶𝑎𝑦(𝐺, Ω) is a graph whose vertex set and edge set are defined as follows:

𝑉(Γ) = 𝐺; 𝐸(Γ) = {{𝑥, 𝑦} | 𝑥−1𝑦 ∈ Ω}.

It is well known that every Cayley graph is vertex transitive [5].
Let 𝔻2𝑛 =< 𝑎, 𝑏 | 𝑎𝑛 = 𝑏2 = 1, 𝑏𝑎 = 𝑎𝑛−1𝑏 > be the dihedral group of order 2𝑛 (𝑛 ≥ 4), such that Ω1 =
{𝑏, 𝑎𝑛−1𝑏}, Ω2 = Ω1 ∪ {𝑎𝑏, 𝑎𝑛−2𝑏}, ..., Ω𝑘 = Ω𝑘−1 ∪ {𝑎𝑘−1𝑏, 𝑎𝑛−𝑘𝑏} and 𝑆1 = {𝑎, 𝑎𝑛−1}, 𝑆2 = 𝑆1 ∪ {𝑎2, 𝑎𝑛−2}, ...,
𝑆𝑚 = 𝑆𝑚−1 ∪ {𝑎𝑚 , 𝑎𝑛−𝑚} are inverse closed subsets of 𝔻2𝑛 − {1} for any 𝑘,𝑚 ∈ ℕ, 1 ≤ 𝑘,𝑚 ≤ [𝑛2 ]. In this paper,
we construct a class of integral graph on the dihedral group 𝔻2𝑛 as follows:
Suppose, Π = 𝐶𝑎𝑦(𝔻2𝑛 , Ω𝑘 ∪𝑆𝑚) is a Cayley graph on the dihedral group𝔻2𝑛 (𝑛 ≥ 4), where Ω𝑘 and 𝑆𝑚 which are
defined already. We show that if 𝑛 is an odd integer, and (𝑘 = 𝑚 = [𝑛2 ]), then Π is an integral graph. In addition, if
𝑛 is an even integer, and 𝑘 = 𝑛

2 , 𝑚 = 𝑛
2 − 1, then Π is an integral graph. Moreover, we determine the automorphism

group of graph Π.

2. Definitions And Preliminaries

Definition 2.1. [5, 6] For any vertex 𝑣 of a connected graph Γ, we define the 𝑟-distance graph as

Γ𝑟(𝑣) = {𝑢 ∈ 𝑉(Γ) | 𝜕(𝑢, 𝑣) = 𝑟},

where 𝑟 is a non-negative integer not exceeding𝑑, the diameter of Γ. It is clear that Γ0(𝑣) = {𝑣}, and𝑉(Γ) is partitioned
into the disjoint subsets Γ0(𝑣), ..., Γ𝑑(𝑣), for each 𝑣 in 𝑉(Γ). The graph Γ is called distance regular with diameter 𝑑 and
intersection array {𝑏0, ..., 𝑏𝑑−1; 𝑐1, ..., 𝑐𝑑} if it is regular of valency 𝑘 and, for any two vertices 𝑢 and 𝑣 in Γ at distance
𝑟, we have |Γ𝑟+1(𝑣) ∩ Γ1(𝑢)| = 𝑏𝑟, and |Γ𝑟−1(𝑣) ∩ Γ1(𝑢)| = 𝑐𝑟 (0 ≤ 𝑟 ≤ 𝑑). The intersection numbers 𝑐𝑟 , 𝑏𝑟 and
𝑎𝑟 satisfy

𝑎𝑟 = 𝑘 − 𝑏𝑟 − 𝑐𝑟 (0 ≤ 𝑟 ≤ 𝑑),
where 𝑎𝑟 is the number of neighbours of 𝑢 in Γ𝑟(𝑣) for 𝜕(𝑢, 𝑣) = 𝑟.

Remark 2.2. [5] It is clear that if Γ is distance transitive graph, then Γ is distance regular.

Proposition 2.3. [5] Let Γ be a distance regular graph with diameter 𝑑. Then Γ has exactly 𝑑+1 distinct eigenvalues.
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Theorem 2.4. [6, 12] Let Γ be a distance regular graph with valency 𝑘, diameter 𝑑, adjacency matrix 𝐴, and inter-
section array

{𝑏0, 𝑏1, ..., 𝑏𝑑−1; 𝑐1, 𝑐2, ..., 𝑐𝑑}.
Then, the tridiagonal (𝑑 + 1) × (𝑑 + 1) matrix

𝐵 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎0 𝑏0 0 0 ...
𝑐1 𝑎1 𝑏1 0 ...
0 𝑐2 𝑎2 𝑏2 0 ...

...

0 ... 0 𝑐𝑑−2 𝑎𝑑−2 𝑏𝑑−2 0
0 ... 0 0 𝑐𝑑−1 𝑎𝑑−1 𝑏𝑑−1
0 ... 0 0 0 𝑐𝑑 𝑎𝑑

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

determines all the eigenvalues of Γ.
Theorem 2.5. [4] Let Γ be a graph such that contains 𝑛 components Γ1, ..., Γ𝑛. If, for any 𝑖 ∈ 𝐼 = {1, ..., 𝑛}, Γ𝑖 ≅ Γ1,
then 𝐴𝑢𝑡(Γ) ≅ 𝐴𝑢𝑡(Γ1)𝑤𝑟𝐼𝑆𝑦𝑚(𝑛).
Definition 2.6. [9] Let 𝑘 be a positive integer, a 𝑘-colouring of a graph Γ is a mapping 𝑓 ∶ 𝑉(Γ) ⟶ {1, ..., 𝑘} such
that 𝑓(𝑥) ≠ 𝑓(𝑦) for any two adjacent vertices 𝑥 and 𝑦 in Γ, and if such a mapping exists we say that Γ is 𝑘-colorable.
The chromatic number 𝜒(Γ) of Γ is the minimum number 𝑘 such that Γ is 𝑘-colorable.
Definition 2.7. [9] Let Γ be a graph and 𝐼(Γ) denote the set of all independent sets of the graph Γ. A fractional
colouring of a graph Γ is a weight function 𝜇 ∶ 𝐼(Γ) ⟶ [0, 1] such that for any vertex 𝑥 of Γ, ∑𝑥∈𝐼∈𝐼(Γ) 𝜇(𝐼) ≥ 1, and
if such a weight function exists we say that Γ is fractional colouring. The fractional chromatic number of a graph Γ
is denoted by 𝜒𝑓(Γ) and defined in [ [9], page 134]. Also a fractional clique of a graph Γ is denoted by 𝜔𝑓(Γ) and
defined in [ [9], page 134].

Proposition 2.8. [8] For any graph Γ we have

𝜔(Γ) ≤ 𝜔𝑓(Γ) ≤ 𝜒𝑓(Γ) ≤ 𝜒(Γ).

Proposition 2.9. [8] If Γ is vertex transitive graph, then we have

𝜔𝑓(Γ) =
|𝑉(Γ)|
𝛼(Γ) .

3. Main results

Proposition 3.1. Let Π = 𝐶𝑎𝑦(𝔻2𝑛 , Ω𝑘 ∪ 𝑆𝑚) be the Cayley graph on the dihedral group 𝔻2𝑛(𝑛 ≥ 4), where Ω𝑘
and 𝑆𝑚 which are defined as before. If 𝑛 is an odd integer and (𝑘 = 𝑚 = [𝑛2 ]) then Π is an integral graph.

Proof. We know that if 𝑛 is an odd integer and 𝑘 = 𝑚 = [𝑛2 ] then Ω𝑘 = {𝑏, 𝑎𝑏, 𝑎2𝑏, ..., 𝑎𝑛−1𝑏} − {𝑎𝑘𝑏}, and 𝑆𝑚 =
{𝑎, 𝑎2, ..., 𝑎𝑛−1}. It is not hard to see thatΠ is a distance transitive graph. Also, let𝑉(Π) = {𝑏, 𝑎𝑏, ..., 𝑎𝑛−1𝑏, 𝑎, 𝑎2, ..., 𝑎𝑛}
be the vertex set of Π. Consider the vertex 𝑣 = 𝑎𝑛 in the 𝑉(Π), then Γ0(𝑣) = {𝑎𝑛}, Γ1(𝑣) = 𝔻2𝑛 − {𝑎𝑛 , 𝑎𝑘𝑏} and
Γ2(𝑣) = {𝑎𝑘𝑏}. Let be 𝑢 in the 𝑉(Π) such that 𝜕(𝑢, 𝑣) = 0 then 𝑢 = 𝑣 = 𝑎𝑛 and |Γ1(𝑣) ∩ Γ1(𝑢)| = 2𝑛 − 2,
hence 𝑏0 = 2𝑛 − 2 and by Definition (2.1), 𝑎0 = 2𝑛 − 2 − 𝑏0 = 0. Also, if 𝑢 in the 𝑉(Π) and 𝜕(𝑢, 𝑣) = 1 then
two vertices 𝑢, 𝑣 are adjacent in Π, so |Γ0(𝑣) ∩ Γ1(𝑢)| = 1 and |Γ2(𝑣) ∩ Γ1(𝑢)| = 1, hence 𝑐1 = 1, 𝑏1 = 1 and
𝑎1 = 2𝑛 − 2 − 𝑏1 − 𝑐1 = 2𝑛 − 4. Finally, if 𝑢 in the 𝑉(Π) and 𝜕(𝑢, 𝑣) = 2, then two vertices 𝑢, 𝑣 are not adjacent
in Π, so |Γ1(𝑣) ∩ Γ1(𝑢)| = 2𝑛 − 2, hence 𝑐2 = 2𝑛 − 2 and 𝑎2 = 2𝑛 − 2 − 𝑐2 = 0. So the intersection array of Π is
{2𝑛 − 2, 1; 1, 2𝑛 − 2}. Therefore by Theorem (2.4), the tridiagonal (3) × (3) matrix,


𝑎0 𝑏0 0
𝑐1 𝑎1 𝑏1
0 𝑐2 𝑎2

 = 
0 2𝑛 − 2 0
1 2𝑛 − 4 1
0 2𝑛 − 2 0

 ,
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determines all the eigenvalues of Π, because by Remark (2.2), it is clear that Π is a distance regular graph. Also, it is
easy to show that all the eigenvalues of Π are 2𝑛 − 2, 0, −2 and their multiplicities are 1, 𝑛, 𝑛 − 1, respectively. So Π
is an integral graph.

Proposition 3.2. Let Π = 𝐶𝑎𝑦(𝔻2𝑛 , Ω𝑘 ∪ 𝑆𝑚) be the Cayley graph on the dihedral group 𝔻2𝑛(𝑛 ≥ 4), where Ω𝑘
and 𝑆𝑚 which are defined as before. If 𝑛 is an even integer and (𝑘 = 𝑛

2 ,𝑚 = 𝑛
2 − 1 ) then Π is an integral graph.

Proof. We know that, if 𝑛 is an even integer and 𝑘 = 𝑛
2 , 𝑚 = 𝑛

2 − 1, then Ω𝑘 = {𝑏, 𝑎𝑏, 𝑎2𝑏, ..., 𝑎𝑛−1𝑏}, and 𝑆𝑚 =
{𝑎, 𝑎2, ..., 𝑎𝑛}−{𝑎

𝑛
2 , 𝑎𝑛}. It is easy to prove thatΠ is a distance transitive graph. Also, let𝑉(Π) = {𝑏, 𝑎𝑏, ..., 𝑎𝑛−1𝑏, 𝑎, 𝑎2, ..., 𝑎𝑛}

be the vertex set of Π. Consider the vertex 𝑣 = 𝑎𝑛 in the 𝑉(Π), then Γ0(𝑣) = {𝑎𝑛}, Γ1(𝑣) = 𝔻2𝑛 − {𝑎𝑛 , 𝑎
𝑛
2 } and

Γ2(𝑣) = {𝑎
𝑛
2 }. Similarly, by proof of Proposition (3.1), we can show that the intersection array of Π is {2𝑛 −

2, 1; 1, 2𝑛 − 2}. Therefore by Theorem (2.4), the tridiagonal (3) × (3) matrix,


𝑎0 𝑏0 0
𝑐1 𝑎1 𝑏1
0 𝑐2 𝑎2

 = 
0 2𝑛 − 2 0
1 2𝑛 − 4 1
0 2𝑛 − 2 0

 ,

determines all the eigenvalues of Π, because by Remark (2.2), it is clear that Π is a distance regular graph. Also, it is
easy to show that all the eigenvalues of Π are 2𝑛 − 2, 0, −2 and their multiplicities are 1, 𝑛, 𝑛 − 1, respectively. So Π
is an integral graph.

Theorem 3.3. Let Π = 𝐶𝑎𝑦(𝔻2𝑛 , Ω𝑘 ∪ 𝑆𝑚) be a Cayley graph on the dihedral group 𝔻2𝑛(𝑛 ≥ 4), where Ω𝑘 and
𝑆𝑚 which are defined as before. If 𝑛 is an odd integer and (𝑘 = 𝑚 = [𝑛2 ]) then 𝐴𝑢𝑡(Π) = ℤ2𝑤𝑟𝐼𝑆𝑦𝑚(𝑛), where
𝐼 = {1, 2, ..., 𝑛}.

Proof. By assumptions and definitions of Ω𝑘 and 𝑆𝑚, we can show that 𝜒(Π) = 𝜔(Π) = 𝑛. So by Proposition (2.8),
𝜒𝑓(Π) = 𝜔𝑓(Π) = 𝑛. Also we know that Π is a vertex transitive graph, so by Proposition (2.9), 𝑛 = 𝜔𝑓(Π) =

|𝑉(Π)|
𝛼(Π) .

Thus, the size of the every independent set of vertices in the Π is 2. Therefore for any 𝑥 ∈ 𝑉(Π), there is exactly
one 𝑦 ∈ 𝑉(Π) such that 𝑥−1𝑦 ∉ Ω𝑘 ∪ 𝑆𝑚. Hence, if 𝑥−1𝑦 ∉ Ω𝑘 ∪ 𝑆𝑚 then two vertices 𝑥 and 𝑦 are adjacent in the
complement Π of Π, so Π contains 𝑛 components Π1, ..., Π𝑛 such that for any 𝑖 ∈ 𝐼 = {1, ..., 𝑛}, Π𝑖 ≅ 𝐾2, where 𝐾2 is
the complete graph on 2 vertices. Therefore Π ≅ 𝑛𝐾2, hence by Theorem (2.5), 𝐴𝑢𝑡(Π) ≅ 𝐴𝑢𝑡(𝐾2)𝑤𝑟𝐼𝑆𝑦𝑚(𝑛) =
ℤ2𝑤𝑟𝐼𝑆𝑦𝑚(𝑛), so 𝐴𝑢𝑡(Π) ≅ ℤ2𝑤𝑟𝐼𝑆𝑦𝑚(𝑛). In fact, it is well known that for any graph Π, 𝐴𝑢𝑡(Π) = 𝐴𝑢𝑡(Π); see
[8].
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Abstract

In this paper, we introduce a new iterative algorithm for finding a common element of the set
of solutions of the set of fixed points for a 𝜙-nonexpansive mapping and the mixed equilib-
rium problems in Banach spaces by using sunny generalized nonexpansive retraction in Banach
spaces.

1. Introduction

Let 𝐶 be a nonempty closed convex subset of a real Banach space 𝑋 with norm ‖.‖ and 𝑋∗ be the dual of 𝑋. Let 𝐽 be
the duality mapping from 𝑋 into 𝑋∗ such that 𝐽(𝐶) is a cloded and convex subset of 𝑋∗. Let 𝐹 ∶ 𝐽(𝐶) × 𝐽(𝐶) → ℝ be
a bifunction and 𝜑 ∶ 𝐽(𝐶) → ℝ be a real valued function.
The mixed equilibrium problem is to find 𝑋∗ ∈ 𝐶 such that

𝐹(𝐽𝑥∗, 𝐽𝑦) + 𝜑(𝐽𝑦) − 𝜑(𝐽𝑥∗) ≥ 0, (1)

for all 𝑦 ∈ 𝐶. The solution set of (1) is denoted by𝑀𝐸𝑃(𝐹, 𝜑).

𝐽𝑝(𝑥) = {𝑓 ∈ 𝑋∗ ∶ ⟨𝑥, 𝑓⟩ = ‖𝑥‖𝑝, ‖𝑓‖ = ‖𝑥‖𝑝−1},

for every 𝑥 ∈ 𝑋. If 𝑝 = 2, then 𝐽2 = 𝐽 is the normalized duality mapping. Let 𝑋 be a smooth Banach space and let 𝐽𝑋
be the duality mapping on 𝑋. The function 𝜙 ∶ 𝑋 × 𝑋 → ℝ is defined by

𝜙(𝑥, 𝑦) = ‖𝑥‖2 − 2⟨𝑥, 𝐽𝑋𝑦⟩ + ‖𝑦‖2, ∀𝑥, 𝑦 ∈ 𝑋. (2)

Clearly, from (2), we can conclude that

(‖𝑥‖ − ‖𝑦‖)2 ≤ 𝜙(𝑥, 𝑦) ≤ (‖𝑥‖ + ‖𝑦‖)2. (3)

∗Talker
Email addresses: rahmani.a6456@gmail.com (Azadeh Rahmani), ghadampour.m@pnu.ac.ir (Mostafa Ghadampour)



A. Rahmani & M. Ghadampour / The 5th National Congress on Mathematics and Statistics 127

Definition 1.1. [1] Let 𝐶 be a nonempty closed subset of 𝑋. A mapping 𝑅 ∶ 𝑋 → 𝐶 is called:

(i) a retraction if 𝑅2 = 𝑅,
(ii) sunny if 𝑅(𝑅𝑥 + 𝜆(𝑥 − 𝑅𝑥)) = 𝑅𝑥 for all 𝑥 ∈ 𝑋 and 𝜆 > 0.

Definition 1.2. [1] A nonempty closed subset 𝐶 of a smooth Banach space 𝑋 is called a sunny generalized nonexpan-
sive retract of 𝑋 if there exists a sunny generalized nonexpansive retraction 𝑅 from 𝑋 onto 𝐶.

For solving the equilibrium problem, we assume that the bifunction 𝐹 ∶ 𝐶 × 𝐶 → 𝑅 satisfies the following conditions:

(A1) 𝐹(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶,
(A2) 𝐹 is monotone, i.e., 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) ≤ 0 for all 𝑥, 𝑦 ∈ 𝐶,
(A3) lim sup𝜆→∞ 𝐹(𝑥 + 𝑡(𝑧 − 𝑥), 𝑦) ≤ 𝐹(𝑥, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝐶,
(A3) the function 𝑦 ↦ 𝐹(𝑥, 𝑦) is convex and lower semicontinuous.

Lemma 1.3. [2] Let 𝑋 be a smooth and uniformly convex Banach space and 𝑟 > 0. Then there exists a strictly
increasing, continuous and convex function ℎ ∶ [0, 2𝑟] → ℝ such that ℎ(0) = 0 and

ℎ(‖𝑥 − 𝑦‖) ≤ 𝜙(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝐵𝑟 .

Lemma 1.4. [3] Let 𝐸 be a strictly convex and smooth Banach space, let 𝐶 be a nonempty closed convex subset of 𝐸
and let 𝑇 ∶ 𝐶 → 𝐶 be a closed 𝜙-nonexpansive mapping. Then 𝐹(𝑇) is a closed convex subset of 𝐶.

Lemma 1.5. [1] Let 𝐶 be a nonempty closed subset of a uniformly smooth, strictly convex and reflexive Banach
space 𝑋 such that 𝐽(𝐶) is closed and convex. Let 𝜑 ∶ 𝐽(𝐶) → ℝ be convex and lower semicontinuous and mapping
𝐹 ∶ 𝐽(𝐶) × 𝐽(𝐶) → ℝ be a bifunction mapping satisfying the conditions (A1)–(A4). For any 𝑟 > 0 and 𝑥 ∈ 𝑋, define
a mapping 𝑇𝑟 ∶ 𝑋 → 𝐶 by

𝑇𝑟(𝑥) = {𝑧 ∈ 𝐶 ∶ 𝐹(𝐽𝑧, 𝐽𝑦) + 𝜑(𝐽𝑦) − 𝜑(𝐽𝑧) + 1
𝑟 ⟨𝑧 − 𝑥, 𝐽𝑦 − 𝐽𝑧⟩ ≥ 0, ∀𝑦 ∈ 𝐶}

for all 𝑥 ∈ 𝑋. Then the following statements hold:

(1) 𝑇𝑟 is single-valued,
(2) For all 𝑥, 𝑦 ∈ 𝑋,

⟨𝑇𝑟(𝑥) − 𝑇𝑟(𝑦), 𝐽(𝑇𝑟(𝑥)) − 𝐽(𝑇𝑟(𝑦))⟩ ≤ ⟨𝑥 − 𝑦, 𝐽(𝑇𝑟(𝑥)) − 𝐽(𝑇𝑟(𝑦))⟩

(3) 𝐹(𝑇𝑟) = 𝑀𝐸𝑃(𝐹, 𝜑) and 𝐽(𝑀𝐸𝑃(𝐹, 𝜑)) is closed and convex,
(4) 𝜙(𝑥, 𝑇𝑟(𝑥)) + 𝜙(𝑇𝑟(𝑥), 𝑝) ≤ 𝜙(𝑥, 𝑝) for all 𝑥 ∈ 𝑋 and 𝑝 ∈ 𝐹(𝑇𝑟).

Lemma 1.6. [1] Let 𝐶 be a nonempty closed subset of a smooth and strictly convex Banach space 𝑋 such that there
exists a sunny generalized nonexpansive retraction 𝑅 from 𝑋 onto 𝐶. Then, for any 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝐶, the following
statements hold:

(1) 𝑧 = 𝑅𝑥 if and only if ⟨𝑥 − 𝑧, 𝐽𝑦 − 𝐽𝑧⟩ ≤ 0 for all 𝑦 ∈ 𝐶,
(2) 𝜙(𝑥, 𝑅𝑥) + 𝜙(𝑅𝑥, 𝑧) ≤ 𝜙(𝑥, 𝑧).

Lemma 1.7. [4] Let {𝑎𝑛} and {𝑏𝑛} be two sequences of nonnegative real numbers satisfying the inequality

𝑎𝑛+1 ≤ 𝑎𝑛 + 𝑏𝑛 , ∀𝑛 ≥ 1.

If ∑∞
𝑛=0 𝑏𝑛 < ∞, then lim𝑛→∞ 𝑎𝑛 exists.
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2. Main results

Theorem 2.1. Let 𝑋 be a uniformly smooth and uniformly convex Banach space and let 𝐶 be a nonempty closed and
convex subset of 𝑋 such that 𝐽(𝐶) is closed and convex of 𝑋∗. Suppose that 𝐹 ∶ 𝐽(𝐶) × 𝐽(𝐶) → ℝ is a bifunction
satisfying the conditions (𝐴1) − (𝐴4). let 𝑇 ∶ 𝐶 → 𝐶 be a closed and 𝜙-nonexpansive mapping such that ℱ ∶=
𝐹(𝑇) ∩ 𝑀𝐸𝑃(𝐹, 𝜙) ≠ ∅. Suppose that {𝑥𝑛} is a sequence generated by 𝑥0 ∈ 𝐶 and

൞
𝑢𝑛 ∈ 𝐶 such that
𝐹(𝐽𝑢𝑛 , 𝐽𝑦) + 𝜑(𝐽𝑦) − 𝜑(𝐽𝑢𝑛) +

1
𝑟𝑛
⟨𝑢𝑛 − 𝑥𝑛 , 𝐽𝑦 − 𝐽𝑢𝑛⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥𝑛+1 = 𝛼𝑛𝑥0 + (1 − 𝛼𝑛)𝑇𝑢𝑛 ,
(4)

where {𝛼𝑛}, {𝛽𝑛} and {𝑟𝑛} satisfy the following conditions:

(i) {𝛼𝑛} is a sequence in [0, 1] and ∑∞
𝑛=0 𝛼𝑛 < ∞,

(ii) {𝛽𝑛} ⊂ [𝑎, 𝑏] ⊂ (0, 1) and ∑∞
𝑛=0 𝛽𝑛 < ∞,

(iii) {𝑟𝑛} ⊂ [𝑑,∞) for some 𝑑 > 0 and lim inf𝑛→∞ 𝑟𝑛 > 0.
Then the sequence {𝑅ℱ𝑥𝑛} converges strongly to a point 𝑞 ∈ ℱ, where 𝑅ℱ is the sunny generalized nonexpansive
retraction of 𝑋 onto ℱ.
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Abstract

In 2015, the pointfree version of the zero set of a real-valued continuous function 𝑓 on a topo-
logical 𝑋 was defined by viewing prime elements of a frame 𝐿 as pointfree points, replacing
them for points 𝑥 of 𝑋. Moreover, the zero set of a frame homomorphisms 𝛼 ∶ 𝔒(ℝ) → 𝐿
is characterized by its cozero element. Using this characterization, we define the zero set of
a frame homomorphisms 𝛼 ∶ 𝔒(ℝ) → 𝐿 with a countable pointfree image and provide basic
relations arising from these sets. We show that for a zero-dimensional frame 𝐿, the family 𝑍𝑐𝐿
of all zero sets in 𝐿 forms a base for the closed sets of all primes in 𝐿. We also introduce the
concept of 𝑧𝑐-filters on a frame 𝐿 and examine their connections to ideals, particularly maximal
ideals.

1. Introduction

Let 𝐶(𝑋) be the ring of all real-valued continuous functions on a topological space 𝑋 (see [11] for more details), and
let 𝐶𝑐(𝑋) be the subring of 𝐶(𝑋) consisting of those functions with countable images (see [9, 10] for more details).
For each 𝑓 ∈ 𝐶(𝑋), the zero set of 𝑓, denoted by 𝑍(𝑓), is the set {𝑥 ∈ 𝑋 ∣ 𝑓(𝑥) = 0}, and 𝐶𝑜𝑧(𝑓) = 𝑋 ∖ 𝑍(𝑓) is the
cozero-set of 𝑓. To study the rings 𝐶(𝑋) and 𝐶𝑐(𝑋), 𝑋 is a topological space, zero sets have an important role.
The pointfree topology version of 𝐶(𝑋) was introduced by Banaschewski and Gilmour in [3]. This structure is denote
by ℛ𝐿, where 𝐿 is a frame. For any frame 𝐿, the elements of ℛ𝐿 are frame homomorphisms 𝛼 ∶ ℒ(ℝ) → 𝐿, where
ℒ(ℝ) is the frame of reals, which is isomorphic to 𝔒(ℝ) the frame of open subsets of ℝ. It is a reduced 𝑓-ring; for
further details on its properties, see [2] and [4]. For each 𝛼 ∈ ℛ𝐿, let coz(𝛼) = 𝛼(−, 0) ∨ 𝛼(0, −), where

(0, −) =ሧ{(0, 𝑞)) ∣ 0 < 𝑞 ∈ ℚ}, and (−, 0) =ሧ{(𝑝, 0)) ∣ 0 > 𝑝 ∈ ℚ}.

A cozero element of a frame 𝐿 is of the form coz(𝛼) for some 𝛼 ∈ ℛ𝐿. The set Coz𝐿 = {coz(𝛼) ∣ 𝛼 ∈ ℛ𝐿} is a
sub-𝜎-frame of 𝐿. For detailed properties of cozero elements, refer to [2] and [4].
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Let 𝑟 ∈ ℝ. The constant frame homomorphism r ∈ ℛ𝐿 is defined as follows:

r(𝑝, 𝑞) = ൝⊤ if 𝑝 < 𝑟 < 𝑞
⊥ otherwise.

For any 𝛼 ∈ ℛ𝐿, define 𝑅𝛼 ∶= {𝑟 ∈ ℝ ∣ coz(𝛼 − r) = 𝛼(−, 𝑟) ∨ 𝛼(𝑟, −) ≠ ⊤}, as stated in [12], where

(−, 𝑟) ∶=ሧ
𝑞∈ℚ
𝑞<𝑟

(−, 𝑞) and (𝑟, −) ∶= ሧ
𝑝∈ℚ
𝑟<𝑝

(𝑝.−).

Thus, 𝑅𝛼 generalizes the familiar relationship between functions on spaces and their images (see [1, Irtroduction] and
[12]).
The pointfree topology version of 𝐶𝑐(𝑋) was introduced in [12], where it is denoted by 𝐶𝑐(𝐿). We refer to it asℛ𝑐(𝐿).
The elements of the ring ℛ𝑐𝐿 are frame homomorphisms 𝛼 ∶ ℒ(ℝ) → 𝐿, where 𝛼 has a countable pointfree image. A
real-valued continuous function 𝛼 on a frame 𝐿 is said to have a countable pointfree image if 𝑅𝛼 is a countable set.
For any frame 𝐿, [8] establishes the following:

1. For any 𝛼 ∈ ℛ𝑐𝐿, coz(𝛼) is a countable join of complemented elements of 𝐿.
2. The set Coz𝑐𝐿 = {coz(𝛼) ∣ 𝛼 ∈ ℛ𝑐𝐿} is a sublattice of 𝐿 that includes ⊥ and ⊤.
3. 𝐿 is a zero-dimensional frame if and only if it is generated by Coz𝑐𝐿.
4. Coz𝑐𝐿 is closed under countable joints when 𝐿 is a completely regular frame.

A frame is a complete lattice 𝐿 in which the distributive law

𝑎 ∧ሧ𝑆 =ሧ
𝑠∈𝑆

𝑎 ∧ 𝑠

holds for all 𝑎 ∈ 𝐿 and 𝑆 ⊆ 𝐿. Throughout this context 𝐿 will denote a frame. We denote the top element and the
bottom element of 𝐿 by ⊤ and ⊥ respectively. An element 𝑝 ∈ 𝐿 is called prime if 𝑝 < ⊤ and 𝑎 ∧𝑏 ≤ 𝑝 implies 𝑎 ≤ 𝑝
or 𝑏 ≤ 𝑝. We denoted the set of all points of 𝐿 by 𝑃𝑡(𝐿).The pseudocomplement of an element 𝑎 ∈ 𝐿 is the element
𝑎∗ = ⋁{𝑥 ∈ 𝐿 ∣ 𝑎 ∧ 𝑥 = ⊥}. When 𝑎 ∨ 𝑎∗ = 1, then 𝑎 is called a complemented element in 𝐿.The frame of open
subsets of a topological space 𝑋 is denoted by 𝔒(𝑋).
Let 𝑎 ∈ 𝐿, and 𝛼 ∈ ℛ𝐿. We define the sets 𝐿(𝑎, 𝛼) = {𝑟 ∈ ℚ ∣ 𝛼(−, 𝑟) ≤ 𝑎} and 𝑈(𝑎, 𝛼) = {𝑠 ∈ ℚ ∣ 𝛼(𝑠, −) ≤ 𝑎}.
For 𝑎 ≠ ⊤, it is evident that for each 𝑟 ∈ 𝐿(𝑎, 𝛼) and 𝑠 ∈ 𝑈(𝑎, 𝛼), 𝑟 ≤ 𝑠. Indeed, as shown in [5], if 𝑝 is a prime
element in 𝐿, then the pair (𝐿(𝑝, 𝛼), 𝑈(𝑝, 𝛼)) forms a Dedekind cut for a real number denoted by 𝛼[𝑝].
In paper [6], the authors present a pointfree version of zero sets by treating prime elements of a frame 𝐿 as pointfree
points. They define the trace of an element 𝛼 of ℛ𝐿 on a point 𝑝 in 𝐿 by 𝛼[𝑝]. The zero set of an element 𝛼 ∈ ℛ𝐿 is
define by 𝑍(𝛼) = {𝑝 ∈ 𝑃𝑡(𝐿) ∶ 𝛼[𝑝] = 0}. They show that for any prime element 𝑝 ∈ 𝐿 and 𝛼 ∈ ℛ𝐿, 𝛼[𝑝] = 0 if
and only if coz(𝛼) ≤ 𝑝. Consequently, we have 𝑍(𝛼) = {𝑝 ∈ 𝑃𝑡(𝐿) ∣ coz(𝛼) ≤ 𝑝}.
We define a countable zero set in pointfree topology based on thecharacterization of zero sets mentioned earlier. For
any 𝛼 ∈ ℛ𝑐𝐿, we define 𝑍(𝛼) = {𝑝 ∈ 𝑃𝑡(𝐿) ∣ coz(𝛼) ≤ 𝑝}. This note explore the relation between countable zero
sets and cozero elements in Coz𝑐𝐿. We demonstrate that for any 𝛼 ∈ ℛ𝑐𝐿, the pointfree zero set 𝑍(𝛼) corresponds
to a topological zero set 𝑍(𝑓) for some continuous function 𝑓 ∶ 𝑃𝑡(𝐿) → ℝ. Additionally, we show that in a zero-
dimensional frame 𝐿, the family 𝑍𝑐𝐿 forms a base for the closed sets of 𝑃𝑡(𝐿). We also introduce the concept of
𝑧𝑐-filters on a frame 𝐿 and give their connections to ideals of ℛ𝑐𝐿, especially maximal ideals.

2. Countably Zero Sets

Here, we introduce the pointfree version of the zero set of 𝑓 ∈ 𝐶𝑐(𝑋), where prime elements 𝑝 ∈ 𝐿 substitute for
points 𝑥 ∈ 𝑋.
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Definition 2.1. Let 𝛼 ∈ ℛ𝑐𝐿. We define

𝑍(𝛼) = {𝑝 ∈ 𝑃𝑡(𝐿) ∣ coz𝛼 ≤ 𝑝}.

This set is known as a countable zero set (or zero set) in 𝐿. For a subset 𝐷 ⊆ ℛ𝑐𝐿, we denote the family of zero sets
by 𝑍[𝐷]. The collection of all zero sets in 𝐿 is simplified to 𝑍𝑐𝐿.

Recall that the contravariant functor Σ which assigns to each frame 𝐿 its spectrum 𝑃𝑡(𝐿) with

Σ𝑎 = {𝑝 ∈ 𝑃𝑡(𝐿) | 𝑎 ≰ 𝑝}

for any 𝑎 ∈ 𝐿. The set {Σ𝑎 ∣ 𝑎 ∈ 𝐿} forms a topology on 𝑃𝑡(𝐿), satisfying the following properties:

Σ⊥ = ∅ , Σ⊤ = 𝑃𝑡(𝐿)

Σ𝑎 ∩ Σ𝑏 = Σ𝑎∧𝑏 , ራ
𝑖∈𝐼

Σ𝑎𝑖 = Σ⋁𝑖∈𝐼 𝑎𝑖 .

Thus, definition 2.1 directly lead to the following lemma.

Lemma 2.2. For 𝛼 ∈ ℛ𝑐𝐿, we have 𝑍(𝛼) = 𝑃𝑡(𝐿) − Σcoz(𝛼).

The above lemma is crucial for describing zero sets in pointfree topology. We will now use it to derive the fundamental
relations we anticipate from these sets. Before we continue, we will review the basic properties of cozero elements as
outlined in [2] and [4]. Let 𝛼, 𝛽 ∈ ℛ𝐿 (or ℛ𝑐𝐿). Then we have

1. coz(𝛼) = coz(|𝛼|) = coz(𝛼𝑛) for all 𝑛 ∈ ℕ.
2. coz(𝛼2 + 𝛽2) = coz(|𝛼| + |𝛽|) = coz(𝛼) ∨ coz(𝛽)
3. coz(𝛼𝛽) = coz(𝛼) ∧ coz(𝛽).
4. coz(𝛼 + 𝛽) ≤ coz(𝛼) ∨ coz(𝛽).
5. coz(𝛼) = ⊥ if and only if 𝛼 = 0.
6. coz(𝛼) = ⊤ if and only if 𝛼 is invertible.

Proposition 2.3. Let 𝐿 be a frame. Then for every 𝛼, 𝛽 ∈ ℛ𝑐𝐿, we have
1. For all 𝑛 ∈ ℕ, 𝑍(𝛼) = 𝑍(|𝛼|) = 𝑍(𝛼𝑛).
2. 𝑍(𝛼) ∩ 𝑍(𝛽) = 𝑍(|𝛼| + |𝛽|) = 𝑍(𝛼2 + 𝛽2). Note that 𝑍(𝛼) ∩ 𝑍(𝛽) ⊆ 𝑍(𝛼 + 𝛽).
3. 𝑍(𝛼) ∪ 𝑍(𝛽) = 𝑍(𝛼𝛽).
4. For every 𝛼 ∈ ℛ𝑐𝐿, 𝑍(𝛼) is a closed set in 𝑃𝑡(𝐿) and 𝑃𝑡(𝐿) − 𝑍(𝛼) = Σ𝑐𝑜𝑧(𝛼).
5. 𝑍𝑐(𝐿) is closed under countable intersection, when 𝐿 is completely regular.
6. If 𝛼 = 0, then 𝑍(𝛼) = 𝑃𝑡(𝐿).
7. If 𝛼 is a unit of ℛ𝑐𝐿, then 𝑍(𝛼) = ∅.

Proof. (1): For any 𝑛 ∈ ℕ, since 𝑐𝑜𝑧(𝛼) = 𝑐𝑜𝑧(|𝛼|) = 𝑐𝑜𝑧(𝛼𝑛), it follows from Lemma 2.2 that 𝑍(𝛼) = 𝑍(|𝛼|) =
𝑍(𝛼𝑛).
(2): For any 𝑝 ∈ 𝑃𝑡(𝐿), by Definition 2.1, we have:

𝑝 ∈ 𝑍(𝛼) ∩ 𝑍(𝛽) ⇔ coz(|𝛼|) = coz(𝛼) ≤ 𝑝 and coz(|𝛽|) = coz(𝛽) ≤ 𝑝
⇔ coz(|𝛼|) ∨ coz(|𝛽|) ≤ 𝑝
⇔ coz(|𝛼| + |𝛽|) ≤ 𝑝
⇔ 𝑝 ∈ 𝑍(|𝛼| + |𝛽|).

This demonstrates that 𝑍(𝛼) ∩ 𝑍(𝛽) = 𝑍(|𝛼| + |𝛽|). A similar argument shows that

𝑍(𝛼) ∩ 𝑍(𝛽) = 𝑍(𝛼2 + 𝛽2) and 𝑍(𝛼) ∩ 𝑍(𝛽) ⊆ 𝑍(𝛼 + 𝛽).
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(3): For any 𝑝 ∈ 𝑃𝑡(𝐿), by Definition 2.1, we have:

𝑝 ∈ 𝑍(𝛼) ∪ 𝑍(𝛽) ⇔ coz(𝛼) ≤ 𝑝 or coz(𝛽) ≤ 𝑝
⇔ coz(𝛼𝛽) = coz(𝛼) ∧ coz(𝛽) ≤ 𝑝
⇔ 𝑝 ∈ 𝑍(𝛼𝛽).

This implies that 𝑍(𝛼) ∪ 𝑍(𝛽) = 𝑍(𝛼𝛽).
(4) By Definition 2.1, we have 𝑍(𝛼) = {𝑝 ∈ 𝑃𝑡(𝐿) ∣ coz(𝛼) ≤ 𝑝}. Thus,

𝑞 ∈ 𝑃𝑡(𝐿) − 𝑍(𝛼) ⇔ 𝑞 ∉ 𝑍(𝛼) ⇔ coz(𝛼) ≰ 𝑞 ⇔ 𝑞 ∈ Σcoz(𝛼).

Consequently, 𝑃𝑡(𝐿) − 𝑍(𝛼) = Σcoz(𝛼) is open set in 𝑃𝑡(𝐿), implying that 𝑍(𝛼) is closed.
(5) Let {𝛼𝑛}𝑛∈ℕ be a subset of ℛ𝑐𝐿. There exists 𝜑 ∈ ℛ𝑐𝐿 such that ⋁𝑛∈ℕ coz(𝛼𝑛) = coz(𝜑). We have

𝑃𝑡(𝐿) −ሩ
𝑛∈ℕ

𝑍(𝛼𝑛) = ራ
𝑛∈ℕ

(𝑃𝑡(𝐿) − 𝑍(𝛼𝑛)).

From this, it follows that

𝑃𝑡(𝐿) − ⋂𝑛∈ℕ 𝑍(𝛼𝑛) = ⋃𝑛∈ℕ Σcoz(𝛼𝑛) = Σ⋁𝑛∈ℕ coz(𝛼𝑛) = Σcoz(𝜑) = 𝑃𝑡(𝐿) − 𝑍(𝜑).
Thus, we conclude that ⋂𝑛∈ℕ 𝑍(𝛼𝑛) = 𝑍(𝜑) ∈ 𝑍𝑐(𝐿).
(6): If 𝛼 = 0, then coz(𝛼) = ⊥. This implies that Σcoz(𝛼) = Σ⊥ = ∅, and by Lemma 2.2, we have 𝑍(𝛼) = 𝑃𝑡(𝐿).
(7): If 𝛼 is a unit of ℛ𝑐𝐿, then coz(𝛼) = ⊤. Consequently, for any 𝑝 ∈ 𝑃𝑡(𝐿), coz(𝛼) ≰ 𝑝. This implies that
Σcoz(𝛼) = 𝑃𝑡(𝐿), and by Lemma 2.2, we have 𝑍(𝛼) = ∅.

Remark 2.4. Part (5) of the previous proposition establishes zero sets are closed. Let 𝑋 be a topological space, and
let 𝑓 ∈ 𝐶𝑐(𝑋). Consider the frame map 𝔒𝑓 ∶ 𝔒(ℝ) → 𝔒(𝑋), defied by 𝔒𝑓(𝑝, 𝑞) = {𝑥 ∈ 𝑋 ∣ 𝑝 < 𝑓(𝑥) < 𝑞}. Notice
that 𝔒𝑓 ∈ ℛ𝐿 corresponds to 𝑓(see [12]), and we have

coz(𝔒𝑓) = 𝔒𝑓((−, 0) ∨ (0, −)) = {𝑥 ∈ 𝑋 ∣ 𝑓(𝑥) ≠ 0} = 𝑋 − 𝑍(𝑓).

If 𝑋 is a sober space, the prime elements of 𝔒(𝑋) are of the form 𝑋 − {𝑥} for 𝑥 ∈ 𝑋. Thus, we deduce:

𝑋 − {𝑥} ∈ 𝑍(𝔒𝑓) ⇔ coz(𝔒𝑓) ≤ 𝑋 − {𝑥}
⇔ (𝑋 − 𝑍(𝑓)) ∩ {𝑥} = ∅
⇔ 𝑥 ∈ 𝑍(𝑓).

Therefore, 𝑍(𝔒𝑓) = {𝑋 − {𝑥} ∣ 𝑥 ∈ 𝑍(𝑓)} relates 𝑍(𝑓) and 𝑍(𝔒𝑓).

Let us remind the reader that a frame 𝐿 is called weakly spatial if for any 𝑎 ∈ 𝐿, the condition Σ𝑎 = Σ⊤ implies 𝑎 = ⊤.
We will show that the converse of the last part of the previous proposition holds true when 𝐿 is a weakly spatial frame.

Corollary 2.5. Let 𝐿 be a weakly spatial frame and 𝛼 ∈ ℛ𝑐𝐿. If 𝑍(𝛼) = ∅, then 𝛼 is a unit of ℛ𝑐𝐿.

Proof. By Lemma 2.2, Σcoz(𝛼) = 𝑃𝑡(𝐿) − 𝑍(𝛼) = 𝑃𝑡(𝐿) = Σ⊤. Therefore, weakly spatiality implies coz(𝛼) = ⊤,
showing that 𝛼 is a unit of ℛ𝑐𝐿.

We will now outline the conditions for the reverse of part (6) of the previous proposition to hold, starting with the
following definition.

Definition 2.6. A frame 𝐿 is called 𝑐-coz-dense if 𝛼 ∈ ℛ𝑐𝐿 and Σcoz(𝛼) = ∅ imply 𝛼 = 0.

Corollary 2.7. Let 𝐿 be a 𝑐-coz-dense frame and 𝛼 ∈ ℛ𝑐𝐿. If 𝑍(𝛼) = 𝑃𝑡(𝐿), then 𝛼 = 0.

Proof. By Lemma 2.2, Σcoz(𝛼) = 𝑃𝑡(𝐿) − 𝑍(𝛼) = 𝑃𝑡(𝐿) − 𝑃𝑡(𝐿) = ∅ = Σ⊥. Therefore, 𝑐-coz-density implies
coz(𝛼) = ⊥, showing that 𝛼 = 0.
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Recall from [7, Lemma 3.2] a frame 𝐿 is weakly spatial if and only if there exists 𝑝 ∈ 𝑃𝑡(𝐿) such that 𝑎 ≤ 𝑝 < ⊤, for
any 𝑎 < ⊤

Proposition 2.8. Let 𝐿 be weakly spatial and 𝛼 ∈ ℛ𝑐𝐿. If Σ𝑐𝑜𝑧(𝛼) = ∅, then 𝑐𝑜𝑧(𝛼) = ⊥.

Proof. Let 𝑟, 𝑠 ∈ ℚ such that 𝑟 < 0 < 𝑠 and 𝑝 ∈ 𝑃𝑡(𝐿). Then, 𝑝 ∉ Σ𝑐𝑜𝑧(𝛼), which implies 𝑐𝑜𝑧(𝛼) ≤ 𝑝. We claim
that 𝛼(𝑟, 𝑠) ≰ 𝑝. If 𝛼(𝑟, 𝑠) ≤ 𝑝, then ⊤ = 𝑐𝑜𝑧(𝛼) ∨ 𝛼(𝑟, 𝑠) ≤ 𝑝, leading to contradiction. Therefore Σ𝛼(𝑟,𝑠) = 𝑃𝑡(𝐿)
implies 𝛼(𝑟, 𝑠) = ⊤ since 𝐿 is weakly spatial. We also have

⊥ = (𝛼(−, 𝑟) ∨ 𝛼(𝑠, −)) ∧ 𝛼(𝑟, 𝑠) = (𝛼(−, 𝑟) ∨ 𝛼(𝑠, −)) ∧ ⊤ = 𝛼(−, 𝑟) ∨ 𝛼(𝑠, −).

Therefore, 𝑐𝑜𝑧(𝛼) = ⋁{𝛼(−, 𝑟) ∨ 𝛼(𝑠, −) ∶ 𝑟 < 0 < 𝑠} = ⊥.

The next theorem demonstrate that for any 𝛼 ∈ ℛ𝑐𝐿, the pointfree zero set 𝑍(𝛼) corresponds to a topological zero set
𝑍(𝑓) for some function 𝑓 ∶ 𝑃𝑡(𝐿) → ℝ. First, we need some tools. There exists a homeomorphism 𝜏 ∶ 𝑃𝑡(ℒ(ℝ)) → ℝ
such that 𝑟 < 𝜏(𝑝) < 𝑠 if and only if (𝑟, 𝑠) ≰ 𝑝 for all 𝑝 ∈ 𝑃𝑡(ℒ(ℝ)) and for all 𝑟, 𝑠 ∈ ℚ (see [4, Proposition 1]). Each
prime element of ℒ(ℝ)) has the form 𝑝𝑥 = ⋁{(−, 𝑟) ∨ (𝑠, −) ∣ 𝑟, 𝑠 ∈ ℚ, 𝑟 ≤ 𝑥 ≤ 𝑠} for some 𝑥 ∈ ℝ with 𝜏(𝑝𝑥) = 𝑥.
In particular, for each 𝑟 ∈ ℚ, 𝑝𝑟 = (−, 𝑟) ∨ (𝑟, −), and 𝜏((−, 𝑟) ∨ (𝑟, −)) = 𝑟 (see [6, Lemma 3.6]). A frame
homomorphism 𝑓 ∶ 𝐿 → 𝑀 is associated with its right adjoint 𝑓∗ ∶ 𝑀 → 𝐿, defined by 𝑓∗(𝑎) = ⋁{𝑥 ∈ 𝐿 ∣ 𝑓(𝑥) ≤ 𝑎}.
Note that 𝑓∗ preserves primes and arbitrary meets. Moreover, for a frame map homomorphism 𝑓 ∶ 𝐿 → 𝑀, the map
Σℎ ∶ 𝑃𝑡(𝑀) → 𝑃𝑡(𝐿) sends 𝑝 ∈ 𝑃𝑡(𝑀) to ℎ∗(𝑝) ∈ 𝑃𝑡(𝐿).

Theorem 2.9. Let 𝐿 be a frame and 𝛼 ∈ ℛ𝑐𝐿. Then 𝑍(𝛼) = 𝑍(𝜏 ∘ Σ𝛼).

Proof. Let 𝑝 ∈ 𝑃𝑡(𝐿). We have 𝜏 ∘ Σ𝛼(𝑝) = 0 if and only if 𝜏 ∘ 𝛼∗(𝑝) = 0, where 𝛼∗ is a right adjoint of 𝛼. As stated
above, 𝜏 ∘ 𝛼∗(𝑝) = 0 if and only if 𝛼∗(𝑝) = (−, 0) ∨ (0, −) if and only if 𝛼((−, 0) ∨ (0, −)) ≤ 𝑝, since 𝛼𝛼∗ ≤ 𝑖𝑑.
Thus, 𝑝 ∈ 𝑍(𝜏 ∘ Σ𝛼) if and only if coz(𝛼) ≤ 𝑝, completing the proof as per Definition 2.1 the proof is complete.

We now identify when the family 𝑍𝑐𝐿 constitutes a base for the closed sets of 𝑃𝑡(𝐿).

Theorem 2.10. For any frame 𝐿, the following statements hold:

1. If 𝐿 is zero-dimensional, then the family 𝑍𝑐𝐿 of zero sets forms a base for the closed sets of 𝑃𝑡(𝐿).
2. If 𝐿 is a spatial frame and 𝑍𝑐𝐿 forms a base for the closed sets of 𝑃𝑡(𝐿), then 𝐿 is zero-dimensional.

Proof. (1): Let 𝐹 be a closed set of 𝑃𝑡(𝐿). Then, there exists an 𝑎 ∈ 𝐿 such that 𝑃𝑡(𝐿) − 𝐹 = Σ𝑎. Since 𝐿 is
zero-dimensional, we can find a family {𝛼𝑖}𝑖∈𝐼 ⊆ ℛ𝑐𝐿 such that 𝑎 = ⋁𝑖∈𝐼 coz(𝛼𝑖). By Lemma 2.2, we have:

𝐹 = 𝑃𝑡(𝐿) − Σ𝑎 = 𝑃𝑡(𝐿) − Σ⋁𝑖∈𝐼 coz(𝛼𝑖) = 𝑃𝑡(𝐿) −ራ
𝑖∈𝐼

Σcoz(𝛼𝑖) =ሩ
𝑖∈𝐼

(𝑃𝑡(𝐿) − Σcoz(𝛼𝑖)) =ሩ
𝑖∈𝐼

𝑍(𝛼𝑖).

Thus, the proof is complete.
(2): Let 𝑎 ∈ 𝐿 and assume that {𝛼𝑖}𝑖∈𝐼 ⊆ ℛ𝑐𝐿 satisfies 𝑃𝑡(𝐿) − Σ𝑎 = ⋂𝑖∈𝐼 𝑍(𝛼𝑖). By Lemma 2.2, we have:

Σ𝑎 = 𝑃𝑡(𝐿) −ሩ
𝑖∈𝐼

𝑍(𝛼𝑖) =ራ
𝑖∈𝐼

(𝑃𝑡(𝐿) − 𝑍(𝛼𝑖) =ራ
𝑖∈𝐼

Σcoz(𝛼𝑖) = Σ⋁𝑖∈𝐼 coz(𝛼𝑖).

Since 𝐿 is spatial frame, we conclude that 𝑎 = ⋁𝑖∈𝐼 𝑐𝑜𝑧(𝛼𝑖), and the proof is complete.

3. 𝑧𝑐-filters

Continuing our exploration of the connections between the algebraic properties of ℛ𝑐𝐿 and lattice properties of 𝐿, we
will now focus on the unique characteristics of the zero sets of an ideal of functions. This family exhibits properties
similar to those of a filter, a fact that will be crucial for our discussion.

Definition 3.1. A nonempty subfamily ℱ of 𝑍𝑐𝐿 is called a 𝑧𝑐-filter on 𝐿 if it satisfies the following conditions:
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1. ∅ ∉ ℱ.
2. for any 𝑍,𝑊 ∈ ℱ, the intersection 𝑍 ∩𝑊 ∈ ℱ.
3. If 𝑍 ∈ ℱ,𝑊 ∈ 𝑍𝑐𝐿, and 𝑍 ⊆ 𝑊, then𝑊 ∈ ℱ.

It is clear that, by (3), we conclude that 𝑃𝑡(𝐿) belongs to every 𝑧𝑐-filter. A nonempty family𝒜 of setshas the finite
intersection property if the intersection of any finite number of its members is nonempty. Any family𝒜 of zero sets
of a frame 𝐿 with the finite intersection property is contained in a 𝑧𝑐-filter. Moreover,

ℱ = {𝑍 ∈ 𝑍𝑐𝐿 ∣ there exists a finite subset ℬ of𝒜 such that ⋂ℬ ⊆ 𝑍}

is the smallest 𝑧𝑐-filter containing𝒜.

Lemma 3.2. The following statements hold for each frame 𝐿.
1. If 𝐿 is a weakly spatial frame and 𝐼 is a proper ideal in ℛ𝑐𝐿, then the family 𝑍[𝐼] = {𝑍(𝛼) ∣ 𝛼 ∈ 𝐼} is a 𝑧𝑐-filter

on 𝐿.
2. If ℱ is a 𝑧𝑐-filter on 𝐿, then the family 𝑍←[ℱ] = {𝛼 ∈ ℛ𝐿 ∣ 𝑍(𝛼) ∈ ℱ} is a proper ideal in ℛ𝑐𝐿.

Proof. (1): Since 𝐼 is a proper ideal inℛ𝑐𝐿, it contains no units, and by Corollary 2.5, ∅ ∉ 𝑍[𝐼]. For 𝛼, 𝛽 ∈ 𝐼, we have
𝛼2 + 𝛽2 ∈ 𝐼, and by Proposition 2.3(2), 𝑍(𝛼) ∩ 𝑍(𝛽) = 𝑍(𝛼2 + 𝛽2) ∈ 𝑍[𝐼]. If 𝑍 ∈ 𝑍[𝐼] and𝑊 ∈ 𝑍𝑐𝐿 with 𝑍 ⊆ 𝑊,
there exists 𝛼 ∈ 𝐼 and 𝛽 ∈ ℛ𝑐𝐿 such that 𝑍 = 𝑍(𝛼) and 𝑊 = 𝑍(𝛽). Since 𝛼𝛽 ∈ 𝐼, we conclude from Proposition
2.3(3) that𝑊 = 𝑍(𝛼) ∪ 𝑍(𝛽) = 𝑍(𝛼𝛽) ∈ 𝑍[𝐼].
(2): Let 𝐽 = 𝑍←[ℱ]. By Proposition 2.3(7), 𝐽 contains no units. For 𝛼, 𝛽 ∈ 𝐽 and 𝛾 ∈ ℛ𝑐𝐿. Parts (2) and (3) of
Proposition 2.3 imply that 𝑍(𝛼 − 𝛽) ⊇ 𝑍(𝛼) ∩ 𝑍(𝛽) ∈ ℱ, and 𝑍(𝛾𝛼) ⊇ 𝑍(𝛼) ∈ ℱ. Therefore 𝛾𝛼 and 𝛼 − 𝛽 are both
in 𝐽.

A 𝑧𝑐-ultrafilter on 𝐿 refers to a maximal 𝑧𝑐-filter, meaning it is not contained in any other 𝑧𝑐-filter. For any frame 𝐿,
the following statements are true:

1. A 𝑧𝑐-ultrafilter is a maximal subfamily of 𝑍𝑐𝐿 that has the finite intersection property.
2. Any subfamily of 𝑍𝑐𝐿 with the finite intersection property is contained in a 𝑧𝑐-ultrafilter.

Proposition 3.3. For a weakly spatial frame 𝐿, the following statements are true:

1. If𝑀 is a maximal ideal in ℛ𝑐𝐿, then 𝑍[𝑀] is a 𝑧𝑐-ultrafilter on 𝐿.
2. If ℱ is a 𝑧𝑐-ultrafilter on 𝐿, then 𝑍←[ℱ] is a maximal ideal in ℛ𝑐𝐿.

Proof. (1) By Lemma 3.2(1), 𝑍[𝑀] is a 𝑧𝑐-filter on 𝐿. Let ℱ be a 𝑧𝑐-filter on 𝐿 with 𝑍[𝑀] ⊆ ℱ. From Lemma 3.2(2),
𝑍←[ℱ] is a proper ideal in ℛ𝑐𝐿 and since 𝑀 ⊆ 𝑍←[ℱ], we conclude that𝑀 = 𝑍←[ℱ]. Thus, 𝑍[𝑀] = ℱ, establishing
that 𝑍[𝑀] is a 𝑧𝑐-ultrafilter on 𝐿.
(2) By Lemma 3.2(2), 𝑍←[ℱ] is a proper ideal in ℛ𝑐𝐿. If 𝐼 is a proper ideal of ℛ𝑐𝐿 with 𝑍←[ℱ] ⊆ 𝐼, then ℱ ⊆ 𝑍[𝐼].
Since ℱ is a 𝑧𝑐-ultrafilter on 𝐿, Lemma 3.2(1) implies that ℱ = 𝑍[𝐼]. Therefore, 𝑍←[ℱ] = 𝐼, making 𝑍←[ℱ] is a
maximal ideal in ℛ𝑐𝐿.

The proof of the next corollary directly follows from the preceding proposition and paragraph.

Corollary 3.4. For a weakly spatial frame 𝐿, the following statements hold:

1. If𝑀 be a maximal ideal in ℛ𝑐𝐿 and 𝑍(𝛼) intersects every member of 𝑍[𝑀], then 𝛼 ∈ 𝑀.
2. If ℱ be a 𝑧-ultrafilter on 𝐿 and a zero-set 𝑍 intersects every member of ℱ, then 𝑍 ∈ ℱ.
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Abstract

In this paper, we introduce the concept of po-noetherian 𝑆-posets based on ascending chain
conditions on order congruences, and study their general properties.

1. Introduction

The properties of being noetherian is of fundamental importance in abstract algebra. Some fundamental properties of
right noetherian semigroups can be found in [2]. The concepts of noetherian 𝑆-acts were investigated in [1]. In this
paper, we investigate po-noetherian 𝑆-posets.
A monoid 𝑆 is referred to as a pomonoid if it is also a partially ordered set with the binary operation and the order
relation are compatible. A right S-poset 𝐴𝑆 is a right 𝑆-act 𝐴𝑆 equipped with a partial order ≤, and furthermore„ for
every 𝑠, 𝑡 ∈ 𝑆 and 𝑎, 𝑏 ∈ 𝐴, if 𝑠 ≤ 𝑡, then 𝑎𝑠 ≤ 𝑎𝑡, and if 𝑎 ≤ 𝑏, then 𝑎𝑠 ≤ 𝑏𝑠. An 𝑆-subposet of a right 𝑆-poset 𝐴 is
a subset of 𝐴 that is closed under the 𝑆-action. The definition of an ideal remains consistent in the act case.
Let 𝐴 be a right 𝑆-poset. An 𝑆-poset congruence 𝜃 on 𝐴 is a right 𝑆-act congruence with the property that the 𝑆-act
𝐴/𝜃 can be made into an 𝑆-poset in such a manner that the natural map 𝐴 ⟶ 𝐴/𝜃 is an 𝑆-poset map. For an 𝑆-act
congruence 𝜃 on 𝐴 we write 𝑎 ≤𝜃 𝑎′ if the so-called 𝜃-chain

𝑎 ≤ 𝑎1 𝜃𝑏1 ≤ 𝑎2𝜃𝑏2 ... ≤ 𝑎𝑛𝜃𝑏𝑛 ≤ 𝑎′
from 𝑎 to 𝑎′ exists in 𝐴, where 𝑎𝑖 , 𝑏𝑖 ∈ 𝐴, 1 ≤ 𝑖 ≤ 𝑛. It can be shown that an 𝑆-act congruence 𝜃 on a right 𝑆-poset
𝐴 is an 𝑆-poset congruence if and only if 𝑎𝜃𝑎′ whenever 𝑎 ≤𝜃 𝑎′ ≤𝜃 𝑎.
Let 𝐻 ⊆ 𝐴 × 𝐴. Then 𝑎 ≤𝛼(𝐻) 𝑏 if and only if 𝑎 ≤ 𝑏 or there exist 𝑛 ≥ 1, (𝑐𝑖 , 𝑑𝑖) ∈ 𝐻, 𝑠𝑖 ∈ 𝑆, 1 ≤ 𝑖 ≤ 𝑛 such that

𝑎 ≤ 𝑐1𝑠1 𝑑1𝑠1 ≤ 𝑐2𝑠2 ... 𝑑𝑛𝑠𝑛 ≤ 𝑏.

∗Talker
Email addresses: khosravi@fasau.ac.ir (Roghaieh Khosravi), m.rooeintan@yahoo.com (Mohammad Roueentan),

rahimie@shirazu.ac.ir (Elham Rahimi)



R. Khosravi & M. Roueentan & E. Rahimi / The 5th National Congress on Mathematics and Statistics 137

The relation 𝜈(𝐻) given by 𝑎 𝜈(𝐻) 𝑏 if and only if 𝑎 ≤𝛼(𝐻) 𝑏 ≤𝛼(𝐻) 𝑎 is the 𝑆-poset congruence induced by 𝐻.
We have [𝑎]𝜈(𝐻) ≤ [𝑏]𝜈(𝐻) if and only if 𝑎 ≤𝛼(𝐻) 𝑏. Moreover, 𝜈(𝐻 ∪ 𝐻−1) is denoted 𝜃(𝐻) and is called the
𝑆-poset congruence generated by H. The set of all congruences on 𝐴𝑆 is denoted by 𝐶𝑜𝑛(𝐴). For more information
on 𝑆-posets, refer to [3].

2. Main results

In this section, we introduce a po-noetherian 𝑆-poset, and study some of its general properties. First, we provide a
definition for it.

Definition 2.1. Let 𝐴𝑆 be an 𝑆-poset. We call 𝐴𝑆 po-noetherian if 𝐶𝑜𝑛(𝐴) satisfies the ascending chain condition.

The notions of right po-noetherian pomonoid is applied for a pomonoid 𝑆 with this property as a right 𝑆-poset. The
following theorem presents a characterization of po-noetherian 𝑆-posets.
Theorem 2.2. For an 𝑆-poset 𝐴𝑆, the following statements are equivalent.

(i) The 𝑆-act 𝐴𝑆 is po-noetherian.

(ii) Every congruence of 𝐴𝑆 is finitely generated.

(iii) Every non-empty subset of 𝐶𝑜𝑛(𝐴) contains a maximal element.

Lemma 2.3. For a pomonoid 𝑆, the following statements hold.

(i) Every 𝑆-subposet of a po-noetherian 𝑆-poset is po-noetherian.
(ii) Every factor 𝑆-poset of a po-noetherian 𝑆-poset is po-noetherian.

Corollary 2.4. Let 𝑆 be a pomonoid. Then, 𝑆𝑆 is po-noetherian if and only if every cyclic 𝑆-poset is po-noetherian.
Let 𝑓 ∶ 𝐴 ⟶ 𝐵 be an 𝑆-epimorphism, the subkernel of an 𝑆-poset morphism 𝑓 is defined by

ሬሬሬሬሬሬሬ⃗𝑘𝑒𝑟𝑓 ∶= {(𝑎, 𝑎′) ∈ 𝐴 × 𝐴 ∶ 𝑓(𝑎) ≤ 𝑓(𝑎′)}.
Then 𝜈(ሬሬሬሬሬሬሬ⃗𝑘𝑒𝑟𝑓) = 𝑘𝑒𝑟𝑓 ∶= {(𝑎, 𝑎′) ∈ 𝐴 × 𝐴 ∶ 𝑓(𝑎) = 𝑓(𝑎′)}, and we denote the subkernel of 𝑓 briefly by 𝒦𝑓.
Obviously, 𝑓 is a regular monomorphism if and only if

𝒦𝑓 = 𝜉𝐴 = {(𝑎, 𝑎′) ∈ 𝐴 × 𝐴| 𝑎 ≤ 𝑎′}.
Recall from [4] that if 𝑓 ∶ 𝐴 ⟶ 𝐵, 𝑔 ∶ 𝐵 ⟶ 𝐶 are order preserving maps, then the sequence

𝐴 𝑓⟶ 𝐵 𝑔⟶ 𝐶
is exact at𝐵 when ℐ𝑓 = 𝒦𝑔, (i.e.,≤ℐ𝑚𝑓=≤𝑘𝑒𝑟𝑔). It is also called a short exact sequence if 𝑔 is surjective, 𝑓 is a regular
monomorphism, and ℐ𝑓 = 𝒦𝑔. The following theorem discusses the behavior of the properties of being po-noetherian
for Rees short exact sequences.

Theorem 2.5. Let 𝐴 ⟶ 𝐵 ⟶ 𝐶 be a Rees short exact sequence of 𝑆-posets. Then, 𝐵𝑆 is po-noetherian if and only if
both 𝐴𝑆 and 𝐶𝑆 are po-noetherian.

Lemma 2.6. Let 𝐴𝑆 be an 𝑆-poset, and 𝐴1 ⊆ 𝐴2 ⊆ ... ⊆ 𝐴𝑛 = 𝐴. Then, 𝐴 is po-noetherian if and only if 𝐴1 and the
factor 𝑆-posets 𝐴𝑖+1/𝐴𝑖 are po-noetherian for all 1 ≤ 𝑖 ≤ 𝑛 − 1.
Proposition 2.7. For a pomonoid 𝑆, the following statements are true.

(i) If 𝐴 = ∏𝑖∈𝐼 𝐴𝑖 (𝐴 = ∐𝑖∈𝐼 𝐴𝑖) is po-noetherian, then 𝐼 is finite and each 𝐴𝑖 is po-noetherian.
(ii) 𝐴𝑆 is po-noetherian if and only if 𝐴∐Θ is po-noetherian.

(iii) If 𝐴𝑆 is po-noetherian, then ∐𝑖=𝑛
𝑖=1 𝐴 is po-noetherian for each 𝑛 ∈ ℕ.

Proposition 2.8. Let 𝑓 ∶ 𝑆 ⟶ 𝑇 be a pomonoid homomorphism, and let 𝐴 be a 𝑇-act. If 𝐴 is a right po-noetherian
𝑆-poset, then it is also a right po-noetherian 𝑇-poset. If 𝑓 is an epimorphism, the converse is also true.

The following corollary shows that po-noetherian property is closed under quotients.

Corollary 2.9. If 𝜌 is a congruence on a right po-noetherian pomonoid 𝑆, then 𝑆/𝜌 is a right po-noetherian pomonoid.
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Abstract

In the present paper, we consider the Cayley graph Γ = 𝐶𝑎𝑦(ℤ𝑛, 𝑆), where 𝑛 = 𝑝𝑚, (𝑝 is a
prime integer, 𝑚 ∈ ℕ) and 𝑆 = {𝑎 ∈ ℤ𝑛 | (𝑎, 𝑛) = 1}. Although the automorphism group of
this graph has been calculated, see [10], but we obtain the automorphism group of this graph by
another way. Moreover, we show that 𝐾𝑣▽𝑟Γ is determined by the adjacency spectrum as well
as Laplacian spectrum.

1. Introduction

The graphs in this paper are simple, undirected and connected. We always assume that Γ denotes the complement
graph of Γ. The eigenvalues of a graph Γ are the eigenvalues of the adjacency matrix of Γ. The spectrum of Γ is the
list of the eigenvalues of the adjacency matrix of Γ together with their multiplicities, and it is denoted by Spec(Γ), see
[6]. If all the eigenvalues of the adjacency matrix of the graph Γ are integers, then we say that Γ is an integral graph.
The notion of integral graphs was first introduced by F. Harary and A. J. Schwenk in 1974, see [7]. In general, the
problem of characterizing integral graphs seems to be very difficult. There are good surveys in this area, see [1].
Let 𝐺 be a finite group and Ω a subset of 𝐺 such that it is closed under taking inverses and does not contain the identity.
A Cayley graph Γ = 𝐶𝑎𝑦(𝐺, Ω) is the graph whose vertex set and edge set are defined as follows:

𝑉(Γ) = 𝐺; 𝐸(Γ) = {{𝑥, 𝑦} | 𝑥−1𝑦 ∈ Ω}.

Two graphs with the same spectrum are called cospectral. It is not hard to see that the spectrum of a graph does not
determine its isomorphism class [6]. The authors in [4] proposed the question: which graphs are determined by their
spectrum?. It seems hard to prove a graph to be determined by its spectrum(DS). Up to now, only a few classes of
graphs are proved to be determined by their spectrum, such as: the path 𝑃𝑛, the complete graph 𝐾𝑛 and the cycle 𝐶𝑛.
For a graph Γ, let 𝐴(Γ) and 𝐿(Γ) = 𝐷(Γ) − 𝐴(Γ) be respectively the adjacency matrix and Laplacian matrix of Γ,
where 𝐷(Γ) is the diagonal matrix of vertex degrees with {𝑑1, 𝑑2, ..., 𝑑𝑛} as diagonal entries. Laplacian spectrum and
their applications are involved indiverse theoretical problems on complex networks [8, 13]. Many results have been
devoted to studying Laplacian spectrum for complex networks [9].
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Two graphs Γ1 and Γ2 are isomorphic if there is a bijection,𝜑 say, from𝑉(Γ1) to𝑉(Γ2) such that 𝑥 is adjacent to 𝑦 in Γ1 if
and only if𝜑(𝑥) is adjacent to𝜑(𝑦) in Γ2. We say that𝜑 is an isomorphism from Γ1 to Γ2. An isomorphism from a graph
Γ to itself is called an automorphism of Γ. The set of automorphisms of Γwith the operation of composition of functions
is a group, called the automorphism group of Γ and denoted by 𝐴𝑢𝑡(Γ), and it is well known that 𝐴𝑢𝑡(Γ) = 𝐴𝑢𝑡(Γ),
see [6]. Let 𝑇 = {𝑡1, ..., 𝑡𝑘+1} be a set and 𝐾 be a group then we write 𝐹𝑢𝑛(𝑇, 𝐾) to denote the set of all functions
from 𝑇 into 𝐾, we can turn 𝐹𝑢𝑛(𝑇, 𝐾) into a group by defining a product:

(𝑓𝑔)(𝑡) = 𝑓(𝑡)𝑔(𝑡) f𝑜𝑟 𝑎𝑙𝑙 𝑓, 𝑔 ∈ 𝐹𝑢𝑛(𝑇, 𝐾) a𝑛𝑑 𝑡 ∈ 𝑇,

where the product on the right is in 𝐾. Since 𝑇 is finite, the group 𝐹𝑢𝑛(𝑇, 𝐾) is isomorphic to 𝐾𝑘+1 (a direct product
of 𝑘+1 copies of 𝐾) via the isomorphism 𝑓 → (𝑓(𝑡1), ..., 𝑓(𝑡𝑘+1)). Let 𝐻 and 𝐾 be groups and suppose 𝐻 acts on the
nonempty set 𝑇. Then the wreath product of 𝐾 by 𝐻 with respect to this action is defined to be the semidirect product
𝐹𝑢𝑛(𝑇, 𝐾) ⋊ 𝐻 where 𝐻 acts on the group 𝐹𝑢𝑛(𝑇, 𝐾) via

𝑓𝑥(𝑡) = 𝑓(𝑡𝑥−1) f𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝐹𝑢𝑛(𝑇, 𝐾), 𝑡 ∈ 𝑇 a𝑛𝑑 𝑥 ∈ 𝐻.

We denote this group by 𝐾𝑤𝑟𝑇𝐻. Consider the wreath product 𝐺 = 𝐾𝑤𝑟𝑇𝐻. If 𝐾 acts on a set Δ then we can define
an action of 𝐺 on Δ × 𝑇 by

(𝛿, 𝑡)(𝑓,ℎ) = (𝛿𝑓(𝑡), 𝑡ℎ) f𝑜𝑟 𝑎𝑙𝑙 (𝛿, 𝑡) ∈ Δ × 𝑇,

where (𝑓, ℎ) ∈ 𝐹𝑢𝑛(𝑇, 𝐾) ⋊ 𝐻 = 𝐾𝑤𝑟𝑇𝐻, see [5].
In the present paper, we consider the Cayley graph Γ = 𝐶𝑎𝑦(ℤ𝑛 , 𝑆), where 𝑛 = 𝑝𝑚, (𝑝 is a prime integer, 𝑚 ∈
ℕ) and 𝑆 = {𝑎 ∈ ℤ𝑛 | (𝑎, 𝑛) = 1}. The authors in [10], by using the theory of distance regular graphs showed
that the Cayley graph Γ = 𝐶𝑎𝑦(ℤ𝑛 , 𝑆) is an integral graph. In fact, the adjacency spectrum of this graph is {𝑛 −
𝑝𝑚−1, 0(𝑛−𝑝), (−𝑝𝑚−1)(𝑝−1)}. They showed the Cayley graph Γ = 𝐶𝑎𝑦(ℤ𝑛 , 𝑆) and the multicone graph 𝐾𝑣▽Γ are
determined by the adjacency spectrum as well as Laplacian spectrum, where 𝐾𝑣 is the complete graph on 𝑣 vertices.
In this paper, we obtain the automorphism group of this graph by another way. Moreover, we show that 𝐾𝑣▽𝑟Γ is
determined by the adjacency spectrum as well as Laplacian spectrum.

2. Definitions And Preliminaries

Theorem 2.1. [2] Let Γ be a graph such that contains 𝑘 components Γ1, ..., Γ𝑘. If for any 𝑖 ∈ 𝐼 = {1, ..., 𝑘}, we have
Γ𝑖 ≅ Γ1 then 𝐴𝑢𝑡(Γ) ≅ 𝐴𝑢𝑡(Γ1)𝑤𝑟𝐼𝑆𝑦𝑚(𝑘), where the wreath product is defined already.
Theorem 2.2. [3] Let Γ𝑖 be an 𝑟𝑖-regular graph of 𝑛𝑖 (𝑖 = 1, 2) vertices. Then

𝑃(Γ1▽Γ2, 𝜆) =
𝑃(Γ1, 𝜆)𝑃(Γ2, 𝜆)
(𝜆 − 𝑟1)(𝜆 − 𝑟2)

((𝜆 − 𝑟1)(𝜆 − 𝑟2) − 𝑛1𝑛2).

Definition 2.3. [12] Let Γ1 ∪ Γ2 denote the disjoint union of graphs Γ1 and Γ2. The join Γ1▽Γ2 is the graph obtained
from Γ1 ∪ Γ2 by joining every vertex of Γ1 with every vertex of Γ2. A multicone graph is defined to be the join of a
clique and a regular graph.

Theorem 2.4. [11] Let Γ1 and Γ2 be two graphs with the Laplacian spectrum 𝜆1 ≥ 𝜆2 ≥ ... ≥ 𝜆𝑛 and 𝜇1 ≥ 𝜇2 ≥
... ≥ 𝜇𝑚, respectively. Then, the Laplacian spectrum of Γ1▽Γ2, is 𝑛 + 𝑚,𝑚 + 𝜆1, 𝑚 + 𝜆2, ..., 𝑚 + 𝜆𝑛−1, 𝑛 + 𝜇1, 𝑛 +
𝜇2, ..., 𝑛 + 𝜇𝑚−1, 0.
Theorem 2.5. [6] Let Γ be a graph on 𝑛 vertices. Then, 𝑛 is a Laplacian eigenvalue of Γ if and only if Γ is the join
of two graphs.

Lemma 2.6. [6] A connected graph Γ has exactly one positive eigenvalue if and only if it is a complete multipartite
graph.

Corollary 2.7. [10] Let Γ = 𝐶𝑎𝑦(ℤ𝑛 , 𝑆) be the Cayley graph on the cyclic groupℤ𝑛, where𝑛 = 𝑝𝑚, (𝑝 is a prime inte-
ger and𝑚 ∈ ℕ) and 𝑆 = {𝑎 ∈ ℤ𝑛 | (a, n)=1}. Then the adjacency spectrum of Γ is {𝑛−𝑝𝑚−1, 0(𝑛−𝑝), (−𝑝𝑚−1)(𝑝−1)}.
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Proposition 2.8. [10] Let Λ be a graph cospectral with the multicone graph 𝐾𝑣▽Γ with respect to its adjacency
matrix spectrum, where Γ = 𝐶𝑎𝑦(ℤ𝑛 , 𝑆) is defined as before, then

𝑆𝑝𝑒𝑐(Λ) = {0(𝑛−𝑝), (−𝑝𝑚−1)(𝑝−1), −1(𝑣−1), (𝑆 + √𝑆2 + 4𝑇
2 ), (𝑆 − √𝑆2 + 4𝑇

2 )},

where 𝑆 = 𝑣 − 1 + 𝑝𝑚 − 𝑝𝑚−1 and 𝑇 = 𝑝𝑚 + 𝑝𝑚−1𝑣 − 𝑝𝑚−1.

Theorem 2.9. [10] Consider the multicone graph 𝐾𝑣▽Γ, where Γ = 𝐶𝑎𝑦(ℤ𝑛 , 𝑆) is defined as before. Then 𝐾𝑣▽Γ is
𝐷𝑆 with respect to its adjacency matrix spectrum.
Proposition 2.10. [10] Consider the multicone graph𝐾𝑣▽Γ, where Γ = 𝐶𝑎𝑦(ℤ𝑛 , 𝑆) is defined as before. Then𝐾𝑣▽Γ
is 𝐷𝑆 with respect to its Laplacian spectrum.

3. Main results

Theorem 3.1. Let Γ = 𝐶𝑎𝑦(ℤ𝑛 , 𝑆) be the Cayley graph on the cyclic group ℤ𝑛, where 𝑛 = 𝑝𝑚, (𝑝 is a prime integer
and𝑚 ∈ ℕ) and 𝑆 = {𝑎 ∈ ℤ𝑛 | (a, n)=1}. Then,

𝐴𝑢𝑡(Γ) ≅ 𝑆𝑦𝑚(𝑝𝑚−1)𝑤𝑟𝐼𝑆𝑦𝑚(𝑝),
where 𝐼 = {1, 2, ..., 𝑝}.
Proof. Note that if𝑚 = 1, then the result immediately follows. Because in this case, Γ ≅ 𝐾𝑝, where𝐾𝑝 is the complete
graph on 𝑝 vertices. Hence in the sequel, we assume that 𝑚 ≥ 2. Let 𝑉(Γ) = {1, ..., 𝑛} be the vertex set of Γ. It can
be checked that the maximum size of an independent subset of vertices in Γ is 𝑝𝑚−1. Because Γ is a vertex transitive
graph, and it is a regular graph with valency 𝜙(𝑝𝑚) = 𝑝𝑚 − 𝑝𝑚−1, where 𝜙(𝑝𝑚) denotes the Euler phi-function.
Therefore, for any vertex 𝑥 in 𝑉(Γ), there are exactly 𝑝𝑚−1 vertices 𝑦 ∈ 𝑉(Γ) such that 𝑥−1𝑦 ∉ 𝑆. Hence, if 𝑥−1𝑦 ∉ 𝑆,
then two vertices 𝑥 and 𝑦 are adjacent in the complement Γ of Γ. So, Γ contains 𝑝 components Γ1, Γ2, ..., Γ𝑝 such that
Γ𝑖 ≅ 𝐾𝑝𝑚−1 (1 ≤ 𝑖 ≤ 𝑝), where 𝐾𝑝𝑚−1 is the complete graph on 𝑝𝑚−1 vertices. Thus, we conclude Γ ≅ 𝑝𝐾𝑝𝑚−1 .
Hence, by Theorem 2.1, 𝐴𝑢𝑡(Γ) ≅ 𝐴𝑢𝑡(𝐾𝑝𝑚−1)𝑤𝑟𝐼𝑆𝑦𝑚(𝑝) = 𝑆𝑦𝑚(𝑝𝑚−1)𝑤𝑟𝐼𝑆𝑦𝑚(𝑝). On the other hand, it is well
known that for any graph Γ, 𝐴𝑢𝑡(Γ) = 𝐴𝑢𝑡(Γ), see [6].

Proposition 3.2. Let Λ be a graph cospectral with the multicone graph 𝐾𝑣▽𝑟Γ with respect to its adjacency matrix
spectrum, where 𝑟Γ denoted union 𝑟 copies of Γ = 𝐶𝑎𝑦(ℤ𝑛 , 𝑆) is defined as before. Then

𝑆𝑝𝑒𝑐(Λ) = {(𝑛 − 𝑝𝑚−1)(𝑟−1), 0(𝑛−𝑝)𝑟 , (−𝑝𝑚−1)(𝑝−1)𝑟 , −1(𝑣−1), (𝑆 + √𝑆2 + 4𝑇
2 ), (𝑆 − √𝑆2 + 4𝑇

2 )},

where 𝑆 = 𝑣 − 1 + 𝑝𝑚 − 𝑝𝑚−1 and 𝑇 = 𝑝𝑚 + 𝑝𝑚−1𝑣 − 𝑝𝑚−1 + 2𝑝𝑚𝑟𝑣 − 𝑝𝑚𝑣.
Proof. By Theorem 2.2, this claim holds.

Proposition 3.3. Let Λ be a graph cospectral with the multicone graph𝐾𝑣▽𝑟Γ with respect to its adjacency Laplacian
spectrum, where 𝑟Γ denoted union 𝑟 copies of Γ = 𝐶𝑎𝑦(ℤ𝑛 , 𝑆) is defined as before. Then

𝑆𝑝𝑒𝑐(Λ) = {(2𝑛𝑟 + 𝑣)(𝑣), (𝑛 + 𝑣)(𝑝−1)𝑟 , (𝑛 − 𝑝𝑚−1 + 𝑣)(𝑛−𝑝)𝑟 , 𝑣(𝑟−1), 0}
Proof. By Theorem 2.4, this claim holds.

Proposition 3.4. Consider the multicone graph 𝐾𝑣▽𝑟Γ, where Γ = 𝐶𝑎𝑦(ℤ𝑛 , 𝑆) is defined as before. Then 𝐾𝑣▽𝑟Γ is
𝐷𝑆 with respect to its adjacency matrix spectrum.
Proof. By similar way is done in the proof of Theorem 7, in [10], and a few changes this claim holds.

Proposition 3.5. Consider the multicone graph 𝐾𝑣▽𝑟Γ, where Γ = 𝐶𝑎𝑦(ℤ𝑛 , 𝑆) is defined as before. Then 𝐾𝑣▽𝑟Γ is
𝐷𝑆 with respect to its Laplacian spectrum.
Proof. By similar way is done in the proof of Proposition 7, in [10], and a few changes this claim holds.
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Abstract

In this article, novel formulas for the Sz, Mo, and PI indices are presented based on the graph
structure of the 𝜌-dimensional hammer. These formulas depend only on the length of the lin-
ear polyacene and do not require the derivation of polynomials or the use of complex methods
such as edge partition. In this way, the new method simplifies the calculations and provides
the relationships between these indices with minimal complexity. The values   of these indices
are calculated using new formulas for 𝜌-dimensional hammers. Finally, for analysis and under-
standing of these formulas, the Sz, Mo, and PI indices are compared. In addition, Matlab code
is provided to calculate these indices using new formulas and for different values   of 𝜌, which is
also capable of drawing comparative plots to analyze and compare these indices.

1. Introduction

Chemical graph theory is an interdisciplinary field that integrates the principles of graph theory with chemical analysis
and focuses on the mathematical representation of chemical phenomena. In this field, mathematical representations of
molecular structures are expressed as molecular graphs, where vertices represent atoms and edges represent chemical
bonds [1–3]. Among the tools of chemical graph theory, topological indices (TIs) are used to examine the structural
properties of molecules through graph analysis. TIs are numerical values derived from a graph, which encapsulate its
structural properties. These TIs are constant quantities, meaning they remain unchanged under graph automorphisms
and are used to represent chemical structures numerically [1, 2]. They predict the physical, chemical, and biological
properties of new structures obtained from a molecule or molecular compound. The predictive capability of these
indices is a measure of their quality, as they enable the estimation of various molecular properties, especially for
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new compounds [1]. TIs are derived based on factors such as vertex degree, distance between vertices, eigenvalues,
eccentricity, and other structural properties of a graph. In degree-based indices, the number of bonds each atom has in
the graph, which corresponds to the degree of the vertex, is considered. In distance-based indices, topological distances
between atoms in the graph are calculated. These distances can provide information about the molecular structure and
communication properties of molecules. Topological polynomials serve as another important tool in mathematical
chemistry. The application of topological polynomials is to calculate TIs and analyze their overall behavior. Numerous
topological polynomials have been introduced for graphs, and they are applicable in mathematical chemistry, including
Hosoya polynomials, M-polynomials, neighborhood M-polynomials (NM-polynomials), and SMP-polynomials. By
utilizing these polynomials, various TIs can be computed more efficiently and swiftly [4]. Graph polynomials are
typically expressed as polynomials in one or two variables with integer coefficients. The SMP polynomial, introduced
by Knor and Tratnik in 2023, is a unified method for computing three important TIs in graph theory and molecular
graphs: the Szeged index (Sz), the Mostar index (Mo), and the PI index. This bivariate polynomial allows computing
all three indices with a polynomial instead of three separate polynomials. To obtain these indices, one only needs to
compute the first derivative of the SMP polynomial at 𝑥 = 1, which makes the process more efficient, effective, and
faster [5, 6]. The SMP-polynomial of 𝐺 is defined as [7]:

𝑆𝑀𝑃(𝐺, 𝑥, 𝑦) = 
𝑒=𝑢𝑣∈𝐸(𝐺),𝑛𝑢(𝑒|𝐺)≥𝑛𝑣(𝑒|𝐺)

𝑥𝑛𝑢(𝑒|𝐺)𝑦𝑛𝑣(𝑒|𝐺).

where 𝑛𝑢(𝑒|𝐺) = |𝑁𝑢(𝑒|𝐺)| and 𝑁𝑢(𝑒|𝐺) = {𝑥 ∈ 𝑉(𝐺)|𝑑𝐺(𝑥, 𝑢) < 𝑑𝐺(𝑥, 𝑣)} are number and set of vertices of 𝐺
lying closer to 𝑢, respectively, see also [8]. The Sz index is the oldest TI based on distance [8, 9] and is as:

𝑆𝑧(𝐺) = 
𝑒=𝑢𝑣∈𝐸(𝐺)

𝑛𝑢(𝑒|𝐺)𝑛𝑣(𝑒|𝐺).

The Mo used as a measure of peripherality in chemical graphs, is defined as [10]:

𝑀𝑜(𝐺) = 
𝑒=𝑢𝑣∈𝐸(𝐺)

|𝑛𝑢(𝑒|𝐺) − 𝑛𝑣(𝑒|𝐺)|.

Khadikar introduced the vertex-PI index [8] as:

𝑃𝐼𝑣(𝐺) = 
𝑒=𝑢𝑣∈𝐸(𝐺)

(𝑛𝑢(𝑒|𝐺) + 𝑛𝑣(𝑒|𝐺)).

Researchers havemade significant efforts in this field in recent years for example, Ghani et al. [11] calculated capacity-
based indices for some drugs. Chaudhry et al. [12] computed the closed form of the M-polynomial for the tadpole
graph. Moreover, they derived several degree-based TIs as well. Kamran et al. [13] explored TIs of oligothiophene
dendrimer via neighborhood M-polynomials. Recently, formulas have been obtained for calculating the TIs of some
hydrocarbons, which can be calculated using the apparent property of the structure of the desired hydrocarbon without
polynomial calculation [6]. According to previous research, the indices can be obtained by counting edges and using
their definition or as the derivative of the SMP polynomial according to Table 3. This article considers the chemical
structure of the 𝜌-dimensional hammer (𝐻𝜌), focusing on the hammer indices Sz, Mo, and PI, and presents new
formulas for their calculation, independent of edge partitioning and without the need to write topological polynomials.
The new formulas are based on the length of the linear polyacene connecting the two pyrene fragments in the hammer
structure.

2. Main result

The 𝜌-dimensional hammer structure 𝐻𝜌 is obtained by terminating the ends of a linear polyacene of length 𝜌 with
two pyrene fragments, see the 𝐻𝜌 graph in Figure 1. The structure 𝐻𝜌 consists of 4𝜌 + 30 vertices, 5𝜌 + 37 edges
and 𝜌 + 8 hexagons [14]. The edge partitioning of the graph 𝐻𝜌 based on the length of the linear polyacene is given
in Tables 1 and 2. Table 3 shows the mathematical formula for the distance-based TIs used in this article and Table 3
includes some distance-based TIs computed via SMP polynomial.
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Fig. 1. Structure of 𝐻𝜌.

Table 1. Partition of the edges of 𝐻𝜌, when 𝜌 is even and 1 ≤ 𝑖 ≤ 𝜌
2 .

Edges types {4𝜌 + 27, 3} {4𝜌 + 25, 5} {4𝜌 + 19, 11} {2𝜌 + 15, 2𝜌 + 15} {4𝑖 + 17, 13 + 4𝑖}
Number 8 12 12 𝜌 + 5 8

Theorem 2.1. Let 𝐺 be the base graph of 𝐻𝜌, where 𝜌 = 2𝑖 and 𝑖 = 0, 1, … . Then the SMP polynomial of 𝐻𝜌 is as
follows:

𝑆𝑀𝑃(𝐻𝜌; 𝑥, 𝑦) = 8𝑥4𝜌+27𝑦3 + 12𝑥4𝜌+25𝑦5 + 12𝑥4𝜌+19𝑦11 + (𝜌 + 5)𝑥2𝜌+15𝑦2𝜌+15 + 8

𝜌
2


𝑖=1

𝑥4𝑖+17𝑦13+4𝑖 .

Proof. By using Figure 1 and Table 1, the 𝑆𝑀𝑃-polynomial of 𝐻𝜌 is calculated as follows:

𝑆𝑀𝑃(𝐻𝜌; 𝑥, 𝑦) = 
𝑒=𝑢𝑣∈𝐸(𝐻𝜌),𝑛𝑢(𝑒)≥𝑛𝑣(𝑒)

𝑥𝑛𝑢(𝑒|𝐻𝜌)𝑦𝑛𝑣(𝑒|𝐻𝜌)

= |𝐸{4𝜌+27,3}|𝑥4𝜌+27𝑦3 + |𝐸{4𝜌+25,5}|𝑥4𝜌+25𝑦5 + |𝐸{4𝜌+19,11}|𝑥4𝜌+19𝑦11

+ |𝐸{2𝜌+15,2𝜌+15}|𝑥2𝜌+15𝑦2𝜌+15 + |𝐸{4𝑖+17,13+4𝑖}|𝑥4𝑖+17𝑦13+4𝑖

= 8𝑥4𝜌+27𝑦3 + 12𝑥4𝜌+25𝑦5 + 12𝑥4𝜌+19𝑦11 + (𝜌 + 5)𝑥2𝜌+15𝑦2𝜌+15 + 8𝑥4𝑖+17𝑦13+4𝑖 .

Proposition 2.2. Let 𝐺 be the graph of 𝐻𝜌, where 𝜌 is even. Then TIs of 𝐻𝜌 are obtained as follows:

• 𝑆𝑧(𝐻𝜌) =
28
3 𝜌

3 + 216𝜌2 + (2513 + 32
3 )𝜌 + 5781,

• 𝑀𝑜(𝐻𝜌) = 8𝜌2 + 128𝜌 + 528,

• 𝑃𝐼(𝐻𝜌) = (4𝜌 + 30)(5𝜌 + 37) = 20𝜌2 + 298𝜌 + 1110.

Proof. Let 𝑆𝑀𝑃(𝐻𝜌; 𝑥, 𝑦) = 8𝑥4𝜌+27𝑦3+12𝑥4𝜌+25𝑦5+12𝑥4𝜌+19𝑦11+(𝜌+5)𝑥2𝜌+15𝑦2𝜌+15+8∑
𝜌
2
𝑖=1 𝑥4𝑖+17𝑦13+4𝑖.
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Table 2. Partition of the edges of 𝐻𝜌, when 𝜌 is odd and 1 ≤ 𝑖 ≤ 𝜌−1
2 .

Edges types {4𝜌 + 27, 3} {4𝜌 + 25, 5} {4𝜌 + 19, 11} {2𝜌 + 15, 2𝜌 + 15} {4𝑖 + 21, 13 + 4𝑖}
Number 8 12 12 𝜌 + 9 8

Table 3. Topological indices.
TI Derivation of TIs from SMP-polynomial Mathematical formula for the distance-based TIs

Sz index 𝐷𝑥𝐷𝑦𝑆𝑀𝑃(𝐺; 𝑥, 𝑦)|𝑥=𝑦=1 ∑𝑒=𝑢𝑣∈𝐸(𝐺) 𝑛𝑢(𝑒|𝐺)𝑛𝑣(𝑒|𝐺)
Mo index 𝐷𝑥𝑆𝑀𝑃(𝐺; 𝑥,

1
𝑥 )|𝑥=1 ∑𝑒=𝑢𝑣∈𝐸(𝐺) |𝑛𝑢(𝑒|𝐺) − 𝑛𝑣(𝑒|𝐺)|

PI index 𝐷𝑥𝑆𝑀𝑃(𝐺; 𝑥, 𝑥)|𝑥=1 ∑𝑒=𝑢𝑣∈𝐸(𝐺)(𝑛𝑢(𝑒|𝐺) + 𝑛𝑣(𝑒|𝐺))

The following results are obtained by applying the operators on the SMP-polynomial:

𝐷𝑥𝐷𝑦𝑆𝑀𝑃(𝐻𝜌; 𝑥, 𝑦) = 24(4𝜌 + 27)𝑥4𝜌+27𝑦3 + 60(4𝜌 + 25)𝑥4𝜌+25𝑦5 + 132(4𝜌 + 19)𝑥4𝜌+19𝑦11

+ (𝜌 + 5)(2𝜌 + 15)2𝑥2𝜌+15𝑦2𝜌+15 + 8

𝜌
2


𝑖=1

(13 + 4𝑖)(4𝑖 + 17)𝑥4𝑖+17𝑦13+4𝑖 ,

𝐷𝑥𝑆𝑀𝑃(𝐻𝜌; 𝑥,
1
𝑥 ) = 8(4𝜌 + 24)𝑥4𝜌+24 + 12(4𝜌 + 20)𝑥4𝜌+20 + 12(4𝜌 + 8)𝑥4𝜌+8 + 8

𝜌
2


𝑖=1

4𝑥4,

𝐷𝑥𝑆𝑀𝑃(𝐻𝜌; 𝑥, 𝑥) = 8(4𝜌 + 30)𝑥4𝜌+30 + 12(4𝜌 + 30)𝑥4𝜌+30 + 12(4𝜌 + 30)𝑥4𝜌+30 + (𝜌 + 5)(4𝜌 + 30)𝑥4𝜌+30

+ 8

𝜌
2


𝑖=1

(4𝜌 + 30)𝑥8𝑖+30.

Then, based on Table 3, it is concluded that:

• 𝑆𝑧(𝐻𝜌) = 𝐷𝑥𝐷𝑦𝑆𝑀𝑃(𝐻𝜌; 𝑥, 𝑦)|𝑥=𝑦=1 =
28
3 𝜌

3 + 216𝜌2 + (2513 + 32
3 )𝜌 + 5781,

• 𝑀𝑜(𝐻𝜌) = 𝐷𝑥𝑆𝑀𝑃(𝐻𝜌; 𝑥,
1
𝑥 )|𝑥=1 = 8𝜌2 + 128𝜌 + 528,

• 𝑃𝐼(𝐻𝜌) = 𝐷𝑥𝑆𝑀𝑃(𝐻𝜌; 𝑥, 𝑥)|𝑥=1 = (4𝜌 + 30)(5𝜌 + 37) = 20𝜌2 + 298𝜌 + 1110.

Theorem 2.3. Let 𝐺 be the base graph of 𝐻𝜌, where 𝜌 = 2𝑖 + 1 and 𝑖 = 0, 1, … . Then the SMP polynomial of 𝐻𝜌 is
as follows:

𝑆𝑀𝑃(𝐻𝜌; 𝑥, 𝑦) = 8𝑥4𝜌+27𝑦3 + 12𝑥4𝜌+25𝑦5 + 12𝑥4𝜌+19𝑦11 + (𝜌 + 9)𝑥2𝜌+15𝑦2𝜌+15 + 8

𝜌−1
2


𝑖=1

𝑥4𝑖+21𝑦13+4𝑖 .

Proof. By using Figure 1 and Table 2, the proof is similar to Theorem 2.1.

Proposition 2.4. Let 𝐺 be the graph of 𝐻𝜌, where 𝜌 is odd. Then TIs of 𝐺 are obtained as follows:

• 𝑆𝑧(𝐻𝜌) =
28
3 𝜌

3 + 232𝜌2 + (2721 − 16
3 )𝜌 + 5453,

• 𝑀𝑜(𝐻𝜌) = 160𝜌 + 496,
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• 𝑃𝐼(𝐻𝜌) = 12𝜌2 + 330𝜌 + 1086.

Proof. The proof of this proposition is similar to the proof of Proposition 2.2.

Fig. 2. Comparison of Sz, Mo, and PI indices of 𝐻𝜌.

Table 4. Calculation of Sz, Mo, and PI indices of 𝐻𝜌 (0 to 20).
0 1 2 3 4 5 6 7 8 9 10

Sz(H𝜌) 5781 8410 11767 15940 19929 25998 30715 39032 44573 55490 61951
Mo(H𝜌) 528 656 816 976 1168 1296 1584 1616 2064 1936 2608
PI(H𝜌) 1110 1428 1786 2184 2622 3036 3618 3984 4774 5028 6090

11 12 13 14 15 16 17 18 19 20
Sz(H𝜌) 75820 83297 100470 109060 129890 139680 164520 175620 204820 217320
Mo(H𝜌) 2256 3216 2576 3888 2896 4624 3216 5424 3536 6288
PI(H𝜌) 6168 7566 7404 9202 8736 10998 10164 12954 11688 15070

In the next section, we present a MATLAB function that calculates three graph indices (Sz, Mo, and PI) for values of
𝜌 within a specified range. The function first checks the validity of the input values and then calculates the indices for
each value of 𝜌. The results are then plotted for comparison.

3. MATLAB Code

function calculate_and_plot_indices_for_range()
start_rho = input('Please enter the starting value of rho (positive integer): ');
end_rho = input('Please enter the ending value of rho (positive integer): ');
if ~isnumeric(start_rho) || start_rho <= 0 || mod(start_rho , 1) ~= 0 || ...

~isnumeric(end_rho) || end_rho <= 0 || mod(end_rho, 1) ~= 0 || start_rho >
end_rho

error('Rho values must be positive integers, and the start value must be less
than or equal to the end value.');
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end
rho_values = start_rho:end_rho;
Sz_values = zeros(1, length(rho_values));
Mo_values = zeros(1, length(rho_values));
PI_values = zeros(1, length(rho_values));
for i = 1:length(rho_values)

rho = rho_values(i);
if mod(rho, 2) == 0

Sz = (28/3) * rho^3 + 216 * rho^2 + (2513 + 32/3) * rho + 5781;
Mo = 8 * rho^2 + 128 * rho + 528;
PI = 20 * rho^2 + 298 * rho + 1110;

else
Sz = (28/3) * rho^3 + 232 * rho^2 + (2721 - 16/3) * rho + 5453;
Mo = 160 * rho + 496;
PI = 12 * rho^2 + 330 * rho + 1086;

end
Sz_values(i) = Sz;
Mo_values(i) = Mo;
PI_values(i) = PI;

end
figure;
hold on;
plot(rho_values , Sz_values , 'r', 'LineWidth', 2, 'DisplayName', 'Sz(H_{\rho})');
plot(rho_values , Mo_values , 'g', 'LineWidth', 2, 'DisplayName', 'Mo(H_{\rho})');
plot(rho_values , PI_values , 'b', 'LineWidth', 2, 'DisplayName', 'PI(H_{\rho})');
hold off
xlabel('\rho', 'FontSize', 12);
ylabel('Indices', 'FontSize', 12);
title('Comparison of Sz, Mo, and PI indices for \rho', 'FontSize', 14);
legend('show');
grid on;

end

Listing 1. Matlab code for calculating and comparing indices.

4. Conclusion

In this paper, new formulas were presented for Sz, Mo, and, PI indices according to 𝑟ℎ𝑜, where 𝜌 is the length of the
linear polyacene connecting two pyrene fragments in the hammer structure. The formulas obtained for these indices
do not depend on the number of edges or degree of vertices. Instead, these formulas are more related to the structural
properties of the graph. This approach allows us to calculate indices based on the structural properties of the graph for
different values   of 𝜌. The values   of these indices were calculated to investigate the chemical properties and biological
behavior of the structure of 𝐻𝜌 for 𝜌 = 1,… , 20, see Tables 4. Topological indices of the hammer graph are compared
numerically and graphically. According to Tables 4 and Figure 2 with the increase of 𝜌, the indices increase but their
growth rates are different. The sz index shows the highest growth, especially for larger values   of 𝜌, indicating higher
sensitivity to changes in 𝜌. In contrast, the Mo and PI indices increase at a lower rate, although the PI index shows a
significant increase at higher values   of 𝜌. Additionally, the formulas used to calculate indices differ for even and odd
values of 𝜌, highlighting that the model exhibits distinct behaviors depending on whether 𝜌 is even or odd.
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Abstract

This paper explores the properties of non-cyclically split division algebras over Henselian fields.
Our main theorems establish the relationship between the algebraic structure of a division alge-
bra and its relative value group.

1. Introduction

Let 𝐹 be a field and 𝐴 be an 𝐹-central simple algebra of degree 𝑛, i.e., [𝐴 ∶ 𝐹] = 𝑛2. 𝐴 is called cyclic if it contains
a maximal subfield 𝐾/𝐹 with Gal(𝐾/𝐹) = ⟨𝜎⟩. By Skolem-Noether Theorem [3, p. 39], 𝐴 = ⨁𝑛−1

𝑖=0 𝐾𝑧𝑖 for some
𝑧 ∈ 𝐴∗ with 𝑧𝑛 = 𝑎 ∈ 𝐹∗ and 𝑧𝑘 = 𝜎(𝑘)𝑧 for 𝑘 ∈ 𝐾. We write 𝐴 = (𝐾/𝐹, 𝜎, 𝑎). More generally, 𝐴 is said to be
cyclically split if there exists a cyclic extension 𝐾/𝐹 such that 𝐴 is Brauer equivalent to the cyclic algebra (𝐾/𝐹, 𝜎, 𝑏)
for some 𝑏 ∈ 𝐹, equivalently, 𝐴 ⊗𝐹 𝐾 ≅ 𝑀𝑛(𝐾) where 𝑛 is the degree of 𝐴. While cyclic algebras have a simple
structure, determining cyclicity is difficult. Albert gave the first example of a non-cyclic division algebra [1]. Amitsur
and Saltman showed the existence of non-cyclic generic abelian crossed product 𝑝-algebras of degree 𝑝𝑛 (𝑛 ≥ 2)
[2]. As another notable result, Tignol and Wadsworth proved that a tame, totally ramified 𝐹-central division algebra
𝐷 with rank(Γ𝐷/Γ𝐹) ≥ 3 is not split by any cyclic extension of 𝐹 [4, Theorem 4.7]. The main goal of this article is to
generalize [4, Theorem 4.7] to the case of inertially split division algebras.

2. Preliminaries

Let Γ be a totally ordered abelian group. A valuation 𝑣 on a division ring 𝐷 (possibly commutative) with values in Γ
is a function 𝑣 ∶ 𝐷∗ → Γ satisfying the following properties:

1. 𝑣(𝑥𝑦) = 𝑣(𝑥) + 𝑣(𝑦) for all 𝑥, 𝑦 ∈ 𝐷∗.
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2. 𝑣(𝑥 + 𝑦) ≥ min(𝑣(𝑥), 𝑣(𝑦)) for all 𝑥, 𝑦 ∈ 𝐷.
A valued division algebra 𝐷 is a division algebra equipped with a valuation 𝑣 ∶ 𝐷∗ → Γ. The value group Γ𝐷 of 𝐷 is
defined as Γ𝐷 = 𝑣(𝐷∗), which captures the set of values assigned by the valuation. We define the valuation ring 𝑉𝐷
as:

𝑉𝐷 = {𝑑 ∈ 𝐷∗ ∣ 𝑣(𝑑) ≥ 0} ∪ {0}.
It can be shown that 𝑉𝐷 is a local ring and its unique maximal ideal is

𝑀𝐷 = {𝑑 ∈ 𝐷∗ ∣ 𝑣(𝑑) > 0} ∪ {0}.

The residue class division ring 𝐷 is defined as:

𝐷 = 𝑉𝐷/𝑀𝐷 .

Restricting 𝑣 to 𝐹, the center of 𝐷, is a valuation on 𝐹. 𝐷 is said to be unramified over its center 𝐹 if the value group
of 𝐷 coincides with the value group of 𝐹. To be more precise, Γ𝐷 = Γ𝐹.
We say that𝐷 is tame if the characteristic of 𝐹 does not divide the degree of𝐷, i.e., char(𝐹) ∤ deg(𝐷). In this setting,𝐷
is called inertially split if there exists an unramified extension𝐾 of 𝐹 such that𝐷⊗𝐹𝐾 ≅ 𝑀𝑛(𝐾), where 𝑛 = deg(𝐷).
A valued field 𝐹 is called Henselian if its valuation has a unique extension to each algebraic extension of 𝐹.

3. Results

Our first theorem establishes a relationship between the structure of the relative value group of a division algebra and
the Galois group of its splitting field.

Theorem 3.1. Let 𝐷 be a tame and inertially split 𝐹-central division algebra. If 𝐷 is split by an abelian extension 𝐾
of 𝐹, then

rank(Γ𝐷/Γ𝐹) ≤ 2 ⋅ rank(Gal(𝐾/𝐹)).

The following corollary follows from Theorem 3.1.

Corollary 3.2. If 𝐷 is a tame and inertially split 𝐹-central division algebra and the rank of Γ𝐷/Γ𝐹 is at least 3, then
𝐷 is not cyclically split.

The next theorem provides a specific condition under which non-cyclicality can be guaranteed, emphasizing the role
of roots of unity in the center of a division algebra.

Theorem 3.3. For a tame and inertially split division algebra 𝐷 over a Henselian field 𝐹, if rank (Γ𝐷/Γ𝐹) = 2 and 𝐹
does not contain any 𝑛-th root of unity, then 𝐷 is not cyclically split.
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Abstract

We show that if 𝐼 is a non-central Lie ideal of a ring 𝑅 such that all non-zero elements of 𝐼 are
invertible, then 𝑅 is a division ring. Also, we prove that if 𝑅 is an 𝐹-central algebra and 𝐼 is a
Lie ideal not contained in the set of zero divisors such that cardinality of the set of multiplicative
cosets {𝑎𝐹 | 𝑎 ∈ 𝐼} is finite, then either 𝑅 is a field or 𝐼 is central. We show the only non-central
Lie ideal without zero divisor of a non-commutative central 𝐹-algebra 𝑅 with 𝐶ℎ𝑎𝑟(𝑅) ≠ 2
and radical over the center is [𝑅, 𝑅], the additive commutator subgroup of 𝑅 and in this case 𝑅
is a generalized quaternion algebra. Finally we prove that if 𝐼 is a Lie ideal without zero divisor
in a central 𝐹-algebra with characteristic not 2 and if ( 𝐼+𝐹𝐹 , +) is a finite residual group, then 𝐼
is central.

1. Introduction and Preliminaries

A division ring is a nontrivial ring in which every nonzero element has a multiplicative inverse. Throughout this paper
𝑅 is a unitary ring with center 𝑍(𝑅) and 𝐹 is a field. For a pair of elements 𝑎, 𝑏 of 𝑅 we denote by [𝑎, 𝑏] = 𝑎𝑏 − 𝑏𝑎
the Lie product of 𝑎 and 𝑏. For two subsets 𝐴 and 𝐵 let 𝐴 ∖𝐵 = {𝑎 ∈ 𝐴 | 𝑎 ∉ 𝐵}. An additive subgroup 𝐼 of 𝑅 is said
to be a Lie ideal if [𝑟, 𝑎] ∈ 𝐼 for every 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝐼. Also, for subsets 𝐴, 𝐵 of 𝑅 we denote by [𝐴, 𝐵] the additive
subgroup of 𝑅 generated by all [𝑎, 𝑏] with 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. An element 𝑎 ∈ 𝑅 is said to be radical over 𝑍(𝑅) if there
exists an integer 𝑛 = 𝑛(𝑎) such that 𝑎𝑛 ∈ 𝑍(𝑅). A subset 𝑆 ⊆ 𝑅 is said to be radical over 𝑍(𝑅), if each element of
𝑆 is radical over 𝑍(𝑅). We denote the characteristic of 𝑅 by 𝐶ℎ𝑎𝑟(𝑅). For a subset 𝑆 ⊆ 𝑅, the centralizer of 𝑆 in 𝑅
is defined by 𝐶𝑅(𝑆) = {𝑟 ∈ 𝑅 | 𝑟𝑠 = 𝑠𝑟 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆}. An element 𝑎 of 𝑅 is called a zero divisor if there exists a
non-zero 𝑏 ∈ 𝑅 such that 𝑎𝑏 = 0 or 𝑏𝑎 = 0. We say an 𝐹-algebra 𝑅 is central if 𝐹 = 𝑍(𝑅). A derivation on 𝑅 is an
additive group homomorphism 𝑑 ∶ 𝑅 ⟶ 𝑅 satisfying 𝑑(𝑟1𝑟2) = (𝑑(𝑟1))𝑟2 + 𝑟1(𝑑(𝑟2)).
J. Bergen, I.N. Herstein and C. Lanski studied the structure of a ring 𝑅 with a derivation 𝑑 when the non-zero images
of 𝑑 are invertible [3]. In this note, by an analogous approach we are interested in to know the structure of a ring 𝑅
when the non-zero elements of a Lie ideal 𝐼 of 𝑅 are invertible. We show that when 𝑅 is a ring with 𝐶ℎ𝑎𝑟(𝑅) ≠ 2
and 𝐼 is a non-central Lie ideal of 𝑅 such that all non-zero elements of 𝐼 are invertible, then 𝑅 is a division ring. As
a consequence we also present a commutativity condition over a ring. In particular, we show that if 𝐼 is a Lie ideal
of an 𝐹-central algebra 𝑅 without zero divisor such that cardinality of the multiplicative cosets {𝑎𝐹 | 𝑎 ∈ 𝐼} is finite,
then either 𝑅 is a field or 𝐼 is central. Also we prove that any division ring 𝐷 with characteristic not 2 which contains
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a non-central Lie ideal 𝐼 radical over the center is isomorphic to the generalized quaternion algebra and 𝐼 = [𝐷, 𝐷].
At last we prove that when 𝑅 is an 𝐹-central algebra and 𝐶ℎ𝑎𝑟(𝑅) ≠ 2 and 𝐼 is a Lie ideal without zero divisor, if the
residual additive group ( 𝐼+𝐹𝐹 , +) is of finite cardinality, then 𝐼 is central. First we recall the following two theorems.

Theorem 1.1. [6] Let 𝐷 be a division ring with center 𝐹, such that (𝑥𝑦−𝑦𝑥)𝑛(𝑥,𝑦) ∈ 𝐹, 𝑛(𝑥, 𝑦) ≥ 1 for all 𝑥, 𝑦 ∈ 𝐷,
then 𝑑𝑖𝑚𝐹(𝐷) ≤ 4.

Theorem 1.2. [5, p. 5] Let 𝐷 be a division algebra with center 𝐹 and 𝐶ℎ𝑎𝑟(𝐷) ≠ 2 and let 𝐼 be a Lie ideal of 𝐷.
Then either 𝐼 ⊆ 𝐹 or [𝐷, 𝐷] ⊆ 𝐼.

2. Main Results

We show that the invertibility condition on some special subsets or substructures of a ring implies the invertibility of
all elements of the ring. In particular, we show that a ring, whose all non-zero additive commutators are invertible, is
a division ring. This is the content of the following Theorem.

Theorem 2.1. [1] Let 𝑅 be a ring with center 𝑍(𝑅), whose all non-zero additive commutators are invertible. Then 𝑅
is a division ring.

Clearly [𝑅, 𝑅] is a Lie ideal in any ring 𝑅, containing all additive commutators. When 𝑅 is a division ring by Theorem
1.2 all Lie ideals contain [𝑅, 𝑅] as a substructure, but in general there is not a clear relation between a Lie ideal and
[𝑅, 𝑅]. So one may ask what would be the case when the same condition, as above theorem, is on a Lie ideal of a
ring. In the following theorem we show that only a division ring may contains a Lie ideal such that all of its non-zero
elements are invertible.

Theorem 2.2. [1] Let 𝑅 be a ring and 𝐶ℎ𝑎𝑟(𝑅) ≠ 2. If 𝐼 is a non-central Lie ideal of 𝑅, whose all non-zero elements
are invertible, then 𝑅 is a division ring.

Proof. First, we show that all elements of 𝑅 ∖ 𝐶𝑅(𝐼) are invertible. Let 𝑥 ∈ 𝑅 ∖ 𝐶𝑅(𝐼). There exists an element 𝑎 ∈ 𝐼
such that [𝑎, 𝑥] ≠ 0. The equation [𝑎, 𝑥2] + 2𝑥[𝑥, 𝑎] = [[𝑎, 𝑥], 𝑥], implies that 2𝑥[𝑎, 𝑥] ∈ 𝐼. Therefore 𝑥(2[𝑎, 𝑥]) is
invertible and so 𝑥 is invertible.
Now, we show that all elements of 𝐶𝑅(𝐼) are invertible. Let 𝑥 ∈ 𝐶𝑅(𝐼) ∖ {0}. Since 𝐼 is non-central we may find
elements 𝑢 ∈ 𝐼 and 𝑦 ∈ 𝑅 such that [𝑦, 𝑢] ≠ 0. Thus 𝑦 ∉ 𝐶𝑅(𝐼). Using above argument we find that 𝑦 is invertible.
We claim that 𝑥𝑦 ∉ 𝐶𝑅(𝐼). Otherwise

(𝑥𝑦)𝑢 − 𝑢(𝑥𝑦) = (𝑥𝑦)𝑢 − (𝑢𝑥)𝑦 = (𝑥𝑦)𝑢 − (𝑥𝑢)𝑦 = 𝑥[𝑦, 𝑢] = 0.

Since [𝑦, 𝑢] ∈ 𝐼 implies that 𝑥 = 0, a contradiction. Hence 𝑥𝑦 ∉ 𝐶𝑅(𝐼) which is invertible by above. Now clearly 𝑥
is invertible. This completes the proof.

We use the above theorem to present a commutativity condition in terms of Lie ideals not contained in the set of zero
divisors.

Theorem 2.3. [1] Let 𝐹 be a field and 𝑅 be an 𝐹-central algebra with a Lie ideal 𝐼 without zero divisor. If the set of
multiplicative cosets {𝑎𝐹 | 𝑎 ∈ 𝐼} has a finite cardinality, then either 𝑅 is a field or 𝐼 is central.

To present our next result, we need to remind the following concepts. Let 𝐹 be a field with 𝐶ℎ𝑎𝑟(𝐹) ≠ 2. By [2]
when 𝑅 is a finite dimensional 𝐹-algebra, then [𝑅, 𝑅] is a hyperplane in 𝑅. The generalized quaternion algebra 𝐷 is
defined of the form

𝐷 = ቆ𝑎, 𝑏𝐹 ቇ = {𝛼0 + 𝛼1𝑖 + 𝛼2𝑗 + 𝛼3𝑘 | 𝛼0, 𝛼1, 𝛼2, 𝛼3 ∈ 𝐹},

where 𝑖2 = 𝑎, 𝑗2 = 𝑏, 𝑖𝑗 = 𝑘 and 𝑎, 𝑏 ∈ 𝐹 [4, p. 136]. The classical instance where 𝐹 = ℝ is Hamilton’s quaternions
(𝑎 = 𝑏 = −1). Then one can easily show that [𝐷, 𝐷] = {𝛼1𝑖+𝛼2𝑗+𝛼3𝑘 | 𝛼1, 𝛼2, 𝛼3 ∈ 𝐹}. In the following we show
that only generalized quaternion algebras 𝐷 may contain non-central radical Lie ideal 𝐼 and in this case 𝐼 = [𝐷, 𝐷].
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Theorem 2.4. [1] Let 𝑅 be a non-commutative 𝐹-central algebra and 𝐶ℎ𝑎𝑟(𝑅) ≠ 2. If 𝐼 is a non-central Lie ideal of
𝑅 without zero divisor and radical over 𝐹, then 𝐼 = [𝑅, 𝑅] and 𝑅 is a generalized quaternion algebra.

Proof. By Theorem 2.2, 𝑅 is a division ring. By Theorem 1.1, 𝑑𝑖𝑚𝐹(𝑅) ≤ 4. We know that every 4-dimensional
central simple algebra is isomorphic to ቀ𝑎,𝑏𝐹 ቁ, for some 𝑎, 𝑏 ∈ 𝐹 ∖ {0}[4, p. 136]. Since 𝑅 is non-commutative,

𝑑𝑖𝑚𝐹(𝑅) = 4 and the unique possibility is that 𝑅 = ቀ𝑎,𝑏𝐹 ቁ. By Theorem 1.2, we have [𝑅, 𝑅] ⊆ 𝐼. Thus it suffices to
prove 𝐼 ⊆ [𝑅, 𝑅]. Otherwise, suppose that 𝐼 contains an element𝛼0+𝛼1𝑖+𝛼2𝑗+𝛼3𝑘 ∉ [𝑅, 𝑅]. Since𝛼1𝑖+𝛼2𝑗+𝛼3𝑘 ∈
[𝑅, 𝑅], we find that 𝛼0 ∈ 𝐼 ∖ {0}. Therefore, for every 𝑥 ∈ [𝑅, 𝑅] one can see 𝛼0 + 𝑥 ∈ 𝐼. Hence 𝛼0(1 + 𝛼−10 𝑥)
is radical over 𝐹. Thus we conclude that 1 + 𝛼−10 𝑥 is radical over 𝐹. It is easy to verify that 𝑐(1 + 𝛼−10 𝑥) is radical
over 𝐹, for every 𝑐 ∈ 𝐹. Now, if we consider 𝑥 = 𝑐−1𝛼0𝛽1𝑖 + 𝑐−1𝛼0𝛽2𝑗 + 𝑐−1𝛼0𝛽3𝑘, where 𝛽1, 𝛽2, 𝛽3 ∈ 𝐹, then we
obtain that 𝑐 +𝛽1𝑖 +𝛽2𝑗 +𝛽3𝑘 is radical over 𝐹, for all 𝑐, 𝛽1, 𝛽2, 𝛽3 ∈ 𝐹. This implies that 𝑅 is radical over the center
which by Kaplansky’s Theorem [7, p. 246] is a field and a contradiction.

We need the following technical Lemma to give our next result.

Lemma 2.5. [1] Let 𝑅 be a ring and 𝑎, 𝑦 ∈ 𝑅 such that 𝑎 is not zero divisor. If 𝑎𝑦 ∈ 𝑍(𝑅), then 𝑎𝑦 = 𝑦𝑎.

Theorem 2.6. [1] Let 𝑅 be a central 𝐹-algebra with 𝐶ℎ𝑎𝑟(𝑅) ≠ 2 and let 𝐼 be a Lie ideal of 𝑅 without zero divisor.
If the residual additive group ( 𝐼+𝐹𝐹 , +) is of finite cardinality, then 𝐼 is central.
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Abstract

In this note we study the structure of Lie ideals in associative algebras. In particular we prove
that given any finite dimensional division algebra 𝐴 with the center 𝐹 such that 𝑐ℎ𝑎𝑟𝐹 ≠ 2,
any finitely generated ℤ-module Lie ideal of 𝐴 is central. As a consequence we also prove that
if 𝐴 is a division algebra of finite dimension over its center 𝐹 and 𝑐ℎ𝑎𝑟𝐹 ≠ 2 then the additive
commutator subgroup of 𝐴 or [𝐴, 𝐴] is not finitely generated ℤ-module. Also some results on
maximal Lie subring and maximal Lie ideal of𝑀𝑛(𝐷) are studied.

1. Introduction

Let 𝐴 be an associative algebra. If we replace the usual multiplication 𝑎𝑏 of two elements 𝑎 and 𝑏 of 𝐴 by their Lie
product [𝑎, 𝑏] = 𝑎𝑏 − 𝑏𝑎, then simultaneously, we have a non associative Lie ring [7]. The question is that is there
any kind of duality between these two structures over the set 𝐴. In what follows we try to test a series of properties
from the associative structure to the another Lie structure one to give some kind of correspondence [3].
An additive subgroup 𝐿 of 𝐴 is called a Lie ideal of 𝐴 if for any 𝑙 ∈ 𝐿 and any 𝑥 ∈ 𝐴, their Lie product or [𝑙, 𝑥] is again
in 𝐿. An additive subgroup 𝑇 of 𝐴 is called a Lie subring of 𝐴 if [𝑡, 𝑡′] ∈ 𝑇, where 𝑡, 𝑡′ ∈ 𝑇. A derivation of a ring 𝐴
is an additive group homomorphism 𝑑 ∶ 𝐴 ⟶ 𝐴 satisfying 𝑑(𝑎1𝑎2) = (𝑑(𝑎1))𝑎2 +𝑎1(𝑑(𝑎2)). Inner derivation of a
ring 𝐴 is denoted by 𝐼𝑛𝑛(𝐴) and is defined 𝐼𝑛𝑛(𝐴) = {𝑑𝑎; 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐴, 𝑤ℎ𝑒𝑟𝑒 𝑑𝑎(𝑥) = 𝑎𝑥 − 𝑥𝑎, 𝑓𝑜𝑟 𝑥 ∈ 𝐴}.
In a multiplicative group the normal subgroups usually is defined as the subgroups which are invariant under inner
automorphisms. Equivalently in a Lie algebra, Lie ideals can be defined as the submodules which are invariant under
all inner derivations.
Two main theorems which guide us for identifying a connection between the concept of normal subgroups and Lie
ideals are as follows. The Skolem-Noether theorem states that if 𝐴 is finite dimensional central simple 𝐹-algebra then
every 𝐹-automorphism of 𝐴 is inner [5]. The additive version of this theorem states that if 𝐴 is a finite dimensional
central simple 𝐹-algebra then every 𝐹-linear derivation of 𝐴 is inner [5].
The other theorem which is a clue in identifying a sort of duality is the Cartan-Brauer-Hua theorem which states that
if 𝐴 is a division ring and 𝐵 is a subdivision ring of 𝐴 such that 𝐵∗ is a normal subgroup of 𝐴∗ then either 𝐵 = 𝐴 or
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𝐵 ⊆ 𝑍(𝐴) [6]. The additive version of this theorem states that if 𝐴 is a division ring and 𝐵 is a subdivision ring of 𝐴
such that 𝐵 is a Lie ideal in 𝐴 and 𝑐ℎ𝑎𝑟𝐴 ≠ 2 then either 𝐵 = 𝐴 or 𝐵 ⊆ 𝑍(𝐴) [6].
S. Akbari [4] proved that if 𝐷 be a finite dimensional division algebra with center 𝐹 then any finitely generated normal
subgroup of 𝐷∗ is central. Also he proved that if 𝐷 be an infinite division ring with center 𝐹 such that [𝐷 ∶ 𝐹] < ∞
then𝐷∗ contains no finitely generated maximal subgroups. In this note analogous to some related researches [3, 4], we
show that if 𝐴 is a finite dimensional division algebra with center 𝐹 such that 𝑐ℎ𝑎𝑟𝐹 ≠ 2 then any finitely generated ℤ-
module Lie ideal of 𝐴 is central. We also show that if 𝐴 is an infinite division ring with center 𝐹 such that [𝐴 ∶ 𝐹] < ∞
then 𝐴 contains no finitely generated maximal Lie ideals as a ℤ-module.

2. Main results

We present two theorems just as a dual Lie version of the same theorem about normal subgroups of a division ring [3].

Theorem 2.1. [1] Let 𝐴 be a division ring which is finite dimension over its center 𝐹 and 𝑐ℎ𝑎𝑟𝐹 ≠ 2. Let 𝐿 be a
noncentral Lie ideal in 𝐴 such that as a ℤ-module is finitely generated. Then there exists a finite subset Γ of 𝐹 such
that 𝐹 = 𝑃(Γ).
Theorem 2.2. Let 𝐹 be an algebraic extension of ℚ and 𝐴 be a division ring which is finite dimension over its center
𝐹. Then noncentral Lie ideals of 𝐴 are not finitely generated ℤ-module.

The following gives a more general version of the above theorem and just as an analogous result about division ring
and normal subgroup given in [4].

Theorem 2.3. [1] Let 𝐴 be a finite dimensional division algebra with center 𝐹 such that 𝑐ℎ𝑎𝑟𝐹 ≠ 2. Then any finitely
generated ℤ-module Lie ideal of 𝐴 is central.

Now we can say a main result as a corollary.

Corollary 2.4. [1] Let 𝐴 be a noncommutative division algebra of finite dimension over its center 𝐹 and 𝑐ℎ𝑎𝑟𝐹 ≠ 2.
Then the additive commutator subgroup of 𝐴 or [𝐴, 𝐴] is not finitely generated ℤ-module.

Example 2.5. Let 𝐹 be a field with 𝑐ℎ𝑎𝑟𝐹 ≠ 2. By [2] when 𝑅 is a finite dimensional 𝐹-algebra, then [𝑅, 𝑅] is a
hyperplane in 𝑅. Consider the generalized quaternion algebra

𝐷 = ቆ𝑎, 𝑏𝐹 ቇ = {𝛼0 + 𝛼1𝑖 + 𝛼2𝑗 + 𝛼3𝑘 | 𝛼0, 𝛼1, 𝛼2, 𝛼3 ∈ 𝐹},

where 𝑖2 = 𝑎, 𝑗2 = 𝑏, 𝑖𝑗 = 𝑘 and 𝑎, 𝑏 ∈ 𝐹 [5, p. 136]. Then one can easily show that [𝐷, 𝐷] = {𝛼1𝑖 + 𝛼2𝑗 +
𝛼3𝑘 | 𝛼1, 𝛼2, 𝛼3 ∈ 𝐹} which is not finitely generated as a ℤ-module.
Another consequences of the above theorem, about maximal Lie ideals are as follows.

Corollary 2.6. Let 𝐴 be an infinite division ring with center 𝐹 such that [𝐴 ∶ 𝐹] < ∞. Then 𝐴 contains no finitely
generated maximal Lie ideals as a ℤ-module.

Corollary 2.7. [1] Let 𝐴 be a division ring with center 𝐹 with 𝑐ℎ𝑎𝑟𝐹 ≠ 2 and assume that 𝐿 is a maximal Lie ideal
of 𝐴 containing 𝐹. If the additive group index of 𝐿 over 𝐹 is finite or [𝐿 ∶ 𝐹] < ∞, then 𝐴 = 𝐹.
we continue our study with the following two lemmas about maximal Lie subrings.

Lemma 2.8. [1] Let 𝐴 be an 𝐹-algebra and 𝐿 be a maximal Lie subring of 𝐴. Then we have
(i) 𝐿 contains either 𝐹 or [𝐴, 𝐴].
(ii) If 𝐴 is a division ring, then either 𝐴 = 𝐹(𝐿) or 𝐿\{0} is a multiplicative group, where 𝐹(𝐿) is the division ring
generated by 𝐿 and 𝐹.
Lemma 2.9. [1] Let 𝐷 be a division ring with center 𝐹 and assume that 𝐿 is a maximal Lie subring of 𝐷. Then either
the multiplicative center of 𝐿 is equal to 𝐹 ∩ 𝐿 or 𝐿 is a maximal division subring of 𝐷.
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Now we can give the following results.

Theorem 2.10. [1] Let 𝐷 be a non-commutative division ring with center 𝐹. Then 𝐷 contains no finitely generated
ℤ-module maximal Lie ideal.

Now, we show that the converse of the above theorem is true. Let𝐷 be a commutative division ring. Thus any additive
subgroup of 𝐷 is a Lie ideal of 𝐷. This means that any finitely generated maximal additive subgroup of 𝐷 is a finitely
generated ℤ-module maximal Lie ideal of 𝐷. This implies that if 𝐷 is a commutative division ring then 𝐷 contains a
finitely generated ℤ-module maximal Lie ideal. Therefore the converse of the above theorem is true.

Theorem 2.11. [1] Let 𝐷 be a division algebra algebraic over its center 𝐹 with 𝑐ℎ𝑎𝑟𝐹 ≠ 2 and 𝑛 is a natural number.
Assume that 𝐿 is a maximal Lie ideal of𝑀𝑛(𝐷). If 𝐿 is finite, then 𝐷 = 𝐹.
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Abstract

This paper presents a novel approach for solving nonlinear fractional differential equations
(FDEs) using the Picard iteration method combined with fractional Legendre function. The pro-
posed method uses the orthogonal properties of fractional Legendre functions to approximate
solutions iteratively, ensuring both accuracy and computational efficiency. The non-smooth
numerical example is provided to demonstrate its effectiveness in handling nonlinear FDEs.

1. Introduction

Systems of fractional differential equations (SFDEs) have garnered significant attention in recent years due to their
ability to model complex phenomena across various scientific and engineering disciplines, including fluid dynamics,
viscoelasticity, and control theory. Unlike classical integer-order differential equations, SFDEs incorporate non-local
operators, which provide a more accurate representation of systems exhibiting memory and hereditary properties.
However, the inherent nonlinearity and complexity of SFDEs often present substantial challenges in deriving ana-
lytical solutions, necessitating the development of efficient numerical methods [5]. Recent advancements have led
to the development of various approximate methods for numerically solving systems of fractional differential equa-
tions [2, 3]. Among the available numerical techniques, iterative methods have demonstrated considerable promise in
addressing nonlinear SFDEs due to their simplicity and adaptability. The Picard iteration method, in particular, is a
well-established approach for solving nonlinear equations. It generates a sequence of approximations that converge
to the exact solution. When combined with suitable basis functions, such as fractional Legendre functions, the Pi-
card method can be enhanced to achieve higher accuracy and faster convergence rates. In this study, we propose a
hybrid approach that integrates the Picard iteration method with fractional Legendre function bases to solve nonlinear
SFDEs. Fractional Legendre functions, renowned for their orthogonality and flexibility, serve as an effective tool for
approximating solutions in the fractional domain. The proposed method’s performance is validated through a series of
numerical experiments. The results demonstrate the method’s efficiency in handling a wide range of nonlinear SFDEs,
offering a reliable and effective alternative to existing techniques.
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2. Preliminaries

In the initial part of this section, we revisit some fundamental properties of fractional calculus theory. Subsequently,
we introduce several properties of the Legendre function, which will be utilized in the following sections of this paper.

Definition 2.1. [4] The Riemann–Liouville fractional integral operator of order 𝑞 > 0, applied to a function 𝑢(𝑥), is
defined as:

ℐ𝑞0 𝑢(𝑥) =
1

Γ(𝑞) න
𝑥

0
(𝑥 − 𝑠)𝑞−1𝑢(𝑠)𝑑𝑠, 0 < 𝑥 < 𝐿, (1)

ℐ00𝑢(𝑥) = 𝑢(𝑥), (2)

The operator ℐ𝑞 satisfies the following propertie

ℐ𝑞0 𝑥𝑘 =
Γ(𝑞 + 1)

Γ(𝑞 + 1 + 𝑘)𝑥
𝑞+𝑘 , 𝑞 ≥ 0, 𝑘 ≥ −1. (3)

Definition 2.2. [4] The Caputo fractional derivative of order 𝑞 is defined by the following expression:

𝑐𝒟𝑞𝑢(𝑥) = ℐ𝑛−𝑞0 𝑢(𝑛)(𝑥) = 1
Γ(𝑛 − 𝑥) න

𝑥

0
(𝑥 − 𝑠)𝑛−𝑞−1𝑢(𝑛)(𝑠)𝑑𝑠, 𝑛 − 1 < 𝑞 ≤ 𝑛, 𝑥 > 0.

The operator 𝑐𝒟𝑞, satisfies the following properties:

ℐ𝑞0 𝑐𝒟𝑞𝑢(𝑥) = 𝑢(𝑥) −
𝑛−1


𝑘=0

𝑢(𝑘)(0)
𝑘! 𝑥𝑘 , 𝑥 > 0,

𝑐𝒟𝑞ℐ𝑞0 𝑢(𝑥) = 𝑢(𝑥), 𝑛 − 1 ≤ 𝑞 ≤ 𝑛.

2.1. Shifted Legendre function
The analytic form of the shifted Legendre polynomial on the interval Λ = [0, 𝐿] is defined as [6]:

ℒ∗𝑛(𝑥) =
𝑛


𝑘=0

(−1)𝑛−𝑘Γ(𝑛 + 𝑘 + 1)
Γ(𝑘 + 1)(𝑛 − 𝑘)!𝑘!𝐿𝑘 𝑥

𝑘 . (4)

Hence, the orthogonality condition is

න
Λ
ℒ∗𝑛(𝑥)ℒ∗𝑚(𝑥)𝑑𝑥 = ( 𝐿

2𝑚 + 1)𝛿𝑛𝑚 ,

where, 𝛿𝑛𝑚 is Kronecker delta function.

The fractional Legendre functions
∗
ℒ
𝜆

𝑛 (𝑡)with 𝜆 > 0 and 𝑡 ∈ [0, 𝐿] are defined from the shifted Legendre polynomials
through the coordinate transform 𝑡 = 𝑥𝜆 as follows [1]:

∗
ℒ
𝜆

𝑛 (𝑡) =
∗
ℒ𝑛 (𝑥𝜆). (5)

These functions have the following explicit formula

∗
ℒ𝑛 (𝑡) =

𝑛


𝑘=0

(−1)𝑛−𝑘Γ(𝑛 + 𝑘 + 1)
Γ(𝑘 + 1)(𝑛 − 𝑘)!𝑘!𝐿𝜆𝑘 𝑡

𝜆𝑘 .
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It can easily be checked that these functions are mutually orthogonal concerning the weight function

∗𝜔
𝜆
(𝑡) = 1,

i.e.,

න
Λ

∗
ℒ
𝜆

𝑚 (𝑡)
∗
ℒ
𝜆

𝑛 (𝑡)
∗𝜔
𝜆
(𝑡)𝑑𝑡 = ( 𝐿𝜆

2𝑚 + 1)𝛿𝑛𝑚 .

Thus, for any 𝑢 ∈ 𝐿2
∗𝜔
𝜆(Λ) we have

𝑢(𝑡) =
∞


𝑖=0

𝑢𝑖
∗
ℒ
𝜆

𝑖 (𝑡),

where the cofficients 𝑢𝑖 are given by

𝑢𝑖 =
2𝑖 + 1
𝐿𝜆 න

𝐿

0
𝑢(𝑡)

∗
ℒ
𝜆

𝑖 (𝑡)
∗𝜔
𝜆
(𝑡)𝑑𝑡, 𝑖 = 0, 1, 2,⋯ . (6)

In practical applications, only the first (𝑁 + 1) terms of the shifted Legendre functions are typically considered. As a
result, the function 𝑢(𝑡) can be conveniently expressed in the following form:

𝑢𝑁(𝑡) ≃
𝑁


𝑖=0

𝑢𝑖
∗
ℒ
𝜆

𝑖 (𝑡)

The integral in (6) can be approximated using the shifted Legendre-Gauss quadrature rule as

𝑢𝑖(𝑡) ≃
2𝑖 + 1
2

𝑁


𝑗=0

𝑢(𝑡𝑗)
∗
ℒ
𝜆

𝑖 (𝑡𝑗)𝜔𝑗 , 𝑖 = 0, 1,⋯ ,𝑁. (7)

where
𝑡𝑗 = 𝐿(

𝑥𝑗 + 1
2 )

1
𝜆 , 𝑗 = 0, 1,⋯ ,𝑁, (8)

and {𝑥𝑗}𝑁𝑗=0 are the roots of ℒ𝑁+1(𝑥) and {𝜔𝑗}𝑁𝑗=0 are corresponding weights as

𝜔𝑗 =
2

(1 − 𝑥2𝑗 )(ℒ′𝑁+1(𝑥𝑗))2
(9)

= (2𝑁 + 2)
(𝑁 + 1)2ℒ𝑁(𝑥𝑗)ℒ′𝑁+1(𝑥𝑗)

, 𝑗 = 0, 1,⋯ ,𝑁. (10)

The article continues by addressing the calculation of the fractional integral of shifted Legendre functions. Since
expressing the fractional integral of these functions in terms of the functions themselves is pivotal to the method
discussed in this study, the following theorem establishes this essential relationship.

Theorem 2.3. Let
∗
ℒ
𝜆

𝑛 (𝑡) be the shifted Legendre functions of degree 𝑛, Then we have

ℐ𝑞0
∗
ℒ
𝜆

𝑖 (𝑡) =
𝑁


𝑗=0

Θ(𝑖, 𝑗)
∗
ℒ
𝜆

𝑗 (𝑡), 𝑖 = 0, 1,⋯ ,𝑁, (11)

where

Θ(𝑖, 𝑗) =
𝑖


𝑘=0

𝜁𝑖𝑗𝑘 , (12)
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and

𝜁𝑖𝑗𝑘 =
(−1)𝑖−𝑘Γ(𝑖 + 𝑘 + 1)Γ(𝑘𝜆 + 1)
Γ(𝑘 + 1)Γ(𝑘𝜆 + 𝑞 + 1)(𝑖 − 𝑘)!𝑘! (13)

×
𝑗


ℎ=0

(−1)𝑗−ℎΓ(𝑗 + ℎ + 1)Γ(ℎ + 𝑘 + 𝑞
𝜆 + 1)(2𝑗 + 1)

Γ(ℎ + 1)Γ(ℎ + 𝑞
𝜆 + 𝑘 + 2)(𝑗 − ℎ)!ℎ!

𝐿𝑞 .

Lemma 2.4. According to Theorem 2.3 , in vector form, as indicated by [3], we have

ℐ𝑞0
∗
ℒ
𝜆

𝑖 (𝑡) ≃ [Θ(𝑖, 0), Θ(𝑖, 1),⋯ , Θ(𝑖, 𝑁)]𝜓(𝑡), 𝑖 = 0, 1,⋯ ,𝑁. (14)

3. Fractional Legendre-Picard iteration method

In this section, our proposed method named as the FLPIM provides an iterative algorithm for solving a SFDEs of the
form

𝑐𝒟𝑞𝑗𝑈𝑗(𝑡) = 𝐺𝑗(𝑡, 𝑈𝑗(𝑡)), 0 ≤ 𝑡 ≤ 𝐿, 𝑚𝑗 − 1 ≤ 𝑞𝑗 ≤ 𝑚𝑗 , 𝑚 ∈ ℕ, (15)

𝑈(𝑙)
𝑗 (0) = 𝑈(𝑙)

𝑗0 , 𝑙 = 0, 1, …𝑚𝑗 − 1, 1 ≤ 𝑗 ≤ 𝑛. (16)

By applying the fractional integral to equation (16), we have

𝑈𝑗(𝑡) =
𝑚𝑗−1


𝑙=0

𝑡𝑙𝑈(𝑙)
𝑗0
𝑙! + 1

Γ(𝑞𝑗)
න
𝑡

0
(𝑡 − 𝑠)𝑞𝑗−1𝐺𝑗(𝑠, 𝑈𝑗(𝑠))𝑑𝑠. (17)

According to (17), the iteration sequence is generated in the following way

𝑈𝑖
𝑗 (𝑡) =

𝑚𝑗−1


𝑙=0

𝑡𝑙𝑈(𝑙)
𝑗0
𝑙! + 1

Γ(𝑞𝑗)
න
𝑡

0
(𝑡 − 𝑠)𝑞𝑗−1𝐺𝑗(𝑠, 𝑈𝑖−1

𝑗 (𝑠))𝑑𝑠, (18)

where 𝑈0
𝑗 (𝑡) is an appropriate initial function that corresponds to the initial conditions of the problem. The first step

of the FLPIM is to approximate the function 𝑓(𝑡, 𝑈𝑖−1
𝑗 (𝑡)) using {

∗
ℒ
𝜆

𝑛 (𝑡)}𝑁𝑛=0. Therefore

𝐺𝑗(𝑡, 𝑈𝑖−1
𝑗 (𝑡)) ≃

𝑁


𝑘=0

�̃�𝑖−1𝑗𝑘
∗
ℒ
𝜆

𝑘 (𝑡), (19)

where {�̃�𝑖−1𝑗𝑘 }𝑁𝑗=0 obtained as �̃�𝑖−1𝑗𝑘 = 2𝑘+1
2

𝑁


𝑟=0

𝐺𝑗(𝑡𝑟 , 𝒰𝑖−1
𝑗 (𝑡𝑟))

∗
ℒ
𝜆

𝑘 (𝑡𝑟)𝜔𝑟. With the placement of equation (19) at

(18), and according to (11) we have

𝑈𝑖
𝑑(𝑡) =

𝑚𝑗−1


𝑙=0

𝑡𝑙𝑈(𝑙)
𝑑0
𝑙! + ℐ𝑞𝑗(𝐺𝑑(𝑡, 𝑈𝑖−1

𝑑 (𝑡)))

=
𝑚𝑗−1


𝑙=0

𝑈(𝑙)
𝑑0
𝑙!

𝑁


𝑗=0

𝐶𝑙𝑗
∗
ℒ
𝜆

𝑗 (𝑡) +
𝑁


𝑘=0

�̃�𝑖−1𝑑𝑘

𝑁


𝑗=0

𝑖


𝑘=0

Θ𝑖𝑗𝑘
∗
ℒ
𝜆

𝑗 (𝑡)

=
𝑁


𝑗=0

∗
ℒ
𝜆

𝑗 (𝑡)ቀ
𝑚𝑗−1


𝑙=0

𝑈(𝑙)
𝑑0
𝑙! 𝐶𝑙𝑗 +

𝑁


𝑘=0

�̃�𝑖−1𝑑𝑘

𝑖


𝑘=0

Θ𝑖𝑗𝑘ቁ, 0 ≤ 𝑑 ≤ 𝑛. (20)
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where 𝐶𝑙𝑗 = (2𝑗 + 1)𝐿𝑙 ∑𝑗
𝑓=0

(−1)𝑗−𝑓Γ(𝑗+𝑓+1)Γ(𝑓+𝑙+1)
Γ(𝑓+1)Γ(𝑓+𝑙+2)(𝑗−𝑓)!𝑓! . We assume that the approximate solution in the 𝑖-th step is

shown as

𝑈𝑖
𝑑(𝑡) ≃

𝑁


𝑗=0

𝑎𝑖𝑗
∗
ℒ
𝜆

𝑗 (𝑡) ≃
∗
ℒ
𝜆

0 (𝑡)ቀ
𝑚𝑗−1


𝑙=0

𝑈(𝑙)
𝑑0
𝑙! 𝐶𝑙0 +

𝑁


𝑘=0

�̃�𝑖−1𝑑𝑘

𝑖


𝑘=0

Θ𝑖0𝑘ቁ

+ ⋯+
∗
ℒ
𝜆

𝑁 (𝑡)ቀ
𝑚𝑗−1


𝑙=0

𝒰(𝑙)
𝑑0
𝑙! 𝐶𝑙𝑁 +

𝑁


𝑘=0

�̃�𝑖−1𝑑𝑘

𝑖


𝑘=0

Θ𝑖𝑁𝑘ቁ. (21)

We obtain the coefficients {𝑎𝑖𝑗}𝑁𝑗=0 directly from (21), as follows:

𝑎𝑖𝑗 =
𝑚𝑗−1


𝑙=0

𝑈(𝑙)
𝑑0
𝑙! 𝐶𝑙𝑗 +

𝑁


𝑘=0

�̃�𝑖−1𝑑𝑘

𝑖


𝑘=0

Θ𝑖𝑗𝑘 , 𝑗 = 0, 1,⋯𝑁, 0 ≤ 𝑑 ≤ 𝑛.

After updating the cofficients, the new estimated solution is generated. The proposed algorithm continues to iterate
until the stopping criterion is met, which is defined as ‖𝑈𝑖

𝑑(𝑡) − 𝑈𝑖−1
𝑑 (𝑡)‖∞ < 𝜖.

4. Numerical example

To assess the precision and effectiveness of our method, we introduce the following system of FDE with non-smooth
solutions. First, we establish the absolute error as:

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = |𝑈(𝑡) − 𝑈𝐴𝑝𝑝(𝑡)|.

where 𝑈(𝑡) and 𝑈𝐴𝑝𝑝(𝑡) represent the exact solution and approximate solution, respectively.

Example 4.1. Consider a system of non-smooth fractional differential equations:

𝑐𝒟𝑞1𝑈1(𝑡) =
Γ(72)

Γ(72 − 𝑞1)
𝑡
5
2−𝑞1 − 𝑡

3
2 + 𝑈2(𝑡), 0 < 𝑞1 ≤ 1,

𝑐𝒟𝑞2𝑈2(𝑡) =
Γ(52)

Γ(52 − 𝑞2)
𝑡
3
2−𝑞2 − 𝑡

5
2 + 𝑈1(𝑡), 0 < 𝑞2 ≤ 1,

𝑈1(0) = 0, 𝑈2(0) = 0, 0 < 𝑡 ≤ 1.

The exact solution of this system is 𝑈1(𝑡) = 𝑡
5
2 , 𝑈2(𝑡) = 𝑡

3
2 . We find that the exact and approximation solutions

closely line up. Table 1 shows the maximum absolute error for various values of 𝜆. The results indicate that 𝜆 = 0.5 is
the optimal value, providing the highest accuracy in solving the nonlinear fractional differential equation. Table 2 com-
pares the proposed method with MFJPIM [3]. The proposed method demonstrates superior performance, achieving
lower errors and faster convergence, which highlights its efficiency and effectiveness in solving nonlinear fractional
differential equations.
These results confirm the advantages of combining the Picard iteration method with fractional Legendre function
bases, offering a robust and accurate approach for such problems.

5. Conclusion

In this study, we propose a hybrid numerical approach that combines the Picard iteration method with fractional Legen-
dre function bases to solve nonlinear systems of fractional differential equations (SFDEs). Using the orthogonality and
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Table 1. The maximum absolute error of 𝑈1(𝑡) and 𝑈2(𝑡) is examined for 𝑞1 = 𝑞2 = 0.5 and 𝑁 = 10 with different values of 𝜆 in Example 4.1.
𝜆 𝐸𝑈1(𝑡) 𝐸𝑈2(𝑡)
1 2.4957𝑒 − 05 2.8690𝑒 − 04
0.5 9.8323𝑒 − 12 5.7171𝑒 − 11

Table 2. Comparison of the proposed method with MFJPIM [3] with stopping criterion 𝜖 = 10−30.
FLPIM MFJPIM [3]

𝑞1 = 𝑞2 = 𝜆 = 0.5 𝑞1 = 𝑞2 = 0.5
𝐸𝑈1(𝑡) 𝐸𝑈2(𝑡) 𝐸𝑈1(𝑡) 𝐸𝑈2(𝑡)

𝑁 = 5 9.2012𝑒 − 11 5.5783𝑒 − 11 3.6357𝑒 − 04 1.8609𝑒 − 03
𝑁 = 10 9.8323𝑒 − 12 5.7171𝑒 − 11 2.4957𝑒 − 05 2.8690𝑒 − 04

flexibility of fractional Legendre functions, this method provides an effective framework for approximating solutions
in the fractional domain. The proposed approach is rigorously validated through a series of numerical experiments,
which demonstrate its effectiveness and reliability. The results highlight the method’s ability to efficiently address
a broad spectrum of nonlinear SFDEs, establishing it as a robust and competitive alternative to existing numerical
techniques.
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Abstract

The cancellation property in the theory of actions over a monoid is introduced and examined in
this paper. We will find some significant classes of acts which are cancellable. In addition, we
give a characterization of cancellable acts.

1. INTRODUCTION

The cancellation property typically occurs in the study of any algebraic structure where the concept of a direct sum
exists. The cancellation property for the given algebraic structure asks whether 𝑀 ⊕ 𝑋 ≅ 𝑀 ⊕ 𝑌 implies 𝑋 ≅ 𝑌.
This property has been investigated by many authors in different mathematical subjects (e.g., see [5, 6] in categories of
algebraic structures and abelian groups, [1, 3, 4, 7, 9, 10] in categories of modules, [11, 12] in categories of topological
spaces). On the other hand, There are different ideas to study the notion of cancellation in modules over rings. For
instance, for a module𝑀, 𝑀 = 𝑋⊕ 𝑌 = 𝑋′ ⊕𝑌′ with 𝑌 ≅ 𝑌′, does it imply that 𝑋 ≅ 𝑋′? If the implication is true,
𝑀 is said to have internal cancellation property (or𝑀 is internally cancellable, for short.)
In the following, we collect some basic notions that will be required in the sequel. The notation in this paper is
conventional and was taken directly from [8].
In the following, 𝑆 will always stand for a monoid. A right 𝑆-act is a non-empty set𝑀 on which 𝑆 acts unitarily form
the right in the usual way, that is, to say 𝑚(𝑠𝑡) = (𝑚𝑠)𝑡, 𝑚1 = 𝑚, for all 𝑚 ∈ 𝑀, and 𝑠, 𝑡 ∈ 𝑆, where 1 denotes
the identity of 𝑆. Left 𝑆-act are defined similarly. From now on, by an 𝑆-act we mean a right 𝑆-act unless othewise
stated. The monoid 𝑆 with its operation as the action is clearly an 𝑆-act. A non-empty subset 𝑁 of an 𝑆-act𝑀 is called
a subact of 𝑀 whenever 𝑛𝑠 ∈ 𝑁 for all 𝑠 ∈ 𝑆 and 𝑛 ∈ 𝑁. If 𝑀 and 𝑁 are right 𝑆-acts and 𝑓 ∶ 𝑀 → 𝑁 is a mapping
then 𝑓 is called an 𝑆-homomorphism if 𝑓(𝑚𝑠) = 𝑓(𝑚)𝑠, for 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀. The set of all 𝑆-homomorphisms from
𝑀 to 𝑁 is denoted by Hom(𝑀,𝑁). By Act-𝑆 or 𝑆-Act we denote the categories of left or right 𝑆-acts.
Recall that the coproduct of any non-empty family of 𝑆-acts in Act-𝑆 exists. In fact, if {𝑀𝑖 ∣ 𝑖 ∈ 𝐼} is a none-
empty family of 𝑆-acts, then the coproduct of {𝑀𝑖 ∶ 𝑖 ∈ 𝐼} is their disjoint union denoted by ⋃̇𝑖∈𝐼𝑀𝑖, according
to [8, Proposition 2.1.8]. An 𝑆-act 𝑀 is decomposable whenever there are two subacts 𝑀1 and 𝑀2 of 𝑀 such that
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𝑀 = 𝑀1 ∪ 𝑀2 and 𝑀1 ∩ 𝑀2 = ∅. In this case, 𝑀 = 𝑀1
⋅
∪ 𝑀2 is called a decomposition of 𝑀. Otherwise, 𝑀 is

indecomposable. By [8, Theorem 1.5.10], every 𝑆-act𝑀 has a unique decomposition into indecomposable subacts.
In section 2, we define and study the cancellation property in Act-𝑆. In fact, first we show that every indecomposable
𝑆-act is cancellable (see Proposition 2.3 below). Then, by Theorem 2.7, we describe a large class of 𝑆-acts which are
cancellable and finally we prove that cancellable 𝑆-acts coincide with internally cancellable.

2. Second Section

We begin this section with a basic definition.

Definition 2.1. An 𝑆-act 𝑀 is said to have cancellation property, if 𝑀∪̇𝑋 ≅ 𝑀∪̇𝑌 implies that 𝑋 ≅ 𝑌, for any two
𝑆-act 𝑋 and 𝑌. In this case,𝑀 is called cancellable.

Here, we give some examples to show that cancellation in Act-𝑆 does not hold, in general.

Lemma 2.2. Assume that 𝑀 and 𝑁 are two arbitrary 𝑆-acts. Then, the 𝑆-act 𝑀∪̇𝑁 is cancellable if and only if both
of𝑀 and 𝑁 are cancellable.

Now, we will find some classes of cancellable acts. The first class is the class of indecomposable 𝑆-acts.
Proposition 2.3. Indecomposable 𝑆-acts are cancellable.
Definition 2.4. Let 𝑀 = ⋃̇𝑖∈𝐼𝑀𝑖 be the unique decomposition of an 𝑆-act 𝑀 into indecomposable subacts 𝑀𝑖 , 𝑖 ∈ 𝐼.
Then𝑀 is called finitely decomposable whenever 1 ≤ |𝐼| < ∞. Otherwise,𝑀 is called infinitely decomposable.

In the next proposition we present other classes of cancellable 𝑆-acts.
Proposition 2.5. For a monoid 𝑆, all finitely decomposable 𝑆-acts are cancellable. In particular, all finitely generated
𝑆-acts are cancellable.
We demonstrated earlier that every finitely decomposable 𝑆-act is cancellable. In general, the converse is not true, as
demonstrated by the following result.

Theorem 2.6. Suppose that 𝑀 is an infinitely decomposable 𝑆-act and 𝑀 = ̇
ራ
𝑖∈𝐼

𝑀𝑖 the unique decomposition of 𝑀

into indecomposable subacts, such that𝑀𝑖 ≇ 𝑀𝑗 for all pair of distinct elements 𝑖, 𝑗 ∈ 𝐼. Then𝑀 is cancellable.

Suppose that 𝑀 = ̇
ራ
𝑖∈𝐼

𝑀𝑖 is the unique decomposition of an 𝑆-act 𝑀 into indecomposable subacts and we define an

equivalence relation ∼ on 𝐼 by 𝑖 ∼ 𝑗 if and only if 𝑀𝑖 ≅ 𝑀𝑗 , for 𝑖, 𝑗 ∈ 𝐼. For each 𝑖 ∈ 𝐼 the equivalence class of 𝑖 is
given by [𝑖] = {𝑗 ∈ 𝐼 ∣ 𝑀𝑖 ≅ 𝑀𝑗}. In the sequel, the set of all equivalence classes of 𝐼 is denoted by 𝐼/ ∼.
These observations leads to the following result.

Theorem 2.7. Suppose that 𝑀 = ̇
ራ
𝑖∈𝐼

𝑀𝑖 is the unique decomposition of an 𝑆-act 𝑀 into indecomposable subacts

𝑀𝑖 , 𝑖 ∈ 𝐼 such that the set
𝑃 = {Card[𝑖] ∣ 𝑖 ∈ 𝐼}

is finite. Then𝑀 is cancellable if and only if the equivalence class [𝑖] is finite for every 𝑖 ∈ 𝐼.
Next, we intend to define the notion of internal cancellation inAct-𝑆. As stated in the introduction, wewill demonstrate
how this idea correlates with cancellation.

Definition 2.8. An 𝑆-act 𝐴 is said to have the internal cancellation property if for any subacts 𝐴1, 𝐴2, 𝐵1, and 𝐵2 of 𝐴
whenever 𝐴 = 𝐴1∪̇𝐵1 = 𝐴2∪̇𝐵2 with 𝐴1 ≅ 𝐴2, then 𝐵1 ≅ 𝐵2. In this case, 𝐴 is also called an internally cancellable
𝑆-act.
Now we prove our claim in the following result.

Theorem 2.9. An 𝑆-act 𝐴 has the cancellation property if and only if 𝐴 has the internal cancellation property.
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Abstract

In this talk, wewill make use of cancellation properties in refinementmonoids and consider some
cancellation properties for 𝑆-acts with a unique zero element. We will show that any Dedekind-
finite 𝑆-act is cancellable and has multiplicative cancellation in the category of Dedekind-finite
𝑆-acts with a unique zero

1. INTRODUCTION

In the following, 𝑆 will always stand for a monoid. A right 𝑆-act is a non-empty set𝑀 on which 𝑆 acts unitarily form
the right in the usual way, that is, to say 𝑚(𝑠𝑡) = (𝑚𝑠)𝑡, 𝑚1 = 𝑚, for all 𝑚 ∈ 𝑀, and 𝑠, 𝑡 ∈ 𝑆, where 1 denotes
the identity of 𝑆. Left 𝑆-act are defined similarly. From now on, by an 𝑆-act we mean a right 𝑆-act unless othewise
stated. The monoid 𝑆 with its operation as the action is clearly an 𝑆-act. A non-empty subset 𝑁 of an 𝑆-act𝑀 is called
a subact of 𝑀 whenever 𝑛𝑠 ∈ 𝑁 for all 𝑠 ∈ 𝑆 and 𝑛 ∈ 𝑁. If 𝑀 and 𝑁 are right 𝑆-acts and 𝑓 ∶ 𝑀 → 𝑁 is a mapping
then 𝑓 is called an 𝑆-homomorphism if 𝑓(𝑚𝑠) = 𝑓(𝑚)𝑠, for 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀. The set of all 𝑆-homomorphisms from
𝑀 to 𝑁 is denoted by Hom(𝑀,𝑁). By Act-𝑆 or 𝑆-Act we denote the categories of left or right 𝑆-acts [6].
An element 𝜃 of an 𝑆-act𝑀 is called a zero of𝑀 if 𝜃𝑠 = 𝜃 for any 𝑠 ∈ 𝑆, that is, Θ = {𝜃} is a one-element subact. In
this paper we will assume that all 𝑆-acts have a unique zero element 𝜃 and any subact of an 𝑆-act contains the zero 𝜃.
The category of all 𝑆-acts with a unique zero 𝜃 and 𝑆-homomorphisms preserving the zero (i.e., 𝑆-homomorphisms
𝑓 ∶ 𝑀 → 𝑁 for which 𝑓(𝜃) = 𝜃), is denoted by Act0-𝑆. The coproduct of any non-empty family of acts in Act0-𝑆
exists. More precisely, if 𝐼 is a non-empty set and𝑀𝑖 ∈ Act0-𝑆, 𝑖 ∈ 𝐼 and 𝜃𝑖 be the zero of𝑀𝑖, then by [6, Proposition
2.1.15] the coproduct of {𝑀𝑖 ∣ 𝑖 ∈ 𝐼} is (⋃̇𝑖∈𝐼(𝑀𝑖\{𝜃𝑖}))∪̇{𝜃} with 𝑚𝑖𝑠 = 𝜃, if 𝑚𝑖𝑠 = 𝜃𝑖 in 𝑀𝑖, 𝜃𝑠 = 𝜃 for 𝑠 ∈ 𝑆.
Likewise, an 𝑆-act𝑀 is decomposable if there are subacts𝑀1, 𝑀2 ⊆ 𝑀 such that𝑀 = 𝑀1 ∪𝑀2 and𝑀1 ∩𝑀2 = {𝜃}.
In this case, 𝑀 = 𝑀1 ∪ 𝑀2 is a decomposition of 𝑀. Otherwise, 𝑀 is called indecomposable. By Theorem 1.5.10 of
[6], every 𝑆-act𝑀 has a unique decomposition into indecomposable subacts.
The cancellation property for the given algebraic structure asks whether 𝑀 ⊕ 𝑋 ≅ 𝑀 ⊕ 𝑌 implies 𝑋 ≅ 𝑌. This
property has been investigated by many authors in different mathematical subjects (e.g., see [1–5].
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Our goal in this talk is to consider the Krull-Schmidt commutative monoid𝑀𝑆(𝒞) for a suitable class 𝒞 of 𝑆-acts, for a
monoid 𝑆, and then to establish a submonoid consisting of all equivalence classes of Dedekind-finite 𝑆-acts. We shall
show that this monoid has good properties related to cancellation, such as, it is both cancellative and multiplicative
cancellative. certain set.

2. Second Section

We start with the following definition which is taken from notation 2.1 and definition 2.6 of [2].

Definition 2.1. Let (𝑇, +) be a commutative monoid with the identity element 0.
1. for 𝑢, 𝑣 ∈ 𝑇, 𝑢 ≤ 𝑣 ⟺ ∃𝑤 ∈ 𝑇 such that 𝑢 + 𝑤 = 𝑣.
2. for 𝑢, 𝑣 ∈ 𝑇, 𝑢 ≪ 𝑣 ⟺ 𝑢 + 𝑣 ≤ 𝑣.
3. for 𝑢, 𝑣 ∈ 𝑇, 𝑢 ≡ 𝑣 ⟺ 𝑢 ≤ 𝑣 and 𝑣 ≤ 𝑢.
4. 𝑝 ∈ 𝑇 is prime if for all 𝑢, 𝑣 ∈ 𝑇, 𝑝 ≤ 𝑢 + 𝑣 implies 𝑝 ≤ 𝑢 or 𝑝 ≤ 𝑣.
5. 𝑝 ∈ 𝑇 is primely generated if it is the sum of prime elements of 𝑇. The monoid 𝑇 itself is primely generated if

all its elements are primely generated.
6. 𝑢 ∈ 𝑇 is proper if 𝑢 ≰ 0.
7. 𝑇 is cancellative if for all 𝑢, 𝑣, 𝑤 ∈ 𝑇, 𝑢 + 𝑤 = 𝑣 + 𝑤 implies 𝑢 = 𝑣.
8. 𝑇 is stably finite if for all 𝑢, 𝑥 ∈ 𝑇, 𝑢 + 𝑥 = 𝑢 implies 𝑥 = 0.
9. 𝑇 has multiplicative cancellation if for all 𝑢, 𝑣 ∈ 𝑇 and 𝑛 ∈ ℕ, 𝑛𝑢 = 𝑛𝑣 implies 𝑢 = 𝑣.
10. 𝑇 has refinement if for all 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑇 with 𝑥1 + 𝑥2 = 𝑦1 + 𝑦2, there exist 𝑧11, 𝑧12, 𝑧21, 𝑧22 ∈ 𝑇 such that

𝑥1 = 𝑧11 + 𝑧12, 𝑥2 = 𝑧21 + 𝑧22,
𝑦1 = 𝑧11 + 𝑧21, 𝑦2 = 𝑧12 + 𝑧22.

It is convenient to record refinements using matrices. The refinement of 𝑥1, 𝑥2, 𝑦1, 𝑦2 from the definition would be
written

𝑥1
𝑥2

𝑦1 𝑦2
ቆ𝑧11 𝑧12
𝑧21 𝑧22ቇ .

This means that the entry labeling each row (column) matches the sum of the entries in each row (column).
Let 𝑆 be a monoid. Define an equivalence relation ∼ on the class of all 𝑆-acts with a unique zero element 𝜃 by

𝑀 ∼ 𝑁 ⟺ 𝑀 ≅ 𝑁 (1)

for𝑀,𝑁 ∈ Act0-𝑆 (where≅means “isomorphic to”). The equivalence class of any𝑀 ∈ Act0-𝑆 is denoted by [𝑀]. Let
𝒞 be a class of right 𝑆-acts with a unique zero element. Then 𝒞 is said to be small if the class𝑀𝑆(𝒞) = {[𝑀] ∣ 𝑀 ∈ 𝒞} is
a set. Assume 𝒞 is a small class of right S-acts with a unique zero element that is closed under isomorphism ([𝑀] ⊆ 𝒞,
for every 𝑀 ∈ 𝒞) and finite direct sums (equivalently, zero act Θ = {𝜃} ∈ 𝒞 and 𝑀∐𝑁 ∈ 𝒞 in case 𝑀,𝑁 ∈ 𝒞). The
set𝑀𝑆(𝒞) equipped with the addition defined by [𝑀]+[𝑁] ∶= [𝑀∐𝑁] is the Krull-Schmidt monoid of 𝒞. clearly, the
Krull-Schmidt monoid of 𝒞, (𝑀𝑆(𝒞), +), is a commutative monoid and the class [Θ] is the identity element of𝑀𝑆(𝒞).

Lemma 2.2. Let 𝒞 be a small class of right 𝑆-acts with a unique zero element closed under isomorphism and finite
direct sums. Then the monoid (𝑀𝑆(𝒞), +) has refinement.

Definition 2.3. By aDedekind-finite 𝑆-act we mean an 𝑆-act𝑀 which is not isomorphic to any proper direct summand
of itself. Equivalently,𝑀 is Dedekind-finite if and only if 𝑁 = {𝜃} is the only 𝑆-act for which𝑀∐𝑁 ≅ 𝑀.

Lemma 2.4. Assume that 𝑀 and 𝑁 are two arbitrary 𝑆-acts. Then the 𝑆-act 𝑀∐𝑁 is Dedekind-finite if and only if
both of𝑀 and 𝑁 are Dedekind-finite.
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Lemma 2.5. Let 𝑆 be a monoid and 𝒞 be a small class of right 𝑆-acts with a unique zero element closed under
isomorphism and finite direct sums. Then,
(i) If𝑀 ∈ 𝒞 is an indecomposable 𝑆-act, then [𝑀] ∈ 𝑀𝑆(𝒞) is prime.
(ii) If𝑀 ∈ 𝒞 is a Dedekind-finite 𝑆-act and [𝑀] ∈ 𝑀𝑆(𝒞) is prime, then𝑀 is indecomposable.
(iii)𝑀𝑆(𝒞) is primely generated.

Definition 2.6. (See [2, Definition 2.8].) Let (𝑇, +) be a commutative monoid with the identity element 0. For 𝑢 ∈ 𝑇,
now define a congruence ∼𝑢 on 𝑇 by

𝑥 ∼𝑢 𝑦 ⟺ 𝑥 + 𝑢 = 𝑦 + 𝑢
for 𝑥, 𝑦 ∈ 𝑇. We will write �̄�𝑢 for the ∼𝑢-congruence class containing 𝑡 ∈ 𝑇. Now, define 𝐺𝑢 = {�̄�𝑢 ∣ 𝑡 ≪ 𝑢}. One
can easily show that 𝐺𝑢 is the set of all units (invertible elements) of the quotient monoid 𝑇/ ∼𝑢 and so is an abelian
group.

For an abelian group 𝐺, let
𝜏(𝐺) = {𝑎 ∈ 𝐺 ∣ 𝑛𝑎 = 0 for some 𝑛 ∈ ℕ},

be the torsion subgroup of 𝐺.

Theorem 2.7. Let 𝑆 be a monoid and 𝒞 be a small class of Dedekind-finite right 𝑆-acts with a unique zero element
closed under isomorphism and finite direct sums. Then, the commutativemonoid𝑀𝑆(𝒞) hasmultiplicative cancellation
property.

Proof. First of all, note that by Lemma 2.4,𝑀𝑆(𝒞) is a monoid. It is enough to show that𝑀𝑆(𝒞) satisfies the conditions
of [2, Theorem 5.13]. Since any direct summand of a Dedekind-finite 𝑆-act is Dedekind-finite, therefore 𝑀𝑆(𝒞) has
refinement, by Lemma 2.2. Also,𝑀𝑆(𝒞) is primely generated by Lemma 2.5. Now, we show that 𝜏(𝐺[𝐴]) = 0 for any
[𝑀] ∈ 𝑀𝑆(𝒞).We have

𝐺[𝑀] = {[𝑁][𝑀] ∣ [𝑁] ≪ [𝑀]}

where [𝑁][𝑀] = {[𝐿] ∣ [𝑁] ∼[𝑀] [𝐿]}. First, we prove that [Θ][𝑀] = {[Θ]}. Suppose that [𝐷] ∈ [Θ][𝑀], then
[𝐷] ∼[𝑀] [Θ] and so 𝐷∪̇𝑀 ≅ Θ∪̇𝑀 ≅ 𝑀. Therefore 𝐷 ≅ Θ, because 𝑀 is a Dedekind-finite 𝑆-act. So [𝐷] = [Θ]
and then [Θ][𝑀] = {[Θ]}. Now assume that 𝑛[𝑁][𝑀] = [Θ][𝑀], where [𝑁][𝑀] ∈ 𝜏(𝐺[𝑀]). Then, ⋃̇𝑛

𝑖=1𝑁𝑖 ≅ Θ, where
𝑁𝑖 = 𝑁, for 1 ≤ 𝑖 ≤ 𝑛. Therefore, we obtain 𝑁 ≅ Θ and so [𝐵] = [Θ]. This implies that 𝜏(𝐺[𝑀]) = 0.

Definition 2.8. (See [2, Notation 2.1].) Let (𝑇, +) be a commutative monoid with the identity element 0. Consider
the congruence ≡ on 𝑇 defined by

𝑢 ≡ 𝑣 ⟺ 𝑢 ≤ 𝑣 and 𝑣 ≤ 𝑢
for any 𝑢, 𝑣 ∈ 𝑇. Now, let 𝑇 ∶= 𝑇/ ≡ and ℙ denotes the set of all proper prime elements of 𝑇.

Theorem 2.9. Let 𝑆 be a monoid and 𝒞 be a small class of Dedekind-finite right 𝑆-acts with a unique zero element
closed under isomorphism and finite direct sums. Then, the commutative monoid𝑀𝑆(𝒞) is cancellative.

Proof. In the proof of Theorem 2.7 we have shown that 𝑀𝑆(𝒞) is a primely generated refinement monoid. It is easy
to check that 𝑀𝑆(𝒞) is stably finite. Since 𝑀𝑆(𝒞) ≅ 𝑀𝑆(𝒞) and 𝐺[Θ] = {[Θ][Θ]} the result follows by [2, Theorem
5.14].

Corollary 2.10. Let𝑀,𝑃, and 𝑄 be Dedekind-finite 𝑆-acts. If𝑀∐𝑃 ≅ 𝑀∐𝑄, then 𝑃 ≅ 𝑄.

Proof. The proof is straightforward by Theorem 2.9.

We conclude the paper by a result which is related to a special type of multiplicative cancellation.

Proposition 2.11. Let𝑀 and 𝑁 be two 𝑆-acts. If𝑀∐𝑀 ≅ 𝑀∐𝑁 ≅ 𝑁∐𝑁, then𝑀 ≅ 𝑁.



170 Kamal Ahmadi / The 5th National Congress on Mathematics and Statistics

References

[1] K. Ahmadi, A. Madanshekaf, Dedekind-finite acts over monoids, Comm. in Alg., 45(1), (2017), 377-383.
[2] G. Brookfield, Cancellation in primely generated refinement monoids, Algebra Univers., 46 (2001), 343-371.
[3] Jr. E. G. Evans, Krull-Schmidt and cancellation over local rings, Pacific J. Math., 46 (1973), 115-121.
[4] B. Jonsson, On direct decompositions of torsion free abelian groups, Math. Scand. 5 (1957), 230–235.
[5] B. Jonsson, A. Tarski, Direct decompositions of finite algebraic systems, Notre DameMathematical Lectures, No. 5, University of Notre Dame,

1947.
[6] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, Act and Categories, With Applications to Wreath Products and Graphs, Walter de Grupter,

Berlin, 2000.



Gonbad Kavous University

The 5th National Congress on Mathematics and StatisticsThe 5th National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1403

The 5th National Congress on Mathematics and Statistics, AL–207, pp. 171–176

Some differences between Lie and Leibniz algebras

Seyed Jalal Langaria,∗
aDepartment of Mathematics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran

Article Info

Keywords:
Leibniz algebra
Lie algebra
Differences

2020 MSC:
17A32
17A36

Abstract

Lie and Leibniz algebras are closely related but have key differences. In a Lie algebra, the
bracket [𝑥, 𝑦] is anti-symmetric, meaning [𝑥, 𝑦] = −[𝑦, 𝑥]. In a Leibniz algebra, this condition
is relaxed, so the bracket may not be anti-symmetric. Leibniz algebras introduced by J. L. Lo-
day (1993) are non-antisymmetric generalizations of Lie algebras. Investigations of nilpotent
Leibniz algebras , show that many nilpotent properties of Lie algebras can be extended to the
case of nilpotent Leibniz algebras.
Of course there are some theorems and facts in Lie case that they are not true for Leibniz algebras,
also there are some theorems that they are correct in Leibniz algebras but we can not apply them
for Lie case. Thus, every Lie algebra is a Leibniz algebra, but not every Leibniz algebra is a
Lie algebra, if the bracket in a Leibniz algebra happens to be anti-symmetric it reduces to be Lie
algebra.

1. Introduction

Leibniz algebras was first introduced by Loday in [9] and [10] as a non-antisymmetric versions of Lie algebras. The
classification problem of complex nilpotent Leibniz algebras was first studied by Loday. In [10] he gave a com-
plete classification of complex nilpotent Leibniz algebras of dimension 𝑛 ≤ 2. Later Ayupov and Omirov classified
3−dimensional complex nilpotent Leibniz algebras in [7]. Recently, Albeverio, Omirov and Rakhimov have obtained
a classification of 4-dimensional complex nilpotent Leibniz algebras in [6].
One of the techniques to classify nilpotent Lie algebras was introduced by Skjelbred and Sund in [13]. Rakhimov and
Langari used Skjelbred-Sund method in Leibniz algebras [8]. They also applied in [12] and [8] this technique to obtain
the classification of complex nilpotent Leibniz algebras of dimension 𝑛 ≤ 4. Comparing the results of [8] and [11]
with classification in [6] we realized that the Skjelbred-Sund method could be used to check the validity of the main
result of [6]. In this part we give the basic definitions and properties of Leibniz algebras.

Definition 1.1. A Lie algebra 𝐿 is a vector space over a field 𝐹 equipped with a bilinear map, [⋅, ⋅] ∶ 𝐿 ×𝐿 → 𝐿 which
has the following properties :
1. [𝑥, 𝑥] = 0 ∀𝑥 ∈ 𝐿
2. [[𝑥, 𝑦], 𝑧] + [[𝑦, 𝑧], 𝑥] + [[𝑧, 𝑥], 𝑦] = 0 ∀𝑥, 𝑦, 𝑧 ∈ 𝐿.

∗Seyed Jalal Langari
Email address: jalal.langari@cfu.ac.ir (Seyed Jalal Langari)
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Condition (2) is known as the Jacobi identity. As the Lie bracket [⋅, ⋅] is bilinear, we have

0 = [𝑥 + 𝑦, 𝑥 + 𝑦] = [𝑥, 𝑥] + [𝑥, 𝑦] + [𝑦, 𝑥] + [𝑦, 𝑦] = [𝑥, 𝑦] + [𝑦, 𝑥].

Hence condition (1) implies

(1′) [𝑥, 𝑦] = −[𝑦, 𝑥] for all 𝑥, 𝑦 ∈ 𝐿 (𝑎𝑛𝑡𝑖 − 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦).

If the field 𝐹 does not have characteristic 2, then putting 𝑥 = 𝑦 in (1′) shows that (1′) implies condition (1).

Example 1.2. Any vector space 𝑉 has a Lie bracket defined by [𝑥, 𝑦] = 0 for all 𝑥, 𝑦 ∈ 𝑉. This is the abelian Lie
algebra structure on 𝑉. In particular, the field 𝐹 may be regarded as a 1−dimensional abelian Lie algebra.

Definition 1.3. A Leibniz algebra 𝐿 is a vector space over a field 𝐹 equipped with a bilinear map

[⋅, ⋅] ∶ 𝐿 × 𝐿 ⟶ 𝐿

satisfying the Leibniz identity

[𝑥, [𝑦, 𝑧]] = [[𝑥, 𝑦], 𝑧] − [[𝑥, 𝑧], 𝑦], (𝑥, 𝑦, 𝑧 ∈ 𝐿).

The first pure algebraic motivation of J.-L. Loday to introduce this class of algebras was the search for an “obstruction”
to the periodicity in algebraic 𝐾-theory. Besides this purely algebraic motivation, some relationships with classical
geometry have recently been discovered, which could lead to an investigation of the (co)homological theory of Leibniz
algebras in view of concrete applications in non-commutative geometry and its physical interpretations. Obviously, a
Lie algebra is a Leibniz algebra. A Leibniz algebra is a Lie algebra if and only if

[𝑥, 𝑥] = 0, (𝑥 ∈ 𝐿).

Let 𝑛 be the dimension of Leibniz algebra 𝐿. Let {𝑒1, 𝑒2, ..., 𝑒𝑛} be a basis in 𝐿. The structural constants of 𝐿 are the
numbers 𝐶𝑘𝑖𝑗 given by

[𝑒𝑖 , 𝑒𝑗] =
𝑛


𝑘=1

𝐶𝑘𝑖𝑗𝑒𝑘 (𝑖, 𝑗 = 1, ..., 𝑛).

We can identify the Leibniz identity with its structural constants. These constants satisfy:

𝑛
∑
𝑙=1

(𝐶𝑙𝑗𝑘𝐶𝑠𝑖𝑙 − 𝐶𝑙𝑖𝑗𝐶𝑠𝑙𝑘 + 𝐶𝑙𝑖𝑘𝐶𝑠𝑙𝑗) = 0 (𝑖, 𝑗, 𝑘, 𝑠 = 1, ..., 𝑛).

Definition 1.4. Let 𝐿 is a Leibniz algebra. We define

𝐿1 = 𝐿, 𝐿𝑘 = ൣ𝐿𝑘−1, 𝐿൧ (𝑘 > 1).

The series

𝐿1 ⊇ 𝐿2 ⊇ 𝐿3 ⊇ ...

is called the descending central series of 𝐿. If the series terminates for some positive integer 𝑠, then the Leibniz algebra
𝐿 is said to be nilpotent.
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2. Some differences between Lie and Leibniz algebras

Investigations of nilpotent Leibniz algebras in [1], [2],[3] etc., show that many nilpotent properties of Lie algebras can
be extended to the case of nilpotent Leibniz algebras.
Of course there are some theorems and facts in Lie case that they are not true for Leibniz algebras, also there are some
theorems that they are correct in Leibniz algebras but we can not apply them for Lie case. For example, we remark
that the next Theorem gives an explicit method for finding a basis for central extensions of abelian Lie algebras, that
it is not true in Leibniz case [4].

Theorem 2.1. Let 𝜃 ∶ 𝐿 ×𝐿 ⟶ 𝐹 be a skew-symmetric bilinear form. Then there is a basis of 𝐿 with respect to which

𝜃 = Δ12 + Δ34 + ... + Δ(2𝑟−1)(2𝑟).

Here, we give an application of Theorem 2.1.

Example 2.2. Find the 1-dimensional central extensions of dimension5 and 7 of the abelian Lie algebras of dimensions
4 and 6, respectively.
By Theorem 2.1, there is a basis of 4-dimensional abelian Lie algebra with respect to which 𝜃 = Δ12 + Δ34. We get
the Lie algebra

𝐿 ∶ [𝑒1, 𝑒2] = 𝑒5, [𝑒3, 𝑒4] = 𝑒5.
There is a basis of 6−dimensional abelian Lie algebra such that 𝜃 = Δ12+Δ34+Δ56. In this case, we get the following
Lie algebra

𝐿 ∶ [𝑒1, 𝑒2] = 𝑒7, [𝑒3, 𝑒4] = 𝑒7, [𝑒5, 𝑒6] = 𝑒7.
By this Theorem there is not 1−dimensional central extensions of even dimensions of abelian Lie algebras.
As we will see in sections ?? and ?? this Theorem is not true for central extensions of abelian Leibniz algebras.
Let 𝐿 be a Lie algebra, and 𝜃 ∶ 𝐿 × 𝐿 → 𝑉 a bilinear map. If 𝜃(𝑥, 𝑦) = 0 for all 𝑥, 𝑦, then 𝜃 is said to be skew
symmetric.

Definition 2.3. Let 𝐿 be a Lie algebra over an arbitrary field 𝐹. A skew-symmetric bilinear form 𝜃 ∶ 𝐿 × 𝐿 → 𝑉 is
said to be cocycle if it satisfies the Jacobi identity 𝜃([𝑥, 𝑦] , 𝑧) + 𝜃([𝑦, 𝑧] , 𝑥) + 𝜃([𝑧, 𝑥] , 𝑦) = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝐿.
Let 𝑉 be a vector space, a Leibniz 2−cocycle on 𝐿 is a bilinear map 𝜃 ∶ 𝐿 × 𝐿 → 𝑉 satisfying the Leibniz identity:

𝜃(𝑥, [𝑦, 𝑧]) = 𝜃([𝑥, 𝑦], 𝑧) − 𝜃([𝑥, 𝑧], 𝑦),
for all 𝑥, 𝑦, 𝑧 ∈ 𝐿.

3. Central extensions of abelian Leibniz algebra in dimension 2 (𝐿2,1)

The center of 𝐿2,1 is generated by 𝑒1, 𝑒2, and [𝐿2,1, 𝐿2,1] = (0). We need to determine all the 2-cocycles 𝜃 =
∑2
𝑖,𝑗=1 𝐶𝑖𝑗Δ𝑖𝑗, but there is no constraints on 𝐶𝑖,𝑗 . Therefore we can get a basis for 𝐻𝐿2 ൫𝐿2,1, 𝐹൯ , and write “Basis:

Δ11, Δ12, Δ21, Δ22 ”. In this case, we are considering the 1-dimensional central extensions of 𝐿2,1.We need to find a
set of representatives of the orbits of 1−dimensional subspaces of 𝐻𝐿2 ൫𝐿2,1, 𝐹൯ under the action of the automorphism
group Aut(𝐿2,1). Here Aut(𝐿2,1) consists of all matrices

𝜑 = ቈ 𝑎11 𝑎12
𝑎21 𝑎22  ,where 𝑎11𝑎22 − 𝑎12𝑎21 ≠ 0.

With the chosen basis, we may represent an arbitrary element in 𝐻𝐿2 ൫𝐿2,1, 𝐹൯ by the following

𝜃 ∶= [𝑎, 𝑏, 𝑐, 𝑑] = 𝑎Δ11 + 𝑏Δ12 + 𝑐Δ21 + 𝑑Δ22.
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When a generic element 𝜑 in Aut(𝐿2,1) acts on 𝜃, we get

𝜑𝜃 = 𝑎′Δ11 + 𝑏′Δ12 + 𝑐′Δ21 + 𝑑′Δ22,

we simply write 𝑎 ⟶ 𝑎′, 𝑏 ⟶ 𝑏′, 𝑐 ⟶ 𝑐′, 𝑑 ⟶ 𝑑′. Now we have

⎧

⎨
⎩

𝑎 ⟼ 𝑎11(𝑎𝑎11 + 𝑏𝑎21) + 𝑎21(𝑐𝑎11 + 𝑑𝑎21),
𝑏 ⟼ 𝑎11(𝑎𝑎12 + 𝑏𝑎22) + 𝑎21(𝑐𝑎12 + 𝑑𝑎22),
𝑐 ⟼ 𝑎12(𝑎𝑎11 + 𝑏𝑎21) + 𝑎22(𝑐𝑎11 + 𝑑𝑎21),
𝑑 ⟼ 𝑎12(𝑎𝑎12 + 𝑏𝑎22) + 𝑎22(𝑐𝑎12 + 𝑑𝑎22).

Case 1: 𝑎 ≠ 0. By taking 𝑎21 = 0 (and ensuring at the same time that the matrix of 𝜑 is nonsingular). We set
𝑎11 = 1

√𝑎
, then 𝑎 ⟼ 1. Now to fix 𝑎, we require 𝑎11 = 1. we get 𝑎 ⟼ 1, 𝑏 ⟼ 𝑎12 + 𝑏𝑎22, 𝑐 ⟼ 𝑎12 + 𝑐𝑎22,

𝑑 ⟼ 𝑎212 + 𝑏𝑎12𝑎22 + 𝑐𝑎12𝑎22 + 𝑑𝑎222.
By taking 𝑎12 = −𝑐𝑎22, we get 𝑐 ⟼ 0, and to fix 𝑐, we require 𝑎12 = 0. In this case we get
𝑎 ⟼ 1, 𝑏 ⟼ 𝑏𝑎22, 𝑐 ⟼ 0, 𝑑 ⟼ 𝑑𝑎222.
Subcase 1: 𝑏 = 0. Depending 𝑑 = 0 or not, we would have two representatives (1) [1, 0, 0, 0] and (2) [1, 0, 0, 1].
But (1) is split algebra (because the corresponding Leibniz algebra of (1) is given by [𝑒1, 𝑒1] = 𝑒3, and this algebra is
isomorphic to [𝑒1, 𝑒1] = 𝑒2 that already we obtained it).
Subcase 2: 𝑏 ≠ 0. By taking 𝑎22 = 1

√𝑏 , we get 𝑏 ⟼ 0, and to fix 𝑏, we require 𝑎22 = 1. Therefore we get the
representative [1, 1, 0, 𝛼]. The corresponding Leibniz algebra is given by

𝐿3,4 ∶ [𝑒1, 𝑒1] = 𝑒3, [𝑒1, 𝑒2] = 𝑒3, [𝑒2, 𝑒2] = 𝛼𝑒3, 𝛼 ∈ ℂ.

Case 2: If 𝑎 = 0, then we have 𝑎 ⟼ 0, 𝑏 ⟼ 𝑏𝑎11𝑎22, 𝑐 ⟼ 𝑐𝑎11𝑎22, 𝑑 ⟼ 𝑏𝑎12𝑎22 + 𝑐𝑎12𝑎22 + 𝑑𝑎222.
At least one of 𝑏, 𝑐 and 𝑑 is nonzero (because, if 𝑏 = 𝑐 = 𝑑 = 0 then 𝜃 = [0, 0, 0, 0], and there is no representative
in this case). Suppose that 𝑏 ≠ 0. We choose 𝑎11𝑎22 =

1
𝑏 and get 𝑏 ⟼ 1. Now to fix 𝑏, we require 𝑎11 = 𝑎22 = 1,

and get 𝑎 ⟼ 0, 𝑏 ⟼ 1, 𝑐 ⟼ 𝑐, 𝑑 ⟼ 𝑎12(1 + 𝑐) + 𝑑.
If 𝑐 = −1, depending on 𝑑 = 0 or not, we have two representatives [0, 1, −1, 0] and (3) [0, 1, −1, 𝛼]. The correspond-
ing Leibniz algebra with [0, 1, −1, 0] is

𝐿3,3 ∶ [𝑒1, 𝑒2] = 𝑒3, [𝑒2, 𝑒1] = −𝑒3.

Note that 𝐿3,3 is a Lie algebra and all Lie algebras are Leibniz. We also need all Lie algebras in dimension 3, because
Leibniz central extensions of Lie algebras give us Leibniz algebras.
But (3) ≅ 𝐿3,4 (𝛼 = 1

4) by

𝑒1 ⟼ 𝑒′1 +
1
𝛼𝑒

′
2, 𝑒2 ⟼

1
2𝛼𝑒

′
2, 𝑒3 ⟼

1
𝛼𝑒

′
3.

3.1. Lie homology and Leibniz homology
For any Lie algebra 𝐿 over a field 𝐹 its homology 𝐻∗(𝐿) is the homology of a certain complex (∧𝐿, 𝑑) where ∧𝐿 is the
exterior module over 𝐿. The Leibniz homology 𝐻𝐿∗(𝐿), is defined as the homology of a complex (𝑇𝐿, 𝑑), where 𝑇𝐿
is the tensor module over 𝐿. In the below, the cohomology of Lie and Leibniz algebras have been explained to let the
readers recognize the difference between them.
The Chevalley-Eilenberg chain complex of a Lie algebra 𝐿 is the sequence of chain modules given by the exterior
powers ∧∗𝐿 and boundary operators 𝑑 ∶ ∧𝑛𝐿 ⟶ ∧𝑛−1𝐿 classically defined as

𝑑(𝑥1 ∧ 𝑥2... ∧ 𝑥𝑛) ∶=


1≤𝑖≨𝑗≤𝑛

(−1)𝑖+𝑗+1 ൣ𝑥𝑖 , 𝑥𝑗൧ ∧ 𝑥1 ∧ ... ∧
∧𝑥𝑖 ∧ ... ∧

∧𝑥𝑗 ∧ ... ∧ 𝑥𝑛 ,



Seyed Jalal Langari / The 5th National Congress on Mathematics and Statistics 175

where
∧𝑥𝑖 and

∧𝑥𝑗 indicate that the terms 𝑥𝑖 and 𝑥𝑗 are omitted. The property 𝑑𝑜𝑑 = 0, which makes this sequence a
chain complex, is proved by using the antisymmetry 𝑥 ∧ 𝑦 = −𝑦 ∧ 𝑥 of the exterior product, the Jacobi identity

[𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥, 𝑦]] = 0,

and the antisymmetry [𝑥, 𝑦] = − [𝑦, 𝑥] of the Lie bracket given on 𝐿. Because, from the definition of 𝑑 for 𝑛 = 2, we
have 𝑑(𝑥1 ∧ 𝑥2) = [𝑥1, 𝑥2] , and for 𝑛 = 3

𝑑𝑜𝑑 (𝑥1 ∧ 𝑥2 ∧ 𝑥3) = 𝑑 (𝑑 (𝑥1 ∧ 𝑥2 ∧ 𝑥3)) =

𝑑([𝑥1, 𝑥2] ∧ 𝑥3) + 𝑑([𝑥2, 𝑥3] ∧ 𝑥1) + 𝑑([𝑥3, 𝑥1] ∧ 𝑥2) =
[[𝑥1, 𝑥2] , 𝑥3] + [[𝑥2, 𝑥3] , 𝑥1] + [[𝑥3, 𝑥1] , 𝑥2] = 0 (Jacobi identity).

In 1989, Loday remarked that if 𝐿 be a Leibniz algebra and we consider the sequence of chain modules and boundary
operations 𝑑 ∶ 𝐿⊗𝑛 ⟶ 𝐿⊗𝑛−1, with

𝑑(𝑥1 ⊗ ... ⊗ 𝑥𝑛) ∶=


1≤𝑖≨𝑗≤𝑛

(−1)𝑗+1𝑥1 ⊗ ... ⊗ 𝑥𝑖−1 ⊗ ൣ𝑥𝑖 , 𝑥𝑗൧ ⊗ 𝑥𝑖+1 ⊗ .... ⊗ ∧𝑥𝑗 ⊗ ... ⊗ 𝑥𝑛 ,

where again the symbol ∧ means that the variable below is omitted. Then the property 𝑑𝑜𝑑 = 0 is proved without
making use of the antisymmetry properties of both the exterior product and of the Lie bracket on 𝐿 , it suffices that the
bracket satisfies the so called Leibniz identity

[𝑥, [𝑦, 𝑧]] = [[𝑥, 𝑦] , 𝑧] − [[𝑥, 𝑧] , 𝑦]

because, from definition of 𝑑 for 𝑛 = 2 we have, 𝑑(𝑥1 ⊗𝑥2) = − [𝑥1, 𝑥2], and for 𝑛 = 3 ∶

𝑑𝑜𝑑(𝑥1 ⊗𝑥2 ⊗𝑥3) = 𝑑(𝑑(𝑥1 ⊗𝑥2 ⊗𝑥3)) =

−𝑑([𝑥1, 𝑥2] ⊗ 𝑥3) + 𝑑([𝑥1, 𝑥3] ⊗ 𝑥2) + 𝑑(𝑥1, [𝑥2, 𝑥3]) =
[[𝑥1, 𝑥2] , 𝑥3] − [[𝑥1, 𝑥3] , 𝑥2] − [𝑥1, [𝑥2, 𝑥3]] = 0 (Leibniz identity),

which is equivalent to the Jacobi identity any time the bracket is also antisymmetric. Hence this sequence defines a
chain complex whose homology is called Leibniz homology of 𝐿, and denoted by 𝐻𝐿∗(𝐿).
Of course this homology theory can be dualized into a cohomology theory, given by the sequence of cochain modules
and cohomology operators

𝛿 ∶ 𝐻𝑜𝑚(𝐿⊗𝑛 , 𝐹) ⟶ 𝐻𝑜𝑚(𝐿⊗𝑛+1, 𝐹),
with 𝛿(𝑓) = 𝑓𝑜𝑑. This sequence defines a cochain complex whose homology is called Leibniz cohomology of 𝐿, and
denoted by 𝐻𝐿∗(𝐿).
Let 𝐿 be a Leibniz algebra. Given a corepresentation𝑀 of 𝐿, it is possible to extend the Leibniz boundary operator to
sequence 𝑑 ∶ 𝑀⊗ 𝐿⊗𝑛 ⟶𝑀⊗𝐿⊗𝑛−1, with

𝑑(𝑥0 ⊗𝑥1 ⊗ ... ⊗ 𝑥𝑛) ∶=


1≤𝑖≨𝑗≤𝑛

(−1)𝑗+1𝑥0 ⊗ ... ⊗ ൣ𝑥𝑖 , 𝑥𝑗൧ ⊗ .... ⊗ ∧𝑥𝑗 ⊗ ... ⊗ 𝑥𝑛 + [𝑥0, 𝑥1] ⊗ ... ⊗ 𝑥𝑛+1+

𝑛+1


𝑖=1

(−1)𝑖 [𝑥𝑖 , 𝑥0] ⊗ 𝑥1 ⊗ ... ⊗ ∧𝑥𝑖 ⊗ ... ⊗ 𝑥𝑛+1, for 𝑥0 ∈ 𝑀 and 𝑥1, ..., 𝑥𝑛 ∈ 𝐿,

where again the symbol ∧ means that the variable below is omitted.
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For any Leibniz algebra 𝐿 and any 𝐿−module𝑀, the map

𝑑 ∶ 𝑀⊗ 𝐿⊗𝑛 ⟶𝑀⊗𝐿⊗𝑛−1

defined above satisfies 𝑑2 = 0. Therefore the sequence

... ⟶ 𝑀⊗ 𝐿⊗𝑛 𝑑𝑛⟶𝑀⊗𝐿⊗𝑛−1 𝑑𝑛−1⟶ ... ⟶ 𝑀⊗ 𝐿 ⟶ 𝑀

is a well-defined complex (𝑀 ⊗ 𝑇𝐿, 𝑑).
The homology of this new complex is called Leibniz homology of 𝐿 with coefficients in𝑀, and denoted by𝐻𝐿∗(𝐿,𝑀)
. We note that

𝐻𝐿∗(𝐿, 𝐹) = 𝐻𝐿∗(𝐿),
where 𝐹 is the ground field.

Lemma 3.1. For a Leibniz algebra (𝐿, [., .])

𝑑 ∶ 𝐻𝑜𝑚(𝐿, 𝐿) ⟶ 𝐻𝑜𝑚(𝐿⊗2, 𝐿)

is given by:
(𝑑𝑓) (𝑥1, 𝑥2) = [𝑥1, 𝑓(𝑥2)] + [𝑓(𝑥1), 𝑥2] − 𝑓([𝑥1, 𝑥2]).

Lemma 3.2. Let (𝐿, [., .]) be a Leibniz algebra, then

𝑑 ∶ 𝐻𝑜𝑚(𝐿⊗2, 𝐿) ⟶ 𝐻𝑜𝑚(𝐿⊗3, 𝐿),

is given by:

𝑑𝑓(𝑥, 𝑦, 𝑧) = [𝑥, 𝑓(𝑦, 𝑧)] + [𝑓(𝑥, 𝑧), 𝑦] − [𝑓(𝑥, 𝑦), 𝑧] − 𝑓 ([𝑥, 𝑦] , 𝑧) + 𝑓 ([𝑥, 𝑧] , 𝑦)+

𝑓 (𝑥, [𝑦, 𝑧]).

It is well known that Levi−Malcev theorem is valid for Lie algebras and Malcev algebras. This theorem states that
any finite dimensional Lie algebra 𝐿 is (as a vector space) the direct sum of two significant structural parts; namely, a
solvable subalgebra and a semisimple subalgebra, however this theorem still is open problem for Leibniz algebras.
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Abstract

This paper provides a brief overview of the utilization of randomness in cryptography, partially
based on previous research. Initially, it offers insights into the construction and application
of randomness and pseudo-randomness within a cryptographic framework. Subsequently, it
examines the formal definition of pseudo-random sequences, introducing the concepts of dis-
tinguishers and prediction algorithms, and comparing these two notions.

1. Introduction

Randomness is one of the primary tools in cryptography. Numerous cryptographic primitives or protocols incorporate
a random component. This is evident in applications such as stream ciphers, key construction, key exchange in the
Ephemeral Unified Model, and the generation of initial values. Typically, randomness is simulated using a pseudo-
random generator or, in cases where only a small number of isolated values are needed, by a built-in physical generator.
It is essential to differentiate between two typical modes of usage. On one hand, there is the random selection of a
medium-sized number, such as a secret key. On the other hand, there is the random selection of a very large sequence of
bits, as seen in the case of a stream cipher. In the former scenario, a general-purpose primitive, such as a hash function
or a block cipher, can be employed. The latter case presents more challenges. A common application that leads to this
situation is the stream cipher, where speed is of utmost importance. Consequently, it is necessary to develop a system
that operates faster than conventional block ciphers without compromising security, which is challenging because each
bit must be processed as it arrives. Therefore, it is not feasible to iterate a round 𝑅 as is done with block ciphers.
In the first part of this article, a practical study of the concept of randomness in cryptography is presented. The second
part is theoretical, where the notion of a pseudo-random generator is precisely defined. The concepts of distinguishers
and predictions are then defined, and the equivalence between the indistinguishability of a pseudo-random generator
and the unpredictability of the next bit is established from an asymptotic perspective, as stated in Yao’s theorem
[6]. This paper also presents modified versions of Yao’s theorem [1] that may be relevant for the study of practical
cryptographic primitives, particularly focusing on non-asymptotic versions. The analysis includes a single pseudo-
random generator, a family of pseudo-random generators with a fixed length, and finally, the asymptotic case. The
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cost of reduction (in terms of complexity theory) between the two algorithms is computed in each case. Additional
literature on pseudo-random generators, probabilistic algorithms, and proofs can be found in [2–4].

2. Pseudo-Random Number Generator

How to Generate a Seed and Construct a Pseudo-Random Generator
Typically, operating systems provide a physical source of randomness based on the behavior of various components,
such as the keyboard, mouse, clock, and processes. Since this source of randomness does not yield a large number of
bits, it is primarily used to generate an occasional number as a seed.
Let 𝐻 be a hash function (for example, SHA-256). From a seed 𝑠 (at least 128 bits), we can construct the following
pseudo-random sequence 𝑆𝑛 of bits:

𝑠0 = 𝐻(𝑠); 𝑠1 = 𝐻(𝑠‖𝑠0); … ; 𝑠𝑛 = 𝐻(𝑠‖𝑠𝑛−1);
Thus, the pseudo-random sequence 𝑆𝑛 is given by:

𝑆𝑛 = 𝑠1‖𝑠2‖…‖𝑠𝑛 .
It is also possible to use AES (as in counter mode) to create a pseudo-random generator. This type of pseudo-random
generator is often referred to as a key derivation function, as its primary purpose is to generate cryptographic keys. For
practical implementation details, one can refer to the standard ISO 18033-2 [5]. However, as previously mentioned,
for stream ciphers, it is crucial to utilize a specific construction if a faster encryption device than AES is desired, while
being cautious of potential attacks against stream ciphers.
Let 𝐻 denote a cryptographic hash function (e.g., SHA-256). Starting with a seed value 𝑠 (of at least 128 bits), a
pseudo-random bit sequence 𝑆𝑛 can be generated through iterative hashing as follows:

𝑠0 = 𝐻(𝑠); 𝑠1 = 𝐻(𝑠‖𝑠0); … ; 𝑠𝑛 = 𝐻(𝑠‖𝑠𝑛−1);
The resulting sequence 𝑆𝑛 is formed by concatenating the outputs:

𝑆𝑛 = 𝑠1‖𝑠2‖…‖𝑠𝑛 .
Alternatively, AES in counter mode (CTR) can serve as a pseudo-random generator. Such constructions are com-
monly classified as key derivation functions (KDFs), as their primary role is to derive cryptographic keys. Detailed
implementation guidelines can be found in the ISO 18033-2 standard [5].
For stream cipher applications, specialized designs may be necessary if a faster alternative to AES-based encryption
is required. However, these designs must account for known vulnerabilities in stream ciphers, such as biases or state
recovery attacks, necessitating rigorous security analysis.

3. Theoretical Point of View

3.1. Definition of a Pseudo-Random Number Generator
Definition 3.1. Let 𝑘 and 𝑛 be two integers such that 𝑛 > 𝑘. A pseudo-random generator (PRNG) is a function 𝑓
from a subset 𝑈 of {0, 1}𝑘 into {0, 1}𝑛:

𝑓 ∶ 𝑈 → {0, 1}𝑛 .
This function maps a seed 𝑋0 ∈ 𝑈 to a pseudo-random finite sequence 𝑓(𝑋0) = (𝑥1, 𝑥2, … , 𝑥𝑛). We denote this PRNG
as (𝑓, 𝑈, 𝑘, 𝑛).
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A typical case occurs when 𝑢 is a bijection from 𝑈 onto itself, 𝑋𝑖 is a secret internal state recursively built from 𝑋0 by
𝑋𝑖 = 𝑢(𝑋𝑖−1), and the bit 𝑥𝑖 is extracted from 𝑋𝑖 by a function 𝑣:

𝑥𝑖 = 𝑣(𝑋𝑖).
Thus, we have:

𝑓(𝑋0) = (𝑣 ∘ 𝑢(𝑋0), 𝑣 ∘ 𝑢2(𝑋0), … , 𝑣 ∘ 𝑢𝑛(𝑋0)).

3.2. Distinguisher
Roughly speaking, a distinguisher is a probabilistic algorithm capable of distinguishing a true random sequence from a
pseudo-random one. To specify this informal definition, let (𝑓, 𝑈, 𝑘, 𝑛) be a PRNG. Let 𝐴 be a probabilistic algorithm
that takes as input a binary vector 𝑌 = (𝑌1, … , 𝑌𝑛) and outputs a single bit.
True randomness experiment: Let 𝑝𝑓,0 denote the probability of the following event: we randomly draw an element
𝑌 from {0, 1}𝑛 and 𝐴(𝑌) = 1.
Pseudo-randomness experiment: Let 𝑝𝑓,𝑛 denote the probability of the following event: we randomly draw an
element from 𝑈, compute 𝑌 = 𝑓(𝑈), and 𝐴(𝑌) = 1.
We can define the Advantage of a distinguisher as follows:

Advdist(𝑓, 𝐴) = |𝑝𝑓,0 − 𝑝𝑓,𝑛|.
Next, we define a (𝑇, 𝜖)-distinguisher:

Definition 3.2. Let 𝑓 be a pseudo-random generator. Let 𝑇 and 𝜖 be positive real numbers. A (𝑇, 𝜖)-distinguisher for
𝑓 is a probabilistic algorithm 𝐴 such that:

1. The maximum running time of 𝐴 is ≤ 𝑇.
2. The input of 𝐴 is an element of {0, 1}𝑛.
3. The output of 𝐴 is a bit.
4. The algorithm𝐴 can distinguish the pseudo-randomgenerator from the uniform distribution, namelyAdvdist(𝑓, 𝐴) >

𝜖.

3.3. Prediction
Let 𝑓 be a pseudo-random generator whose output is in {0, 1}𝑙. A prediction algorithm is a probabilistic algorithm that
can predict the next bit of a finite sequence.
To specify this informal definition, let 1 ≤ 𝑠 < 𝑙. The following random experiment involves a probabilistic algorithm
𝐵 that takes as input a sequence of 𝑠 bits and outputs a bit.
Experiment B:

Exptpred(𝑓, 𝑠, 𝐵)
𝑋0 ← 𝑈
𝑋 ← 𝑓(𝑋0) (where 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑙))
𝑌 ← (𝑥1, 𝑥2, ..., 𝑥𝑠)
𝑏 ← 𝐵(𝑌)
if 𝑏 = 𝑥𝑠+1
then return 1
else return0

Let 𝑟𝑓,𝑠 be the probability that the experiment Exptpred(𝑓, 𝑠, 𝐵) returns 1.
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Definition 3.3. The advantage of the algorithm 𝐵 in predicting the bit at index 𝑠 + 1 computed by 𝑓 is defined as:

Advpred𝑓,𝑠 (𝐵) = |𝑟𝑓,𝑠 −
1
2|.

Definition 3.4. Let 𝑓 be a pseudo-random generator. Let 𝑇 and 𝜖 be positive real numbers, and let 𝑠 be an integer
such that 1 ≤ 𝑠 < 𝑙. A (𝑇, 𝑠, 𝜖)-prediction algorithm 𝐵 is a probabilistic algorithm such that:

1. The maximum running time of 𝐵 is ≤ 𝑇.
2. The input of 𝐵 is an element of {0, 1}𝑠.
3. The output of 𝐵 is a bit.
4. The algorithm 𝐵 can predict the next bit, namely, Advpred𝑓,𝑠 (𝐵) > 𝜖.

We now define the notion of a (𝑇, 𝑠, 𝜖)-unpredictable pseudo-random generator.
Definition 3.5. Let 𝑓 be a pseudo-random generator and 𝑠 be an integer such that 1 ≤ 𝑠 < 𝑙. The generator 𝑓 is
(𝑇, 𝑠, 𝜖)-unpredictable if there does not exist any (𝑇, 𝑠, 𝜖)-prediction algorithm.

3.4. A Static Version of Yao’s Theorem
The following two theorems summarize the relationships between prediction algorithms and distinguishers in a static
context.
Theorem 3.6. Consider the following pseudo-random generator:

𝑓 ∶ 𝑈 ⊂ {0, 1}𝑘 → {0, 1}𝑙 .
If there exists a (𝑇, 𝑠, 𝜖)-prediction algorithm for 𝑓, then we can construct a (𝑇 + 𝑐, 𝜖)-distinguisher, where 𝑐 is the
constant time required to compare two bits.
Theorem 3.7. Let 𝑓 be a pseudo-random generator:

𝑓 ∶ 𝑈 ⊂ {0, 1}𝑘 → {0, 1}𝑙 .
If there exists a (𝑇, 𝜖)-distinguisher for 𝑓, then there exists an 𝑠 such that 1 ≤ 𝑠 ≤ 𝑙 and a (𝑇+𝑐1𝑙+𝑐2, 𝑠,

𝜖
𝑙 )-prediction

algorithm, where 𝑐1 is the constant time needed to draw one bit at random, and 𝑐2 is the constant time needed to test
the value of a bit and return a bit based on the result of the test.

3.5. Family of Pseudo-Random Generators
In realistic scenarios, it is necessary to draw the function 𝑓 from a family according to a probability distribution. For
instance, consider the family of Blum, Blum, Shub generators. We select two Blum primes 𝑝 and 𝑞, where both 𝑝 and
𝑞 satisfy 𝑝 ≡ 3 mod 4 and 𝑞 ≡ 3 mod 4. From a secret seed 𝑠0, we construct a sequence defined by:

𝑠𝑘 = 𝑠2𝑘−1 mod (𝑝𝑞).
Here, 𝑠𝑘 is an internal state that must remain secret. The bit 𝑥𝑘 of the pseudo-random sequence is the last bit of 𝑠𝑘. If
we fix a size for the product 𝑝𝑞, we can consider the family of pseudo-random generators constructed from all pairs
(𝑝, 𝑞) of distinct primes such that 𝑝𝑞 has the required size. By slightly modifying the definitions according to this new
context, we can derive similar results.
Theorem 3.8. Let ℱ be a family of pseudo-random generators of the same size, where each 𝑓 ∈ ℱ is a function:

𝑓 ∶ 𝑈𝑓 ⊂ {0, 1}𝑘 → {0, 1}𝑙 .
If there exists a (𝑇, 𝑠, 𝜖)-prediction algorithm for ℱ, then we can construct a (𝑇 + 𝑐, 𝜖)-distinguisher for ℱ, where 𝑐
is the constant time needed to compare two bits.
Theorem 3.9. Let ℱ be a family of pseudo-random generators of the same size, where each 𝑓 ∈ ℱ is a function:

𝑓 ∶ 𝑈𝑓 ⊂ {0, 1}𝑘 → {0, 1}𝑙 .
If there exists a (𝑇, 𝜖)-distinguisher algorithm for ℱ, then we can construct a (𝑇+𝑐1𝑙 +𝑐2, 𝑠,

𝜖
𝑙 )-prediction algorithm

for ℱ for some value of 𝑠 (where 1 ≤ 𝑠 < 𝑙), with 𝑐1 being the constant time needed to draw one bit at random, and
𝑐2 being the constant time needed to test the value of a bit and return a bit based on the result of the test.
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3.6. Asymptotic Behavior
As a consequence of the previous results for fixed 𝑘 and 𝑙, we can derive results on the asymptotic theory of pseudo-
random generators, specifically when 𝑘 approaches infinity and 𝑙 = 𝑙(𝑘) > 𝑘 is a polynomial function of 𝑘.
Let 𝑘 be a positive integer (the security parameter) and 𝑙(𝑘) a polynomial function of 𝑘 such that 𝑙(𝑘) > 𝑘. For any
𝑘, we have a set ℱ𝑘 of deterministic functions such that:

1. If 𝑓 ∈ ℱ𝑘, then 𝑓 is a function from a subset 𝑈𝑓 of {0, 1}𝑘 into {0, 1}𝑙(𝑘).
2. There exists a polynomial function 𝑡(𝑘) such that for any 𝑘, any 𝑓 ∈ ℱ𝑘, and any 𝑋 ∈ 𝑈𝑓, the computation time

of 𝑓(𝑋) is upper-bounded by 𝑡(𝑘).
3. For any 𝑘, we provide a probability distribution 𝛿𝑘 on the set ℱ𝑘.

The asymptotic notions of indistinguishability and unpredictability are derived from the previous definitions. We
define a distinguisher 𝐴 to be a probabilistic polynomial algorithm that takes as inputs the security parameter 𝑘, a
function 𝑓 ∈ ℱ𝑘, and a vector 𝑌 ∈ {0, 1}𝑙(𝑘), and outputs a bit. For any integer 𝑘, we denote by 𝐴𝑘 the probabilistic
algorithm obtained from 𝐴 by fixing the first entry to the value 𝑘.

Definition 3.10. The family ℱ = {ℱ𝑘}𝑘>0 of sets of pseudo-random generators is said to be asymptotically secure if
for any polynomial 𝑆(𝑘), any positive integer 𝑢, and any distinguisher 𝐴 with running time ≤ 𝑆(𝑘), the advantage of
the algorithm 𝐴𝑘 is a negligible function of 1

𝑘𝑢 , namely:

lim
𝑘→∞

𝑘𝑢 Advdistℱ𝑘 (𝐴𝑘) = 0.

Let 𝑠 = {𝑠𝑘}𝑘≥1 be an increasing sequence of positive integers such that 1 ≤ 𝑠𝑘 < 𝑙(𝑘). We define an 𝑠-prediction
algorithm to be a probabilistic polynomial algorithm 𝐵 that takes as inputs the security parameter 𝑘, a function 𝑓 ∈ ℱ𝑘,
and a vector 𝑍 ∈ {0, 1}𝑠𝑘 , and outputs a bit. For any integer 𝑘, we denote by 𝐵𝑘 the probabilistic algorithm obtained
from 𝐵 by fixing the first entry to the value 𝑘.

Definition 3.11. The family ℱ = {ℱ𝑘}𝑘>0 of sets of pseudo-random generators is said to be asymptotically unpre-
dictable if for any polynomial 𝑆(𝑘), any sequence 𝑠, and any 𝑠-prediction algorithm 𝐵 with running time ≤ 𝑆(𝑘), the
advantage of the 𝑠𝑘-prediction algorithm 𝐵𝑘 is a negligible function of 1

𝑘𝑢 , namely:

lim
𝑘→∞

𝑘𝑢 Advpredℱ𝑘 ,𝑠𝑘(𝐵𝑘) = 0.

We can now state the asymptotic version of Yao’s theorem:

Theorem 3.12. Let 𝑙(𝑘) be a polynomial function of a single integer variable 𝑘 such that 𝑙(𝑘) > 𝑘. Let ℱ = {ℱ𝑘}𝑘>0
be a family of sets, where each set ℱ𝑘 is a probability set of random generators mapping a subset of {0, 1}𝑘 into
{0, 1}𝑙(𝑘) (more precisely, each 𝑓 ∈ ℱ𝑘 has its own definition of subset 𝑈𝑓 ⊆ {0, 1}𝑘). The family ℱ is asymptotically
secure if and only if it is asymptotically unpredictable.

Proof. See [1].

4. Conclusion

Randomness is a fundamental component in cryptographic protocols and primitives, essential for ensuring security
in various applications such as key generation, key exchange, and stream ciphers. This paper discusses the con-
struction and theoretical underpinnings of pseudo-random generators (PRNGs), emphasizing their role in simulating
randomness. It highlights the necessity of distinguishing between true randomness and pseudo-randomness, introduc-
ing concepts such as distinguishers and prediction algorithms. The paper presents a formal definition of PRNGs and
explores the relationship between distinguishers and prediction algorithms through Yao’s theorem. It provides insights
into the complexity and efficiency of these algorithms, establishing a foundation for understanding their security. The
paper concludes with a discussion on the asymptotic security and unpredictability of PRNGs, establishing that a family
of PRNGs is asymptotically secure if and only if it is asymptotically unpredictable.
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The findings suggest avenues for further research in improving the efficiency and security of randomness generation
in cryptographic systems, particularly in the context of evolving computational capabilities and attack strategies. Ad-
ditionally, the integration of physical randomness sources with pseudo-random generators to create hybrid systems
that enhance the overall quality of randomness in cryptographic applications is explored. Investigating the application
of machine learning techniques to improve the testing and validation of randomness in cryptographic systems is also
proposed, potentially leading to more robust detection of weaknesses.
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Abstract

In this paper, we investigate an interesting class of analytic and bi-univalent functions in the
open unit disk Δ which is defined using the q-derivative operator. We apply the subordination
method to the functional of coefficients problem.
Furthermore, we obtain the bounds of the Toeplitz determinants 𝑇2(1) = 1 − 𝑎22 and 𝑇2(2) =
𝑎22 − 𝑎23 defined for the coefficients of a functions 𝑓 which belongs to the classes ℋ𝑞,𝛼

Σ and
ℋ𝑞

Σ (𝛽).

1. Introduction

The class of all analytic functions was denoted by𝒜. Functions belonging to this class can be displayed in the form
of the following power series

𝑓(𝑧) = 𝑧 +
∞


𝑛=1

𝑎𝑛𝑧𝑛 . (1)

The class of univalent functions in𝒜 which normalized with the conditions 𝑓(0) = 𝑓′(0) − 1 = 0, was represented
by 𝒮.
Since each function which belongs to the class 𝒮 has an inverse, hence, we can easily calculate,

൫𝑓−1(𝑤)൯
′
= 1
𝑓′(𝑧) .

Therefore, we conclude that 𝑓−1 is analytic[6]. So 𝑓−1 can also be displayed in the form of a power series as follows,

𝑓−1(𝑤) = 𝑤 − 𝑎2𝑤2 + (2𝑎22 − 𝑎3)𝑤3 −⋯ (2)
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where

𝑓−1(𝑓(𝑧)) = 𝑧, (𝑧 ∈ Δ)

and

𝑓(𝑓−1(𝑤)) = 𝑤, ቆ𝑤 ∈ Δ, |𝑤| < 𝑟0(𝑓); 𝑟0(𝑓) >
1
4ቇ .

A function is called bi-univalent in open unit disk Δ, if 𝑓 and 𝑓−1 are univalent in open unit disk Δ.
Σ is considered a symbol of the class of bi-univalent functions Δ. For more information on the class Σ, readers can
refer to [7].

Let Ω be the family functions 𝜔(𝑧) in the unit disc Δ satisfying the conditions 𝜔(0) = 0, ห𝜔(𝑧)ห < 1 for 𝑧 ∈ Δ. Note
that 𝑓(𝑧) ≺ 𝑔(𝑧) if there is a function 𝜔(𝑧) ∈ Ω such that 𝑓(𝑧) = 𝑔(𝜔(𝑧)). [2].

In recent years, the subject of quantum calculus has been considered by many researchers. There are many applica-
tions of quantum calculus in various branches of mathematics and physics. q-derivatives and q-integrals by Jackson
[3, 4] were first systematically way introduced and studied, also, he was the first to introduce applications of quantum
calculus.

Let 0 < 𝑞 ≤ 𝑝 ≤ 1. The (p,q)-bracket [𝑛]𝑝,𝑞 is defined by

[𝑛]𝑝,𝑞 = ቐ
𝑝𝑛 − 𝑞𝑛
𝑝 − 𝑞 , 𝑝 ≠ 𝑞
𝑛𝑝𝑛−1 , 𝑝 = 𝑞.

Notice that lim𝑞→𝑝[𝑛]𝑝,𝑞 = [𝑛]𝑝,𝑝.
The (p,q)-derivative operator 𝐷𝑝,𝑞 of a function 𝑓 ∈ 𝒜 is given by

𝐷𝑝,𝑞𝑓(𝑧) = 1 +
∞


𝑛=2

[𝑛]𝑝,𝑞𝑎𝑛𝑧𝑛−1, 𝑝, 𝑞 ∈ (0, 1],

For a function 𝑓 ∈ 𝒜, it can be easily seen that

𝐷𝑝,𝑞𝑓(𝑧) =
𝑓(𝑝𝑧) − 𝑓(𝑞𝑧)

(𝑝 − 𝑞)𝑧 , 𝑧 ∈ Δ, 𝑧 ≠ 0, 𝑝, 𝑞 ∈ (0, 1], 𝑝 ≠ 𝑞,

𝐷𝑝,𝑞𝑓(0) = 1 and 𝐷𝑝,𝑝𝑓(𝑧) = 𝑓′(𝑧).
The (1,q)-derivative operator is known as the q-derivative operator and is denoted by 𝐷𝑞; for a function 𝑓 ∈ 𝒜 and
𝑧 ≠ 0 is defined by

𝐷𝑞𝑓(𝑧) =
𝑓(𝑧) − 𝑓(𝑞𝑧)
𝑧(1 − 𝑞) , 𝑧 ∈ Δ, 𝑧 ≠ 0, 𝑞 ∈ (0, 1). (3)

Using equations (1) and (3), for 𝑛 ∈ ℕ and 𝑧 ∈ Δ we obtained

𝐷𝑞𝑓(𝑧) = 1 +
∞


𝑛=2

[𝑛]𝑞𝑎𝑛𝑧𝑛−1, 𝑞 ∈ (0, 1), (4)

where

[𝑛]𝑞 =
1 − 𝑞𝑛
1 − 𝑞 = 1 +

𝑛−1


𝑘=1

𝑞𝑘; [0]𝑞 = 0. (5)
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It is clear that [1]𝑞 = 1.
Also, the 𝑛−th order q-derivative of 𝑓 ∈ 𝒜 is defined by

𝐷(𝑛)
𝑞 𝑓(𝑧) = (−1)𝑛(1 − 𝑞)−𝑛𝑧−𝑛𝑞

−𝑛(𝑛 − 1)
2

×
∞


𝑘=0

ቈ𝑛𝑘 (−1)
𝑘𝑞

𝑘(𝑘 − 1)
2 𝑓ቀ𝑞𝑛−𝑘𝑧ቁ.

For this results, we refer to [9].
One of the important subclass of analytic functions defined by q-derivative is 𝒮∗𝑞 , the class 𝒮∗𝑞 of q-starlike functions
consists of 𝑓 ∈ 𝒜 that satisfies

𝑓(0) = 𝑓′(0) − 1 = 0
and

ቤ
𝑧𝐷𝑞𝑓(𝑧)
𝑓(𝑧) − 1

1 − 𝑞 ቤ ≤
1

1 − 𝑞 .

S. Bulut introduced the two subclassℋ𝑞,𝛼
Σ andℋ𝑞

Σ (𝛽) of analytic functions in Δ[8].
Letℋ𝑞,𝛼

Σ be the subclass of𝒜 consisting of functions 𝑓(𝑧) which satisfy the following conditions:

𝑓 ∈ Σ 𝑎𝑛𝑑 | arg(𝐷𝑞𝑓(𝑧))| <
𝛼𝜋
2 (𝑧 ∈ Δ) (6)

and

| arg(𝐷𝑞𝑔(𝜔))| <
𝛼𝜋
2 (𝜔 ∈ Δ) (7)

where the function 𝑔 is given by

𝑔(𝜔) = 𝑤 − 𝑎2𝑤2 + (2𝑎22 − 𝑎3)𝑤3 −⋯ (8)

And letℋ𝑞
Σ (𝛽) be the subclass of𝒜 consisting of functions 𝑓(𝑧) which satisfy the following conditions:

𝑓 ∈ Σ 𝑎𝑛𝑑 𝑅𝑒(𝐷𝑞𝑓(𝑧)) > 𝛽 (𝑧 ∈ Δ), (9)

and

𝑅𝑒(𝐷𝑞𝑔(𝜔)) > 𝛽 (𝜔 ∈ Δ), (10)

where the function 𝑔 is defined by 8.

Toeplitz determinants are closely related to Hankel determinants [5]. Toeplitz matrices have constant entries along the
diagonal. Toeplitz matrices have some applications in pure and applied mathematics[11].
Thomas and Halim in [10] introduced the symmetric determinant 𝑇𝑞(𝑛) for analytic functions 𝑓 of the form 1 defined
by,

𝑇𝑞(𝑛) =
ተ

ተ

𝑎𝑛 𝑎𝑛+1 ... 𝑎𝑛+𝑞−1
𝑎𝑛+1 𝑎𝑛 ... 𝑎𝑛+𝑞−2
. . . .
. . . .
. . . .

𝑎𝑛+𝑞−1 𝑎𝑛+𝑞−2 ... 𝑎𝑛

ተ

ተ
𝑞 ∈ ℕ ∖ 1, 𝑛 ∈ ℕ.

The study of exact upper bound of |𝑇𝑞(𝑛)| for different subclasses of analytic functions has attracted some authors.
The Toeplitz determinant 𝑇𝑞(𝑛) for class 𝒮 of univalent functions was studied and improved by Ali et al[1] and [6].
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In the particular cases
𝑞 = 2, 𝑛 = 1, 𝑎1 = 1 and 𝑞 = 2, 𝑛 = 2, the Toeplitz determinant simplifies respectively to

𝑇2(1) = 1 − 𝑎22 , 𝑎𝑛𝑑 𝑇2(2) = 𝑎22 − 𝑎23 .

In this paper,we find sharp upper bounds for the functional |1 − 𝑎22| and |𝑎22 − 𝑎23| for functions belonging to the two
classesℋ𝑞,𝛼

Σ andℋ𝑞
Σ (𝛽), where, 0 < 𝑞 < 1, 0 ≤ 𝛼, 𝛽 < 1.

2. Main Results

Suppose that 𝒫 denote the class of analytic functions 𝑝 of the type

𝑝(𝑧) = 1 +
∞


𝑛=2

𝑐𝑛𝑧𝑛 , (11)

then
|𝑐𝑛| ≤ 2, (𝑛 = 1, 2, … )

where𝒫 be the class of functions with positive real part consisting of analytic functions 𝑝 ∶ Δ → 𝒞 satisfying 𝑝(0) = 1
and 𝑅𝑒(𝑝(𝑧)) > 0[2].
To prove our main results, we need following lemmas and theorems.

Lemma 2.1. If 𝑝 ∈ 𝒫 and of the form (11), then

2𝑐2 = 𝑐21 + (4 − 𝑐21 )𝑥,

for some 𝑥, with |𝑥| ≤ 1.

Theorem 2.2. If 𝑓(𝑧) ∈ ℋ𝑞,𝛼
Σ (0 < 𝑞 < 1, 0 ≤ 𝛼 < 1), then

|𝑇2(1)| = |1 − 𝑎22| ≤ 1 + 4𝛼2
2[3]𝑞𝛼 + (1 − 𝛼)[2]2𝑞

, (12)

and

|𝑇2(2)| = |𝑎22 − 𝑎23| ≤
4𝛼2

2[3]𝑞𝛼 + (1 − 𝛼)[2]2𝑞
(13)

+ ቈ4𝛼
2

[2]2𝑞
+ 2𝛼
[3]𝑞


2

(14)

Theorem 2.3. If 𝑓(𝑧) ∈ ℋ𝑞
Σ (𝛽)(0 < 𝑞 < 1, 0 ≤ 𝛽 < 1), then

|𝑇2(1)| = |1 − 𝑎22| ≤ 1 + minቐ2(1 − 𝛽)
[2]𝑞

, ඨ2(1 − 𝛽)
[3]𝑞

ቑ

2

, (15)

and

|𝑇2(2)| = |𝑎22 − 𝑎23| ≤ minቐ2(1 − 𝛽)
[2]𝑞

, ඨ2(1 − 𝛽)
[3]𝑞

ቑ

2

(16)

+ 4(1 − 𝛽)2
[3]2𝑞

. (17)
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Abstract

In this paper, topological indices such as the Sombor index, reduced Sombor index, and aver-
age Sombor index are calculated for the molecular graphs of several anticancer drugs. Then,
using the adjacency matrix, the Sombor energy, reduced Sombor energy, and average Sombor
energy of these compounds are extracted and analyzed. By optimizing parameters and utilizing
advanced regression models within the framework of Quantitative Structure-Property Relation-
ship (QSPR), high accuracy in predicting molecular properties is achieved, providing deeper
insights into the relationship between structure, topological indices, and the functionality of the
drugs. For modeling the relationship between the topological features and molecular properties,
machine learning techniques, particularly Linear Regression, are applied. The dataset is pre-
processed by removing outliers, selecting relevant features based on correlation with molecular
properties, and standardizing the data. The model is trained using training data, and its per-
formance is evaluated with metrics such as Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and R² Score. This machine learning approach,
implemented in Python, accurately predicts the physical and chemical properties of these drugs,
providing valuable insights into their functionality.

1. Introduction

In the drug discovery process, determining the properties of molecular compounds in laboratories can be highly ex-
pensive due to the requirement for costly equipment and rare, valuable materials. Additionally, these experiments
are time-consuming and require skilled professionals. Therefore, utilizing graphs and topological indices as a math-
ematical and theoretical approach to estimate the physicochemical properties of molecular compounds provides an
efficient solution. These methods can predict various physicochemical properties of molecular structures and serve as
essential tools for analyzing drug properties and structures. In recent years, researchers have increasingly focused on
employing these indices in the analysis of pharmaceutical structures, particularly in fields such as Regular Domination
in Vague Graphs, dendrimers, and drug compounds[1, 11, 14]. In graph theory, graph energy is defined as the sum of
the absolute values of the eigenvalues of a graph’s adjacency matrix, which serves as a useful parameter for evaluating
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molecular properties. In this study, along with the calculation of Sombor indices for cancer drugs, Sombor energy
is also determined using the Sombor energy matrix. These approaches contribute to improving the design of cancer
drugs and enhancing their therapeutic efficiency[3]. Jahanbani et al. (2023) investigated the relationships between the
energy and topological indices of graphs, demonstrating a strong correlation between these properties[11]. In another
study, Ülker et al. (2022) analyzed the energy and Sombor index of graphs, examining their impact on graph theory
[16]. Subsequently, Reja and Nayeem (2024) explored the Sombor index and graph energy for certain chemically
significant graphs, providing various examples and counterexamples [13]. These studies indicate that the Sombor
index and graph energy serve as powerful tools for analyzing the mathematical and chemical properties of complex
networks, with numerous applications across various scientific fields. Numerous studies have utilized topological in-
dices to analyze the structure-property relationships of drugs and various compounds [5–7]. These indices represent
complex relationships between molecular structures and physicochemical properties, making them particularly useful
in developing Quantitative Structure-Property Relationship (QSPR) models for predicting molecular characteristics
[8–10, 15]. The application of these models enables researchers to simulate intricate relationships between molecular
structures and physicochemical properties, facilitating the design of more effective drugs with enhanced therapeutic
potential.

2. Preliminaries

In this article, 𝐺 = (𝑉, 𝐸) is considered a simple and connected graph, where 𝑉(𝐺) is the set of vertices and 𝐸(𝐺) is
the set of edges. The degree of an arbitrary vertex 𝑟 is denoted by 𝑑𝑟.
The Sombor index was introduced by Gutman in late 2020 [12], and since then, many researchers have studied it.

Definition 2.1. The Sombor index for a graph 𝐺 is defined as:

𝑆𝑂(𝐺) = 
𝑟𝑠∈𝐸(𝐺)

ඥ𝑑2𝑟 + 𝑑2𝑠

We also have for the reduced Sombor index and the average Sombor index, respectively:

𝑆𝑂red(𝐺) = 
𝑟𝑠∈𝐸(𝐺)

ඥ(𝑑𝑟 − 1)2 + (𝑑𝑠 − 1)2

𝑆𝑂𝑎𝑣𝑟(𝐺) = 
𝑟𝑠∈𝐸(𝐺)

ට(𝑑𝑟 − �̄�(𝐺))2 + (𝑑𝑠 − �̄�(𝐺))2 ,

where
�̄�(𝐺) = 2|𝐸(𝐺)|

|𝑉(𝐺)|
Definition 2.2. The adjacency matrix or connectivity matrix of a graph is a matrix with rows and columns labeled by
the vertices of the graph and whose values are either 1 or 0. If the vertices of 𝑥 and 𝑦 are adjacent, the value of their
similarity is 1, otherwise it is 0 [1, 12].

Definition 2.3. Let 𝐺 be a graph and 𝐴 = 𝐴(𝐺) be its adjacency matrix. The energy of the graph 𝐺 is given by

𝜀(𝐺) =
𝑛


𝑖=0

|𝜆𝑖|

where 𝜆𝑖’s are the eigenvalues of the adjacency matrix of 𝐺 [4] .

2.1. Evaluation Metrics
To assess the accuracy of predictions, three main metrics are used. These metrics evaluate how accurate and effective
each model is.
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3. Methodology

In this section, the Sombor index, reduced Sombor index, average Sombor index, Sombor energy, reduced Sombor
energy, and average Sombor energy are calculated for the molecular graphs of the drugs Dacarbazine, Imiquimod,
Vismodegib, Cobimetinib, Baicalein, Picato, Naringenin, Daurismo, Dabrafenib, Vemurafenib, and Myricetin based
on the adjacency matrix, and the results are presented in Table 3. As an example, the calculations for the drug Narin-
genin are explained in detail, and the same process is followed for the other drugs. Figure 1 illustrates the chemical
structure of Naringenin. Figure 2 presents the labeled vertices in the molecular graph of Naringenin and its Sombor
matrix SO(N).

Fig. 1. Naringenin chemical structure of the drug

Fig. 2. The labelled vertices on the molecular graph of Naringenin and its Sombor matrix SO(N).
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There are four types of edges in the molecular graph of Naringenin as follows:

𝐸13 = {(𝑑𝑢 , 𝑑𝑣) ∣ 𝑢𝑣 ∈ 𝐸(𝑁), 𝑑𝑢 = 1, 𝑑𝑣 = 3} ,
𝐸22 = {(𝑑𝑢 , 𝑑𝑣) ∣ 𝑢𝑣 ∈ 𝐸(𝑁), 𝑑𝑢 = 2, 𝑑𝑣 = 2} ,
𝐸23 = {(𝑑𝑢 , 𝑑𝑣) ∣ 𝑢𝑣 ∈ 𝐸(𝑁), 𝑑𝑢 = 2, 𝑑𝑣 = 3} ,
𝐸33 = {(𝑑𝑢 , 𝑑𝑣) ∣ 𝑢𝑣 ∈ 𝐸(𝑁), 𝑑𝑢 = 3, 𝑑𝑣 = 3} .

The types of edges in the molecular graph of Naringenin are shown in Table 1.

Edge type 𝐸13 𝐸22 𝐸23
Number of edges 4 2 12
�̄�(𝐺) 2

5
1
5

6
5

Table 1. Edge types and values of �̄�(𝐺) for Naringenin.

According to the structure of the molecular graph of Naringenin, we obtain the Sombor matrix of graph SO(N) which
is shown in Figure 2.
Theorem 3.1: Let N be the molecular graph of Naringenin. Then Sombor indices of N are computed as,

𝑖. 𝑆𝑂(𝑁) = 
𝑢𝑣∈𝐸(𝑁)

ඥ𝑑2𝑣 + 𝑑2𝑢 = 4√1 + 9 + 2√4 + 4 + 12√4 + 9 + 4√9 + 9 = 78.96

𝑖𝑖. 𝑆𝑂𝑟𝑒𝑑(𝑁) = 
𝑢𝑣∈𝐸(𝑁)

ට(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 = 4√4 + 2√2 + 12√5 + 4√8 = 48.86

𝑖𝑖𝑖. 𝑆𝑂𝑎𝑣𝑟(𝑁) = 
𝑢𝑣∈𝐸(𝑁)

ට(𝑑𝑢 − �̄�)2 + (𝑑𝑣 − �̄�)2 = 4√1.44 + 2√0.28 + 12√0.82 + 4√1.13 = 20.68

Theorem 3.2: Let N be the molecular graph of Naringenin. Then Sombor energy of N is computed as,

E (SO (N)) =
20


i=1

|𝜆i| ∼ 88.144

Proof:
In order to calculate the Sombor energy of the molecular graph of Naringenin SO(N), we obtain the characteristic
polynomial of the matrix SO(N). Characteristic polynomial of Sombor matrix of the molecular graph of Naringenin is
as

𝑃(𝑁, 𝑋) = 𝑥4 ൭𝑥2 − ቆ14150 ቇ
2
൱ ൫𝑥2 − (9.302)2൯ ൫𝑥2 − (4.850)2൯ ൫𝑥2 − (5.897)2൯

× ൫𝑥2 − (2.829)2൯ ൫𝑥2 − (4.049)2൯ ൫𝑥2 − (5.897)2൯ ൫𝑥2 − (7.860)2൯
The roots of polynomial P (N, X) are the eigenvalues of the molecular graph SO(N) which are shown in Table 2.

Eigenvalues of the molecular graph SO(N)
141/5 7.860 5.897 4.049 4.850
-141/5 -7.860 -5.897 -4.049 -4.850

Table 2. Eigenvalues of the Sombor graph of Naringenin.

We get the edge energy as follows

𝐸(𝑆𝑂(𝑁)) =
20


𝑖=1

|𝜆𝑖| ≈ 88.144
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4. Comparison of actual and predicted values of the model

In Table 3, the Sombor indices and the energy of each index for cancer drugs have been calculated using Python code
in the IDLE Shell 3.12.7 environment, with links provided. The data related to physicochemical properties (Boiling
point (BP), Enthalpy (EN), Flash Point (FP), Molar Refractivity (MR), Polar Surface Area (PSA), Polarizability (PO),
Surface Tension (ST)) [2] and the prediction results obtained using Python code in the linear regression model, a ma-
chine learning approach, within the IDLE Shell 3.12.7 environment are presented in Table 4. Evaluation metrics for
comparing the model are shown in Table 5. Additionally, Figure 3 provides a graphical representation of the regres-
sion method based on four evaluation criteria, while Figure 4 illustrates the analysis of the performance of actual and
predicted property values using regression. The algorithm is also visible.

Machine Learning Model Algorithm with Linear Regression

1. Data Preparation:
• Load data from Excel and convert numeric values.
• Remove outliers using the IQR method for BP.
2. Feature Selection:
• Select features that have a correlation greater than 0.3 with BP.
3. Data Preprocessing:
• Apply the Box-Cox transformation on y if needed.
• Split the dataset into training and testing sets (80/20).
• Standardize the features (X).
4. Modeling and Training:
• Train the Linear Regression model on the training data.
5. Prediction and Evaluation:
• Predict y_test using the trained model.
• Evaluate the model using MAE, MSE, RMSE, and R² metrics.
6. Results:
• Save and display the model evaluation results.

Drugs SO) G) SOR(G) SOAV(G) ESO(G) ESOR(G) ESOAV(G)
Dacarbazine 126.7421 118.3849 2.934199 33.2518 0.368967 59.19246
Imiquimod 360.5874 347.0184 2.368258 45.89154 0.150337 173.5092
Vismodegib 550.5969 514.9066 4.377426 85.86864 0.32912 257.4533
Cobimetinib 693.8927 660.8518 3.39665 79.15253 0.191875 330.4259
Baicalein 78.16 48.4 20.22 89.856 55.22 30.348
Picato 901.9648 838.6402 2.9193 87.5087 0.141683 419.3201

Naringenin 78.96 48.86 20.68 88.144 39.478 20.68
Daurismo 623.1533 603.4705 3.034629 67.66663 0.163337 301.7353
Dabrafenib 843.2172 785.0541 3.762052 101.3705 0.210452 392.5271
Vemurafenib 762.9345 726.3321 3.685783 86.8169 0.207326 363.1661
Myricetin 92.04 58.86 28.07 101.002 56.422 32.71

Table 3. Prediction of physicochemical properties using linear regression model
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Drugs Actual BP Pred. BP Actual EN Pred. EN Actual FP Pred. FP Actual MR Pred. MR Actual PO Pred. PO Actual PSA Pred. PSA Actual ST Pred. ST

Dacarbazine 456.3 455.2 71.6 69.9 191.4 226.4 46.2 46.2 18.3 18.3 57 59.6 48.8 50.3

Imiquimod 456.7 457.7 71.7 75.3 224.7 180.2 69.9 69.8 27.7 27.7 65 102.6 54.7 52.2

Vismodegib 561.6 567.6 84.4 86.1 225.3 201.4 70.3 70.4 27.9 27.8 85 102.5 59 60.8

Cobimetinib 565.9 595.0 89.4 94.2 229.7 213.0 71 71.0 28.2 28.1 87 82.0 60.7 58.8

Baicalein 575.9 569.3 89.5 89.3 230 259.7 75.2 75.2 29.8 29.7 87 80.5 61 63.6

Picato 576.9 578.5 89.7 91.7 285.9 304.8 105.5 105.5 41.8 41.7 97 124.4 61.2 59.2

Naringenin 577 565.1 93.6 100.2 293.4 276.2 106.9 106.7 42.4 42.4 100 90.5 61.7 54.2

Daurismo 633.4 636.5 96.3 100.7 296.1 323.5 115.2 115.1 45.6 45.6 100 108.2 72.9 99.4

Dabrafenib 653.7 652.4 99.2 91.8 336.9 382.0 115.3 115.1 45.7 45.7 104 115.4 73.2 57.9

Vemurafenib 711.4 709.2 104 103.4 349.2 322.2 121.6 121.5 48.2 48.2 147 118.2 79.6 79.9

Myricetin 747.6 749.7 114.4 114.3 384 384.9 127.4 127.4 50.5 50.4 148 151.1 133 132.6

Table 4. The sombor indices and Sombor energy indices measurements for the drugs

physicochemical MAE MSE RMSE R²

BP 6.004234 99.41913 9.970914 0.986828

EN 3.023736 15.06636 3.88154 0.897498

FP 26.03287 828.2199 28.77881 0.761161

MR 0.053521 0.004564 0.067556 0.999993

PO 0.022983 0.000842 0.02902 0.999992

PSA 14.34632 334.5838 18.29163 0.547131

ST 5.65082 92.6196 9.623908 0.803944

Table 5. Evaluation of the linear regression model using MAE, MSE, RMSE, and R² to predict drug properties.
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Fig. 3. Comparison of the linear regression model approach for predicting the physicochemical properties of cancer drugs using R², MSE, MAE,
and RMSE.
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Fig. 4. Analysis of the performance of actual and predicted property values using regression

5. Conclusion

This study demonstrates the strong predictive power of Sombor indices and Sombor energy in estimating the physic-
ochemical properties of drugs. Linear regression, which is considered an efficient and interpretable machine learning
method for simple models, has been used. The boiling point (BP) with MAE = 6.00 and RMSE = 9.97 shows accept-
able accuracy, and the value of R² = 0.9868 indicates a very precise prediction. Electronegativity (EN) also performs
well with MAE = 3.02 and RMSE = 3.88, though its accuracy is slightly lower than BP (R² = 0.8975). In contrast, the
flash point (FP) with MAE = 26.03 and RMSE = 28.77 exhibits high error, and R² = 0.7611 indicates that the model
performs poorly in predicting this feature. The refractive index (MR) and oil solubility (PO) both demonstrate very
accurate performance, as their R² = 0.9999 values indicate high accuracy and negligible model error (MAE = 0.053,
RMSE = 0.067 for MR, and MAE = 0.022, RMSE = 0.029 for PO). On the other hand, the molecular polar surface
area (PSA) with MAE = 14.34 and RMSE = 18.29 shows moderate error, and R² = 0.5471 indicates that the model
performs poorly in predicting this feature. Surface tension (ST) with MAE = 5.65 and RMSE = 9.62 has moderate
accuracy, with R² = 0.8039 showing lower accuracy than MR and PO. Linear regression, an efficient and interpretable
machine learning method for simple models, has been utilized. This study confirms the effectiveness of the regression
model in QSPR analysis for pharmaceutical applications and provides valuable insights for the future development of
more effective drugs. Using the code for the predicted BP, the other properties are also predicted in the same way.
https://drive.google.com/file/d/15nY8CTuj11IPtEOZZJNYq5YHWSADaOrn/view?usp=sharing
• In the link below, the Sombor adjacency matrix and Sombor energy are calculated, and the other parameters are
calculated in the same way.
https://drive.google.com/file/d/18tqhzoO0HgrTlzjZQr1-KobSXoehHDAr/view?usp=sharing
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Abstract

For an arranged subset𝑅 = {𝑟1, ..., 𝑟𝑘} of vertices in a connected graph Γ themetric representation
of a vertex 𝑣 in Γ, is the 𝑘-vector 𝑟(𝑣|𝑅) = (𝑑(𝑣, 𝑟1), ..., 𝑑(𝑣, 𝑟𝑘)) relative to 𝑅. Also, the subset
𝑅 is considered as resolving set for Γ if any pair of vertices of Γ is distinguished by some vertices
of 𝑅. If the set 𝑅 is as small as possible, then it is called a metric basis of graph Γ. We recall
that the metric dimension of Γ, denoted by 𝑑𝑖𝑚(Γ) is defined as the minimum cardinality of
a resolving set for Γ. In this paper, we consider the Cayley graph 𝐶𝑎𝑦(𝔻2𝑛, Ω𝑘 ∪ 𝑆𝑚), where
𝔻2𝑛 =< 𝑎, 𝑏 | 𝑎𝑛 = 𝑏2 = 1, 𝑏𝑎 = 𝑎𝑛−1𝑏 > is the dihedral group of order 2𝑛 (𝑛 ≥ 4), and
Ω1 = {𝑏, 𝑎𝑛−1𝑏}, Ω2 = Ω1∪{𝑎𝑏, 𝑎𝑛−2𝑏}, ..., Ω𝑘 = Ω𝑘−1∪{𝑎𝑘−1𝑏, 𝑎𝑛−𝑘𝑏} and 𝑆1 = {𝑎, 𝑎𝑛−1},
𝑆2 = 𝑆1 ∪ {𝑎2, 𝑎𝑛−2}, ..., 𝑆𝑚 = 𝑆𝑚−1 ∪ {𝑎𝑚, 𝑎𝑛−𝑚} are inverse closed subsets of 𝔻2𝑛 − {1} for
any 𝑘,𝑚 ∈ ℕ, 1 ≤ 𝑘,𝑚 ≤ [𝑛2 ], and we show that if 𝑛 is an even integer and (𝑘 = 𝑛

2 ,𝑚 = 𝑛
2 −1

), then the minimal resolving set of the Cayley graph 𝐶𝑎𝑦(𝔻2𝑛, Ω𝑘 ∪ 𝑆𝑚) is 𝑛. Moreover, we
show that if 𝑛 is an odd integer and (𝑘 = 𝑚 = [𝑛2 ]), then the metric dimension of the Cayley
graph 𝐶𝑎𝑦(𝔻2𝑛, Ω𝑘 ∪ 𝑆𝑚) is 𝑛.

1. Introduction

In this paper we consider finite, simple, and connected graphs. The distance 𝑑Γ(𝑥, 𝑦) between two vertices 𝑥 and 𝑦
in a connected graph Γ is the length of the shortest path from 𝑥 to 𝑦. A vertex 𝑥 ∈ 𝑉(Γ) is said to resolve a pair
𝑢, 𝑣 ∈ 𝑉(Γ) if 𝑑Γ(𝑢, 𝑥) ≠ 𝑑Γ(𝑣, 𝑥). For an arranged subset 𝑅 = {𝑟1, ..., 𝑟𝑘} of vertices in a connected graph Γ the
metric representation of a vertex 𝑣 in Γ, is the 𝑘-vector 𝑟(𝑣|𝑅) = (𝑑(𝑣, 𝑟1), ..., 𝑑(𝑣, 𝑟𝑘)) relative to 𝑅. Also, the subset
𝑅 is considered as resolving set for Γ if any pair of vertices of Γ is distinguished by some vertices of 𝑅. A resolving
set with least number of vertices is referred as metric basis for Γ and the cardinality of such resolving set is know as
metric dimension denoted by 𝑑𝑖𝑚(Γ). The metric dimension of a graph Γ is the least number of vertices in a set with
the property that the list of distances from any vertex to those in the set uniquely identifies that vertex. The concept
of resolving set and that of metric dimension date back to the 1950s. They were defined by Bluementhal [4] in the
context of metric space. Also, the concept of the metric dimension in algebraic graph theory date back to the 1970s. It
was defined independently by Harary andMelter [6] and by Slater [10], and it is known that the problem of computing
this invariant is NP-hard. In recent years, a considerable literature has developed [1]. These concepts have different
applications in the areas of network discovery and verification [2], combinatorical optimization [9], chemistry [5],
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and robot navigation [7].

If 𝐺 is a finite group and a subset Ω of 𝐺 is closed under taking inverses and does not contain the identity, then the
Cayley graph 𝐶𝑎𝑦(𝐺, Ω) is the graph with vertex set 𝐺 and the edge set 𝐸(𝐶𝑎𝑦(𝐺, Ω)) = {{𝑥, 𝑦} | 𝑥−1𝑦 ∈ Ω}. For
any vertex 𝑣 of a connected graph Γ, we define the 𝑟-distance graph as

Γ𝑟(𝑣) = {𝑢 ∈ 𝑉(Γ) | 𝜕(𝑢, 𝑣) = 𝑟},

where 𝑟 is a non-negative integer not exceeding 𝑑, the diameter of Γ. It is clear that Γ0(𝑣) = {𝑣}, and 𝑉(Γ) is par-
titioned into the disjoint subsets Γ0(𝑣), ..., Γ𝑑(𝑣), for each 𝑣 in 𝑉(Γ). The graph Γ with automorphism group 𝐴𝑢𝑡(Γ),
is called vertex transitive if for any 𝑥, 𝑦 ∈ 𝑉(Γ), there is some 𝜋 in 𝐴𝑢𝑡(Γ), the automorphism group of Γ, such that
𝜋(𝑥) = 𝑦, [3].

Let𝔻2𝑛 =< 𝑎, 𝑏 | 𝑎𝑛 = 𝑏2 = 1, 𝑏𝑎 = 𝑎𝑛−1𝑏 > be the dihedral group of order 2𝑛 (𝑛 ≥ 4). The metric dimension, of
the Cayley graph 𝐶𝑎𝑦(𝔻2𝑛 , Ψ), where𝔻2𝑛 is the dihedral group of order 2𝑛, andΨ = {𝑎𝑏, 𝑎2𝑏, ..., 𝑎𝑛−1𝑏, 𝑏} ∪ {𝑎

𝑛
2 }

is an inverse closed subset of𝔻2𝑛−{1}, is computed, see [8]. Now, let Ω1 = {𝑏, 𝑎𝑛−1𝑏}, Ω2 = Ω1∪{𝑎𝑏, 𝑎𝑛−2𝑏}, ...,
Ω𝑘 = Ω𝑘−1 ∪ {𝑎𝑘−1𝑏, 𝑎𝑛−𝑘𝑏} and 𝑆1 = {𝑎, 𝑎𝑛−1}, 𝑆2 = 𝑆1 ∪ {𝑎2, 𝑎𝑛−2}, ..., 𝑆𝑚 = 𝑆𝑚−1 ∪ {𝑎𝑚 , 𝑎𝑛−𝑚} are inverse
closed subsets of𝔻2𝑛 − {1} for any 𝑘,𝑚 ∈ ℕ, 1 ≤ 𝑘,𝑚 ≤ [𝑛2 ]. In this paper, we show that if 𝑛 is an even integer and
(𝑘 = 𝑛

2 ,𝑚 = 𝑛
2 −1 ), then the minimal resolving set of the Cayley graph 𝐶𝑎𝑦(𝔻2𝑛 , Ω𝑘∪𝑆𝑚) is 𝑛. Moreover, we show

that if 𝑛 is an odd integer and (𝑘 = 𝑚 = [𝑛2 ]), then the metric dimension of the Cayley graph 𝐶𝑎𝑦(𝔻2𝑛 , Ω𝑘 ∪ 𝑆𝑚) is
𝑛.

2. Main results

Proposition 2.1. Let Π = 𝐶𝑎𝑦(𝔻2𝑛 , Ω𝑘 ∪𝑆𝑚) be the Cayley graph on the dihedral group𝔻2𝑛(𝑛 ≥ 4), where Ω𝑘 and
𝑆𝑚 which are defined as before. If 𝑛 is an even integer and (𝑘 = 𝑛

2 ,𝑚 = 𝑛
2 −1 ), then the metric dimension of Π is 𝑛.

Proof. Let 𝑉(Π) = {𝑏, 𝑎𝑏, ..., 𝑎𝑛−1𝑏, 𝑎, 𝑎2, ..., 𝑎𝑛} be the vertex set of Π. We know that, if 𝑛 is an even integer and
𝑘 = 𝑛

2 , 𝑚 = 𝑛
2 − 1, then Ω𝑘 = {𝑏, 𝑎𝑏, 𝑎2𝑏, ..., 𝑎𝑛−1𝑏}, and 𝑆𝑚 = {𝑎, 𝑎2, ..., 𝑎𝑛} − {𝑎

𝑛
2 , 𝑎𝑛}. Also, it is well known

that every Cayley graph is a vertex transitive graph. Now, if we consider the vertex 𝑎𝑛 in 𝑉(Π), then Γ0(𝑣) = {𝑎𝑛},
Γ1(𝑣) = 𝔻2𝑛 − {𝑎𝑛 , 𝑎

𝑛
2 } and Γ2(𝑣) = {𝑎

𝑛
2 }. Hence, for any subset 𝑅1 of 𝑉(Π) so that 𝑎𝑛 , 𝑎

𝑛
2 ∉ 𝑅1 the metric

representation of the vertices 𝑎𝑛 and 𝑎
𝑛
2 is identical relative to 𝑅1, and hence, such a set cannot be a resolving set of

Π. Especially, the set Γ1(𝑣) = 𝔻2𝑛 − {𝑎𝑛 , 𝑎
𝑛
2 }, cannot be a resolving set of Π. Also, we can verify that, any clique in

the graph Π of the size 𝑛 − 1 cannot be a resolving set of Π. Now, let 𝑅2 be an ordered subset of vertices in the graph
Π such that 𝑅2 is a clique in graph Π of the size 𝑛 − 1 and let 𝑎𝑛 ∉ 𝑅2, hence, if we consider 𝑅3 = 𝑅2 ∪ {𝑎𝑛} then by
the following cases we have:

Case 1. If there is an element of 𝑅2 so that is not adjacent to 𝑎𝑛, then the set 𝑅3 = 𝑅2 ∪ {𝑎𝑛} cannot be a resolving
set of Π.

Case 2. If every element of an ordered subset𝑅2 of vertices in the graphΠ is adjacent to 𝑎𝑛, then the set𝑅3 = 𝑅2∪{𝑎𝑛}
is a resolving set of Π, because, in this case the metric representations of all the vertices 𝑉(Π) − 𝑅3 are not identical
relative to 𝑅3, and hence 𝑅3 = 𝑅2 ∪ {𝑎𝑛} is a resolving set of Π.
Therefore by above Cases any clique in the graph Π of the size 𝑛 is a minimal resolving set of Π.

Theorem 2.2. Let Π = 𝐶𝑎𝑦(𝔻2𝑛 , Ω𝑘 ∪ 𝑆𝑚) be the Cayley graph on the dihedral group 𝔻2𝑛(𝑛 ≥ 4), where Ω𝑘 and
𝑆𝑚 which are defined as before. If 𝑛 is an even integer and (𝑘 = 𝑛

2 ,𝑚 = 𝑛
2 −1 ), then the cardinality of every minimal

resolving set of Π is 𝑛.

Proposition 2.3. Let Π = 𝐶𝑎𝑦(𝔻2𝑛 , Ω𝑘 ∪ 𝑆𝑚) be the Cayley graph on the dihedral group 𝔻2𝑛(𝑛 ≥ 4), where Ω𝑘
and 𝑆𝑚 which are defined as before. If 𝑛 is an odd integer and (𝑘 = 𝑚 = [𝑛2 ]), then the metric dimension of Π is 𝑛.
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Proof. Let 𝑉(Π) = {𝑏, 𝑎𝑏, ..., 𝑎𝑛−1𝑏, 𝑎, 𝑎2, ..., 𝑎𝑛} be the vertex set of Π. We know that, if 𝑛 is an odd integer and
𝑘 = 𝑚 = [𝑛2 ] then Ω𝑘 = {𝑏, 𝑎𝑏, 𝑎2𝑏, ..., 𝑎𝑛−1𝑏} − {𝑎𝑘𝑏}, and 𝑆𝑚 = {𝑎, 𝑎2, ..., 𝑎𝑛−1}. Now, if we consider the vertex
𝑎𝑛 in 𝑉(Π), then Γ0(𝑣) = {𝑎𝑛}, Γ1(𝑣) = 𝔻2𝑛 − {𝑎𝑛 , 𝑎𝑘𝑏} and Γ2(𝑣) = {𝑎𝑘𝑏}. Hence, by similar way is done in the
Proposition 2.1, we can show that the metric dimension of Π is 𝑛.

Theorem 2.4. Let Π = 𝐶𝑎𝑦(𝔻2𝑛 , Ω𝑘 ∪ 𝑆𝑚) be the Cayley graph on the dihedral group 𝔻2𝑛(𝑛 ≥ 4), where Ω𝑘 and
𝑆𝑚 which are defined as before. If 𝑛 is an odd integer and (𝑘 = 𝑚 = [𝑛2 ]), then the cardinality of every minimal
resolving set of Π is 𝑛.
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Abstract

We introduce a new class of singular complex manifolds and we develop a degenerate Weak
-Hodge theory for this class of singular manifolds.

1. Introduction

Recently we have proved that the solutions to degenerate complex Monge-Ampère equations (DCMA) have a regular
behavior along the locus of degeneration which is supposed to be a smooth divisor in a Kähler manifold [1]. More
precisely given a Kähler manifold (𝑋, 𝜔) of dimension 𝑛 and a smooth divisor [𝐷] in 𝑋 then the solution to the
following degenerate complex Monge Ampère equation

(𝜔 + 𝜕�̄�𝜙)𝑛 = 𝑒𝐹|𝑆|2𝜔𝑛

is smooth 𝐶∞ on𝐷 if the function 𝐹 belongs to 𝐶∞(𝑋). Here 𝑆 ∈ 𝐻0(𝑋, [𝐷]) is a holomorphic section of [𝐷] vanishing
along 𝐷.
If 𝐷 is assumed to be a canonical divisor in 𝑋, then one can apply the solutions to the above Monge-Ampère equation
to equip 𝑋 ∖ 𝐷, with a hyperkähler structure with very special degeneration along 𝐷. The twistor sphere 𝕊 on 𝑋 ∖ 𝐷
has itself a smooth extension to a the whole space 𝑋.
We develop a Hodge Kodaira theory for the degenerate complex manifold obtained by a degenerate complex structure
𝐽′ in 𝕊, which is orthogonal to the initial complex structure 𝐽 on 𝑋. This type of structures are called involutive
structures following Treves [3], where 𝐷 constitute the corresponding characteristic set.
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1.1. Definition of Degenerate Complex Manifolds
We consider the following definition of singular complex manifolds

Definition 1.1. Let 𝑋 be a smooth real manifold of dimension 2n and let 𝐷 ⊂ 𝑋 be a real smooth submanifold of
real dimension k. Assume that 𝑋 ∖ 𝐷 is endowed with a Kähler structure (𝑤′, 𝑔′, 𝐽′) with the following assymptotic
behavior near 𝐷:
1) The Kähler metric itself and its Ricci curvature tensor both are bounded with respect to the sup norm |.|𝑠𝑢𝑝 induced
by the degenerate metric 𝑔′ in 𝑋 ∖ 𝐷

2) Around each point 𝑝 ∈ 𝐷 there exists an open set𝑈 and a local coordinates system {(𝑥1, ...𝑥2𝑛)|𝑥𝑖 ∈ ℝ, 1 ≤ 𝑖 ≤ 2𝑛}
defined on 𝑈 such that 𝐷 ∩ 𝑈 = 𝜋−1(0) and 𝑑𝑒𝑡(𝑔′) = |𝑟|𝑠 + 𝑜(𝑟𝑠). Where 𝜋 ∶ ℝ2𝑛 → ℝ2𝑛−𝑘 denotes projection

on the last 2𝑛 − 𝑘 coordinates, 𝑟 = ට∑2𝑛
𝑖=2𝑛−𝑘+1 𝑥2𝑖 , and 𝑔′ is the singular Kähler metric.

3) If 𝒮 denotes the sphere bundle of the normal bundle𝑁 of 𝐷 in 𝑋 then there exists an 𝜖 > 0 and a smooth application
𝑇 ∶ 𝒮×[0, 𝜖) → 𝑈𝜖 onto an open neighborhood𝑈𝜖 of𝐷 in 𝑋 such that 𝑇|𝒮×,(0,𝜖) defines a diffeomorphism onto𝑈𝜖 ∖𝐷,
𝑇|𝐷×{0} ∶ 𝒮 × {0} → 𝐷 sends (𝑥, 0) to 𝑝(𝑥) where 𝑝 ∶ 𝑁 → 𝐷 is the bundle projection. And such that 𝑇∗(

𝜕
𝜕𝑟 ) ⟂ 𝐷𝑟

where for 0 < 𝑟 < 𝜖, 𝐷𝑟 = 𝑇(𝒮 × {𝑟}) and 𝜕
𝜕𝑟 is the vector field on 𝑆 × (0, 𝜖) tangent to the direction of the interval

(0, 𝜖) at each point.
We also assume that if a neighborhood of a point 𝑝 ∈ 𝐷 is endowed with a coordinates system such that 𝑟 is one of its
coordinates then ‖𝑑𝑟‖𝑔′ = 𝑟𝑡 + 𝑜(𝑟𝑡) for some 𝑡 > 0.

4) The parameters 𝑠 and 𝑡, defined respectively in parts 2 and 4, satisfy
𝑠 > 2𝑡 − 2𝑛 + 𝑘 + 1.

1.2. Main Examples
Let 𝐷 be a smooth canonical divisor in the complex surface 𝑋 and if Ω denotes a holomorphic (2, 0)-form vanishing
along 𝐷, then by solving the degenerate Monge-Ampère equation

𝜔′ ∧ 𝜔′ = 𝜆Ω ∧ Ω̄ (1)

for appropriate constant 𝜆, we obtain a Ricci-flat metric 𝑔′ on 𝑋 ∖ 𝐷 degenerating transvarsally along 𝐷.
Let

Ω = 𝛼 + 𝑖𝛽
be the decomposition of Ω into real and imaginary parts. Consider the map

𝑝 ∶ 𝑆2 → Ω2(𝑋),
(𝑎, 𝑏, 𝑐) → 𝑎𝜔′ + 𝑏𝛼 + 𝑐𝛽,

where 𝑆2 = {(𝑥, 𝑦, 𝑧)|𝑥2 + 𝑦2 + 𝑧2 = 1} ⊂ ℝ3 is the unit sphere. Then, for any positively oriented orthonormal
frame (𝑣1, 𝑣2, 𝑣3) of unit vectors 𝑣1, 𝑣2, 𝑣3 ∈ 𝑆2 the subbundle

𝒱 ∶= 𝐾𝑒𝑟 (𝑝 (𝑣1) + 𝑖𝑝 (𝑣2)) ⊂ 𝑇ℂ𝑋, (2)
defines an involutive structure on 𝑋 ([3]). This means that the complex subbundle of 𝑇ℂ𝑋 defined by𝒱 satisfies Frobe-
nious integrabiluty condition [𝒱, 𝒱] ⊂ 𝒱. Moreover we have 𝒱 ∩ �̄� = {0} and 𝒱⊕ �̄� = 𝑇ℂ on 𝑋 ∖𝐷. In other words
we have a sphere 𝕊 of involutive structures on 𝑋 inducing a hyperKähler structure on 𝑋 ∖ 𝐷.

The degenerate complex structure compatible with the degenerate Kähler formℜΩ and the degenerate Ricci Flat metric
𝑔′ is denoted by 𝐽′. The manifold (𝑋, 𝑔′, 𝐽′) constitute the main class of examples we study in this paper.
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2. Hodge Theory on Degenerate Complex Manifolds

2.1. 𝐿2 Hodge Theory on manifolds with non-isolated conical singularities following Cheeger-Dai
The study of 𝐿2 cohomology of spaces with non-isolated conical singularities has been carried out by Cheeger and Dai
in [6].

2.2. Definition of Degenerate Complex Manifolds
The following definition is a generalization of the degenerate complex manifolds associated with the structures 𝐽′
in the twistor sphere 𝕊 described in section 2. All the theorems in this section, including 𝐿2 Hodge decomposition,
fundamental inequality and Sobolev embedding theorems are proved for the class of singular complex manifolds
introduced in the definition (2.1). Although the weak and strong Hodge theory discussed in section 3 and afterwards
are restricted to the above mentioned case.

Definition 2.1. Let 𝑋 be a smooth real manifold of dimension 2n and let 𝐷 ⊂ 𝑋 be a real smooth submanifold of
real dimension k. Assume that 𝑋 ∖ 𝐷 is endowed with a Kähler structure (𝑤′, 𝑔′, 𝐽′) with the following assymptotic
behavior near 𝐷:
1) The Kähler metric itself and its Ricci curvature tensor both are bounded with respect to the sup norm |.|𝑠𝑢𝑝 induced
by the degenerate metric 𝑔′ in 𝑋 ∖ 𝐷

2) Around each point 𝑝 ∈ 𝐷 there exists an open set𝑈 and a local coordinates system {(𝑥1, ...𝑥2𝑛)|𝑥𝑖 ∈ ℝ, 1 ≤ 𝑖 ≤ 2𝑛}
defined on 𝑈 such that 𝐷 ∩ 𝑈 = 𝜋−1(0) and 𝑑𝑒𝑡(𝑔′) = |𝑟|𝑠 + 𝑜(𝑟𝑠). Where 𝜋 ∶ ℝ2𝑛 → ℝ2𝑛−𝑘 denotes projection

on the last 2𝑛 − 𝑘 coordinates, 𝑟 = ට∑2𝑛
𝑖=2𝑛−𝑘+1 𝑥2𝑖 , and 𝑔′ is the singular Kähler metric.

3) If 𝒮 denotes the sphere bundle of the normal bundle𝑁 of 𝐷 in 𝑋 then there exists an 𝜖 > 0 and a smooth application
𝑇 ∶ 𝒮×[0, 𝜖) → 𝑈𝜖 onto an open neighborhood𝑈𝜖 of𝐷 in 𝑋 such that 𝑇|𝒮×,(0,𝜖) defines a diffeomorphism onto𝑈𝜖 ∖𝐷,
𝑇|𝐷×{0} ∶ 𝒮 × {0} → 𝐷 sends (𝑥, 0) to 𝑝(𝑥) where 𝑝 ∶ 𝑁 → 𝐷 is the bundle projection. And such that 𝑇∗(

𝜕
𝜕𝑟 ) ⟂ 𝐷𝑟

where for 0 < 𝑟 < 𝜖, 𝐷𝑟 = 𝑇(𝒮 × {𝑟}) and 𝜕
𝜕𝑟 is the vector field on 𝑆 × (0, 𝜖) tangent to the direction of the interval

(0, 𝜖) at each point.
We also assume that if a neighborhood of a point 𝑝 ∈ 𝐷 is endowed with a coordinates system such that 𝑟 is one of its
coordinates then ‖𝑑𝑟‖𝑔′ = 𝑟𝑡 + 𝑜(𝑟𝑡) for some 𝑡 > 0.

4) The parameters 𝑠 and 𝑡, defined respectively in parts 2 and 4, satisfy

𝑠 > 2𝑡 − 2𝑛 + 𝑘 + 1.

The assumption (3) about ‖𝑑𝑟‖𝑔′ implies that the total volume of the submanifolds 𝐷𝑟 is vanishing at least of order
𝑂(𝑟2𝑛−𝑘+𝑡) around 𝐷 since ‖𝐽′𝑑𝑟‖𝑔′ = ‖𝑑𝑟‖𝑔′ and this covector lives in the cotangent bundle of 𝐷𝑟.
It is clear that for the degenerate complex manifolds obtained through degenerate Monge Ampère equation we have
𝑠 = 2 and 𝑡 = 1 and it satisfies the conditions of the above definition.

2.3. Weighted 𝐿2 Spaces and 𝐿2 Hodge Decomposition
Now for a singular Kähler manifold 𝑋 as in definition (2.1) we denote by𝑊′𝑝,𝑞

𝑙 (𝑋) the Sobolev space of (𝑝, 𝑞)-forms
on 𝑋 ∖ 𝐷 with respect to the degenerate metric 𝑔′

𝑊′𝑝,𝑞
𝑙 (𝑋) ∶= ℋ𝑙(𝑋 ∖ 𝐷, Λ𝑝,𝑞(𝑋 ∖ 𝐷)),

where the sobolev 𝑙-norm ‖.‖′2,𝑙 is defined by

‖𝜙‖′2,𝑙 = ‖𝜙‖′2 + ‖∇𝑔′𝜙‖′2 + ... + ‖∇𝑙𝑔′𝜙‖′2.
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Here ∇𝑔′ is the Levi-Civita connection associated to 𝑔′ on 𝑋 ∖ 𝐷, andℋ𝑙(𝑀, 𝐸) denotes the Sobolev space of order 𝑙
of sections of a vector bundle 𝐸 over a manifold𝑀.

We represent by 𝐿′2(𝑋), the space of functions in 𝑋 ∖ 𝐷 which are 𝐿2 integrable with respect to the volume form
𝑑Ω𝑔′ induced by the metric 𝑔′ and let 𝐿′𝑝,𝑞2 (resp. 𝐿′𝑚2 ) be the space of (𝑝, 𝑞)-forms (resp. 𝑚-forms) 𝛼 on 𝑋 ∖ 𝐷 s.t.
∫𝛼 ∧ ∗𝛼 < ∞ .

Also𝑊′
1(𝑋) denotes the space of functions 𝑓 ∈ 𝐿′2 s.t. 𝑑𝑓 ∈ 𝐿′12 .

Lemma 2.2. If 𝐴𝑝,𝑞0 (𝑋∖𝐷) denotes the space of smooth (𝑝, 𝑞)-forms with compact suppport in 𝑋∖𝐷 then 𝐴𝑝,𝑞0 (𝑋∖𝐷)
is dense in𝑊′𝑝,𝑞

𝑙 (𝑋).

Lemma 2.3. If 𝑓 ∈ 𝐿′2(𝑋) is such that 𝑙𝑖𝑚𝑟→0 ∫𝐷𝑟 𝑓𝑑Ω
′(𝑟) exists, then this limit must be zero:

𝑙𝑖𝑚𝑟→0න
𝐷𝑟
𝑓𝑑Ω′(𝑟) = 0

Here 𝑑Ω′(𝑟) denotes the volume form induced by the metric 𝑔′ on 𝐷𝑟 .

Corollary 2.4. i) If 𝜂 ∈ 𝑊′2𝑛−1
1 , then ∫𝑋 𝑑𝜂 = 0.

ii )If 𝜂 ∈ 𝐴2𝑛−1(𝑋 ∖ 𝐷) ∩ 𝐿′2𝑛−12 is such that 𝑑𝜂 ∈ 𝐿′2, then ∫𝑋 𝑑𝜂 = 0
iii) If 𝛼 ∈ 𝑊′𝑝

1 , 𝛽 ∈ 𝑊′𝑞
1 and 𝑝 + 𝑞 = 2𝑛 − 1, then

න
𝑋
𝑑𝛼 ∧ 𝛽 = (−1)𝑝න

𝑋
𝛼 ∧ 𝑑𝛽

Clearly𝑊′𝑝,𝑞
1 ⊂ 𝐿′𝑝,𝑞2 = 𝑊′𝑝,𝑞

0 , and the following 𝐿2-decomposition holds:

Theorem 2.5.

𝐿′𝑝,𝑞2 = ℋ𝑝,𝑞
2 ⊕ �̄�𝐽′(𝐴𝑝,𝑞(𝑋 ∖ 𝐷) ∩ 𝐿′𝑝,𝑞2 ) ⊕ �̄�∗𝐽′(𝐴𝑝,𝑞(𝑋 ∖ 𝐷) ∩ 𝐿′𝑝,𝑞2 ) = 𝑉0 ⊕𝑉1 ⊕𝑉2,

where the spaceℋ𝑝,𝑞
2 is defined byℋ𝑝,𝑞

2 ∶= {𝛼 ∈ 𝐿′𝑝,𝑞2 | �̄�𝐽′𝛼 = �̄�∗𝐽′𝛼 = 0}.

According to lemma (2.2), we also have

Lemma 2.6.
𝑉1 = �̄�𝐽′𝐴𝑝,𝑞0 (𝑋 ∖ 𝐷), 𝑉2 = �̄�∗𝐽′𝐴

𝑝,𝑞
0 (𝑋 ∖ 𝐷),

where 𝐴𝑝,𝑞0 (𝑋 ∖ 𝐷) denotes the space of smooth (𝑝, 𝑞) forms with compact support on 𝑋 ∖ 𝐷.

3. Weak Hodge Theorem

We set
𝐶𝑝,𝑞(𝑋) ∶= 𝐴𝑝,𝑞(𝑋 ∖ 𝐷) ∩ 𝐿′𝑝,𝑞2 (𝑋), (3)

and we introduce the following �̄�𝐽′ -complex of differential forms:

... → 𝐶𝑝,𝑞−1
�̄�𝐽′−−→ 𝐶𝑝,𝑞

�̄�𝐽′−−→ 𝐶𝑝,𝑞+1 → ... (4)

Obviously the domain of definition of �̄�𝐽′ in the above complex is strictly smaller than 𝐶∗,∗.
Then we have the following theorem

Theorem 3.1. For every �̄�𝐽′ -closed (𝑝, 𝑞)-form 𝛼 ∈ 𝐶𝑝,𝑞(𝑋), there exists a unique harmonique form 𝛼0 ∈ ℋ𝑝,𝑞
2 and

𝛽 ∈ 𝐶𝑝,𝑞−1(𝑋) such that, 𝛼 = 𝛼0 + �̄�𝐽′𝛽. Moreover if 𝛼 ∈ 𝑊′𝑝,𝑞
1 , then 𝛽 can be chosen to belong in𝑊′𝑝,𝑞−1

1 as well.
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Proof: If 𝛼 ∈ 𝐶𝑝,𝑞(𝑋) belongs also to 𝑊′𝑝,𝑞
1 the proof is complete by our previous discussion. Otherwise by the

solvability of �̄�𝐽′ -equation in a neighborhood of 𝐷 we can find 𝛾 ∈ 𝐶𝑝,𝑞−1 such that 𝛼 − �̄�𝐽′𝛾 ∈ 𝑊′𝑝,𝑞
1 and we can

repeat our previous argument.

The cohomology group associated with the above complex is denoted by 𝐻𝑝,𝑞
(2) (𝑋). From the above theorem it follows

that 𝐻𝑝,𝑞
(2) (𝑋) ≃ ℋ𝑝,𝑞

2 .
As in ([6]) we can also define𝐻𝑝,𝑞

(2),# the cohomology associated with the closure �̄�𝑐𝐽′ of the operator �̄�𝐽′ . From theorem
(2.5) and theorem (3.1) it follows that

Corollary 3.2. We have the isomorphism
𝐻𝑝,𝑞
(2) (𝑋) ≃ 𝐻𝑝,𝑞

(2),#(𝑋)

where 𝐻𝑝,𝑞
(2),# denotes the cohomology associated with the closure �̄�𝑐𝐽′ of the operator �̄�𝐽′

Corollary 3.3. If 𝛼 ∈ 𝑊′𝑝,𝑞
1 then in the Hodge decomposition 𝛼 = 𝛼ℎ + 𝛼1 + 𝛼2 where 𝛼ℎ ∈ ℋ𝑝,𝑞

2 and 𝛼𝑖 ∈ 𝑉𝑖, for
𝑖 = 1, 2, we have in fact 𝛼1 ∈ 𝑊′𝑝,𝑞−1

1 and 𝛼1 ∈ 𝑊′𝑝,𝑞+1
1

Proof. As in the prof in section 4.4.1, we find a sequence 𝛼0 + �̄�𝐽′𝜃𝑛 + �̄�∗𝐽′𝜂𝑛 such that �̄�∗𝐽′𝜃𝑛 = �̄�∗𝐽′𝜂𝑛 = 0 ans which
converges in 𝐿′2 to 𝛼. Then Δ𝑔′𝜃𝑛 → �̄�∗𝐽′𝛼 and Δ𝑔′𝜂𝑛 → �̄�𝐽′𝛼 in the weak sense in 𝐿′𝑝,𝑞2 . The rest of argument goes as
before.
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Abstract

Topological entropy is a quantitative measure used to characterize the complexity and disorder
of a molecular graph. It is derived from the degree of vertices within the graph, which rep-
resents the connectivity of atoms in a molecular structure. The index reflects the number of
distinct configurations or arrangements that can be formed by the molecular graph, indicating
its potential for structural diversity. In this study, we calculated the entropy indices associated
with six diabetes medications. Subsequently, we employed SPSS software to analyze the cor-
relation between these indices and the physicochemical properties of the drugs. Additionally,
a linear regression analysis was conducted to assess the relationships identified. The findings
indicate that the identification of optimal regression models based on these indices enhances
the predictive capability for the physicochemical properties of diabetes medications, including
Boiling Point (BP), Enthalpy of Vaporization (EV), Flash Point (FP), Molar Refractivity (MR),
Polar Surface Area (PSA), Polarizability (PO), Molar Volume (MV) and Index of Refraction
(IR) for diadetes medications.

1. Introduction

Diabetes is a metabolic disorder characterized by the pancreas’s inability to produce adequate insulin or by the
body’s ineffective utilization of insulin. The history of diabetes spans millennia, with early references dating back to
ancient Egyptian papyri and classical Greek texts. The term ”diabetes” is derived from the Greek word ”siphon”, which
describes the frequent urination observed in affected individuals. In the early 19th century, the full term ”Diabetes
Mellitus” was adopted, with ”mellitus”-Latin for ”honey-sweet”-reflecting the sweet-smelling urine characteristic of
the disease[1, 2].
This chronic condition leads to elevated blood glucose levels, commonly referred to as ”blood sugar.” Glucose is
derived from the food we consume and serves as an energy source in our bodies. The pancreas produces However,
effective management strategies can greatly improve the standard of living for individuals impacted by the illness.
Pharmacological treatments are employed to control this serious condition, and numerous clinical trials are being
conducted to combat its complications. Timely diagnosis, screening, and appropriate medication are essential for
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helping patients manage this potentially life-threatening disease in the long term. Among the essential medications
for diabetes management are Sitagliptin, Tolazamide, Metformin, Miglitol, Chlorpropamide, Alogliptin[3, 4]. Figure
1 depicts the chemical structure of the drugs.
Graph theory in chemistry represents a crucial domain within computational chemistry and drug design, where degree
based Topological descriptors hold great importance[5–7]. While Topological Indices (TIs) find applications across
mathematics, bioinformatics, informatics, biology, and other fields, their most significant application to date remains
in nonempirical QSPR[8, 9].
In this study, we construct the molecular graph of diabetes medications based on the molecular structure sourced from
ChemSpider, ensuring that it is free from loops and redundant edges. Let V(H) and W(H) represent the collections of
vertices and edges of a graph H, correspondingly. The degree of a node 𝑟 ∈ 𝑉(𝐻), represented as 𝜂(𝑟) (we know that
the degree of each vertex represents a Count of incident edges to that vertex).
Subsequently, eight TIs were calculated, which include: First Zagreb Index, Second Zagreb Index, Modified Second
Zagreb, Symmetric Division Index, Harmonic Index, Inverse Sum Index, Inverse Randić Index, Ordinary Geometric
Arithmetic Index. Subsequently, the entropy related to each of the indices has been calculated[10].
The characteristics estimated through this approach demonstrate a robust relationship with the properties of diabetes
therapeutics, as established through linear regression analysis. It has been observed that a significant association exists
between the properties of these compounds and their corresponding Entropy Topological Indices (ENT_TI).

2. Material and Method

In the molecular configurations of medications, atoms are modeled as vertices, while the bonds that connect these
atoms are represented as edges. The graph H = (V, W) is defined as a simple, finite, and connected graph, where V and
W denote the collections of nodes and edges, correspondingly, within the chemical graph. The formula for calculating
the TIs is given in Table 1. Due to its extensive applicability is given in various articles. For further reading, refer to
references [11–15].

Table 1. Exploration of TIs and Their Formulation [16–20]
TI 𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝐻(𝜂(𝑟), 𝜂(𝑠))

First Zagreb Index: 𝑍1 ∑𝑟𝑠∈𝑊(𝐻)(𝜂(𝑟) + 𝜂(𝑠))
Second Zagreb Index: 𝑍2 ∑𝑟𝑠∈𝑊(𝐻) 𝜂(𝑟) + 𝜂(𝑠)

Modified Second Zagreb Index: mZ ∑𝑟𝑠∈𝑊(𝐻)
1

𝜂(𝑟)𝜂(𝑠)
Symmetric Division Index: SDD ∑𝑟𝑠∈𝑊(𝐻)

(𝜂2(𝑟)+𝜂2(𝑠))
𝜂(𝑟)𝜂(𝑠)

Harmonic Index: H ∑𝑟𝑠∈𝑊(𝐻)
2

𝜂(𝑟)+𝜂(𝑠)
Inverse Sum Index: ISI ∑𝑟𝑠∈𝑊(𝐻)

𝜂(𝑟)𝜂(𝑠)
𝜂(𝑟)+𝜂(𝑠)

Inverse Randić Index: IR ∑𝑟𝑠∈𝑊(𝐻)
1

ඥ𝜂(𝑟)𝜂(𝑠)

Ordinary Geometric Arithmetic Index: OGA ∑𝑟𝑠∈𝑊(𝐻)
2ඥ𝜂(𝑟)𝜂(𝑠)
(𝜂(𝑟)+𝜂(𝑠))
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Fig. 1. Molecular structure of Sitagliptin, Tolazamide, Metformin, Miglitol, Alogliptin, Chlorpropamide

The concept of graph entropy involves assigning a probability function to the edges of a chemical graph based on the
topological descriptor. In this context, let Υ(𝐻) represent the topological descriptor of a chemical graph H, and let 𝜓
denote a functional characterization of this topological descriptor.

Υ (𝐻) = 
𝑟𝑠∈𝑤

𝜓 (𝑟𝑠)

The graph entropy is denoted by ENT Υ(𝐻) and is defined as,

𝐸𝑁𝑇Υ (𝐻) = 𝑙𝑜𝑔(Υ(𝐻)) − 1
Υ(𝐻)𝑙𝑜𝑔  ෑ

𝑟𝑠∈𝑊(𝐻)
𝜓(𝑟𝑠)𝜓(𝑟𝑠) (1)

If we consider the First Zagreb index, then the functional 𝜓(𝑟𝑠) = 𝜂(𝑟) + 𝜂(𝑠) and Υ(𝐻) = 𝑍1(𝐻). Thus Equation
(1) reduces to the following expression, which is called as the First Zagreb Entropy.

𝐸𝑁𝑇𝑍1 (𝐻) = 𝑙𝑜𝑔(𝑍1(𝐻)) −
1

𝑍1(𝐻)
𝑙𝑜𝑔  ෑ

𝑟𝑠∈𝑊(𝐻)
(𝜂 (𝑟) + 𝜂 (𝑠))(𝜂(𝑟)+𝜂(𝑠)) (2)

In a similar manner, we can express the formulas for the remaining degree-based graph entropies.

3. Entropy Topological Indices and QSPR

Based on the aforementioned information, eight Entropy TIs (𝐸𝑁𝑇_𝑇𝐼) were analyzed for sex diabetic drugs, with
the results presented in Tables 3. The modeling of eight physical features, including BP, EV, FP, MR, PSA, PO, MV,
and IR, was conducted for the drugs Sitagliptin, Chlorpropamide, Tolazamide, Metformin, Alogliptin, and Miglitol,
extracted from the ChemSpider database and presented in Table 2. Furthermore, the normality of these data was
evaluated, and the correlations among them are detailed in Table 4.
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Table 2. Physical features of diabetes drugs
NAME BP EV FP MR PSA PO MV IR

Sitagliptin 529.9 80.5 274.3 85.2 77 33.8 252.4 1.59
Metformin 172.5 40.9 58.1 33.4 89 13.2 100.8 1.576
Miglitol 453.7 82.3 284.3 48.5 104 19.2 142.1 1.598

Chlorpropamide - - - 66.3 84 26.3 207.4 1.553
Alogliptin 519.2 79.2 267.8 93.3 94 37 252.9 1.66
Tolazamide 484.5 79 246.8 82.5 90 32.7 237.9 1.61

Subsequently, a linear regression model was employed to evaluate and analyze the data.
The physical characteristics of pharmaceutical agents employed in the treatment of diabetes are detailed in Table 2.

The calculation results of section 2 are shown in Table 3.

Table 3. The computed values of Entropy TIs for the pharmaceutical agents
NAME ENT_Z1 ENT_Z2 ENT_mZ ENT_SDD ENT_H ENT_ISI ENT_IR ENT_OGA

Sitagliptin 1.4725556 1.4474796 1.4464818 1.4606408 1.4726557 1.4647546 1.4693708 1.476007
Metformin 0.8979745 0.8595576 0.874275 0.8933885 0.8988284 0.885537 0.8947195 0.902201
Miglitol 1.1354422 1.095129 1.0833051 1.1369332 1.1336931 1.1271989 1.1300981 1.145498

Chlorpropamide 1.2227875 1.1933171 1.1954085 1.2139172 1.222681 1.2179737 1.2216041 1.229332
Alogliptin 1.4095424 1.3851582 1.3831798 1.4057595 1.4096793 1.4040256 1.4068878 1.414381
Tolazamide 1.3372054 1.3167688 1.3230059 1.3272875 1.3378794 1.3341404 1.3372287 1.341476

3.1. Regression models
In this section, the analysis is performed utilizing the Entropy TIs calculated in Section 2. The linear regression model
is articulated as follows:

𝑃 = 𝐵 + 𝐴(𝐸𝑁𝑇_𝑇𝐼) (3)

Where P represents the features of the diabetes medication, B is a constant, A is the regression coefficient. This
analysis was conducted using SPSS software, incorporating eight specific characteristics and eight 𝐸𝑁𝑇𝑇𝐼 for a total
of sex diabetes medications.
Utilizing equation (3), various linear regression models for Entropy TIs are presented as follows:
1. 𝐸𝑁𝑇𝑍1
𝐵𝑃 = −303.354 + 587.995[𝐸𝑁𝑇_𝑍1],𝑀𝑅 = −65.252 + 107.111[𝐸𝑁𝑇_𝑍1],
𝐵𝑃 = −303.354 + 587.995[𝐸𝑁𝑇_𝑍1],𝑀𝑅 = −65.252 + 107.111[𝐸𝑁𝑇_𝑍1].
2. 𝐸𝑁𝑇𝑍2
𝐵𝑃 = −260.027 + 566.822[𝐸𝑁𝑇_𝑍2],𝑀𝑅 = −58.598 + 104.254[𝐸𝑁𝑇_𝑍2],
𝑃𝑂 = −23.361 + 41.435[𝐸𝑁𝑇_𝑍2],𝑀𝑉 = −148.997 + 286.058[𝐸𝑁𝑇_𝑍2].
3. 𝐸𝑁𝑇𝑚𝑍
𝐵𝑃 = −260.985 + 567.035[𝐸𝑁𝑇_𝑚𝑍],𝑀𝑅 = −61.373 + 106.416[𝐸𝑁𝑇_𝑚𝑍],
𝑃𝑂 = −24.464 + 42.294[𝐸𝑁𝑇_𝑚𝑍],𝑀𝑉 = −158.846 + 292.181[𝐸𝑁𝑇_𝑚𝑍].
4. 𝐸𝑁𝑇𝑆𝐷𝐷
𝐵𝑃 = −313.138 + 598.568[𝐸𝑁𝑇_𝑆𝐷𝐷],𝑀𝑅 = −66.017 + 108.270[𝐸𝑁𝑇_𝑆𝐷𝐷],
𝑃𝑂 = −26.309 + 43.030[𝐸𝑁𝑇_𝑆𝐷𝐷],𝑀𝑉 = −168.537 + 296.416[𝐸𝑁𝑇_𝑆𝐷𝐷].
5. 𝐸𝑁𝑇𝐻
𝐵𝑃 = −302.171 + 587.048[𝐸𝑁𝑇_𝐻],𝑀𝑅 = −65.353 + 107.194[𝐸𝑁𝑇_𝐻],
𝑃𝑂 = −26.046 + 42.603[𝐸𝑁𝑇_𝐻],𝑀𝑉 = −167.498 + 294.096[𝐸𝑁𝑇_𝐻].
6. 𝐸𝑁𝑇𝐼𝑆𝐼
𝐵𝑃 = −291.915 + 582.300[𝐸𝑁𝑇_𝐼𝑆𝐼],𝑀𝑅 = −63.237 + 106.088[𝐸𝑁𝑇_𝐼𝑆𝐼],
𝑃𝑂 = −25.205 + 42.164[𝐸𝑁𝑇_𝐼𝑆𝐼],𝑀𝑉 = −161.800 + 291.150[𝐸𝑁𝑇_𝐼𝑆𝐼].
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7. 𝐸𝑁𝑇𝐼𝑅
𝐵𝑃 = −298.439 + 585.414[𝐸𝑁𝑇_𝐼𝑅],𝑀𝑅 = −64.809 + 106.979[𝐸𝑁𝑇_𝐼𝑅],
𝑃𝑂 = −25.830 + 42.518[𝐸𝑁𝑇_𝐼𝑅],𝑀𝑉 = −166.149 + 293.622[𝐸𝑁𝑇_𝐼𝑅].
8. 𝐸𝑁𝑇𝑂𝐺𝐴
𝐵𝑃 = −312.049 + 592.405[𝐸𝑁𝑇_𝑂𝐺𝐴],𝑀𝑅 = −66.106 + 107.318[𝐸𝑁𝑇_𝑂𝐺𝐴],
𝑃𝑂 = −26.346 + 42.653[𝐸𝑁𝑇_𝑂𝐺𝐴],𝑀𝑉 = −169.574 + 294.443[𝐸𝑁𝑇_𝑂𝐺𝐴].

Table 4. The computed values of correlation coefficients of physical features for the pharmaceutical agents
Entropy TIs BP EV FP MR PSA PO MV IR
ENT_Z1 0.93 0.811 0.805 0.963 0.35 0.963 0.97 0.477
ENT_Z2 0.925 0.804 0.796 0.967 0.357 0.967 0.974 0.477
ENT_mZ 0.911 0.783 0.773 0.972 0.382 0.972 0.98 0.473
ENT_SDD 0.936 0.819 0.814 0.962 0.332 0.962 0.967 0.489
ENT_H 0.929 0.809 0.802 0.964 0.352 0.964 0.971 0.477
ENT_ISI 0.932 0.813 0.806 0.964 0.347 0.964 0.971 0.476
ENT_RI 0.929 0.809 0.802 0.964 0.353 0.964 0.972 0.475
ENT_OG 0.934 0.817 0.811 0.961 0.342 0.962 0.968 0.477

Bold numbers indicate the strongest correlations

Fig. 2. The chart illustrates some of the strongest correlations between entropy indices and physicochemical properties
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Table 5. Calculation of statistical metrics for the linear QSPR about ENT_mZ
Physical features N A B R R2 SE F sig Indicant

BP 6 567.035 -260.985 .911 .831 70.3749 14.719 .031 significant
MR 6 106.416 -61.373 .972 .944 6.1654 67.719 .001 significant
PO 6 42.294 -24.464 .972 .945 2.4436 68.094 .001 significant
MV 6 292.181 -158.846 .980 .960 14.2792 95.175 .001 significant

Bold numbers indicate the strongest correlations.

4. Conclusion

Table 4 and Figure 2 illustrate the correlation between the physical-chemical features of diabetes medications and the
defined topological indices in this study, the majority of the indicators showed a strong and positive correlation. The
𝐸𝑁𝑇𝑚𝑍 showed a positive and excellent correlation with MR, MV and PO with ”r=0.972”, ”r=0.980” and ”r=0.972”
values. The 𝐸𝑁𝑇𝑆𝐷𝐷 showed a positive and excellent correlation with BP with ”r=0.936” value. The BP property
provided a high positive correlation with the 𝐸𝑁𝑇𝑍1, 𝐸𝑁𝑇𝑍2, 𝐸𝑁𝑇𝑚𝑍, 𝐸𝑁𝑇𝑆𝐷𝐷, 𝐸𝑁𝑇𝐻, 𝐸𝑁𝑇𝐼𝑆𝐼, 𝐸𝑁𝑇𝐼𝑅 and 𝐸𝑁𝑇𝑂𝐺𝐴
with ”r=0.930”, ”r=0.925”, ”r=0.911”, ”r=0.936”, ”r=0.929”, ”r=0.932”, ”r=0.929” and ”r=0.934” values. Addition-
ally, the properties of MR, PO, and MV exhibit strong correlations with all eight indices. In contrast, the PSA and IR
indices do not show good correlations with any of the indices. Table 5 presents the regression model related to the
𝐸𝑁𝑇𝑚𝑍 (we have omitted similar tables for other indices here) for various physical and chemical features. The results
show that the regression values (r) exceed 0.5, while the p-values are less than 0.05, indicating reliable predictors for
linear regression. Equations are derived based on criteria such as minimum standard error (Std. E), maximum coef-
ficient of determination (R square), and maximum F-statistic (F). Therefore, it can be concluded that all physical and
chemical features are highly significant. This underscores the potential significance of these 𝐸𝑁𝑇𝑇𝐼 in the analysis
of QSPR for diabetes drugs, as evidenced by the plotted regression lines (thirty two lines). The results of this study
may be employed to inform the production, advancement, and enhancement of more effective diabetes therapeutics.
Furthermore, the methodology employed in this study can be extended to explore the structural characteristics of other
pharmaceutical compounds.
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Abstract

For any connected graph, a spanning tree is a subgraph that includes all the vertices and is a single
connected acyclic structure. By the Matrix-Tree Theorem, finding the number of spanning tree
in a graph has been previously discussed. In this paper, The number of spanning tree of some
graphs has been presented, then we show a exact formula for the number of spanning tree in a
these graphs.

1. Introduction

Let Γ be a simple graph on a finite vertex set 𝑉 and edge set 𝐸 and let 𝐴 be its adjacency matrix. The number of
spanning trees in a graph is determined by a fundamental concept in graph theory. It is well known [3] that the number
of labelled spanning trees of the complete bipartite graph on 𝑚 and 𝑛 vertices is equal to 𝑚𝑛−1𝑛𝑚−1. In [2] author
give a different proof of this fact and prove a formula for the number of labelled spanning trees of the complete graph
on n vertices. Also, for computing the number of spanning tree in graphs, there is a technique using adjacency and
Laplacian matrix of graph.
Spanning trees have a variety of practical applications in the real world. For examples: Network Design and Optimiza-
tion, Circuit Design, Transportation and Logistics, Biology and Ecology, Data Structures and Algorithms, Clustering
and Data Mining, Image Processing and Computer Vision. Spanning trees are used to design efficient communication
networks to minimize the cost of laying cables while ensuring all nodes are connected. Also, Spanning trees help in
ensuring there are no loops in the network, which can cause data packets to circulate indefinitely. Spanning trees play
a crucial role in ensuring efficiency and connectivity in various systems and applications. For more information see
[5], [4], [1].
For a given graph 𝐺 with 𝑛 vertices, the number of spanning trees 𝑇(𝐺) can be found using Matrix-Tree Theorem.
This theorem involves the use of the Laplacian matrix of the graph. There are the steps to determine the number of
spanning trees.
In next section, we see how to calculate the number of spanning trees in graphs. In section 3, we provide an exact
formula for calculating the number of spanning trees in some graphs.
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2. Laplacian matrix and number of spanning tree

For each edge 𝑒𝑗 = {𝑣𝑖 , 𝑣𝑘}, choose one of 𝑣𝑖 , 𝑣𝑘 to be the positive end of 𝑒𝑗 and the other to be the negative end.
Thus 𝐺 is given an orientation. The vertex-edge incidence matrix (or cross-linking matrix) afforded by an orientation
of 𝐺 is the 𝑛-by-𝑚 matrix 𝑄 = 𝑄(𝐺) = (𝑞𝑖𝑗), where 𝑞𝑖𝑗 = +1 if 𝑣𝑖 is the positive end of 𝑒𝑗 , −1 if it is the negative
end, and 0 otherwise. It turns out that the Laplacian matrix, 𝐿(𝐺) = 𝑄𝑄𝑡, is independent of the orientation. In
fact,𝐿(𝐺) = 𝐷(𝐺) − 𝐴(𝐺), where 𝐷(𝐺) is the diagonal matrix of vertex degrees and 𝐴(𝐺) is the (0, 1) adjacency
matrix.
One may also describe 𝐿(𝐺) by means of its quadratic form 𝑥𝐿(𝐺)𝑥𝑡 = ∑(𝑥𝑖 − 𝑥𝑗)2, where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), and
the sum is over the pairs 𝑖 < 𝑗 for which {𝑣𝑖 , 𝑣𝑗} ∈ 𝐸. So 𝐿(𝐺) is a symmetric, positive semidefinite. Also, we have
𝑑𝑒𝑡𝐿(𝐺) = 0. Let 𝐿− denote the matrix obtained from the Laplacian matrix by removing the last row and the last
column. We have the Matrix -tree theorem: the number of spanning trees of a connected graph equals 𝑑𝑒𝑡(𝐿−). Let
us express the determinant of 𝐿− as the sum of products of its elements, representing each diagonal element as a sum
of units or minus units, and expanding brackets. So, here we have steps to determine the number of spanning trees:
1. Construct the Laplacian Matrix 𝐿: The Laplacian matrix is defined as 𝐿 = 𝐷 − 𝐴, where 𝐷 is the degree matrix (a
diagonal matrix where each diagonal entry is the degree of the corresponding vertex), and 𝐴 is the adjacency matrix
(a matrix where each entry 𝐴𝑖𝑗 is 1 if there is an edge between vertices 𝑖 and 𝑗), and 0 otherwise).
2. Delete any Row and the Corresponding Column from 𝐿: Let the resulting matrix be 𝐿−.
3. Calculate the Determinant of 𝐿−: The determinant of 𝐿− gives the number of spanning trees in the graph 𝐺.
Apply theMatrix-tree theorem and calculate the determinant of matrix 𝐿−. For a complete graph it is an (𝑛−1)×(𝑛−1)
matrix of the form:

𝑑𝑒𝑡
⎡
⎢
⎢
⎣

𝑛 − 1 −1 … −1
−1 𝑛 − 1 … −1
⋮ ⋮ ⋱ ⋮
−1 −1 … 𝑛 − 1

⎤
⎥
⎥
⎦
= 𝑑𝑒𝑡

⎡
⎢
⎢
⎣

1 1 … 1
−1 𝑛 − 1 … −1
⋮ ⋮ ⋱ ⋮
−1 −1 … 𝑛 − 1

⎤
⎥
⎥
⎦
= 𝑑𝑒𝑡

⎡
⎢
⎢
⎣

1 1 … 1
0 𝑛 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑛

⎤
⎥
⎥
⎦
= 𝑛𝑛−2 (1)

Another example of apply theMatrix-tree theorem and calculate the determinant of matrix 𝐿− is for a complete bipartite
graph𝐾𝑘,𝑙. The Laplacian matrix here looks as:

𝐿 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑘 … 0 −1 … −1
⋮ ⋱ ⋮ ⋮ … ⋮
0 … 𝑘 −1 … −1
−1 … −1 𝑙 … 0
⋮ … ⋮ ⋮ ⋱ ⋮
−1 … −1 0 … 𝑙

⎤
⎥
⎥
⎥
⎥
⎦

(2)

We will find the determinant of matrix𝑀 = 𝐿𝑙,𝑙+1:

𝑀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑘 … 0 0 −1 … −1
⋮ ⋱ ⋮ ⋮ ⋮ … ⋮
0 … 𝑘 0 −1 … −1
−1 … −1 −1 0 … 0
−1 … −1 −1 𝑙 … 0
⋮ … ⋮ ⋮ ⋮ ⋱ ⋮
−1 … −1 −1 0 … 𝑙

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3)

We have 𝑑𝑒𝑡(𝐿−) = −𝑑𝑒𝑡𝑀. For calculations of the determinant of matrix M. It is not difficult to check that the sum
of weights of paths from 𝑖-th inlet to 𝑗-th outlet equals 𝑚𝑖𝑗. Therefore, 𝑑𝑒𝑡𝑀 equals the sum of weights of the sets
consisting of 𝑛 non-intersecting paths. It is easy to understand that there exists exactly one such path, and its weight
equals −𝑘𝑙−1𝑙𝑘−1, which finishes the calculation.
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3. Number of spanning tree in another graph

In this section, we compute number of spanning tree in some graph. Consider cycle graph 𝐶𝑛. Matrix 𝐿− of order
(𝑛 − 1) × (𝑛 − 1) of this graph is:

𝐿 =

⎡
⎢
⎢
⎢
⎢
⎣

2 −1 0 0 … 0
−1 2 −1 0 … 0
0 −1 2 −1 ⋱ 0
⋮ 0 −1 2 −1 0
⋮ ⋱ 0 −1 2 −1
0 … … 0 −1 2

⎤
⎥
⎥
⎥
⎥
⎦

(4)

Because the 𝐿− matrix is   tri-diagonal, therefore determinant of this matrix is 𝑛. This shows that the number of spanning
tree of 𝐶𝑛 is 𝑛.

4. Conclusion

From this discussion, By theMatrix- tree theorem and structure of 𝐿−, we can find the number of spanning tree in some
graphs. Also, We can test upper bounds on the number of spanning trees in a graph. Open problem in this category,
is finding exact formula for the number of spanning tree in terms of the number of vertices, the number of edges and
the vertex degrees.
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Abstract

Graph theory functions as a robust mathematical framework for modeling complex systems, en-
compassing the chemical structures of pharmaceutical compounds. This article presents a com-
prehensive analysis of three molecular graphs: Nano Star Dendrimers 𝑁𝑆𝐶5𝐶6[𝑛], 𝑁𝑆𝐷[𝑛],
and Zinc Porphyrin Dendrimer 𝐷𝑃𝑍𝑛. Furthermore, we investigate various topological indices,
including Sombor, a reduced version of Sombor, a multiplicative version of Sombor, Revan, and
Gourava indices. The results are derived through combinatorial computations utilizing vertex
degree counting and edge partitioning methods. The primary objective of this study is to com-
pare the topological indices of the selected dendrimers. Among the indices evaluated—namely
𝑆𝑂, 𝑆𝑂𝑟𝑒𝑑, 𝑆𝑂𝑟𝑒𝑣, 𝐺𝑂2, 𝑅1(𝐺), 𝑅2(𝐺), and 𝐻𝑅1(𝐺)—the Nano Star Dendrimer 𝑁𝑆𝐷[𝑛] ex-
hibits the highest values, particularly from the third generation onwards, whereas 𝑁𝑆𝐶5𝐶6[𝑛]
demonstrates the lowest values.

1. Introduction

Graph theory, a robust mathematical framework, finds applications in various disciplines, including operations re-
search, chemistry, and genetics. It has developed into a distinct branch of mathematics. The use of graphs that
incorporate vertices and edges to depict real-world situations aids in the simplification of intricate concepts.
Dendrimers are synthesized by adding successive layers of branching groups. The structure of dendrimers consists of a
core molecule at the center, with branching groups to which other branching molecules are added in layers. Each layer
is referred to as a generation and is denoted by 𝐺𝑛. Dendrimers are highly branched macromolecules with nanoscale
dimensions, making them advantageous as carriers for drugs and genes. Research has demonstrated that some den-
drimers exhibit medicinal properties, including antibacterial, antifungal, and cytotoxic effects. Topological indices,
also known as molecular descriptors, are numerical quantities associated with a graph that can be used to predict
the characteristics of chemical compounds without the need for laboratory experiments. These indices help specify

∗Mehri Hasani
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features such as melting points, boiling points, and flash points, among others. Hasani et al. (2024) examined the quan-
titative structure-property relationship (QSPR) of specific drugs used for treating heart diseases [3, 5]. Furthermore,
they utilized topological indices and MATLAB programming to predict the physical and chemical characteristics of
drugs for Parkinson’s disease in the same year [4]. This researchers performed quantitative structure-property relation-
ship (QSPR) analysis on medications for pyelonephritis, employing entropy graphs that are weighted by topological
indices, facilitated through MATLAB programming [6].
In this study, we computed the Sombor index, the reduced version of the Sombor index, the multiplicative version of
the Sombor index, the Revan index, and the Gourava index of the molecular graphs Nano Star Dendrimer𝑁𝑆𝐶5𝐶6[𝑛],
Nano Star Dendrimer 𝑁𝑆𝐷[𝑛], and Zinc Porphyrin Dendrimer 𝐷𝑃𝑍𝑛. The results were visualized using Maple soft-
ware to demonstrate the dependence of some topological indices on the involved parameters. Throughout the study,
all graphs were simple and connected. Notations used include the degree of vertex 𝑣 denoted as 𝑑𝑣, the vertex set as
𝑉(𝐺), the edge set as 𝐸(𝐺), the number of edges in 𝐺 as 𝑒(𝐺), the largest of all degrees of 𝐺 as Δ(𝐺), and the smallest
of all degrees of 𝐺 as 𝛿(𝐺).
The degree-based topological indices are of significant importance. In 2021, Gutman defined the Sombor indices,
which consist of five types: the Sombor index, the reduced Sombor index [1], the multiplicative Sombor [8], the
reverse Sombor index [11], and the Revan-Sombor index [7].

𝑆𝑂(𝐺) = 
𝑢𝑣∈𝐸(𝐺)

ඥ𝑑𝐺(𝑢)2 + 𝑑𝐺(𝑣)2

𝑆𝑂𝑟𝑒𝑑(𝐺) = 
𝑢𝑣∈𝐸(𝐺)

ඥ(𝑑𝐺(𝑢) − 1)2 + (𝑑𝐺(𝑣) − 1)2

ෑ
𝑠𝑜
(𝐺) = ෑ

𝑢𝑣∈𝐸(𝐺)
ඥ𝑑𝐺(𝑢)2 + 𝑑𝐺(𝑣)2

𝑆𝑂𝑟𝑒𝑣 = 𝑆𝑂𝑟𝑒𝑣(𝐺) = 
𝑢𝑣∈𝐸(𝐺)

ඥ[Δ − 𝑑𝐺(𝑢) + 1]2 + [Δ − 𝑑𝐺(𝑣) + 1]2

𝑅𝑆𝑂(𝐺) = 
𝑢𝑣∈𝐸(𝐺)

ඥ𝑟𝐺(𝑢)2 + 𝑟𝐺(𝑣)2

= 
𝑢𝑣∈𝐸(𝐺)

ඥ[Δ + 𝛿 − 𝑑𝐺(𝑢)]2 + [Δ + 𝛿 − 𝑑𝐺(𝑣)]2

If 𝛿 = 1, then the reverse Sombor index coincides with the Revan-Sombor index. In 2017, Kulli [9] defined the first
Gourava index based on the definitions of the Zagreb indices and their applications.

𝐺𝑂1(𝐺) = 
𝑢𝑣∈𝐸(𝐺)

[𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) + 𝑑𝐺(𝑢)𝑑𝐺(𝑣)].

The redefined third Zagreb index was defined as:

𝐺𝑂2(𝐺) = 𝑅𝑒𝑍𝐺3(𝐺) = 
𝑢𝑣∈𝐸(𝐺)

[𝑑𝐺(𝑢) + 𝑑𝐺(𝑣)][𝑑𝐺(𝑢)𝑑𝐺(𝑣)].

In 2017, Kulli [9] presented the equation for the Revan vertex degree u in a graph 𝐺 as:

𝑟𝐺(𝑢) = Δ(𝐺) + 𝛿(𝐺) − 𝑑𝐺(𝑢).
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The first and second Revan indices were defined as follows:

𝑅1(𝐺) = 
𝑢𝑣∈𝐸(𝐺)

[𝑟𝐺(𝑢) + 𝑟𝐺(𝑣)]

𝑅2(𝐺) = 
𝑢𝑣∈𝐸(𝐺)

𝑟𝐺(𝑢)𝑟𝐺(𝑣)

In 2018, Kulli [9] introduced the first and second Hyper Revan indices.

𝐻𝑅1(𝐺) = 
𝑢𝑣∈𝐸(𝐺)

[𝑟𝐺(𝑢) + 𝑟𝐺(𝑣)]2

𝐻𝑅2(𝐺) = 
𝑢𝑣∈𝐸(𝐺)

[𝑟𝐺(𝑢)𝑟𝐺(𝑣)]2

In this study, we analyze the Sombor index and its variations, including the reduced version, multiplicative version,
reverse version, Revan-Sombor index, Gourava index,and Revan index for the Nano star dendrimers 𝑁𝑆𝐶5𝐶6[𝑛] and
𝑁𝑆𝐷[𝑛], as well as the Zinc porphyrin dendrimer 𝐷𝑃𝑍𝑛. Additionally, we consider 𝐸𝑖𝑗 = {𝑢𝑣 ∈ 𝐸(𝑃) | 𝑑𝑢 = 𝑖, 𝑑𝑣 =
𝑗}.

Main results

2. Nano star DendrimerNSC5C6[n]

The first molecular graph is the Nano star dendrimer 𝑁𝑆𝐶5𝐶6[𝑛] of generation 𝐺𝑛 with 𝑛 ⩾ 1 growth stage (see
Figure 1). The central core of 𝑁𝑆𝐶5𝐶6[𝑛] consists of 10 vertices and 10 edges, and the first generation (𝐺1) consists
of 28 vertices and 30 edges. Therefore, in𝑁𝑆𝐶5𝐶6[𝑛], there are a total of 9×2𝑛+2−44 vertices and 10×2𝑛+2−50
edges [10]. The edges set of 𝑁𝑆𝐶5𝐶6[𝑛] can be observed in Figure 1, which can be divided into seven classes, and
their cardinalities are computed in Table 1.

(Note: The number of edges 𝐸(2,3) and 𝐸(3,3) in [10] was miscalculated. The correct numbers have been updated in
Table 1.)

Fig. 1. The molecular graph of Nano star dendrimer 𝑁𝑆𝐶5𝐶6[𝑛]

Theorem 2.1. The 𝑆𝑂, 𝑆𝑂𝑟𝑒𝑑 , ∏𝑠𝑜 , 𝑆𝑂𝑟𝑒𝑣 , and, 𝑅𝑆𝑂 indices for 𝑁𝑆𝐶5𝐶6[𝑛] are as follows :
(i) 𝑆𝑂(𝐺) = (33√2 + 4√10 + 4√17 + 18√13 + 4√5)2𝑛 − 42√2 − 6√10

−28√13.
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Table 1. The edges partition of 𝑁𝑆𝐶5𝐶6[𝑛].
E(u, v) Number of edges (du,dv)
𝐸(1,3) 2𝑛+2 − 6
𝐸(1,4) 2𝑛+2
𝐸(2,2) 2𝑛+2 − 6
𝐸(2,3) 9 × 2𝑛+1 − 28
𝐸(2,4) 2𝑛+1
𝐸(3,3) 7 × 2𝑛 − 10
𝐸(4,4) 2𝑛

(ii) 𝑆𝑂𝑟𝑒𝑑(𝐺) = (20 + 24√2 + 36√5 + 2√10)2𝑛 − 26√2 − 28√5 − 12.

(iii) ∏𝑠𝑜(𝐺) = 15360√221(27𝑛+10 − 377 × 26𝑛+4 + 3383 × 25𝑛+2
−843 × 24𝑛+4 + 1040 × 23𝑛).

(iv) 𝑆𝑂𝑟𝑒𝑣(𝐺) = (2√5 + √17 + 3√2)2𝑛+2 + (9√13 + √10)2𝑛+1
+(15√2)2𝑛 − (12√5 + 28√13 + 38√2).

(v) 𝑅𝑆𝑂(𝐺) = (2√5 + √17 + 3√2)2𝑛+2 + (9√13 + √10)2𝑛+1
+(15√2)2𝑛 − (28√13 + 38√2 + 12√5).

Proof. From the edge partition of 𝑁𝑆𝐶5𝐶6[𝑛] provided in Table 1, we can observe...

(i) 𝑆𝑂(𝑁𝑆𝐶5𝐶6[𝑛]) =
𝑢𝑣
ඥ𝑑2𝑢 + 𝑑2𝑣

= √10 (2𝑛+2 − 6) + √17 (2𝑛+2) + 2√2 (2𝑛+2 − 6) + 4(9 × 2𝑛+1 − 28)
+2√5 (2𝑛+1) + 3√2(7 × 2𝑛 − 10) + 4√2 (2𝑛)
= (33√2 + 4√10 + 4√17 + 18√13 + 4√5) 2𝑛 − 42√2 − 6√10 − 28√13.

(ii) 𝑆𝑂𝑟𝑒𝑑(𝑁𝑆𝐶5𝐶6[𝑛]) =
𝑢𝑣
ඥ(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2

= 2(2𝑛+2 − 6) + 3(2𝑛+2) + √2(2𝑛+2 − 6) + √5(9 × 2𝑛+1 − 28) + √10 (2𝑛+1)
+2√2 (7 × 2𝑛 − 10) + 3√2 (2𝑛)
= (20 + 24√2 + 4√10 + 36√5 + 2√10) 2𝑛 − 26√2 − 28√5 − 12.

(iii) ∏𝑠𝑜(𝑁𝑆𝐶5𝐶6[𝑛]) =ෑ
𝑢𝑣

ඥ𝑑2𝑢 + 𝑑2𝑣

= √10 (2𝑛+2 − 6) × √17 (2𝑛+2) × 2√2 (2𝑛+2 − 6) × √13(9 × 2𝑛+1 − 28)
×2√5(2𝑛+1) × 3√2(7 × 2𝑛 − 10) × 4√2(2𝑛)
= (27𝑛+10 − 377 × 26𝑛+4 + 3383 × 25𝑛+2 − 843 × 24𝑛+4 + 5040 × 23𝑛)
×15360√221

(iv) 𝑆𝑂𝑟𝑒𝑣(𝑁𝑆𝐶5𝐶6[𝑛]) =
𝑢𝑣
ඥ[Δ − 𝑑𝑢 + 1]2 + [Δ − 𝑑𝑣 + 1]2

= 2√5(2𝑛+2 − 6) + √17(2𝑛+2) + 3√2(2𝑛+2 − 6) + √13(9 × 2𝑛+1 − 28)
+√10(2𝑛+1) + 2√2(7 × 2𝑛 − 10) + √2(2𝑛)
= ቀ2 × √5 + √17 + 3√2ቁ 2𝑛+2 + (9√13 + √10)2𝑛+1 + (15√2)2𝑛)
−(12√5 + 28√13 + 38√2).
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(v) 𝑅𝑆𝑂(𝑁𝑆𝐶5𝐶6[𝑛]) =
𝑢𝑣
ඥ𝑟𝑢 2 + 𝑟𝑣 2

=
𝑢𝑣
ඥ[Δ + 𝛿 − 𝑑𝑢]2 + [Δ + 𝛿 − 𝑑𝑣]2

= 2√5(2𝑛+2 − 6) + √17(2𝑛+2) + 3√2(2𝑛+2 − 6) + √13(9 × 2𝑛+1 − 28)
+√10(2𝑛+1) + 7√2(7 × 2𝑛 − 10) + √2(2𝑛)
= (2√5 + √17 + 3√2)2𝑛+2 + (9√13 + √10)2𝑛+1 + (15√2)2𝑛
−(28√13 + 38√2 + 12√5).

Theorem 2.2. The 𝐺𝑂1, 𝐺𝑂2, 𝑅1, 𝑅2, 𝐻𝑅1, 𝐻𝑅2 indices for 𝑁𝑆𝐶5𝐶6[𝑛] are as follows :
(i) 𝐺𝑂1(𝐺) = 24 × 2𝑛+2 + 113 × 2𝑛+1 + 129 × 2𝑛 − 548.
(ii) 𝐺𝑂2(𝐺) = 48 × 2𝑛+2 + 3182 × 2𝑛+1 + 506 × 2𝑛 − 1548.
(iii) 𝑅1(𝐺) = 17 × 2𝑛+2 + 49 × 2𝑛+1 + 30 × 2𝑛 − 252.
(iv) 𝑅2(𝐺) = 21 × 2𝑛+2 + 57 × 2𝑛+1 + 29 × 2𝑛 − 310.
(v) 𝐻𝑅1(𝐺) = 97 × 2𝑛+2 + 241 × 2𝑛+1 + 116 × 2𝑛 − 1292.
(vi) 𝐻𝑅2(𝐺) = 161 × 2𝑛+2 + 333 × 2𝑛+1 + 113 × 2𝑛 − 2038.

Proof. From the edge partition of 𝑁𝑆𝐶5𝐶6[𝑛] as shown in Table 1, it is evident that...

(i) 𝐺𝑂1(𝑁𝑆𝐶5𝐶6[𝑛]) = 7 ൫2𝑛+2 − 6൯ + 9(2𝑛+2) + 8(2𝑛+2 − 6) + 11(9 × 2𝑛+1 − 28)
+14(2𝑛+1) + 15(7 × 2𝑛 − 10) + 24(2𝑛) = 24 × 2𝑛+2 + 113 × 2𝑛+1
+129 × 2𝑛 − 548.

(ii) 𝐺𝑂2(𝑁𝑆𝐶5𝐶6[𝑛]) = 12 ൫2𝑛+2 − 6൯ + 20(2𝑛+2) + 16(2𝑛+2 − 6)
+30(9 × 2𝑛+1 − 28) + 48(2𝑛+1) + 54(7 × 2𝑛 − 10) + 128(2𝑛)
= 48 × 2𝑛+2 + 3182 × 2𝑛+1 + 506 × 2𝑛 − 1548.

(iii) 𝑅1(𝑁𝑆𝐶5𝐶6[𝑛]) = 6 ൫2𝑛+2 − 6൯ + 5(2𝑛+2) + 6(2𝑛+2 − 6) + 5(9 × 2𝑛+1 − 28)
+4(2𝑛+1) + 4(7 × 2𝑛 − 10) + 2(2𝑛) = 17 × 2𝑛+2 + 49 × 2𝑛+1 + 30 × 2𝑛 − 252.
= 17 × 2𝑛+2 + 49 × 2𝑛+1 + 30 × 2𝑛 − 252.

(iv) 𝑅2(𝑁𝑆𝐶5𝐶6[𝑛]) = 8 ൫2𝑛+2 − 6൯ + 4(2𝑛+2) + 9(2𝑛+2 − 6) + 6(9 × 2𝑛+1 − 28)
+3(2𝑛+1) + 4(7 × 2𝑛 − 10) + 2𝑛 = 21 × 2𝑛+2 + 57 × 2𝑛+1 + 29 × 2𝑛 − 310.

(v) 𝐻𝑅1(𝑁𝑆𝐶5𝐶6[𝑛]) = 36 ൫2𝑛+2 − 6൯ + 25(2𝑛+2) + 36(2𝑛+2 − 6)
+25(9 × 2𝑛+1 − 28) + 16(2𝑛+1) + 16(7 × 2𝑛 − 10) + 4(2𝑛)
= 97 × 2𝑛+2 + 241 × 2𝑛+1 + 116 × 2𝑛 − 1299.

(vi) 𝐻𝑅2(𝑁𝑆𝐶5𝐶6[𝑛]) = 64 ൫2𝑛+2 − 6൯ + 16(2𝑛+2) + 81(2𝑛+2 − 6)
+36(9 × 2𝑛+1 − 28) + 9(2𝑛+1) + 16(7 × 2𝑛 − 10) + 2𝑛
= 161 × 2𝑛+2 + 333 × 2𝑛+1 + 113 × 2𝑛 − 2038.
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3. Nano star DendrimerNSD[n]

Our second molecular graph is known as Nano star Dendrimer 𝑁𝑆𝐷[𝑛]. It is a molecule of generation 𝐺𝑛 with 𝑛 ⩾ 1
growth stage, composed of four similar branches, with a central core at its center. The central core comprises six ver-
tices of degree 2, six vertices of degree 3, and thirteen edges, as illustrated in Figure 2. In one branch of𝑁𝑆𝐷[𝑛], there
are 30+2×30+22×30+⋯+2𝑛−1×30 = 30(2𝑛−1) vertices, and 35+2×35+22×35+⋯+2𝑛−1×35 = 35(2𝑛−1)
edges. Hence, in 𝑁𝑆𝐷[𝑛], there is a total of 120 × 2𝑛 − 108 vertices and 140 × 2𝑛 − 127 edges, as shown in [10].
Figure 2 depicts that the edge set of 𝑁𝑆𝐷[𝑛] can be divided into the following three categories. Table 2 presents the
number of edges in each of these categories.

(Note: The correct number of edges 𝐸(2,2) in [10] was inaccurately calculated and has been corrected in Table 2.)

Fig. 2. The molecular graph of Nano star dendrimer NSD[n]

Table 2. The edges partition of 𝑁𝑆𝐷[𝑛]
E(u, v) Number of edges (du,dv)
𝐸(2,2) 56 × 2𝑛 − 48
𝐸(2,3) 48 × 2𝑛 − 44
𝐸(3,3) 36 × 2𝑛 − 35

Theorem 3.1. Let𝑁𝑆𝐷[𝑛] be a molecule graph of generation 𝐺𝑛 with 𝑛 ≥ 1 growth stage. Then the 𝑆𝑂, 𝑆𝑂𝑟𝑒𝑑,∏𝑠𝑜,
𝑆𝑂𝑟𝑒𝑣, and 𝑅𝑆𝑂 indices for 𝑁𝑆𝐷[𝑛] are as follows:

(i) 𝑆𝑂(𝐺) = (220√2 + 48√13) 2𝑛 − (201√2 + 44√13).
(ii) 𝑆𝑂𝑟𝑒𝑑(𝐺) = (128√2 + 48√5) 2𝑛 − (118√2 + 44√5).
(iii) ∏𝑠𝑜(𝐺) = 12√13 (96768 × 23𝑛 − 171648 × 22𝑛 + 242912 × 2𝑛 − 168000).
(iv) 𝑆𝑂𝑟𝑒𝑣(𝐺) = (148√2 + 48√5) 2𝑛 − (131√2 + 44√5).
(v) 𝑅𝑆𝑂(𝐺) = (240√2 + 48√13) 2𝑛 − (214√2 + 44√13).
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Proof. The results above are derived from the edge partition of 𝑁𝑆𝐷[𝑛] presented in table 2.

Theorem3.2. Suppose𝑁𝑆𝐷[𝑛] be amolecule graph of generation𝐺𝑛 with𝑛 ≥ 1 growth stage. Then the𝐺𝑂1, 𝐺𝑂2, 𝑅1, 𝑅2, 𝐻𝑅1,
and 𝐻𝑅2 indices for 𝑁𝑆𝐷[𝑛] are as follows:

(i) 𝐺𝑂1(𝐺) = 1516 × 2𝑛 − 1393.
(ii) 𝐺𝑂2(𝐺) = 4280 × 2𝑛 − 3978.
(iii) 𝑅1(𝐺) = 720 × 2𝑛 − 648.
(iv) 𝑅2(𝐺) = 936 × 2𝑛 − 836
(v) 𝐻𝑅1(𝐺) = 3792 × 2𝑛 − 3388
(vi) 𝐻𝑅2(𝐺) = 6840 × 2𝑛 − 6032

Proof. The results above are derived from the edge partition of 𝑁𝑆𝐷[𝑛] presented in table 2.

4. Zinc Porphyrin dendrimerDPZn

The Zinc Porphyrin dendrimer 𝐷𝑃𝑍𝑛 of generation 𝐺𝑛 with 𝑛 ⩾ 1 growth stage is our third molecular graph. 𝐷𝑃𝑍𝑛
is composed of four identical branches with a core at its center. The central core consists of 24 vertices of degree 2,
24 vertices of degree 3, 1 vertex of degree 4, and 60 edges, as shown in Figure 3. In one branch of 𝐷𝑃𝑍𝑛, there are
14+2×14+22×14+⋯+2𝑛−1×14 = 14×2𝑛−14 vertices; among them, 9+2×9+22×9+⋯+2𝑛−2×9+2𝑛−1×11 =
10 × 2𝑛 − 9 vertices are of degree 2, and the remaining 14 × 2𝑛 − 14 − (10 × 2𝑛 − 9) = 4 × 2𝑛 − 5 vertices are
of degree 3. Therefore, there are a total of 56 × 2𝑛 − 7 vertices in 𝐷𝑃𝑍𝑛, among them, 40 × 2𝑛 − 12 vertices are of
degree 2, and 16×2𝑛 +4 vertices are of degree 3, and one vertex is of degree 4. According to Figure 3, the edges set
of 𝐷𝑃𝑍𝑛 can be divided into the following four classes. Their cardinalities are computed in Table 3.
(Note: The number of edges 𝐸(2,2) and 𝐸(2,3) in [2] was incorrectly calculated. The correct numbers have been updated
in Table 3.)

Table 3. The edge partition of 𝐷𝑃𝑍𝑛
E(u, v) Number of edges (du,dv)
𝐸2,2) 24 × 2𝑛 − 4
𝐸(2,3) 32 × 2𝑛 − 16
𝐸(3,3) 8 × 2𝑛 + 12
𝐸(3,4) 4

Theorem 4.1. Let 𝐷𝑃𝑍𝑛 be a molecule graph of generation 𝐺𝑛 with 𝑛 ≥ 1 growth stage. Then the 𝑆𝑂, 𝑆𝑂𝑟𝑒𝑑, ∏𝑠𝑜,
𝑆𝑂𝑟𝑒𝑣, and 𝑅𝑆𝑂 indices for 𝐷𝑃𝑍𝑛 are as follows:

(i) 𝑆𝑂(𝐺) = (72√2 + 32√13) 2𝑛 + 28√2 − 16√13.
(ii) 𝑆𝑂𝑟𝑒𝑑(𝐺) = (40√2 + 32√5) 2𝑛 + 20√2 − 16√5 + 4√13.
(iii) ∏𝑠𝑜(𝐺) = 240√13 (6144 × 23𝑛 − 512 × 2𝑛 + 768).
(iv) 𝑆𝑂𝑟𝑒𝑣(𝐺) = (88√2 + 32√13) 2𝑛 + 20√2 − 16√13.
(v) 𝑅𝑆𝑂(𝐺) = (152√2 + 32√41) 2𝑛 + 28√2 − 16√41 + 20.

Proof. The results are derived based on the edge divisions of 𝐷𝑃𝑍𝑛 presented in Table 3.

Theorem4.2. Suppose𝐷𝑃𝑍𝑛 be amolecule graph of generation𝐺𝑛 with𝑛 ≥ 1 growth stage. Then the𝐺𝑂1, 𝐺𝑂2, 𝑅1, 𝑅2, 𝐻𝑅1,
and 𝐻𝑅2 indices for 𝐷𝑃𝑍𝑛 are as follows:

(i) 𝐺𝑂1(𝐺) = 664 × 2𝑛 + 48.
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Fig. 3. The molecular graph of Zinc porphyrin dendrimer

(ii) 𝐺𝑂2(𝐺) = 1776 × 2𝑛 + 440.
(iii) 𝑅1(𝐺) = 464 × 2𝑛 − 52.
(iv) 𝑅2(𝐺) = 840 × 2𝑛 − 84.
(v) 𝐻𝑅1(𝐺) = 3392 × 2𝑛 − 508.
(vi) 𝐻𝑅2(𝐺) = 11400 × 2𝑛 − 2212.

Proof. The results are derived based on the edge divisions of 𝐷𝑃𝑍𝑛 presented in Table 3.

5. Conclusion

The primary objective was to compare the topological indices of the selected dendrimers. Our findings indicate that the
Nano Star Dendrimer 𝑁𝑆𝐷[𝑛] exhibits the highest values among the evaluated indices—namely 𝑆𝑂, 𝑆𝑂𝑟𝑒𝑑, 𝑆𝑂𝑟𝑒𝑣,
𝐺𝑂2, 𝑅1(𝐺), 𝑅2(𝐺), and𝐻𝑅1(𝐺)—especially from the third generation onward. In contrast, the Nano Star Dendrimer
𝑁𝑆𝐶5𝐶6[𝑛] demonstrates the lowest values. Figure 4 illustrates that all diagrams represent exponential functions with
a base of 2, indicating a consistent increase in topological indices as the number of generations increases. These results
highlight the significant differences in topological properties among the dendrimers, suggesting that 𝑁𝑆𝐷[𝑛] may be
more advantageous for applications requiring higher topological indices.
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Abstract

A. Jabbari and O.T. Mewomo have studied the ideal amenability property in tensor Banach
algebras and have proven several results. In this paper, we explore a different form of ideal
amenability within tensor Banach algebras, specifically examining the concept of quotient ideal
amenability. This concept applies to tensor Banach algebras constructed from the tensor product
of two Banach algebras. Let 𝐴 be a Banach algebra, so 𝐴⊗̂𝐴 is a tensor Banach algebra. We
consider closed ideal generated in the projective tensor product 𝐴⊗̂𝐴, then we generate closed
ideal for 𝐴 and investigate the quotient ideal amenability of both 𝐴 and 𝐴⊗̂𝐴. Additionally, we
examine the hereditary properties of quotient ideal amenability for tensor Banach algebras and
explore the relationship between the quotient ideal amenability of 𝐴 and its projective tensor
product.

1. Introduction and preliminaries

The notion of amenability in Banach algebras was first introduced by B. E. Johnson [5] in 1972. He showed that for
locally compact group 𝐺, the group algebra 𝐿1(𝐺) is amenable if and only if 𝐺 is amenable in [5]. In [3], Gorgi and
Yazdanpanah studied and introduced the concept of 𝐼-weak amenability and ideal amenability of Banach algebras and
they showed that ideal amenability is different from amenability and weak amenability in Banach algebras, also they
showed that every 𝐶∗-algebra is ideally amenable. The Banach algebra 𝐴 is 𝐼-weakly amenable if ℋ1(𝐴, 𝐼∗) = {0}
and is ideally amenable if it is 𝐼-weakly amenable for every closed two-sided ideal 𝐼 of 𝐴. Kazemipour and Fozouni
in [7], defined a new amenability in Banach algebras named quotient amenability. The Banach algebra 𝐴 is known
𝐼-quotient amenable, if satisfy the conditionℋ1(𝐴𝐼 , 𝑋

∗) = {0}, for every Banach 𝐴
𝐼 -bimodule 𝑋, where 𝐼 is a closed

two-sided ideal of 𝐴 and 𝑋∗ is the dual module of 𝑋, so 𝑋∗ is a Banach 𝐴
𝐼 -bimodule. They also showed that, 𝐴 is

quotient amenable, if 𝐴 is 𝐼-quotient amenable for every closed two-sided ideal 𝐼 of 𝐴. The following module actions
imply that the Banach 𝐴

𝐼 -bimodule 𝑋 becomes a Banach 𝐴-bimodule:

𝑎 • 𝑥 = (𝑎 + 𝐼) ⋅ 𝑥, 𝑥 • 𝑎 = 𝑥 ⋅ (𝑎 + 𝐼) (𝑎 ∈ 𝐴, 𝑥 ∈ 𝑋). (1)
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Influenced by these concepts, Teymouri and et. al, in [12], studied some derivations into annihilators of the closed
ideals of Banach algebras and introduce 𝐴

𝐼 -weak amenability and quotient ideal amenability of Banach algebra 𝐴,
where 𝐼 is a closed two-sided ideal of 𝐴.

Definition 1.1. Let 𝐴 be a Banach algebra and 𝐼 be a closed two-sided ideal of 𝐴. 𝐴 is colled 𝐴
𝐼 -weakly amenable

if ℋ1(𝐴, (𝐴𝐼 )
∗) = {0}. Also, 𝐴 is said to be quotient ideally amenable if it is 𝐴

𝐼 -weakly amenable for every closed
two-sided ideal 𝐼 of 𝐴.

Remark 1.2. Let 𝐴 be a Banach algebra and 𝐼 be a closed two-sided ideal of 𝐴. The annihilator of 𝐼 is denoted by
𝐼⟂ = {𝑓 ∈ 𝐴∗; 𝑓(𝐼) = 0}, so (𝐴𝐼 )

∗ ≃ 𝐼⟂.

Since 𝐴
𝐼 is a Banach 𝐴

𝐼 -bimodule, by (1), 𝐴
𝐼 is a Banach 𝐴-bimodule and with following actions, (𝐴𝐼 )

∗ becomes a
Banach 𝐴-bimodule

⟨𝑎′ + 𝐼, 𝑎 • 𝑓⟩ = ⟨𝑎′𝑎 + 𝐼, 𝑓⟩, ⟨𝑎′ + 𝐼, 𝑓 • 𝑎⟩ = ⟨𝑎𝑎′ + 𝐼, 𝑓⟩ (𝑎 ∈ 𝐴, 𝑎′ + 𝐼 ∈ 𝐴
𝐼 , 𝑓 ∈ (

𝐴
𝐼 )

∗).

In this paper, we explore the concept of quotient ideal amenability and the conditions under which we can deduce the
quotient ideal amenability of 𝐴⊗̂𝐴 from that of 𝐴 and conversely. We begin by considering the unital Banach algebra
𝐴 and constructing the unital tensor Banach algebra (𝐴⊗̂𝐴). After this, we investigate the relationship between the
quotient ideal amenability of 𝐴 and its tensor product.

2. Quotient ideal amenability in tensor Banach algebra (𝐴⊗̂𝐴)

Let 𝐴 be an unital Banach algebra with unit element 𝑒𝐴, then (𝐴⊗̂𝐴) is an unital Banach algebra with unit element
(𝑒𝐴 ⊗ 𝑒𝐴). The concepts of weak amenability and ideal amenability in a unital Banach algebra 𝐴 are equivalent for
every closed ideal 𝐼 of 𝐴. In this section, we examine the quotient ideal amenability of the tensor Banach algebra
(𝐴⊗̂𝐴) and its relationship with the quotient ideal amenability of the unital Banach algebra 𝐴. The projective tensor
product of the Banach algebra 𝐴 with itself, defined by

𝐴⊗̂𝐴 = {
∞


𝑖=1

𝑎𝑖 ⊗𝑎′𝑖 ∶
∞


𝑖=1

‖𝑎𝑖‖‖𝑎′𝑖‖ < ∞, 𝑎𝑖 , 𝑎′𝑖 ∈ 𝐴},

the projective tensor product (𝐴⊗̂𝐴) is an 𝐴-bimodule with following module actions

𝑎 ⋅ (𝑎1 ⊗𝑎2) = 𝑎𝑎1 ⊗𝑎2 , (𝑎1 ⊗𝑎2) ⋅ 𝑎 = 𝑎1 ⊗𝑎2𝑎 (𝑎, 𝑎1, 𝑎2 ∈ 𝐴),

also, (𝐴⊗̂𝐴) is a Banach algebra with the product and norm defined by

(𝑎1 ⊗𝑎2) ⋅ (𝑎4 ⊗𝑎3) = 𝑎1𝑎3 ⊗𝑎2𝑎4 , (𝑎1, 𝑎3, 𝑎2, 𝑎4 ∈ 𝐴)

‖𝑎‖ = inf{
∞


𝑖=1

‖𝑎𝑖‖‖𝑎′𝑖‖, 𝑎 =
∞


𝑖=1

𝑎𝑖 ⊗𝑎′𝑖}.

According to the [12, Lemma 3.3], for Banach algebra 𝐴 and it’s closed two-sided ideal 𝐼, if 𝐼 is complemented of
𝐴, then (𝐼⊗̂𝐴) is a closed two-sided ideal of (𝐴⊗̂𝐴) and is an (𝐴⊗̂𝐴)-bimodule. Also for complemented closed
two-sided ideal of 𝐴, such as 𝐼, the following exact sequence of Banach 𝐴-bimodules splits

{0} −→ 𝐼 𝑖−−→ 𝐴 𝑞−−→ 𝐴
𝐼 −→ {0},

where 𝑞 ∶ 𝐴 → 𝐴
𝐼 is canonical quotient map.
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Let 𝐴 and 𝔄 are Banach algebras such that 𝐴 becomes 𝔄-bimodule. And let 𝐽 be a closed ideal generated in (𝐴⊗̂𝐴)
by the elements of the form (𝑎1 ⋅𝛼⊗𝑎2−𝑎1⊗𝛼⋅𝑎2) for any 𝛼 ∈ 𝔄 and 𝑎1, 𝑎2 ∈ 𝐴. So the module projective tensor
product (𝐴⊗̂𝔄𝐴) is the quotient

𝐴⊗̂𝐴
𝐽 , [6]. Let 𝐼 be the closed ideal in 𝐴 generated by Δ(𝐽), where Δ ∶ 𝐴⊗̂𝐴 → 𝐴

is the multiplication map. By [11, Lemma 3], the definition of the module projective tensor product implies that
(𝐴⊗̂𝔄𝐴) ≃

𝐴⊗̂𝐴
𝐼0

, where 𝐼0 is the closed linear span of the set {𝑎1 ⋅ 𝛼⊗𝑎2−𝑎1⊗𝛼 ⋅𝑎2; 𝑎1, 𝑎2 ∈ 𝐴, 𝛼 ∈ 𝔄}. Since
𝐴 is a Banach 𝐴-𝔄-bimodule, by identity map id𝐴 ∶ 𝐴 → 𝐴 and canonical quotient map 𝑞 ∶ 𝐴 → 𝐴

𝐼 , we have following
exact sequence of Banach 𝐴-bimodules

{0} −→ 𝐼⊗̂𝐴 𝑖⊗̂id𝐴−−−−→ 𝐴⊗̂𝐴 𝑞⊗̂id𝐴−−−−→ 𝐴
𝐼 ⊗̂𝐴 −→ {0},

Then the map

Φ ∶= 𝑞 ⊗ id𝐴 ∶ 𝐴⊗̂𝐴 → 𝐴
𝐼 ⊗̂𝐴

𝑎1 ⊗𝑎2 ↦ (𝑎1 + 𝐼)⊗ 𝑎2
is the quotient map for any 𝑎1, 𝑎2 ∈ 𝐴. Therefore we have an isometric isomorphism

𝐴⊗̂𝐴
kerΦ ≃ 𝐴

𝐼 ⊗̂𝐴.

According to the [10, Theorem 2.20], kerΦ = 𝐼⊗̂𝐴. Finally, we conclude that 𝐼⊗̂𝐴 = 𝐼0
Lemma 2.1. Let 𝐴 be a Banach algebra and a 𝔄-bimodule. For closed ideal of 𝐴 such as 𝐼 that is equal to the closed
linear span of the set of elements of the form ((𝑎1 ⋅ 𝛼)𝑎2 − 𝑎1(𝛼 ⋅ 𝑎2)) for any 𝛼 ∈ 𝔄 and any 𝑎1, 𝑎2 ∈ 𝐴, we have

𝐴⊗̂𝐴
𝐼⊗̂𝐴

≃ 𝐴
𝐼 ⊗̂𝐴

Theorem 2.2. Let 𝐴 be a Banach algebra and a 𝔄-bimodule and a commutative and essential Banach algebra, and
𝐼 be a complemented closed two-sided ideal of 𝐴 as in Lemma (2.1). If 𝐴⊗̂𝐴 is (𝐴⊗̂𝐴

𝐼⊗̂𝐴 )-weakly amenable then 𝐴 is
𝐴
𝐼 -weakly amenable.

Proof. Let 𝐼 be a complemented closed two-sided ideal of 𝐴, as in the previous, then (𝐼⊗̂𝐴) is a closed two-sided
ideal of (𝐴⊗̂𝐴). Since (𝐴⊗̂𝐴) is (𝐴⊗̂𝐴

𝐼⊗̂𝐴 )-weakly amenable, we haveℋ
1(𝐴⊗̂𝐴, (𝐴⊗̂𝐴

𝐼⊗̂𝐴 )
∗) = {0}.

Let 𝐷 ∶ 𝐴 ⟶ (𝐴𝐼 )
∗ be a derivation. Since 𝐴 is essential, let 𝜆 be a non-zero element in 𝐴∗ and there are 𝑐, 𝑑 ∈ 𝐴 such

that ⟨𝑐𝑑, 𝜆⟩ = 1. According to isomorphism in Lemma (2.1), define �̃� ∶ 𝐴⊗̂𝐴 → (𝐴⊗̂𝐴
𝐼⊗̂𝐴 )

∗ ≃ ((𝐴𝐼 )⊗̂𝐴)∗ by

⟨(𝑎″ + 𝐼) ⊗ 𝑎′, �̃�(𝑎1 ⊗𝑎2)⟩ = ⟨[𝑎″]𝐼 , 𝐷(𝑎1)⟩⟨𝑎′, 𝑎2 ⋅ 𝜆⟩,
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�̃� is a bounded linear map and for each 𝑎″, 𝑎′, 𝑎𝑖 ∈ 𝐴, we have

⟨[𝑎″]𝐼 ⊗𝑎′, �̃�((𝑎1 ⊗𝑎2)(𝑎3 ⊗𝑎4))⟩ = ⟨[𝑎″]𝐼 ⊗𝑎′, �̃�(𝑎1𝑎3 ⊗𝑎2𝑎4)⟩
= ⟨[𝑎″]𝐼 , 𝐷(𝑎1𝑎3)⟩⟨𝑎′, 𝑎2𝑎4 ⋅ 𝜆⟩
= ⟨[𝑎″]𝐼 , 𝐷(𝑎1) ⋅ 𝑎3⟩⟨𝑎′, 𝑎2𝑎4 ⋅ 𝜆⟩
+ ⟨[𝑎″]𝐼 , 𝑎1 ⋅ 𝐷(𝑎3)⟩⟨𝑎′, 𝑎2𝑎4 ⋅ 𝜆⟩

= ⟨𝑎3 ⋅ [𝑎″]𝐼 , 𝐷(𝑎1)⟩⟨𝑎4 ⋅ 𝑎′, 𝑎2 ⋅ 𝜆⟩
+ ⟨[𝑎″]𝐼 ⋅ 𝑎1, 𝐷(𝑎3)⟩⟨𝑎′ ⋅ 𝑎2, 𝑎4 ⋅ 𝜆⟩

= ⟨(𝑎3[𝑎″]𝐼) ⊗ (𝑎4𝑎′), �̃�(𝑎1 ⊗𝑎2)⟩
+ ⟨([𝑎″]𝑎1) ⊗ (𝑎′𝑎2), �̃�(𝑎3 ⊗𝑎4)⟩

= ⟨(𝑎3 ⊗𝑎4)([𝑎″]𝐼 ⊗𝑎′), �̃�(𝑎1 ⊗𝑎2)⟩
+ ⟨([𝑎″]𝐼 ⊗𝑎′)(𝑎1 ⊗𝑎2), �̃�(𝑎3 ⊗𝑎4)⟩

= ⟨[𝑎″]𝐼 ⊗𝑎′, �̃�(𝑎1 ⊗𝑎2) ⋅ (𝑎3 ⊗𝑎4)⟩
+ ⟨[𝑎″]𝐼 ⊗𝑎′1, (𝑎1 ⊗𝑎2) ⋅ �̃�(𝑎3 ⊗𝑎4)⟩,

therefore �̃� is a derivation. According to the hypothesis, there is 𝜑 ∈ (𝐴⊗̂𝐴
𝐼⊗̂𝐴 )

∗ such that �̃� = ad𝜑. We define 𝛾 ∈ (𝐴𝐼 )
∗

by 𝛾([𝑎″]𝐼) = 𝜑([𝑎″]𝐼 ⊗ 𝑐𝑑), so 𝛾 is a bounded linear functional and for any 𝑐, 𝑑, 𝑎 ∈ 𝐴 we have

⟨[𝑎″]𝐼 , 𝐷(𝑎)⟩ = ⟨[𝑎″]𝐼 , 𝐷(𝑎)⟩⟨𝑐𝑑, 𝜆⟩
= ⟨[𝑎″]𝐼 , 𝐷(𝑎)⟩⟨𝑐, 𝑑𝜆⟩
= ⟨[𝑎″]𝐼 ⊗ 𝑐, �̃�(𝑎 ⊗ 𝑑)⟩
= ⟨[𝑎″]𝐼 ⊗ 𝑐, ad𝜑(𝑎 ⊗ 𝑑)⟩
= ⟨[𝑎″]𝐼 ⊗ 𝑐, (𝑎 ⊗ 𝑑) ⋅ 𝜑⟩ − ⟨[𝑎″]𝐼 ⊗ 𝑐,𝜑 ⋅ (𝑎 ⊗ 𝑑)⟩
= ⟨([𝑎″]𝐼 ⊗ 𝑐) ⋅ (𝑎 ⊗ 𝑑), 𝜑⟩ − ⟨(𝑎 ⊗ 𝑑) ⋅ ([𝑎″]𝐼 ⊗ 𝑐), 𝜑⟩
= ⟨[𝑎″]𝐼 ⋅ 𝑎 ⊗ 𝑐𝑑, 𝜑⟩ − ⟨𝑎 ⋅ [𝑎″]𝐼 ⊗𝑑𝑐, 𝜑⟩
= ⟨([𝑎″]𝐼 ⋅ 𝑎 − 𝑎 ⋅ [𝑎″]𝐼) ⊗ 𝑐𝑑, 𝜑⟩
= ⟨([𝑎″]𝐼 ⋅ 𝑎 − 𝑎 ⋅ [𝑎″]𝐼), 𝛾⟩
= ⟨[𝑎″]𝐼 , 𝑎 ⋅ 𝛾 − 𝛾 ⋅ 𝑎⟩
= ⟨[𝑎″]𝐼 , ad𝛾(𝑎)⟩,

therefore 𝐷 is an inner derivation, soℋ1(𝐴, (𝐴𝐼 )
∗) = {0}, hence the Banach algebra 𝐴 is 𝐴

𝐼 -weakly amenable.

Theorem 2.3. Let 𝐴 be a essential Banach algebra. If 𝐴 is quotient ideally amenable, then (𝐴⊗̂𝐴) is quotient ideally
amenable for any complemented closed two-sided ideals of 𝐴.

Proof. Let 𝐼 be a closed two-sided ideal of 𝐴. Since 𝐴 is quotient ideally amenable, then ℋ1(𝐴, (𝐴𝐼 )
∗) = {0}. Ac-

cording to the [9, Theorem 2.6], This implies that 𝐴
𝐼 is weakly amenable, and indicates that 𝐴 is weakly amenable.

On the other hand, based on [1, Theorem 2.8.71], the weak amenability of the Banach algebra 𝐴, ensures the weak
amenability of Banach algebra (𝐴⊗̂𝐴). Furthermore, applying the same theorem, the weak amenability of (𝐴𝐼 ) and
𝐴, leads to the conclusion that (𝐴𝐼 ⊗̂𝐴), is weakly amenable. Therefore, we have ℋ1(𝐴𝐼 ⊗̂𝐴, (𝐴𝐼 ⊗̂𝐴)∗) = {0}. By
the first isomorphism in Lemma (2.1), ℋ1((𝐴⊗̂𝐴

𝐼⊗̂𝐴 ), (
𝐴⊗̂𝐴
𝐼⊗̂𝐴 )

∗) = {0}. For the complemented closed two-sided ideal
𝐼 of essential Banach algebra 𝐴, by [12, Lemma 3.3], (𝐼⊗̂𝐴) is an essential closed ideal of (𝐴⊗̂𝐴). Therefore, by
the converse of [9, Theorem 2.6], we haveℋ1((𝐴⊗̂𝐴), (𝐴⊗̂𝐴

𝐼⊗̂𝐴 )
∗) = {0}. This reveals that (𝐴⊗̂𝐴) is (𝐴⊗̂𝐴

𝐼⊗̂𝐴 )-weakly
amenable, indicating that (𝐴⊗̂𝐴) is quotient ideally amenable for any complemented ideal of 𝐴.



Momeni & Miri & Nasrabadi / The 5th National Congress on Mathematics and Statistics 229

3. Quotient ideal amenability in tensor Banach algebra (𝐴, •𝜑)⊗̂(𝐵, •𝜓)

In this section, we consider a Banach algebra 𝐴 and its character space denoted by Φ𝐴. For new product •𝜑 on 𝐴 as
follows

𝑎1 •𝜑 𝑎2 = 𝜑(𝑎1)𝑎2 (𝑎1, 𝑎2 ∈ 𝐴, 𝜑 ∈ Φ𝐴).
For 𝑎1, 𝑎2, 𝑎3 ∈ 𝐴, the product operates as follows:

(𝑎1 •𝜑 𝑎2) •𝜑 𝑎3 = 𝜑(𝑎1)𝑎2 •𝜑 𝑎3 = 𝜑(𝑎1)𝜑(𝑎2)𝑎3,

𝑎1 •𝜑 (𝑎2 •𝜑 𝑎3) = 𝑎1 •𝜑 (𝑎2)𝑎3 = 𝜑(𝑎1)𝜑(𝑎2)𝑎3.
𝐴 equipped with this product is an algebra, denoted by (𝐴, •𝜑). The norm on 𝐴 can be preserved in (𝐴, •𝜑) if we
continue to use the original norm of Banach algebra 𝐴. The new multiplication satisfies the inequality

‖𝑎1 •𝜑 𝑎2‖ ≤ ‖𝜑‖‖𝑎1‖‖𝑎2‖.

Therefore, (𝐴, •𝜑) forms a Banach algebra. For (𝐴, •𝜑) to have an identity element, there must exist 𝑒𝐴 ∈ 𝐴 such that

𝑒𝐴 •𝜑 𝑎 = 𝜑(𝑒𝐴)𝑎 = 𝑎 and 𝑎 •𝜑 𝑒𝐴 = 𝜑(𝑎)𝑒𝐴 = 𝑎.

The product •𝜑 is generally not commutative, because for any 𝑎1, 𝑎2 ∈ 𝐴

𝑎1 •𝜑 𝑎2 = 𝜑(𝑎1)𝑎2 and 𝑎2 •𝜑 𝑎1 = 𝜑(𝑎2)𝑎1.

In [12], Teymouri et al. investigated the quotient ideal amenability of the algebraic structures (𝐴, •𝜑) and (𝐴, •𝜑)⊗̂(𝐵, •𝜓).
Additionally, in [4], Jabbari researched the ideal amenability of (𝐴, •𝜑)⊗̂(𝐵, •𝜓). In this section of the paper, We ex-
plore the relationship between the quotient ideal amenability of (𝐴, •𝜑) and (𝐵, •𝜓) with (𝐴, •𝜑)⊗̂(𝐵, •𝜓).

Theorem3.1. Let𝐴 and𝐵 be unital Banach algebras and let 𝐼 and 𝐽 be closed two-sided ideals of𝐴 and𝐵, respectively.
Suppose that �̃� ∶ 𝐴⊗̂𝐵 → (𝐴⊗̂𝐵

𝐾 )∗ is a map where𝐾 is a closed two-sided ideal of 𝐴⊗̂𝐵. Then �̃� is a derivation if and
only if there exist derivation maps𝐷𝐴 ∶ 𝐴 → (𝐴𝐼 )

∗ and𝐷𝐵 ∶ 𝐵 → (𝐵𝐽 )
∗ such that �̃�(𝑎⊗𝑏) ∶= 𝐷𝐴(𝑎)⊗𝑏+𝑎⊗𝐷𝐵(𝑏).

Moreover �̃� is an inner if and only if 𝐷𝐴 and 𝐷𝐵 are inner.

Proof. Firstly, we show that �̃� ∈ 𝒵1((𝐴⊗̂𝐵), (𝐴⊗̂𝐵
𝐾 )∗) if and only if 𝐷𝐴 ∈ 𝒵1(𝐴, (𝐴𝐼 )

∗) and 𝐷𝐵 ∈ 𝒵1(𝐵, (𝐵𝐽 )
∗). Let

𝐷𝐴 and 𝐷𝐵 be derivation maps, for 𝑎1, 𝑎2 ∈ 𝐴 and 𝑏1, 𝑏2 ∈ 𝐵, we have

�̃�((𝑎1 ⊗𝑏1)(𝑎2 ⊗𝑏2)) = �̃�(𝑎1𝑎2 ⊗𝑏1𝑏2)
= 𝐷𝐴(𝑎1𝑎2) ⊗ (𝑏1𝑏2) + (𝑎1𝑎2) ⊗ 𝐷𝐵(𝑏1𝑏2)
= (𝐷𝐴(𝑎1)𝑎2 + 𝑎1𝐷𝐴(𝑎2)) ⊗ (𝑏1𝑏2) + (𝑎1𝑎2) ⊗ (𝐷𝐵(𝑏1)𝑏2 + 𝑏1𝐷𝐵(𝑏2))
= (𝐷𝐴(𝑎1)𝑎2 ⊗𝑏1𝑏2) + (𝑎1𝐷𝐴(𝑎2) ⊗ 𝑏1𝑏2)

+ (𝑎1𝑎2 ⊗𝐷𝐵(𝑏1)𝑏2) + (𝑎1𝑎2 ⊗𝑏1𝐷𝐵(𝑏2))
= (𝐷𝐴(𝑎1) ⊗ 𝑏1)(𝑎2 ⊗𝑏2) + (𝑎1 ⊗𝑏1)(𝐷𝐴(𝑎2) ⊗ 𝑏2)

+ (𝑎1 ⊗𝐷𝐵(𝑏1))(𝑎2 ⊗𝑏2) + (𝑎1 ⊗𝑏1)(𝑎2 ⊗𝐷𝐵(𝑏2))
= (𝐷𝐴(𝑎1) ⊗ 𝑏1 + 𝑎1 ⊗𝐷𝐵(𝑏1))(𝑎2 ⊗𝑏2)

+ (𝑎1 ⊗𝑏1)(𝐷𝐴(𝑎2) ⊗ 𝑏2 + 𝑎2 ⊗𝐷𝐵(𝑏2))
= �̃�(𝑎1 ⊗𝑏1)(𝑎2 ⊗𝑏2) + (𝑎1 ⊗𝑏1)�̃�(𝑎2 ⊗𝑏2),

therefore, �̃� is a derivation.
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Conversely, let �̃� be a derivation, for 𝑎1, 𝑎2 ∈ 𝐴 and 𝑏1, 𝑏2 ∈ 𝐵, we have

𝐷𝐴(𝑎1𝑎2) ⊗ (𝑏1𝑏2) + (𝑎1𝑎2) ⊗ 𝐷𝐵(𝑏1𝑏2) = �̃�(𝑎1𝑎2 ⊗𝑏1𝑏2)
= �̃�((𝑎1 ⊗𝑏1)(𝑎2 ⊗𝑏2))
= �̃�(𝑎1 ⊗𝑏1) ⋅ (𝑎2 ⊗𝑏2) + (𝑎1 ⊗𝑏1) ⋅ �̃�(𝑎2 ⊗𝑏2)
= (𝐷𝐴(𝑎1) ⊗ 𝑏1 + 𝑎1 ⊗𝐷𝐵(𝑏1))(𝑎2 ⊗𝑏2)

+ (𝑎1 ⊗𝑏1)(𝐷𝐴(𝑎2) ⊗ 𝑏2 + 𝑎2 ⊗𝐷𝐵(𝑏2))
= (𝐷𝐴(𝑎1) ⊗ 𝑏1)(𝑎2 ⊗𝑏2) + (𝑎1 ⊗𝐷𝐵(𝑏1))(𝑎2 ⊗𝑏2)

+ (𝑎1 ⊗𝑏1)(𝐷𝐴(𝑎2) ⊗ 𝑏2) + (𝑎1 ⊗𝑏1)(𝑎2 ⊗𝐷𝐵(𝑏2))
= (𝐷𝐴(𝑎1)𝑎2 ⊗𝑏1𝑏2) + (𝑎1𝑎2 ⊗𝐷𝐵(𝑏1)𝑏2)

+ (𝑎1𝐷𝐴(𝑎2) ⊗ 𝑏1𝑏2) + (𝑎1𝑎2 ⊗𝑏1𝐷𝐵(𝑏2))
= (𝐷𝐴(𝑎1)𝑎2 + 𝑎1𝐷𝐴(𝑎2)) ⊗ (𝑏1𝑏2)

+ (𝑎1𝑎2) ⊗ (𝐷𝐵(𝑏1)𝑏2 + 𝑏1𝐷𝐵(𝑏2)),

therefore 𝐷𝐴 and 𝐷𝐵 are derivation maps.
In the following, we show that �̃� ∈ ℬ1((𝐴⊗̂𝐵), (𝐴⊗̂𝐵

𝐾 )∗) if and only if 𝐷𝐴 ∈ ℬ1(𝐴, (𝐴𝐼 )
∗) and 𝐷𝐵 ∈ ℬ1(𝐵, (𝐵𝐽 )

∗).
Let 𝐷𝐴 and 𝐷𝐵 be inner derivation, so there exist 𝜑 ∈ (𝐴𝐼 )

∗ and 𝜓 ∈ (𝐵𝐽 )
∗, respectively such that

𝐷𝐴(𝑎) = ad𝜑(𝑎) = 𝑎 ⋅ 𝜑 − 𝜑 ⋅ 𝑎 , (𝑎 ∈ 𝐴)

𝐷𝐵(𝑏) = ad𝜓(𝑏) = 𝑏 ⋅ 𝜓 − 𝜓 ⋅ 𝑏 , (𝑏 ∈ 𝐵).

Define 𝜙 ∈ ((𝐴⊗̂𝐵), (𝐴⊗̂𝐵
𝐾 )∗) by 𝜙 ∶= 𝜑⊗ id𝐵 + id𝐴⊗𝜓. Obviously, (𝜑⊗ id𝐵) and (id𝐴⊗𝜓) are functional on

𝐴⊗̂𝐵. We claim that 𝜙 generates �̃� to inner derivation. For 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, we have

�̃�(𝑎 ⊗ 𝑏) = 𝐷𝐴(𝑎) ⊗ 𝑏 + 𝑎 ⊗𝐷𝐵(𝑏)
= ad𝜑(𝑎) ⊗ 𝑏 + 𝑎 ⊗ ad𝜓(𝑏)
= (𝑎 ⋅ 𝜑 − 𝜑 ⋅ 𝑎) ⊗ 𝑏 + 𝑎 ⊗ (𝑏 ⋅ 𝜓 − 𝜓 ⋅ 𝑏)
= 𝑎 ⋅ 𝜑 ⊗ 𝑏 − 𝜑 ⋅ 𝑎 ⊗ 𝑏 + 𝑎 ⊗ 𝑏 ⋅ 𝜓 − 𝑎 ⊗𝜓 ⋅ 𝑏
= 𝑎 ⋅ 𝜑 ⊗ 𝑏 ⋅ id𝐵(𝑒𝐵) − 𝜑 ⋅ 𝑎 ⊗ id𝐵(𝑏) + 𝑎 ⋅ id𝐴(𝑒𝐴) ⊗ 𝑏 ⋅ 𝜓 − id𝐴(𝑎) ⊗ 𝜓 ⋅ 𝑏
= 𝑎 ⋅ 𝜑 ⊗ 𝑏 ⋅ id𝐵(𝑒𝐵) + 𝑎 ⋅ id𝐴(𝑒𝐴) ⊗ 𝑏 ⋅ 𝜓 − 𝜑 ⋅ 𝑎 ⊗ id𝐵(𝑏) − id𝐴(𝑎) ⊗ 𝜓 ⋅ 𝑏
= (𝑎 ⊗ 𝑏)(𝜑 ⊗ id𝐵) + (𝑎 ⊗ 𝑏)(id𝐴 ⊗𝜓) − ((𝜑 ⊗ id𝐵)(𝑎 ⊗ 𝑏) + (id𝐴 ⊗𝜓)(𝑎 ⊗ 𝑏))
= (𝑎 ⊗ 𝑏)((𝜑 ⊗ id𝐵) + (id𝐴 ⊗𝜓)) − ((𝜑 ⊗ id𝐵) + (id𝐴 ⊗𝜓))(𝑎 ⊗ 𝑏)
= (𝑎 ⊗ 𝑏)𝜙 − 𝜙(𝑎 ⊗ 𝑏)
= ad𝜙(𝑎 ⊗ 𝑏).

Therefore �̃� is an inner derivation, when 𝐷𝐴 and 𝐷𝐵 are inner derivations.
Conversely, let �̃� be an inner derivation. There exists 𝜙 ∈ (𝐴⊗̂𝐵

𝐾 )∗ such that �̃� = ad𝜙. This means that for 𝑎 ⊗ 𝑏 ∈
(𝐴⊗̂𝐵), we have

�̃�(𝑎 ⊗ 𝑏) = ad𝜙(𝑎 ⊗ 𝑏) = (𝑎 ⊗ 𝑏)𝜙 − 𝜙(𝑎 ⊗ 𝑏). (2)

Assuming 𝑏 = 𝑒𝐵, we can express �̃�(𝑎 ⊗ 𝑒𝐵) as follows

�̃�(𝑎 ⊗ 𝑒𝐵) = 𝐷𝐴(𝑎) ⊗ 𝑒𝐵 + 𝑎⊗𝐷𝐵(𝑒𝐵) = 𝐷𝐴(𝑎) ⊗ 𝑒𝐵 .

Using the equation derived from the relationship above (2), we find

𝐷𝐴(𝑎) ⊗ 𝑒𝐵 = (𝑎 ⊗ 𝑒𝐵)𝜙 − 𝜙(𝑎 ⊗ 𝑒𝐵).
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Similarly, assuming 𝑎 = 𝑒𝐴, we have

�̃�(𝑒𝐴 ⊗𝑏) = 𝐷𝐴(𝑒𝐴) ⊗ 𝑏 + 𝑒𝐴 ⊗𝐷𝐵(𝑏) = 𝑒𝐴 ⊗𝐷𝐵(𝑏).

By applying the earlier formulation, it follows that

𝑒𝐴 ⊗𝐷𝐵(𝑏) = (𝑒𝐴 ⊗𝑏)𝜙 − 𝜙(𝑒𝐴 ⊗𝑏).

From the preceding statements, the action of �̃� on (𝑎⊗𝑒𝐵) reduces to 𝐷𝐴(𝑎), while on (𝑒𝐴⊗𝑏) it reduces to 𝐷𝐵(𝑏).
Thus, the behaviors of 𝐷𝐴 and 𝐷𝐵 can be fully reconstructed from the restrictions of �̃�. Consequently, 𝐷𝐴 and 𝐷𝐵
represent inner derivations, similar to the notation used for �̃�.

References

[1] H. G. Dales, Banach algebras and automatic continuity, LondonMathematical SocietyMonographs, 24, Clarendon Press, Oxford., 24 (2000),.
[2] M. E. Gorgi, B. Hayati, S. A. R. Hosseinioun, Ideal amenability of Banach algebras and some hereditary properties, J. Sci.,Islamic Rep. Iran.,

21(4) (2010), 333-341.
[3] M. E. Gorgi, T. Yazdanpanah, Derivations into duals of ideals of Banach algebras, Proc, Indian Acad. Sci., 114 (2004), 399-408.
[4] A. Jabbari, On ideal amenability of Banach algebras, Journal of Mathematical Physics, Analysis, Geometry., 8 (2012), No. 2, 135-143.
[5] B. E. Johnson, Cohomology in Banach algebras, Memoirs Amer. Math. Soc. 127 (1972), 96 pp.
[6] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Kluwer Academic Publishers, Dordrecht, (1989).
[7] S. A. Kazemipour and M. Fozouni, Quotient amenability of Banach algebras, Indian. J. science and Technology., 8 (2015), 1-7.
[8] O. T. Mewomo, On ideal amenability in Banach algebras, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.)., 56 (2010), No. 2, 273-278.
[9] E. Nasrabadi, M. R. Miri, J. Momeni, A note on derivations into annihilators of the ideals of Banach algebras, Math. Slovaca., (2025), 1-7.
[10] R. A. Ryan, Introduction to Tensor Products of Banach Spaces,Springer-Verlag, London, (2002).
[11] A. Shirinkalam, A. Pourabbas and M. Amini,Module and Hochschild Cohomology of Certain Semigroup Algebras, Functional Analysis and

its Applications, 49 (2015), 315-318.
[12] A. Teymouri, A. Bodaghi and D. Ebrahimi Bagha,Derivations into annihilators of the ideals of Banach algebras, DemonstratioMathematica.,

52(1) (2019), 20-28.



Gonbad Kavous University

The 5th National Congress on Mathematics and StatisticsThe 5th National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1403

The 5th National Congress on Mathematics and Statistics, AL–233, pp. 232–235

Homogenously linked ideals over a module

M. Jahangiria,∗, A. Nadalia
aFaculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran

Article Info

Keywords:
linkage of ideals
graded modules
irrelevant ideal.

2020 MSC:
13A02
13C40
13D45.

Abstract

Let 𝑅 = ⊕𝑛∈ℕ0𝑅𝑛 be a standard graded ring, 𝑀 be a finitely generated graded 𝑅-module and
𝑅+ ∶= ⊕𝑛∈ℕ𝑅𝑛 denotes the irrelevant ideal of 𝑅. In this talk, we study some basic properties
of homogeneously linked ideals over𝑀. Due to the importance of irrelevant ideal in a standard
graded ring, we show whether a homogeneous ideal could be homogeneously linked with 𝑅+
over𝑀.

1. Introduction

Throughout the paper, 𝑅 = ⨁𝑛∈ℕ0 𝑅𝑛 is a standard graded Noetherian ring, i.e. 𝑅0 is a commutative Noetherian ring
and 𝑅 is generated, as an 𝑅0-algebra, by finitely many elements of degree one, 𝑅+ = ⨁𝑛∈ℕ 𝑅𝑛 is the irrelevant ideal
of 𝑅 and 𝔞 and 𝔟 are homogeneous ideals of 𝑅. Also,𝑀 denotes a finitely generated graded 𝑅-module.
In ([4]), the authors introduced the concept of linkage of ideals over a module, which is a generalization of its classical
concept introduced by Peskine and Szpiro ([10]). In this paper, we consider the above concept in the graded case.
More precisely, the homogeneous ideals 𝔞 and 𝔟 are said to be homogeneously linked (or h-linked) by 𝐼 over 𝑀,
denoted by 𝔞 ℎ∼(𝐼;𝑀) 𝔟, if 𝐼 is generated by a homogeneous 𝑀-regular sequence and 𝔞 and 𝔟 are linked by 𝐼 over𝑀.
We study some basic properties of homogeneously linked ideals. To be more precise, we show by examples that if
𝔞 ℎ∼(𝐼;𝑀) 𝔟, this doesn’t imply that 𝔞∩𝑅0 ∼(𝐼∩𝑅0;𝑀𝑛) 𝔟∩𝑅0 for all 𝑛 ∈ ℤ and vice versa. Although, in some cases it does.
Due to the importance of irrelevant ideal in a standard graded ring, it is natural to ask whether a homogeneous ideal
could be h-linked with 𝑅+. We answer this question in some cases.
We keep the notations introduced in the introduction, throughout the paper.

2. Results

We start by the basic concept of the paper.

∗Talker
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Definition 2.1. Assume that 𝔞𝑀 ≠ 𝑀 ≠ 𝔟𝑀 and 𝐼 ⊆ 𝔞 ∩ 𝔟 be an ideal generated by a homogeneous 𝑀-regular
sequence. Then we say that the ideals 𝔞 and 𝔟 are homogeneously linked (or h-linked) by 𝐼 over𝑀, denoted 𝔞 ℎ∼(𝐼;𝑀) 𝔟,
if 𝔟𝑀 = 𝐼𝑀 ∶𝑀 𝔞 and 𝔞𝑀 = 𝐼𝑀 ∶𝑀 𝔟. The ideals 𝔞 and 𝔟 are said to be geometrically h-linked by 𝐼 over 𝑀 if, in
addition, 𝔞𝑀 ∩ 𝔟𝑀 = 𝐼𝑀. Also, we say that the ideal 𝔞 is h-linked over𝑀 if there exist homogeneous ideals 𝔟 and 𝐼
of 𝑅 such that 𝔞 ℎ∼(𝐼;𝑀) 𝔟. 𝔞 is h-𝑀-selflinked by 𝐼 if 𝔞 ℎ∼(𝐼;𝑀) 𝔞.
Remark 2.2. Note that, this definition is a special case of linkage of ideals over a module, studied in [4]. Moreover,
if 𝔞 and 𝔟 are h-linked by 𝐼 over𝑀 and grade(𝔞,𝑀) = 𝑡 then the following statements hold.

(i) If 𝔞𝑀 ∩ 𝔟𝑀 ≠ 𝐼𝑀, then 𝐼𝑀 ∶𝑀 (𝔞 + 𝔟) ≠ 𝐼𝑀. So, (𝔞 + 𝔟) ⊆ 𝑍(𝑀/𝐼𝑀), the set of zero divisors of𝑀/𝐼𝑀, that
results grade(𝔞 + 𝔟,𝑀) = 𝑡.

(ii) If 𝔞𝑀 ∩ 𝔟𝑀 = 𝐼𝑀 (i.e. 𝔞 and 𝔟 are geometrically h-linked), then, by [5, 2.9], grade(𝔞 + 𝔟,𝑀) = 𝑡 + 1.
In the next example, we show that there is no bilateral relation between h-linkedness of ideals 𝔞 and 𝔟 by 𝐼 over𝑀 and
linkage of 𝔞 ∩ 𝑅0 and 𝔟 ∩ 𝑅0 by 𝐼 ∩ 𝑅0 over homogeneous components of𝑀.

Example 2.3. Let (𝑅0, 𝔪0) be local with depth𝑅0 > 0, 𝔪 = 𝔪0 + 𝑅+ be the homogeneous maximal ideal of 𝑅 and
𝑥1, 𝑥2, … , 𝑥𝑠(𝑠 ≥ 2) be a homogeneous 𝑅-regular sequence in 𝔪. Assume that 1 ≤ 𝑙 < 𝑠 such that deg 𝑥𝑖 = 0 for all
1 ≤ 𝑖 ≤ 𝑙 and deg 𝑥𝑖 ≥ 1 for all 𝑙 < 𝑖 ≤ 𝑠.

• Set 𝔞 ∶= (𝑥1, 𝑥2, … , 𝑥𝑠), 𝐼 ∶= (𝑥1, … , 𝑥𝑙 , 𝑥2𝑙+1, … , 𝑥𝑠), 𝔞0 ∶= 𝔞 ∩ 𝑅0 = (𝑥1, … , 𝑥𝑙)𝑅0 and 𝐼0 ∶= 𝐼 ∩ 𝑅0 =
(𝑥1, … , 𝑥𝑙)𝑅0. So, by [4, 2.2], 𝔞 is h-𝑅-selflinked by 𝐼. But, since 𝔞0 = 𝐼0, 𝔞0 is not 𝑅𝑛-selflinked by 𝐼0, for all
n.

• Again, set 𝔞 ∶= (𝑥1, 𝑥2, … , 𝑥𝑠), 𝐼 ∶= (𝑥21 , 𝑥2, … , 𝑥𝑠−1), 𝔞0 ∶= 𝔞 ∩ 𝑅0 = (𝑥1, … , 𝑥𝑙)𝑅0 and 𝐼0 ∶= 𝐼 ∩ 𝑅0 =
(𝑥21 , 𝑥2, … , 𝑥𝑙)𝑅0. Then, grade(𝔞, 𝑅) = 𝑠 ≠ grade(𝐼, 𝑅), so, by [4, 2.6(i)], 𝔞 is not h-𝑅-selflinked by 𝐼. But, 𝔞0
is 𝑅𝑛-selflinked by 𝐼0 for all 𝑛, using [4, 2.2] and the fact that 𝑥21 , 𝑥2, … , 𝑥𝑙 is an 𝑅𝑛-regular sequence for all 𝑛.

Lemma 2.4. Assume that (𝑅0, 𝔪0) is local and 𝔞 and 𝔟 are generated by elements of degree zero. Then, 𝔞 ℎ∼(0;𝑀) 𝔟
if and only if (𝔞 ∩ 𝑅0) ∼(0;𝑀𝑛) (𝔟 ∩ 𝑅0) for all 𝑛 ∈ ℤ.
In view of the importance of the irrelevant ideal in a standard graded ring, it is natural to study homogeneous ideals
which are h-linked with 𝑅+.
If 𝑅 = 𝑅0[𝑥1, … , 𝑥𝑛] is a polynomial ring graded in the usual way, then 𝑅+ = (𝑥1, … , 𝑥𝑛) is h-𝑅-selflinked by
(𝑥21 , 𝑥2, … , 𝑥𝑛), using [4, 2.2]. In the next example, we find some homogeneous ideals that are h-linked with 𝑅+. It
will be used in the next section, too.

Example 2.5.

1. Let 𝑅 = 𝑅0[𝑥] and 𝑥 ∉ 𝑍(𝑀), then 𝑅+
ℎ∼((𝑟0𝑥𝑡);𝑀) (𝑟0𝑥𝑡−1) for all non-unit elements 𝑟0 ∈ 𝑅0\𝑍(𝑀) and all

𝑡 ≥ 1.
2. Let 𝑅 = 𝑅0[𝑥, 𝑦] and 𝑟1𝑥, 𝑟2𝑦 be an 𝑀-regular sequence where 𝑟1, 𝑟2 ∈ 𝑅0. Then, it is straight forward to see

that 𝑅+
ℎ∼((𝑟1𝑥𝑡 ,𝑟2𝑦𝑡′ );𝑀) (𝑟1𝑥𝑡 , 𝑟2𝑦𝑡

′ , 𝑟1𝑟2𝑥𝑡−1𝑦𝑡
′−1) for all 𝑡, 𝑡′ ≥ 1.

It’s natural to ask whether a homogeneous ideal which is linked could be an h-linked ideal? In the following, we
answer it in a special case.

Remark 2.6. Let 𝑅0 be reduced and 𝑅+ be a linked ideal by 𝐼 over 𝑅. As 𝑅0 is reduced, 𝑅+ is radical. Also, in view
of [1, 16.1.2], there exists an ideal, say 𝐼′, generated by a homogeneous 𝑅-regular sequence of length 𝑡 in 𝑅+, where
𝑡 ∶= grade𝑅+ and 𝐼′ ≠ 𝑅+. So, using [4, 2.8], [3, Theorem 1] and [12, 1.4],

Ass𝑅/𝑅+ ⊆ Ass𝑅/𝐼 ∩ 𝑉(𝑅+) = Ass𝐻𝑜𝑚𝑅(𝑅/𝑅+, 𝑅/𝐼)
= Ass𝐸𝑥𝑡𝑡𝑅(𝑅/𝑅+, 𝑅) = Ass𝑅/𝐼′ ∩ 𝑉(𝑅+),

where 𝑉(𝑅+) denotes the set of prime ideals of 𝑅 containing 𝑅+. This implies that 𝑅+ is an h-linked ideal by 𝐼′, by
[6, 2.8].
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Definition 2.7. Following [9, 2.1], a sequence 𝑥1, 𝑥2, … , 𝑥𝑡 of homogeneous elements of 𝔟 is said to be a homogeneous
𝔟-filter regular sequence on𝑀 if 𝑥𝑖 ∉ 𝔭 for all 𝔭 ∈ Ass( 𝑀

(𝑥1 ,…,𝑥𝑖−1)𝑀
)\𝑉(𝔟) and all 𝑖 = 1,… , 𝑡.

Assume that 𝔞 is generated by elements of positive degrees and 𝔞 ⊆ 𝔟. By [7, 1.5], if Supp( 𝑀
𝔞𝑀 ) ⊈ 𝑉(𝔟), then all maxi-

mal homogeneous 𝔟-filter regular sequences in 𝔞 on𝑀 have the same finite length, that is denoted by f‑grade(𝔟, 𝔞,𝑀).
Also f‑grade(𝔟, 𝔞,𝑀) ∶= ∞ whenever Supp( 𝑀

𝔞𝑀 ) ⊆ 𝑉(𝔟). Note that grade(𝔞,𝑀) ≤ f‑grade(𝔟, 𝔞,𝑀).
Moreover, Chu and Gu in [? , 2.4] in the case where 𝔟 = 𝑅+, show that if Supp( 𝑀

𝔞𝑀 ) ⊈ 𝑉(𝑅+) then

f‑grade(𝑅+, 𝔞,𝑀) = max{𝑖 ∣ 𝐻𝑗
𝔞 (𝑀)𝑛 = 0, for all 𝑛 ≫ 0 and all 𝑗 < 𝑖}.

In the following theorem, we consider a polynomial ring and see whether a homogeneous ideal could be h-linked with
𝑅+.
Theorem 2.8. Let (𝑅0, 𝔪0) be a regular local ring containing a field of characteristic zero and 𝑅 = 𝑅0[𝑥1, … , 𝑥𝑡] be
the polynomial ring graded in the usual way, that is deg(𝑥𝑖) = 1 for all 𝑖 = 1,… , 𝑡. Then 𝑅+ can’t be h-linked with
any ideal 𝔞 ⊋ 𝑅+. Moreover, if 𝔞 ℎ∼(𝐼;𝑅) 𝑅+ and 𝔞 ⊈ 𝑅+, then 𝔞 and 𝑅+ are geometrically h-linked by 𝐼 over 𝑅.

Proof. Let 𝔞 ℎ∼(𝐼;𝑅) 𝑅+ and suppose to the contrary that 𝑅+ ⊊ 𝔞. Since 𝑡 ∶= grade(𝑅+) ⩽ 𝑓 − grade(𝔞, 𝑅+, 𝑅),
so 𝐻𝑡

𝔞(𝑅)𝑛 is a finitely generated 𝑅0-module for all 𝑛 ∈ ℤ, by [7, 1.7]. Thus 𝐻𝑡
𝔞(𝑅) = 0, using [11, 8.1], that is a

contradiction, in view of [4, 2.6(i)].
Now, assume that 𝔞 ℎ∼(𝐼;𝑅) 𝑅+ and 𝔞 ⊈ 𝑅+. By [7, 1.7] and [11, 8.1],𝐻𝑖

𝔞+𝑅+(𝑅) = 0 for all 𝑖 ≤ 𝑓−grade(𝔞+𝑅+, 𝑅+, 𝑅).
So, 𝑓 − grade(𝔞 + 𝑅+, 𝑅+, 𝑅) ⪇ grade(𝔞 + 𝑅+). Thus grade(𝑅+) ⪇ grade(𝔞 + 𝑅+) and, by 2.2(i), 𝔞 ∩ 𝑅+ = 𝐼.

In the following theorem, we study the set Ass𝑅0(𝑀/𝔞𝑀) where 𝔞 is an h-linked ideal over𝑀.

Theorem 2.9. Assume that 𝔞 and 𝔟 are geometrically h-linked by 𝐼 over𝑀 and 𝔟 ⊇ 𝑅+. Then
(i) Ass𝑅0(𝑀/𝔞𝑀) = Ass𝑅0(𝑀/𝐼𝑀)⋂𝑉(𝔞0);
(ii) Ass𝑅0(𝑀/𝔞𝑀)⋂Ass𝑅0(𝑀/𝔟𝑀) = ∅;
(iii) Ass𝑅0(𝑀/𝔟𝑀)⋂𝑉(𝔞0) = ∅.
The first case also holds if 𝔞 and 𝔟 are just h-linked and Ass𝑅(𝑀/𝐼𝑀) = minAss𝑅(𝑀/𝐼𝑀) (e.g. 𝑀 is a Cohen-
Macaulay module).

Proof. (i) By [4, 2.9] and [8, Exercise 6.7], Ass𝑅0(𝑀/𝔞𝑀) = {𝔭 ∩ 𝑅0 | 𝔭 ∈ Ass𝑅(𝑀/𝐼𝑀)
⋂𝑉(𝔞)} and that Ass𝑅0(𝑀/𝐼𝑀) = {𝔭∩𝑅0 | 𝔭 ∈ Ass𝑅(𝑀/𝐼𝑀)}. This implies that Ass𝑅0(𝑀/𝔞𝑀) ⊆ Ass𝑅0(𝑀/𝐼𝑀)⋂𝑉(𝔞0).
Now, let 𝔭0 ∈ Ass𝑅0(𝑀/𝐼𝑀)⋂𝑉(𝔞0). Then, there exists 𝔭 ∈ Ass𝑅(𝑀/𝐼𝑀) such that 𝔭∩𝑅0 = 𝔭0. √0 ∶ 𝑀 + 𝐼 =
ඥ0 ∶ 𝑀/𝐼𝑀 ⊆ 𝔭. Thus, by [5, 2.2] and the assumption, ඥ0 ∶ 𝑀 + 𝔞 ∩ 𝑅+ ⊆ 𝔭. So, 𝔭 ⊇ 𝔞 and, again by [4, 2.9],
𝔭 ∈ Ass𝑅(𝑀/𝔞𝑀).

(ii) Let 𝔭0 ∈ Ass𝑅0(𝑀/𝔟𝑀) then, by [4, 2.9], there exists 𝔭 ∈ Ass𝑅(𝑀/𝐼𝑀)⋂𝑉(𝔟) such that 𝔭 ∩ 𝑅0 = 𝔭0 and
𝔭 ∉ Ass𝑅(𝑀/𝔞𝑀). So, 𝔭 ∉ 𝑉(𝔞). On the other hand, 𝔭 ⊇ 𝔟 ⊇ 𝑅+ thus 𝔭0 ⊉ 𝔞0 and by (i), 𝔭0 ∉ Ass𝑅0(𝑀/𝔞𝑀).

(iii) Follows from (i) and (ii).

If we remove the condition 𝔟 ⊇ 𝑅+, then the above proposition does not hold any more, as the following example
shows.

Example 2.10. Let 𝔟 and 𝑅+ be geometrically h-linked by 𝐼 over 𝑅, then Ass𝑅0(𝑅/𝑅+) ≠ Ass𝑅0(𝑅/𝐼).
Proof. Since 𝐼 = 𝔟 ∩ 𝑅+, so 𝔟 ⊉ 𝑅+. Assume that Ass𝑅0(𝑅/𝑅+) = Ass𝑅0(𝑅/𝐼), then by 2.9(i), Ass𝑅0(𝑅/𝔟) ⊆
Ass𝑅0(𝑅/𝑅+) that is a contradiction, by 2.9(ii).
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Abstract

Let 𝑅 = ⊕𝑛∈ℕ0𝑅𝑛 be a standard graded ring, 𝑀 be a finitely generated graded 𝑅-module and
𝑅+ ∶= ⊕𝑛∈ℕ𝑅𝑛 denotes the irrelevant ideal of 𝑅. In this paper, we study the graded components
𝐻𝑖
𝔞(𝑀)𝑛 where 𝔞 is a homogeneously linked ideal over𝑀. More precisely, we consider tameness

of 𝐻𝑖
𝔞(𝑀) in some special cases.

1. Introduction

Throughout the paper, 𝑅 = ⨁𝑛∈ℕ0 𝑅𝑛 is a standard graded Noetherian ring, i.e. 𝑅0 is a commutative Noetherian ring
and 𝑅 is generated, as an 𝑅0-algebra, by finitely many elements of degree one, 𝑅+ = ⨁𝑛∈ℕ 𝑅𝑛 is the irrelevant ideal
of 𝑅 and 𝔞 and 𝔟 are homogeneous ideals of 𝑅. Also,𝑀 denotes a finitely generated graded 𝑅-module.
For 𝑖 ∈ ℕ0, the set of non-negative integers, and 𝑛 ∈ ℤ, the set of integers, let 𝐻𝑖

𝔞(𝑀)𝑛 denotes the 𝑛-th component of
graded local cohomology module 𝐻𝑖

𝔞(𝑀) of 𝑀 with respect to 𝔞 (our terminology on local cohomology comes from
[1]). It is well-known that 𝐻𝑖

𝑅+(𝑀)𝑛 is a finitely generated 𝑅0-module for all 𝑛 ∈ ℤ and 𝐻𝑖
𝑅+(𝑀)𝑛 = 0 for all 𝑛 ≫ 0

([1, 16.1.5]). The asymptotic behavior of the components𝐻𝑖
𝑅+(𝑀)𝑛 when 𝑛 → −∞ has been studied by many authors,

too. But, we know not much about the graded components 𝐻𝑖
𝔞(𝑀)𝑛 where 𝔞 is an arbitrary homogeneous ideal of 𝑅,

although, there are some studies in this topic.
In ([3]), the authors introduced the concept of linkage of ideals over a module, which is a generalization of its classical
concept introduced by Peskine and Szpiro ([10]).
In this talk, we consider this concept in the graded case and study some of their cohomological properties. More
precisely, we show that 𝐻𝑖

𝔞(𝑀) is tame for some 𝑖 ∈ ℕ0 in the case where 𝔞 is a homogeneous linked ideal with 𝑅+
over𝑀.
We keep the notations introduced in the introduction, throughout the paper.
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2. Results

We start by homogeneously linked ideals, which is the basic concept of the paper.

Definition 2.1. Assume that 𝔞𝑀 ≠ 𝑀 ≠ 𝔟𝑀 and 𝐼 ⊆ 𝔞 ∩ 𝔟 be an ideal generated by a homogeneous 𝑀-regular
sequence. Then we say that the ideals 𝔞 and 𝔟 are homogeneously linked (or h-linked) by 𝐼 over𝑀, denoted 𝔞 ℎ∼(𝐼;𝑀) 𝔟,
if 𝔟𝑀 = 𝐼𝑀 ∶𝑀 𝔞 and 𝔞𝑀 = 𝐼𝑀 ∶𝑀 𝔟. The ideals 𝔞 and 𝔟 are said to be geometrically h-linked by 𝐼 over 𝑀 if, in
addition, 𝔞𝑀 ∩ 𝔟𝑀 = 𝐼𝑀. Also, we say that the ideal 𝔞 is h-linked over𝑀 if there exist homogeneous ideals 𝔟 and 𝐼
of 𝑅 such that 𝔞 ℎ∼(𝐼;𝑀) 𝔟. 𝔞 is h-𝑀-selflinked by 𝐼 if 𝔞 ℎ∼(𝐼;𝑀) 𝔞.

For a graded 𝑅-module 𝑁 = ⨁𝑛∈ℤ𝑁𝑛, set

𝑒𝑛𝑑(𝑁) ∶= 𝑠𝑢𝑝{𝑛 ∈ ℤ| 𝑁𝑛 ≠ 0}.

Note that 𝑒𝑛𝑑(𝑁) could be∞ and that the supremum of the empty set is to be taken as −∞.
The following lemma considers a case where 𝑒𝑛𝑑(𝐻𝑖

𝔞(𝑀)) < ∞.

Lemma 2.2. Let 𝑡 ∈ ℕ0 and assume that 𝑒𝑛𝑑(𝐻𝑖
𝔞(𝑀)) < ∞ for all 𝑖 ≠ 𝑡. Then for all 𝑛 ≫ 0 and all 𝑖 ∈ ℕ0,

𝐻𝑖
𝔞+𝔟(𝑀)𝑛 ≅ ቊ 𝐻𝑖−𝑡

𝔟 (𝐻𝑡
𝔞(𝑀))𝑛 , 𝑖 ≥ 𝑡
0 𝑖 ⪇ 𝑡.

Proof. We have the following convergence of spectral sequences, by [12, 11.38],

(𝐸𝑖,𝑗2 )𝑛 = 𝐻𝑖
𝔟(𝐻𝑗

𝔞 (𝑀))𝑛
𝑖
⇒ 𝐻𝑖+𝑗

𝔞+𝔟(𝑀)𝑛 .

Since 𝑒𝑛𝑑(𝐻𝑗
𝔞 (𝑀)) < ∞ for all 𝑗 ≠ 𝑡, 𝐻𝑗

𝔞 (𝑀) is 𝑅+-torsion for all 𝑗 ≠ 𝑡. So, by [1, 2.1.9],

𝐻𝑖
𝔟(𝐻𝑗

𝔞 (𝑀)) ≅ 𝐻𝑖
𝔟+𝑅+(𝐻

𝑗
𝔞 (𝑀)) ≅ 𝐻𝑖

𝔟0𝑅(𝐻
𝑗
𝔞 (𝑀)) for all 𝑗 ≠ 𝑡 and all 𝑖 ≥ 0,

where 𝔟0 ∶= 𝔟 ∩ 𝑅0. Hence, by [1, 14.1.12] and the assumption, (𝐸𝑖,𝑗2 )𝑛 = 𝐻𝑖
𝔟0(𝐻

𝑗
𝔞 (𝑀)𝑛) = 0 for all 𝑗 ≠ 𝑡 and all

𝑛 ≫ 0. As a result, 𝐻𝑖
𝔞+𝔟(𝑀)𝑛 ≅ (𝐸𝑖−𝑡,𝑡2 )𝑛 for all 𝑖 ≥ 𝑡 and that 𝐻𝑖

𝔞+𝔟(𝑀)𝑛 = 0 for all 𝑖 ⪇ 𝑡, when 𝑛 ≫ 0.

The following corollary, which is immediate by the above lemma, generalizes [6, 1.1].

Corollary 2.3. Let 𝑒𝑛𝑑(𝐻𝑖
𝔞(𝑀)) < ∞ for all 𝑖 ∈ ℕ0. Then for any homogeneous ideal 𝔟 ⊇ 𝔞, 𝑒𝑛𝑑(𝐻𝑖

𝔟(𝑀)) < ∞ for
all 𝑖 ∈ ℕ0.

Lemma 2.4. Let 𝔞 be linked by 𝐼 over𝑀. Then Supp𝐻𝑡
𝔞(𝑀) = Supp𝑀/𝔞𝑀, where 𝑡 ∶= grade(𝔞,𝑀).

Proof. By [3, 2.8], [2, Theorem 1] and [13, 1.4],

Ass𝑀/𝔞𝑀 ⊆ Ass𝑀/𝐼𝑀 ∩ 𝑉(𝔞) = Ass𝐻𝑜𝑚𝑅(𝑅/𝔞,𝑀/𝐼𝑀) = Ass𝐸𝑥𝑡𝑡𝑅(𝑅/𝔞,𝑀) = Ass𝐻𝑡
𝔞(𝑀).

On the other hand, Supp𝐻𝑡
𝔞(𝑀) ⊆ Supp𝑀/𝔞𝑀, which proves the claim.

In the following, we show some equivalent conditions for 𝑒𝑛𝑑(𝐻𝑖
𝔞(𝑀)) < ∞, where 𝔞 is an h-linked ideal over𝑀.

Proposition 2.5. Let 𝔞 be an h-linked ideal by 𝐼 over 𝑀 with grade(𝔞,𝑀) = 𝑡. Then the following statements are
equivalent.

(i) 𝑒𝑛𝑑(𝐻𝑖
𝔞(𝑀)) < ∞ for all 𝑖 ∈ ℕ0,

(ii) 𝑒𝑛𝑑(𝐻𝑡
𝔞(𝑀)) < ∞,

(iii) Supp𝑀/𝔞𝑀 ⊆ 𝑉(𝑅+).
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Also, if 𝔞 ℎ∼(𝐼;𝑀) 𝔟 and one of the above conditions holds, then

𝐻𝑖
𝔟(𝑀)𝑛 ≅ ቊ 0 𝑖 ≠ 𝑡

𝐻𝑡
𝐼 (𝑀)𝑛 𝑖 = 𝑡,

for all 𝑖 and all 𝑛 ≫ 0.

Proof. ”(𝑖𝑖) ⇒ (𝑖𝑖𝑖)” Since 𝑒𝑛𝑑(𝐻𝑡
𝔞(𝑀)) < ∞,𝐻𝑡

𝔞(𝑀) is 𝑅+-torsion and Ass𝐻𝑡
𝔞(𝑀) ⊆ 𝑉(𝑅+). So, the result follows

from 2.4.
”(𝑖𝑖𝑖) ⇒ (𝑖)” Since √𝔞 + 0 ∶ 𝑀 ⊇ ඥ𝑅+, using [1, 2.1.9], [1, 16.1.5(ii)] and 2.3, the statement holds.
The last statement follows from [4, 2.2(i)], 2.3 and the following homogeneous Mayer-Vietoris sequence

…⟶ 𝐻𝑖
𝔞+𝔟(𝑀) ⟶ 𝐻𝑖

𝔞(𝑀)⊕𝐻𝑖
𝔟(𝑀) ⟶ 𝐻𝑖

𝐼 (𝑀) ⟶ 𝐻𝑖+1
𝔞+𝔟(𝑀) ⟶ … .

Note that if 𝔟 ⊆ 𝑅+ and one of the above conditions holds, then 𝔞 can’t be geometrically h-linked with 𝔟. Otherwise,
by 2.5(iii), 𝐻𝑖

𝔞(𝑀) ≅ 𝐻𝑖
𝔞+𝑅+(𝑀) for all 𝑖, so grade(𝔞,𝑀) = grade(𝔞 + 𝔟,𝑀), that is a contradiction.

Definition 2.6.

• We say that the ideal 𝐼 is generated by an 𝑀-regular sequence under radical if there exists an 𝑀-regular se-
quence 𝑥 = 𝑥1, … , 𝑥𝑡 such that √𝐼 + 0 ∶ 𝑀 = ඥ𝑥 + 0 ∶ 𝑀.

• 𝑀 is called relative Cohen-Macaulay with respect to 𝔞 of degree 𝑛 if 𝐻𝑖
𝔞(𝑀) = 0 for all 𝑖 ≠ 𝑛.

Corollary 2.7. If 𝔞 ℎ∼(𝐼;𝑀) 𝔟 and 𝑡 ∶= grade(𝔞,𝑀), then the following statements are equivalent.

(i) max{𝑒𝑛𝑑(𝐻𝑡
𝔞(𝑀)), 𝑒𝑛𝑑(𝐻𝑡

𝔟(𝑀))} < ∞,

(ii) Supp𝑀/𝐼𝑀 ⊆ 𝑉(𝑅+).

In particular, if 𝔟 = 𝑅+ and 𝑒𝑛𝑑(𝐻𝑡
𝔞(𝑀)) < ∞, then 𝔞 is radically h-𝑀-licci with 𝑅+ of length 1.

Proof. The results follow from [3, 2.6(iii)], 2.5 and the fact that 𝑒𝑛𝑑(𝐻𝑖
𝑅+(𝑀)) < ∞ for all 𝑖 ∈ ℕ0.

The above corollary shows, if 𝔞 ℎ∼(𝐼;𝑀) 𝔟, then 𝑒𝑛𝑑(𝐻𝑖
𝔞(𝑀)) or 𝑒𝑛𝑑(𝐻𝑖

𝔟(𝑀)) is infinite for some 𝑖 ∈ ℕ0 if and only
if Supp𝑀/𝐼𝑀 ⊈ 𝑉(𝑅+).

Theorem 2.8. If 𝔞 ℎ∼(𝐼;𝑀) 𝑅+ and 𝑡 ∶= grade(𝑅+, 𝑀), then 𝑒𝑛𝑑(𝐻𝑖
𝔞(𝑀)) < ∞ for all 𝑖 ≠ 𝑡 and 𝑒𝑛𝑑(𝐻𝑡

𝔞(𝑀)) < ∞ or
𝐻𝑡
𝔞(𝑀)𝑛 ≠ 0 for all 𝑛 ≫ 0.

In a special case, 𝐻𝑡
𝔞(𝑀)𝑛 is a finitely generated 𝑅0-module for all 𝑛 ∈ ℤ.

Proof. The case 𝑖 ≠ 𝑡 follows from 2.5 and [1, 16.1.5(ii)]. Also, we have 𝐻𝑡
𝔞(𝑀)𝑛 ≅ 𝐻𝑡

𝐼 (𝑀)𝑛 for all 𝑛 ≫ 0. We
consider two cases:

case 1: Let Supp(𝑀/𝐼𝑀) ⊈ 𝑉(𝑅+). By 2.7 and [1, 16.1.5(ii)], 𝑒𝑛𝑑(𝐻𝑡
𝔞(𝑀)) = ∞. Now, we prove, by induction on 𝑡,

that 𝐻𝑡
𝔞(𝑀)𝑛 ≠ 0 for all 𝑛 ≫ 0.

If 𝑡 = 0, then Γ𝔞(𝑀)𝑛 = Γ0(𝑀)𝑛 = 𝑀𝑛 for all 𝑛 ≫ 0. On the other hand, by [7, Theorem 1], 𝑅1𝑀𝑛 = 𝑀𝑛+1
for all 𝑛 ≫ 0, thus Γ𝔞(𝑀)𝑛 ≠ 0 for all 𝑛 ≫ 0.
Let 𝑡 > 0 and assume, inductively, that the claim holds for 𝑡 − 1. Let 𝐼 = (𝑥1, 𝑥2, … , 𝑥𝑡) and 𝑑𝑒𝑔(𝑥1) = 𝑙.
Now, the homogeneous exact sequence

0 ⟶ 𝑀 .𝑥1⟶𝑀(𝑙) ⟶ (𝑀/𝑥1𝑀)(𝑙) ⟶ 0
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and [3, 2.6(i)] yield the following exact sequence of 𝑅0-modules for all 𝑛 ∈ ℤ,

0 ⟶ 𝐻𝑡−1
𝔞 (𝑀/𝑥1𝑀)𝑛+𝑙 ⟶𝐻𝑡

𝔞(𝑀)𝑛
.𝑥1⟶𝐻𝑡

𝔞(𝑀)𝑛+𝑙 ⟶… .

Since 𝑥1 ∈ 𝐼, 𝔞/(𝑥1)
ℎ∼(𝐼/(𝑥1);𝑀/𝑥1𝑀) 𝑅+/(𝑥1) and, by the inductive hypothesis, 𝐻𝑡−1𝔞

(𝑥1)
(𝑀/𝑥1𝑀)𝑛 ≠ 0 for all

𝑛 ≫ 0. Hence, 𝐻𝑡
𝔞(𝑀)𝑛 ≠ 0 for all 𝑛 ≫ 0.

case 2: Now, assume that Supp(𝑀/𝐼𝑀) ⊆ 𝑉(𝑅+). Then √0 ∶ 𝑀 + 𝐼 = ඥ0 ∶ 𝑀 + 𝑅+ and 𝐻𝑖
𝐼 (𝑀) ≅ 𝐻𝑖

𝑅+(𝑀) for all 𝑖.
So, by [1, 16.1.5], we have

1. 𝑒𝑛𝑑(𝐻𝑡
𝐼 (𝑀)) < ∞,

2. 𝐻𝑡
𝐼 (𝑀)𝑛 is a finitely generated 𝑅0-module for all 𝑛,

3. 𝑀 is relative Cohen-Macaulay with respect to 𝑅+ of degree 𝑡.

Therefore, in view of 2.5, 𝑒𝑛𝑑(𝐻𝑡
𝔞(𝑀)) < ∞. Also, using [9, 3.4], there are homogeneous isomorphisms

𝐻𝑖
𝔞(𝑀) ≅ 𝐻𝑖−𝑡

𝔞 (𝐻𝑡
𝐼 (𝑀)) ≅ 𝐻𝑖−𝑡

𝔞+𝑅+(𝐻𝑡
𝐼 (𝑀)) ≅ 𝐻𝑖

𝔞+𝑅+(𝑀) for all 𝑖 ≥ 𝑡. (3.1)

Using [3, 2.6], 𝑡 ≤ f‑grade(𝔞0 + 𝑅+, 𝑅+, 𝑀). Therefore, 𝐻𝑡
𝔞0+𝑅+(𝑀)𝑛 is a finitely generated 𝑅0-module for all

𝑛 ∈ ℤ, by [6, 1.7]. As a result, by (3.1), 𝐻𝑡
𝔞(𝑀)𝑛 is a finitely generated 𝑅0-module for all 𝑛 ∈ ℤ.

As wee have seen in the proof of 2.8, if 𝑅+ is h-linked by 𝐼 over 𝑀 and Supp(𝑀/𝐼𝑀) ⊆ 𝑉(𝑅+) then 𝑀 is relative
Cohen-Macaulay with respect to 𝑅+. However, the converse does not hold any more, as the following example shows.
Although, it does in some special cases, see Proposition 2.10.

Example 2.9. Assume that (𝑅0, 𝔪0) is a domain and dim𝑅0 = 2. Set 𝑅 = 𝑅0[𝑥]. So, there exists a non zero
prime ideal 𝔭0 of 𝑅0 such that 𝔭0 ⊊ 𝔪0. By ??, for any 0 ≠ 𝑟0 ∈ 𝔭0, (𝑟0)

ℎ∼((𝑟0𝑥);𝑅) (𝑥) and Supp(𝑅/(𝑟0𝑥)) =
𝑉(𝑟0)⋃𝑉(𝑥) ⊈ 𝑉(𝑥), while 𝑅 is relative Cohen-Macaulay with respect to (𝑥) of degree 1.

The following proposition considers a case where the irrelevant ideal can be generated by an𝑀-regular sequence under
radical.

Proposition 2.10. Let (𝑅0, 𝔪0) be local and 𝑀 be relative Cohen-Macaulay with respect to 𝑅+ of degree 𝑡. Then
there exists a maximal homogeneous 𝑀-regular sequence 𝐼 in 𝑅+ such that Supp(𝑀/𝐼𝑀) ⊆ 𝑉(𝑅+). In other words,
𝑅+ can be generated by a homogeneous 𝑀-regular sequence under radical.

Proof. Assume that 𝑡 = 0, so dim𝑀/𝔪0𝑀 = 0. Therefore, 𝑀/𝔪0𝑀 is Artinian and 𝑒𝑛𝑑(𝑀/𝔪0𝑀) < ∞, using
[7, Theorem 1]. Hence, by Nakayama Lemma, 𝑒𝑛𝑑(𝑀) < ∞. This implies that 𝑀 is 𝑅+-torsion and that Supp𝑀 ⊆
𝑉(𝑅+).
Now, let 𝑡 > 0 and assume inductively that the statement holds for 𝑡 − 1. As 𝑡 > 0, 𝑅+ ⊈ (⋃𝔭∈𝑀𝑖𝑛𝐴𝑠𝑠(𝑀/𝔪0𝑀) 𝔭) ∪
𝑍(𝑀), where 𝑍(𝑀) denotes the set of zero divisors on𝑀. So, by [1, 16.1.2], there exists a homogeneous element

𝑥 ∈ 𝑅+\( ራ
𝔭∈𝑀𝑖𝑛𝐴𝑠𝑠(𝑀/𝔪0𝑀)

𝔭) ∪ 𝑍(𝑀).

Therefore, dim 𝑀/𝑥𝑀
𝔪0(𝑀/𝑥𝑀) = 𝑡 − 1 = grade(𝑅+, 𝑀/𝑥𝑀). In other words, 𝑀/𝑥𝑀 is relative Cohen-Macaulay with

respect to 𝑅+ of degree 𝑡 − 1 and, by the induction hypothesis, there is a maximal homogeneous 𝑀/𝑥𝑀-regular
sequence 𝐼′ in 𝑅+ such that Supp 𝑀

(𝐼′+<𝑥>)𝑀 = Supp 𝑀/𝑥𝑀
𝐼′(𝑀/𝑥𝑀) ⊆ 𝑉(𝑅+). Now, the result follows by induction.
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Abstract

Stock return prediction is of fundamental significance to risk management, investment deci-
sion, and trading strategy optimization, for improved accuracy of prediction can lead to reduced
losses and increased gains. In the Article, apple’s stock price return using the Heston model
and a GRU neural network was predicted in this paper, and to further improve the accuracy, the
PSO algorithm was applied to optimally combine these two models. The performance showed
that the PSO-based hybrid model was better with an MSE of 0.000148, while the Heston model
was 0.000428 and the GRUmodel was 0.000170. The RMSE and MAE of the PSO model were
0.0122 and 0.0082, respectively, showing improvement over the individual models. These find-
ings demonstrate that the use of financial models and deep learning combined with optimization
techniques can be utilized to enhance stock return prediction accuracy.

1. Introduction

Stock return prediction is one of the fundamental challenges in the field of finance and investment, with a direct impact
on investor decision-making, risk management, and portfolio optimization [1]. Higher accuracy in predicting returns
can lead to reduced losses, increased profits, and improved trading strategies [2].
One of the conventional methods for predicting stock returns is the use of stochastic models that simulate the dynamic
behavior of stock prices based on mathematical processes. The Heston model is one of these approaches, which
considers price volatility as a time-dependent random variable and is particularly suitable for modeling assets with
high volatility changes [3]. Alongside these stochastic process-based methods, recurrent neural networks like GRU
(Gated Recurrent Unit) are also highly effective for forecasting financial time series [4].
These models can identify complex patterns in historical data and predict future trends based on past information.
While each of these models can independently predict stock returns, their combination can lead to higher accuracy
in financial predictions.With the advancement of mathematical methods and deep learning algorithms, hybrid models
have gained attention for more accurate prediction of financial market behavior [5].
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Two methodologies were used in this research to forecast Apple (AAPL) stock returns. Firstly, the Heston model,
which has the ability to model the volatility of stock prices, was employed. The model is driven by stochastic pro-
cesses and considers volatility as a dynamic variable that changes over time. Secondly, the GRU recurrent neural
network, which is adept at capturing temporal patterns, was employed to handle historical stock data. Both these
models produce adequate results independently, but combined they have the capacity to bring in higher precision. For
blending these two models and raising prediction accuracy, a Particle Swarm Optimization (PSO) algorithm has been
utilized. The algorithm adjusts the predictive models’ coefficients and provides a balanced composition of Heston and
GRU outcomes. The results indicate that the PSO-based hybrid model performs better with lower prediction errors
(MSE, RMSE, and MAE) compared to individual models.
There are four major sections in the paper’s structure. Section 2, the Methodology, presents the stochastic modeling
techniques and deep learning networks with a focus on the usage of the Heston model for predicting the stock’s return
and GRU (Gated Recurrent Unit) network. Section 3 presents the quantitative findings, i.e., comparing the individual
models (Heston and GRU) and the hybrid model optimized through Particle Swarm Optimization (PSO), on the basis
of performance measures MSE, RMSE, and MAE. Finally, Section 4 gives the conclusion, summarizing the findings
and the improvement in predictive accuracy achieved through the PSO-based hybrid model.

2. Research methodology

In this study, we employ a hybrid approach combining stochastic modeling and deep learning for stock return predic-
tion. The Heston model is used to capture market volatility dynamics, while the GRU neural network learns complex
temporal patterns in stock price data.

2.1. Heston model
The Heston model is a stochastic volatility model that describes the evolution of stock prices by incorporating a
mean-reverting stochastic process for volatility. This model allows for the volatility of the asset to change over time,
capturing the observed market behavior of volatility clustering and sudden shifts. It is defined by the following system
of stochastic differential equations (SDEs) [7]

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + √𝑣𝑡𝑆𝑡𝑑𝑊𝑆
𝑡

𝑑𝑣𝑡 = 𝜅(𝜃 − 𝑣𝑡)𝑑𝑡 + 𝜎√𝑣𝑡𝑑𝑊𝑣
𝑡

In this model, 𝑆𝑡 represents the stock price, and 𝑣𝑡 denotes the variance of the asset price. The Wiener processes𝑊𝑆
𝑡

and𝑊𝑣
𝑡 drive the stochastic dynamics with correlation coefficient 𝜌.

To estimate the parameters 𝜅, 𝜃, 𝜎, 𝜌, and the initial variance 𝑣0, we employ the Maximum Likelihood Estimation
(MLE) method. This approach maximizes the likelihood function, which is derived from the probability distribution
of the data given the parameters. By finding the parameter values that best fit the observed data, the MLE method
provides the most efficient and unbiased estimates for the model parameters [6].
We use the following final log-likelihood function to estimate the parameters:

ℒ(𝜇, 𝜅, 𝜃, 𝜎, 𝜌, 𝑣0) =
𝑛


𝑡=1

ቈ−1
2 ln (2𝜋 |Σ𝑡+1|) −

1
2 𝑧⊤𝑡+1Σ−1𝑡+1𝑧𝑡+1 .

The covariance matrix Σ𝑡+1 at time 𝑡+1 captures the variability and correlations of the process, while 𝑧𝑡+1 represents
the difference between the observed and predicted values for 𝑥𝑡+1 and 𝑣𝑡+1.
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2.2. Gated recurrent unit
Artificial Neural Networks (ANNs) have revolutionized time series forecasting by providing powerful tools for cap-
turing complex, nonlinear patterns in financial data [8].
Unlike traditional statistical models, which often rely on linear assumptions, neural networks can automatically learn
intricate relationships from historical data without requiring explicit feature engineering. Recurrent architectures, such
as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), are particularly effective for sequential data,
as they retain past information and adapt dynamically to changing market conditions [9]. These models are widely
used in financial applications, including stock price prediction, risk management, and algorithmic trading, due to their
ability to analyze vast datasets and uncover hidden patterns that influence asset prices.
Recurrent Neural Networks (RNNs) are widely used for time series forecasting due to their ability to capture temporal
dependencies in sequential data. However, traditional RNNs suffer from vanishing gradient problems, making them
inefficient for long-term dependencies. To address this issue, Gated Recurrent Unit (GRU) networks have been
introduced as a more efficient alternative to standard RNNs.
GRU is a type of recurrent neural network that incorporates gating mechanisms to regulate the flow of information
through the network. It consists of two main gates [10]

1. Reset Gate (𝑟𝑡) – Determines how much past information to discard.
2. Update Gate (𝑧𝑡) – Controls the amount of past information to carry forward to the future.

The mathematical formulation of GRU is as follows:

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) (1)
𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) (2)
ℎ̃𝑡 = tanh(𝑊ℎ ⋅ [𝑟𝑡 ⊙ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) (3)
ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡 (4)

where:

• 𝑥𝑡 is the input at time 𝑡.

• ℎ𝑡 is the hidden state at time 𝑡.

• 𝑊𝑟 ,𝑊𝑧 ,𝑊ℎ are weight matrices, and 𝑏𝑟 , 𝑏𝑧 , 𝑏ℎ are bias terms.

• 𝜎 is the sigmoid activation function, and tanh is the hyperbolic tangent activation function.

• ⊙ represents element-wise multiplication.

2.3. Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a population-based metaheuristic algorithm inspired by the coordinated move-
ment of bird flocks and fish schools [11]. It is widely employed for solving complex optimization problems, including
parameter tuning in machine learning models. The algorithm begins by initializing a swarm of particles, where each
particle represents a potential solution within the search space. Throughout the iterations, particles update their posi-
tions based on their own best-known positions and the best position identified by the entire swarm. This movement
follows these update equations:

𝑣𝑡+1𝑖 = 𝜔𝑣𝑡𝑖 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑡𝑖 ) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑡𝑖 )

𝑥𝑡+1𝑖 = 𝑥𝑡𝑖 + 𝑣𝑡+1𝑖

Here, 𝑥𝑡𝑖 denotes the position of particle 𝑖 at iteration 𝑡, while 𝑣𝑡𝑖 represents its velocity, dictating movement within the
search space. The inertia weight 𝜔 balances global exploration and local exploitation, influencing convergence. The
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acceleration coefficients 𝑐1 and 𝑐2 determine the influence of a particle’s own experience and the swarm’s collective
knowledge, respectively. Random values 𝑟1 and 𝑟2, drawn from a uniform distribution between 0 and 1, introduce
stochasticity into the update process. Each particle tracks its best position, 𝑝𝑏𝑒𝑠𝑡𝑖, representing its most optimal
solution so far, while𝑔𝑏𝑒𝑠𝑡 corresponds to the best position found by the swarm, steering all particles toward improved
solutions.
In this study, PSO is utilized to optimize the integration of the Heston model and GRU-based predictions by fine-tuning
the weight distribution between the two models. The goal is to determine the optimal combination that minimizes
prediction error. Each particle represents a set of parameters for model fusion, updating their positions and velocities
according to the given equations.

3. Numerical results

This section presents numerical results obtained by using theHestonmodel, theGRUnetwork, and their optimized PSO
combination to forecast Apple (AAPL) stock returns. The performance of each model is evaluated using error metrics
such as MSE, RMSE, and MAE to compare their forecasting accuracy. The results demonstrate the effectiveness of
the combined approach in reducing forecasting errors and improving the overall forecasting performance.
In this study, we analyze stock return data for Apple Inc. (AAPL) to evaluate the performance of different predictive
models. The dataset consists of historical price information, from which log returns are computed to model the stock’s
volatility dynamics. Given the inherent stochastic nature of financial markets, accurately predicting AAPL’s returns
is essential for risk management and investment decision-making 1.

Fig. 1. Apple Daily Return (2020-2024).

3.1. Heston model results
The optimized parameters for the Heston model, obtained using the Maximum Likelihood Estimation (MLE) method,
ensure an optimal fit to the stock return data . These parameters help capture the stochastic volatility dynamics of the
stock, making the model suitable for financial market analysis.

Table 1. optimized parameters for the Heston model

𝜅 𝜃 𝜎 𝑣0 𝜌
0.09909 0.020020 0.10188 0.0200 0.506

The model’s performance was evaluated using standard error metrics, including Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and Mean Absolute Error (MAE) 2. The results indicate that while the Heston model
effectively captures volatility patterns, there is still room for improvement in predictive accuracy2.
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Table 2. optimized parameters for the Heston model

MSE RMSE MSE

0.0004 0.02 0.016

Fig. 2. Predicted by Heston vs Actual AAPL Daily Return (Test Data)

3.2. Gated recurrent unit results
The GRU-based model in this study is designed to predict time-series data with high accuracy. The dataset is split into
training (90%) and testing (10%) sets to ensure proper evaluation of the model’s performance. Before training, the
input data is reshaped into a three-dimensional format to meet the requirements of recurrent neural networks, where
the dimensions correspond to the number of samples, time steps, and features (channels). The model architecture
begins with a GRU layer containing 64 units and utilizes the ReLU activation function, enabling it to capture temporal
dependencies within the sequence data effectively. This is followed by a Dense layer with a number of neurons equal
to the prediction step and employing the SELU activation function to generate the final outputs. The model is compiled
with mean squared error (MSE) as the loss function and the Adam optimizer, ensuring efficient training. After 100
epochs with a batch size of 100, the model achieved promising performance metrics:

Table 3. optimized parameters for the Heston model

MSE RMSE MSE

0.00017 0.013 0.0089

3.3. PSO results
The PSO algorithm in this study is structured to optimize the integration of the Heston model with GRU-based pre-
dictions by fine-tuning the weight coefficients assigned to each model. The process begins by initializing a swarm of
candidate solutions, where each particle represents a potential set of weights. During each iteration, particles adjust
their positions in the search space based on their own best-known positions and the best-known position of the entire
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Fig. 3. Predicted by gru vs Actual AAPL Daily Return (Test Data)

swarm, following the established update rules. This iterative, collaborative search strategy allows the algorithm to ex-
plore and exploit the solution space effectively, converging on an optimal set of parameters that minimizes prediction
error. The final optimized results achieved by PSO :

Table 4. optimized parameters for the Heston model

MSE RMSE MSE

0.00014 0.012 0.0082

4. Conclusion

The Particle Swarm Optimization (PSO) algorithm effectively optimized the integration of the Heston model with
GRU-based predictions, significantly improving the model’s capability to minimize prediction errors. By adjusting
the weight coefficients assigned to each component, PSO facilitated a more precise and reliable forecasting process.
The results highlighted a substantial reduction in error metrics, achieving a final MSE of 0.00014, an RMSE of 0.0122,
and an MAE of 0.0082, underscoring the success of the optimization approach.
From an economic perspective, these enhanced prediction outcomes are of considerable importance. Accurate fore-
casting plays a crucial role in mitigating risks and uncertainties, thereby fostering more informed decision-making
within economic and financial frameworks. By combining advanced machine learning techniques, such as GRU, with
traditional financial models and optimizing them through PSO, this study offers a robust methodology for assessing
market conditions. The improved predictive accuracy has the potential to support superior investment strategies, more
effective risk management, and informed economic policy development.
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Abstract

In this research, we propose a novel hybrid ensemble model that integrates LightGBM (LGBM)
and AdaBoost, optimized using a genetic algorithm, to enhance stock price prediction accu-
racy. While both LGBM and AdaBoost exhibit strong individual performance, their combina-
tion through evolutionary optimization significantly improves predictive efficiency. We apply
this model to Tesla stock price data and evaluate its effectiveness using standard error metrics.
The results demonstrate a remarkable improvement, with the genetic algorithm reducing MAE
from 9.91 (LGBM) and 8.40 (AdaBoost) to 1.23 and MAPE from over 3

1. Introduction

Stock price movement is affected by the broad set of macroeconomic reports, market sentiment, geopolitical strife,
and company-specific news[1]. Financial time series are extremely noisy and volatile, making the problem of con-
structing dependable forecasting models arduous. Classical approaches suffer from enforcing linearity of relations and
time series stationarity, which makes them less adaptive with respect to rapidly changing conditions on the market[2].
However, machine learning models are capable of learning from huge data sets, detecting hidden trends, and adapting
to new market conditions, and thus emerge as a strong choice for stock price prediction. [3] Stock price prediction is a
critical problem in the financial markets, and accurate prediction can assist investors, analysts, and financial organiza-
tions in making sound decisions and mitigating risks[7]. Conventional statistical approaches, including autoregressive
integrated moving average (ARIMA) and generalized autoregressive conditional heteroskedasticity (GARCH), have
been extensively employed for time series prediction. These approaches are likely to fail to capture the complicated,
nonlinear relationships in the stockmarket data[8]. Hence, machine learning algorithms have received growing interest
as they are able to capture intricate relationships and enhance predictive performance.
Recent studies have explored various hybrid and ensemble models to enhance stock price forecasting accuracy. Tian
et al. proposed an LSTM-based hybrid model optimized with Bayesian techniques and combined with LightGBM,
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demonstrating superior predictive performance across multiple stock datasets[5]. Yang et al. investigated the integra-
tion of XGBoost and LightGBM, highlighting the effectiveness of feature engineering in refining predictions on large
datasets[4]. Zhang et al. introduced a novel status box method combined with AdaBoost, a genetic algorithm, and a
probabilistic support vector machine to classify stock trends effectively. These approaches underscore the growing
role of ensemble learning and hybrid models in improving financial time series forecasting[6].
Ensemble learning techniques like LightGBM (LGBM) and AdaBoost have been effective in the prediction of stock
prices. The models utilize decision trees and boosting to effectively learn from the historical data[9]. Nevertheless,
the optimal model combination and hyperparameter tuning are still of utmost importance in best performance. Evolu-
tionary algorithms like genetic algorithms (GA) have offered an effective optimization technique through emulating
natural selection to optimize the model parameters. By incorporating ensemble models with a genetic algorithm, it is
possible to make the predictions more accurate and the prediction system more adaptive.
This research suggests a hybrid ensemble method of LGBM and AdaBoost, optimized using a genetic algorithm,
for predicting stock prices. The process entails training the models individually, merging their predictions using an
optimization technique, and optimizing the ensemble using GA for better performance. By exploiting the strengths
of each element, the suggested methodology seeks to create a strong and efficient framework for financial time series
prediction. The remainder of this paper is organized as follows: Section 2 describes the methodology of this study,
covering data preprocessing, models architecture, and the application of the genetic algorithm. Section 3 shows the
numerical results and the discussion and conclusions are presented in the last section.

2. Research methodology

In this study, we propose a hybrid ensemble learning approach for stock price prediction by integrating LightGBM
and AdaBoost, optimized using a genetic algorithm. LightGBM, a gradient boosting framework, efficiently handles
large datasets and captures complex patterns, while AdaBoost enhances weak learners to improve predictive accuracy.
To further refine the model’s performance, a genetic algorithm is employed for optimal hyperparameter selection and
model combination. This evolutionary optimization ensures a robust and adaptive framework, improving the overall
predictive capability in financial time series forecasting.

2.1. lightgbm model
The core formula of LightGBM builds upon the general structure of gradient boosting algorithms but introduces key
differences in how trees are constructed and how splits are handled. The objective function in LightGBM consists of
two main components: the loss function and the regularization term [11].
The objective function is expressed as:

ℒ =
𝑁


𝑖=1

ℒ𝑖(𝑓(𝑥𝑖)) +
𝐾


𝑘=1

Ω(𝑓𝑘)

In LightGBM, the objective function is composed of two main terms: the loss function and the regularization term.
The term 𝑁 represents the total number of data points in the training dataset, with each data point indexed as 𝑖. The
feature vector for the 𝑖-th sample is denoted as 𝑥𝑖, while 𝑦𝑖 represents the actual target value corresponding to that
sample. The predicted output for the 𝑖-th data point is given by 𝑓(𝑥𝑖), and the loss function ℒ𝑖(𝑓(𝑥𝑖)) quantifies the
difference between the predicted value and the actual target value for that data point. The model learns functions 𝑓𝑘
for each of the 𝑘-th trees, and the term Ω(𝑓𝑘) represents the regularization term associated with the complexity of each
tree, which helps to prevent overfitting by penalizing excessively complex models.
Loss Function: The loss function ℒ𝑖(𝑓(𝑥𝑖)) is problem-dependent. In the case of regression tasks, mean squared
error (MSE) is often used, defined as:

ℒ𝑖(𝑓(𝑥𝑖)) = (𝑦𝑖 − 𝑓(𝑥𝑖))2

For classification tasks, a logistic loss function is typically employed.
Regularization Term: The regularization term Ω(𝑓𝑘) serves to prevent overfitting by discouraging excessive com-
plexity in the individual trees. It is typically expressed as:
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Ω(𝑓𝑘) = 𝛾𝑇 + 𝜆
2‖𝑤𝑘‖2

In LightGBM, the regularization term Ω(𝑓𝑘) plays a crucial role in controlling the complexity of the decision trees.
The parameter 𝑇 refers to the number of leaves in the 𝑘-th tree, which is an important factor in determining the tree’s
complexity. Additionally, ‖𝑤𝑘‖ represents the weight vector of the 𝑘-th tree, capturing the significance of the tree’s
features. To prevent overfitting, regularization parameters 𝛾 and 𝜆 are introduced, where 𝛾 penalizes the number of
leaves in the tree, and 𝜆 helps to control the magnitude of the weights. Together, these components ensure that the
model does not become too complex and is better generalized to unseen data.
After 𝐾 boosting rounds, the final model prediction 𝑓(𝑥𝑖) is computed as the sum of the predictions from each tree:

𝑓(𝑥𝑖) =
𝐾


𝑘=1

𝑓𝑘(𝑥𝑖)

Where each tree 𝑓𝑘(𝑥𝑖) contributes to the final prediction, with its influence modulated by the learning rate and the
overall optimization process.
Through minimizing the loss function, applying regularization to control complexity, and using boosting to iteratively
enhance the model, LightGBM effectively captures complex relationships in the data, making it a powerful method
for predictive modeling in various tasks.

2.2. Adaboost Algorithm
AdaBoost, short for Adaptive Boosting, is an ensemble learning method that combines multiple weak learners to form
a strong learner. It works by iteratively training a series of weak models, typically decision trees, and combining
them to improve prediction accuracy. AdaBoost assigns higher weights to misclassified instances, emphasizing the
importance of correctly classifying difficult-to-predict samples in subsequent iterations[12].
The core idea behind AdaBoost is to update themodel’s predictions by considering the errors made by previousmodels.
The algorithm aims to minimize the weighted error through an additive model, adjusting the model weights after each
iteration. The final model is a weighted combination of all the weak models, where the contribution of each model
depends on its performance during training.
Mathematically, AdaBoost can be formulated as follows:

𝐹(𝑥) =
𝑇


𝑡=1

𝛼𝑡ℎ𝑡(𝑥)

In AdaBoost, the final prediction of the model, 𝐹(𝑥), is obtained after 𝑇 iterations by aggregating the outputs of indi-
vidual weak learners. Specifically, at each iteration 𝑡, a weak model produces a prediction ℎ𝑡(𝑥), and its contribution
to the final prediction is weighted by 𝛼𝑡, a parameter determined by the model’s accuracy on the training data. More
accurate weak models receive higher weights, ensuring that the final prediction 𝐹(𝑥) is a robust, weighted sum of all
the weak learners’ predictions.
The weight 𝛼𝑡 for each weak model is computed based on the model’s performance, with more accurate models
receiving a higher weight. This iterative adjustment ensures that AdaBoost focuses on the most challenging instances
for prediction, thereby enhancing the overall model performance. Through this process, AdaBoost can achieve high
accuracy even when individual weak models perform poorly.

2.3. Genetic Algorithm for Optimizing the Ensemble Model
The Genetic Algorithm (GA) is an evolutionary optimization technique inspired by natural selection. It is particularly
effective in complex optimization problems where the search space is vast, such as hyperparameter tuning in machine
learning models. In this study, we employ GA to optimize the ensemble model combining LightGBM and AdaBoost,
ensuring that the model achieves high predictive accuracy while maintaining robustness in stock price forecasting.
The GA starts by generating an initial population of 30 individuals, where each individual represents a unique com-
bination of hyperparameters for LightGBM and AdaBoost as well as their ensemble weights. The hyperparameters
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include the learning rate, maximum depth of decision trees, number of estimators, and boosting parameters. The en-
semble weights determine the contribution of each base model to the final prediction. These individuals are randomly
initialized within predefined ranges to ensure diversity in the search space.
Each individual in the population is evaluated using a fitness function, which measures the performance of the model
based on specific error metrics. In this study, the Mean Absolute Error (MAE) and Mean Squared Error (MSE) are
used as fitness criteria. The lower the error, the better the individual is at predicting stock prices. The fitness function
is computed as follows:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 1
𝑀𝐴𝐸 + 𝜖

where 𝜖 is a small constant to prevent division by zero. This ensures that models with lower MAE receive higher
fitness scores.
After evaluating the fitness of each individual, the best-performing candidates are selected using roulette wheel se-
lection, ensuring that models with lower prediction errors have a higher probability of passing their traits to the next
generation. The crossover operation then combines the hyperparameters of two parent models using uniform crossover,
creating new offspring with mixed traits from both parents. To maintain genetic diversity and avoid premature con-
vergence, a mutation operation is applied to 5
The genetic algorithm iterates through 50 generations, continuously refining the population through selection, crossover,
and mutation. Over time, the average fitness score of the population improves, leading to an optimal configuration
of LightGBM and AdaBoost with fine-tuned parameters. The process stops when either 50 generations are reached
or further improvements become negligible. The best-performing model from the final generation is then selected for
stock price prediction, ensuring a robust and adaptive forecasting system.
The integration of Genetic Algorithm (GA) optimization enhances our ensemble model by efficiently exploring the
hyperparameter space, reducing computational costs, and avoiding exhaustive searches. GA navigates this space
through selection, crossover, and mutation, iteratively improving model performance.
Additionally, GA improves model generalization by optimizing the balance between LightGBM and AdaBoost, pre-
venting overfitting while capturing complex stock price patterns. It also enables automatic feature selection and
weighting, leading to higher predictive accuracy. By leveraging GA, our hybrid model becomes more adaptive and
robust in forecasting stock prices, making it a powerful tool for financial time series prediction.

3. Numerical results

This section presents the numerical results obtained from our proposed hybrid ensemble model, which combines
LightGBM and AdaBoost, optimized using a Genetic Algorithm (GA), to forecast Tesla (TSLA) stock prices. The
performance of each individualmodel, as well as the optimized ensemble, is evaluated using standard errormetrics such
as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE).
The results highlight the effectiveness of our approach in improving predictive accuracy and reducing forecasting
errors, demonstrating the advantages of GA-driven optimization in financial time series prediction.
In this study, we analyze stock price data for Tesla Inc. (TSLA) 1 to evaluate the performance of our proposed hybrid
ensemble model. The dataset consists of historical price information, which is used to train and test the predictive
models. By leveraging machine learning techniques and evolutionary optimization, our approach aims to enhance
predictive accuracy and provide a robust framework for financial time series forecasting.

3.1. Ensemble Model Results
This section presents the numerical results obtained from our proposed ensemble model, which integrates LightGBM
and AdaBoost with Genetic Algorithm (GA) optimization for stock price forecasting. The performance of each model
is evaluated using standard error metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). The comparison highlights the improve-
ment achieved by the GA-optimized ensemble over individual models.
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Fig. 1. Tesla (2017-2024).

3.2. LightGBM and AdaBoost Performance
The LightGBM model demonstrates strong predictive capabilities but exhibits relatively higher error values due to its
sensitivity to market fluctuations. Conversely, AdaBoost achieves better performance by reducing MAE and MSE,
indicating enhanced generalization. However, both models still struggle to fully capture nonlinear dependencies in
stock price data.

Table 1. Performance Metrics for LightGBM and AdaBoost Models

Model MAE MSE RMSE MAPE

LightGBM 9.9062 293.8897 17.1432 3.7012%
AdaBoost 8.3992 181.4914 13.4719 3.2720%

Fig. 2. Predicted vs Actual Stock Prices Using GA-Optimized Ensemble Model

3.3. Genetic Algorithm Optimization
To enhance predictive accuracy, we optimize the ensemble model using a Genetic Algorithm (GA). The GA effec-
tively fine-tunes the weighting of LightGBM andAdaBoost contributions, ensuring better generalization and improved
forecasting performance. The optimized model significantly outperforms the individual models, achieving substantial
reductions in error metrics.

Table 2. Performance Metrics for GA-Optimized Ensemble Model

MAE MSE RMSE MAPE

1.1944 2.3784 1.5422 0.53%
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As illustrated in Table 2, theGA-optimized ensemblemodel significantly reducesMAE,MSE, andRMSE, highlighting
its ability to capture complex stock price movements more effectively. The drastic improvement in MAPE (from
3.2720% in AdaBoost to 0.53%) further emphasizes the robustness of our approach.

Fig. 3. Predicted vs Actual Stock Prices Using GA-Optimized Ensemble Model

The results confirm that GA-based optimization enhances stock price prediction accuracy, making it a valuable tech-
nique for financial time series forecasting. The integration of boosting models with evolutionary algorithms allows
for more adaptive and precise stock price predictions in highly volatile market conditions.

4. Conclusion

This study demonstrated the effectiveness of Genetic Algorithm (GA) optimization in enhancing the predictive perfor-
mance of an ensemble model that integrates LightGBM and AdaBoost. By intelligently optimizing hyperparameters
and weighting contributions from each model, GA significantly improved forecasting accuracy while reducing com-
putational complexity. The results revealed a substantial reduction in error metrics, with the GA-optimized model
achieving a MAE of 1.1944, an MSE of 2.3784, an RMSE of 1.5422, and a MAPE of just 0.53%. These improve-
ments highlight the superiority of our approach in capturing complex stock price dynamics compared to individual
boosting models.
From a financial perspective, the enhanced forecasting accuracy achieved through GA optimization holds significant
practical implications. More precise stock price predictions contribute to better risk assessment, improved portfolio
management, and more informed investment decisions. By integrating advanced ensemble learning techniques with
evolutionary optimization, this study presents a scalable and adaptivemethodology for financial time series forecasting.
The findings suggest that GA-based optimization can serve as a powerful tool for traders, financial analysts, and
policymakers seeking to navigate volatile market conditions with greater confidence and precision. Future research
could explore hybrid optimization techniques or apply this framework to broader financial markets to further refine
predictive performance.
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Abstract

This paper addresses the problem of automatic disease diagnosis and uses fuzzy inference sys-
tems for automatic disease diagnosis. The proposed method uses rule-based fuzzy systems,
which are a set of fuzzy if-then rules, to retrieve the required knowledge and perform the classi-
fication operation. Over the past few decades, computer-aided diagnosis tools have been intro-
ducedwith the intention of helping doctors to somehow remove irregularities and inconsistencies
from data. A main goal for such computer tools is related to the scope of diagnosing cancer,
heart diseases, hepatitis, etc. The results obtained from running on the medical dataset avail-
able in the UCI data repository of the University of California prove that the proposed method
,which is based on two methodologies of fuzzy systems and ant colony algorithm, can classify
and diagnose diseases with high accuracy so that the generated rules can be easily interpreted
by an expert.

1. Introduction

An important category of problems in medical science is related to the diagnosis of diseases, which are usually based
on various tests that can be performed on the patient. The number of these tests may make it difficult to diagnose the
disease even for an expert doctor.
In references [1–4], various algorithms and computer methods have been mentioned in relation to disease diagnosis,
which clearly shows the important position of data mining and artificial intelligence methods in medical science. So
far, several methods have been proposed for the automatic diagnosis of complex and different diseases. In all of these
methods, the desired output is a binary output. That is, it displays two states of benign or malignant in the output. In
addition, the accuracy and interpretability of the presented methods are also low. The proposed method presented in
this article can improve all the parameters mentioned compared to the methods that have been done so far.

2. Introducing the Ant Colony Optimization Algorithm (ACO)

Today, due to the large volume of data and their complexity, a suitable tool is needed to analyze this existing data
and access the knowledge hidden in them. Data mining has made a tremendous impact in academic and industrial
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environments in recent years and has found many applications in various fields. For example, commercial applications
of medical and sports fraud management and detection, text mining, and web mining can be mentioned. The term data
mining refers to all aspects of an automated or semi-automated process for extracting unknown and useful knowledge
and patterns from large databases. This process consists of two main stages; the first stage is data preprocessing,
which includes cleaning, integrating, selecting attributes, and converting data into a format used by data mining. In
the second stage, the data obtained from the first stage are used for pattern recognition, which is done with the help of
algorithms such as classification and clustering. Then, the obtained patterns are evaluated based on a series of criteria
such as accuracy and knowledge interpretation ability.
Systems based on if-then rules have been proposed in many different application areas to automatically generate and
modify these rules. One such method is the ant colony optimization algorithm. The ant colony algorithm has been
proven both theoretically and experimentally to be able to search for features in complex search spaces and to provide
a valid method for problems that require efficient and effective search.
Ant Colony Optimization (ACO) is a heuristic method that is used to simulate the natural behavior of ants. The initial
idea of   this method was proposed by Dorigo [5]. In this algorithm, the main task of each artificial ant, like its natural
counterpart, is to find the shortest path between a pair of nodes in a graph on which the problem is appropriately
written. Therefore, the problem is transformed into subproblems in which the artificial ants are tasked with choosing
the next node based on the pheromone emitted and the distance to the next node. The decision rule for ant 𝑘 located
at node i that wants to choose one of the nodes from the set of unvisited nodes 𝑁𝑖 is obtained from Formula (1). Here
𝜏𝑖𝑗 represents the amount of pheromone on edge (𝑖, 𝑗), while 𝜂𝑖,𝑗 represents the inverse of the distance between two
nodes 𝑖, 𝑗.
Of course, each of these two has a power that can be changed to change the importance of each relative to the other.

𝑃𝑘
𝑖𝑗 = ቐ

𝜏𝛼𝑖𝑗𝜂
𝛽
𝑖,𝑗

∑𝑗∈𝑁𝑖 𝜏
𝛼
𝑖𝑗𝜂

𝛽
𝑖,𝑗

if 𝑗 ∈ 𝑁𝑖

0 if 𝑗 ∉ 𝑁𝑖

(1)

Also, while moving from one node 𝑖 to another node 𝑗, ants usually drop pheromone information 𝛿𝜏𝑖𝑗 on the corre-
sponding edge in the opposite amount of edge (𝑖, 𝑗). This operation is done using formula (2).

𝜏𝑖𝑗(𝑡) ← 𝜏𝑖𝑗(𝑡) + 𝛿𝜏𝑖𝑗 (2)

In addition, the algorithm, like its natural version, uses the pheromone evaporation mechanism to avoid rapid conver-
gence of all ants to a suboptimal path. That is, the pheromone concentration is automatically reduced by the value ρ
in each iteration. In other words, if 𝜏 is the pheromone matrix present on the edges of the corresponding graph, then
this matrix is   updated in each iteration by formula (3).

𝜏 ← (1 − 𝜙)𝜏 𝜌 ∈ (0, 1] (3)

Therefore, ACO is an optimization search idea to escape from local optimal solutions and converge towards the global
optimal solution.
The corresponding process of the ant community and the fuzzy if-then rule classification problem is as follows:
2-1. Number of ants in the ant community: Number of rules used for classification.
2-2. Ant characteristics: Traits and parameters related to the disease domain in question.
2-3. Amount of pheromone secreted by each ant: Amount of evaluation function related to that ant.
2-4. Update the pheromone related to the selected ant: Optimize the fuzzy if-then rule set of the classifier.
2-5. Current ant community: Current rule set.
2-6. Disrupt the current ant community: Apply changes to the current rule set.
2-7. New ant community: New rule set.
2-8. Calculate the fitness of the new ant community Calculate the value of the evaluation function for the new rule

set.
2-9. Accept the new ant community with a specific probability and provided that its fitness value is greater than the

current fitness value: Accept the new rule set provided that the value of its evaluation function is greater than
the value of the evaluation function of the current rule set.
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3. Proposed Fuzzy Inference System

A fuzzy inference system is a system based on if-then rules that uses fuzzy logic to reason about data.The decision-
making process is carried out by the inference engine using the rules in the rule base in the knowledge base. In a fuzzy
inference system, the knowledge base is called the heart of the system. The stronger the knowledge base obtained, the
more powerful the system’s inference and decision-making power will be. To build the rule base in the knowledge
base of a fuzzy inference system, a good algorithm must be used to generate the best rules.
The proposed fuzzy inference system uses the ant colony optimization algorithm.The overall design of the proposed
algorithm based on ACO for building the existing rule set in the rule base includes the following steps:

3-1. Data preprocessing, which itself includes two steps:
Data normalization.
Data fuzzification.

3-2. Creating an initial set of fuzzy if-then rules and determining the result category and degree of certainty of each
rule.

3-3. Evaluating the cost of the current rule set using the evaluation function.
3-4. Changing the current rule set using a random change of one of the rules and creating a new rule set.
3-5. Calculate the evaluation value of the new rule set using the evaluation function.
3-6. Insert the new rule set into the current rule set provided that the evaluation function value of the new rule set is

greater than the evaluation function value of the current rule set, store the best evaluation function value and the
best rule set and accept the new rule set with a probability.

3-7. Repeat steps 4 to 6 a specified number of times.
3-8. Return the best rule set.

After the best rule set is returned, a fuzzy inference system is created that uses it to automatically determine the type
of disease and its degree of certainty.

4. Evaluation of the Proposed Method

The proposed algorithm is evaluated on three medical datasets from the UCI1 data repository. The number of breast
cancer cases is 785, hepatitis is 225, and heart disease is 346.
The efficiency of the proposed algorithm compared to three well-known algorithms in the field of rule inference is
shown in Table 1. The first algorithm is the C4.5 algorithm [6]. This algorithm is based on decision trees and uses
pruning techniques to remove redundant branches. The second algorithm is the nearest neighbor algorithm (K-NN).
The procedure of this algorithm is that for each new sample, the result category is determined by comparing it with k
closest training samples. Therefore, it is necessary to specify a criterion for determining the distance between samples.
Euclidean distance is used to determine the distance between two samples. Finally, the XCS algorithm is used for
comparison [7]. The results of comparing the proposed method with the three methods mentioned are shown in Table
1. The results show that the classification accuracy of the test sets for the proposed method is higher than other well-
known methods in this field.
Of course, it should be noted that in the experiment, both the results of the training set and the results of the test set are
obtained, which is due to the importance of the test set and the fact that the final accuracy of each system is obtained
from its test set, so only the accuracy of the test set is given in the table below.

5. Conclusion

In general, the proposed method, which is based on two methodologies of fuzzy systems and ant colony algorithm,
provides efficient results for classifying different disease samples and, as seen in Table 1, detects different disease
samples with high accuracy. In addition to acceptable accuracy in disease diagnosis, the proposed method has another
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Table 1. Results obtained from implementing the proposed algorithm.
method breast cancer hepatitis heart disease
C4.5 94.5 91.3 83.5
k-NN 93.2 93.6 89.6
XCS 94.31 95.8 89.4

Proposed Methods 96.5 97.2 89.9

advantage over other methods, which is related to the criterion of simplicity and interpretability of the disease diagnosis
model because the average length of the rules in it is shorter than other systems and a specialist doctor can easily
understand this system.
According to the results obtained, it can be concluded that the proposed method has both characteristics of a fuzzy
inference system, namely high reliability and appropriate interpretability, and can help a specialist doctor in the field
of disease diagnosis as an expert system.
This system can be easily expanded to detect more complex diseases in addition to diagnosing these three diseases; of
course, this requires having a standard data set that must be collected with high accuracy.
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Abstract

In this paper, we present a novel optimization algorithm for minimizing nonsmooth locally Lip-
schitz functions under box constraints. The proposed Algorithm combines an efficient descent
line search strategy to determine a descent direction with the quasisecant method for approximat-
ing the subdifferential set. We prove global covergences of proposed Algorithm.This optimiza-
tion framework is particularly useful for image restoration problems, where box constraints help
preserve image fidelity and enhance solution accuracy. Numerical experiments demonstrate its
effectiveness restoring images.

1. Introduction

In this paper, we consider the following box constrainted optimization problem:

min 𝑓(𝑥),
𝑠.𝑡. 𝑎 ≤ 𝑥 ≤ 𝑏. (1)

where, the objective function 𝑓 is nonosmooth and locally Lipschitz, and the vectors 𝑎 and 𝑏 represent the lower and
upper bounds on the variables, respectively.
Box-constrained optimization problems arise in various fields, including machine learning, artificial intelligence, en-
gineering, industrial design, economics, and management [1, 2].
These constraints are particularly useful in image processing applications, where they ensure that solutions remain
within meaningful ranges[3, 4].
Image restoration is a fundamental task in image processing that aims to recover high-quality images from degraded
observations affect by noise, blurring, or compression artifacts. The general mathematical model for image restora-
tion involves reconstructing an unknown image from a given noisy observation using a linear transformation and an
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additive noise term. A widely used optimization-based formulation for image restoration involves minimizing an ob-
jective function that balances data fidelity and regularization. The total variation (TV) function is often employed as
a regularization term to preserve sharp edges while reducing noise, with isotropic and anisotropic total variation that
provide image gradients[5].
Several methods have been developed for solving box-constrained optimization problems, includingNewton’smethod,
the Lagrange method, and the quasisecant method. Newton’s method, known for its quadratic convergence, is highly
effective for smooth functions but computationally expensive due to the need for second-order derivatives[6].
The Lagrange method reformulates constrained optimization problems using multipliers, with the Karush-Kuhn-
Tucker (KKT) conditions determining optimality. However, solving the resulting system can be complex, especially
in large-scale problems[7].
The quasisecant method, designed for cases where derivative computations are challenging, approximates search di-
rections using secant-like updates, making it a robust alternative when function evaluations are costly[8].
The goal of image denoising problem, given by 𝑦 = 𝐴𝑥 + 𝑐 is to approximate the clear image 𝑥 ∈ ℝ𝑚×𝑛 from the
noisy observed image 𝑦 ∈ ℝ𝑚×𝑛. Here, 𝐴 is linear and bluring operator, and 𝑐 represents unknown noises. The
general formulation of image restoration is

min
0≤𝑥≤1

1
2‖𝐴𝑥 − 𝑦‖22 + 𝜆𝑇𝑉(𝑥), (2)

where 𝑇𝑉(𝑥), is the total variation function, 1
2‖𝐴𝑥 − 𝑦‖22 represents the exact axplicit data fidelity, and 𝜆 is reguli-

rization parametrs.
The total variation function computes the sum of absolute value differences between adjacent pixels in an image 𝑥,
with both isotropic and anisotropic formulation available.
The structure of the paper is organized as the following:
In section 2, we introduce a novel global algorithm for solving nonsmooth box-constrained optimization problems.
Section 3 presents numerical experiments demonstrating the algorithm’s effectiveness. Section 4 is dedicated to the
conclusion.

2. Global method for nonsmooth box constraints problem

we will solve problem (1) using the following approach, to determine the descent direction, we approximate the dif-
ferential set. At a given point, the descent direction is obtained by solving the following problem:

�̄� = 𝑎𝑟𝑔𝑚𝑖𝑛12‖𝑣‖
2, 𝑣 ∈ 𝜕𝑐𝑓(𝑥0). (3)

The descent direction at 𝑥0 is given by 𝑑 = − �̄�
‖�̄�‖ . if 𝜕𝑐𝑓(𝑥0) = ∇𝑓(𝑥0), then the descent direction simplifies,

𝑑 = − ∇𝑓(𝑥0)
‖∇𝑓(𝑥0)‖ , which corresponding to the steepest descent direction.

Now, we consider a set of subgradients 𝑢1, ..., 𝑢𝑚 of function 𝑓 at the 𝑥0, where 𝑚 > 0. The following problem
provides an apprpximation of problem (3)

min
1
2‖𝑣‖

2, 𝑣 ∈ 𝑐𝑜𝑛𝑣{𝑢1, ..., 𝑢𝑚}. (4)

Let the parameters 𝜀, 𝜆𝑚𝑖𝑛 , > 0 and 𝛼, 𝑐1 ∈ (0, 1), 𝑐2 ∈ (0, 𝑐1] be given, along with the bundle size𝑚𝑏.

𝑥𝑘 is the output of Algorithm 1, which minimizes problem (2). The key difference between the local and global search
algorithms is the parameter 𝜆𝑘. In Algorithm 1, 𝜆𝑘 decreases, while in Algorithm 2, it increases as 𝑘 grows, indicating
local and global search methods, respectively. Additionally, Algorithm 2 does not include search a line search, which
facilitiates global exploration.
Let the parameters 𝜀, 𝐾 > 0 and𝑚𝑏 be given.
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Algorithm 1 Local search method
Step0: Choose random 𝑥0 ∈ [𝑎, 𝑏]; 𝑘 ∶= 0 counter is , calculate 𝜆𝑚𝑎𝑥 = max

𝑖=1,....,𝑛
{max{|𝑥𝑘𝑖 − 𝑎𝑖|, |𝑥𝑘𝑖 − 𝑏𝑖|}},

Step1: Compute 𝜆𝑘 = 𝛼𝑘𝜆𝑚𝑎𝑥. If 𝜆𝑘 < 𝜆𝑚𝑖𝑛 , then stop, 𝑥𝑘 is output.
Step2: Choose random 𝑑0 ∈ 𝑆1 and put𝑚 ∶= 0.
Step3: If 𝑓 is differentiable on 𝑥𝑘 + 𝜆𝑘𝑑1, then set 𝑣 = ∇𝑓(𝑥𝑘 + 𝜆𝑘𝑑1), else select arbitrary 𝑣 ∈ 𝜕𝑓(𝑥𝑘 + 𝜆𝑘𝑑1).
Step4: Run Algorithm 1 of [9] and put and update set

𝑊(𝑥𝑘) = ൝{𝑣
𝑚}, 𝑚 = 0,

𝑊(𝑥𝑘) ∪ {𝑣𝑚}, 𝑚 ≥ 1. (5)

Step5: (Compute a descent direction) Solve �̄� = min
𝑣∈𝑐𝑜𝑛𝑣𝑊𝑘

‖𝑣‖. If ‖�̄�‖ ≤ 𝜀 then stop, else put 𝑑𝑚+1 = − �̄�
‖�̄�‖ .

Step6: (Stopping condition) If 𝑓(𝑥𝑘 + 𝜆𝑘𝑑𝑚+1) − 𝑓(𝑥𝑘) ≤ −𝑐1𝜆𝑘‖�̄�‖} then, go to step6, else set𝑚 ∶= 𝑚 + 1 If
𝑚 > 𝑚𝑏 then go to step6 else go to step3.
Step7: (Compute a search direction) Compute ℎ̄ = 𝑎𝑟𝑔𝑚𝑎𝑥{0 < ℎ < 1 ∶ 𝑓(𝑥𝑘+ℎ𝜆𝑘𝑑𝑚+1)−𝑓(𝑥𝑘) ≤ −𝑐2ℎ‖�̄�‖},
put 𝑥𝑘 ∶= 𝑥𝑘 + ℎ𝑑𝑚+1 go to step3.
Step8: If 𝑚 ≤ 𝑚𝑏 then, go to step 2.
Step9: set 𝑥𝑘+1 ∶= 𝑥𝑘 , 𝑘 ∶= 𝑘 + 1 and go to step1

Algorithm 2 Global search method
Step0: Start with minimizer 𝑥 ∈ [𝑎, 𝑏] from Algorithm 1; calculate 𝜆𝑚𝑎𝑥 = max

𝑖=1,....,𝑛
{max{|𝑥𝑘𝑖 − 𝑎𝑖|, |𝑥𝑘𝑖 − 𝑏𝑖|}},

number 𝜆𝑚𝑖𝑛 ∈ (0, 𝜆𝑚𝑎𝑥) and calculate 𝛽 = (𝜆𝑚𝑖𝑛 − 𝜆𝑚𝑎𝑥)/𝐾 and 𝜆𝑘 = 𝜆𝑚𝑖𝑛 + 𝑘𝛽.
Step1: If 𝜆𝑘 > 𝜆𝑚𝑎𝑥 , then stop, output 𝑆, 𝑇.
Step2: Choose random 𝑑0 ∈ 𝑆1 and put𝑚 ∶= 0. Compute 𝑦𝑚 = 𝑥 + 𝜆𝑘𝑑𝑚 and 𝑓(𝑦𝑚).
Step3: Compute 𝑦𝑚 = 𝑥𝑘 + 𝜆𝑘𝑑𝑚 and subgradient 𝑣𝑚 ∈ 𝜕𝑓(𝑦𝑚) and update set (5)
Step4: Solve quadratic problem(4),
Step5: If 𝑚 > 𝑚𝑏 or ‖�̄�‖ ≤ 𝜀 then, go to next step. else compute descent direction 𝑑𝑚+1 = −‖�̄�‖−1�̄�. put
𝑚 ∶= 𝑚 + 1. go to step3.
Step6: put 𝑆 = 𝑆 ∩ {𝑦𝑚} ∶= 𝑥𝑘 and 𝑇 = 𝑇 ∩ {𝑓(𝑦𝑚)} ∶= 𝑥𝑘, 𝑘 = 𝑘 + 1 and go to step2.

The sets 𝑆 = {𝑦1, ..., 𝑦𝐾} and 𝑇 = {𝑓(𝑦1), ..., 𝑓(𝑦𝐾)} are the outputs of Algorithm 2. The algorithm employs
two counters: 𝑘 for the outer loop and 𝑚 for the inner loop. Initially, the parameter 𝜆𝑘 is determined based on box
constraints, and in each iteration of the outer loop, 𝑥𝑘 is updated. This process continues until falls below a predefined
threshold 𝜆𝑘 ≤ 𝜆𝑚𝑖𝑛.
Within the inner loop, spanning Steps 2–5, the algorithm determines the search direction by solving a quadratic op-
timization problem. A new point is then obtained via line search. Throughout the 𝑘-th iteration of the inner loop,
remains constant to ensure that remains 𝑦𝑚 within a unit sphere. The inner loop terminates if either the distance be-
tween the origin and the quasisecant polytope is reduced to less than 𝜀, or if the number of computed quasisecants
exceeds𝑚𝑏.



262 Hoseinpour & Akbari / The 5th National Congress on Mathematics and Statistics

Algorithm 3 Global subdifferential method
Step0: Choose random �̃� ∈ ℝ𝑛; counter 𝑘 ∶= 0.
Step1: Run Algorithm 1 with starting point �̃�, 𝑥𝑘 will result, then put 𝑥𝑜𝑝𝑡 = 𝑥𝑘,𝑓𝑜𝑝𝑡 = 𝑓(𝑥𝑜𝑝𝑡).
Step2: Run algorithm 2 with starting point 𝑥𝑘, sets 𝑆, 𝑇 will generate.
Step3: Suppose �̄� = 𝑎𝑟𝑔min

𝑦∈𝑆
𝑓(𝑦), If 𝑓(�̄� < 𝑓𝑜𝑝𝑡), then set �̃� ∶= �̄�, 𝑘 ∶= 𝑘 +1 and go to Step1; else, go to step4.

Step4: put 𝑦0 ∶= 𝑥𝑘 and calculate 𝑓(𝑦𝑚). Start from 𝑚 = 0, Repeatedly check value in set 𝑇, generate index set
𝐼 = {𝑖|𝑓(𝑦𝑚) ≤ 𝑓(𝑦𝑖−1, 𝑓(𝑦𝑖) ≤ 𝑓(𝑦𝑖+1), 𝑖 = 1, ..., 𝐾 − 1} and update 𝑆, 𝑇.
Step5: Each point 𝑦 ∈ 𝑆 is a starting point for Algorithm 1. If 𝑓(�̄�) < 𝑓𝑜𝑝𝑡 then set 𝑥𝑘+1 = 𝑥𝑜𝑝𝑡 = �̄� and
𝑓𝑜𝑝𝑡 = 𝑓(𝑥𝑜𝑝𝑡) and go to step3, else stop and output 𝑥𝑜𝑝𝑡 and 𝑓𝑜𝑝𝑡.

The outputs of Algorithm 3 are 𝑥𝑜𝑝𝑡 and its corresponding function value 𝑓𝑜𝑝𝑡 = 𝑓(𝑥𝑜𝑝𝑡).
It uses two sub-algorithms, Algorithm 1 for local exploitation and Algorithm 2 for global exploration. Algorithm 1 is
applied in Step1 when a better starting point is found and in Step5 when new promising basins are detected.
Algorithm 2 starts from a local minimizer 𝑥𝑘 and generates candidate starting points for Algorithm 1. The algorithm
restart a new round of local search when a better point than the current optimal is found (Step3) or when new promising
basins are heuristically identified (Steps 4–5). If neither condition results in further progress, the algorithm terminates,
returning 𝑥𝑜𝑝𝑡 and 𝑓𝑜𝑝𝑡 as the final results.

3. Numerical result

In this section, performance of the proposed denoising method is evaluated. Each iteration of the algorithm requires
the solution of problem (2), which total variation function as following form:

𝑇𝑉𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐(𝑥) = ‖𝑇𝑉‖1 =
𝑖,𝑗
(|𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗| + |𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗|).

where, 𝑇𝑉 is considered anisotropic.
We have used several gray images (Cameraman, House, Lake, Lena, Mandrill, Peppers, Chart) from [10] as test
images.
The Fig1. show the original clean images with a size of 256 × 256 and corresponding added noise are Gaussian noise
and Salt and peper noise. Image restoration results, compared with two denoising methods such as, Adams Algorithm
and Chambolle Algorithm. The PSNR and CPU TIME values for these images are listed in following table. It reveals
that the proposed Algorithm have better performance than Adam Algorithm and Chambolle Algorithm in PSNR.
Numerical results of CPU Time for proposed Algorithm is upper than Chambolle Algorithm and Adam Algorithm.

Table 1. Comparison of PSNR and CPU Time of Algorithm 3 and Adams Algorithm and Chambolle Algorithm.

Images
House Cameraman Lena Lake Mandrill Peppers Chart

PSNR Algorithm 3 70.90 69.88 71.00 71.00 70.21 70.39 71.18
Adams Algorithm 70.77 70.30 70.32 70.28 69.51 70.31 70.07

Chambolle Algorithm 69.70 70.15 69.23 69.80 69.10 70.28 66.12
CPU Time Algorithm 3 18.33 13.91 15.75 14.45 14.47 14.52 15.39

Adams Algorithm 6.12 6.20 4.77 6.98 6.94 4.83 5.27
Chambolle Algorithm 7.80 7.10 6.08 7.70 6.51 7.39 7.18
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Abstract

In this research we introduce the new concept of operation inverter for each element of the 𝐸𝑄-
algebras and we examine some properties of this new concept. Next, the concepts of inverter
graph Γ(𝑋) is introduced based on inverter set of 𝐸𝑄-algebras and check their attributes.

1. Introduction

Algebraic logic as the oldest approach to formal logic was introduced by George Boole in 1847 that it has many
applications in interdisciplinary sciences. From the combination of any regular set with the principles of logical
algebra, lattices are created, which are very important in logical algebra. The theory of residual lattices is of double
importance in logical algebra, and for this reason, a new concept called 𝐸𝑄-algebras was presented by Novak and De
Baets in 2009 [11]. Many researchers have studied and written many articles about 𝐸𝑄-algebras and their application
[1, 2, 8–10, 12]. Graph theory is a practical and valuable tool for modeling problems and finding the shortest solutions
and paths. Also, directed graphs are widely used in today’s world, for example, computer science, network science,
excavate public communication, decompose electrical flow and network theory. In this research, for each member of
the 𝐸𝑄-algebras, we present an inverter operation, , which plays a fundamental role in our article. In fact, we make
the inverter graph Γ(𝑋) based on the inverter set.

1.1. Preliminaries
Definition 1.1. [11] A system (𝑋, ∧,⊙,∽, 1) where ��∧,⊙,∽ " are binary operations, is a (commutative) 𝐸𝑄-
algebra, if ∀𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝑋:

(𝐸𝑄1) (𝑋, ∧, 1) is a ∧-semilattice which contains the element above 1. We place 𝑥 ≤ 𝑦 ⟺ ∧(𝑥, 𝑦) = 𝑥,

(𝐸𝑄2) (𝑋,⊙, 1) is a (commutative) monoid and⊙ is isotone,

∗Talker
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(𝐸𝑄3) 𝑥 ∽ 𝑥 = 1,

(𝐸𝑄4) ((𝑥 ∧ 𝑦) ∽ 𝑧) ⊙ (𝑡 ∽ 𝑥) ≤𝑋 (𝑧 ∽ (𝑡 ∧ 𝑦)),

(𝐸𝑄5) (𝑥 ∽ 𝑦)⊙ (𝑧 ∽ 𝑡) ≤𝑋 (𝑥 ∽ 𝑧) ∽ (𝑦 ∽ 𝑡),

(𝐸𝑄6) (𝑥 ∧ 𝑦 ∧ 𝑧) ∽ 𝑥 ≤𝑋 (𝑥 ∧ 𝑦) ∽ 𝑥,

(𝐸𝑄7) (𝑥 ∧ 𝑦) ∽ 𝑥 ≤𝑋 (𝑥 ∧ 𝑦 ∧ 𝑧) ∽ (𝑥 ∧ 𝑧),

(𝐸𝑄8) 𝑥 ⊙ 𝑦 ≤𝑋 𝑥 ∽ 𝑦.

The action �� ⊙ " is multiplication, and �� ∽ " is fuzzy equality. Based [2], put 𝑥 ↪ 𝑦 = (𝑥 ∧ 𝑦) ∽ 𝑥,¬𝑥 = 𝑥 ∽ 0
and

∽𝑥 = 𝑥 ∽ 1, ∀𝑥, 𝑦 ∈ 𝑋.
We say that 𝑋 is good if for all 𝑥 ∈ 𝑋, 𝑥 ∽ 1 = 𝑥.

Theorem 1.2. [2, 11] Let (𝑋, ∧,⊙,∽, 1) be an 𝐸𝑄-algebra. Then ∀𝑎, 𝑏, 𝑐 ∈ 𝑋:

(1) 𝑎 ↪ (𝑏 ∧ 𝑐) ≤𝑋 𝑎 ↪ 𝑏,

(2) 𝑎 ↪ 𝑏 ≤𝑋 (𝑎 ∧ 𝑐) ↪ 𝑏,

(3) 𝑎 ↪ 𝑑 ≤𝑋 (𝑏 ↪ 𝑎) ↪ (𝑏 ↪ 𝑑),

(4) 𝑏 ↪ 𝑎 ≤𝑋 (𝑎 ↪ 𝑑) ↪ (𝑏 ↪ 𝑑),

(5) 𝑎 ↪ 𝑏 ≤𝑋 (𝑎 ∧ 𝑐) ↪ (𝑏 ∧ 𝑐),

(6) 𝑎 ↪ 𝑏 = 𝑎 ↪ (𝑎 ∧ 𝑏),

(7) 𝑏 ≤𝑋
∽
𝑏 ≤𝑋 𝑎 ↪ 𝑏,

(8) 𝑎 ∽ 𝑏 ≤𝑋 𝑎 ↪ 𝑏 and 𝑎 ↪ 𝑎 = 1,

(9) 𝑎 ↪ 𝑏 ≤𝑋 ¬𝑏 ↪ ¬𝑎,

(10) 𝑎 ↪ 𝑏 = (𝑎 ∨ 𝑏) ↪ 𝑏,

(11) 𝑎 ↪ 𝑏 = (𝑎 ∨ 𝑐) ↪ (𝑏 ∨ 𝑐),

(12) Presume 𝑎 ∽ 𝑏 = 1, then (𝑎 ∧ 𝑐) ∽ (𝑏 ∧ 𝑐) = 1 and (𝑎 ∽ 𝑐) ∽ (𝑏 ∽ 𝑐) = 1.

Theorem 1.3. [2, 11] Let (𝑋, ∧,⊙,∽, 1) be a good 𝐸𝑄-algebra. Then ∀𝑎, 𝑏, 𝑐 ∈ 𝑋:

(1) 𝑎 ↪ (𝑏 ↪ 𝑐) = 𝑏 ↪ (𝑎 ↪ 𝑐),

(2) 𝑎 ↪ (𝑏 ↪ 𝑐) ≤𝑋 𝑎 ⊙ 𝑏 ↪ 𝑐.

2. Main results

In this section, we define the significance of inverter set in 𝐸𝑄-algebra and inverter graph Γ(𝑋) based on inverter set
of 𝐸𝑄-algebras.

Definition 2.1. Let (𝑋, ∧,⊙,∽, 1) be an 𝐸𝑄-algebra. Then for 𝑧 ∈ 𝑋, define 𝑇𝑟(↪, 𝑧) = {𝑥 ∈ 𝑋 | 𝑥 ↪ 𝑧 = 1} as
(↪)-inverter of 𝑧 in 𝑋.

It is clear that in any 𝐸𝑄-algebra (𝑋, ∧,⊙,∽, 1), |𝑇𝑟(↪, 𝑧)| ≥ 1, because of 𝑧 ∈ 𝑇𝑟(↪, 𝑧).
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Fig. 1.

Table 1. (𝑋,⊙)

⊙ 0 𝑎 𝑏 𝑐 𝑑 1
0 0 0 0 0 0 0
𝑎 0 0 0 0 0 𝑎
𝑏 0 0 𝑎 𝑎 𝑎 𝑏
𝑐 0 0 𝑎 0 𝑎 𝑐
𝑑 0 0 𝑎 𝑎 𝑎 𝑑
1 0 𝑎 𝑏 𝑐 𝑑 1

Table 2. (𝑋,∽)

∽ 0 𝑎 𝑏 𝑐 𝑑 1
0 1 0 0 0 0 0
𝑎 0 1 𝑑 𝑑 𝑑 𝑑
𝑏 0 𝑑 1 𝑑 𝑑 𝑑
𝑐 0 𝑑 𝑑 1 𝑑 𝑑
𝑑 0 𝑑 𝑑 𝑑 1 1
1 0 𝑑 𝑑 𝑑 1 1

Table 3. (𝑋,↪)

↪ 0 𝑎 𝑏 𝑐 𝑑 1
0 1 1 1 1 1 1
𝑎 0 1 1 1 1 1
𝑏 0 𝑑 1 𝑑 1 1
𝑐 0 𝑑 𝑑 1 1 1
𝑑 0 𝑑 𝑑 𝑑 1 1
1 0 𝑑 𝑑 𝑑 1 1

Example 2.2. Suppose 𝑋 = {0, 𝑎, 𝑏, 𝑐, 𝑑, 1} and considre the lattice in Figure 2.2. Then (𝑋, ∧,⊙,∽, 1) is an 𝐸𝑄-
algebra as Tables 1, 2 and 3.
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Computations show that

𝑇𝑟(↪, 0) = {0}, 𝑇𝑟(↪, 𝑎) = {0, 𝑎}, 𝑇𝑟(↪, 𝑏) = {0, 𝑎, 𝑏}, 𝑇𝑟(↪, 𝑐) = {0, 𝑎, 𝑐}
and 𝑇𝑟(↪, 𝑑) = 𝑇𝑟(↪, 1) = 𝑋.

Theorem 2.3. Let (𝑋, ∧,⊙,∽, 1) be an 𝐸𝑄-algebra. Then ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 ∶

(𝑖) If 𝑥 ∈ 𝑇𝑟(↪, 𝑦), then (𝑥 ∧ 𝑧) ∈ 𝑇𝑟(↪, 𝑦 ∧ 𝑧).

(𝑖𝑖) If 𝑥 ∈ 𝑇𝑟(↪, 𝑦), then (𝑥 ∽ 𝑧) ∈ 𝑇𝑟(↪, 𝑦 ∽ 𝑧).

Proof. (𝑖) Let 𝑥 ∈ 𝑇𝑟(↪, 𝑦), then 𝑥 ↪ 𝑦 = 1. By Theorem 1.2, 𝑥 ↪ 𝑦 ≤ (𝑥 ∧ 𝑧) ↪ (𝑦 ∧ 𝑧), get that (𝑥 ∧ 𝑧) ↪
(𝑦 ∧ 𝑧) = 1. Hence (𝑥 ∧ 𝑧) ∈ 𝑇𝑟(↪, 𝑦 ∧ 𝑧).
(𝑖𝑖) Let 𝑥 ∈ 𝑇𝑟(↪, 𝑦), then 𝑥 ↪ 𝑦 = 1. By Theorem 1.2, gain that (𝑥 ∽ 𝑧) ∽ (𝑦 ∽ 𝑧) = 1. Using Theorem 1.2,
(𝑥 ∽ 𝑧) ∽ (𝑦 ∽ 𝑧) ≤ (𝑥 ∽ 𝑧) ↪ (𝑦 ∽ 𝑧). Hence (𝑥 ∽ 𝑧) ↪ (𝑦 ∽ 𝑧) = 1. Therefore (𝑥 ∽ 𝑧) ∈ 𝑇𝑟(↪, 𝑦 ∽ 𝑧).

Theorem 2.4. Let (𝑋, ∧,⊙,∽, 1) be an 𝐸𝑄-algebra. Then ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 ∶

(𝑖) 𝑥 ∈ 𝑇𝑟(↪, 𝑦) iff 𝑥 ∈ 𝑇𝑟(↪, 𝑥 ∧ 𝑦).

(𝑖𝑖) 𝑥 ∈ 𝑇𝑟(↪, 𝑦) iff 𝑥 ∨ 𝑦 ∈ 𝑇𝑟(↪, 𝑦).

(𝑖𝑖𝑖) 𝑥 ∈ 𝑇𝑟(↪, 𝑦) iff 𝑥 ∨ 𝑧 ∈ 𝑇𝑟(↪, 𝑦 ∨ 𝑧).

Proof. (𝑖) By using Theorem 1.2, 𝑥 ↪ 𝑦 = 1 iff 𝑥 ↪ (𝑥 ∧ 𝑦) = 1.
(𝑖𝑖) By using Theorem 1.2, 𝑥 ↪ 𝑦 = 1 iff 𝑥 ∨ 𝑦 ↪ 𝑦 = 1.
(𝑖𝑖𝑖) Applying Theorem 1.2, 𝑥 ↪ 𝑦 = 1 iff 𝑥 ∨ 𝑧 ↪ 𝑦 ∨ 𝑧 = 1.

Theorem 2.5. Assume (𝑋, ∧,⊙,∽, 1) be a good 𝐸𝑄-algebra and 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then

(𝑖) 𝑇𝑟(↪, 𝑦) ⊆ 𝑇𝑟(↪, 𝑥 ↪ 𝑦).

(𝑖𝑖) If 𝑥 ∈ 𝑇𝑟(↪, 𝑦 ↪ 𝑧), then 𝑥 ⊙ 𝑦 ∈ 𝑇𝑟(↪, 𝑧).

(𝑖𝑖𝑖) 𝑥 ∈ 𝑇𝑟(↪, 𝑦 ↪ 𝑧) if and only if 𝑦 ∈ 𝑇𝑟(↪, 𝑥 ↪ 𝑧).

Proof. (𝑖) Let 𝑧 ∈ 𝑇𝑟(↪, 𝑦). Thus 𝑧 ↪ 𝑦 = 1. Applying Theorem 1.3, 𝑧 ↪ (𝑥 ↪ 𝑦) = 𝑥 ↪ (𝑧 ↪ 𝑦) = 𝑥 ↪ 1 = 1
and so 𝑧 ↪ (𝑥 ↪ 𝑦) = 1. Hence 𝑧 ∈ 𝑇𝑟(↪, 𝑥 ↪ 𝑦) and so 𝑇𝑟(↪, 𝑦) ⊆ 𝑇𝑟(↪, 𝑥 ↪ 𝑦).
(𝑖𝑖) Since 𝑥 ∈ 𝑇𝑟(↪, 𝑦 ↪ 𝑧), so 𝑥 ↪ (𝑦 ↪ 𝑧) = 1. Applying Theorem 1.3, 𝑥⊙𝑦 ↪ 𝑧 = 1. Hence 𝑥⊙𝑦 ∈ 𝑇𝑟(↪, 𝑧).
(𝑖𝑖𝑖) By using Theorem 1.3, 𝑥 ↪ (𝑦 ↪ 𝑧) = 1 if and only if 𝑦 ↪ (𝑥 ↪ 𝑧) = 1.

Definition 2.6. Let (𝑋, ∧,⊙,∽, 1) be an 𝐸𝑄-algebra and 𝑥, 𝑦 ∈ 𝑋. Then Γ(𝑋) = (𝑉 = 𝑉(Γ(𝑋)) = 𝑋 ∖ {1}, 𝐸 =
𝐸(Γ(𝑋)) is called an inverter graph of 𝑋, which for any two distinct vertices 𝑥 and 𝑦, (𝑥, 𝑦) ∈ 𝐸 if and only if
𝑇𝑟(↪, 𝑥) ∪ 𝑇𝑟(↪, 𝑦) ≠ 𝑇𝑟(↪, 𝑥 ↪ 𝑦) and (𝑦, 𝑥) ∈ 𝐸 if and only if 𝑇𝑟(↪, 𝑦) ∪ 𝑇𝑟(↪, 𝑥) ≠ 𝑇𝑟(↪, 𝑦 ↪ 𝑥). We
emphasize that 𝑇𝑟(↪, 𝑥) ∪ 𝑇𝑟(↪, 𝑦) = 𝑇𝑟(↪, 𝑥 ↪ 𝑦), if (𝑦, 𝑥) ∈ 𝐸 or there is not any arc between vertices 𝑥, 𝑦.

It obvious that Γ(𝑋) = (𝑉 = 𝑉(Γ(𝑋)) = 𝑋 ∖ {1}, 𝐸 = 𝐸(Γ(𝑋))) has not loop and is not a simple graph, since for any
𝑥, 𝑦 ∈ 𝑉, necessarily, 𝑇𝑟(↪, 𝑥 ↪ 𝑦) ≠ 𝑇𝑟(↪, 𝑦 ↪ 𝑥).

Example 2.7. Consider the𝐸𝑄-algebra (𝑋, ∧,⊙,∽, 1) of Example 2.2. We gain the inverter graph Γ(𝑋) in Figure 2.7.

Theorem 2.8. Let (𝑋, ∧,⊙,∽, 1) be an 𝐸𝑄-algebra and 𝑥, 𝑦 ∈ 𝑋.

(𝑖) If (𝑥, 𝑦) ∉ 𝐸(Γ(𝑋)), then 𝑇𝑟(𝑥) ⊆ 𝑇𝑟(𝑥 ↪ 𝑦).

(𝑖𝑖) If (𝑥, 𝑦), (𝑦, 𝑥) ∉ 𝐸(Γ(𝑋)), then 𝑇𝑟(𝑦 ↪ 𝑥) = 𝑇𝑟(𝑥 ↪ 𝑦).
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Fig. 2.

Proof. (𝑖) Assume 𝑥, 𝑦 ∈ 𝑋. As (𝑥, 𝑦) ∉ 𝐸(Γ(𝑋)), we get that 𝑇𝑟(↪, 𝑥) ∪ 𝑇𝑟(↪, 𝑦) = 𝑇𝑟(↪, 𝑥 ↪ 𝑦) and so
𝑇𝑟(↪, 𝑥) ⊆ 𝑇𝑟(↪, 𝑥 ↪ 𝑦).
(𝑖𝑖) By item (𝑖), 𝑇𝑟(↪, 𝑥) ∪ 𝑇𝑟(↪, 𝑦) = 𝑇𝑟(↪, 𝑥 ↪ 𝑦) and 𝑇𝑟(↪, 𝑥) ∪ 𝑇𝑟(↪, 𝑦) = 𝑇𝑟(↪, 𝑦 ↪ 𝑥). Thus 𝑇𝑟(𝑦 ↪
𝑥) = 𝑇𝑟(𝑥 ↪ 𝑦).

Corollary 2.9. Assume (𝑋, ∧,⊙,∽, 1) be an 𝐸𝑄-algebra.

(𝑖) If ∀𝑥, 𝑦 ∈ 𝑋, 𝑇𝑟(𝑥) ⊈ 𝑇𝑟(𝑥 ↪ 𝑦), then Γ(𝑋) is a weakly connected graph.

(𝑖𝑖) If ∀𝑥, 𝑦 ∈ 𝑋, 𝑇𝑟(𝑥) ⊈ 𝑇𝑟(𝑥 ↪ 𝑦) and 𝑇𝑟(𝑦) ⊈ 𝑇𝑟(𝑦 ↪ 𝑥), then Γ(𝑋) is a strongly connected graph.
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Abstract

This paper presents a comprehensive analysis of Bermudan options using the Constant Elas-
ticity of Variance (CEV) model, employing the Least Squares Monte Carlo (LSMC) method
for pricing. We investigate the impact of varying elasticity parameters on the implied volatility
smile and demonstrate how the CEV model effectively captures the stochastic nature of asset
prices. Our numerical results include simulations of asset price paths, comparisons of implied
volatility curves for different elasticity parameters, and sensitivity analyses of Bermudan option
prices across various strike prices and maturities. These findings provide valuable insights for
option traders and risk managers, enhancing their understanding of the behavior and valuation
of Bermudan options under the CEV model.

1. Introduction

In the realm of financial derivatives, Bermudan options hold a unique position due to their hybrid exercise feature,
which combines aspects of both American and European options. Unlike European options, which can only be exer-
cised at maturity, and American options, which can be exercised at any time before maturity, Bermudan options can
be exercised at specific intervals during their life. This exercise flexibility poses both opportunities and challenges in
the valuation process.
The CEV model, introduced by Cox in 1975, extends the Black–Scholes model by incorporating a volatility compo-
nent that is a function of the underlying asset price [2]. This feature allows the CEV model to capture the empirical
phenomena of volatility smiles and leverage effects observed in financial markets [5]. Given the stochastic nature of
volatility in real–world markets, the CEV model provides a more realistic framework for option pricing compared to
its constant volatility counterparts [1, 3, 4, 6, 7].
This paper aims to explore the details of Bermudan option pricing under the CEV model, highlighting the theoretical
underpinnings, computational methodologies, and practical implications. We will investigate a numerical technique
employed to approximate the price of Bermudan options and demonstrate the effectiveness of the CEV model in
capturing market dynamics. By doing so, we seek to provide a comprehensive understanding of the interplay between
option exercise flexibility and stochastic volatility, thereby contributing to the existing body of knowledge in the field
of financial derivatives.

∗Talker
Email address: S.Fallah@alzahra.ac.ir (Somayeh Fallah)



270 S. Fallah / The 5th National Congress on Mathematics and Statistics

2. CEV Model

The CEV model is an extension of the Black-Scholes model used to price options. Unlike the Black-Scholes model,
which assumes constant volatility, the CEV model assumes that the volatility of the underlying asset is a function of
the asset price itself. This makes the CEV model particularly useful for capturing the observed market phenomena of
volatility smiles and leverage effects.

2.1. Mathematical Formulation
The CEV model assumes that the price of an asset follows a stochastic differential equation (SDE) of the form

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝛾𝑡 𝑑𝑊𝑡 ,
where 𝑆𝑡 is the asset price at time 𝑡, 𝑟 is the risk-free interest rate, 𝜎 is the volatility, 𝛾 is the elasticity parameter, which
determines the relationship between the asset price and its volatility, and𝑊𝑡 is a standard Brownian motion process.

2.2. Local Volatility Model
The CEV model is a type of local volatility model. Local volatility models are a class of models where the volatility
of the underlying asset is allowed to vary with both the asset price and time. In the case of the CEV model, the local
volatility is a function of the asset price 𝑆𝑡, specifically:

𝜎𝑙𝑜𝑐𝑎𝑙(𝑆𝑡) = 𝜎𝑆𝛾−1𝑡 .
This formulationmeans that the volatility changeswith the asset price, allowing the CEVmodel to capture the empirical
observation that volatility is not constant but varies with the level of the underlying asset.

2.3. Implied Volatility Curve
The implied volatility curve, often referred to as the volatility smile or skew, represents the implied volatility of
options across different strike prices or maturities. In markets, it is observed that options with different strike prices
or maturities exhibit different implied volatilities. This phenomenon cannot be captured by the Black-Scholes model,
which assumes constant volatility.
The CEV model, however, is capable of capturing the shape of the implied volatility curve due to its local volatility
nature. By allowing volatility to be a function of the asset price, the CEV model can produce an implied volatility
smile that aligns more closely with observed market data.
To visualize the implied volatility smile, we calculated the implied volatilities for options with varying strike prices
under the CEV model. The algorithm includes the following steps:
Step 1: Set the initial parameters as follows:

• Initial asset price (𝑆0 = $100)

• Risk-free rate (𝑟 = 5%)

• Time to maturity (𝑇 = 1 year)

• Strike prices (𝐾 = [80, 90, 100, 110, 120])

• Market prices corresponding to each strike price

• Elasticity parameter of the CEV model (𝛾 = 0.5)

Step 2: For each strike price, simulate the asset paths using the discretized CEV model:

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝛾𝑡 𝑑𝑊𝑡 ,

where 𝑑𝑊𝑡 represents the Brownian Motion process increments.
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The asset price at each time step was updated using:

𝑆𝑡+Δ𝑡 = 𝑆𝑡 + 𝑟𝑆𝑡Δ𝑡 + 𝜎𝑆𝛾𝑡 √Δ𝑡𝜖𝑡 ,

with 𝜖𝑡 ∼ 𝒩(0, 1).
Expected option payoff at maturity 𝑇 should be calculated as:

𝐶CEV = 𝑒−𝑟𝑇𝔼 [max(𝑆𝑇 − 𝐾, 0)] .

Step 3: Estimate the implied volatility using the Black-Scholes model with the option prices derived from the CEV
model. The Black-Scholes formula for implied volatility is used as follows:

implied_vol = blsimpv(𝑆0, 𝐾, 𝑟, 𝑇, 𝐶CEV)

Step 4: Plot the implied volatility smile curve by calculating the implied volatilities for each strike price and plotting
them against the strike prices.
The algorithm can be summarized as follows:

1. Initialize parameters: 𝑆0, 𝑟, 𝑇, market prices, strike prices 𝐾, and 𝛾.
2. For each strike price:

(a) Simulate asset price paths under the CEV model to compute 𝐶CEV.
(b) Estimate the implied volatility using the Black-Scholes formula.

3. Plot the implied volatilities versus strike prices.

The implied volatility smile curve obtained reflects how implied volatility varies with strike price under the CEV
model, capturing the characteristic smile shape due to the model’s ability to account for the asset’s price-dependent
volatility (see Figs 1 and 2).

3. Pricing Bermudan Options with LSMC in the CEV Model

Bermudan options, exercisable at specific intervals, present unique valuation challenges. The CEV model, which ac-
counts for changing volatility with asset price, offers a realistic framework for pricing. The LSMC method combines
Monte Carlo simulation with regression techniques, making it suitable for pricing Bermudan options under the CEV
model. This section details the steps involved in defining model parameters, simulating asset paths, calculating pay-
offs, and applying regression to estimate the option’s value accurately.

Step 1: Begin by specifying the parameters of the CEV model:

• Risk-free rate (𝑟): The risk–free interest rate used for discounting.

• Volatility coefficient (𝜎): Represents the volatility of the underlying asset.

• Elasticity parameter (𝛾): Determines the relationship between the asset price and its volatility.

• Initial asset price (𝑆0): The starting price of the underlying asset.

• Time to maturity (𝑇): The total time until the option expires.

• Exercise dates (𝑡1, 𝑡2, ⋯ , 𝑡𝑛): The specific dates on which the Bermudan option can be exercised.

Step 2: Simulate Asset Paths; to simulate asset paths, we need to discretize the continuous SDE. One common ap-
proach is to use the Euler–Maruyama method. For a small time step Δ𝑡, the discretized form of the SDE is:

𝑆𝑡+Δ𝑡 = 𝑆𝑡 + 𝑟𝑆𝑡Δ𝑡 + 𝜎𝑆𝛾𝑡 √Δ𝑡𝜖𝑡 ,
where 𝜖𝑡 is a standard normal random variable (𝜖𝑡 ∼ 𝒩(0, 1)).
Simulation procedure is as follows:
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1. Initialize Parameters:
• Set the initial asset price 𝑆0.
• Define the number of time steps 𝑁 and the time step size Δ𝑡 = 𝑇

𝑁 , where 𝑇 is the time to maturity.
• Specify the number of simulation paths𝑀.

2. Generate Random Numbers:
• Generate𝑀 ×𝑁 random normal variables 𝜖𝑡.

3. Simulate Paths:
• For each path 𝑗 = 1, 2,⋯ ,𝑀:

– Initialize 𝑆𝑗0 = 𝑆0.
– For each time step 𝑖 = 0, 1,⋯ ,𝑁 − 1:

𝑆𝑗(𝑖+1)Δ𝑡 = 𝑆𝑗𝑖Δ𝑡 + 𝑟𝑆𝑗𝑖Δ𝑡Δ𝑡 + 𝜎 ቀ𝑆𝑗𝑖Δ𝑡ቁ
𝛾
√Δ𝑡𝜖𝑗𝑖 .

Generate multiple asset price paths and for each path, simulate the asset price at each of the exercise dates.
Step 3: For each simulated asset path, calculate the option payoff at each exercise date. The payoff depends on whether
the option is a call or a put:

• Call option payoff : max(𝑆𝑡 − 𝐾, 0),

• Put option payoff : max(𝐾 − 𝑆𝑡 , 0),

where 𝐾 is the strike price and 𝑆𝑡 is the asset price at time 𝑡.
Step 4: At each exercise date, estimate the continuation value using least squares regression. The continuation value
is the expected discounted payoff if the option is not exercised at that date.

1. For the last exercise date 𝑡𝑛:
• The continuation value is zero because there are no further exercise opportunities.
• The option value is simply the payoff at 𝑡𝑛.

2. For each preceding exercise date 𝑡𝑖, from 𝑡𝑛−1 to 𝑡1:
• Use the simulated payoffs from 𝑡𝑖+1 to estimate the continuation value at 𝑡𝑖.
• Perform least squares regression of the discounted payoffs on a set of basis functions (e.g., polynomials of
the asset price) to approximate the continuation value.

• The option value at 𝑡𝑖 is the maximum of the immediate exercise value and the continuation value.

Step 5: Once you have the option values at each exercise date for all simulated paths, estimate the Bermudan option
price as the average of the discounted payoffs from the first exercise date.

4. Results and Discussion

In this section, we present the numerical results obtained from our analysis of Bermudan options under the CEV
model. The figures illustrate the impact of varying model parameters on option prices and their corresponding implied
volatility curves.
Fig. 1 shows the implied volatility smile curve calculated using the CEV model with an elasticity parameter (𝛾)
set to 0.5. The curve illustrates how implied volatility varies with different strike prices. The smile shape indicates
that implied volatility is higher for both deep in-the-money and out-of-the-money options compared to at-the-money
options, reflecting market expectations of higher future volatility for these options.
Fig. 2 compares the implied volatility smile curves under the CEV model for 𝛾 = 0.5 and 𝛾 = 0.7. The red curve
represents 𝛾 = 0.5, while the blue curve represents 𝛾 = 0.7. Higher gamma values result in a steeper smile, indicating
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greater sensitivity of volatility to the asset price. The comparison shows how the choice of gamma affects the shape
of the volatility smile.
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Fig. 1. Implied volatility smile curve under the CEV model with 𝛾 = 0.5.
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Fig. 2. Comparing implied volatility smile curve under the CEV model for 𝛾 = 0.5 and 𝛾 = 0.7.

Fig. 3 shows multiple simulated asset price paths over time under the CEV model with 𝛾 = 0.5. Each line repre-
sents a different simulated path, illustrating the evolution of asset prices and the variability introduced by the model’s
parameters.
Fig. 4 illustrates the relationship between Bermudan option prices, strike prices, and time to maturity. The Bermudan
option price is plotted on the vertical axis, while the horizontal axes represent the strike price and time to maturity. As
strike prices increase or decrease, and as time to maturity extends, the option price exhibits distinct patterns that help
in understanding the option’s sensitivity to these parameters.
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Fig. 3. Simulated asset price paths under the CEV model.
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Fig. 4. Bermudan option price relative to strike price and time to maturity.

5. Conclusion

This paper presents a detailed examination of Bermudan options using the CEV model, employing the LSMC method
for pricing. Our analysis demonstrates that the CEV model effectively captures the stochastic nature of asset prices
and provides a more realistic representation of market dynamics compared to traditional models. Through numerical
simulations, we have illustrated the impact of varying elasticity parameters on the implied volatility smile, highlighting
the model’s flexibility in reflecting different market conditions. Additionally, our sensitivity analysis of Bermudan
option prices across various strike prices and maturities offers valuable insights for traders and risk managers. The
findings of this study enhance the understanding of Bermudan option behavior under the CEV model and underscore
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the importance of incorporating realistic volatility structures in option pricing models. These insights are crucial for
improving risk management strategies and making informed trading decisions in financial markets.
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Abstract

Suppose that 𝑀 is a group. Let 𝐾 be a subgroup of 𝑀. If 𝐾 be a maximal subgroup 𝑀 then
either 𝑍(𝑀) ⊆ 𝐾 or 𝐾 is a normal subgroup of𝑀 containing𝑀′.

1. Introduction

In mathematics, the term maximal subgroup is used to mean slightly different things in different areas of algebra.
In group theory, a maximal subgroup 𝐻 of a group 𝐺 is a proper subgroup, such that no proper subgroup 𝐾 contains 𝐻
strictly. In other words, 𝐻 is a maximal element of the partially ordered set of subgroups of 𝐺 that are not equal to 𝐺.
Maximal subgroups are of interest because of their direct connection with primitive permutation representations of 𝐺.
They are also much studied for the purposes of finite group theory: see for example Frattini subgroup, the intersection
of the maximal subgroups.
In semigroup theory, a maximal subgroup of a semigroup 𝑆 is a subgroup (that is, a subsemigroup which forms a group
under the semigroup operation) of 𝑆 which is not properly contained in another subgroup of 𝑆. Notice that, here, there
is no requirement that a maximal subgroup be proper, so if 𝑆 is in fact a group then its unique maximal subgroup (as a
semigroup) is 𝑆 itself. Considering subgroups, and in particular maximal subgroups, of semigroups often allows one
to apply group-theoretic techniques in semigroup theory. There is a one-to-one correspondence between idempotent
elements of a semigroup and maximal subgroups of the semigroup: each idempotent element is the identity element
of a unique maximal subgroup. In algebra, a division ring, also called a skew field (or, occasionally, a sfield), is a
nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every
nonzero element 𝑎 has a multiplicative inverse. The structure of linear groups are now very well understood, but the
structure of skew linear group is completely different. In some papers structure of maximal subgroup of general skew
linear group is investigated. For some recently result see [1], [3], [6], [9], [20]. Situation of maximal subgroup of
general linear group are investigated in several papers, for example in [1] and [13]. In addition in [1], the following
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conjecture appears:
Conjecture. Let 𝐷 be a division ring and 𝑀 a torsion maximal subgroup of 𝐺𝐿𝑛(𝐷); then 𝐷 = 𝐹, 𝐶ℎ𝑎𝑟𝐹 = 𝑝 > 0
and 𝐹 is algebraic over 𝔽𝑝.
The following result is obtained in [9]:

Let 𝐷 be a division ring with center 𝐹 and𝑀 be a maximal subgroup of 𝐺𝐿𝑛(𝐷). If 𝐷 ≠ 𝐹 or 𝑛 > 1, then𝑀/𝑀 ∩𝐹∗

cannot be locally finite unless 𝑐ℎ𝑎𝑟𝐹 = 𝑝 > 0 and either:

1. [𝐷 ∶ 𝐹] = 𝑝2, 𝑛 = 1, and𝑀 ∪ {0} is a maximal subfield of 𝐷, or
2. 𝐷 = 𝐹, 𝑛 = 𝑝, and𝑀 ∪ {0} is a maximal subfield of𝑀𝑝(𝐹), or
3. 𝐷 = 𝐹 and 𝐹 is locally finite.

Also, the question on the existence of non-cyclic free subgroups in linear groups over a field was studied by Tits in
[25] which asserts that in the characteristic 0, every subgroup of the general linear group over a field 𝐹 either contains
a non-cyclic free subgroup or is soluble-by-finite, and every finitely generated subgroup either contains a non-cyclic
free subgroup or is soluble-by-finite in the case of prime characteristic. This result of Tits is now referred as the Tits
Alternative. Lichtman in [18] showed that there exists a finitely generated group which is not soluble-by-finite and
does not contain a non-cyclic free subgroup. See also the new result in [8], [10] and [11].
A good first reduction is to take into account the first isomorphism theorem, which tells us that the maximal subgroups
containing a given normal subgroup 𝑁 of 𝐺 correspond, under the natural projection, to the maximal subgroups of the
quotient group 𝐺/𝑁.

In this article we study some special property of maximal subgroups.

2. Main Result

Theorem 2.1. Suppose that 𝑀 is a group. Let 𝐾 be a subgroup of 𝑀. If 𝐾 be a maximal subgroup 𝑀 then either
𝑍(𝑀) ⊆ 𝐾 or 𝐾 is a normal subgroup of𝑀 containing𝑀′.

Proof. First, assume that𝑀 is a finite group. We prove our claim by induction over ∣ 𝑀 ∣. Consider that there exits a
minimal normal subgroup 𝐻 of𝑀 such that 𝐻 ⊆ 𝐾. therefore 𝐾/𝐻 is maximal subgroup of𝑀/𝐻. By induction:

𝑍(𝑀/𝐻) ⊆ 𝐾/𝐻

or
(𝑀/𝐻)′ = 𝑀′𝐻/𝐻 ⊆ 𝐾/𝐻.

But:

𝑍(𝑀)𝐻/𝐻 ⊆ 𝑍(𝑀/𝐻).
Hence, we obtain that 𝑍(𝑀) ⊆ 𝐾 or𝑀′ ⊆ 𝐾, as we claimed. Now, in other case we suppose that 𝐾 does not have any
nontrivial subgroup which is normal in𝑀.

On the contrary, assume that 𝑍(𝑀) ⊈ 𝐾 and𝑀′ ⊈ 𝐾.
Then, by the maximality of 𝐾:

𝑀 = 𝑍(𝑀)𝐾 = 𝑀′𝐾.
On the other hand, we have:

𝐾 ⊆ 𝑁𝑀(𝑍(𝑀) ∩ 𝐾)
and

𝑍(𝑀) ⊆ 𝑁𝑀(𝑀′ ∩ 𝐾).
In both cases, we conclude that 𝑍(𝑀)∩𝐾 and𝑀′∩𝐾 are normal in𝑀. Therefore, these subgroups are trivial. Hence:
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𝑀/𝑍(𝑀) ≅ 𝐾/(𝑍(𝑀) ∩ 𝐾)
and

𝐾/(𝑍(𝑀) ∩ 𝐾) = 𝐾/(𝑀′ ∩ 𝐾)
and

𝐾/(𝑀′ ∩ 𝐾) ≅ 𝑀/𝑀′.
Therefore, 𝑀/𝑍(𝑀) is abelian. So 𝑀/𝑍(𝑀) is nilpotent. Then 𝑀 is nilpotent. But 𝐾 is a maximal subgroup of the
nilpotent group𝑀. Thus 𝐾 ⊴ 𝑀. Consequently𝑀/𝐾 is a cyclic group of prime order and hence𝑀′ ⊆ 𝐾. This leads
us to a contradiction.

In general case, assume that 𝑍(𝑀) is not contained in 𝐾. We prove that𝑀′ ⊆ 𝐾.
So, 𝐾 ⊊ 𝐾𝑍(𝑀). But by maximality of 𝐾 we obtain that

𝑀 = 𝐾𝑍(𝑀).

We know that 𝐻 = 𝑍(𝑀) ∩ 𝐾 is central and hence normal. Therefore,

𝑀/𝐻 = 𝐾/𝐻 × 𝑍(𝑀)/𝐻.
Thus

(𝑀/𝐻)′ = (𝐾/𝐻)′.
So,

𝑀′𝐻 = 𝐾′𝐻.
Now we conclude that:

𝑀′ ⊆ 𝑀′𝐻 = 𝐾′𝐻 = 𝐾′(𝐾 ∩ 𝑍(𝑀)) ⊆ 𝐾,
as we desired.

Let 𝐷 be a division ring with center 𝐹 and𝑀 be a maximal subgroup of 𝐺𝐿𝑛(𝐷). If

𝐹∗ ⊈ 𝑀

, by previous theorem, we conclude that 𝑆𝐿𝑛(𝐷) ⊆ 𝑀. Thus𝑀 is normal maximal subgroup.
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Abstract

For a derangement 𝐷(𝑛) = 𝑛𝐷(𝑛 − 1) + (−1)𝑛.

1. Derangement

A derangement is a permutation that has no fixed points. In some paper, it is studied a subclass of derangements on
𝑛 + 𝑟 objects such that none of the first 𝑟 objects returns to the first 𝑟 objects location. Also, the probability that a
permutation is in this subclass of derangements is close to 1/𝑒. The introduction of derangement numbers goes back
to as early as 1708 when Pierre Rémond deMontmo was counting the number of derangements on 𝑛 letters (see [5, 6]).
Suppose that 𝑆𝑛 is the symmetric group on the set [𝑛] = {1, 2, … , 𝑛}. A derangement is a fixed point-free element of
the symmetric group 𝑆𝑛. The set of these permutations on 𝑆𝑛 is denoted by 𝒟𝑛. In other words,

𝒟𝑛 = {𝜋 ∈ 𝑆𝑛 ∶ 𝜋(𝑖) ≠ 𝑖 for all 1 ≤ 𝑖 ≤ 𝑛} .

Also, let 𝐷𝑛 = |𝒟𝑛|. The inclusion-exclusion principle gives

𝐷(𝑛) = 𝑛!
𝑛


𝑘=0

(−1)𝑘
𝑘! .

Assume that 𝐷0 = 1 and 𝐷1 = 0. Then the number 𝐷(𝑛) is related to the numbers 𝐷(𝑛 − 1) and 𝐷(𝑛 − 2) (with
𝑛 ≥ 2) through a closed-form recursive relation

𝐷(𝑛) = (𝑛 − 1)(𝐷(𝑛 − 1) + 𝐷(𝑛 − 2)).

∗Talker
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In [9], authors started investigating a subclass of derangements on 𝑛 + 𝑟 letters which restrict the first 𝑟 of these to
be in distinct cycles. (Such derangements are called 𝑟-derangement.) The number of 𝑟-derangements is denoted by
𝐷𝑟(𝑛).

Theorem 1.1 ([9],Theorem 4). Let 𝑟 ∈ ℕ+ and 𝑠 ∈ {1,… , 𝑟}. Then for each 𝑛 ≥ 𝑠 we have

𝐷𝑟(𝑛) =
𝑛


𝑗=𝑠

ቆ𝑗 − 1
𝑠 − 1ቇ

𝑛!
(𝑛 − 𝑗)!𝐷𝑟−𝑠(𝑛 − 𝑗).

In particular,

𝐷𝑟(𝑛) =
𝑛


𝑗=𝑟

ቆ𝑗 − 1
𝑟 − 1ቇ

𝑛!
(𝑛 − 𝑗)!𝐷(𝑛 − 𝑗), 𝑛 ≥ 𝑟.

Additionally, we have a closed formula for 𝑟-derangements numbers:

𝐷𝑟(𝑛) =
𝑛


𝑗=𝑟

ቆ𝑗𝑟ቇ
𝑛!

(𝑛 − 𝑗)! (−1)
(𝑛−𝑗), 𝑛 ≥ 𝑟.

Derangements are arrangements of some number of objects into positions such that no object goes to its specified
position. In the language of permutations, a derangement is a permutation in which none of the objects appear in
their ”natural” (i.e., ordered) place. If we choose a random permutation, the probability that it is a derangement is
close to 1/𝑒. Another version of the problem arises when we ask for the number of ways n letters, each addressed
to a different person, can be placed in n pre-addressed envelopes so that no letter appears in the correctly addressed
envelope. The derangement problem was formulated by P. R. de Montmort in 1708, and solved by him in 1713
(de Montmort 1713-1714). Nicholas Bernoulli also solved the problem using the inclusion-exclusion principle. The
number of derangements of an n-element set is called the n -th derangement number or rencontres number, or the
sub-factorial of n. Counting the derangements of a set amounts to what is known as the hat-check problem, in which
one considers the number of ways in which n hats can be returned to n people such that no hat makes it back to its
owner. This number satisfies the recurrences
More formally, let 𝑆𝑛+𝑟 be the set of permutations in [𝑛 + 𝑟] and consider the following:

𝒟(𝑟, 𝑛) = {𝜋 ∈ 𝒟𝑟+𝑛 ∶ 𝜋(𝑖) ≠ 𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 + 𝑟 and 𝜋(𝑖) ∉ [𝑟] for all 𝑖 ∈ [𝑟]} .

this is termed set as block derangements. Also, let 𝐷(𝑟, 𝑛) = ห𝒟(𝑟, 𝑛)ห. In this paper, we obtain a relation between
block derangements and 𝑟-derangements (which is defined in [9]) on 𝑆𝑛+𝑟.

Remark 1.2. It follows from the definition of block derangements that 𝑛 must be greater than or equal to 𝑟, i.e., For
𝑛 < 𝑟, we have 𝐷(𝑟, 𝑛) = 0. Now let 𝑟 = 0. Then we have

𝐷(0, 𝑛) = 𝐷(𝑛) and 𝐷(1, 𝑛) = 𝐷(𝑛 + 1).

Thus the block derangement is a generalization of the derangement.

The interesting this is that the number e itself also has applications in probability theory, in a way that is not obviously
related to exponential growth. Suppose that a gambler plays a slot machine that pays out with a probability of one in
n and plays it n times. Gordon and McMahon noted that the number of derangements in the hyperoctahedral group
gives the rising 2-binomial transform of the derangement numbers for 𝑆𝑛. More generally, they shows that the cyclic
derangement numbers give a mixed version of the rising r-binomial transform and falling (𝑟 − 1) binomial transform
of 𝐷 − 𝑛. This hybrid k-binomial transform may share many of the nice properties of Spivey and Steil’s transforms,
including Hankel invariance and/or a simple description of the change in the exponential generating function. Further,
it could be interesting to evaluate the expression for negative or even non-integer values of 𝑘. For instance, taking
𝑘 = 1/2 gives the binomial mean transform which is of some interest.
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We define a new special case of derangement, and also we obtain some relation on this subset of derangements. This
special case of derangement is a subset of block derangement
A derangement 𝜋 ∈ 𝑆𝑛+𝑟 is called a Δ-derangement if 𝜋(Δ) ∩ Δ = ∅. The number of Δ-derangements on 𝑆𝑛+𝑟 is
denoted by 𝑎𝑡ℎ𝑐𝑎𝑙𝐷(𝑟, 𝑛)

𝐷(𝑟, 𝑛) = |{𝜋 ∶ 𝜋 ∈ 𝐷(𝑛 + 𝑟), 𝜋(Δ) ∩ Δ = ∅}|.
𝐷(𝑟, 𝑛) = |{𝜋 ∶ 𝜋 ∈ 𝑆𝑛+𝑟 , Π(Δ) ∩ Δ = ∅, 𝑥𝜋 ≠ 𝑥 for all 𝑥 ∈ [𝑛]}|.

The Stirling number of the second kind 𝑆(𝑛, 𝑘) is the number of partitioning a set of 𝑛 elements into 𝑘 nonempty
subsets. The Stirling numbers of the second kind can be defined by the exponential generating function

1
𝑛!(𝑒

𝑥 − 1)𝑛 =
∞


𝑚=𝑛

𝑆(𝑚, 𝑛)𝑥
𝑚

𝑚!

Notice that the sum on the right hand side is now finite, as 𝑆(𝑚, 𝑛) = 0 for 𝑛 > 𝑚. By [4], for given power series

𝑓(𝑡) =
∞


𝑛=0

𝑎𝑛
𝑛! 𝑡

𝑛

we have the series transformation formula

𝑓(𝜇𝜆 (𝑒
𝜆𝑡 − 1)) =

∞


𝑛=0

𝑡𝑛
𝑛! {

𝑛


𝑘=0

𝑆(𝑛, 𝑘)𝜆𝑛−𝑘𝜇𝑘𝑎𝑘} (1)

where 𝜆 and 𝜇 are parameters.

𝑓ቀ𝜇𝜆 log(1 + 𝜆𝑡)ቁ =
∞


𝑛=0

𝑡𝑛
𝑛! ቄ

𝑛


𝑘=0

𝑠(𝑛, 𝑘)𝜆𝑛−𝑘𝜇𝑘𝑎𝑘ቅ

Let𝑚 be a nonnegative integer. For the sequence of Stirling numbers 𝑆(𝑘,𝑚) we have
𝑛


𝑘=0

ቆ𝑘𝑚ቇ𝑆(𝑘,𝑚) = 𝑆(𝑛 + 1,𝑚 + 1). (2)

Also, by [4]
𝑛


𝑘=0

ቆ𝑘𝑚ቇ𝑆(𝑘,𝑚)𝑥
𝑘 = 1

𝑚!

𝑚


𝑗=0

(−1)𝑚−𝑗(1 + 𝑗𝑥)𝑛 .

For 𝑥 = 1, the left-hand side of this equation equals (2). Therefore,

𝑆(𝑛 + 1,𝑚 + 1) = 1
𝑚!

𝑚


𝑗=0

(−1)𝑚−𝑗(1 + 𝑗)𝑛 . (3)

The integers 𝑏𝑛 = ∑𝑛
𝑘=0 𝑆(𝑛, 𝑘) are known as Bell numbers. They give the number of ways a set of n elements can

be partitioned into nonempty disjoint subsets.
In this proved:

Theorem 1.3. Suppose 𝑟 and 𝑛 are integers and 1 ≤ 𝑟 ≤ 𝑛. Then

𝐷(𝑟, 𝑛) = 𝑟!
𝑛


𝑖=𝑟

(−1)𝑛−𝑖ቆ𝑖𝑟ቇ
𝑛!

(𝑛 − 𝑖)! .
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Theorem 1.4. Suppose 𝑟 and 𝑛 are integers and 1 ≤ 𝑟 ≤ 𝑛. Then 𝐷(𝑟, 𝑛) = 𝑟!𝐷𝑟(𝑛).

Theorem 1.5. Suppose 𝑟 and 𝑛 are integers and 1 ≤ 𝑟 ≤ 𝑛. Then for each 𝑟 the sequence ቄ𝐷(𝑟,𝑛)(𝑛+𝑟)!ቅ𝑛≥1 tends to 1/𝑒.

Theorem 1.6. Let 𝑘 be an integer number. Then we have

𝑛


𝑘=0

(−1)𝑘𝑆(𝑛, 𝑘)𝐷(𝑟, 𝑘) =
𝑛


𝑗=0

𝑟


𝑖=0

(−1)𝑛−𝑗+𝑖+𝑟𝑟!ቆ𝑟𝑖ቇ(1 + 𝑖)𝑛−𝑗𝑏𝑗

In [9, Theorem 6], it was shown that for each 𝑟 ∈ ℕ+, the sequence ൜ 𝐷𝑟(𝑛)(𝑛+𝑟)! ൠ𝑛∈ℕ
is convergent to 1

𝑟!𝑒 . Now, we can use
Theorem 1.5, to establish asymptotic estimates for 𝑟-derangements in another way. Also, according to Theorem 1.4, it
can be obtained, similar to the main results in [9], some conclusions about the number 𝐷(𝑟, 𝑛), so we avoid repeating
them here. In Section ??, we obtain the recursion formula for 𝐷(𝑟, 𝑛). Then we prove the main results of this section.
Boyadzhiev gave an interesting combinatorial Stirling transform of derangement numbers in [3]. Similarly, at the end
of section ??, we obtain the Stirling transformation formula of 𝐷(𝑟, 𝑛).
The set
{1, 2, … , 𝑛} and the set {𝑖, 𝑖+1,… , 𝑗} are denoted by [𝑛] and [𝑖, 𝑗], respectively. Also, assume that a permutation 𝜋 ∈ 𝑆𝑛
is represented as the word 𝜋(1)𝜋(2)…𝜋(𝑛). Assume that Δ = [𝑟] and denote by 𝜋(Δ), the action of a permutation
𝜋 ∈ 𝑆𝑟+𝑛 on the set Δ by defining 𝜋(Δ) = {𝜋(𝑥), 𝑥 ∈ Δ}. Obviously, A derangement 𝜋 ∈ 𝑆𝑟+𝑛 is a block derangement
if and only if 𝜋(Δ) ∩ Δ = ∅.

Theorem 1.7. For a derangement 𝐷(𝑛) = 𝑛𝐷(𝑛 − 1) + (−1)𝑛.

Proof.
𝐷(𝑛 + 1) = 𝑛𝐷(𝑛) + 𝑛𝐷(𝑛 − 1)

= (𝑛 + 1)𝐷(𝑛) − 𝐷(𝑛) + 𝑛𝐷(𝑛 + 1)
Now, we use induction on 𝑛.

𝑛𝐷(𝑛 − 1) − 𝐷(𝑛)
= (𝑛 − 1)𝐷(𝑛 − 1) + 𝐷(𝑛 − 1)−

((𝑛 − 1)𝐷(𝑛 − 1) + (𝑛 − 1)𝐷(𝑛 − 2))
𝐷(𝑛 − 1) − (𝑛 − 1)𝐷(𝑛 − 2)
𝐷(𝑛 − 1) − (𝑛 − 1)𝐷(𝑛 − 2) =
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Abstract

For a derangement 𝐷(𝑛) = 𝑛𝐷(𝑛 − 1) + (−1)𝑛.

1. Derangement

A derangement is a permutation that has no fixed points. In some paper, it is studied a subclass of derangements on
𝑛 + 𝑟 objects such that none of the first 𝑟 objects returns to the first 𝑟 objects location. Also, the probability that a
permutation is in this subclass of derangements is close to 1/𝑒. The introduction of derangement numbers goes back
to as early as 1708 when Pierre Rémond deMontmo was counting the number of derangements on 𝑛 letters (see [5, 6]).
Suppose that 𝑆𝑛 is the symmetric group on the set [𝑛] = {1, 2, … , 𝑛}. A derangement is a fixed point-free element of
the symmetric group 𝑆𝑛. The set of these permutations on 𝑆𝑛 is denoted by 𝒟𝑛. In other words,

𝒟𝑛 = {𝜋 ∈ 𝑆𝑛 ∶ 𝜋(𝑖) ≠ 𝑖 for all 1 ≤ 𝑖 ≤ 𝑛} .

Also, let 𝐷𝑛 = |𝒟𝑛|. The inclusion-exclusion principle gives

𝐷(𝑛) = 𝑛!
𝑛


𝑘=0

(−1)𝑘
𝑘! .

Assume that 𝐷0 = 1 and 𝐷1 = 0. Then the number 𝐷(𝑛) is related to the numbers 𝐷(𝑛 − 1) and 𝐷(𝑛 − 2) (with
𝑛 ≥ 2) through a closed-form recursive relation

𝐷(𝑛) = (𝑛 − 1)(𝐷(𝑛 − 1) + 𝐷(𝑛 − 2)).
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In [9], authors started investigating a subclass of derangements on 𝑛 + 𝑟 letters which restrict the first 𝑟 of these to
be in distinct cycles. (Such derangements are called 𝑟-derangement.) The number of 𝑟-derangements is denoted by
𝐷𝑟(𝑛).

Theorem 1.1 ([9],Theorem 4). Let 𝑟 ∈ ℕ+ and 𝑠 ∈ {1,… , 𝑟}. Then for each 𝑛 ≥ 𝑠 we have

𝐷𝑟(𝑛) =
𝑛


𝑗=𝑠

ቆ𝑗 − 1
𝑠 − 1ቇ

𝑛!
(𝑛 − 𝑗)!𝐷𝑟−𝑠(𝑛 − 𝑗).

In particular,

𝐷𝑟(𝑛) =
𝑛


𝑗=𝑟

ቆ𝑗 − 1
𝑟 − 1ቇ

𝑛!
(𝑛 − 𝑗)!𝐷(𝑛 − 𝑗), 𝑛 ≥ 𝑟.

Additionally, we have a closed formula for 𝑟-derangements numbers:

𝐷𝑟(𝑛) =
𝑛


𝑗=𝑟

ቆ𝑗𝑟ቇ
𝑛!

(𝑛 − 𝑗)! (−1)
(𝑛−𝑗), 𝑛 ≥ 𝑟.

Derangements are arrangements of some number of objects into positions such that no object goes to its specified
position. In the language of permutations, a derangement is a permutation in which none of the objects appear in
their ”natural” (i.e., ordered) place. If we choose a random permutation, the probability that it is a derangement is
close to 1/𝑒. Another version of the problem arises when we ask for the number of ways n letters, each addressed
to a different person, can be placed in n pre-addressed envelopes so that no letter appears in the correctly addressed
envelope. The derangement problem was formulated by P. R. de Montmort in 1708, and solved by him in 1713
(de Montmort 1713-1714). Nicholas Bernoulli also solved the problem using the inclusion-exclusion principle. The
number of derangements of an n-element set is called the n -th derangement number or rencontres number, or the
sub-factorial of n. Counting the derangements of a set amounts to what is known as the hat-check problem, in which
one considers the number of ways in which n hats can be returned to n people such that no hat makes it back to its
owner. This number satisfies the recurrences
More formally, let 𝑆𝑛+𝑟 be the set of permutations in [𝑛 + 𝑟] and consider the following:

𝒟(𝑟, 𝑛) = {𝜋 ∈ 𝒟𝑟+𝑛 ∶ 𝜋(𝑖) ≠ 𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 + 𝑟 and 𝜋(𝑖) ∉ [𝑟] for all 𝑖 ∈ [𝑟]} .

this is termed set as block derangements. Also, let 𝐷(𝑟, 𝑛) = ห𝒟(𝑟, 𝑛)ห. In this paper, we obtain a relation between
block derangements and 𝑟-derangements (which is defined in [9]) on 𝑆𝑛+𝑟.

Remark 1.2. It follows from the definition of block derangements that 𝑛 must be greater than or equal to 𝑟, i.e., For
𝑛 < 𝑟, we have 𝐷(𝑟, 𝑛) = 0. Now let 𝑟 = 0. Then we have

𝐷(0, 𝑛) = 𝐷(𝑛) and 𝐷(1, 𝑛) = 𝐷(𝑛 + 1).

Thus the block derangement is a generalization of the derangement.

The interesting this is that the number e itself also has applications in probability theory, in a way that is not obviously
related to exponential growth. Suppose that a gambler plays a slot machine that pays out with a probability of one in
n and plays it n times. Gordon and McMahon noted that the number of derangements in the hyperoctahedral group
gives the rising 2-binomial transform of the derangement numbers for 𝑆𝑛. More generally, they shows that the cyclic
derangement numbers give a mixed version of the rising r-binomial transform and falling (𝑟 − 1) binomial transform
of 𝐷 − 𝑛. This hybrid k-binomial transform may share many of the nice properties of Spivey and Steil’s transforms,
including Hankel invariance and/or a simple description of the change in the exponential generating function. Further,
it could be interesting to evaluate the expression for negative or even non-integer values of 𝑘. For instance, taking
𝑘 = 1/2 gives the binomial mean transform which is of some interest.
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We define a new special case of derangement, and also we obtain some relation on this subset of derangements. This
special case of derangement is a subset of block derangement
A derangement 𝜋 ∈ 𝑆𝑛+𝑟 is called a Δ-derangement if 𝜋(Δ) ∩ Δ = ∅. The number of Δ-derangements on 𝑆𝑛+𝑟 is
denoted by 𝑎𝑡ℎ𝑐𝑎𝑙𝐷(𝑟, 𝑛)

𝐷(𝑟, 𝑛) = |{𝜋 ∶ 𝜋 ∈ 𝐷(𝑛 + 𝑟), 𝜋(Δ) ∩ Δ = ∅}|.
𝐷(𝑟, 𝑛) = |{𝜋 ∶ 𝜋 ∈ 𝑆𝑛+𝑟 , Π(Δ) ∩ Δ = ∅, 𝑥𝜋 ≠ 𝑥 for all 𝑥 ∈ [𝑛]}|.

The Stirling number of the second kind 𝑆(𝑛, 𝑘) is the number of partitioning a set of 𝑛 elements into 𝑘 nonempty
subsets. The Stirling numbers of the second kind can be defined by the exponential generating function

1
𝑛!(𝑒

𝑥 − 1)𝑛 =
∞


𝑚=𝑛

𝑆(𝑚, 𝑛)𝑥
𝑚

𝑚!

Notice that the sum on the right hand side is now finite, as 𝑆(𝑚, 𝑛) = 0 for 𝑛 > 𝑚. By [4], for given power series

𝑓(𝑡) =
∞


𝑛=0

𝑎𝑛
𝑛! 𝑡

𝑛

we have the series transformation formula

𝑓(𝜇𝜆 (𝑒
𝜆𝑡 − 1)) =

∞


𝑛=0

𝑡𝑛
𝑛! {

𝑛


𝑘=0

𝑆(𝑛, 𝑘)𝜆𝑛−𝑘𝜇𝑘𝑎𝑘} (1)

where 𝜆 and 𝜇 are parameters.

𝑓ቀ𝜇𝜆 log(1 + 𝜆𝑡)ቁ =
∞


𝑛=0

𝑡𝑛
𝑛! ቄ

𝑛


𝑘=0

𝑠(𝑛, 𝑘)𝜆𝑛−𝑘𝜇𝑘𝑎𝑘ቅ

Let𝑚 be a nonnegative integer. For the sequence of Stirling numbers 𝑆(𝑘,𝑚) we have
𝑛


𝑘=0

ቆ𝑘𝑚ቇ𝑆(𝑘,𝑚) = 𝑆(𝑛 + 1,𝑚 + 1). (2)

Also, by [4]
𝑛


𝑘=0

ቆ𝑘𝑚ቇ𝑆(𝑘,𝑚)𝑥
𝑘 = 1

𝑚!

𝑚


𝑗=0

(−1)𝑚−𝑗(1 + 𝑗𝑥)𝑛 .

For 𝑥 = 1, the left-hand side of this equation equals (2). Therefore,

𝑆(𝑛 + 1,𝑚 + 1) = 1
𝑚!

𝑚


𝑗=0

(−1)𝑚−𝑗(1 + 𝑗)𝑛 . (3)

The integers 𝑏𝑛 = ∑𝑛
𝑘=0 𝑆(𝑛, 𝑘) are known as Bell numbers. They give the number of ways a set of n elements can

be partitioned into nonempty disjoint subsets.
In this proved:

Theorem 1.3. Suppose 𝑟 and 𝑛 are integers and 1 ≤ 𝑟 ≤ 𝑛. Then

𝐷(𝑟, 𝑛) = 𝑟!
𝑛


𝑖=𝑟

(−1)𝑛−𝑖ቆ𝑖𝑟ቇ
𝑛!

(𝑛 − 𝑖)! .



R. Fallah-Moghaddam / The 5th National Congress on Mathematics and Statistics 287

Theorem 1.4. Suppose 𝑟 and 𝑛 are integers and 1 ≤ 𝑟 ≤ 𝑛. Then 𝐷(𝑟, 𝑛) = 𝑟!𝐷𝑟(𝑛).

Theorem 1.5. Suppose 𝑟 and 𝑛 are integers and 1 ≤ 𝑟 ≤ 𝑛. Then for each 𝑟 the sequence ቄ𝐷(𝑟,𝑛)(𝑛+𝑟)!ቅ𝑛≥1 tends to 1/𝑒.

Theorem 1.6. Let 𝑘 be an integer number. Then we have

𝑛


𝑘=0

(−1)𝑘𝑆(𝑛, 𝑘)𝐷(𝑟, 𝑘) =
𝑛


𝑗=0

𝑟


𝑖=0

(−1)𝑛−𝑗+𝑖+𝑟𝑟!ቆ𝑟𝑖ቇ(1 + 𝑖)𝑛−𝑗𝑏𝑗

In [9, Theorem 6], it was shown that for each 𝑟 ∈ ℕ+, the sequence ൜ 𝐷𝑟(𝑛)(𝑛+𝑟)! ൠ𝑛∈ℕ
is convergent to 1

𝑟!𝑒 . Now, we can use
Theorem 1.5, to establish asymptotic estimates for 𝑟-derangements in another way. Also, according to Theorem 1.4, it
can be obtained, similar to the main results in [9], some conclusions about the number 𝐷(𝑟, 𝑛), so we avoid repeating
them here. In Section ??, we obtain the recursion formula for 𝐷(𝑟, 𝑛). Then we prove the main results of this section.
Boyadzhiev gave an interesting combinatorial Stirling transform of derangement numbers in [3]. Similarly, at the end
of section ??, we obtain the Stirling transformation formula of 𝐷(𝑟, 𝑛).
The set
{1, 2, … , 𝑛} and the set {𝑖, 𝑖+1,… , 𝑗} are denoted by [𝑛] and [𝑖, 𝑗], respectively. Also, assume that a permutation 𝜋 ∈ 𝑆𝑛
is represented as the word 𝜋(1)𝜋(2)…𝜋(𝑛). Assume that Δ = [𝑟] and denote by 𝜋(Δ), the action of a permutation
𝜋 ∈ 𝑆𝑟+𝑛 on the set Δ by defining 𝜋(Δ) = {𝜋(𝑥), 𝑥 ∈ Δ}. Obviously, A derangement 𝜋 ∈ 𝑆𝑟+𝑛 is a block derangement
if and only if 𝜋(Δ) ∩ Δ = ∅.

Theorem 1.7. For a derangement 𝐷(𝑛) = 𝑛𝐷(𝑛 − 1) + (−1)𝑛.

Proof.
𝐷(𝑛 + 1) = 𝑛𝐷(𝑛) + 𝑛𝐷(𝑛 − 1)

= (𝑛 + 1)𝐷(𝑛) − 𝐷(𝑛) + 𝑛𝐷(𝑛 + 1)
Now, we use induction on 𝑛.

𝑛𝐷(𝑛 − 1) − 𝐷(𝑛)
= (𝑛 − 1)𝐷(𝑛 − 1) + 𝐷(𝑛 − 1)−

((𝑛 − 1)𝐷(𝑛 − 1) + (𝑛 − 1)𝐷(𝑛 − 2))
𝐷(𝑛 − 1) − (𝑛 − 1)𝐷(𝑛 − 2)
𝐷(𝑛 − 1) − (𝑛 − 1)𝐷(𝑛 − 2) =
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Abstract

A condition which implies the continuity of a 𝑠-convex function is investigated. In fact any
𝑠-convex function bounded from above is continuous.

1. Introduction

It is known that a convex function defined on an open interval (𝑎, 𝑏) ⊆ ℝ is continuous and then integrable. The key
point to prove the continuity of a convex function 𝐹 is to establish it’s boundedness on closed subintervals of (𝑎, 𝑏) and
then we are able to establish a Lipschitz condition and so we can conclude that 𝐹 is continuous (see [6]). A generalized
convex function is not continuous necessarily and so there is no guarantee for it’s integrability. Because of this, usually
in the papers that we deal with integration of generalized convex functions, we use the sentence ”assume that all
considered integrals exist”. Therefore one of the tools that guarantees the existence of integral for generalized convex
functions is continuity. In this paper, we investigate on a condition that implies the continuity and then integrability
of a 𝑠-convex function. We mainly use the structures stated for convex functions in [6] to obtain our results.
The concept of s-convexity in the second sense was considered in [2] as generalization of ordinary convex functions.
൫Convex function ൯
Let 𝐼 ⊆ ℝ is an interval. A function 𝐹 ∶ 𝐼 → ℝ is called convex, if for all 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0, 1] we have

𝐹൫𝑡𝑥 + (1 − 𝑡)𝑦൯ ≤ 𝑡𝐹(𝑥) + (1 − 𝑡)𝐹(𝑦).

൫s-Convex function in the second sense൯
A function 𝐹 ∶ ℝ+ → ℝ+ is called Breckner 𝑠-convex (or briefly 𝑠-convex), if

𝐹൫𝑡𝑥 + (1 − 𝑡)𝑦൯ ≤ 𝑡𝑠𝐹(𝑥) + (1 − 𝑡)𝑠𝐹(𝑦),
for every 𝑥, 𝑦 ∈ ℝ+, 𝑡 ∈ [0, 1] and fixed 𝑠 ∈ (0, 1]. If we consider s = 1, then we recapture the usual convexity of 𝐹.
In references [1, 3–5], we can find some basic results about 𝑠-convex functions.
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2. Continuity of 𝑠-convex functions

First, we give a result about the boundedness of a 𝑠-convex function on the whole of (𝑎, 𝑏). This fact is shown in the
following proposition.

Proposition 2.1. Suppose that 𝐹 is a 𝑠-convex function defined on (𝑎, 𝑏) such that it is bounded from above by 𝐵.
Then 𝐹 is bounded from below by

1
(12)

𝑠
𝐹ቀ𝑎 + 𝑏

2 ቁ − 𝐵.

Proof. For lower bound of 𝐹 consider an arbitrary point in the form 𝑎+𝑏
2 − 𝑡 in (𝑎, 𝑏). Then

𝐹ቀ𝑎 + 𝑏
2 ቁ = 𝐹ቆ𝑎 + 𝑏

4 + 𝑡
2 + 𝑎 + 𝑏

4 − 𝑡
2ቇ = 𝐹ቆ12൫

𝑎 + 𝑏
2 + 𝑡൯ + 1

2൫
𝑎 + 𝑏
2 − 𝑡൯ቇ

≤(12)
𝑠ቈ𝐹ቀ𝑎 + 𝑏

2 + 𝑡ቁ + 𝐹ቀ𝑎 + 𝑏
2 − 𝑡ቁ.

or

𝐹ቀ𝑎 + 𝑏
2 + 𝑡ቁ ≥ 1

(12)
𝑠
𝐹ቀ𝑎 + 𝑏

2 ቁ − 𝐹ቀ𝑎 + 𝑏
2 − 𝑡ቁ.

Applying 𝐵 as the upper bound of 𝐹 we have,

−𝐹ቀ𝑎 + 𝑏
2 − 𝑡ቁ ≥ −𝐵.

So

𝐹ቀ𝑎 + 𝑏
2 + 𝑡ቁ ≥ 1

(12)
𝑠
𝐹ቀ𝑎 + 𝑏

2 ቁ − 𝐵.

Since 𝑡 is arbitrary, then 1
( 12 )

𝑠𝐹ቀ
𝑎+𝑏
2 ቁ − 𝐵 can be chosen as the lower bound of 𝐹 on (𝑎, 𝑏).

For continuity of a 𝑠-convex function we need the assumption of boundedness from above on (𝑎, 𝑏) and a certain
condition.

Lemma 2.2. Consider two nonnegative constants 𝛼, 𝛽. Corresponding to any 𝜖 > 0, there exists 𝑡 ∈ (0, 1) such that

𝑡𝑠
(1 − 𝑡)𝑠 𝛼 + [(1 − 𝑡)𝑠 − 1]

(1 − 𝑡)𝑠 𝛽 < 𝜖,

and
𝑡𝑠𝛼 + [(1 − 𝑡)𝑠 − 1]𝛽 < 𝜖.

Proof. For any 𝜖 > 0 and any positive real constants 𝛼, 𝛽 we have

⎧

⎨
⎩

∃𝛿1;
𝑡𝑠

(1−𝑡)𝑠𝛼 < 𝜖/2, 0 < 𝑡 < 𝛿1;

∃𝛿2;
(1−𝑡)𝑠−1
(1−𝑡)𝑠 𝛽 < 𝜖/2, 0 < 𝑡 < 𝛿2.

By the choose of 0 < 𝑡 < min{𝛿1, 𝛿2} and the fact that (1 − 𝑡)𝑠 < 1, we have the respected results.
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Theorem 2.3. Suppose that 𝐹 is a 𝑠-convex function defined on (𝑎, 𝑏) such that it is bounded from above by 𝐵. Then
𝐹 is continuous on (𝑎, 𝑏).

Proof. Suppose that 𝐹 is bounded from above by 𝐵 on (𝑎, 𝑏). Choose fixed 𝑥0 ∈ (𝑎, 𝑏) and consider arbitrary 𝜖 > 0
enough small such that (𝑥0−𝜖, 𝑥0+𝜖) ⊂ (𝑎, 𝑏) as a neighborhood of 𝑥0. We can find 𝛿 > 0 ൫open interval (−𝛿, 𝛿)൯
such that (𝑥0 − 𝛿, 𝑥0 + 𝛿) ⊂ (𝑥0 − 𝜖, 𝑥0 + 𝜖). Consider 𝑡 ∈ (0, 1) satisfying Lemma 2.2 with respect to real positive
numbers 𝛼 = 𝐵 and 𝛽 = 𝐹(𝑥0). Now choose 𝑥 ∈ (𝑥0 − 𝑡𝛿, 𝑥0 + 𝑡𝛿) ⊂ (𝑥0 − 𝛿, 𝑥0 + 𝛿) and set

𝑦 = 𝑥 − 𝑥 − 𝑥0
𝑡 ,

𝑧 = 𝑥0 +
𝑥 − 𝑥0

𝑡 .

So
𝑦 − 𝑥0 =

1 − 𝑡
𝑡 (𝑥0 − 𝑥) ∈ 1 − 𝑡

𝑡 (−𝑡𝛿, 𝑡𝛿) ⊂ (−𝛿, 𝛿),

and
𝑧 − 𝑥0 =

𝑥 − 𝑥0
𝑡 ∈ 1

𝑡 (−𝑡𝛿, 𝑡𝛿) = (−𝛿, 𝛿),

showing that 𝑦, 𝑧 ∈ (𝑥0 − 𝛿, 𝑥0 + 𝛿).
Since 𝑓 is 𝑠-convex, then from relations

ቊ 𝑥0 = 𝑡𝑦 + (1 − 𝑡)𝑥,
𝑥 = 𝑡𝑧 + (1 − 𝑡)𝑥0,

we have that
𝐹(𝑥0) ≤ 𝑡𝑠𝐹(𝑦) + (1 − 𝑡)𝑠𝐹(𝑥) ≤ 𝑡𝑠𝐵 + (1 − 𝑡)𝑠𝐹(𝑥),

and
𝐹(𝑥) ≤ 𝑡𝑠𝐹(𝑧) + (1 − 𝑡)𝑠𝐹(𝑥0) ≤ 𝑡𝑠𝐵 + (1 − 𝑡)𝑠𝐹(𝑥0).

It follows that
𝐹(𝑥) − 𝐹(𝑥0) ≥ − 𝑡𝑠

(1 − 𝑡)𝑠𝐵 − ቂ1 − 1
(1 − 𝑡)𝑠 ቃ𝐹(𝑥0),

and
𝐹(𝑥) − 𝐹(𝑥0) ≤ 𝑡𝑠𝐵 + [(1 − 𝑡)𝑠 − 1]𝐹(𝑥0).

Then we get
𝐹(𝑥) − 𝐹(𝑥0) > −𝜖,

and
𝐹(𝑥) − 𝐹(𝑥0) < 𝜖.

Then for any 𝑥 ∈ (𝑥0 − 𝛿, 𝑥0 + 𝛿), we have ∣ 𝐹(𝑥) − 𝐹(𝑥0) ∣< 𝜖, which implies that 𝐹 is continuous at 𝑥0. Since 𝑥0
is an arbitrary point in (𝑎, 𝑏), then we conclude the continuity of 𝐹 on (𝑎, 𝑏).
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Abstract

This study utilized M-polynomials to calculate some topological indicators based on Degree
for a collection of seventeen antibiotics commonly used to treat infections, including Amoxi-
cillin, Penicillin G, Ampicillin, Piperacillin, Cefalexin, Cefuroxime, Ceftriaxone, Meropenem,
Imipenem, Aztreonam, Azithromycin, Erythromycin, Clarithromycin, Gentamicin, Tobramycin,
Amikacin, and Streptomycin. These indices were subsequently integrated into (QSPR) models
to predict different kinds of chemicals in their physical or chemical state. Our analysis demon-
strates that the regression models developed, consisting of fifty-six lines, successfully predict
these physicochemical characteristics using the topological indices. The findings indicate that
topological indices offer valuable insights for the design and optimization of antibiotics, sup-
ported by statistically significant findings (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05).

1. Introduction

There are many germs, known as bacteria, both within and beyond our bodies. While some bacteria are beneficial
to humans, the majority are either harmless or harmful activity can lead to infections, for instance, strep throat and
urinary tract infections [7]. Antibiotics are medicines that fight bacterial infections and stop their growth in people,
animals, and craps [7]. Preventing and treating infections are crucial roles of Antibiotics and they are among the most
potent drugs for treating life-threatening bacterial infections. Viruses, on the other hand, are distinct from bacteria.
They lead to infections, including colds and the flu, many sinus infections, and some ear infections. Antibiotics are
not effective for infections resulting from viruses.
(QSPR) analysis has become an essential computational tool in drug discovery and design. This has led to increased
interest in chemical graph theory, which studies the relationships between molecular structures, properties, and ac-
tivities. Molecular graphs represent molecules as networks of atoms (vertices) connected by chemical bonds (edges).
Topological indices, mathematical descriptors of these graphs, are used to analyze the structure and properties of
molecules [4, 5]. A key approach for investigating relationships between physicochemical properties and TIs is QSPR
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modeling. These models use regression analysis to establish connections between physicochemical features and their
corresponding TI. Similarly, QSAR studies often use TIs to analyze drug activity [5, 6, 10]. This research aims to
explore how various topological indices can help researchers understand the relevant physicochemical properties and
potential chemical reactions associated with drugs used to treat infections. Contemporary research extensively utilizes
(QSPR) and (QSAR) models, in conjunction with M-polynomial indices, to forecast the Physical or Chemical charac-
teristics of compounds predicated on their connectivity descriptors. This procedure has found broad utilization in nu-
merous scientific disciplines, incorporating cancer research, nanotube studies, and the investigation ofM-polynomials.
It effectively conveys the idea of recent research efforts focused on the relationship between M-polynomials and topo-
logical indices... [4, 7, 8, 11].

2. Graph-theoretical preliminaries

A molecular graph visually represents a chemical compound’s structure using graph theory. Atoms are depicted as
vertices, and bonds as edges in the simple, finite, and connected graph G (V, E). A vertex’s degree, d(v), correlates
with the compound’s valence. For more details, consult references [1, 6, 10]. A connectivity index is a numerical
descriptor that identifies the structural properties of a graph. It is calculated from the graph’s topology, which refers
to the arrangement of vertices and edges in the graph, independent of the spatial embedding of the graph. It offers a
quantitative representation of the arrangement of atoms and their connectivity within a molecule and is employed in the
expansion of (QSAR) and (QSPR) models. Three primary categories of structural descriptors exist: Based on Degree,
Based on Distance, and Based on Spectral. Among these, degree-based connectivity indices have been extensively
explored and exhibit a robust correlation with a multitude of properties of the molecules under investigation [9, 12, 13].
S. Klavžar and E. Deutsch introduced M-polynomial in 2015 [3].

Table 1. Some connectivity descriptors are based on degree and their definitions.

TI Name Notation Formula of TI

First Zagreb 𝑀1(𝐺) 𝑀1(𝐺) =
𝑢𝑣∈𝐸(𝐺)

(𝑑𝑢 + 𝑑𝑣)

Second Zagreb 𝑀2(𝐺) 𝑀2(𝐺) =
𝑢𝑣∈𝐸(𝐺)

(𝑑𝑢 ⋅ 𝑑𝑣)

Hyper Zagreb 𝐻𝑀1(𝐺) 𝐻𝑀1(𝐺) =
𝑢𝑣∈(𝐺)

(𝑑𝑢 + 𝑑𝑣)2

Randić 𝑅(𝐺) 𝑅(𝐺) =
𝑢𝑣∈(𝐺)

ඨ 1
𝑑𝑢 ⋅ 𝑑𝑣

Harmonic 𝐻(𝐺) 𝐻(𝐺) =
𝑢𝑣∈𝐸(𝐺)

2
𝑑𝑢 + 𝑑𝑣

Sum-connectivity 𝑆(𝐺) 𝑆(𝐺) =
𝑢𝑣∈(𝐺)

ඨ 1
𝑑𝑢 + 𝑑𝑣

Forgotten 𝐹(𝐺) 𝐹(𝐺) =
𝑢𝑣∈(𝐺)

උ(𝑑𝑢)2 + (𝑑𝑣)2ඏ

Geometric Arithmetic 𝐺𝐴(𝐺) 𝐺𝐴(𝐺) =
𝑢𝑣∈(𝐺)

2ඥ𝑑𝑢 ⋅ 𝑑𝑣
𝑑𝑢 + 𝑑𝑣

Atomic Bond Connectivity 𝐴𝐵𝐶(𝐺) 𝐴𝐵𝐶(𝐺) =
𝑢𝑣∈𝐸(𝐺)

ඨ𝑑𝑢 + 𝑑𝑣 − 2
𝑑𝑢 ⋅ 𝑑𝑣

M-polynomial 𝑀(𝐺, 𝑥, 𝑦) 𝑀(𝐺, 𝑥, 𝑦) =
𝑖≤𝑗

𝑚𝑗(𝐺)𝑥𝑖𝑦𝑗



S. Homam & M. Ghods / The 5th National Congress on Mathematics and Statistics 293

3. Methodology

The polynomial values for each drug were computed according to the polynomial definition. The results, including
Molecule Title, Construction, Structural Depiction, M-Polynomials, and their surface plots are demonstrated in Table
2.

Table 2. Antibiotics with their molecule title, construction, structural depiction.

Molecule Ti-
tle

Construction Structural Depiction M-Polynomial Plot

Amoxicillin 𝐶16𝐻19𝑁3𝑂5𝑆 6𝑥𝑦3+2𝑥𝑦4+2𝑥2𝑦2+7𝑥2𝑦3+
𝑥2𝑦4 + 8𝑥3𝑦3 + 𝑥3𝑦4

Penicillin G 𝐶16𝐻17𝑁2𝑁𝑎𝑂4𝑆 𝑋𝑦2 + 3𝑥𝑦3 + 2𝑥𝑦4 + 4𝑥2𝑦2 +
6𝑥2𝑦3 + 𝑥2𝑦4 + 6𝑥3𝑦3 + 𝑥3𝑦4

Ampicillin 𝐶16𝐻19𝑁3𝑂4𝑆 5𝑥𝑦3+2𝑥𝑦4+4𝑥2𝑦2+5𝑥2𝑦3+
𝑥2𝑦4 + 7𝑥3𝑦3 + 𝑥3𝑦4

Piperacillin 𝐶23𝐻27𝑁5𝑂7𝑆 𝑋𝑦2 + 7𝑥𝑦3 + 2𝑥𝑦4 + 5𝑥2𝑦2 +
10𝑥2𝑦3+𝑥2𝑦4+12𝑥3𝑦3+𝑥3𝑦4

Cefalexin 𝐶16𝐻17𝑁3𝑂4𝑆 6𝑥𝑦3+4𝑥2𝑦2+6𝑥2𝑦3+10𝑥3𝑦3

Cefuroxime 𝐶16𝐻16𝑁4𝑂8𝑆 𝑋𝑦2+6𝑥𝑦3+6𝑥2𝑦2+9𝑥2𝑦3+
9𝑥3𝑦3

Ceftriaxone 𝐶18𝐻18𝑁8𝑂7𝑆3 𝑋𝑦2+8𝑥𝑦3+4𝑥2𝑦2+14𝑥2𝑦3+
10𝑥3𝑦3

Meropenem 𝐶17𝐻25𝑁3𝑂5𝑆 9𝑥𝑦3+𝑥2𝑦2+5𝑥2𝑦3+10𝑥3𝑦3
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Imipenem 𝐶12𝐻17𝑁3𝑂4𝑆 𝑋𝑦2 + 3𝑥𝑦3 + 2𝑥𝑦4 + 4𝑥2𝑦2 +
6𝑥2𝑦3 + 𝑥2𝑦4 + 6𝑥3𝑦3 + 𝑥3𝑦4

Aztreonam 𝐶13𝐻17𝑁5𝑂8𝑆2 𝑋𝑦2+5𝑥𝑦3+4𝑥2𝑦2+2𝑥2𝑦3+
8𝑥3𝑦3

Azithromycin 𝐶38𝐻72𝑁2𝑂12 6𝑥𝑦3+5𝑥𝑦4+2𝑥2𝑦2+7𝑥2𝑦3+
7𝑥3𝑦3 + 2𝑥3𝑦4

Erythromycin 𝐶37𝐻67𝑁𝑂13 2𝑥𝑦2 + 13𝑥𝑦3 + 5𝑥𝑦4 +
17𝑥2𝑦3 + 3𝑥2𝑦4 + 10𝑥3𝑦3 +
4𝑥3𝑦4

Clarithromycin 𝐶38𝐻69𝑁𝑂13 2𝑥𝑦2 + 13𝑥𝑦3 + 4𝑥𝑦4 +
15𝑥2𝑦3 + 4𝑥2𝑦4 + 11𝑥3𝑦3 +
2𝑥3𝑦4

Gentamicin 𝐶21𝐻43𝑁5𝑂7 3𝑥𝑦2 + 13𝑥𝑦3 + 4𝑥𝑦4 +
15𝑥2𝑦3 + 4𝑥2𝑦4 + 11𝑥3𝑦3 +
2𝑥3𝑦4

Tobramycin 𝐶18𝐻37𝑁5𝑂9 2𝑥𝑦2+4𝑥𝑦3+2𝑥𝑦4+2𝑥2𝑦2+
13𝑥2𝑦3+𝑥2𝑦4+7𝑥3𝑦3+𝑥3𝑦4

Amikacin 𝐶22𝐻43𝑁5𝑂13 2𝑥𝑦2+8𝑥𝑦3+14𝑥2𝑦3+10𝑥3𝑦3

Streptomycin 𝐶21𝐻39𝑁7𝑂12 3𝑥𝑦2+10𝑥𝑦3+𝑥2𝑦2+14𝑥2𝑦3+
12𝑥3𝑦3
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4. Topological descriptors and QSPR modeling

Nine topological indices, including (𝑀1) Index, (𝑀2) Index, (H) Index, (HM) Index, (F) Index, (R) Index, (SCI)
Index, (GA) Index, (ABC) Index (which are identified in Table 1), were employed to model nine representative phys-
ical features: Boiling Point (BP), Enthalpy of Vaporization (EN), Index of Refraction (IR), Molar Refractivity (MR),
Polar Surface Area (PSA), Polarizability (PO), Molar Volume (MV), Complexity (COM), Molar Weight (MW) with
seventeen Antibiotics drugs: Amoxicillin, Penicillin G, Ampicillin, Piperacillin, Cephalexin, Cefuroxime, Ceftriax-
one, Meropenem, Imipenem, Aztreonam, Azithromycin, Erythromycin, Clarithromycin, Gentamicin, Tobramycin,
Amikacin, Streptomycin. Topological indices, derived from the degree of precision and experimentally measured val-
ues of characteristics of seventeen antibiotics (obtained from ChemSpider [2]), are presented in Tables 3 and 4. As
shown in Table 5, these values exhibit a normal distribution, prompting the use of regression modeling (56 models) to
analyze the data.

4.1. Regression models
We used a linear regression model to analyze relationship between characteristics of antibiotics (P) and topological
indices (TI):

𝑃 = 𝐵 + 𝐴(𝑇𝐼)
While B represents a constant, A denotes the regression coefficient, and TI signifies the topological Descriptor. SPSS
software used to analyze nine characteristics and nine topological indices for seventeen antibiotics. Using this equation,
Types linear models were developed for different topological indices.

1. First Zagreb Index [𝑀1(𝐺)]
𝐵𝑃 = 511.664 + 1.319[𝑀1(𝐺)], 𝐼𝑅 = 1.838 + (−0.001)[𝑀1(𝐺)], 𝑀𝑅 = −7.022 + 0.717[𝑀1(𝐺)],
𝑀𝑉 = −125.794 + 2.586[𝑀1(𝐺)], 𝐶𝑂𝑀 = 46.195 + 4.217[𝑀1(𝐺)], 𝑀𝑊 = 11.768 + 2.708[𝑀1(𝐺)]

2. Second Zagreb Index [𝑀2(𝐺)]
𝐵𝑃 = 510.654 + 1.098[𝑀2(𝐺)], 𝐼𝑅 = 1.842 + (−0.001)[𝑀2(𝐺)], 𝑀𝑅 = −8.470 + 0.601[𝑀2(𝐺)],
𝑀𝑉 = −131.475 + 2.170[𝑀2(𝐺)], 𝐶𝑂𝑀 = 36.188 + 3.540[𝑀2(𝐺)], 𝑀𝑊 = 10.218 + 2.255[𝑀2(𝐺)]

3. Harmonic Index [𝐻(𝐺)]
𝐵𝑃 = 489.693 + 17.407[𝐻(𝐺)], 𝐸𝑁 = 39.720 + 4.955[𝐻(𝐺)], 𝐼𝑅 = 1.829 + (−0.011)[𝐻(𝐺)],
𝑀𝑅 = −11.491 + 8.926[𝐻(𝐺)], 𝑀𝑉 = −135.447 + 31.768[𝐻(𝐺)], 𝐶𝑂𝑀 = 13.818 + 53.005[𝐻(𝐺)],
𝑀𝑊 = −2.587 + 33.681[𝐻(𝐺)]

4. Hyper-Zagreb Index [𝐻𝑀(𝐺)]
𝐵𝑃 = 526.226 + 0.239[𝐻𝑀(𝐺)], 𝐼𝑅 = 1.840 + 0.000183[𝐻𝑀(𝐺)], 𝑀𝑅 = −2.532 + 0.134[𝐻𝑀(𝐺)],
𝑀𝑉 = −113.141 + 0.486[𝐻𝑀(𝐺)], 𝐶𝑂𝑀 = 75.823 + 0.783[𝐻𝑀(𝐺)], 𝑀𝑊 = 27.673 + 0.506[𝐻𝑀(𝐺)]

5. Forgotten Topological Index [𝐹(𝐺)]
𝐵𝑃 = 538.695 + 0.421[𝐹(𝐺)], 𝐼𝑅 = 1.837 + 0.000338[𝐹(𝐺)], 𝑀𝑅 = 2.532 + 0.241[𝐹(𝐺)],
𝑀𝑉 = −97.102 + 0.880[𝐹(𝐺)], 𝐶𝑂𝑀 = 109.024 + 1.400[𝐹(𝐺)], 𝑀𝑊 = 43.783 + 0.913[𝐹(𝐺)]

6. Randic Index [𝑅(𝐺)]
𝐵𝑃 = 499.773 + 15.708[𝑅(𝐺)], 𝐸𝑁 = 42.710 + 4.464[𝑅(𝐺)], 𝐼𝑅 = 1.831 + (−0.010)[𝑅(𝐺)],
𝑀𝑅 = −8.146 + 8.193[𝑅(𝐺)], 𝑀𝑉 = −126.167 + 29.321[𝑅(𝐺)], 𝐶𝑂𝑀 = 38.535 + 48.336[𝑅(𝐺)],
𝑀𝑊 = 7.859 + 31.004[𝑅(𝐺)]

7. Sum-Connectivity Index [𝑆𝐶𝐼(𝐺)]MR
𝐵𝑃 = 493.895 + 15.674[𝑆𝐶𝐼(𝐺)], 𝐸𝑁 = 41.460 + 4.429[𝑆𝐶𝐼(𝐺)], 𝑀𝑅 = −11.182 + 8.156[𝑆𝐶𝐼(𝐺)],
𝑀𝑉 = −135.802+29.116[𝑆𝐶𝐼(𝐺)], 𝐶𝑂𝑀 = 17.110+48.330[𝑆𝐶𝐼(𝐺)], 𝑀𝑊 = −1.973+30.781[𝑆𝐶𝐼(𝐺)]

8. Geometric Arithmetic Index [𝐺𝐴(𝐺)]
𝐵𝑃 = 489.431 + 7.607[𝐺𝐴(𝐺)], 𝐸𝑁 = 40.530 + 2.140[𝐺𝐴(𝐺)], 𝑀𝑅 = −13.515 + 3.953[𝐺𝐴(𝐺)],
𝑀𝑉 = −50.544 + 11.991[𝐺𝐴(𝐺)], 𝐶𝑂𝑀 = 0.547 + 23.500[𝐺𝐴(𝐺)], 𝑀𝑊 = −8.919 + 14.872[𝐺𝐴(𝐺)]

9. Atomic Bond Connectivity Index [𝐴𝐵𝐶(𝐺)]
𝐵𝑃 = 506.880 + 9.284[𝐴𝐵𝐶(𝐺)], 𝐸𝑁 = 45.785 + 2.599[𝐴𝐵𝐶(𝐺)], 𝐼𝑅 = 1.835 + (−0.006)[𝐴𝐵𝐶(𝐺)],
𝑀𝑅 = −7.650+4.969[𝐴𝐵𝐶(𝐺)], 𝑀𝑉 = −126.611+17.866[𝐴𝐵𝐶(𝐺)], 𝐶𝑂𝑀 = 42.900+29.242[𝐴𝐵𝐶(𝐺)],
𝑀𝑊 = 8.741 + 18.804[𝐴𝐵𝐶(𝐺)]

The physical properties of antibiotics utilized for treating infections are presented in the Table 3.
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Table 3. Physical features of Antibiotics.

Drugs BP EN IR MR PSA PO MV COM MW

Amoxicillin 743.2 113.7 1.702 91.5 158 36.3 236.2 590 365.4
Penicillin G – – – – 115 – – 536 356.4
Ampicillin 683.9 5.4 1.675 89.9 138 35.7 239.3 562 349.4
Piperacillin – – 1.678 128.5 182 50.9 340.5 982 517.6
Cephalexin 727.4 111.5 1.7 89.4 138 35.4 231.3 600 347.4
Cefuriaxone – – 1.735 96.7 199 383 241 798 424.4
Ceftriaxone – – 1.889 130 288 515 281.7 1110 554.6
Meropenem 627.4 106.4 1.639 96.8 135 38.4 268.9 679 383.5
Imipenem 530.2 92.7 1.721 72.7 139 28.8 183.9 491 299.35
Aztreonam – – – – 243 – – – 435.4
Azithromycin 822.1 136 1.537 197.6 180 78.3 632.7 1150 749
Erythromycin 818.4 135.4 1.535 189.2 194 75 607.2 1180 733.9
Clarithromycin 805.5 133.4 1.526 194 183 76.9 631.9 1190 748
Gentamicin 669.4 112.6 1.583 122.6 200 48.6 366.9 636 477.6
Tobramycin 775 128.7 1.651 111.7 268 44.3 305.9 609 467.5
Amikacin 981.8 162.2 1.664 134.9 332 53.5 363.9 819 585.6

Streptomycin 872.9 144.1 1.762 121 331 48 293.5 940 581.6

Table 4. The calculated values of the topological indices for antibiotics under investigation.

Drugs 𝑀1(𝐺) 𝑀2(𝐺) 𝐻(𝐺) 𝐻𝑀(𝐺) 𝐹(𝐺) 𝑅(𝐺) 𝑆𝐶𝐼(𝐺) 𝐺𝐴(𝐺) 𝐴𝐵𝐶(𝐺)
Amoxicillin 137 165 10.95 715 385 11.70 12.11 25.56 19.72
Penicillin G 127 156 10.25 669 357 10.80 11.26 23.91 17.97
Ampicillin 132 161 10.58 692 370 11.23 11.68 24.76 18.86
Piperacillin 196 239 16.08 1018 540 16.97 17.62 37.33 28.11
Cephalexin 128 155 10.9 650 340 11.41 11.85 25.07 18.67
Cefuriaxone 150 179 13.26 750 392 13.84 14.27 29.95 22.21
Ceftriaxone 192 231 16.33 972 510 17.11 17.77 37.56 28.00
Meropenem 142 175 11.4 742 392 12.14 12.58 26.67 20.29
Imipenem 102 123 9.033 516 270 9.485 9.684 20.21 15.07
Aztreonam 142 165 11.33 740 410 12.32 12.55 26.07 20.85
Azithromycin 269 323 21.70 1415 769 23.35 23.86 49.86 38.81
Erythromycin 270 324 21.64 1426 778 23.42 23.82 49.62 39.00
Clarithromycin 274 330 22.24 1446 786 23.98 24.36 50.71 39.55
Gentamicin 175 212 14.55 905 481 15.34 15.87 33.49 25.17
Tobramycin 168 202 14.26 856 452 15.08 15.49 32.53 24.51
Amikacin 206 247 17.83 1046 552 18.85 19.24 40.18 30.26

Streptomycin 209 251 17.61 1079 577 18.77 19.12 39.88 30.44

Table 5. Correlation coefficients associated with the physical properties of Antibiotics.

TI BP EN IR MR PSA PO MV COM MW

𝑀1 0.672 0.566 -0.531 0.982 0.365 0.041 0.936 0.917 0.994
𝑀2 0.666 0.560 -0.536 0.982 0.349 0.033 0.937 0.917 0.99
𝐻 0.706 0.609 -0.481 0.968 0.428 0.088 0.910 0.920 0.992
𝐻𝑀 0.651 0.544 -0.557 0.985 0.33 0.012 0.946 0.910 0.99
𝐹 0.639 0.531 -0.572 0.985 0.314 -0.005 0.952 0.904 0.988
𝑅 0.697 0.601 -0.499 0.972 0.415 0.068 0.919 0.917 0.995
𝑆𝐶𝐼 0.698 0.598 -0.493 0.973 0.413 0.079 0.918 0.921 0.994
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𝐺𝐴 0.698 0.595 -0.489 0.973 0.409 -0.107 0.820 0.924 0.992
𝐴𝐵𝐶 0.682 0.579 -0.518 0.979 0.387 0.055 0.931 0.919 0.996

5. Conclusion

Table 5 illustrates the correlation between the physicochemical characteristics of the compounds under investigation
of Antibiotics and defined topological indices. In this paper, the Harmonic Index (H(G)) showed a positive and sig-
nificant association with (BP) and (EN) with (r=0.706), (r=0.609), respectively. The Index of Refractivity (IR) prop-
erty has an Inverse significant correlation with Forgotten Index (F(G)) and it has a high and significant correlation
value (r=0.985). In addition, (MR) and (MV) are the best predictors of Haper-Zagreb Index (HM(G)) with (r=0.985),
(r=0.945), respectively. Complexity property predicts a high value for (GA(G)) Index with (r=0.924). Atomic Bond
Connectivity Index (ABC(G)) showed exhibited a high degree of correlation with (MW), (r=0.996). Polar Surface
Area (PSA) and Polarizability (PO) did not have a significant correlation with any of the indices. The Index of Re-
fractivity (IR) performed inverse and significant correlation with all of the indices. Molar Weight (MW), Complexity
(COM), and Molar Refractivity (MR) showed a positive and significant correlation with all indices value over than
(r=0.900). In summary, a strong relationship was established between the physicochemical features of antibiotics
and the connectivity indicators. The results by the regression models in which All correlations exhibited statistical
significance (𝑟 > 0.5, 𝑝 < 0.05), demonstrating considerable linear prediction. Equations were chosen based on of
minimum standard error (SE), the highest coefficient of determination (𝑅2), and the highest F-statistic (F). All physical
and chemical properties were highly significant, highlighting the potential importance of these topological indices in
QSPR analysis for Antibiotic drugs. The plotted regression lines (fifty-six lines) further support this conclusion. The
findings could be used to improve the production, development, and effectiveness of Antibiotics drugs. Moreover, the
methodology can be applied to investigate the structures of other drugs.
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Abstract

Let 𝔞 denote an ideal of a local ring (𝑅,𝔪). Let 𝑀 be a finitely generated 𝑅-module. There
is a systematic study of the formal local cohomology modules lim

⟵
𝑛∈ℕ

𝐻𝑖
𝔪(𝑀/𝔞𝑛𝑀), 𝑖 ∈ ℤ. We

state their 𝑅-module structure and prove in particular that for any integer 𝑖, 𝑖th formal local
cohomology module, occurs as the 𝑖th cohomology module of the 𝔞-adic completion from a
�̌�ech complex.

1. Introduction

Let 𝔞 denote an ideal of a local ring (𝑅,𝔪). For a finitely generated 𝑅-module 𝑀 let 𝐻𝑖
𝔞(𝑀), 𝑖 ∈ ℕ, denote the

𝑖th local cohomology module of 𝑀 with respect to 𝔞. We know that for an integer 𝑖 ∈ ℤ, the family of local coho-
mology modules {𝐻𝑖

𝔪(𝑀/𝔞𝑛𝑀)}𝑛∈ℕ by the natural homomorphisms form a projective system. their projective limit,
lim
⟵
𝑛∈ℕ

𝐻𝑖
𝔪(𝑀/𝔞𝑛𝑀), is called the 𝑖th formal local cohomology module of 𝑀 with respect to 𝔞. there exists a relation

between local cohomology, given by [1], and formal local cohomology, given by [4]. Not so much is known about
these modules. The motivation of this work is precisely the formal local cohomology of P. Schenzel.
The main subject of the paper is to prove that 𝑖th formal local cohomology of 𝑀 with respect to 𝔞 occurs as the 𝑖th
cohomology module of the 𝔞-adic completion of the �̌�ech complex, �̌�𝑥 ⊗𝑀, where 𝑥 denotes a system of elements
of 𝑅 such that Rad(𝑥𝑅) = 𝔪.

2. On the definition of formal cohomology

Let (𝑅,𝔪, 𝑘) be a local noetherian ring. For an arbitrary 𝑅-complex 𝑋 ∶ ⋯ ⟶ 𝑋𝑛
𝑑𝑛𝑋⟶ 𝑋𝑛+1 ⟶⋯ there is a complex

𝐼 of injective 𝑅-modules and a quasi-isomorphism 𝑋 ∼⟶ 𝐼. we call 𝐼 an injective resolution of 𝑋.
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Let 𝑥 = 𝑥1, 𝑥2, ⋯ , 𝑥𝑟 be a sequence of elements of 𝑅 and 𝔠 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑟)𝑅 the ideal generated by this elements.
The local cohomology 𝑅Γ𝔠(𝑋) of 𝑋 with respect to 𝔠 in the derived category is defined by Γ𝔠(𝐼), where 𝑋

∼⟶ 𝐼 denotes
the injective resolution. For an integer 𝑖 ∈ ℤ define𝐻𝑖

𝔠 (𝑋) = 𝐻𝑖(Γ𝔠(𝐼)). Note that up to isomorphisms it is independent
on 𝐼.
Moreover let �̌�𝑥 denote the �̌�ech complex of 𝑅 with respect to 𝑥. then there is a canonical isomorphism Γ𝔠(𝐼) ≅ �̌�𝑥⊗𝐼
for a complex of injective 𝑅-modules 𝐼 [5]. Because �̌�𝑥 is bounded 𝑅-complex of flat 𝑅-modules it induces the
following isomorphism �̌�𝑥 ⊗ 𝑋 ≅ �̌�𝑥 ⊗ 𝐼. That is the local cohomology 𝐻𝑖

𝔠 (𝑋), 𝑖 ∈ ℤ, may be computed as the
cohomology 𝐻𝑖(�̌�𝑥 ⊗𝑋).
Let 𝑥 = 𝑥1, 𝑥2, ⋯ , 𝑥𝑟 denote a system of elements of 𝑅 and Rad(𝑥𝑅) = 𝔟. Let �̌�𝑥 denote the �̌�ech complex of 𝑅 with
respect to 𝑥. For an 𝑅-module𝑀 and an ideal 𝔞 the projective system of 𝑅-modules {𝑀/𝔞𝑛𝑀}𝑛∈ℕ induces a projective
system of 𝑅-complexes {�̌�𝑥 ⊗𝑀/𝔞𝑛𝑀}𝑛∈ℕ. Its projective limit is the main object of our investigations.

Definition 2.1. For an integer 𝑖 ∈ ℤ the cohomology module 𝐻𝑖(lim
⟵
𝑛∈ℕ

(�̌�𝑥 ⊗ 𝑀/𝔞𝑛𝑀)) is called the 𝑖th 𝔞-formal

cohomology with respect to 𝔟. In the case of 𝔟 = 𝔪 we speak simply about 𝑖th 𝔞-formal cohomology. By abuse of
notaion we say also formal cohomology in case there will be no doubt on 𝔞.

In the following let Λ𝔞 = lim
⟵
𝑛∈ℕ

(− ⊗ 𝑅/𝔞𝑛) denote the 𝔞-adic completion. For an 𝑅-module 𝑀 it turns out that the

complex lim
⟵
𝑛∈ℕ

(�̌�𝑥 ⊗𝑀⊗𝑅/𝔞𝑛) is isomorphic to Λ𝔞(�̌�𝑥 ⊗𝑀). In the derived category this complex is isomorphic to

Λ𝔞(Γ𝔟(𝐼)), where𝑀
∼⟶ 𝐼 denotes an injective resolution of𝑀.

As a result here there is a relation of the formal cohomology with respect to the projective limits of certain local
cohomology modules. Here lim1 denotes the first right derived functor of the inverse limit functor.

Theorem 2.2. With the previous notation there is the following short exact sequence

0 ⟶ lim
⟵
𝑛∈ℕ

1𝐻𝑖+1
𝔟 (𝑀/𝔞𝑛𝑀) ⟶ 𝐻𝑖(lim

⟵
𝑛∈ℕ

(�̌�𝑥 ⊗𝑀/𝔞𝑛𝑀)) ⟶ lim
⟵
𝑛∈ℕ

𝐻𝑖
𝔟(𝑀/𝔞𝑛𝑀) ⟶ 0

for all 𝑖 ∈ ℤ. In the case 𝔟 = 𝔪 and a finitely generated 𝑅-module𝑀 it provides isomorphisms

𝐻𝑖(lim
⟵
𝑛∈ℕ

(�̌�𝑥 ⊗𝑀/𝔞𝑛𝑀)) ≅ lim
⟵
𝑛∈ℕ

𝐻𝑖
𝔪(𝑀/𝔞𝑛𝑀)

for all 𝑖 ∈ ℤ.

Proof. The �̌�ech complex �̌�𝑥 is a complex of flat 𝑅-modules. Whence the natural epimorphism 𝑀/𝔞𝑛+1𝑀 ⟶
𝑀/𝔞𝑛𝑀, 𝑛 ∈ ℕ, induces an 𝑅-morphism of 𝑅-complexes

�̌�𝑥 ⊗𝑀/𝔞𝑛+1𝑀⟶ �̌�𝑥 ⊗𝑀/𝔞𝑛𝑀.

By the definition of the projective limit there is a short exact sequence of complexes

0 ⟶ lim
⟵
𝑛∈ℕ

(�̌�𝑥 ⊗𝑀/𝔞𝑛𝑀) ⟶ෑ(�̌�𝑥 ⊗𝑀/𝔞𝑛𝑀) ⟶ෑ(�̌�𝑥 ⊗𝑀/𝔞𝑛𝑀) ⟶ 0.

Now the long exact cohomology sequence provides the first part of the claim. To this end break it up into short exact
sequences and take into account that homology commutes with direct products.
For the proof of the second part remember that 𝐻𝑖

𝔪(𝑀/𝔞𝑛𝑀), 𝑖 ∈ ℤ, is an Artiniaan 𝑅-module whenever𝑀 is finitely
generated [3]. So the corresponding projective system satisfies the Mittage-Leffler condition. that is, lim1 vanishes
on the projective system of Artinian 𝑅-modules [2]. The proof is now a consequence of the first part.
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Let (�̂�, �̂�) denote the 𝔪-adic completion of (𝑅,𝔪). An Artinian 𝑅-module 𝐴 has a natural structure of an �̂�-module
such that the natural homomorphisms 𝐴 ⟶ �̂� and 𝐴 ⟶ 𝐴⊗ �̂� are isomorphisms.

Proposition 2.3. Let (𝑅,𝔪) be a Noetherian local ring, 𝑀 be a finitely generated 𝑅-module and 𝔞 be an ideal of 𝑅.
Then lim

⟵
𝑛∈ℕ

𝐻𝑖
𝔪(𝑀/𝔞𝑛𝑀), 𝑖 ∈ ℤ, has a natural structure as an �̂�-module and there are isomorphisms

lim
⟵
𝑛∈ℕ

𝐻𝑖
𝔪(𝑀/𝔞𝑛𝑀) ≅ lim

⟵
𝑛∈ℕ

𝐻𝑖
�̂�(�̂�/𝔞𝑛�̂�)

for all 𝑖 ∈ ℤ.

Proof. Let𝑁 be a finitely generated𝑅-module.Then is known that𝐻𝑖
𝔪(𝑁), 𝑖 ∈ ℤ, is an Artinian𝑅-module [3]. Because

of the previous remarks and the flatness of �̂� over 𝑅 there are 𝑅-isomorphisms 𝐻𝑖
𝔪(𝑁) ≅ 𝐻𝑖

�̂�(�̂�) for all 𝑖 ∈ ℤ. Now
take 𝑁 = 𝑀/𝔞𝑛𝑀 and pass to the projective limit. Then this prove the claim.

The previous result has the advantage that one might assume the existence of a dualizing complex in order to consider
the formal cohomology.
The formal local cohomology modules can be discussed more deeply. For example, for future stydies on the subject
we can establish conditions for that formal local cohomology modules satisfies the conditions for to be an co-Cohen-
Macualy 𝑅-module. Also, the existence of decompositions similar to what saw in [6] or isomorphisms which was
stated in [7], can be checked.

References

[1] M.p. Brodmann, R.Y. Sharp. Local cohomology - An algebraic introduction with geometric applications. Cambridge University Press, 1998.
[2] J.P.C. Greenlees, J.P. May. Derived functors of the I-adic completion and local homology. J. Algebra 149 (1992) 438–453.
[3] A. Grothendieck. Local Cohomology. Notes by R. Hartshorne, Lecture Notes in Math., vol. 20, Springer, 1966.
[4] P. Schenzel. On formal local cohomology and connectedness. J. Algebra 315 (2007) 894-923.
[5] P. Schenzel. Proregular sequences, local cohomology, and completion. Math. Scand. 92 (2003) 161–180.
[6] E. Zangoiezadeh and K. Khashyarmanesh. Some splitting theorems for extension and torsion functors of local cohomology modules. J. Algebra

503 (2018), 329–339.
[7] E. Zangoiezadeh and K. Khashyarmanesh. Filter regular sequences and endomorphisms of local cohomology modules. J. Algebra Appl. 17

(2018), no. 11, 1850213, 8 pp.



Gonbad Kavous University

The 5th National Congress on Mathematics and StatisticsThe 5th National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1403

The 5th National Congress on Mathematics and Statistics, GT–271, pp. 301–305

Reduced Σ-spaces with exponential metric

Milad L. Zeinalia,∗, Dariush Latifib
aDepartment of Mathematics, Faculty of Basic Sciences, University of Mohaghegh Ardabili, P.O.Box. 5619911367, Ardabil, Iran.
bDepartment of Mathematics, Faculty of Basic Sciences, University of Mohaghegh Ardabili, P.O.Box. 5619911367, Ardabil, Iran.

Article Info

Keywords:
Exponential metrics
Σ-spaces
(𝛼, 𝛽)-metrics
2020 MSC:
53C30
53C60

Abstract

In this paper, we consider the exponential metrics and we will study the Finsler Σ-spaces with
these metrics. We prove that Finsler Σ-spaces with exponential metrics are Riemannian.

1. Introduction

In [2], Loos introduced the concept of Σ-spaces as a generalization of symmetric spaces. Recall that, for a 𝐶∞ manifold
𝑁 and smooth operation ∗, the space (𝑁, ∗) is called symmetric space if we have:
a) 𝑥 ∗ 𝑥 = 𝑥,
b) 𝑥 ∗ (𝑥 ∗ 𝑦) = 𝑦,
c) 𝑥 ∗ (𝑦 ∗ 𝑧) = (𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧),
d) In an appropriate neighborhood 𝑈 of 𝑥 ∈ 𝑁, if 𝑥 ∗ 𝑦 = 𝑥 for some 𝑦 ∈ 𝑈, then 𝑦 = 𝑥.
Also we note that a smooth manifold 𝑁 with a system of diffeomorphisms {𝑠𝑥}𝑥∈𝑁 is said to be a regular 𝑠-manifold
if we have [3]:
a) 𝑠𝑥𝑥 = 𝑥,
b) 𝑠𝑥 ∘ 𝑠𝑦 = 𝑠𝑠𝑥𝑦 ∘ 𝑠𝑥,
c) (𝑠𝑥)∗𝑥 − 𝐼𝑑𝑥 is invertible.
For more details see [1, 4].

Let 𝛼 = ට�̃�𝑖𝑗(𝑥)𝑦𝑖𝑦𝑗 be a norm iduced ba a Riemannian metric �̃� and 𝛽(𝑥, 𝑦) = 𝑏𝑖(𝑥)𝑦𝑖 be a 1−form on an
𝑛−dimensional manifold 𝑁. Let

‖𝛽(𝑥)‖𝛼 ∶= ට�̃�𝑖𝑗(𝑥)𝑏𝑖(𝑥)𝑏𝑗(𝑥). (1)
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Now, let the function 𝐹 is defined as follows

𝐹 ∶= 𝛼𝜙(𝑠) , 𝑠 = 𝛽
𝛼 , (2)

where 𝜙 = 𝜙(𝑠) is a positive 𝐶∞ function on (−𝑏0, 𝑏0) satisfying

𝜙(𝑠) − 𝑠𝜙′(𝑠) + (𝑏2 − 𝑠2)𝜙″(𝑠) > 0 , |𝑠| ≤ 𝑏 < 𝑏0. (3)

Then 𝐹 is a Finsler metric if ‖𝛽(𝑥)‖𝛼 < 𝑏0 for any 𝑥 ∈ 𝑁. A Finsler metric in the form (2) is called an (𝛼, 𝛽)−metric
[4].
A Finsler space having the Finsler function:

𝐹(𝑥, 𝑦) = 𝛼(𝑥, 𝑦) exp(𝛽(𝑥, 𝑦)𝛼(𝑥, 𝑦)) (4)

is called a Finsler space with an exponential metric (𝛼, 𝛽)−metric.
The Riemannian metric �̃� induces an inner product on any cotangent space 𝑇∗𝑥𝑁 such that ⟨𝑑𝑥𝑖(𝑥), 𝑑𝑥𝑗(𝑥)⟩ = �̃�𝑖𝑗(𝑥).
The induced inner product on𝑇∗𝑥𝑁 induces a linear isomorphism between𝑇∗𝑥𝑁 and𝑇𝑥𝑁. Then the 1-form𝛽 corresponds
to a vector field �̃� on 𝑁 such that

�̃�(𝑦, �̃�(𝑥)) = 𝛽(𝑥, 𝑦). (5)

Also we have ‖𝛽(𝑥)‖𝛼 = ‖�̃�(𝑥)‖𝛼 . Therefore we can write (𝛼, 𝛽)−metrics as follows:

𝐹(𝑥, 𝑦) = 𝛼(𝑥, 𝑦)𝜙ቀ �̃�(�̃�(𝑥), 𝑦)𝛼(𝑥, 𝑦) ቁ, (6)

where for any 𝑥 ∈ 𝑁, ඥ�̃�(�̃�(𝑥), �̃�(𝑥)) = ‖�̃�(𝑥)‖𝛼 < 𝑏0 [4].
In this paper, we consider the exponential metrics and we will study the Finsler Σ-spaces with these metrics. We prove
that Finsler Σ-spaces with exponential metrics are Riemannian.

2. Preliminaries

Suppose that 𝑁 be a 𝐶∞ manifold with dimension 𝑛 and for any 𝑎 ∈ 𝑁, 𝑇𝑎𝑁 be the tangent space at point 𝑎. Denote
by 𝑇𝑁 = ∪𝑎∈𝑁𝑇𝑎𝑁 the tangent bundle of 𝑁 and by 𝑇∗𝑁 = ∪𝑎∈𝑁𝑇∗𝑎𝑁 the cotangent bundle of 𝑁 where 𝑇∗𝑎𝑁 is the
cotangent space at 𝑎 and it is the dual space of 𝑇𝑎𝑁. Now we can define the Finsler structure as follows:

Definition 2.1. A Finsler structure of 𝑁 is a function 𝐹 ∶ 𝑇𝑁 → [0,∞) such that:
a) 𝐹 is 𝐶∞ on the 𝑇𝑁\{0}.
b) 𝐹(𝑥, 𝛾𝑦) = 𝛾𝐹(𝑥, 𝑦), for all 𝛾 > 0.
c) The 𝑛 × 𝑛 Hessian matrix (𝑔𝑖𝑗) = ቀൣ𝐹

2

2 ൧𝑦𝑖𝑦𝑗ቁ is positive-definite at every point of 𝑇𝑁\{0}.

For a manifold 𝑁 and Finsler structure 𝐹 as above, the pair (𝑁, 𝐹) is called a Finsler manifold.

Definition 2.2. Let 𝑁 be a 𝐶∞ connected manifold. Also assume that Σ be a Lie group and 𝜇 ∶ 𝑁 × Σ × 𝑁 → 𝑁 be a
smooth map. Then the triple (𝑁, Σ, 𝜇) is called a Σ-space if it satisfies the following conditions:
a) 𝜇(𝑥, 𝜎, 𝑥) = 𝑥,
b) 𝜇(𝑥, 𝑒, 𝑦) = 𝑦,
c) 𝜇൫𝑥, 𝜎, 𝜇(𝑥, 𝜏, 𝑦)൯ = 𝜇(𝑥, 𝜎𝜏, 𝑦),
d) 𝜇൫𝑥, 𝜎, 𝜇(𝑦, 𝜏, 𝑧)൯ = 𝜇൫𝜇(𝑥, 𝜎, 𝑦), 𝜎𝜏𝜎−1, 𝜇(𝑥, 𝜎, 𝑧)൯,
where 𝑥, 𝑦, 𝑧 ∈ 𝑁, 𝜎, 𝜏 ∈ Σ and 𝑒 is the identity element of Σ.
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Now for a fixed point 𝑎 ∈ 𝑁 consider the following two functions:

𝜎𝑎 ∶ 𝑁 → 𝑁, 𝜎𝑎(𝑦) = 𝜇(𝑎, 𝜎, 𝑦), (7)

𝜎𝑎 ∶ 𝑁 → 𝑁, 𝜎𝑎(𝑦) = 𝜎𝑦(𝑎). (8)

Then in terms of these maps the above conditions can be written as follows:

a) 𝜎𝑎 = 𝑎,
b) 𝑒𝑎 = 𝑖𝑑𝑁,
c) 𝜎𝑎𝜏𝑎 = (𝜎𝜏)𝑎,
d) 𝜎𝑎𝜏𝑦𝜎−1𝑎 = (𝜎𝜏𝜎−1)𝜎𝑎(𝑦).
The best example of Σ-spaces is symmetric spaces. For each 𝑥 ∈ 𝑁 by Σ𝑥 we denote the image of Σ under the map
Σ → Σ𝑥, 𝜎 → 𝜎𝑥. For each 𝜎 ∈ Σ we define (1, 1) tensor field 𝑆𝜎 on the Σ-space 𝑁 by

𝑆𝜎𝑋𝑥 = (𝜎𝑥)∗𝑋𝑥 , ∀𝑥 ∈ 𝑁, 𝑋𝑥 ∈ 𝑇𝑥𝑁. (9)

We note that 𝑆𝜎 is smooth.

Definition 2.3. A Σ-space 𝑁 is called a reduced Σ-space if for each 𝑥 ∈ 𝑁 the following fulfilled:

1. 𝑇𝑥𝑁 is generated by the set of all 𝜎𝑥(𝑋𝑥), that is,

𝑇𝑥𝑁 = 𝑔𝑒𝑛{(𝐼 − 𝑆𝜎)𝑋𝑥 ∶ 𝑋𝑥 ∈ 𝑇𝑥𝑁, 𝜎 ∈ Σ}.

2. If 𝑋𝑥 ∈ 𝑇𝑥𝑁 and 𝜎𝑥𝑋𝑥 = 0 for all 𝜎 ∈ Σ, then 𝑋𝑥 = 0, and thus no non-zero vector in 𝑇𝑥𝑁 is fixed by all 𝑆𝜎.

We note that, a Finsler Σ-space (𝑁, Σ, 𝐹) is a reduced Σ-space together with a Finsler metric 𝐹 which is invariant under
Σ𝑝 for 𝑝 ∈ 𝑁.

3. Main Results

In this section, we give some results about reduced Σ-space with exponential metric.

Lemma 3.1. Suppose that (𝑁, Σ, 𝐹) be a Finsler Σ-space with exponential metric 𝐹 = 𝛼 exp(𝛽𝛼 ) defined by the
Riemannian metric �̃� and the vector field 𝑋. Then (𝑁, Σ, �̃�) is a Riemannian Σ-space.

Proof. Assume that 𝜎𝑥 be a diffeomorphism as below

𝜎𝑥 ∶ 𝑁 → 𝑁, 𝜎𝑥(𝑦) = 𝜇(𝑥, 𝜎, 𝑦).

Therefore for every 𝑝 ∈ 𝑁 and for any 𝑌 ∈ 𝑇𝑝𝑀 we have:

𝐹(𝑝, 𝑌) = 𝐹(𝜎𝑥(𝑝), 𝑑𝜎𝑥𝑌).

Applying equation (4) we get

ඥ�̃�(𝑌, 𝑌) exp(
�̃�(𝑋𝑝, 𝑌)
ඥ�̃�(𝑌, 𝑌)

) = ඥ�̃�(𝑑𝜎𝑥𝑌, 𝑑𝜎𝑥𝑌) exp(
�̃�(𝑋𝜎𝑥(𝑝), 𝑑𝜎𝑥𝑌)
ඥ�̃�(𝑑𝜎𝑥𝑌, 𝑑𝜎𝑥𝑌)

). (10)

Replacing 𝑌 by −𝑌 in equation (10) we get

ඥ�̃�(𝑌, 𝑌) exp(
−�̃�(𝑋𝑝, 𝑌)
ඥ�̃�(𝑌, 𝑌)

) = ඥ�̃�(𝑑𝜎𝑥𝑌, 𝑑𝜎𝑥𝑌) exp(
−�̃�(𝑋𝜎𝑥(𝑝), 𝑑𝜎𝑥𝑌)
ඥ�̃�(𝑑𝜎𝑥𝑌, 𝑑𝜎𝑥𝑌)

). (11)
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Combining the above equations (10) and (11) we have

exp(
2�̃�(𝑋𝑝, 𝑌)
ඥ�̃�(𝑌, 𝑌)

) = exp(
2�̃�(𝑋𝜎𝑥(𝑝), 𝑑𝜎𝑥𝑌)
ඥ�̃�(𝑑𝜎𝑥𝑌, 𝑑𝜎𝑥𝑌)

),

which implies
�̃�(𝑋𝑝, 𝑌)
ඥ�̃�(𝑌, 𝑌)

=
�̃�(𝑋𝜎𝑥(𝑝), 𝑑𝜎𝑥𝑌)
ඥ�̃�(𝑑𝜎𝑥𝑌, 𝑑𝜎𝑥𝑌)

. (12)

From equation (10) and (12), we have
�̃�(𝑌, 𝑌) = �̃�(𝑑𝜎𝑥𝑌, 𝑑𝜎𝑥𝑌).

Therefore 𝜎𝑥 is a isometry with respect to the Riemannian metric �̃�.

Theorem 3.2. Assume that (𝑁, Σ, �̃�) be a Riemannian Σ-space. Also Let 𝐹 be an exponential metric defined by �̃� and
a vector field 𝑋. Then (𝑁, Σ, 𝐹) is an exponential Σ-space if and only if 𝑋 is 𝜎𝑥−invariant for all 𝑥 ∈ 𝑁.
Proof. Let 𝑋 be 𝜎𝑥−invariant. Therefore for any 𝑝 ∈ 𝑁, we have 𝑋𝜎𝑥(𝑝) = 𝑑𝜎𝑥𝑋𝑝. Then for any 𝑌 ∈ 𝑇𝑝𝑁 we have:

𝐹(𝜎𝑥(𝑝), 𝑑𝜎𝑥𝑌𝑝) = ඥ�̃�(𝑑𝜎𝑥𝑌, 𝑑𝜎𝑥𝑌) exp(
�̃�(𝑋𝜎𝑥(𝑝), 𝑑𝜎𝑥𝑌)
ඥ�̃�(𝑑𝜎𝑥𝑌, 𝑑𝜎𝑥𝑌)

)

= ඥ�̃�(𝑑𝜎𝑥𝑌, 𝑑𝜎𝑥𝑌) exp(
�̃�(𝑑𝜎𝑥𝑌, 𝑑𝜎𝑥𝑌)
ඥ�̃�(𝑑𝜎𝑥𝑌, 𝑑𝜎𝑥𝑌)

)

= ඥ�̃�(𝑌, 𝑌) exp(
�̃�(𝑋𝑝, 𝑌)
ඥ�̃�(𝑌, 𝑌)

)

= 𝐹(𝑝, 𝑌).

Conversely, let 𝐹 be a Σ𝑁−invariant. Then for any 𝑝 ∈ 𝑁 and 𝑌 ∈ 𝑇𝑝𝑁 we have 𝐹(𝑝, 𝑌) = 𝐹(𝜎𝑥(𝑝), 𝑑𝜎𝑥𝑌). Applying
the Lemma 3 we get:

�̃�(𝑋𝑝, 𝑌)
ඥ�̃�(𝑌, 𝑌)

=
�̃�(𝑋𝜎𝑥(𝑝), 𝑑𝜎𝑥𝑌)
ඥ�̃�(𝑑𝜎𝑥𝑌, 𝑑𝜎𝑥𝑌)

, (13)

which implies
�̃�(𝑌, 𝑌) = �̃�(𝑑𝜎𝑥𝑌, 𝑑𝜎𝑥𝑌). (14)

From equation (13) and (14), we have:
�̃�(𝑋𝑥 , 𝑌) = �̃�(𝑋𝜎𝑥(𝑝), 𝑑𝜎𝑥𝑌).

Therefore (𝑑𝜎𝑥)𝑝𝑋𝑝 = 𝑋𝜎𝑥(𝑝).

Theorem 3.3. An exponential Σ−space must be Riemannian.

Proof. Let (𝑁, Σ, 𝐹) be an exponential Σ−space with 𝐹 = 𝛼 exp(𝛽𝛼 ) defined by the Riemannian metric �̃� and the vector
field 𝑋, and let 𝜎𝑥 be a diffeomorphism defined by 𝜎𝑥(𝑦) = 𝜇(𝑥, 𝜎, 𝑦). Then by Lemma 3, (𝑁, Σ, �̃�) is a Riemannian
Σ−space. Thus we have

𝐹(𝑥, 𝑑𝜎𝑥𝑦) = ඥ�̃�(𝑑𝜎𝑥𝑦, 𝑑𝜎𝑥𝑦) exp(
�̃�(𝑋𝑥 , 𝑑𝜎𝑥𝑦)

ඥ�̃�(𝑑𝜎𝑥𝑦, 𝑑𝜎𝑥𝑦)
)

= ඥ�̃�(𝑦, 𝑦) exp( �̃�(𝑋𝑥 , 𝑦)
ඥ�̃�(𝑦, 𝑦)

)

= 𝐹(𝑥, 𝑦).

Therefore �̃�(𝑋𝑥 , 𝑑𝜎𝑥𝑦) = �̃�(𝑋𝑥 , 𝑦), ∀𝑦 ∈ 𝑇𝑥𝑁. The tangent map 𝑆𝜎 = (𝑑𝜎𝑥)𝑥 is an orthogonal transformation of
𝑇𝑥𝑁 having no nonzero fixed vectors. So we have �̃�(𝑋𝑥 , (𝑆𝜎 − 𝑖𝑑)𝑥(𝑦)) = 0, ∀𝑦 ∈ 𝑇𝑥𝑁. Since (𝑆 − 𝑖𝑑)𝑥 is an
invertible linear transformation, we have 𝑋𝑥 = 0, ∀𝑥 ∈ 𝑁. Hence 𝐹 is Riemannian.
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Abstract

A group 𝐺 may have no, only one or even more than one composition series. However, the
Jordan-Holder theorem states that any two composition series of a group 𝐺 are equivalent. The
Zassenhaus Lemma connects the subfactors appearing in Schreier’s refinements. This Lemma
is sometimes called the ”Butterfly Lemma”. In this paper, we show an analogous ”Butterfly
Lemma” for crossed polymodules. It is proof runs parallel to the proof of the classical versions.

1. Introduction

Crossed modules and its applications play very important roles in category theory, homology and cohomology of
groups, homotopy theory, algebra, k-theory etc. Therefore, study crossed modules and its all kinds automorphisms at
least through this is very important. This is in fact one of the motivations of recent half-century studies in this field.
We recall some definitions and properties of the crossed module category. A crossed module (𝑇, 𝐺, 𝜕) consist of a
group homomorphism 𝜕 ∶ 𝑇 ⟶ 𝐺 together with an action (𝑔, 𝑡) ⟶ 𝑔𝑡 of 𝐺 on 𝑇 satisfying 𝜕(𝑔𝑡) = 𝑔𝜕(𝑡)𝑔−1 and
𝜕(𝑠)𝑡 = 𝑠𝑡𝑠−1, for all 𝑔 ∈ 𝐺 and 𝑠, 𝑡 ∈ 𝑇 [1, 6].

2. Crossed polymodules

The polygroup theory is a natural generalization of the group theory. Of course in a group the composition of two
elements is an element, but in a polygroup the that, is a set. Polygroups have been applied in many area, such as
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lattices, geometry, color scheme and combinatorics. For study, there exists a rich bibliography, publication book within
2012 can be found in ”Polygroup Theory and Related Systems” by B. Davvaz[5]. This book contains the principle
definitions endowed with examples and the basic results of the theory. Applications of hypergroups appear in special
subclasses like polygroups that they were studied by Comer[3], also see [4, 5]. Also, Comer and Davvaz developed
the algebraic theory for polygroups. A polygroup is a completely regular, reversible in itself multigroup. According
[3], a polygroup is a multi-valued systemℳ =< 𝑃, ∘, 𝑒, −1 >, with 𝑒 ∈ 𝑃, −1 ∶ 𝑃 ⟶ 𝑃, ∘ ∶ 𝑃 × 𝑃 ⟶ 𝒫∗(𝑃), where
the following axioms hold for all 𝑥, 𝑦, 𝑧 in 𝑃:

1. (𝑥 ∘ 𝑦) ∘ 𝑧 = 𝑥 ∘ (𝑦 ∘ 𝑧)
2. 𝑒 ∘ 𝑥 = 𝑥 ∘ 𝑒 = 𝑥
3. 𝑥 ∈ 𝑦 ∘ 𝑧 implies 𝑦 ∈ 𝑥 ∘ 𝑧−1 and 𝑧 ∈ 𝑦−1 ∘ 𝑥.

Of course, 𝒫∗(𝑃) is the set of all the non-empty subsets of 𝑃, and also if 𝑥 ∈ 𝑃 and 𝐴, 𝐵 are non-empty subsets of 𝑃,
then we have 𝐴 ∘ 𝐵 = ⋃𝑎∈𝐴,𝑏∈𝐵 𝑎 ∘ 𝑏, 𝑥 ∘ 𝐵 = {𝑥} ∘ 𝐵 and 𝐴 ∘ 𝑥 = 𝐴 ∘ {𝑥}.

Definition 2.1. [2] A crossed polymodule 𝜒 = (𝐶, 𝑃, 𝜕, 𝛼) consists of polygroups < 𝐶, ∗, 𝑒, −1 > and < 𝑃, ∘, 𝑒, −1 >
together with a strong homomorphism 𝜕 ∶ 𝐶 ⟶ 𝑃 and a (left) action 𝛼 ∶ 𝑃 × 𝐶 ⟶ 𝒫∗(𝐶) on 𝐶, statisfying the
conditions:

1. 𝜕( 𝑝𝑐) = 𝑝 ∘ 𝜕(𝑐) ∘ 𝑝−1 for all 𝑐 ∈ 𝐶 and 𝑝 ∈ 𝑃,
2. 𝜕(𝑐)𝑐′ = 𝑐 ∗ 𝑐′ ∗ 𝑐−1 for all 𝑐, 𝑐′ ∈ 𝐶.

3. Butterfly lemma of crossed polymodules

A group 𝐺 may have no, only one or even more than one composition series. However, the Jordan-Holder theorem
states that any two composition series of a group 𝐺 are equivalent. The Zassenhaus Lemma connects the subfactors
appearing in Schreier’s refinements. This Lemma is sometimes called the ”Butterfly Lemma”. In this section we
show an analogous ”Butterfly Lemma” for crossed polymodules. It is proof runs parallel to the proof of the classical
versions.

Theorem3.1. If (𝑃1, 𝑃2, 𝛼, 𝑓), (𝑃3, 𝑃4, 𝛽, 𝑘), (𝑃5, 𝑃6, 𝛽′, 𝑘′) be crossed ploymodules, and (𝑃3, 𝑃4, 𝛽, 𝑘), (𝑃5, 𝑃6, 𝛽′, 𝑘′) ≤
(𝑃1, 𝑃2, 𝛼, 𝑓) , also 𝑃5 ⊆ 𝑃3, 𝑃6 ⊆ 𝑃4, then (𝑃5, 𝑃6, 𝛽′, 𝑘′) ≤ (𝑃3, 𝑃4, 𝛽, 𝑘).

Proof. We have 𝑃3 ≤ 𝑃1, 𝑃5 ≤ 𝑃1 and 𝑃5 ⊆ 𝑃3, therefore 𝑃5 ≤ 𝑃3. Also 𝑃4 ≤ 𝑃2, 𝑃5 ≤ 𝑃2 and 𝑃5 ⊆ 𝑃4, hence
𝑃6 ≤ 𝑃4.
But for 𝑝5 ∈ 𝑃5, we have 𝑝5𝑘′ = 𝑝5𝑓 = 𝑝5𝑘 ⊆ 𝑃4, and for 𝑝5 ∈ 𝑃5 and 𝑝6 ∈ 𝑃6, we have 𝑝5(𝑝6𝛽′) = 𝑝5(𝑝6𝛼) =
𝑝5(𝑝6𝛽).

Theorem 3.2. If (𝑃1, 𝑃2, 𝛼, 𝑓), (𝑃3, 𝑃4, 𝛽, 𝑘), (𝑃5, 𝑃6, 𝛽′, 𝑘′) be crossed ploymodules, and
(𝑃1, 𝑃2, 𝛼, 𝑓) ≤ (𝑃3, 𝑃4, 𝛽, 𝑘) ≤ (𝑃5, 𝑃6, 𝛽′, 𝑘′), with (𝑃1, 𝑃2, 𝛼, 𝑓)△(𝑃5, 𝑃6, 𝛽′, 𝑘′), then

(𝑃1, 𝑃2, 𝛼, 𝑓)△(𝑃3, 𝑃4, 𝛽, 𝑘)
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Proof. From 𝑃2 ≤ 𝑃4 ≤ 𝑃6 and 𝑃2△𝑃6, we have 𝑃2△𝑃4. Also for 𝑝1 ∈ 𝑃1, 𝑝2 ∈ 𝑃2, 𝑝3 ∈ 𝑃3, 𝑝4 ∈ 𝑃4 we have
𝑝−13 𝑝𝑝23 ⊆ 𝑃1 and 𝑝𝑝41 ⊆ 𝑁, hence (𝑃1, 𝑃2, 𝛼, 𝑓)△(𝑃5, 𝑃6, 𝛽′, 𝑘′).

Lemma 3.3. If (𝑃1, 𝑃2, 𝛼, 𝑓), (𝑃3, 𝑃4, 𝛽, 𝑔), be crossed ploymodules, and given a crossed ploymodule morphism (𝜆, Γ) ∶
(𝑃1, 𝑃2, 𝛼, 𝑓) → (𝑃3, 𝑃4, 𝛽, 𝑔),
then there are the following comutative diagram,

ker(𝜆, Γ) (l,k) // (𝑃1, 𝑃2, 𝛼, 𝑓)
(𝜆,Γ) //

(𝜆′ ,Γ′)
��

(𝑃3, 𝑃4, 𝛽, 𝑔)

(l′ ,k′)
��(𝑃1 ,𝑃2 ,𝛼,𝑓)

ker(𝜆,Γ) (𝜆″ ,Γ″)
// 𝐼𝑚(𝜆, Γ)

In other words

ker 𝜆
k
��

l // 𝑃1
𝑓′

��

𝜆 //

𝜆′

��<
<<

<<
<<

<<
<<

<<
<<

<<
// 𝑃3

𝑑
��

ker Γ
k

// 𝑃2

Γ′

��:
::

::
::

::
::

::
::

::
:: Γ

// 𝑃4

𝑃1
ker𝜆

𝑓′
��

𝜆″ // 𝐼𝑚𝜆

̇l

@@������������������

�̇�
��𝑃1

kerΓ Γ″
// 𝐼𝑚Γ

k̇

BB��������������������

Proof. ker(𝜆, Γ) = (ker 𝜆, ker Γ, 𝛽, 𝑓) and 𝐼𝑚(𝜆, Γ) = (𝐼𝑚𝜆, 𝐼𝑚Γ, �̇�, �̇�)
and (𝑃1 ,𝑃2 ,𝛼,𝑓)

ker(Λ,Γ) are crossed ploymodules by

𝛽 ∶ ker Γ → 𝐴𝑢𝑡(ker 𝜆) 𝑝1 → (𝑛 → (𝑛)(𝑝1𝛽) = (𝑛)(𝑝1𝛼))

and k = 𝑓หkerΓker𝜆 be the restriction of f to ker 𝜆 and ker Γ. Also, �̇� = 𝑑|𝑖𝑚𝜆
𝑖𝑚Γ be the restriction of d to 𝑖𝑚𝜆 and 𝑖𝑚Γ, and

�̇� ∶ 𝐼𝑚Γ → 𝐴𝑢𝑡(𝑖𝑚𝜆) 𝑝2 → ( ̇𝑝1 → ( ̇𝑝1)( ̇𝑝2�̇�) = ̇𝑝1( ̇𝑝2�̇�))

We have the inctusion morphism (l, k) and ( ̇l, k̇), also the crossed ploymodule morphism (𝜆′, Γ′). We have bijective
polygroup morphisms

𝜆″ ∶ 𝑃1
ker 𝜆 → 𝐼𝑚𝜆 𝑝1(ker 𝜆) → 𝑝1𝜆

and
Γ″ ∶ 𝑃2

ker Γ → 𝐼𝑚Γ 𝑝1(ker Γ) → 𝑝2Γ

and (𝜆″, Γ″) is a crossed ploymodule morphism.
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Since, let 𝑝1(ker 𝜆) ⊆
𝑃1
ker𝜆 and 𝑝2(ker Γ) ⊆

𝑃2
kerΓ .

(𝑝1(ker 𝜆))𝜆″�̇� = 𝑝1𝜆�̇� = 𝑝1𝜆𝑑 = 𝑝1𝑓Γ = (𝑝1𝑓(ker Γ))Γ″ = (𝑝1(ker 𝜆))𝑓′Γ″

and
(𝑝1(ker 𝜆))𝑝2(kerΓ)𝜆″ = (𝑝𝑝21 (ker 𝜆))𝜆″ = (𝑝𝑝21 )𝜆 = (𝑝1𝜆)𝑝2Γ = (𝑝1(ker 𝜆)𝜆″)𝑝2(kerΓ)Γ

″

Theorem 3.4. If (𝑃1, 𝑃2, 𝛼, 𝑓), (𝑃3, 𝑃4, 𝑟, 𝑑) be crossed ploymodules, and given a surjective crossed ploymodule mor-
phism (𝜆, Γ) ∶ (𝑃1, 𝑃2, 𝛼, 𝑓) → (𝑃3, 𝑃4, 𝑟, 𝑑), then there is a bijective crossed ploymodule morphism given by

(𝜙, 𝜓) ∶ (𝑃1, 𝑃2, 𝛼, 𝑓)ker(𝜆, Γ) ⟶ (𝑃3, 𝑃4, 𝑟, 𝑑)

such that

𝜙 ∶ 𝑃1
ker 𝜆 ⟶ 𝑃3 𝑝1(ker 𝜆) → 𝑝1𝜆

𝜓 ∶ 𝑃2
ker Γ ⟶ 𝑃4 𝑝2(ker Γ) → 𝑝2Γ

Also the following diagram is commutative,

𝑃2
kerΓ

𝜓

��:
::

::
::

::
::

::
::

::
::

𝑃1
ker𝜆

𝑓′
OO

𝜙

��<
<<

<<
<<

<<
<<

<<
<<

<<
<

𝑃2 Γ
//

Γ′

BB�������������������
𝑃4

𝑃1

𝑓
OO

𝜆 //

𝜆′

@@������������������
𝑃3

𝑑
OO

Theorem3.5. supposewe are give crossed ploymodules (𝑃1, 𝑃2, 𝛼, 𝑓), (𝑃3, 𝑃4, 𝛽, 𝑘) ≤ ((𝑃1, 𝑃2, 𝛼, 𝑓) and (𝑃5, 𝑃6, 𝛽′, 𝑘′) ≤
((𝑃1, 𝑃2, 𝛼, 𝑓)
(i) Let 𝑙 ∶= 𝑓|𝑃4∩𝑃6𝑃3∩𝑃5 be the restriction of f to 𝑃3 ∩ 𝑃5 and 𝑃4 ∩ 𝑃6.
Also the polygroup morphism

𝛿 ∶ 𝑃4 ∩ 𝑃6 ⟶ 𝐴𝑢𝑡(𝑃3 ∩ 𝑃5) 𝑝 → (𝑝3 → (𝑝3)(𝑝𝛿) = (𝑝3)(𝑝𝛼))

Then where is a crossed subpolymodule given by

(𝑃3 ∩ 𝑃5, 𝑃4 ∩ 𝑃6) = (𝑃3 ∩ 𝑃5, 𝑃4 ∩ 𝑃6, 𝛿, 𝑙) ≤ (𝑃1, 𝑃2, 𝛼, 𝑓),
and we write (𝑃3, 𝑃4) ∩ (𝑃5, 𝑃6) = (𝑃3 ∩ 𝑃5, 𝑃4 ∩ 𝑃6).
In particular, (𝑃3, 𝑃4) ∩ (𝑃5, 𝑃6) ≤ (𝑃3, 𝑃4) and (𝑃3, 𝑃4) ∩ (𝑃5, 𝑃6) ≤ (𝑃5, 𝑃6).
(ii) If (𝑃3, 𝑃4)△(𝑃1, 𝑃2) and (𝑃5, 𝑃6)△(𝑃1, 𝑃2), then there are a normal crossed subpolymodule (𝑃3, 𝑃4)∩(𝑃5, 𝑃6)△(𝑃1, 𝑃2).
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In particular, (𝑃3, 𝑃4) ∩ (𝑃5, 𝑃6)△(𝑃3, 𝑃4) and (𝑃3, 𝑃4) ∩ (𝑃5, 𝑃6)△(𝑃5, 𝑃6).
Hence we have the following diagrams:

(𝑃1, 𝑃2)

(𝑃3, 𝑃4)

55jjjjjjjjjjjjjjjj
(𝑃5, 𝑃6)

iiTTTTTTTTTTTTTTTT

(𝑃3, 𝑃4) ∩ (𝑃5, 𝑃6)

iiTTTTTTTTTTTTTTTT

OO

55jjjjjjjjjjjjjjjj

(𝑃3 ∩ 𝑃5)

��

zzvv
vv
vv
vv
v

**UUU
UUUU

UUUU
UUUU

UUUU
U

$$H
HH

HH
HH

HH

𝑃3 //

𝑘
��

𝑃1
𝑓
��

𝑃5oo

𝑘′
��

𝑃4 // 𝑃2 𝑃6oo

(𝑃2 ∩ 𝑃4)

ddHHHHHHHHHH

::vvvvvvvvvv

44iiiiiiiiiiiiiiiiiiii

Theorem 3.6. Suppose (𝑃1, 𝑃2, 𝛼, 𝑓) be a crossed ploymodule, and (𝑃5, 𝑃6, 𝛽′, 𝑘′)△(𝑃1, 𝑃2, 𝛼, 𝑓) , be a normal crossed
subploymodule.

(i) If (𝑃3, 𝑃4) be a crossed subploymodule of (𝑃1, 𝑃2, 𝛼, 𝑓), l ∶ 𝑓|𝑃4𝑃6𝑃3𝑃5
be the restriction of f to 𝑃3𝑃5 and 𝑃4𝑃6, also we have the polygroup morphism

𝛿 ∶ 𝑃4𝑃6 ⟶ 𝐴𝑢𝑡(𝑃3𝑃5) 𝑝 → (𝑝′ → (𝑝′)(𝑝𝛿) ∶= (𝑝′)(𝑝𝛼))

then threr is crossed subploymodule given by (𝑃3𝑃5, 𝑃4𝑃6) = (𝑃3𝑃5, 𝑃4𝑃6𝛾, 𝑙) ≤ (𝑃1, 𝑃2), with (𝑃3, 𝑃4)(𝑃5, 𝑃6) =
(𝑃3𝑃5, 𝑃4𝑃6).
In particular, (𝑃3, 𝑃4) ≤ (𝑃13𝑃5, 𝑃4𝑃6) and (𝑃5, 𝑃6) ≤ (𝑃3𝑃5, 𝑃4𝑃6).
(ii) If (𝑃3, 𝑃4)△(𝑃1, 𝑃2) and (𝑃5, 𝑃6)△(𝑃1, 𝑃2), then (𝑃3𝑃5, 𝑃4𝑃6)△(𝑃1, 𝑃2).
In particular, (𝑃3, 𝑃4)△(𝑃3𝑃5, 𝑃4𝑃6) and (𝑃5, 𝑃6)△(𝑃3𝑃5, 𝑃4𝑃6).
Hence we have the following diagrams,

(𝑃1, 𝑃2)

(𝑃3, 𝑃4)

==|||||||||||||||||
// (𝑃3, 𝑃4)(𝑃5, 𝑃6)

OO

(𝑃5, 𝑃6)

aaBBBBBBBBBBBBBBBBB
oo
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𝑃1
𝑓
��
𝑃2

𝑃3

@@������������������

𝑘
��

// 𝑃3𝑃5
𝑙
��

𝑃5oo

𝑘′
��

^^>>>>>>>>>>>>>>>>>>

𝑃4 //

@@������������������
𝑃4𝑃6 𝑃6

^^>>>>>>>>>>>>>>>>>>
oo

Theorem 3.7. Let 𝑃 = (𝑃1, 𝑃2), 𝑄 = (𝑄1, 𝑄2), 𝑅 = (𝑅1, 𝑅2), 𝑆 = (𝑆1, 𝑆2) be crossed ploymodules. Also suppose

𝑃 ≤ 𝑆 and 𝑄△𝑅 ≤ 𝑆. Namely we have the following situtation

𝑃 // 𝑆

𝑅

OO

𝑄

△

OO

Then (i) , (ii) are true:

(i) We have 𝑃 ∩ 𝑄△𝑃 ∩ 𝑅
(ii) If 𝑃△𝑆, then 𝑃𝑄△𝑃𝑅

Lemma 3.8. (Butterfly Lemma). Let 𝑃 = (𝑃!, 𝑃2), 𝑄 = (𝑄1, 𝑄2) be a crossed subploymodules of a crossed ploymodule
of 𝑅 = (𝑅1, 𝑅2). Also �̄� = ( ̄𝑃1, ̄𝑃2)△𝑃, �̄� = ( ̄𝑄1, ̄𝑄2)△𝑄 be normal crossed subploymodules. On the other hand, if,

𝑅

𝑃

??��������
𝑄

__>>>>>>>

�̄�

△

OO

�̄�

△
OO

then we have normal crossed subploymodules,

�̄�(𝑃 ∩ �̄�)△�̄�(𝑃 ∩ 𝑄) , (�̄� ∩ 𝑄)�̄�△(𝑃 ∩ 𝑄)�̄�,

and isomorphics factor crossed ploymodules:

�̄�(𝑃 ∩ 𝑄)
�̄�(𝑃 ∩ �̄�) ≅

𝑃 ∩ 𝑄
(�̄� ∩ 𝑄)(𝑃 ∩ �̄�) ≅

(𝑃 ∩ 𝑄)�̄�
(�̄� ∩ 𝑄)�̄� .
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On the other hand, then the butterfly becoms apparent:

𝑃 𝑄

�̄�(𝑃 ∩ 𝑄)

ccGGGGGGGGG

𝑃 ∩ 𝑄oo // (𝑃 ∩ 𝑄)�̄�

;;wwwwwwwww

�̄�(𝑃 ∩ �̄�)

OO

(�̄� ∩ 𝑄)(𝑃 ∩ �̄�)

OO

//oo (�̄� ∩ 𝑄)�̄�

OO

�̄�

;;wwwwwwwwww �̄�

ccGGGGGGGGGG

�̄� ∩ 𝑄

ccGGGGGGGGG

??~~~~~~~~~~~~~~~~~~~
𝑃 ∩ �̄�

__@@@@@@@@@@@@@@@@@@@

;;wwwwwwwww

Proof. We have �̄�△𝑃 and by proposition 3.7, 𝑃 ∩ �̄�△𝑃 ∩ 𝑄 ≤ 𝑃.
Also �̄�(𝑃 ∩ �̄�)△�̄�(𝑃 ∩ 𝑄) ≤ 𝑃.
Now we consider the crossed ploymodule morphism

(𝛼1, 𝛼2) ∶ 𝑃 ∩ 𝑄 ⟶ �̄�(𝑃 ∩ 𝑄)
�̄�(𝑃 ∩ �̄�)

such that
𝛼1 ∶ 𝑃1 ∩ 𝑄1 ⟶

̄𝑃1(𝑃1 ∩ 𝑄1)
̄𝑃1(𝑃1 ∩ ̄𝑄1)

𝑝 → 𝑝( ̄𝑃1(𝑃1 ∩ ̄𝑄1))

and
𝛼2 ∶ 𝑃2 ∩ 𝑄2 ⟶

̄𝑃2(𝑃2 ∩ 𝑄2)
̄𝑃2(𝑃2 ∩ ̄𝑄2)

𝑞 → 𝑞( ̄𝑃2(𝑃2 ∩ ̄𝑄2)).

The crossed ploymodule morphism(𝛼1, 𝛼2) is surjective, because, if 𝑝 ∈
̄𝑃1(𝑃1∩𝑄1)
̄𝑃1(𝑃1∩ ̄𝑄1)

,
then 𝑝 = ̄𝑝1𝑝1 ̄𝑃1(𝑃1 ∩ ̄𝑄1), such that ̄𝑝1 ∈ ̄𝑃1 and 𝑝1 ∈ 𝑃1 ∩ 𝑄1.
But we have

𝑥 = ̄𝑝1𝑝1 ̄𝑃1(𝑃1 ∩ ̄𝑄1) = 𝑝1 ̄𝑝′1( ̄𝑃1(𝑃1 ∩ ̄𝑄1)) = 𝑝1( ̄𝑃1(𝑃1 ∩ ̄𝑄1)) = 𝑝1𝛼1.

As the same way, 𝛼2 is surjective.
In addition to, we have ker(𝛼1, 𝛼2) = (�̄� ∩ 𝑄) ∩ (𝑃 ∩ �̄�)
Actually, ker𝛼1 = ( ̄𝑃1 ∩ 𝑄1)(𝑃1 ̄𝑄1).
Because if 𝑝 ∈ ker𝛼1 ⊆ (𝑃1 ∩ 𝑄!)), then

𝑝𝛼1 = ̄𝑃1(𝑃1 ∩ ̄𝑄1) ⇒ 𝑝 ∈ ̄𝑃1(𝑃1 ∩ ̄𝑄1) ⇒ 𝑝 ∈ (𝑃1 ∩ 𝑄1) ∩ ̄𝑃1(𝑃1 ∩ ̄𝑄1)

Also, if 𝑝 ∈ ( ̄𝑃1 ∩ 𝑄1)(𝑃1 ∩ ̄𝑄1) ⊆ ̄𝑃1(𝑃1 ∩ ̄𝑄1), then 𝑝𝛼1 = 𝑝 ̄𝑃1(𝑃1 ∩ ̄𝑄1).
As the same way ker𝛼2 = ( ̄𝑃2 ∩ 𝑄2)(𝑃2 ∩ ̄𝑄2.
Therefore by theorem 3.4, we have the isomorphism:

(�̄�1, �̄�2) ∶
𝑃 ∩ 𝑄

(�̄� ∩ 𝑄)(𝑃 ∩ �̄�) ⟶
�̄�(𝑃 ∩ 𝑄)
�̄�(𝑃 ∩ �̄�)
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such that
�̄�1 ∶

𝑃1 ∩ 𝑄1
( ̄𝑃1 ∩ 𝑄1)(𝑃1 ∩ ̄𝑄1)

⟶
̄𝑃1(𝑃1 ∩ 𝑄1)
̄𝑃1(𝑃1 ∩ ̄𝑄1)

𝑝1( ̄𝑃1 ∩ 𝑄1)(𝑃1 ∩ ̄𝑄1) ⟶ 𝑝1 ̄𝑃1(𝑃1 ∩ ̄𝑄1)

and
�̄�2 ∶

𝑃2 ∩ 𝑄2
( ̄𝑃2 ∩ 𝑄2)(𝑃2 ∩ ̄𝑄2)

⟶
̄𝑃2(𝑃2 ∩ 𝑄2)
̄𝑃2(𝑃2 ∩ ̄𝑄2)

𝑝2( ̄𝑃2 ∩ 𝑄2)(𝑃2 ∩ ̄𝑄2) ⟶ 𝑝2 ̄𝑃2(𝑃2 ∩ ̄𝑄2)

So
𝑃 ∩ 𝑄

(�̄� ∩ 𝑄)(𝑃 ∩ �̄�) ≅
�̄�(𝑃 ∩ 𝑄)
�̄�(𝑃 ∩ �̄�) .

For this reason we have,
𝑃 ∩ 𝑄

(�̄� ∩ 𝑄)(𝑃 ∩ �̄�) ≅
(𝑃 ∩ 𝑄)�̄�
(𝑃 ∩ �̄�)�̄� .

4. Conclusion

In this paper, we have shown, an analogous ”Butterfly Lemma” for crossed polymodules. It was proof runs parallel to
the proof of the classical versions.
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Abstract

Stochastic comparison on order statistics from heterogeneous-dependent observations has been
paid lots of attention recently. This work devotes to investigating the ordering properties of order
statistics from dependent observations. We obtain the usual stochastic order for the smallest
order statistic of samples having additive Weibull (AW) distribution and Archimedean survival
copulas.

1. Introduction

Series and parallel systems are two basic systems which play prominent roles in various applications in reliability
engineering. An 𝑛-component system with series (parallel) structure fails (works) if at least one of the components of
the system fails (works). Let 𝑋1, 𝑋2, ..., 𝑋𝑛 denote the lifetimes of 𝑛 components that can be used to built up an 𝑛 com-
ponent system. If 𝑋1∶𝑛 ≤ … ≤ 𝑋𝑛∶𝑛 denote the ordered lifetimes of the components then it is known that 𝑋1∶𝑛 and 𝑋𝑛∶𝑛
correspond to the lifetimes of series and parallel systems, respectively. Reliability and stochastic properties of series
and parallel systems have been considered by various researchers under different scenarios. For example, stochastic
comparisons of the lifetimes of series and parallel systems, in the case of heterogeneous component lifetimes with
with exponentiated Weibull (EW) distributions, are considered in [2] and [3] and by [1] in the case of heterogeneous
components with generalized exponential (GE) distributions.
The paper by [9] proposed the additive Weibull distribution(AWD) by combining the hazard rates of two Weibull
distributions; one with increasing hazard rate and the other with decreasing hazard rate so as to incorporate the bathtub
shape for its hazard rate function. The cumulative distribution function of a AWDwith parameters (𝛼, 𝛽, 𝛾, 𝜆), written
as AWD(�,�,�,�), is given by

𝐹(𝑥) = 1 − 𝑒−𝛼𝑥𝛽−𝛾𝑥𝜆 , 0 < 𝑥, 𝛼 > 0, 𝛽 > 0, 𝜆 > 0, 𝛾 ≥ 0. (1)
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This paper is devoted to investigating how heterogeneity of the sample impact order statistics. We study sample
minimums from two dependent samples with AWD family of distributions. We derive the usual stochastic order of
smallest order statistics.
The organization of the paper is laid out as follows: Section 2 introduces the required definitions and several useful
lemmas which are used throughout the paper. Section 3 studies the usual stochastic order of the smallest order statistics
from two AWD samples with Archimedean survival copulas, and Section 4 concludes the paper.

2. Preliminaries

There are many ways in which a random variable 𝑋 can be said to be smaller than another random variable 𝑌. In the
usual stochastic ordering case, a random variable 𝑋 with survival function �̄� = 1 − 𝐹 is stochastically smaller than a
random variable 𝑌 with survival function �̄� = 1−𝐺, denoted by 𝑋 ≤𝑠𝑡 𝑌, if �̄�(𝑥) ≤ �̄�(𝑥) for all 𝑥. For more details
on various kinds of stochastic orders, one may refer to [8].
For a random vector 𝑋 = (𝑋1, … , 𝑋𝑛) with the joint survival function �̄� and univariate survival functions �̄�1, … , �̄�𝑛, if
there exists some �̂� ∶ [0, 1]𝑛 ⟶ [0, 1] such that, for all 𝑥𝑖 , 𝑖 = 1,… , 𝑛,

�̄�(𝑥1, … , 𝑥𝑛) = �̂�(�̄�1(𝑥1), … , �̄�𝑛(𝑥𝑛)),

then �̂� is called as the survival copula of 𝑋. A real function 𝜙 is 𝑛-monotone on (𝑎, 𝑏) ⊆ ℝ if (−1)𝑛−2𝜙(𝑛−2) is
decreasing and convex in (𝑎, 𝑏) and (−1)𝑘𝜙(𝑘)(𝑥) ≥ 0 for all 𝑥 ∈ (𝑎, 𝑏), 𝑘 = 0, 1, … , 𝑛−2, in which𝜙(𝑖)(.) is the 𝑖th
derivative of 𝜙(.). For a 𝑛-monotone (𝑛 ≥ 2) function 𝜙 ∶ [0, +∞) ⟶ [0, 1]with 𝜙(0) = 1 and lim𝑥→+∞ 𝜙(𝑥) = 0,
let 𝜓 = 𝜙,−1 be the right continuous inverse of 𝜓, then

𝐶𝜙(𝑢1, … , 𝑢𝑛) = 𝜙(𝜓(𝑢1) + … + 𝜓(𝑢𝑛)), for all𝑢𝑖 ∈ [0, 1], 𝑖 = 1,… , 𝑛,

is called an Archimedean copula with generator 𝜙. Archimedean copulas cover a wide range of dependence structures
including the independence copula. For more detail on Archimedean copulas, readers may refer to [7].
Majorization orders are quite useful and powerful in establishing various inequalities. For preliminary notations and
terminologies on majorization theory, see [5]. Let 𝑥 = (𝑥1, … , 𝑥𝑛) and y = (𝑦1, … , 𝑦𝑛) be two real vectors anf
𝑥(1) ≤ … ≤ 𝑥(𝑛) be the increasing arrangement of the components of the vector x.

Definition 2.1. The vector x is said to be

(i) weakly submajorized by the vector y (denoted by x ⪯w y) if ∑𝑛
𝑖=𝑗 𝑥(𝑖) ≤ ∑𝑛

𝑖=𝑗 𝑦(𝑖) for all 𝑗 = 1,… , 𝑛,

(ii) weakly supermajorized by the vector y (denoted by x
w
⪯ y) if ∑𝑗

𝑖=1 𝑥(𝑖) ≥ ∑𝑗
𝑖=1 𝑦(𝑖) for all 𝑗 = 1,… , 𝑛,

(iii) majorized by the vector y (denoted by x
m
⪯ y) if ∑𝑛

𝑖=1 𝑥𝑖 = ∑𝑛
𝑖=1 𝑦𝑖 and ∑

𝑗
𝑖=1 𝑥(𝑖) ≥ ∑𝑗

𝑖=1 𝑦(𝑖) for all 𝑗 =
1,… , 𝑛 − 1.

Definition 2.2. A real valued function 𝜑 defined on a set𝒜 ⊆ ℝ𝑛 is said to be Schur-convex (Schur-concave) on𝒜
if

𝑥
m
⪯𝑦 on 𝒜 ⟹ 𝜑(𝑥) ≤ (≥)𝜑(𝑦).

Before proceeding to main results, let us present some lemmas to be utilized in the sequel.

Lemma 2.3 ([5], Theorem 3.A.4). Suppose 𝕀 ⊂ ℝ is an open interval andΦ ∶ 𝕀𝑛 ⟶ℝ+ is continuously differentiable.
Necessary and sufficient conditions for Φ to be Schur-convex (Schur-concave) on 𝕀𝑛 are

(i) Φ is symmetric on 𝕀𝑛,

(ii) for 𝑖 ≠ 𝑗 and all 𝑧 ∈ 𝕀𝑛,
(𝑧𝑖 − 𝑧𝑗)ቆ

𝜕Φ(𝑧)
𝜕𝑧𝑖

− 𝜕Φ(𝑧)
𝜕𝑧𝑗

ቇ ≥ (≤)0,
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where 𝜕Φ(𝑧)
𝜕𝑧𝑖

denotes the partial derivative of Φ with respect to its 𝑖-th argument.

The following lower orthant order on Archimedean copulas will also be utilized in the sequel.

Lemma 2.4 ([4], Lemma A.1). For two 𝑛-dimensional Archimedean copulas 𝐶𝜙1(u) and 𝐶𝜙2(u), if 𝜓2 ∘𝜙1 is super-
additive, then 𝐶𝜙1(u) ≤ 𝐶𝜙2(u) for all u ∈ [0, 1]𝑛.

3. Main results

This section studies the usual stochastic order on the smallest order statistic from the AWD samples coupled by
Archimedean survival copulas. The random vector X = (𝑋1, … , 𝑋𝑛) is said to follow the AWD if 𝑋𝑖 has the dis-
tribution function 𝐹𝑖(𝑥) = 1 − 𝑒−𝛼𝑥𝛽𝑖−𝛾𝑥𝜆 for 𝑖 = 1,… , 𝑛. Specifically, by X ∼ AWD(𝛼, 𝛽, 𝛾, 𝜆, 𝜙1) we denote the
sample having the Archimedean copula with generator 𝜙1 and following a AWD.
In the following theorem, we consider two smallest order statistics that are formed from two different sets of random
variables having different sets of shape parameters � but the same set of parameters 𝛼, 𝛾, 𝜆.
Theorem 3.1. Suppose, for X ∼ AWD(𝛼, 𝛽, 𝛾, 𝜆, 𝜙1) and 𝑋∗ ∼ AWD(𝛼,�∗, 𝛾, 𝜆, 𝜙2), 𝜙1 or 𝜙2 is log-convex and
𝜓2 ∘ 𝜙1 is super-additive, then (𝛽1, … , 𝛽𝑛)

m
⪰(𝛽∗1 , … , 𝛽∗𝑛) implies 𝑋1∶𝑛 ≤st 𝑋∗1∶𝑛.

Proof. 𝑋1∶𝑛 and 𝑋∗1∶𝑛 have their respective survival functions, for 𝑥 ≥ 0,

�̄�𝑋1∶𝑛(𝑥) = 𝑝(𝑋𝑘 > 𝑥, 1 ≤ 𝑘 ≤ 𝑛) = 𝜙1൫
𝑛


𝑖=1

𝜓1(𝑒−𝛼𝑥
𝛽𝑖−𝛾𝑥𝜆)൯ = 𝐽(𝛼, 𝛽, 𝛾, 𝜆, 𝑥, 𝜙1), (2)

�̄�𝑋∗1∶𝑛(𝑥) = 𝑝(𝑋∗𝑘 > 𝑥, 1 ≤ 𝑘 ≤ 𝑛) = 𝜙2൫
𝑛


𝑖=1

𝜓2(𝑒−𝛼𝑥
𝛽∗𝑖 −𝛾𝑥𝜆)൯ = 𝐽(𝛼, 𝛽∗, 𝛾, 𝜆, 𝑥, 𝜙2). (3)

We only prove the case that 𝜙1 is log-convex, and the other case can be finished similarly. The partial derivatives of
𝐽(𝛼, 𝛽, 𝛾, 𝜆, 𝑥, 𝜙1) with respect to 𝛽𝑖 are

𝜕𝐽(𝛼, 𝛽, 𝛾, 𝜆, 𝑥, 𝜙1)
𝜕𝛽𝑖

= −𝛼𝑥𝛽𝑖 log(𝑥)𝑒−𝛼𝑥𝛽𝑖−𝛾𝑥𝜆 𝜙
′
1൫∑

𝑛
𝑖=1 𝜓1(𝑒−𝛼𝑥

𝛽𝑖−𝛾𝑥𝜆)൯
𝜙′
1൫𝜓1(𝑒−𝛼𝑥

𝛽𝑖−𝛾𝑥𝜆)൯
,

for all 𝑥 > 0.
To prove its Schur-concavety, it follows from Lemma 2.3 that we have to show that for 𝑖 ≠ 𝑗,

(𝛽𝑖 − 𝛽𝑗)ቆ
𝜕𝐽(𝛼, 𝛽, 𝛾, 𝜆, 𝑥, 𝜙1)

𝜕𝛽𝑖
− 𝜕𝐽(𝛼, 𝛽∗, 𝛾, 𝜆, 𝑥, 𝜙1)

𝜕𝛽𝑗
ቇ ≤ 0,

For 𝑖 ≠ 𝑗, the decreasing 𝜙1 implies

(𝛽𝑖 − 𝛽𝑗)ቆ
𝜕𝐽(𝛼, 𝛽, 𝛾, 𝜆, 𝑥, 𝜙1)

𝜕𝛽𝑖
− 𝜕𝐽(𝛼, 𝛽∗, 𝛾, 𝜆, 𝑥, 𝜙1)

𝜕𝛽𝑗
ቇ = −𝛼 log(𝑥)𝜙′

1൫
𝑛


𝑖=1

𝜓1(𝑒−𝛼𝑥
𝛽𝑖−𝛾𝑥𝜆)൯(𝛽𝑖 − 𝛽𝑗)

ቆ 𝑥𝛽𝑖𝑒−𝛼𝑥𝛽𝑖−𝛾𝑥𝜆

𝜙′
1൫𝜓1(𝑒−𝛼𝑥

𝛽𝑖−𝛾𝑥𝜆)൯
− 𝑥𝛽𝑗𝑒−𝛼𝑥

𝛽𝑗−𝛾𝑥𝜆

𝜙′
1൫𝜓1(𝑒−𝛼𝑥

𝛽𝑗−𝛾𝑥𝜆)൯
ቇ.

sgn=(𝛽𝑖 − 𝛽𝑗) log(𝑥)ቆ
𝑥𝛽𝑖𝑒−𝛼𝑥𝛽𝑖−𝛾𝑥𝜆

𝜙′
1൫𝜓1(𝑒−𝛼𝑥

𝛽𝑖−𝛾𝑥𝜆)൯
− 𝑥𝛽𝑗𝑒−𝛼𝑥

𝛽𝑗−𝛾𝑥𝜆

𝜙′
1൫𝜓1(𝑒−𝛼𝑥

𝛽𝑗−𝛾𝑥𝜆)൯
ቇ

where sgn= means that both sides have the same sign. Now, consider the following two cases.
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(i) Let 𝑥 ≥ 1. Then, for 𝛽𝑖 ≥ 𝛽𝑗 , we have 𝜓1(𝑒−𝛼𝑥
𝛽𝑖−𝛾𝑥𝜆) ≥ 𝜓1(𝑒−𝛼𝑥

𝛽𝑗−𝛾𝑥𝜆). Further, the log-convexity of 𝜙1
implies the decreasing property of 𝜙1

𝜙′
1
. Then

𝜙1(𝜓1(𝑒−𝛼𝑥
𝛽𝑖−𝛾𝑥𝜆))

𝜙′
1൫𝜓1(𝑒−𝛼𝑥

𝛽𝑖−𝛾𝑥𝜆)൯
is decreasing in 𝛽𝑖 > 0. Also the increasing property of 𝑥𝛽𝑖 implies that

𝑥𝛽𝑖𝜙1(𝜓1(𝑒−𝛼𝑥
𝛽𝑖−𝛾𝑥𝜆))

𝜙′
1൫𝜓1(𝑒−𝛼𝑥

𝛽𝑖−𝛾𝑥𝜆)൯
is decreasing in 𝛽𝑖 > 0. So, for 𝑖 ≠ 𝑗,

(𝛽𝑖 − 𝛽𝑗)ቆ
𝜕𝐽(𝛼, 𝛽, 𝛾, 𝜆, 𝑥, 𝜙1)

𝜕𝛽𝑖
− 𝜕𝐽(𝛼, 𝛽, 𝛾, 𝜆, 𝑥, 𝜙1)

𝜕𝛽𝑗
ቇ ≤ 0,

(ii) Let 0 < 𝑥 ≤ 1. Then, for 𝛽𝑖 ≥ 𝛽𝑗 , we have 𝜓1(𝑒−𝛼𝑥
𝛽𝑖−𝛾𝑥𝜆) ≤ 𝜓1(𝑒−𝛼𝑥

𝛽𝑗−𝛾𝑥𝜆). Further, the log-convexity of

𝜙1 implies the decreasing property of
𝜙1
𝜙′
1
. Then

𝜙1(𝜓1(𝑒−𝛼𝑥
𝛽𝑖−𝛾𝑥𝜆))

𝜙′
1൫𝜓1(𝑒−𝛼𝑥

𝛽𝑖−𝛾𝑥𝜆)൯
is increasing in 𝛽𝑖 > 0. Also the decreas-

ing property of 𝑥𝛽𝑖 implies that 𝑥
𝛽𝑖𝜙1(𝜓1(𝑒−𝛼𝑥

𝛽𝑖−𝛾𝑥𝜆))
𝜙′
1൫𝜓1(𝑒−𝛼𝑥

𝛽𝑖−𝛾𝑥𝜆)൯
is increasing in 𝛽𝑖 > 0. Using the fact log(𝑥) ≤ 0

for 0 < 𝑥 ≤ 1 we get

(𝛽𝑖 − 𝛽𝑗)ቆ
𝜕𝐽(𝛼, 𝛽, 𝛾, 𝜆, 𝑥, 𝜙1)

𝜕𝛽𝑖
− 𝜕𝐽(𝛼, 𝛽, 𝛾, 𝜆, 𝑥, 𝜙1)

𝜕𝛽𝑗
ቇ ≤ 0,

Then Schur-concavety of 𝐽(𝛼, 𝛽, 𝛾, 𝜆, 𝑥, 𝜙1) follows fromLemma 2.3. So (𝛽1, … , 𝛽𝑛)
m
⪰(𝛽∗1 , … , 𝛽∗𝑛) implies 𝐽(𝛼, 𝛽, 𝛾, 𝜆, 𝑥, 𝜙1) ≤

𝐽(𝛼, 𝛽∗, 𝛾, 𝜆, 𝑥, 𝜙1). On the other hand, since 𝜓2 ∘ 𝜙1 is super-additive by Lemma 2.4, we have 𝐽(𝛼, 𝛽∗, 𝛾, 𝜆, 𝑥, 𝜙1) ≤
𝐽(𝛼, 𝛽∗, 𝛾, 𝜆, 𝑥, 𝜙2). So, it holds that

𝐽(𝛼, 𝛽, 𝛾, 𝜆, 𝑥, 𝜙1) ≤ 𝐽(𝛼, 𝛽∗, 𝛾, 𝜆, 𝑥, 𝜙1) ≤ 𝐽(𝛼, 𝛽∗, 𝛾, 𝜆, 𝑥, 𝜙2).

That is, 𝑋1∶𝑛 ≤st 𝑋∗1∶𝑛.

Example 3.2. Suppose that 𝑋 and 𝑋∗ have either of the following two dependence structures. (i) Gumbel survival
copulas with respective generators

𝜙1(𝑥) = 𝑒−𝑥
1
𝛽1 , 𝜙2(𝑥) = 𝑒−𝑥

1
𝛽2 , 𝛽2 ≥ 𝛽1 ≥ 1;

(ii) Archimedean survival copulas with respective generators

𝜙1(𝑥) = (𝑥
1
𝛽1 )−1, 𝜙1(𝑥) = (𝑥

1
𝛽1 )−1, 𝛽2 ≥ 𝛽1 ≥ 1.

It is easy to see that 𝜙𝑖 is log-convex for 𝑖 = 1, 2. In view of 𝜓2(𝜙1(0)) = 0 and the convexity of 𝜓2(𝜙1(𝑥)) = 𝑥
𝛽2
𝛽1 ,

we conclude that 𝜓2(𝜙1(𝑥)) is super-additive by Proposition 21.A.11 in [5] .

[6] obtained the following theorem for the comparison of series systems under the usual stochastic order.

Theorem 3.3. Let 𝑋 and 𝑋∗ be two vectors of continuous random variables with 𝑋𝑖 ∼ �̄�(𝑥; 𝜆𝑖) and 𝑋∗𝑖 ∼ �̄�(𝑥; 𝜆∗𝑖 ),
𝑖 = 1,… , 𝑛. Assume that their associated survival copulas are Archimedean with the respective generators 𝜙1 and 𝜙2.
If 𝜙1 or 𝜙2 is log-convex, 𝜓2 ∘ 𝜙1 is super-additive, and for any 𝑥 the function �̄�(𝑥; 𝜆) is decreasing [increasing] and
log-concave in 𝜆, then (𝜆1, … , 𝜆𝑛) ⪰w [

w
⪰](𝜆∗1, … , 𝜆∗𝑛) implies 𝑋1∶𝑛 ≤st 𝑋∗1∶𝑛.
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It should be noted that our results are different from the results given by [6], because �̄�(𝑥, 𝛽) = 𝑒−𝛼𝑥𝛽−𝛾𝑥𝜆 is not
decreasing (increasing) with respect to 𝛽.
The following corollary provides a comparison between the smallest order statistics arising from two sets of random
variables, when the marginal distributions belong to the AWD distribution.

Corollary 3.4. Suppose, for X ∼ AWD(𝛼, 𝛽, 𝛾, 𝜆, 𝜙1) and 𝑋∗ ∼ AWD(𝛼∗, 𝛽, 𝛾, 𝜆, 𝜙2), 𝜙1 or 𝜙2 is log-convex and
𝜓2 ∘ 𝜙1 is super-additive, then (𝛼1, … , 𝛼𝑛) ⪰w (𝛼∗1, … , 𝛼∗𝑛) implies 𝑋1∶𝑛 ≤st 𝑋∗1∶𝑛.

Proof. We can see that �̄�(𝑥, 𝛼) is decreasing and log-concave in 𝛼 . Hence, Theorem 3.3 immediately implies the
result.

In the following corollary, we compare two largest order statistics with respect to the usual stochastic order. Here, we
assume that two sets of random variables have the same 𝛼, 𝛽, 𝜆 parameter but different 𝛾 parameters.

Corollary 3.5. Suppose, for X ∼ AWD(𝛼, 𝛽, 𝛾, 𝜆, 𝜙1) and 𝑋∗ ∼ AWD(𝛼, 𝛽, 𝛾, 𝜆, 𝜙2), 𝜙1 or 𝜙2 is log-convex and
𝜓2 ∘ 𝜙1 is super-additive, then (𝛾1, … , 𝛾𝑛) ⪰w (𝛾∗1 , … , 𝛾∗𝑛) implies 𝑋1∶𝑛 ≤st 𝑋∗1∶𝑛.

Proof. We can see that �̄�(𝑥, 𝛾) is decreasing and log-concave in 𝛾 . Hence, Theorem 3.3 immediately implies the
result.

4. Concluding Remarks

This is the first try to study some stochastic comparisons of smallest order statistics from dependent and heterogeneous
samples having additiveWeibull family. We derived the usual stochastic order for the smallest order statistic of samples
having additive Weibull family and Archimedean survival copulas.
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Abstract

Aderangement 𝑘-representation of a graph𝐺 is a map 𝜋 of𝑉(𝐺) to the symmetric group 𝑆𝑘, such
that for any two vertices 𝑣 and 𝑢 of 𝑉(𝐺), 𝑣 and 𝑢 are adjacent if and only if 𝜋(𝑣)(𝑖) ≠ 𝜋(𝑢)(𝑖)
for each 𝑖 ∈ {1, 2, 3, ..., 𝑘}. The derangement representation number of 𝐺 denoted by 𝑑𝑟𝑛(𝐺),
is the minimum of 𝑘 such that 𝐺 has a derangement 𝑘-representation. Our previous work[1]
proved that any graph has a derangement 𝑘-representation, and some lower and upper bounds
for 𝑑𝑟𝑛(𝐺), in terms of the basic parameters of 𝐺 were obtained. In this work, we determine the
exact value or give a better bound of the derangement representation number of some classes of
graphs. Also, we study the derangement spectra of 𝐺, denoted by 𝐷𝑠𝑝𝑒𝑐(𝐺), which is the set of
all positive integers𝑚 such that 𝐺 has a derangement𝑚-representation.

1. Introduction

All graphs we consider in this paper are simple, finite, and undirected. For a graph 𝐺, we denote its vertex and edge
set by 𝑉(𝐺) and 𝐸(𝐺), respectively. Also, we use the notations 𝑝(𝐺), 𝑞(𝐺), 𝜔(𝐺) and 𝐺𝑐 for the order, the size, the
maximum size of cliques, and the complement graph of 𝐺, respectively. The path and the cycle of order 𝑛 are denoted
by 𝑃𝑛 and 𝐶𝑛, respectively. From now on, we use the notation [𝑛] and ℕ≥𝑛 instead of {1, … , 𝑛} and {𝑚 ∈ ℕ| 𝑚 ≥ 𝑛},
respectively. Wemention some definitions that are referred to throughout this paper and for other necessary definitions
and notation we refer the reader to a standard text-book [4].

A Cayley graph is a graph constructed from a group 𝐺 with connection set 𝑆 satisfying 1 ∉ 𝑆 and 𝑆 = 𝑆−1, denoted
by 𝐶𝑎𝑦(𝐺, 𝑆), has vertices corresponding to the elements of 𝐺 and an edge exists between two vertice 𝑔 and ℎ if and
only if ℎ = 𝑠𝑔 for some 𝑠 ∈ 𝑆. Arthur Cayley introduced this concept in 1878 [5]. Cayley graphs are known to be
vertex-transitive, making them a proper subfamily of all graphs. Babai and Sos demonstrated probabilistically that for
any finite graph 𝐺, every sufficiently large group has a Cayley graph containing an induced subgraph isomorphic to
𝐺, precisely if 𝑋 is a finite graph of order 𝑛 and 𝐺 is a group of order at least 𝑐1𝑛3, then 𝑋 is isomorphic to an induced
subgraph of 𝐶𝑎𝑦(𝐺, 𝑆) for some 𝑆 ⊆ 𝐺 [2]. Additionally, Cayley’s theorem in group theory states that every group 𝐺
is isomorphic to a subgroup of a symmetric group [5]. This highlights the significance of studying Cayley graphs on
symmetric groups.

∗Talker
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In a previous study, we proved that any graph has a derangement 𝑘-representation. Also, we obtain some lower and
upper bounds for 𝑑𝑟𝑛(𝐺), in terms of the basic parameters of 𝐺. In this work, we determine the exact value or give
a better bound of the derangement representation number of some classes of graphs. The derangement spectra of 𝐺,
denoted by 𝐷𝑠𝑝𝑒𝑐(𝐺), is the set of all positive integers𝑚 such that 𝐺 has a derangement𝑚-representation.

Definition 1.1. Let 𝐺 be a graph and 𝑘 ∈ ℕ. We say 𝐺 is a derangement 𝑘-representable if there exists an injective
map 𝜋 ∶ 𝑉(𝐺) → 𝑆𝑘, such that for any two vertices 𝑣 and 𝑢 of 𝐺, 𝑣 and 𝑢 are adjacent if and only if 𝜋(𝑣)(𝑖) ≠ 𝜋(𝑢)(𝑖)
for all 𝑖 ∈ [𝑘]. In other words, 𝜋(𝑣)−1 ∘𝜋(𝑢) ∈ 𝐷𝑘. In this case, 𝜋 is called a derangement 𝑘-representation of 𝐺. The
derangement representation number of 𝐺, denoted by 𝑑𝑟𝑛(𝐺), is the minimum of 𝑘 such that 𝐺 has a derangement
𝑘-representation.

Example 1.2. Let 𝐺 be a complete graph of order 𝑛, 𝑑𝑟𝑛(𝐾𝑛)=n

Definition 1.3. Let 𝐺 be a graph. The derangement spectra of𝐺, denoted by𝐷𝑠𝑝𝑒𝑐(𝐺), is the set of all positive integers
𝑚 such that𝐺 has a derangement𝑚-representation. Equivalently,𝐷𝑠𝑝𝑒𝑐(𝐺) = {𝑚 ∈ ℕ |𝐺 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑜𝑓 𝐶𝑎𝑦(𝑆𝑚 , 𝐷𝑚)}.
Note that 𝑑𝑟𝑛(𝐺) = min𝐷𝑠𝑝𝑒𝑐(𝐺).

Example 1.4. For complete graph 𝐾𝑛 we have 𝐷𝑠𝑝𝑒𝑐(𝐾𝑛) = ℕ≥𝑛. In fact, for any 𝑚 ≥ 𝑛, we can choose a latin
square 𝐿 of order𝑚 and then remove the last𝑚− 𝑛 rows of 𝐿 to achieve a derangement𝑚−representation matrix of
𝐾𝑛.

Example 1.5. Let 𝑛, 𝑘 ∈ ℕ and (𝑘 − 1)! < 𝑛 ≤ 𝑘!. Then 𝐷𝑠𝑝𝑒𝑐(𝐾𝑛) = ℕ≥𝑘+1.

Proof. for any 𝑡 ≥ 𝑘 + 1 the following matrix is a derangement 𝑡-representation matrix of 𝐾𝑛:

𝐿(𝐾𝑛) =  𝐴
𝑘 + 1 𝑘 + 2 ⋯ 𝑡

⋮
𝑘 + 1 𝑘 + 2 ⋯ 𝑡

 ,

where 𝐴 = [𝑎𝑖,𝑗]𝑛×𝑘 is a matrix that its rows represent 𝑛 permutations of 𝑆𝑘.

Theorem 1.6. Let 𝐺 be a graph of order 𝑛, 𝑙 ≥ 𝑛 and 𝑘 ∈ 𝐷𝑠𝑝𝑒𝑐(𝐺). Then 𝑘 + 𝑙 ∈ 𝐷𝑠𝑝𝑒𝑐(𝐺).

Theorem 1.7. Let 𝐺 be a graph of order 𝑛, then 𝑘 ∈ 𝐷𝑠𝑝𝑒𝑐(𝐺) for any 𝑘 ≥ 𝑑𝑟𝑛(𝐺) + 𝑛.

Theorem 1.8. Let 𝐺 be a graph and H be an induced subgraph of G, then 𝐷𝑠𝑝𝑒𝑐(𝐺) ⊂ 𝐷𝑠𝑝𝑒𝑐(𝐻)

1.1. Structure of the paper
After this introductory section where we established the background, purpose, and some basic definitions and theorems
of the paper, we divide the paper into four sections. In Section 2, we prove Theorems 1.7, 1.8 and some basic lemmas
and theorems and introduce the concept Derangement spectra of graphs. In Section 3, we determine the exact value
of the derangement representation number for some nearly complete graphs and give better bounds of the parameter
for some classes of graphs. In Section ??, we present some computations performed by SageMath [11], and in the last
section, we state some conjectures and open problems.

2. Proofs of Theorems 1.6, 1.7,and 1.8

Proof of Theorem 1.6. A row latin rectangle 𝐿 of order 𝑛 × 𝑚 with the set of 𝑚 symbols is a matrix in which no
symbol occurs more than once in any row.
Let 𝐿 be a derangement 𝑘-representation matrix of 𝐺. Suppose that 𝐿1 is a row latin rectangle of order 𝑛 × 𝑙 with
symbols {𝑘 + 1, 𝑘 + 2,… , 𝑘 + 𝑙}. Now consider the block matrix 𝐿′ = [𝐿|𝐿1] of order 𝑛 × (𝑘 + 𝑙), which obviously,
is a derangement (𝑘 + 𝑙)-representation matrix of 𝐺. □

Proof of Theorem 1.7. Let 𝐿 be a derangement 𝑘-representation matrix of 𝐺. Now consider the block matrix
𝐿′ = [𝐿 | 𝐿 | ⋯ | 𝐿] of order 𝑛×(𝑚𝑘) (contains𝑚 copy of 𝐿), which obviously, is a derangement (𝑚𝑘)-representation
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matrix of 𝐺. □

Proof of Theorem 1.8. Suppose that 𝑘 ∈ 𝐷𝑠𝑝𝑒𝑐(𝐺). Hence 𝐺 is isomorphic to an induced subgraph of 𝐶𝑎𝑦(𝑆𝑘 , 𝐷𝑘)
such as Γ. Let 𝛼 ∶ 𝑉(𝐺) → 𝑉(Γ) be an isomorphism. Therefore, the subgraph of Γ induced by 𝛼(𝑉(𝐻)) is isomorphic
to 𝐻. So 𝐻 is isomorphic to an induced subgraph of 𝐶𝑎𝑦(𝑆𝑘 , 𝐷𝑘). Thus 𝐻 is derangement 𝑘-representable and so
𝑘 ∈ 𝐷𝑠𝑝𝑒𝑐(𝐻). □

3. Improved results in Upper Bounds for Derangement number of Certain Graph Classes

In this section, we will calculate some better lower and upper bounds or the exact amount of derangement representa-
tion numbers for specific families of graphs.

Definition 3.1. The number of permutations 𝜋 on [𝑟 + 𝑠] such that 𝜋(𝑟 + 𝑖) ≠ 𝑟 + 𝑖 for 1 ≤ 𝑖 ≤ 𝑠 is denoted by
𝑑(𝑟, 𝑠) and:

𝑑(𝑟, 𝑠) =
𝑠


𝑘=0

(−1)𝑘ቀ𝑠𝑘ቁ(𝑟 + 𝑠 − 𝑘)!

Theorem 3.2. Suppose 𝐺 be a complete bipartite graph 𝐺 = 𝐾𝑟,𝑠 such that 𝑟 ≤ 𝑠;
If 𝑑(𝑟, 𝑠) = ∑𝑠

𝑘=0(−1)𝑘ቀ𝑠𝑘ቁ(𝑟 + 𝑠 − 𝑘)! and 𝑓1(𝑟) = 𝑚𝑖𝑛{𝑛 | 𝑛! ≥ 𝑟}, then

𝑑𝑟𝑛(𝐾𝑟,𝑠) ≤ 2𝑓1(𝑟) + 𝑚𝑖𝑛{𝑘 | 𝑑൫𝑓1(𝑟), 𝑘൯ ≥ 𝑠}.
Proof. Case 1: 𝑟 = 𝑠:
Assume 𝑓1(𝑟) = 𝑘; let 𝐴 = {1, 2, ..., 𝑘}, 𝐵 = {𝑘 + 1, 𝑘 + 2, ..., 2𝑘}, then we define a matrix 𝐿(𝐺)2𝑟.2𝑘 . For vertices
𝑣1, ..., 𝑣𝑟 from one part of 𝐾𝑟,𝑠, we choose one permutation of 𝑆(𝐴) then we add 𝑘+1, 𝑘+2, ..., 2𝑘 to the end of it, and
for the vertices𝑢1, ..., 𝑢𝑟 from the other part of𝐾𝑟,𝑠, we choose one permutation of 𝑆(𝐵) and add 1, 2, ..., 𝑘 to the end of it.

𝐿(𝐺) =

⎡
⎢
⎢
⎢
⎢
⎣

𝑆(𝐴)
𝑘 + 1 𝑘 + 2 ⋯ 2𝑘
⋮

𝑘 + 1 𝑘 + 2 ⋯ 2𝑘

𝑆(𝐵)
1 2 ⋯ 𝑘
⋮
1 2 ⋯ 𝑘

⎤
⎥
⎥
⎥
⎥
⎦

Case2: 𝑟 < 𝑠:
Assume 𝑓1(𝑟) = 𝑘 and 𝑡 = 𝑚𝑖𝑛{𝑙 | 𝑑(𝑘, 𝑙) ≥ 𝑠}. Let 𝐴 = {1, 2, ..., 𝑘}, 𝐵 = {𝑘 + 1, 𝑘 + 2, ..., 2𝑘 + 𝑡}, then we
define a matrix 𝐿(𝐺)(𝑟+𝑠).(2𝑘+𝑡). for vertices 𝑣1, ..., 𝑣𝑟 from one part of 𝐾𝑟,𝑠, we choose one permutation of 𝑆(𝐴) and
add 𝑘 + 1, 𝑘 + 2, ..., 2𝑘 + 𝑡 to the end of it, then for the vertices 𝑢1, ..., 𝑢𝑠 from the other part of 𝐾𝑟,𝑠, we choose one
permutation of 𝑆(𝐵) and add 1, 2, ..., 𝑘 to the end of it.

𝑇 =  𝑆(𝐴)
𝑘 + 1 𝑘 + 2 ⋯ 𝑘 + 𝑡
⋮

𝑘 + 1 𝑘 + 2 ⋯ 𝑘 + 𝑡


𝐿(𝐺) =

⎡
⎢
⎢
⎢
⎢
⎣

𝑇
𝑘 + 𝑡 + 1 𝑘 + 𝑡 + 2 ⋯ 2𝑘 + 𝑡

⋮
𝑘 + 𝑡 + 1 𝑘 + 𝑡 + 2 ⋯ 2𝑘 + 𝑡

𝑆(𝐵)
1 2 ⋯ 𝑘
⋮
1 2 ⋯ 𝑘

⎤
⎥
⎥
⎥
⎥
⎦
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Definition 3.3. double star graph 𝑆𝑇(𝑚, 𝑛) is a graph that is formed by two stars 𝑆𝑇(𝑚) and 𝑆𝑇(𝑛) via joining their
centers by an edge.[? ]

Theorem 3.4. Let 𝐺 be a double star graph of order𝑚+𝑛, then 𝑑𝑟𝑛(𝐺) ≤ 2𝑝+3where 𝑝 = 𝑚𝑎𝑥{𝑓1(𝑚−1), 𝑓1(𝑛−
1)}.
Proof. Let

𝑉(𝐺) = {𝑣0, 𝑣1, ..., 𝑣𝑚−1, 𝑢0, 𝑢1, ..., 𝑢𝑛−1}.
𝐸(𝐺) = {𝑣0𝑣1, 𝑣0𝑣2, ..., 𝑣0𝑣𝑚−1, 𝑣0𝑢0, 𝑢0𝑢1, 𝑢0𝑢2, ..., 𝑢0𝑢𝑛−1}.

Consider 𝑆𝑝 an array consisting of (𝑚−1) permutations of 𝑆({1, 2,⋯ , 𝑝}) and 𝑇𝑃 an array consisting of (𝑡−1) permu-
tations of 𝑆({𝑝 + 1, 𝑝 + 2,⋯ , 2𝑝}). We assign 𝑆 to the vertices of {𝑣1, ..., 𝑣𝑚−1} and T to the vertices of {𝑢1, ..., 𝑢𝑛−1}.

𝑆 =  𝑆𝑝 𝑇𝑝
2𝑝 + 2 2𝑝 + 3

⋮
2𝑝 + 2 2𝑝 + 3



𝑇 =  𝑇𝑝 𝑆𝑝
2𝑝 + 1 2𝑝 + 3

⋮
2𝑝 + 1 2𝑝 + 3



𝐴 = [𝑝 + 1, 𝑝 + 2, ..., 2𝑝 − 1, 2𝑝 + 3, 1, 2, ..., 𝑝 − 2, 2𝑝 + 3, 𝑝 − 1|2𝑝 + 1, 2𝑝]
𝐵 = [1, 2, ..., 𝑝 − 2, 2𝑝 + 3, 𝑝 − 1, 𝑝 + 1, 𝑝 + 2, ..., 2𝑝 − 1, 2𝑝 + 3|2𝑝 + 2, 𝑝]

If we assign A to 𝑣0 and B to 𝑢0, then 𝐿(𝐺) is a 2𝑝 + 3-representation matrix for 𝐺.

𝐿(𝐺) =
⎡
⎢
⎢
⎣

𝑆
𝐴
𝐵
𝑇

⎤
⎥
⎥
⎦

Theorem 3.5. Let 𝐺 be a complete 3-partite graph, 𝐾𝑟,𝑠,𝑚 such that 𝑟 ≤ 𝑠 ≤ 𝑚. If 𝑡′ ≥ 𝑘 𝑘 = 𝑚𝑖𝑛{𝑛 | 𝑛! ≥ 𝑟},
𝑡 = 𝑚𝑖𝑛{𝑙 | 𝑑(𝑘, 𝑙) ≥ 𝑠}, 𝑡′ = 𝑚𝑖𝑛{𝑝 | 𝑑(2𝑘 + 𝑡, 𝑝) ≥ 𝑚}, and 𝑡′ ≥ 𝑘 then

𝑑𝑟𝑛(𝐾𝑟,𝑠,𝑚) ≤ 3𝑘 + 2𝑡 + 𝑡′.

Proof. Assume 𝐴 = {1, 2, ..., 𝑘}, 𝐵 = {𝑘 + 1, 𝑘 + 2, ..., 𝑘 + 𝑡 + 𝑡′}, and 𝐶 = {2𝑘 + 𝑡, 2𝑘 + 𝑡 + 1, ..., 3𝑘 + 2𝑡 + 𝑡′}.
Also assume 𝐶1 = {2𝑘 + 𝑡, 2𝑘 + 𝑡 + 1, ..., 3𝑘 + 2𝑡 + 𝑡′}, 𝐶2 = {2𝑘 + 𝑡, 2𝑘 + 𝑡 + 1, ..., 3𝑘 + 2𝑡 + 𝑡′}, 𝐶3 =
{2𝑘 + 𝑡, 2𝑘 + 𝑡 + 1, ..., 3𝑘 + 2𝑡 + 𝑡′}. Suppose 𝑆′(𝐵) be a subset of 𝑆(𝐵) such that it contains permutations 𝜋 such
that 𝜋(𝑖) ≠ 𝑖 for 𝑘 +1 ≤ 𝑖 ≤ 𝑘+ 𝑡. And suppose 𝑆′(𝐶) be a subset of 𝑆(𝐶) such that it contains permutations 𝜋 such
that 𝜋(𝑖) ≠ 𝑖 for 3𝑘 + 𝑡 + 1 ≤ 𝑖 ≤ 3𝑘 + 2𝑡 + 𝑡′. Then

𝑀 =  𝑆(𝐴)
𝑘 + 1 𝑘 + 2 ⋯ 𝑘 + 𝑡
⋮

𝑘 + 1 𝑘 + 2 ⋯ 𝑘 + 𝑡

𝑘 + 𝑡 + 1 𝑘 + 𝑡 + 2 ⋯ 𝑘 + 𝑡 + 𝑡′
⋮

𝑘 + 𝑡 + 1 𝑘 + 𝑡 + 2 ⋯ 𝑘 + 𝑡 + 𝑡′


𝑁 =  𝑆′(𝐵)
3𝑘 + 2𝑡 + 1 3𝑘 + 2𝑡 + 2 ⋯ 3𝑘 + 2𝑡 + 𝑡′

⋮
𝑘 + 1 𝑘 + 2 ⋯ 𝑘 + 𝑡



𝐿(𝐺) = 
𝑀 𝐶1 𝐶2 𝐶3
𝑁 𝐶2 𝐴 𝐶1 ∖ 𝐶2

𝑆′(𝐶) 𝐴 𝐵1 𝐵2
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Theorem 3.6. For 𝐺 = 𝐾𝑟□𝐾𝑠 : 𝑑𝑟𝑛(𝐺) ≤ 𝑟 + 𝑠.

Proof. Let 𝐴 = 𝐿(𝐾𝑟) and 𝐵 = 𝐿(𝐾𝑠). Assume 𝐶(𝑣𝑖) be the row of 𝐴 for 𝑣𝑖 and 𝐶(𝑢𝑖) be the corresponding row of 𝐵
for 𝑢𝑖. Assume 𝑉(𝐺) = 𝑉(𝐾𝑟)×𝑉(𝐾𝑠), then for every vertex (𝑣𝑖 , 𝑢𝑗) we assign [𝐶(𝑣𝑖)|𝐶(𝑢𝑗)] for the corresponding
row of 𝐿(𝐺).
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Abstract

Here, our idea is to generalize the notion of Levitin-Polyak wellposedness to split mixed equi-
librium problems in topological vector spaces. Hence, we obtain sufficient and necessary con-
ditions for Levitin-Polyak wellposedness of mixed split equilibrium problems.

1. Introduction

The wellposedness notion has played a fundamental role in the field of stability analysis for equilibrium, optimization
Problems, and variational inequality. Wellposedness ensures the convergence of some nets to exact solutions. This
fact has convinced many authors to consider the wellposedness of equilibrium and optimization problems. The notion
of a set was first defined by Tykhonov [7] for unconstrained optimization problems. Tykhonov considered a single-
valued optimization problem to be wellposed if it has a unique solution and each minimizing sequence converges to
the solution. An important characterization of Tykhonov’s wellposedness is obtained in [8]. Another generalization of
Tykhonov’s well-posedness for variational inequalities, equilibrium, and optimization problems is the wellposedness
by perturbations by Dontchev and Zolezzi [8]. Levitin and Polyak generalized the wellposed notion to the constrained
case. Therefore, various concepts of Levitin-Polyak wellposed have been defined. In this paper, we generalized two
notions of Levitin-Polyak wellposedness to split mixed equilibrium problems in topological vector spaces. Hence, we
obtain the sufficient and necessary conditions for Levitin-Polyak well-posednes for mixed split equilibrium problems.
In the sequel, we recall the classical notion of wellposedness posed by Tykhonov in [7], for a scalar optimization
problem:

minℎ(𝑧), s.t.𝑧 ∈ 𝑍
where 𝑍 is a metric space and ℎ ∶ 𝑍 ⟶ ℝ. A sequence (𝑧𝑛) ⊆ 𝑍 is said to be a minimizing sequence for the above
optimization problem, when lim𝑛⟶+∞ ℎ(𝑧𝑛) = inf𝑍 ℎ.
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The above problem is said to be Tykhonov’s wellposed iff it has a unique solution �̄� and each minimizing sequence
converges to �̄�. A momentous characterization of Tykhonov’s wellposedness is gained in [8].

Lemma 1.1. [8] The above optimization problem is Tykhonov’s wellposed if and only if there exists �̄� ∈ 𝑍 so as to
each neighborhood 𝑉 of 𝑧 there exists 𝜀 > 0, that

ℎ(𝑧) − ℎ(�̄�) < 𝜀 ⟹ 𝑧 ∈ 𝑉.

We suppose that 𝑋1 and 𝑋2 are two topological vector spaces and denote by 𝐵𝛿(𝑥0) be a closed ball centered at 𝑥0 with
positive radius 𝛿 > 0 and 𝑌 is a norm linear space, which we assumed to be ordered by a nonempty convex closed
cone 𝑄 ⊆ 𝑌 and ≼ is defined as follows:

𝑦1 ≼ 𝑦2 ⇔ 𝑦2 − 𝑦1 ∈ 𝑄.
The convex cone 𝑄 is called to be solid if int𝑄 ≠ ∅. Whenever 𝑄 is solid, we have

𝑦1 ≺ 𝑦2 ⇔ 𝑦2 − 𝑦1 ∈ int𝑄.

Assume that denote by 𝒫(𝑌) the set consisting of all nonempty subsets of 𝑌. For 𝐶, 𝐷 ∈ 𝒫(𝑌), the lower set less order
relation ≤𝑙 and upper set less order relation ≤𝑢 which was introduced in [6], is defined as follows:

𝐶 ≤𝑙 𝐷 iff 𝐷 ⊆ 𝐶 + 𝑃
and

𝐶 ≤𝑢 𝐷 iff 𝐶 ⊆ 𝐷 − 𝑃.

We say that 𝐶 <𝑙 𝐷 iff 𝐷 ⊆ 𝐶 + int𝑄 and 𝐶 <𝑢 𝐷 iff 𝐶 ⊆ 𝐷 − int𝑄. Obviously, ≤𝑙 and ≤𝑢 are preorder relations, but
<𝑙 and ≤𝑢 are not necessarily a reflexive relation.
In this paper, we assume that𝑄 is a solid cone, 𝑞 ∈ int𝑄, We assume we have equipped𝒫(𝑌)with the preorder relation
≤∈ {≤𝑙 , ≤𝑢}.
Let 𝑗 ∈ {1, 2}, 𝐶𝑗 be nonempty closed and convex subsets of 𝑋𝑗 and 𝐾𝑗 ∶ 𝐶𝑗 × 𝐶𝑗 ⟶ 2𝑌 be a set-valued map with
nonempty values. Hence, Let 𝜑𝑗 ∶ 𝐶𝑗 ⟶ 𝑌 and 𝐴 ∶ 𝐶1 ⟶ 𝐶2 be a linear bounded operator. Split mixed equilibrium
problem is defined as follows:

(SMEP) find �̄� ∈ 𝐶1 ∶ 𝜑1(�̄�) − 𝜑1(𝑥) ≤ 𝐾1(�̄�, 𝑥) ∀𝑥 ∈ 𝐶1.

Where, 𝐴�̄� = �̄� and
𝜑2(�̄�) − 𝜑2(𝑦) ≤ 𝐾2(�̄�, 𝑦) ∀𝑦 ∈ 𝐶2.

In the following, we conclude some special cases in other researchers, let 𝑌 = ℝ∪{+∞} and 𝑃 be positive real number
:
1) Let for all 𝑗 ∈ {1, 2}, 𝑋𝑗 be a Hilbert space, 𝐶1 = 𝐶, 𝐶2 = 𝑄 and 𝐾𝑗 ∶= 𝑔𝑗 where 𝑔𝑗˜ ∶ 𝑋𝑗 ×𝑋𝑗 ⟶ℝ, then (𝑆𝑀𝐸𝑃)
in [2] is deduced from (𝑆𝑀𝐸𝑃).
2) Let ∅ ≠ 𝐶𝑗 ⊆ 𝑋𝑗 that 𝑋𝑗 is a real Banach space and 𝐾1 ∶= 𝑓 and 𝐾2 ∶= 𝑔 where 𝑓˜ ∶ 𝑋1 × 𝑋1 ⟶ ℝ and
𝑔 ∶ 𝑋2 × 𝑋2 ⟶ℝ and 𝜑1 = 𝜑2 are Constant functions, then (𝑆𝐸𝑃)(𝑓, 𝑔, 𝐶, 𝑄) in [4] is deduced from (𝑆𝑀𝐸𝑃).
3) Let for all 𝑗 ∈ {1, 2}, 𝑋𝑗 be a Hilbert space, 𝐾𝑗 is single-valued and 𝜑1 = 𝜑2 are Constant functions. Then (𝑆𝑉𝐼) in
[5] is deduced from (𝑆𝑀𝐸𝑃).
4) Let 𝑋1 and 𝑋2 be two real Hilbert spaces, 𝐾1 = 𝑓 and 𝐾2 = 𝑔 let for all �̄� ∈ 𝑋1, �̄� ∈ 𝑋2, 𝑥 ∈ 𝐶1 and 𝑦 ∈ 𝐶2 define
𝐾1(�̄�, 𝑥) ∶= ⟨𝑓(�̄�), 𝑥 − �̄�⟩ and 𝐾2(�̄�, 𝑦) ∶= ⟨𝑔(�̄�), 𝑦 − �̄�⟩. Then (𝑆𝑉𝐼𝑃) in [1] is deduced from (𝑆𝑀𝐸𝑃).

2. Main result

In this section, we define Levitin-Polyak (in short LP) approximating solution net for (𝑆𝑀𝐸𝑃). In fact, we generalize
Definition 6, in [5] and Definition 4, in [4].
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Definition 2.1. A net (𝑥𝛼 , 𝑦𝛼) ∈ 𝑋1×𝑋2 is said to be an LP approximating solution net for the (𝑆𝑀𝐸𝑃) if there exists
net 𝜀𝛼 ∈ ℝ+ such that 𝜀𝛼 ⟶ 0 and

𝑦𝛼 = 𝐴(𝑥𝛼) ∈ 𝐵𝜀𝛼(𝑥𝛼),
𝜑1(𝑥𝛼) − 𝜑1(𝑥) ≤ 𝐾1(𝑥𝛼 , 𝑥) + 𝜀𝛼𝑞 ∀𝑥 ∈ 𝐶1,
𝜑2(𝑦𝛼) − 𝜑2(𝑦) ≤ 𝐾2(𝑦𝛼 , 𝑦) + 𝜀𝛼𝑞 ∀𝑦 ∈ 𝐶2.

Now, we extend Definition 7, in [5] and Definition 5, in [4].

Definition 2.2. Suppose 𝑆 represents the solution set of the (𝑆𝑀𝐸𝑃). Then we say that the (𝑆𝑀𝐸𝑃) is
• LP wellposed if 𝑆 is a singleton set and every LP approximating solution net for the (𝑆𝑀𝐸𝑃) converges to the
unique solution.

• generalized LP wellposed, if 𝑆 is a nonempty set and every LP approximating solution net for the (𝑆𝑀𝐸𝑃) has
a subnet that converges to some �̄� ∈ 𝑆.

In the following, we define an approximate solution set to (𝑆𝑀𝐸𝑃), then we obtain sufficient and necessary conditions
for LP wellposed and generalized LP wellposed. Let 𝜀 ∈ ℝ+, we defined approximate solution set to (𝑆𝑀𝐸𝑃), as

𝑆(𝜀) = {(�̄�, �̄�) ∈ 𝑋1 × 𝑋2 ∶ �̄� = 𝐴(�̄�) ∈ 𝐵𝜀(�̄�);

𝜑1(�̄�) − 𝜑1(𝑥) ≤ 𝐾1(�̄�, 𝑥) + 𝜀𝑞 ∀𝑥 ∈ 𝐶1, 𝜑2(𝑦) − 𝜑2(�̄�) ≤ 𝐾2(�̄�, 𝑦) + 𝜀𝑞 ∀𝑦 ∈ 𝐶2}.
Note that ∪𝜀>0𝑆(𝜀) = 𝑆 and if 𝜀 < 𝜀0, then 𝑆(𝜀) < 𝑆(𝜀0).
Theorem 2.3. The problem (𝑆𝑀𝐸𝑃) is generalized LP wellposed, iff there exists compact and nonempty set 𝐻 ⊆ 𝑆
so as to each neighborhood 𝑉 of 0 there exists 𝜀 > 0 that

𝑥 ∈ 𝑆(𝜀) ⟹ 𝑥 ∈ 𝐻 + 𝑉. (1)

Proof. Assume Problem (𝑆𝑀𝐸𝑃) is LP wellposed in the general sense, then 𝑆 ≠ ∅. Let 𝐻 = 𝑆, then 𝐻 is compact,
because if (𝑧𝛼) is a net in𝐻, that is an LP approximating solution net. Therefore, there exists 𝑧0 ∈ 𝑆 = 𝐻 and a subnet
(𝑧𝛽) of (𝑧𝛼) that 𝑧𝛽 ⟶ 𝑧0 therefore, 𝐻 is compact. Now, We show that for each arbitrary neighborhood 𝑉 of 0, there
exists a 𝜀 such that 1 holds. On the contrary, suppose that there exists a neighborhood 𝑉 of 0 and a net (𝛿𝛼) ⊆ ℝ+

such that 𝛿𝛼 ⟶ 0 and (𝑧𝛼) ⊆ 𝑋 such that 𝑧𝛼 ∈ 𝑆(𝛿𝛼) and 𝑧𝛼 ∉ 𝐻 + 𝑉. Then, (𝑧𝛼) is an LP approximating solution
net, and by our assumption, there exists 𝑧0 ∈ 𝑆 such that 𝑧𝛼 ⟶ 𝑧0, which is a contradiction with 𝑧𝛼 ∉ 𝐻+𝑉 = 𝑆+𝑉.
Conversely, we show that every LP approximating solution net of Problem (𝑆𝑀𝐸𝑃) contains a subnet that converges
to a solution of Problem (𝑆𝑀𝐸𝑃). Let (𝑧𝛼) be an LP approximating solution net for Problem (𝑆𝑀𝐸𝑃), then there
exists (𝜀𝛼) ⊆ ℝ+ such that 𝜀𝛼 ⟶ 0 and for all 𝛼, 𝑧𝛼 ∈ 𝑆(𝜀𝛼). In the sequel, we suppose that there exists a subnet of
(𝑧𝛼) that converges to a point 𝑧0 ∈ 𝐻. Otherwise, for every 𝑧 ∈ 𝐻, there exists a neighborhood 𝑉𝑧 of 0 that {𝑧} + 𝑉𝑧
does not contain any subnet of 𝑧𝛼 . On the other hand, for every 𝑧 ∈ 𝐻, there exists a neighborhood𝑊𝑧 of 0 such that
𝑊𝑧 +𝑊𝑧 ⊆ 𝑉𝑧 . Since 𝐻 ⊆ ∪𝑧∈𝐻{𝑧} + 𝑊𝑧 and 𝐻 is a compact set, there exists 𝑛 ∈ ℕ such that 𝐻 ⊆ ∪𝑛𝑖=1{𝑧𝑖} + 𝑊𝑧𝑖 .
Let𝑊 = ∩𝑛𝑖=1𝑊𝑧𝑖 , then from 1, there exists 𝜀1 > 0 such that

𝑧 ∈ 𝑆(𝜀1) ⟹ 𝑧 ∈ 𝐻 +𝑊.

On the other hand, there exists 𝛼0 such that for all 𝛼 ≥ 𝛼0, 𝜀𝛼 < 𝜀1, then for all 𝛼 ≥ 𝛼0, 𝑆(𝜀𝛼) ⊆ 𝑆(𝜀1) and
𝑧𝛼 ∈ 𝑆(𝜀𝛼) ⊆ 𝑆(𝜀1). Therefore, 𝑧𝛼 ∈ 𝐻 +𝑊. But

𝐻 +𝑊 ⊆ ∪𝑛𝑖=1({𝑧𝑖} +𝑊𝑧𝑖) +𝑊 ⊆ ∪𝑛𝑖=1({𝑧𝑖} +𝑊𝑧𝑖 +𝑊) (2)
⊆ ∪𝑛𝑖=1({𝑧𝑖} +𝑊𝑧𝑖 +𝑊𝑧𝑖) ⊆ ∪𝑛𝑖=1({𝑧𝑖} + 𝑉𝑧𝑖). (3)

From above relation and assumption 𝑧𝛼 ∈ 𝐻 +𝑊, we have 𝑧𝛼 ∈ ∪𝑛𝑖=1({𝑧𝑖} + 𝑉𝑧𝑖), which is a contradiction, because
for very 𝑧 ∈ 𝐻, {𝑧} + 𝑉𝑧 does not contain any subnet of 𝑧𝛼 .
Theorem 2.4. The problem (𝑆𝑀𝐸𝑃) is LP wellposed, iff 𝑆 = {𝑥0} such that for each neighborhood 𝑉 of 0, there
exists 𝜀 > 0 such that

𝑥 ∈ 𝑆(𝜀) ⟹ 𝑥 ∈ {𝑥0} + 𝑉. (4)
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Abstract

In this paper, we enhance the PGBMAIN algorithm [7], an efficient method for computing Gröb-
ner bases of parametric polynomial ideals, or Gröbner systems. A key step in the PGBMAIN
algorithm involves computing a minimal Dickson basis in each iteration, which is not unique.
Our improvement introduces a novel sub-algorithm to select the optimal Minimal Dickson ba-
sis through a novel selection strategy. The IMPROVED-PGBMAIN algorithm, incorporating this
sub-algorithm, takes a parametric polynomial ideal and two monomial orderings as input and
produces a Gröbner system of the ideal w.r.t. a compatible elimination product of the specified
orderings. We have implemented the IMPROVED-PGBMAIN algorithm in Maple and provide
timing and memory usage data to compare its performance with the original PGBMAIN.

1. Introduction

Gröbner bases are specialized generating sets for polynomial ideals, serving as powerful computational tools in com-
puter algebra with important applications in mathematics, science, and engineering. Introduced by Buchberger in his
Ph.D. thesis, these bases come with the first algorithm for their computation [1]. This paper enhances the PGBMAIN
algorithm [7] by introducing a new selection strategy for computing Gröbner systems—an extension of Gröbner bases
for parametric polynomial ideals. A Gröbner system consists of a finite set of branches, each containing parametric
constraints (including null and non-null parametric sets) and a corresponding set of polynomials. For any specializa-
tion, there exists a branch where the specialization fulfills its constraints, and the specialized polynomial set forms a
Gröbner basis for the related parametric ideal. Weispfenning introduced the concept of Gröbner systems [10], proved
their existence for any given parametric polynomial ideal [10, Proposition 3.4 and Theorem 2.7], and developed the
first algorithm for their computation [10, Theorem 3.6]. Over the past three decades, numerous effective enhancements
for computing Gröbner systems have been proposed [2–6, 8, 9]. In 2010, Kapur et al. designed an efficient algorithm,
the PGBMAIN algorithm [7], which integrates several earlier algorithms. This algorithm computes a Gröbner basis
𝐺 over a polynomial ring with respect to both variables and parameters at each iteration, followed by computing a
minimal Dickson basis for 𝐺, termed MDBasis. However, since the MDBasis is not unique, this step can be costly,
resulting in a poorly calculated Gröbner basis. Additionally, the selected MDBasis may lead to numerous branches
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creating inefficiencies. To mitigate this issue, we introduce a sub-algorithm for selecting the optimal MDBasis and in-
tegrate it into the PGBMAIN algorithm, ultimately yielding a Gröbner system with fewer branches and more efficiency.
Our new algorithm, termed IMPROVED-PGBMAIN, along with the original PGBMAIN algorithm, has been implemented
in Maple, and their efficiencies are evaluated across a variety of parametric polynomial ideals. We will now briefly
review the basic notations and definitions related to Gröbner bases and Gröbner systems.

Definition 1.1. A polynomial ring in 𝑛 variables, denoted as ℛ = 𝕂[𝑥1, … , 𝑥𝑛], consists of polynomials constructed
from the variables 𝑥1, … , 𝑥𝑛 with coefficients from a field𝕂. A polynomial ideal is a subset of a polynomial ring closed
under addition and multiplication by any polynomial from the ring. In other words, if ℐ is an ideal in the polynomial
ring ℛ = 𝕂[𝑥1, … , 𝑥𝑛], then for any 𝑓, 𝑔 ∈ ℐ (where 𝑓 and 𝑔 are polynomials in the ring) and any polynomial ℎ ∈ ℛ,
both 𝑓 + 𝑔 ∈ ℐ and ℎ ⋅ 𝑓 ∈ ℐ must hold.
In this paper, we let ℐ = ⟨𝑓1, … , 𝑓𝑘⟩ ⊂ ℛ denote the ideal generated by the polynomials 𝑓𝑖. A monomial ordering ≺ is
established for all monomials in ℛ. For any 𝑓 ∈ 𝑅, the leading monomial LM≺(𝑓) is the maximum monomial in 𝑓,
with the leading coefficient LC≺(𝑓), yielding the leading term LT≺(𝑓) = LC≺(𝑓)LM≺(𝑓). The leading monomial
ideal of ℐ is defined as LM≺(ℐ) = ⟨LM≺(𝑓) ∣ 𝑓 ∈ ℐ⟩. A finite set {𝑔1, … , 𝑔𝑚} ⊂ ℐ forms a Gröbner basis for ℐ with
respect to ≺ if LM≺(ℐ) = ⟨LM≺(g1), … ,LM≺(gm)⟩.
Next, consider 𝒮 = 𝕂[a, x], where 𝕂 is a field, a = 𝑎1, … , 𝑎𝑚 are parameters, and x = 𝑥1, … , 𝑥𝑛 are variables.
We define monomial orders ≺x and ≺a for the variables and parameters, respectively. The product ordering ≺x,a is
defined such that for 𝛼, 𝛽 ∈ ℕ𝑛 and 𝛾, 𝛿 ∈ ℕ𝑚, we have x𝛼a𝛾 ≺x,a x𝛽a𝛿 if either x𝛼 ≺x x𝛽 or x𝛼 = x𝛽 and a𝛾 ≺a a𝛿 .
Consider the specialization 𝜎 ∶ 𝕂[a] → 𝕂, where 𝕂 is the algebraic closure of 𝕂. This allows the substitution of
parameters in 𝑓 ∈ 𝕂[a] with elements from 𝕂

𝑚
. For a finite set 𝐹 ⊂ ℛ, we define the variety of 𝐹 as 𝕍(𝐹), the set of

common zeros of 𝐹.
We define a Gröbner system for a parametric polynomial ideal as follows:

Definition 1.2. Let 𝐹 ⊂ 𝒮 and 𝒢 = {(𝐺𝑖 , 𝑁𝑖 ,𝑊𝑖)}𝓁𝑖=1 be a finite set of triples, with 𝑁𝑖 ,𝑊𝑖 ⊂ 𝕂[a] and 𝐺𝑖 ⊂ 𝒮. The
set 𝒢 is a Gröbner system of ⟨𝐹⟩ with respect to ≺x,a on 𝑉 ⊆ 𝕂

𝑚
if for each 𝑖:

• For any specialization 𝜎 satisfying (𝑁𝑖 ,𝑊𝑖), the set 𝜎(𝐺𝑖) ⊂ 𝕂[x] forms a Gröbner basis for ⟨𝜎(𝐹)⟩with respect
to ≺x. (Here, 𝜎 satisfies (𝑁𝑖 ,𝑊𝑖) if 𝜎(𝑝) = 0 for all 𝑝 ∈ 𝑁𝑖 and 𝜎(𝑞) ≠ 0 for some 𝑞 ∈ 𝑊𝑖.)

• 𝑉 ⊆ ⋃𝓁
𝑖=1 𝕍(𝑁𝑖) ∖ 𝕍(𝑊𝑖).

Each (𝑁𝑖 ,𝑊𝑖 , 𝐺𝑖) represents a branch of the Gröbner system 𝒢, where 𝑁𝑖 is the null condition set and𝑊𝑖 the non-null
condition set. Additionally, 𝒢 is a Gröbner system of 𝐹 if 𝑉 = 𝕂

𝑚
.

Theorem 1.3. Every parametric polynomial ideal 𝐹 in 𝒮 has a Gröbner system.

Proof. See [10, Proposition 3.4 and Theorem 2.7].

Example 1.4. Let 𝐹 = {(1−𝑐)𝑦−𝑎𝑥2, 𝑥+𝑏𝑦2} ⊂ 𝕂[𝑎, 𝑏, 𝑐, 𝑥, 𝑦], where 𝑎, 𝑏, 𝑐 are parameters and 𝑥, 𝑦 are variables.
Using our implementation of the PGBMAIN algorithm in Maple, we compute the following CGS for ⟨𝐹⟩ under the
product ordering 𝑦 ≺𝑙𝑒𝑥 𝑥 and 𝑐 ≺𝑙𝑒𝑥 𝑏 ≺𝑙𝑒𝑥 𝑎:

ቐ
([ ], [𝑎𝑏2], [𝑎𝑏2𝑦4 − 𝑦 + 𝑐𝑦, 𝑥 + 𝑏𝑦2])
([𝑎𝑏2], [𝑐 − 1], [𝑐𝑦 − 𝑦, 𝑥 + 𝑏𝑦2])
([𝑐 − 1, 𝑎𝑏2], [ ], [𝑥 + 𝑏𝑦2]).

For instance, with 𝑎 = 2, 𝑏 = 1, and 𝑐 = 3, the first branch corresponds to these parameter values. Therefore,
{2𝑦4 − 𝑦 + 3𝑦, 𝑥 + 𝑦2} constitutes a Gröbner basis for the ideal ⟨𝐹⟩|𝑎=2,𝑏=1,𝑐=3 = ⟨−2𝑦 − 2𝑥2, 𝑥 + 𝑦2⟩.

2. PGBMAIN Algorithm

In this section, we restate the PGBMAIN algorithmwhich is one of the most efficient algorithms for computing Gröbner
systems. This algorithm receives two finite subsets 𝕂[a] namely 𝑁,𝑊, a finite subset of parametric polynomial ideal
𝐹 ⊂ 𝕂[a, x] and its goal is to produce a Gröbner system of the input parametric polynomial ideal. Furthermore, we
employ the MDBASIS sub-algorithm which computes a minimal Dickson basis of a polynomial ideal with parametric
coefficients.
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Definition 2.1. Let 𝐹 ⊂ 𝑆 = 𝕂[a, x] be a finite set of parametric polynomials. A finite set 𝐺 ⊂ 𝐹 is aminimal Dickson
basis of 𝐹, denoted as MDBASIS(𝐹), if it satisfies:

1. ⟨L𝑀≺x(𝐺)⟩ = ⟨L𝑀≺x(𝐹)⟩,

2. For any 𝑝, 𝑞 ∈ 𝐺 we have L𝑀≺x(𝑝) ∤ L𝑀≺x(𝑞) and L𝑀≺x(𝑞) ∤ L𝑀≺x(𝑝).

A straightforward algorithm (not optimal) can be derived from the definition of a minimal Dickson basis.

Algorithm 1MDBASIS (Minimal Dickson Basis)
Input: 𝐹 = {𝑓1 , … , 𝑓𝑛}; a finite subset of 𝕂[a, x]
Output: A minimal Dickson basis of 𝐹

𝐹′ ∶= NULL
for 𝑖 from 1 to 𝑛 do

flag∶= false
for 𝑔 ∈ {𝐹′} ∪ {𝑓𝑖 , … , 𝑓𝑛} while flag= false do

if LM(𝑔)| LM(𝑓𝑖) then
flag∶= true

end if
end for
if flag= false then

𝐹′ ∶= 𝐹′ , 𝑓𝑖
end if

end for
Return ({𝐹′})

The following simple example shows that a minimal Dickson basis may not be unique.

Example 2.2. Let us consider 𝐹 = {𝑎𝑦3−𝑧−𝑏, 𝑏𝑥2−𝑦+𝑧, 𝑏𝑦+1, (𝑎 −1)𝑥 +𝑦2, (𝑏 − 𝑎)𝑥 +𝑎𝑦− 𝑐, (𝑐 + 𝑎)𝑦−
(𝑏 − 2)𝑧} ⊂ 𝕂[𝑎, 𝑏, 𝑐][𝑥, 𝑦, 𝑧]. The following sets are minimal Dickson bases of 𝐹:

• 𝐺1 = {(𝑏 − 𝑎)𝑥 + 𝑎𝑦 − 𝑐, (𝑐 + 𝑎)𝑦 − (𝑏 − 2)𝑧}
• 𝐺2 = {𝑏𝑦 + 1, (𝑎 − 1)𝑥 + 𝑦2}
• 𝐺3 = {𝑏𝑦 + 1, (𝑏 − 𝑎)𝑥 + 𝑎𝑦 − 𝑐}

Kapur et al.’s algorithm starts with a global variable PGB as an empty set, to which new branches are added in each
iteration, ultimately forming a Gröbner system of the input ideal.

Algorithm 2 PGBMAIN
Input: 𝑁,𝑊; finite subsets of 𝕂[a] and 𝐹; a finite subset of 𝕂[a, x]
Output: A Gröbner system of 𝐹 on 𝕍(𝑁) ∖ 𝕍(𝑊)

if (𝑁,𝑊) is inconsistent then
Return (∅)

end if
𝐺 ∶= ReducedGröbnerBasis(𝐹 ∪ 𝑁,≺x,a)
if 1 ∈ 𝐺 then

Return ({(𝑁,𝑊, {1})})
end if
𝐺𝑟 ∶= 𝐺 ∩ 𝕂[𝑎]
if (𝐺𝑟 ,𝑊) is inconsistent then

Return (PGB)
else

𝐺𝑚 ∶=MDBASIS(𝐺 ∖ 𝐺𝑟)
ℎ =lcm{ℎ1 , … , ℎ𝑘} with ℎ𝑖 = LC≺x (gi) for each 𝑔𝑖 ∈ 𝐺𝑚 = {𝑔1 , … , 𝑔𝑘}
if (𝐺𝑟 ,𝑊 × {ℎ}) is consistent then

PGB∶=PGB∪{𝐺𝑟 ,𝑊 × {ℎ}, 𝐺𝑚}
end if
Return PGB ∪⋃ℎ𝑖∈{ℎ1 ,…,ℎ𝑘}PGBMAIN(𝐺𝑟 ∪ {ℎ𝑖},𝑊 × {ℎ1ℎ2⋯ℎ𝑖−1}, 𝐺 ∖ 𝐺𝑟) ∪ {(Other cases, {1})}

end if
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3. IMPROVED-PGBMAIN Algorithm

The efficient PGBMAIN algorithm can compute Gröbner systems, but it has two main drawbacks. First, it may output
a Gröbner system with multiple branches, resulting in a Gröbner basis of {1}. This issue can be addressed by merging
branches, which reduces the consistency checks and significantly enhances algorithm performance. We incorporated
this modification into the above PGBMAIN algorithm [?]. Second, since a minimal Dickson basis is not unique, the
algorithm does not specify how to choose an optimal minimal Dickson basis for continuing Gröbner system com-
putations. In this paper, we propose a sub-algorithm to compute an optimal minimal Dickson basis, improving the
performance of PGBMAIN algorithm. The polynomial order in 𝐹 impacts the MDBasis output, as reflected in the
algorithm’s design. Therefore, selecting polynomials with specific properties is crucial. Poor choices can lead to
unnecessary branches in the generating set before computing a Gröbner basis. Our strategy employs several simple
heuristics as selection benchmarks:
*Diversity*: Choose the polynomial with the fewest distinct parameters in its coefficients among the input ideal’s
generators.
*Length*: Choose the polynomial with the fewest monomials from the input ideal generators.
*Degree*: Select the polynomial with the lowest total degree concerning the parametric coefficients.
*Position*: Pick the polynomial where the first parametric coefficient appears later in the input list.
These criteria inform an algorithm to sort polynomials in the input ideal or their coefficient matrix rows. The algorithm
compares two parametric polynomials from the ideal𝐹 (or two rows from the coefficient matrix) based on these criteria.

Algorithm 3 COMPARISON
Require: 𝑓1, 𝑓2 ∈ 𝐹 ⊂ 𝑆 = 𝕂[a, x] = 𝕂[𝑎1, … , 𝑎𝑚 , 𝑥1, … , 𝑥𝑛]
Ensure: Returns either true or false
𝐶1 ∶= number of parameters in 𝑓1
𝐶2 ∶= number of parameters in 𝑓2
𝐿1 ∶= number of monomials in 𝑓1
𝐿2 ∶= number of monomials in 𝑓2
𝐷1 ∶= max degree of parametric coefficients in 𝑓1
𝐷2 ∶= max degree of parametric coefficients in 𝑓2
𝑃1 ∶= position of first parameter in 𝑓1
𝑃2 ∶= position of first parameter in 𝑓2
if 𝐶2 < 𝐶1 then
false

else if 𝐿2 < 𝐿1 then
false

else if 𝐷2 < 𝐷1 then
false

else if 𝑃2 > 𝑃1 then
false

else
true

end if

We can sort a list of parametric polynomials 𝐹 using the COMPARISON function. By executing sort(F,COMPARISON),
we generate a sorted list of polynomials based on the specified criteria.

Example 3.1. Consider 𝐹 = [(𝑎 − 1)𝑥1 +𝑥2 + (𝑎 + 1)𝑥3 + (𝑐2 −1)𝑥4, 2𝑥1 +2𝑥2 −𝑏𝑥3 + (𝑐 + 1)𝑥4, (𝑎 + 2)𝑥1 +
3𝑥2 − 𝑥3 + (𝑎 − 2)𝑥4, (𝑎 + 𝑏)𝑥1 + (𝑐 − 3)𝑥2 + (−𝑏 − 1)𝑥3 + 2𝑥4] ⊂ 𝕂[𝑎, 𝑏, 𝑐][𝑥1, 𝑥2, 𝑥3, 𝑥4], where 𝑎, 𝑏, 𝑐 are
parameters and 𝑥1, 𝑥2, 𝑥3, 𝑥4 are variables. Using our Maple implementation, we find:
sort(F, Comparison) = [(𝑎 + 2)𝑥1 +3𝑥2 −𝑥3 + (𝑎 − 2)𝑥4, 2𝑥1 +2𝑥2 −𝑏𝑥3 + (𝑐 + 1)𝑥4, (𝑎 − 1)𝑥1 +𝑥2 + (𝑎 +
1)𝑥3 + (𝑐2 − 1)𝑥4, (𝑎 + 𝑏)𝑥1 + (𝑐 − 3)𝑥2 + (−𝑏 − 1)𝑥3 + 2𝑥4].
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We can incorporate the COMPARISON algorithm into the MDBASIS procedure, creating the IMPROVED-MDBASIS algo-
rithm. This enhancement optimizes the minimal Dickson basis, reducing additional branches and improving efficiency
in memory and timing for Gröbner system computations. For this purpose, we first classify the input polynomials 𝐹
by their leading monomial, grouping those with the same leading monomial into cells. We then apply the COMPARISON
command to these partitions. The collection of first polynomials in each cell forms an optimal minimal Dickson basis
for 𝐹.

Algorithm 4 IMPROVED-MDBASIS
Input: 𝐹 = {𝑓1, … , 𝑓𝑛}; a finite subset of 𝕂[a, x]
Output: An optimal minimal Dickson basis of 𝐹
𝐹′ ∶= NULL
Classify 𝐹 into {𝐹𝑖}𝓁𝑖=1 w.r.t. their leading monomial so that 𝐹 = ⋃𝓁

𝑖=1 𝐹𝑖
for 𝑖 from 1 to 𝓁 do
𝐹′
𝑖 ∶=sort(𝐹𝑖,COMPARISON)
𝑓′𝑖 ∶= the first polynomial of 𝐹′

𝑖
𝐹′ ∶= 𝐹′, 𝑓′𝑖

end for
Return ({𝐹′})

We can now integrate the IMPROVED-MDBASIS algorithm into the PGBMAIN procedure, known as the IMPROVED-
PGBMAIN algorithm. This integration will help prevent the unnecessary generation of extra branches, ultimately
enhancing the efficiency of timing and memory utilization in Gröbner system computations.

Algorithm 5 IMPROVED-PGBMAIN
Input: 𝑁,𝑊; finite subsets of 𝕂[a] and 𝐹; a finite subset of 𝕂[a, x]
Output: A Gröbner system of 𝐹 on 𝕍(𝑁) ∖ 𝕍(𝑊)
if (𝑁,𝑊) is inconsistent then
Return (∅)

end if
𝐺 ∶= ReducedGröbnerBasis(𝐹 ∪ 𝑁,≺x,a)
if 1 ∈ 𝐺 then
Return ({(𝑁,𝑊, {1})})

end if
𝐺𝑟 ∶= 𝐺 ∩ 𝕂[𝑎]
if (𝐺𝑟,𝑊) is inconsistent then
Return (PGB)

else
𝐺𝑚 ∶=IMPROVED-MDBASIS(𝐺 ∖ 𝐺𝑟)
ℎ =lcm{ℎ1, … , ℎ𝑘} with ℎ𝑖 = LC≺x(gi) for each 𝑔𝑖 ∈ 𝐺𝑚 = {𝑔1, … , 𝑔𝑘}
if (𝐺𝑟,𝑊 × {ℎ}) is consistent then
PGB∶=PGB∪{𝐺𝑟,𝑊 × {ℎ}, 𝐺𝑚}

end if
Return PGB ∪⋃ℎ𝑖∈{ℎ1 ,…,ℎ𝑘}PGBMAIN(𝐺𝑟 ∪ {ℎ𝑖},𝑊 × {ℎ1ℎ2⋯ℎ𝑖−1}, 𝐺 ∖ 𝐺𝑟) ∪ {(Other cases, {1})}

end if

Theorem 3.2. The IMPROVED-PGBMAIN algorithm terminates in a finite number of steps and correctly computes a
Gröbner system.

Proof. The correction and termination of the IMPROVED-PGBMAIN algorithm are assured by the original PGBMAIN
algorithm.

Example 3.3. Let 𝐹 = [𝑑(𝑎 − 𝑏)𝑥𝑦 + 𝑦, 𝑏𝑥2 + 𝑐𝑦] ⊂ 𝕂[𝑎, 𝑏, 𝑐, 𝑑][𝑥, 𝑦], where 𝑥, 𝑦 are variables and 𝑎, 𝑏, 𝑐, 𝑑 are
parameters. We use the monomial orderings 𝑦 ≺𝑙𝑒𝑥 𝑥 and 𝑑 ≺𝑙𝑒𝑥 𝑐 ≺𝑙𝑒𝑥 𝑏 ≺𝑙𝑒𝑥 𝑎. By applying our implementation
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of the IMPROVED-PGBMAIN algorithm in Maple, we obtain the following Gröbner system for the ideal ⟨𝐹⟩with respect
to the elimination product ordering of these monomial orderings:

⎧⎪
⎨⎪⎩

([ ], [𝑏𝑐𝑑2(𝑎 − 𝑏)2], [𝑎2𝑐𝑑2𝑦2 − 2𝑎𝑏𝑐𝑑2𝑦2 + 𝑏2𝑐𝑑2𝑦2 + 𝑏𝑦,−𝑎𝑐𝑑𝑦2 + 𝑏𝑐𝑑𝑦2 + 𝑏𝑥𝑦, 𝑏𝑥2 + 𝑐𝑦]),
([𝑎2𝑐𝑑2 − 2𝑎𝑏𝑐𝑑2 + 𝑏2𝑐𝑑2], [𝑏], [𝑏𝑦, 𝑏𝑥2]),
([𝑏], [𝑐], [𝑐𝑦]),
([𝑐, 𝑏], [𝑎, 𝑑], [𝑎𝑑𝑥𝑦 + 𝑦]),
([𝑐, 𝑏, 𝑎𝑑], [ ], [𝑦]).

The computed Gröbner system with the IMPROVED-PGBMAIN algorithm has five branches, whereas the one derived
from our Maple implementation of the PGBMAIN algorithm has eight branches—three more than that produced by
the IMPROVED-PGBMAIN algorithm:

⎧
⎪
⎪

⎨
⎪
⎪
⎩

([ ], [𝑑2𝑏𝑎𝑐(𝑎 − 𝑏)2], [𝑎2𝑐𝑑2𝑦2 − 2𝑎𝑏𝑐𝑑2𝑦2 + 𝑏2𝑐𝑑2𝑦2 + 𝑏𝑦, 𝑦 − 𝑎𝑐𝑑2𝑦2 + 𝑏𝑐𝑑2𝑦2 + 𝑎𝑑𝑥𝑦, 𝑏𝑥2 + 𝑐𝑦]),
([𝑎], [𝑏, 𝑐, 𝑑], [𝑏𝑐𝑑2𝑦2 + 𝑦, 𝑐𝑑𝑦2 + 𝑥𝑦, 𝑏𝑥2 + 𝑐𝑦]),
([𝑏𝑐𝑑2, 𝑎], [𝑏], [𝑦, 𝑏𝑥2]),
([𝑎𝑑], [𝑎, 𝑏], [𝑎𝑦, 𝑏𝑥2 + 𝑐𝑦]),
([𝑎2𝑐𝑑2 − 2𝑎𝑏𝑐𝑑2 + 𝑏2𝑐𝑑2], [𝑎, 𝑏, 𝑑], [𝑏𝑦, 𝑏𝑥2]),
([𝑏], [𝑐], [𝑐𝑦]),
([𝑐, 𝑏], [𝑎, 𝑑], [𝑎𝑑𝑥𝑦 + 𝑦]),
([𝑐, 𝑏, 𝑎𝑑], [ ], [𝑦]).

The PGBMAIN algorithm using MDBASIS generates new branches when facing an undecidable leading coefficient,
resulting in unnecessary branches and decreased efficiency. This can be mitigated by applying the IMPROVED-MDBASIS
sub-algorithm, which employs selection strategies to sort polynomials according to the COMPARISON function.

4. Examples and Comparison

This section compares the performance of the IMPROVED-PGBMAIN algorithmwith the PGBMAIN algorithm, using im-
plementations in Maple 18. We selected specific parametric ideals in the ring𝒮 = 𝕂[𝑎, 𝑏, 𝑐, 𝑑,𝑚, 𝑛, 𝑟, 𝑡][𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤]
and aimed to compute a Gröbner system for each ideal with respect to the orderings 𝑤 ≺𝑙𝑒𝑥 𝑣 ≺𝑙𝑒𝑥 𝑢 ≺𝑙𝑒𝑥 𝑧 ≺𝑙𝑒𝑥
𝑦 ≺𝑙𝑒𝑥 𝑥 and 𝑡 ≺𝑙𝑒𝑥 𝑟 ≺𝑙𝑒𝑥 𝑛 ≺𝑙𝑒𝑥 𝑚 ≺𝑙𝑒𝑥 𝑑 ≺𝑙𝑒𝑥 𝑐 ≺𝑙𝑒𝑥 𝑏 ≺𝑙𝑒𝑥 𝑎.

• EX.1 = [𝑟𝑥5 + (𝑎𝑏 − 𝑐)𝑧 − 𝑛, 𝑐𝑦3 + 𝑎𝑐𝑥 + 𝑑𝑛, 𝑧3 − (𝑐 − 𝑡)𝑦]
• EX.2 = [𝑏𝑦2 − 𝑎 − 𝑦, 𝑟𝑥2 + (𝑎𝑏 − 𝑐)𝑥, 𝑎𝑐𝑧 + 𝑐𝑦 + 𝑑𝑛, 𝑧2 − (𝑐 − 𝑡)𝑦]
• EX.3 = [(𝑑𝑚 − 1)𝑥2𝑦 + 𝑏𝑦, 𝑦2 + 𝑐 − 1,−𝑛𝑥 + 𝑦2 + 𝑦, 𝑎𝑧4 − 1]
• EX.4 = [𝑑(𝑎 − 𝑏)𝑥𝑦 + 𝑦, 𝑏𝑥2 + 𝑐𝑚𝑦]
• EX.5 = [𝑎𝑏𝑥𝑦 + 𝑎𝑦3 − 𝑐𝑧 + 1, 𝑎𝑥2 + 𝑎𝑥 + 𝑐𝑢𝑢, 𝑡𝑢𝑢3 + 𝑡𝑢𝑢, 𝑏𝑧3 +𝑚𝑛𝑥 − 𝑏𝑧]
• EX.6 = [(1−𝑎)𝑦2 −𝑏𝑥2, 𝑑(𝑎 − 𝑏)𝑥𝑦+𝑦− 𝑡, 𝑏𝑥2 +𝑐𝑚𝑦, (𝑎 − 𝑏)𝑥𝑦+𝑎𝑦2, (𝑎 − 𝑏)𝑥𝑦+ (𝑏 −𝑎− 𝑐)𝑥2, 𝑦2 +(𝑏− 𝑐)𝑥2]
• EX.7 = [(𝑐 − 𝑑)(𝑎 − 𝑏)𝑥𝑦 + 𝑦, 𝑏𝑥2 + 𝑐𝑦, (𝑑 − 𝑐)𝑦2 − 𝑦 − 1]
• EX.8 = [(𝑡 − 𝑎)𝑥𝑧 + (1 − 𝑎)𝑧, (𝑡 − 𝑎)𝑥 + (𝑚 − 𝑏)𝑥𝑦, (𝑎 − 2)𝑥2 + 𝑢𝑢, 𝑏𝑐𝑥2 +𝑚𝑦]
• EX.9 = [(𝑎 − 𝑏)𝑥𝑦 + 𝑎𝑦, 𝑏𝑥3 + 𝑐𝑦 − 1, 𝑧2 − 𝑛 + 𝑦,𝑚𝑛𝑧3 − 𝑧]

The results are shown in the following table, with timings recorded on a personal computer featuring a Ryzen 6800
processor, 8 GB RAM, and a 64-bit Windows 10 operating system. The third and fourth columns represent CPU time
(in seconds) and memory usage (in gigabytes) for each procedure. The last column indicates the number of branches
in the computed Gröbner system. Also, in the above table “–-” means that the PGBMAIN algorithm can not compute
a Gröbner system within 300 seconds.
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Example Method Time (Sec) Used Memory (GB) Branch
IMPROVED-PGBMAIN 27.85 5.56 14

EX.1 PGBMAIN — — —
IMPROVED-PGBMAIN 39.78 8.76 15

EX.2 PGBMAIN — — —
IMPROVED-PGBMAIN 0.52 0.03 5

EX.3 PGBMAIN 0.69 0.0 7
IMPROVED-PGBMAIN 0.59 0.04 5

EX.4 PGBMAIN 0.78 0.05 8
IMPROVED-PGBMAIN 45.83 12.84 20

EX.5 PGBMAIN 240.16 86.3 22
IMPROVED-PGBMAIN 1.47 0.28 9

EX.6 PGBMAIN 1.82 0.35 11
IMPROVED-PGBMAIN 0.49 0.04 2

EX.7 PGBMAIN 3.91 0.78 6
IMPROVED-PGBMAIN 121.03 35.87 39

EX.8 PGBMAIN — — —
IMPROVED-PGBMAIN 31.28 10.05 8

EX.9 PGBMAIN 36.14 11.01 10

A comparison of the timing columns and our tests across various examples highlights the efficiency of our implemented
IMPROVED-PGBMAIN algorithm.
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Abstract

Let 𝒜 be a Grothendieck category and 𝜆 = 𝜆𝒜 is a unique minimal regular cardinal. In this
paper, we introduce a model structure on (ℂ(𝒜), ℰ𝜆) the exact category of all complexes with
the degree-wise 𝜆-pure exact structure. Our result is based on the Gillespie’s Theorem by intro-
ducing two compatible cotorsion pairs on this category. We call this model structure the 𝜆-pure
projective model structure on (ℂ(𝒜), ℰ𝜆) and its homotopy category is 𝔻𝜆-pur(𝒜), the 𝜆-pure
derived category.

1. introduction

In [4], Crawley-Boevey demonstrated that locally finitely presented additive categories serve as a natural framework
for developing a robust notion of purity theory. A locally finitely presented additive category 𝒜 is defined as an
additive category with direct limits, where every object in 𝒜 can be expressed as a direct limit of finitely presented
objects, and the class of finitely presented objects is skeletally small. In this category a sequence 0 → 𝑋 → 𝑌 → 𝑍 → 0
is pure if 0 → 𝒜(𝐺, 𝑋) → 𝒜(𝐺, 𝑌) → 𝒜(𝐺, 𝑍) → 0) is exact for each finitely presented object 𝐺 ∈ 𝒜. Using this
definition, we can construct an exact structure on𝒜 , referred to as the pure exact structure, which gives rise to the pure
derived category 𝔻𝑝𝑢𝑟(𝒜). This category has been studied by authors such as Christensen and Hovey [3], Krause
[11], and Šťovíček [13]. Recently in [7] it has been shown that this pure derived category can be obtained as the
homotopy category of two model category structures by using the concept of pure projectives and the pure injectives.
One of themodel structures constructed in the category of complexeswas introduced by Estrada, Gillespie, andOdabasi
in [5]. They consider a degree-wise ⊗-pure exact structure on ℂ(𝒢) the category of complexes on a Grothendieck
category 𝒢, and introduced a Hovey pair so as to construct a model structure in which its homotopy category is the
pure derived category.
In this paper, we will introduce a model structure on (ℂ(𝒜), ℰ𝜆) the exact category of complexes with the degree-
wise 𝜆-pure exact structure where 𝒜 is a Grithendieck category and 𝜆 is a regular cardinal such that 𝒜 is a locally
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𝜆-presentable category. Our main result is based on the Gillespie’s Theorem in [6] by introducing two compatible
cotorsion pairs on this category.
The paper is organized as follows. In Section 2 we provide any background information needed through this paper
such as Exact category and Purity. Our main result appears in Section 3 as Theorem 3.4.

2. Purity

In this section we define proper exact structure on a category to introduce an exact category that we need it in the next
section. First, we recall the notion of exact category from [2] and Gillespie’s Theorem from [6].
An exact category is a pair (𝒜, ℰ) where 𝒜 is an additive category and ℰ is a distinguished class of diagrams of the

form 𝑋 𝑖−→ 𝑌 𝑑−→ 𝑍 called conflation, satisfying certain axioms which make conflations behave similar to short exact
sequences in an abelian category. A map such as 𝑖 in the language of exact categories is called an inflation(denoted
by↣) while 𝑑 is called a deflation (denoted by↠).
Now let (𝒜, ℰ) be an exact category. The axioms of exact category allow us to define Yoneda Ext groups with usual
properties. The abelian group Ext1ℰ(𝑋, 𝑌) is the group of equivalence classes of short exact sequences 𝑌 ↣ 𝑍 ↠ 𝑋.
In particular, Ext1ℰ(𝑋, 𝑌) = 0 if and only if every short exact sequence 𝑌 ↣ 𝑍 ↠ 𝑋 is isomorphic to the split exact
sequence 𝑌 ↣ 𝑌⊕ 𝑋 ↠ 𝑋.
Let (𝒜, ℰ) be an exact category. A pair (ℱ,𝒟) of full subcategories of𝒜 is called a cotorsion pair provided that

ℱ = ⟂𝒟 and ℱ⟂ = 𝒟,
where ⟂ is taken with respect to the functor Ext1ℰ . The cotorsion pair (ℱ,𝒟) is said to have enough projectives if for
every 𝑋 ∈ 𝒜 there is a short exact sequence 𝐷 ↣ 𝐹 ↠ 𝑋 with 𝐷 ∈ 𝒟 and 𝐹 ∈ ℱ. We say that it has enough injectives
if it satisfies the dual statement. If both of these hold we say the cotorsion pair is complete.
Hovey defined in [10], Definition 2.1, the notion of an abelian model structure. In order to define exact model structure
on exact category (𝒜, ℰ) we need to specify cofibrant, fibrant and trivial object in this category. Note that for any
𝑋 ∈ 𝒜, 0 ↣ 𝑋 is an inflation and 𝑋 ↠ 0 is a deflation.
Now suppose (𝒜, ℰ) has a model structure as defined in Definition 1.1.3 of [9]. An object 𝑊 ∈ 𝒜 is said to be a
trivial if 0 ↣ 𝑊 is a weak equivalence. An object 𝐴 ∈ 𝒜 is said to be a cofibrant (resp. trivially cofibrant) if 0 ↣ 𝐴 is
a cofibration (resp. trivially cofibration). Dually 𝐵 ∈ 𝒜 is fibrant (resp. trivially fibrant) if 𝐵 ↠ 0 is fibration (resp.
trivial fibration).

Definition 2.1. Let (𝒜, ℰ) be an exact category. An exact model structure on (𝒜, ℰ) is a model structure in the sense
of Definition 1.1.3 of [9] in which each of the following hold.

(1) A map is a (trivial) cofibration if and only if it is an inflation with a (trivially) cofibrant cokernel.

(2) A map is a (trivial) fibration if and only if it is a deflation with a (trivially) fibrant kernel.

The next theorem is a result due to Hovey [10] which is described by Gillespie in the sense of exact category, see [6].
We just recall that a class of objects𝒲 ∈ 𝒜 is a thick subcategory of𝒜 if it is closed under direct summands and if
two out of three of the terms in a short exact sequence are in𝒲, then so is the third.

Theorem 2.2. [6, Theorem 3.3] Let (𝒜, ℰ) be an exact category with an exact model structure. Let 𝒞 be the class of
cofibrant objects, ℱ be the class of fibrant objects and𝒲 be the class of trivial objects. Then𝒲 is a thick subcategory
of 𝒜 and both (𝒞,𝒲 ∩ ℱ) and (𝒞 ∩ 𝒲,ℱ) are complete cotorsion pairs in 𝒜. If we further assume that (𝒜, ℰ) is
weakly idempotent complete then the converse holds. That is, given two compatible cotorsion pairs (𝒞,𝒲 ∩ ℱ) and
(𝒞 ∩𝒲,ℱ), each complete and with𝒲 a thick subcategory, then there is an exact model structure on𝒜 where 𝒞 is
the class of cofibrant objects, ℱ is the class of fibrant objects and𝒲 is the class of trivial objects.

Definition 2.3. [1, Definition 1.13] Let 𝒜 be a category and 𝜆 be an regular cardinal. An object 𝐴 ∈ 𝒜 is called
𝜆-presentable if the functor𝒜(𝐴,−) ∶ 𝒜 → Ab commutes with 𝜆-directed colimits in𝒜, i.e. for each 𝜆-direct system
(𝑌𝑖 | 𝑖 ∈ 𝐼) the canonical map

𝑙𝑖𝑚� 𝒜(𝐴, 𝑌𝑖) ⟶ 𝒜(𝐴, 𝑙𝑖𝑚� 𝑌𝑖)
is an isomorphism.
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Definition 2.4. [1, Page 68, 2.1] If a category𝒜 has 𝜆-direct colimits and there exists a small set 𝒮 of 𝜆-presentable
objects such that every 𝑋 ∈ 𝒜 can be expressed as a 𝜆-direct colimit of objects from 𝒮, then𝒜 is called 𝜆-accessible.
If moreover,𝒜 is cocomplete, it is called locally 𝜆-presentable.

Lemma 2.5. [8, Lemma 2.5] Let𝒜 be a Grothendieck category. Then there exists a unique minimal regular cardinal
𝜆𝒜 such that𝒜 is locally 𝜆𝒜-presentable.

Throughout this paper, we assume that 𝒜 is a Grothendieck category and 𝜆 = 𝜆𝒜 is such a unique minimal regular
cardinal.

Definition 2.6. A short exact sequence 0 → 𝐴′ → 𝐴 → 𝐴″ → 0 in𝒜 is defined to be 𝜆-pure if for any 𝜆-presentable
object 𝐹, the sequence 0 → 𝒜(𝐹, 𝐴′) → 𝒜(𝐹, 𝐴) → 𝒜(𝐹, 𝐴″) → 0 is an exact sequence of abelian groups.

Definition 2.7. An object 𝑃 ∈ 𝒜 is defined to be 𝜆-pure projective if 𝑃 is projective with respect to 𝜆-pure exact
sequences. We denote the class of all 𝜆-pure projective objects by 𝜆-PPrj𝒜.

Definition 2.8. The exact structure on ℂ(𝒜) the category of complexes whose conflations are defined by property
that they are 𝜆-pure exact in𝒜 in each degree, will be called the induced 𝜆-pure exact structure on ℂ(𝒜). We denote
the Ext groups with respect to this exact structure by Ext𝑖ℂ(𝒜).

The second exact structure which is often considered on ℂ(𝒜) is degree-wise split exact structure, whose conflations
are those sequences of complexes which are split exact in each degree. we denote the Ext groups with respect to this
exact structure by Ext𝑖dw.

Definition 2.9. A complex X ∈ ℂ(𝒜) is 𝜆-pure acyclic if each 0 → Z𝑖(X) → 𝑋𝑖 → Z𝑖+1(X) → 0 is 𝜆-pure exact
sequence in𝒜. The class of 𝜆-pure acyclic complexes denoted by ℂ𝜆-pac(𝒜).

3. 𝜆-pure derived category

In this section we assume 𝒜 is a Grothendieck category and 𝜆 = 𝜆𝒜 is such a unique minimal regular cardinal. We
now define the following class in ℂ(𝒜):

dg𝜆-PPrj𝒜 = {𝐿 ∈ ℂ(𝒜) | 𝐿𝑛 ∈ 𝜆-PPrj𝒜 and each map 𝐿 → 𝐸 is homotopic to 0, ∀ 𝐸 ∈ ℂ𝜆-pac(𝒜)}

Proposition 3.1. Let𝒜 be a Grothendieck category. Then (ℂ(𝜆-PPrj𝒜), ℂ𝜆-pac(𝒜)) is a complete cotorsion pair in
ℂ(𝒜) with the induced 𝜆-pure exact structure.

Proof. By [7, Theorem 4.6] we can say that (dg𝜆-PPrj𝒜,ℂ𝜆-pac(𝒜)) is a complete cotorsion pair. So it is enough to
show that ℂ(𝜆-PPrj𝒜) = dg𝜆-PPrj𝒜. According to the definition of dg𝜆-PPrj𝒜 we can clearly say that dg𝜆-PPrj𝒜 ⊆
ℂ(𝜆-PPrj𝒜). Now let Q ∈ ℂ(𝜆-PPrj𝒜). According to [12, Theorem 1.3] we have Hom𝕂(𝒜)(Q,X) = 0 for all
X ∈ ℂ𝜆-pac(𝒜). Moreover, it is to see that Σ−1Q belongs to ℂ(𝜆-PPrj𝒜). Hence

Hom𝕂(𝒜)(Σ−1Q,X) = Ext1dw(Q,X) = 0

Since Q ∈ ℂ(𝜆-PPrj𝒜) we have
Ext1ℂ(𝒜)(Q,X) = Ext1dw(Q,X) = 0

Therefore, this implies that Q ∈ ⟂(ℂ𝜆-pac(𝒜)) = dg𝜆-PPrj𝒜. So we can say that ℂ(𝜆-PPrj𝒜) ⊆ dg𝜆-PPrj𝒜 and we
are done.

Recall that a complexX in ℂ(𝒜) is contractible if the identity map onX is null-homotopic. Nowwe have the following
interesting corollary:

Corollary 3.2. Suppose that X ∈ ℂ(𝒜) is a 𝜆-pure acyclic complex. If all components of X are 𝜆-pureprojective then
X is contractible.
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Proof. Assume that X ∈ ℂ𝜆-pac(𝒜) ∩ ℂ(𝜆-PPrj𝒜). By Proposition 3.1 we have Ext1𝒜(ΣX,X) = 0. In addition, since
X ∈ ℂ(𝜆-PPrj𝒜) we can say that

Hom𝕂(𝒜)(X,X) = Ext1𝑑𝑤(ΣX,X) = Ext1ℂ(𝒜)(ΣX,X) = 0

This means that 1X ∼ 0, hence X is contractible.

Now we can introduced our main result:

Definition 3.3. Consider the exact category (ℂ(𝒜), ℰ𝜆). Let𝕂𝜆-ac(𝒜) be a full subcategory of𝕂(𝒜) consisting of 𝜆-
pure acyclic complexes. Notice that 𝜆-pure acyclic complexes are closed under homotopy equivalences, so 𝕂𝜆-ac(𝒜)
is well defined. If 𝑓 ∶ X → Y is morphism between 𝜆-pure acyclic complexes, then Con(𝑓) is again 𝜆-pure acyclic.
Thus 𝕂𝜆-ac(𝒜) is a triangulated subcategory of 𝕂(𝒜). Because 𝜆-pure acyclic complexes are closed under direct
summands, 𝕂𝜆-ac(𝒜) is a thick subcategory of 𝕂(𝒜). Then by the Verdier’s correspondence, we get the 𝜆-pure
derived category

𝔻𝜆-pur(𝒜) ∶= 𝕂(𝒜)/𝕂𝜆-ac(𝒜)

Theorem 3.4. There is a model structure on the exact category (ℂ(𝒜), ℰ𝜆) in which every object is fibrant and the
cofibrant objects are all complexes which are 𝜆-pure projective on each degree. The trivial objects are the 𝜆-pure
acyclic complexes. We call this model structure the 𝜆-pure projective model structure on (ℂ(𝒜), ℰ𝜆) and its homotopy
category is 𝔻𝜆-pur(𝒜), the 𝜆-pure derived category.

Proof. Weclaim that (ℂ(𝜆-PPrj𝒜), ℂ𝜆-pac(𝒜), ℂ(𝒜)) is a Hovey triple. First, we note that byCorollary 3.2ℂ𝜆-pac(𝒜)∩
ℂ(𝜆-PPrj𝒜) is equal to the class of all contractible complexes whit 𝜆-pure projective components. So it can be said
that this class is equal to all projective objects in (ℂ(𝒜), ℰ𝜆), i.e. we have

ℂ𝜆-pac(𝒜) ∩ ℂ(𝜆-PPrj𝒜) = Prj-ℂ(𝒜)

Clearly (Prj-ℂ(𝒜), ℂ(𝒜)) is a complete cotorsion pair in (ℂ(𝒜), ℰ𝜆). On the other hand by Proposition 3.1
(ℂ(𝜆-PPrj𝒜), ℂ𝜆-pac(𝒜)) is a complete cotrsion pair. Moreover, by [7, Lemma 4.4] ℂ𝜆-pac(𝒜) is a thick subcategory.
So if we set 𝒞 = ℂ(𝜆-PPrj𝒜),𝒲 = ℂ𝜆-pac(𝒜), and ℱ = ℂ(𝒜) then by Theorem 2.2 we can say that (𝒞,𝒲,ℱ) is a
Hovey triple. Note that by [7, Corollary 4.7] the homotopy category of this model category is 𝔻𝜆-pur(𝒜).
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Abstract

Let𝑅 be a commutative Noetherian ring and 𝔞 be an ideal of𝑅. Suppose𝑀 is a finitely generated
𝑅-module and 𝑁 is an Artinian 𝑅-module. We define the concept of filter coregular sequence to
determine the infimum of integers 𝑖 such that the generalized local homology H𝔞

𝑖 (𝑀,𝑁) is not
finitely generated as an ෝ𝑅𝔞-module, where ෝ𝑅𝔞 denotes the 𝔞-adic completion of 𝑅. In particular,
if 𝑅 is a complete semi-local ring, then H𝔞

𝑖 (𝑀,𝑁) is a finitely generated ෝ𝑅𝔞-module for all non-
negative integers 𝑖 if and only if (0 ∶𝑁 𝔞 + Ann(𝑀)) has finite length.

1. Introduction

In this paper, we consider a commutative Noetherian ring 𝑅 with non-zero identity, and an ideal 𝔞 ⊆ 𝑅, as well as two
𝑅-modules 𝑀 and 𝑁. We denote the 𝔞-adic completion of 𝑁 by Λ𝔞(𝑁), and note that the 𝔞-adic completion functor
Λ𝔞(⋅) is an additive covariant functor on the category of 𝑅-modules. We use 𝐿𝔞𝑖 (⋅) to denote the 𝑖-th left derived functor
of Λ𝔞(⋅). However, since the tensor functor is not left exact and the inverse limit is not right exact on the category of
𝑅-modules, computing the left-derived functors of Λ𝔞(⋅) is generally difficult. Moreover, it is important to note that
𝐿𝔞0(⋅) ≇ Λ𝔞(⋅).
Matlis studied 𝐿𝔞𝑖 (⋅) in the case where 𝔞 is generated by a regular sequence and 𝑅 is a local ring in [9, 10], and proved
some duality between this functor and the local cohomology functor. Recently, Divaani-Aazar et al. in [4] studied the
containment of 𝐿𝔞𝑖 (⋅) in a Serre class of 𝑅-modules up to a given upper bound 𝑠 ≥ 0.
Cuong and Nam in [2] defined the 𝑖-th local homology H𝔞

𝑖 (𝑁) of 𝑁 with respect to 𝔞 as follows:

H𝔞
𝑖 (𝑁) ∶= lim←−−𝑛∈ℕ

Tor𝑅𝑖 (𝑅/𝔞𝑛 , 𝑁) .

They also showed that 𝐿𝔞𝑖 (𝑁) ≅ H𝔞
𝑖 (𝑁) when 𝑁 is Artinian. Similarly, the 𝑖-th generalized local homology H𝔞

𝑖 (𝑀,𝑁)
of𝑀 and 𝑁 with respect to 𝔞 is defined by

H𝔞
𝑖 (𝑀,𝑁) ∶= lim←−−𝑛∈ℕ

Tor𝑅𝑖 (𝑀/𝔞𝑛𝑀,𝑁) ;
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see [12, 13] for basic properties and more details.
Matlis in [8] introduced the concept of cosequence (or coregular sequence) as a dual of the concept of regular sequence
(see [14] and [16] for more details and basic properties). If𝑁 is Artinian and (0 ∶𝑁 𝔞) ≠ 0, then all maximal coregular
𝑁-sequences in 𝔞 have the same length, denoted by width(𝔞, 𝑁), where (0 ∶𝑁 𝔞) denotes the set of all elements 𝑥 ∈ 𝑁
such that 𝑟𝑥 = 0 for all 𝑟 ∈ 𝔞. Moreover,

width(𝔞, 𝑁) = inf{𝑖 ∈ ℤ ∶ H𝔞
𝑖 (𝑁) ≠ 0}

(see [3, Theorem 4.11]).
The filter regular sequences can be used to study the Artinianess of local cohomology modules of finitely generated
𝑅-modules (see [5, Sec. 3]). In this paper as a dual of the concept of filter regular sequence, we introduce the concept
of filter coregular sequence to study the finiteness of local homology modules of Artinian 𝑅-modules.
Let Cosupp(𝑁) denote the set of all prime ideals of 𝑅 containing Ann(𝑁). A sequence 𝑥1, … , 𝑥𝑛 of elements of 𝔞 is
called a filter coregular 𝑁-sequence (of length 𝑛) in 𝔞 if

Cosupp ൫(0 ∶𝑁 (𝑥1, … , 𝑥𝑖−1)𝑅)/𝑥𝑖(0 ∶𝑁 (𝑥1, … , 𝑥𝑖−1)𝑅)൯ ⊆ Max(𝑅)

for all 1 ≤ 𝑖 ≤ 𝑛, where Max(𝑅) denotes the set of all maximal ideals of 𝑅.
Assuming that𝑀 is finitely generated and𝑁 is Artinian, we prove that if there exists a filter coregular𝑁-sequence in 𝔞
of infinite length, then every filter coregular 𝑁-sequence in 𝔞 can be extended to a filter coregular 𝑁-sequence in 𝔞 of
infinite length, and in this case we set f‑width(𝔞, 𝑁) = ∞. Now suppose that all filter coregular𝑁-sequences in 𝔞 have
finite length. Then all maximal filter coregular𝑁-sequences in 𝔞 are of the same length, denoted by f‑width(𝔞, 𝑁). We
show (see Theorem 2.6 and Remark 2.7) that:

f‑width(Ann(𝑀), 𝑁) = inf{𝑖 ∈ ℕ0 ∶ Tor𝑅𝑖 (𝑀,𝑁) has infinite length as an 𝑅-module}

and

f‑width(𝔞 + Ann(𝑀), 𝑁) = inf{𝑖 ∈ ℕ0 ∶ H𝔞
𝑖 (𝑀,𝑁) is not a finitely generated ෝ𝑅𝔞-module}.

In particular,

f‑width(𝔞, 𝑁) = inf{𝑖 ∈ ℕ0 ∶ H𝔞
𝑖 (𝑁) is not a finitely generated ෝ𝑅𝔞-module}.

We also show in Corollary 2.9 that if H𝔞
𝑖 (𝑀,𝑁) is a finitely generated ෝ𝑅𝔞-module for all 𝑖 ∈ ℕ0, then (0 ∶𝑁 𝔞+Ann(𝑀))

has finite length. The converse statement is true when𝑅 is a semi-local ring that is complete with respect to its Jacobson
radical.

2. Main Results

We shall use the following notations and terminologies. Let 𝔞 be an ideal of 𝑅 and 𝑁 be an 𝑅-module. The radical
of 𝔞 will be denoted by √𝔞; also, Ann(𝑁) will denote the ideal {𝑟 ∈ 𝑅 ∶ 𝑟𝑥 = 0 for all 𝑥 ∈ 𝑁} of 𝑅; and (0 ∶𝑁 𝔞)
will denote the submodule {𝑥 ∈ 𝑁 ∶ 𝑟𝑥 = 0 for all 𝑟 ∈ 𝔞} of 𝑁. We denote by V (𝔞) the set of all prime ideals of
𝑅 containing 𝔞; and we use Cosupp(𝑀) to denote V (Ann(𝑀)). The symbol ℕ (respectively ℕ0) will denote the set
of positive (respectively non-negative) integers. We refer the reader for any unexplained terminology or notation to
[1, 11, 15].

Definition 2.1. Let 𝑁 be an 𝑅-module. We say a prime ideal 𝔭 of 𝑅 is an attached prime of 𝑁, if there exists a
submodule𝑀 of 𝑁 such that 𝔭 = Ann(𝑁/𝑀). We denote by Att(𝑁) the set of all attached primes of 𝑁.

For an 𝑅-module 𝑁, it is clear that Att(𝑁) ⊆ Cosupp(𝑁) (we refer the reader to [14] for basic properties and more
details of these notations). When 𝑁 has a secondary representation in the sense of [7], our definition of Att(𝑁)
coincides with that of Macdonald (see [1, Exercise 7.2.5]). In particular, the set of attached primes of an Artinian
module is a finite set.
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Proposition 2.2 ([6]). Let 𝑥1, … , 𝑥𝑛 be elements of 𝑅, and let 𝑁 be an Artinian 𝑅-module. The following conditions
are equivalent:

(i) 𝑥1, … , 𝑥𝑛 is a filter coregular 𝑁-sequence;
(ii) (0 ∶𝑁 (𝑥1, … , 𝑥𝑖−1)𝑅)/𝑥𝑖(0 ∶𝑁 (𝑥1, … , 𝑥𝑖−1)𝑅) has finite length for all 1 ≤ 𝑖 ≤ 𝑛;
(iii) Att ((0 ∶𝑁 (𝑥1, … , 𝑥𝑖−1)𝑅)/𝑥𝑖(0 ∶𝑁 (𝑥1, … , 𝑥𝑖−1)𝑅)) ⊆ Max(𝑅) for all 1 ≤ 𝑖 ≤ 𝑛; and
(iv) 𝑥𝑖 ∉ ⋃𝔭∈Att(0∶𝑁(𝑥1 ,…,𝑥𝑖−1)𝑅)∖Max(𝑅) 𝔭 for all 1 ≤ 𝑖 ≤ 𝑛.
Proposition 2.3 ([6]). Let𝑀 and 𝑁 be 𝑅-modules, and let 𝑥1, … , 𝑥𝑛 be elements of 𝑅. For each 𝑖 ∈ ℕ0, there are the
following inclusions:

Cosupp ቀTor𝑅𝑖 (𝑀, (0 ∶𝑁 (𝑥1, … , 𝑥𝑛)𝑅))ቁ ⊆ ቌ
𝑖+𝑛

ራ
𝑗=𝑖

Cosupp ቀTor𝑅𝑗 (𝑀,𝑁)ቁቍ∪

ቌ
𝑛

ራ
𝑘=1

𝑖+2+𝑛−𝑘

ራ
𝑗=𝑖+2

CosuppቆTor𝑅𝑗 ቆ𝑀, (0 ∶𝑁 (𝑥1, … , 𝑥𝑘−1)𝑅)
𝑥𝑘(0 ∶𝑁 (𝑥1, … , 𝑥𝑘−1)𝑅)

ቇቇቍ;

and if, in addition, 𝑥1, … , 𝑥𝑛 belong to Ann(𝑀), then

Cosupp ቀTor𝑅𝑖 (𝑀,𝑁)ቁ ⊆ Cosupp ቀTor𝑅𝑖−𝑛 (𝑀, (0 ∶𝑁 (𝑥1, … , 𝑥𝑛)𝑅))ቁ∪

ቌ
𝑛

ራ
𝑘=1

𝑖+2−𝑘

ራ
𝑗=𝑖+1−𝑘

CosuppቆTor𝑅𝑗 ቆ𝑀, (0 ∶𝑁 (𝑥1, … , 𝑥𝑘−1)𝑅)
𝑥𝑘(0 ∶𝑁 (𝑥1, … , 𝑥𝑘−1)𝑅)

ቇቇቍ.

Corollary 2.4 ([6]). Let𝑀 and 𝑁 be 𝑅-modules, and let 𝑥1, … , 𝑥𝑛 be a filter coregular 𝑁-sequence in Ann(𝑀). Then

Cosupp ቀTor𝑅𝑖 (𝑀,𝑁)ቁ ⊆ Max(𝑅)

for all 𝑖 < 𝑛, and

Cosupp ቀTor𝑅𝑛 (𝑀,𝑁)ቁ ∪Max(𝑅) = Cosupp (𝑀 ⊗𝑅 (0 ∶𝑁 (𝑥1, … , 𝑥𝑛)𝑅)) ∪Max(𝑅).

Lemma 2.5 ([6]). Let 𝑀,𝑁 and 𝐿 be 𝑅-modules such that 𝑀 and 𝐿 are finitely generated, and let 𝑛 ∈ ℕ. If
Cosupp ቀTor𝑅𝑖 (𝑀,𝑁)ቁ ⊆ Max(𝑅) for all 𝑖 < 𝑛 and Supp(𝐿) ⊆ Supp(𝑀), then

Cosupp ቀTor𝑅𝑖 (𝐿, 𝑁)ቁ ⊆ Max(𝑅)

for all 𝑖 < 𝑛.
In particular, Cosupp ቀTor𝑅𝑖 (𝐿, 𝑁)ቁ ⊆ Max(𝑅) for all 𝑖 < 𝑛 if and only if Cosupp ቀTor𝑅𝑖 (𝑀,𝑁)ቁ ⊆ Max(𝑅) for all
𝑖 < 𝑛 whenever Supp(𝐿) = Supp(𝑀).
Theorem 2.6 ([6]). Let 𝔞 be an ideal of 𝑅, and let 𝑀 and 𝑁 be 𝑅-modules such that 𝑀 is finitely generated and 𝑁 is
Artinian. For each 𝑛 ∈ ℕ, the following conditions are equivalent:

(i) there is a filter coregular 𝑁-sequence in 𝔞 of length 𝑛;
(ii) any filter coregular 𝑁-sequence in 𝔞 of length less than 𝑛 can be extended to a filter coregular 𝑁-sequence in 𝔞

of length 𝑛;
(iii) Cosupp ቀTor𝑅𝑖 (𝑅/𝔞, 𝑁)ቁ ⊆ Max(𝑅) (or equivalently Tor𝑅𝑖 (𝑅/𝔞, 𝑁) has finite length) for all 𝑖 < 𝑛;
(iv) if Supp(𝑀) = V (𝔞), then Cosupp ቀTor𝑅𝑖 (𝑀,𝑁)ቁ ⊆ Max(𝑅) (or equivalently Tor𝑅𝑖 (𝑀,𝑁) has finite length) for

all 𝑖 < 𝑛; and
(v) if Ann(𝑀) ⊆ 𝔞, then H𝔞

𝑖 (𝑀,𝑁) is a finitely generated ෝ𝑅𝔞-module for all 𝑖 < 𝑛.
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Remark 2.7. Let 𝔞 be an ideal of𝑅, and let𝑁 be anArtinian𝑅-module. When there exists a filter coregular𝑁-sequence
in 𝔞 of infinite length, then, by the equivalence of (i) and (ii) in Theorem 2.6, any filter coregular 𝑁-sequence in 𝔞
can be extended to a filter coregular 𝑁-sequence in 𝔞 of arbitrary length, and in this case we set f‑width(𝔞, 𝑁) = ∞.
Now assume that all filter coregular 𝑁-sequences in 𝔞 have finite length. Again, by the equivalence of (i) and (ii) in
Theorem 2.6, we can extend any filter coregular 𝑁-sequence in 𝔞 to a maximal one, and all maximal filter coregular
𝑁-sequences in 𝔞 are of the same length which we denote this common length by f‑width(𝔞, 𝑁). Moreover, if 𝑀 is a
finitely generated 𝑅-module such that Supp(𝑀) = V (𝔞), then, by Theorem 2.6, we have

f‑width(𝔞, 𝑁) = inf{𝑖 ∈ ℕ0 ∶ Cosupp ቀTor𝑅𝑖 (𝑀,𝑁)ቁ ⊈ Max(𝑅)}
= inf{𝑖 ∈ ℕ0 ∶ Tor𝑅𝑖 (𝑀,𝑁) has infinite length as an 𝑅-module}
= inf{𝑖 ∈ ℕ0 ∶ H𝔞

𝑖 (𝑁) is not a finitely generated ෝ𝑅𝔞-module} (∗)

(we note that H𝔞
𝑖 (𝑅, 𝑁) = H𝔞

𝑖 (𝑁)). Also, for an arbitrary finitely generated𝑅-module 𝐿, sinceH
𝔞
𝑖 (𝐿, 𝑁) ≅ H𝔞+Ann(𝐿)

𝑖 (𝐿, 𝑁),
if we replace 𝔞 by 𝔞 + Ann(𝐿) in Theorem 2.6, then the equivalence of (ii) and (v) in Theorem 2.6 yields

f‑width(𝔞 + Ann(𝐿), 𝑁) = inf{𝑖 ∈ ℕ0 ∶ H𝔞
𝑖 (𝐿, 𝑁) is not a finitely generated ෝ𝑅𝔞-module}.

Finally, sinceV (𝔞) = V ൫√𝔞൯, it follows from the first equality in the equation (∗) that f‑width(𝔞, 𝑁) = f‑width(√𝔞, 𝑁).

Proposition 2.8 ([6]). Let 𝔞 be an ideal of 𝑅, and let 𝑁 be an Artinian 𝑅-module. If f‑width(𝔞, 𝑁) = ∞, then (0 ∶𝑁 𝔞)
has finite length. The converse statement holds whenever 𝑅 is a semi-local ring which is complete with respect to its
Jacobson radical.

Corollary 2.9 ([6]). Let 𝔞 be an ideal of 𝑅, and let𝑀 and 𝑁 be 𝑅-modules such that𝑀 is finitely generated and 𝑁 is
Artinian.

(i) If Tor𝑅𝑖 (𝑀,𝑁) has finite length for all 𝑖 ∈ ℕ0, then (0 ∶𝑁 Ann(𝑀)) has finite length.
(ii) If H𝔞

𝑖 (𝑀,𝑁) is a finitely generated ෝ𝑅𝔞-module for all 𝑖 ∈ ℕ0, then (0 ∶𝑁 𝔞 + Ann(𝑀)) has finite length. In
particular, (0 ∶𝑁 𝔞) has finite length whenever H𝔞

𝑖 (𝑁) is a finitely generated ෝ𝑅𝔞-module for all 𝑖 ∈ ℕ0.

Moreover, the converse statements hold when 𝑅 is a complete semi-local ring.

References

[1] M. P. Brodmann and R. Y. Sharp. Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge University Press,
Cambridge, 1998.

[2] N. T. Cuong and T. T. Nam. The i-adic completion and local homology for artinian modules. Math. Proc. Cambridge Philos. Soc., 131(1):
61–72, 2001.

[3] N. T. Cuong and T. T. Nam. A local homology theory for linearly compact modules. J. Algebra, 319(11):4712–4737, 2008.
[4] K. Divaani-Aazar, H. Faridian, and M. Tousi. Local homology, koszul homology and serre classes. Rocky Mountain J. Math., 48(6):1841–

1869, 2018.
[5] A. Fathi. The first non-isomorphic local cohomology modules with respect to their ideals. J. Algebra Appl., 17(12):1850230, 2018.
[6] A. Fathi and A. Hajikarimi. On the finiteness of local homology modules. J. Algebr. Syst., 13(1):37–52, 2025.
[7] I. G. Macdonald. Secondary representation of modules over a commutative ring. Symposia Mathematicay, 11:23–43, 1973.
[8] E. Matlis. Modules with descending chain condition. Trans. Amer. Math. Soc., 97:495–508, 1960.
[9] E. Matlis. The koszul complex and duality. Comm. Algebra, 1:87–144, 1974.
[10] E. Matlis. The higher properties of 𝑟-sequences. J. Algebra, 50(1):77–112, 1978.
[11] H. Matsumura. Commutative ring theory, Cambridge University Press. Cambridge University Press, Cambridge, 1986.
[12] T. T. Nam. Left-derived functors of the generalized 𝑖-adic completion and generalized local homology. Comm. Algebra, 38(2):440–453, 2010.
[13] T. T. Nam. Generalized local homology for artinian modules. Algebra Colloq., 19(1):1205–1212, 2012.
[14] A. Ooishi. Matlis duality and the width of a module. Hiroshima Math. J., 6(3):573–587, 1976.
[15] J. J. Rotman. An introduction to homological algebra. Academic Press, Inc., New York–London, 1979.
[16] Z. Tang and H. Zakeri. Co-cohen-macaulay modules and modules of generalized fractions. Comm. Algebra, 22(6):2173–2204, 1994.



Gonbad Kavous University

The 5th National Congress on Mathematics and StatisticsThe 5th National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1403

The 5th National Congress on Mathematics and Statistics, GC–146, pp. 343–346

SOMBOR AND ZAGREB INDICES OF THE SUBDIVISION OF
S[G,t]

Fatemeh Attarzadeha,∗, Ali Behtoeib
aDepartment of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
bDepartment of Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran

Article Info

Keywords:
Generalized Sierpiński gasket,
subdivision, Zagreb index,
Sombor index.

2020 MSC:
05C05
05C07

Abstract

Sierpiński gasket graphs have many applications in diverse areas including dynamical systems
and chemistry. In this paper, we determine the Sombor index and the Zagreb indices of the gen-
eralized Sierpiński gasket of some famous families of graphs including paths, complete graphs
and cycles.

1. Introduction

Throughout this paper, we consider simple connected graphs. Let 𝐺 = (𝑉, 𝐸) be a graph with 𝑛 = |𝑉(𝐺)| vertices and
𝑚 = |𝐸(𝐺)| edges. The subdivision of an edge is the insertion of a new vertex in the middle of that edge accompanied
by the joining of the original edge endpoints with the new vertex to form new edges. Therefore, the subdivision of
G, denoted by 𝑆𝐺 , converts an edges of 𝐺 into a path of length 2. In mathematical chemistry and chemical graph
theory, a topological index is a numerical parameter (a real number) that is measured based on the molecular graph of
a chemical constitution [3]. Two important topological indices introduced about forty years ago by Ivan Gutman and
Trinajstic [3] are the first Zagreb index𝑀1(𝐺) and second Zagreb index𝑀2(𝐺) which are defined as:

𝑀1(𝐺) = 
𝑣∈𝑉(𝐺)

(deg𝐺(𝑣))2

𝑀2(𝐺) = 
𝑢𝑣∈𝐸(𝐺)

deg(𝑢) deg(𝑣).

Also the Forgotten topological index is defined as [2]:

𝐹(𝐺) = 
𝑣∈𝑉(𝐺)

(deg𝐺(𝑣))3.
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The generalized first Zagreb index of a graph G is defined as [7]:

𝑍𝛼(𝐺) = 
𝑥∈𝑉(𝐺)

deg𝛼𝐺(𝑥) = 
𝑢𝑣∈𝐸(𝐺)

deg𝐺(𝑢)𝛼−1 + deg𝐺(𝑣)𝛼−1,

where 𝛼 ∈ 𝑅, 𝛼 ≠ 0, 𝛼 ≠ 1. If 𝛼 = 3, then generalized first Zagreb index becomes Forgotten index. For more details
on these topological indices we refer the reader to [7] and [8]. For a connected graph 𝐺, two related graphs are defined
as follows [2]. Also, Gutman in [4] defined a new vertex-degree-based graph invariant, named ”Sombor index” for a
graph 𝐺, denoted by 𝑆𝑂(𝐺), as

𝑆𝑂(𝐺) = 
𝑢𝑣∈𝐸(𝐺)

ඥdeg(𝑢)2 + deg(𝑣)2

Mathematical properties and applications of the Sombor index were established in [4]. Decomposition into special
substructures that inherit remarkable features is an important method used for the investigation of some mathematical
structures, specifically when the regarded structures have self-similarity features. In these cases, we usually only need
to study the substructures and the way that they are related to each other. Klavžar et al. for the first time, introduced
the Sierpiński graph 𝑆(𝐾𝑛 , 𝑡), see [5] and [6]. One of the most important families of these self-similar graphs is the
family of Sierpiński gasket graphs, see [9] for more details.

Definition 1.1. [1] Let 𝐺 = (𝑉, 𝐸) be a graph of order 𝑛 ≥ 2 and 𝑡 be a positive integer. If 𝑙 is adjacent to 𝑗
in 𝐺, then by contracting the new edge between two copies 𝑙 and 𝑗 (the linking edge) in the generalized Sierpiński
graph, the generalized Sierpiński gasket graph is obtained. In other words, when 𝑗 is adjacent to 𝑙 in 𝐺, the vertex
u = 𝑣1𝑣2…𝑣𝑟𝑗𝑙 … 𝑙 is adjacent to v = 𝑣1𝑣2…𝑣𝑟𝑙𝑗 … 𝑗, in 𝑆(𝐺, 𝑡), 0 ≤ 𝑟 ≤ 𝑡 − 2, the edge uv will be contracted in
𝑆[𝐺, 𝑡], and this new vertex will be denoted by 𝑣1𝑣2…𝑣𝑟{𝑗, 𝑙}𝑡−𝑟 or shortly by 𝑣(𝑟){𝑗, 𝑙}𝑡−𝑟, see Figure 1.

Fig. 1. A graph 𝐺 and its generalized Sierpiński gasket 𝑆[𝐺, 2].

Remark 1.2. Similar to the structure of the generalized Sierpiński graph 𝑆(𝐺, 𝑡), 𝑆[𝐺, 𝑡] is constructed inductively
by inserting a copy of 𝑆[𝐺, 𝑡 − 1] instead of each vertex of 𝐺 (𝑆𝑖[𝐺, 𝑡] for 𝑖 ∈ 𝑉(𝐺)) and then by contracting the
new |𝐸(𝐺)| linking edges (of 𝑆(𝐺, 𝑡)). More precisely, when 𝑖 is adjacent to 𝑗 in the graph 𝐺, then the linking edge
between 𝑖𝑗𝑗 … 𝑗 and 𝑗𝑖𝑖 … 𝑖 is contracted and the new vertex is shown by {𝑖, 𝑗}𝑡 in 𝑆[𝐺, 𝑡]. Note that the vertex {𝑖, 𝑗}𝑡 is
the unique common shared vertex between two copies 𝑆𝑖[𝐺, 𝑡] and 𝑆𝑗[𝐺, 𝑡].
In [1], the degree sequence, Hamiltonianity, and the first general Zagreb index of the generalized Sierpiński gasket
graph 𝐺 at step 𝑡 is determined.
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Theorem 1.3. [1] Let 𝐺 be a simple graph of order 𝑛 ≥ 2. For each integer 𝛼 ≥ 0, the general first Zagreb index of
the generalized Sierpiński gasket graph 𝑆[𝐺, 𝑡], 𝑡 ≥ 1 is given by

𝑍𝛼(𝑆[𝐺, 𝑡]) = 𝑛𝑡−1𝑍𝛼(𝐺) −
𝑛𝑡−1 − 1
𝑛 − 1 𝑍𝛼+1(𝐺) +

𝑛𝑡−1 − 1
𝑛 − 1

2Δ(𝐺)


𝑘=2

𝑎𝑘 ⋅ 𝑘𝛼 .

2. Main results

In this section, we determine some of the topological indices of the generalized Sierpiński gasket graph for special
graphs like 𝑃𝑛, 𝐶𝑛 and 𝐾𝑛.

Theorem 2.1. The first Zagreb index of the subdivision of the generalized Sierpiński gasket graph 𝐺 at step 𝑡 is given
by

𝑀1(𝑠𝑢𝑏(𝑆[𝐺, 𝑡])) = 𝑀1(𝑆[𝐺, 𝑡]) + 4|𝐸(𝑆[𝐺, 𝑡])|.

The following results are directly obtained from Theorem 2.1.

Corollary 2.2. For each 𝑡 ⩾ 2, the first Zagreb index of the subdivision of the generalized Sierpiński gasket graph
𝐾𝑛 at step 𝑡 is

𝑀1(𝑠𝑢𝑏(𝑆[𝐾𝑛 , 𝑡])) = 𝑀1(𝑆[𝐾𝑛 , 𝑡]) + 4|𝐸(𝑆[𝐾𝑛 , 𝑡])|.

Corollary 2.3. For the first Zagreb index of 𝑠𝑢𝑏(𝑆[𝐶𝑛 , 𝑡]) we have

𝑀1(𝑠𝑢𝑏(𝑆[𝐶𝑛 , 𝑡])) = 𝑀1(𝑆[𝐶𝑛 , 𝑡]) + 4|𝐸(𝑆[𝐶𝑛 , 𝑡])|.

Theorem 2.4. The second Zagreb index and the Sombor index of the subdivision of the generalized Sierpiński gasket
graph of complete graph 𝐾𝑛 in step 𝑡 is given by

𝑀2(𝑠𝑢𝑏(𝑆[𝐾𝑛 , 𝑡])) = 32(𝑛 − 1)3𝑚𝑛𝑡−1 − 1
𝑛 − 1 + 4𝑛(𝑛 − 1)3,

𝑎𝑛𝑑

𝑆𝑂(𝑠𝑢𝑏(𝑆[𝐾𝑛 , 𝑡])) = 2(𝑛 − 1)𝑚𝑛𝑡−1 − 1
𝑛 − 1 ඥ22 + 4(𝑛 − 1)2 + 2𝑚ඥ22 + (𝑛 − 1)2.

In the following Theorem two topological indices of the subdivision generalized Sierpiński gasket graph 𝑆[𝐶𝑛 , 𝑡] is
determined, see Figure 2

Theorem 2.5. If 𝑛 ⩾ 4 and 𝑡 ⩾ 2, then the second Zagreb index and the Sombor index of the subdivision of 𝑆[𝐶𝑛 , 𝑡])
is obtained

𝑀2(𝑠𝑢𝑏(𝑆[𝐶𝑛 , 𝑡])) = 256𝑚𝑛𝑡−1 − 1
𝑛 − 1 + 16ቆ2𝑚𝑛𝑡−1 − 4𝑚𝑛𝑡−1 − 1

𝑛 − 1 ቇ ,

𝑎𝑛𝑑

𝑆𝑂(𝑠𝑢𝑏(𝑆[𝐶𝑛 , 𝑡])) = 8√5𝑚𝑛𝑡−1 − 1
𝑛 − 1 + 4√2ቆ𝑚𝑛𝑡−1 − 2𝑚𝑛𝑡−1 − 1

𝑛 − 1 ቇ .

Theorem 2.6. If 𝑛 ⩾ 4, then the second Zagreb index and the Sombor index of subdivision of the generalized Sierpiński
gasket graph of the path 𝑃𝑛 in step 2 is determined by

𝑀2(𝑠𝑢𝑏(𝑆[𝑃𝑛 , 2])) = 8𝑚𝑛 + 12𝑛 − 32,
𝑎𝑛𝑑

𝑆𝑂(𝑠𝑢𝑏(𝑆[𝑃𝑛 , 2])) = (10𝑛 − 26)√5 + (4𝑚𝑛 − 12𝑛 + 16)√2 + 6√13.
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Fig. 2. Generalized Sierpiński gasket graphs 𝐶4, 𝑆[𝐶4 , 2] and 𝑆[𝐶4 , 3].
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Abstract

For a given finite group 𝐺, let 𝑞(𝐺) denote the minimal degree of a faithful representation of 𝐺
by quasi-permutation matrices over the rational field 𝑄 and let 𝑐(𝐺) be the minimal degree of
a faithful representation of 𝐺 by complex quasi-permutation matrices. Finally 𝑟(𝐺) denotes the
minimal degree of a faithful rational valued complex character of 𝐺. The purpose of this paper
is to calculate above quantities for the group 𝑆𝑂(3, 𝑞). Also we will give the character table of
the irreducible rational representations of 𝑆𝑂(3, 𝑞).

1. Introduction

In [10] and [11],Wong defined a quasi-permutation group of degree 𝑛, to be a finite group 𝐺 of automorphisms of an
𝑛-dimensional complex vector space such that every element of 𝐺 has non-negative integral trace. The terminology
drives from the fact that if 𝐺 is a finite group of permutations of a set Ω of size 𝑛 and we think of 𝐺 as acting on
the complex vector space with basis Ω, then the trace of an element 𝑔 ∈ 𝐺 is equal to the number of points of Ω
fixed by 𝑔. In [10] and [11] Wong studied the extent to which some facts about permutation groups generalize to
the quasi-permutation group situation. Then in 1994 Hartley with their colleague investigated further the analogy
between permutation groups and quasi-permutation groups by studying the relation between the minimal degree of a
faithful permutation representation of a given finite group 𝐺 and the minimal degree of a faithful quasi-permutation
representation. They also worked over the rational field and found some interesting results. We shall often prefer to
work over the rational field rather than the complex field.
By a quasi-permutation matrix we mean a square matrix over the complex field 𝐶 with non-negative integral trace.
Thus every permutation matrix over 𝐶 is a quasi-permutation matrix. For a given finite group 𝐺, let 𝑞(𝐺) denote the
minimal degree of a faithful representation of 𝐺 by quasi-permutation matrices over the rational field 𝑄 and let 𝑐(𝐺)
be the minimal degree of a faithful representation of 𝐺 by complex quasi-permutation matrices.
By a rational valued character we mean a character 𝜒 corresponding to a complex representation of 𝐺 such that 𝜒(𝑔) ∈
𝑄 for all 𝑔 ∈ 𝐺. As the values of the character of a complex representation are algebraic numbers, a rational valued
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character is in fact integer valued. A quasi-permutation representation of 𝐺 is then simply a complex representation
of 𝐺 whose character valuses are rational and non-negative. The module of such a representation will be called a
quasi-permutation module. We will call a homomorphism from 𝐺 to 𝐺𝐿(𝑛, 𝑄) a rational representation of 𝐺 and its
corresponding character will be called a rational character of 𝐺. Let 𝑟(𝐺) denote the minimal degree of a faithful
rational valued character of 𝐺. It is easy to see that for a finite group 𝐺 the following inequalities hold

𝑟(𝐺) < 𝑐(𝐺) ≤ 𝑞(𝐺).

It is easy to see that if 𝐺 is a symmetric group of degree 6, then 𝑟(𝐺) = 5 and 𝑐(𝐺) = 𝑞(𝐺) = 6. If 𝐺 is the quaternion
group of order 8, then 𝑟(𝐺) = 2, 𝑐(𝐺) = 4 and 𝑞(𝐺) = 8.
Finding the above quantities have been carried out in some papers, for example in [3], [4] and [5] we found these for
the groups 𝐺𝐿(2, 𝑞), 𝑆𝑈(3, 𝑞2), 𝑃𝑆𝑈(3, 𝑞2), 𝑆𝐿(3, 𝑞) and 𝑃𝑆𝑙(3, 𝑞). Our principal aim in this paper is to investigate
these quantities and inequalities further. In this paper we will give the character table of the irreducible rational
representations of 𝑆𝑂(3, 𝑞), by using the character table and the Schur indices of these groups.

2. Notation and preliminary results

Let 𝐺 be a finite group and 𝜒 be an irreducible complex character of 𝐺. Let 𝑚𝑄(𝜒) denote the Schur index of 𝜒 over
𝑄. Let Γ(𝜒) be the Galois group 𝑄(𝜒) over 𝑄. It is known that


𝛼∈Γ(𝜒)

𝑚𝑄(𝜒)𝜒𝛼 (∗)

is a character of an irreducible 𝑄(𝐺)-module [[8], Corollary 10.2(b)]. So by knowing the character table of a group 𝐺
and Suchr indices of each of the irreducible characters of 𝐺, we can find the irreducible rational characters of 𝐺.

Let 𝜒 be a character of 𝐺 such that, for all 𝑔 ∈ 𝐺, 𝜒(𝑔) ∈ 𝑄 and 𝜒(𝑔) ≥ 0 . Then we say that 𝜒 is a non-negative
rational valued character.

Definition 2.1. Let Γ(𝜒) be the Galois group of 𝑄(𝜒) over 𝑄 .
Let 𝐺 be a finite group and 𝜒 be an irreducible complex character of 𝐺 . Then we define

1) 𝑑(𝜒) = |Γ(𝜒)|𝜒(1)

2)𝑚(𝜒) = ቐ
0 𝜒 = 1𝐺

|min{∑𝛼∈Γ(𝜒)𝜒𝛼(𝑔) ∶ 𝑔 ∈ 𝐺}| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
3) 𝑐(𝜒) = ∑𝛼∈Γ(𝜒)𝜒𝛼 +𝑚(𝜒)1𝐺 .

Lemma 2.2. Let 𝜒 be a character of 𝐺 . Then 𝐾𝑒𝑟𝜒 = 𝐾𝑒𝑟 ∑𝛼∈Γ(𝜒) 𝜒𝛼 . Moreover 𝜒 is faithful if and only if
∑𝛼∈Γ(𝜒) 𝜒𝛼 is faithful .

Lemma 2.3. Let 𝜒 ∈ 𝐼𝑟𝑟(𝐺) ,then ∑𝛼∈Γ(𝜒) 𝜒𝛼 is a rational valued character of 𝐺 . Moreover 𝑐(𝜒) is a non-negative
rational valued character of 𝐺 and 𝑐(𝜒)(1) = 𝑑(𝜒) + 𝑚(𝜒).
Lemma 2.4. Let 𝜒 ∈ 𝐼𝑟𝑟(𝐺), 𝜒 ≠ 1𝐺 . Then 𝑐(𝜒)(1) ≥ 𝑑(𝜒) + 1 ≥ 𝜒(1) + 1 .

Lemma 2.5. Let 𝜒 ∈ 𝐼𝑟𝑟(𝐺). Then

(1) 𝑐(𝜒)(1) ≥ 𝑑(𝜒) ≥ 𝜒(1);

(2) 𝑐(𝜒)(1) ≤ 2𝑑(𝜒) . Equality occurs if and only if 𝑍(𝜒)/𝑘𝑒𝑟𝜒 is of even order.
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Now according to Corollary 3.11 of [1] and above statements the following corollary is useful for calculation of
𝑟(𝐺), 𝑐(𝐺) and 𝑞(𝐺).

Corollary 2.6. Let 𝐺 be a finite group with a unique minimal normal subgroup. Then

1) 𝑟(𝐺) = min{𝑑(𝜒) ∶ 𝜒 is a faithful irreducible complex character of 𝐺}

2) 𝑐(𝐺) = min{𝑐(𝜒)(1) ∶ 𝜒 is a faithful irreducible complex character of 𝐺}

3) 𝑞(𝐺) = min{𝑚𝑄(𝜒)𝑐(𝜒)(1) ∶ 𝜒 is a faithful irreducible complex character of 𝐺}.

If the Schur index of each non-principal irreducible character of 𝐺 over 𝑄 is equal to𝑚 , then from [1] Corollary 3.15
we have 𝑞(𝐺) = 𝑚𝑐(𝐺).

The proof of the following facts may be found in [2].

Let 𝜖 be a primitive 𝑛-th root of unity in 𝐶. Then 𝜖 + 𝜖−1 is rational if and only if 𝑛 = 1, 2, 3, 4, 6.

Also 𝜖𝑗 + 𝜖−𝑗 , 1 ≤ 𝑗 ≤ 𝑛 is rational if and only if 𝑛 = 𝑗, 2𝑗, 3𝑗, 4𝑗, 6𝑗, 32 𝑗,
4
3 𝑗,

6
5 𝑗.

In this case if 𝑖 ∈ 𝑍 and 𝑑𝑖 = (𝑖, 𝑛), and 𝑛 > 2𝑑𝑖, then [𝑄(𝜖𝑖 + 𝜖−𝑖) ∶ 𝑄] = 1
2𝜑(

𝑛
𝑑𝑖
), and if 𝑛 ≠ 𝑑𝑖, 2𝑑𝑖, then


𝛼∈Γ𝑖

(𝜖𝑖 + 𝜖−𝑖)𝛼 = 𝜇( 𝑛𝑑𝑖
)

where Γ𝑖 = (𝑄(𝜖𝑖 + 𝜖−𝑖 ∶ 𝑄) and 𝜇 is the M�̈�bius function.

With the above assumption if we set Γ = (𝑄(𝜖 + 𝜖−1) ∶ 𝑄), then


𝛼∈Γ

(𝜖𝑖 + 𝜖−𝑖)𝛼 = 𝜑(𝑛)
𝜑( 𝑛𝑑𝑖 )

𝜇( 𝑛𝑑𝑖
)

where 𝑑𝑖 = (𝑖, 𝑛).

Now by [8] we have three important lemmas as follows:

Lemma 2.7. Let 𝐺 be a finite group and let 𝜒 ∈ 𝐼𝑟𝑟(𝐺) .Then 𝑚𝑄(𝜒) | 𝜒(1). Moreover when 𝜒 is linear we have
𝑚𝑄(𝜒) = 1.
Lemma 2.8. a) Let 𝑉𝑖(𝑖 = 1, 2) be 𝐾𝐺-modules . Then the tensor product 𝑉1 ⊗𝐾 𝑉2 over 𝐾 obviously becomes a
𝐾[𝐺1 × 𝐺2] module by

(𝑣1 ⊗𝑣2)(𝑔1, 𝑔2) = 𝑣1𝑔1 ⊗𝑣2𝑔2
For 𝑣𝑖 ∈ 𝑉𝑖 , 𝑔𝑖 ∈ 𝐺 .
If 𝜒𝑖 is the character of 𝐺𝑖 on 𝑉𝑖 , then the character 𝜏 of 𝐺1 × 𝐺2 on 𝑉1 ⊗𝑉2 is given by

𝜏((𝑔1, 𝑔2)) = 𝜒1(𝑔1)𝜒2(𝑔2)
For 𝑔𝑖 ∈ 𝐺𝑖 .

b) Let 𝜒1, ..., 𝜒ℎ be the irreducible characters of 𝐺1 over 𝐶 and 𝜓1, ..., 𝜓𝑘 be the irreducible characters of 𝐺2 over 𝐶
. Then the 𝑡𝑖𝑗 defined by 𝑡𝑖𝑗((𝑔1, 𝑔2)) = 𝜒𝑖(𝑔1)𝜓𝑗(𝑔2) where 𝑖 = 1, ..., ℎ and 𝑗 = 1, ..., 𝑘 are all the irreducible
characters of 𝐺1 × 𝐺2 .
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Lemma 2.9. Let 𝐺 = 𝐻 × 𝐾 and 𝜓 ∈ 𝐼𝑟𝑟(𝐻) and 𝜃 ∈ 𝐼𝑟𝑟(𝐾). Let 𝜒 = 𝜓 × 𝜃 and let 𝐹 ⊆ 𝐶.

a)𝑚𝐹(𝜒) divides𝑚𝐹(𝜓)𝑚𝐹(𝜃).

b) Equality occurs in (𝑎) provided (𝑚𝐹(𝜓), 𝜃(1)|𝐹(𝜃) ∶ 𝐹|) = 1 and
(𝑚𝐹(𝜃), 𝜓(1)|𝐹(𝜓) ∶ 𝐹|) = 1

3. Main results

The orthogonal group of degree 𝑛 over a field 𝐹 (write as 𝑂(𝑛, 𝐹)) is the group of 𝑛-by-𝑛 orthogonal matrices with
entries from 𝐹, with the group operation that of matrix multiplication. This is a subgroup of the general linear group
𝐺𝐿(𝑛, 𝐹) given by

𝑂(𝑛, 𝐹) = {𝑄 ∈ 𝐺𝐿(𝑛, 𝐹) | 𝑄𝑇𝑄 = 𝑄𝑄𝑇 = 𝐼}.
where 𝑄𝑇 is the transpose of 𝑄. The classical orthogonal group over the real numbers is usually just written 𝑂(𝑛).
More generally the orthogonal group of a non-singular quadratic form over 𝐹 is the group of matrices preserving the
form. The Cartan-Dieudonne theorem describes the structure of the orthogonal group. Every orthogonal matrix has
determinant either 1 or −1. The orthogonal 𝑛-by-𝑛 matrices with determinant 1 form a normal subgroup of 𝑂(𝑛, 𝐹)
known as the special orthogonal group 𝑆𝑂(𝑛, 𝐹). If the characteristic of 𝐹 is 2, then 1 = −1, hence 𝑂(𝑛, 𝐹) and
𝑆𝑂(𝑛, 𝐹) coincide; otherwise the index of 𝑆𝑂(𝑛, 𝐹) in 𝑂(𝑛, 𝐹) is 2.

Now let 𝐿 = {ቌ
𝑎𝑑 + 𝑏𝑐 𝑎𝑐 𝑏𝑑
2𝑎𝑏 𝑎2 𝑏2
2𝑐𝑑 𝑐2 𝑑2

ቍ | 𝑎𝑑 − 𝑏𝑐 = 1 𝑎𝑛𝑑 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐺𝐹(𝑞)}
.

Dickson [6 , Theorem 178] shows that 𝐿 is a normal subgroup of index 2 of 𝑆𝑂(3, 𝑞) and is isomorphic to 𝑃𝑆𝐿(2, 𝑞) =
𝑆𝐿(2, 𝑞)/{±𝐼} through the isomorphism

±ቆ 𝑎 𝑏
𝑐 𝑑 ቇ ⟼ ቌ

𝑎𝑑 + 𝑏𝑐 𝑎𝑐 𝑏𝑑
2𝑎𝑏 𝑎2 𝑏2
2𝑐𝑑 𝑐2 𝑑2

ቍ , (∗∗)

for each ±ቆ 𝑎 𝑏
𝑐 𝑑 ቇ ∈ 𝑃𝑆𝐿(2, 𝑞). Furthermore ,

𝑆𝑂(3, 𝑞) = 𝐿 ∪ ቌ
1

𝜔−1

𝜔
ቍ ⋅ 𝐿

is isomorphic to

𝑃𝐺𝐿(2, 𝑞) = 𝑃𝑆𝐿(2, 𝑞) ∪ ቆ 1
𝜔 ቇ ⋅ 𝑃𝑆𝐿(2, 𝑞)

by extending the isomorphism in (∗∗) to 𝑃𝐺𝐿(2, 𝑞) by defining

ቆ 1
𝜔 ቇ ⟼ ቌ

1
𝜔−1

𝜔
ቍ .

Since 𝑆𝑂(3, 𝑞) and 𝑃𝐺𝐿(2, 𝑞) are isomorphic, therefore they have the same conjugacy class structures .
From the conjugacy class structure of 𝑃𝐺𝐿(2, 𝑞) in Steinberg [9], we know that 𝑆𝑂(3, 𝑞) has 𝑞+2 conjugacy classes,
namely, 1 class of size 1

1 class of size 𝑞2 − 1
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𝑞−3
2 classes of size 𝑞(𝑞 + 1)

𝑞−1
2 classes of size 𝑞(𝑞 − 1)

1 class of size 𝑞(𝑞+1)
2

1 class of size 𝑞(𝑞−1)
2 .

Define 𝑇(𝑥) = 𝑡𝑟(𝑥) + 1, ∀𝑥 ∈ 𝑆𝑂(3, 𝑞). Then we have

𝑇 =

⎧
⎪⎪

⎨
⎪⎪
⎩

(𝑎 + 𝑑)2 𝑖𝑓 𝑥 = ቌ
𝑎𝑑 + 𝑏𝑐 𝑎𝑐 𝑏𝑑
2𝑎𝑏 𝑎2 𝑏2
2𝑐𝑑 𝑐2 𝑑2

ቍ ∈ 𝐿

𝜔−1(𝑎 + 𝜔𝑑)2 𝑖𝑓 𝑥 = ቌ
1

𝜔−1

𝜔
ቍቌ

𝑎𝑑 + 𝑏𝑐 𝑎𝑐 𝑏𝑑
2𝑎𝑏 𝑎2 𝑏2
2𝑐𝑑 𝑐2 𝑑2

ቍ ∈ 𝑆𝑂(3, 𝑞)\𝐿

Thus 𝑇 is a surjective map from 𝑆𝑂(3, 𝑞) onto 𝐺𝐹(𝑞) and for all 𝑥 in 𝑆𝑂(3, 𝑞) such that 𝑇(𝑥) ≠ 0, 𝑥 ∈ 𝐿 if and only
if 𝑇(𝑥) is a square in 𝐺𝐹(𝑞).
Since two elements of 𝑆𝑂(3, 𝑞) which are conjugate in 𝑆𝑂(3, 𝑞) necessarily have the same trace and hence the same
value of 𝑇, by counting the number of elements in 𝑆𝑂(3, 𝑞)with the same value of 𝑇 and taking into account that every
conjugacy class of 𝑆𝑂(3, 𝑞) is either contained in 𝐿 or disjoint from 𝐿, we have the conjugacy classes of 𝑆𝑂(3, 𝑞) as
follows :

Table (1)
conjugacy classes class size

𝐴1 𝐷 = {𝐼} 1
𝐴2 𝐹 = {𝑥 ∈ 𝐿|𝑇(𝑥) = 4, 𝑥 ≠ 𝐼} 𝑞2 − 1

[𝜃𝑖] = {𝑥 ∈ 𝐿|𝑇(𝑥) = 𝜃𝑖}, 1 ≤ 𝑖 ≤ 𝑞−5
4 𝑞(𝑞 + 1)

𝐴3 [𝛾𝑗] = {𝑥 ∈ 𝑆𝑂(3, 𝑞)\𝐿|𝑇(𝑥) = 𝛾𝑗}, 1 ≤ 𝑗 ≤ 𝑞−1
4 𝑞(𝑞 + 1)

[0] = {𝑥 ∈ 𝐿|𝑇(𝑥) = 0} 𝑞(𝑞+1)
2

[𝜋𝑘] = {𝑥 ∈ 𝐿|𝑇(𝑥) = 𝜋𝑘}, 1 ≤ 𝑘 ≤ 𝑞−1
4 𝑞(𝑞 − 1)

𝐵1 [𝜉𝑙] = {𝑥 ∈ 𝑆𝑂(3, 𝑞)\𝐿|𝑇(𝑥) = 𝜉𝑙}, 1 ≤ 𝑙 ≤ 𝑞−1
4 𝑞(𝑞 − 1)

[0]′ = {𝑥 ∈ 𝑆𝑂(3, 𝑞)\𝐿|𝑇(𝑥) = 0} 𝑞(𝑞−1)
2

where 𝐴1, 𝐴2, 𝐴3 and 𝐵1 are the notations of the types of conjugacy classes of 𝑃𝐺𝐿(2, 𝑞) used in Steinberg [9].

Therefore , from the character table of 𝑃𝐺𝐿(2, 𝑞) , we can determine the character table of 𝑆𝑂(3, 𝑞) because these two
groups are isomorphic . Thus we have the character table of 𝑆𝑂(3, 𝑞) as follows.
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Table (2)
Irreducible characters of 𝑆𝑂(3, 𝑞)

𝜌1 𝜌𝑞 𝜌′1 𝜌′𝑞 𝜌(𝑛)𝑞+1 𝜌(𝑚)
𝑞−1

1 ≤ 𝑛 ≤ 𝑞−3
2 1 ≤ 𝑚 ≤ 𝑞−1

2
𝐷 1 𝑞 1 𝑞 𝑞 + 1 𝑞 − 1
𝐹 1 0 1 0 1 −1
[𝜃𝑖] 1 1 1 1 𝜀(2𝑖)𝑛 + 𝜀−(2𝑖)𝑛 0
[𝛾𝑗] 1 1 −1 −1 𝜀(2𝑗−1)𝑛 + 𝜀−(2𝑗−1)𝑛 0
[0] 1 1 1 1 2(−1)𝑛 0
[𝜋𝑘] 1 −1 1 −1 0 −(𝛿(2𝑘)𝑚 + 𝛿−(2𝑘)𝑚)
[𝜉𝑙] 1 −1 −1 1 0 −(𝛿(2𝑙−1)𝑚 + 𝛿−(2𝑙−1)𝑚)
[0]′ 1 −1 −1 1 0 −2(−1)𝑚

where 𝜀𝑞−1 = 1 = 𝛿𝑞+1.

Now , since 𝑂(3, 𝑞) ≅ {±𝐼} × 𝑆𝑂(3, 𝑞), hence the negative of each conjugacy class in 𝑆𝑂(3, 𝑞) is a conjugacy class
in 𝑂(3, 𝑞), so we have a complete characterization of the conjugacy classes of 𝑂(3, 𝑞). Furthermore ,by Lemma 2.8
the irreducible characters of 𝐺 are all the possible products of an irreducible character of the cyclic group of order two
, {±𝐼}, with an irreducible character of 𝑆𝑂(3, 𝑞). Thus we have the character table of 𝑂(3, 𝑞) as follows.

4. Character tables of irreducible rational representations of the groups 𝑆𝑂(3, 𝑞)

Lemma 4.1. Let 𝐺 = 𝑆𝑂(3, 𝑞), 𝜀 be a primitive (𝑞 − 1)-th root of unity , 𝛿 be a primitive 𝑞 + 1-th root of unity,
𝑛 = 𝑞−1

4 and𝑚 = 𝑞+1
4 . Then

1) 𝜀(2𝑖)𝑛 + 𝜀−(2𝑖)𝑛 = 𝜀(2𝑗−1)𝑛 + 𝜀−(2𝑗−1)𝑛 = ቊ −2 𝑖𝑓 𝑖 (𝑗) 𝑖𝑠 𝑜𝑑𝑑
2 𝑖𝑓 𝑖 (𝑗) 𝑖𝑠 𝑒𝑣𝑒𝑛

2)−(𝛿(2𝑘)𝑚 + 𝛿−(2𝑘)𝑚) = −(𝛿(2𝑙−1)𝑚 + 𝛿−(2𝑙−1)𝑚) = ቊ 2 𝑖𝑓 𝑘 (𝑙) 𝑖𝑠 𝑜𝑑𝑑
−2 𝑖𝑓 𝑘 (𝑙) 𝑖𝑠 𝑒𝑣𝑒𝑛

Proof. We know that 𝜀(2𝑖)𝑛+𝜀−(2𝑖)𝑛 , 𝜀(2𝑗−1)𝑛+𝜀−(2𝑗−1)𝑛 , −(𝛿(2𝑘)𝑚+𝛿−(2𝑘)𝑚) and −(𝛿(2𝑙−1)𝑚+𝛿−(2𝑙−1)𝑚)
are rationals. (See section 2)

Now since (1), (2) have similar proofs , we will prove only (1) .
𝜀(2𝑖)

𝑞−1
4 + 𝜀−(2𝑖)

𝑞−1
4 = 𝜀𝑖

𝑞−1
2 + 𝜀−𝑖

𝑞−1
2 = (−1)𝑖 + (−1)−𝑖 = ቊ −2 𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑

2 𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛
and

𝜀(2𝑗−1)
𝑞−1
4 + 𝜀−(2𝑗−1)

𝑞−1
4 = 𝜀(2𝑗)

𝑞−1
4 + 𝜀−(2𝑗)

𝑞−1
4 + 𝜀

−(𝑞−1)
4 + 𝜀

𝑞−1
4 =

ቊ −2 𝑖𝑓 𝑗 𝑖𝑠 𝑜𝑑𝑑
2 𝑖𝑓 𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛 + (−1)

−1
2 + (−1)

1
2

but (−1)
−1
2 + (−1)

1
2 = 0 and so the result follows.

Corollary 4.2. Let 𝐺 = 𝑆𝑂(3, 𝑞), then the irreducible characters 𝜌(
𝑞−1
4 )

𝑞+1 and 𝜌(
𝑞+1
4 )

𝑞−1 are rationals.

Proof. This follows from Lemma 4.1.
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Lemma 4.3. Let 𝐺 = 𝑆𝑂(3, 𝑞), then the Galois orbit sums in 𝐼𝑟𝑟(𝐺) are as follows:
a) 𝜌(𝑒)𝑞+1 = ∑𝛼∈Γ(𝜌

(𝑛)
𝑞+1)𝛼

where: 𝑒 = (𝑛, 𝑞 − 1) and 1 ≤ 𝑛 ≤ 𝑞−3
2 and Γ = Γ(𝑄(𝜌(𝑛)𝑞+1) ∶ 𝑄).

b) 𝜌(𝑓)𝑞−1 = ∑𝛼∈Γ(𝜌
(𝑚)
𝑞−1)𝛼

where: 𝑓 = (𝑚, 𝑞 + 1) and 1 ≤ 𝑚 ≤ 𝑞−1
2 and Γ = Γ(𝑄(𝜌(𝑚)

𝑞−1) ∶ 𝑄).

c) 𝜌(
1
4 (𝑞−1))

𝑞+1 and 𝜌(
1
4 (𝑞+1))

𝑞−1 .

d) 𝜌1, 𝜌𝑞 , 𝜌
′
1, 𝜌

′
𝑞 .

Proof. Since (a) and (b) have similar proofs, we will prove only (a). Fix an integer 𝑛, 1 ≤ 𝑛 ≤ 𝑞−3
2 . Recall that 𝜀 is

a primitive (𝑞 − 1)-th root of unity. Since Γ(𝑄(𝜌(𝑛)𝑞+1) ∶ 𝑄) = Γ(𝑄(𝜀𝑛 + 𝜀−𝑛) ∶ 𝑄) and 𝜀𝑛 is a primitive 𝑞−1
𝑒 -th root

of unity where 𝑒 = (𝑛, 𝑞 − 1), so , ∑𝛼∈Γ(𝜌
(𝑛)
𝑞+1)𝛼 = ∑𝑖∈𝐴(𝜌

(𝑖)
𝑞+1) where 𝐴 = {𝑖 ∶ 𝑒 = (𝑖, 𝑞 − 1)} and 1 ≤ 𝑖 ≤ 𝑞−3

2 .
c) Follows from Lemma 4.1 .
d) Follows from the character table of 𝑆𝑂(3, 𝑞).

By Lemma 2.5 we know :

If 𝜌(𝑛)𝑞+1, 𝜌(𝑚)
𝑞−1 are irreducible characters of 𝐺, then ∑𝛼∈Γ1(𝜌

(𝑛)
𝑞+1)𝛼 and ∑𝛼∈Γ2(𝜌

(𝑚)
𝑞−1)𝛼 are rational valued characters of

𝐺 , where Γ1 = Γ(𝑄(𝜌(𝑛)𝑞+1) ∶ 𝑄) and Γ2 = Γ(𝑄(𝜌(𝑚)
𝑞−1) ∶ 𝑄).

Corollary 4.4. Let 𝐺 = 𝑆𝑂(3, 𝑞) ,then characters of an irreducible 𝑄(𝐺)-module are as follows:

𝜌(𝑒)𝑞+1 , 𝜌(𝑓)𝑞−1 , 𝜌
( 14 (𝑞−1))
𝑞+1 , 𝜌(

1
4 (𝑞+1))

𝑞−1 , 𝜌1 , 𝜌𝑞 , 𝜌
′
1 , 𝜌

′
𝑞 .

Proof. By [7] and [8, Lemma 2.22] , Schur index of each irreducible characters is 1 . So by (∗) and Lemma 4.3 the
corollary follows.

Lemma 4.5. Let 𝐺 = 𝑆𝑂(3, 𝑞), then

1) 𝑒 and 𝑒′ divisors of 𝑞 − 1 such that 𝑒 ≤ 𝑞−3
2 and 𝑒′ ≤ 𝑞−3

2 .

2) 𝑓 and 𝑓′ denote divisors of 𝑞 + 1 such that 𝑓 ≤ 𝑞−1
2 and 𝑓′ ≤ 𝑞−1

2 .

3) 𝜀𝑒 is a primitive 𝑞−1
𝑒 -th root of unity.

4) 𝛿𝑓 is a primitive 𝑞+1
𝑓 -th root of unity.

5) 𝑆1(𝑒, 𝑒
′) = ∑𝛼∈Γ(𝜀𝑒

′
𝑒 + 𝜀−𝑒

′
𝑒 )𝛼 = 𝜑( 𝑞−1𝑒 )

𝜑(
𝑞−1
𝑒

( 𝑞−1𝑒 ,𝑒′ )
)
𝜇(

𝑞−1
𝑒

( 𝑞−1𝑒 ,𝑒′ )
).
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6) 𝑆2(𝑓, 𝑓
′) = ∑𝛼∈Γ(𝛿

𝑓′
𝑓 + 𝛿−𝑓

′

𝑓 )𝛼 =
𝜑( 𝑞+1𝑓 )

𝜑(
𝑞+1
𝑓

( 𝑞+1𝑓 ,𝑓′ )
)
𝜇(

𝑞+1
𝑓

( 𝑞+1𝑓 ,𝑓′ )
).

where Γ = Γ(𝑄(𝜌(𝑓)𝑞−1) ∶ 𝑄).(See Section 2)

Lemma 4.6. Let𝐺 = 𝑆𝑂(3, 𝑞) , then for the irreducible characters 𝜌(𝑒)𝑞+1, 𝜌(𝑓)𝑞−1 of rational representations of𝐺 we have

a)𝜌(𝑒)𝑞+1(𝐷) =
1
2(𝑞 + 1)𝜑(𝑞−1𝑒 )

𝜌(𝑒)𝑞+1(𝐹) =
1
2𝜑(

𝑞−1
𝑒 )

𝜌(𝑒)𝑞+1([𝜗𝑖]) = 𝑆1(𝑒, 𝑒
′)

𝜌(𝑒)𝑞+1([𝛾𝑗]) = 𝑆1(𝑒, 𝑒
′)

𝜌(𝑒)𝑞+1([0]) = (−1)𝑒𝜑(𝑞−1𝑒 ) = ൝
𝜑(𝑞−1𝑒 ) 𝑖𝑓 𝑒 𝑖𝑠 𝑒𝑣𝑒𝑛
−𝜑(𝑞−1𝑒 ) 𝑖𝑓 𝑒 𝑖𝑠 𝑜𝑑𝑑

𝜌(𝑒)𝑞+1([𝜋𝑘]) = 𝜌(𝑒)𝑞+1([𝜉𝑙]) = 𝜌(𝑒)𝑞+1([0]
′) = 0

b)𝜌(𝑓)𝑞−1(𝐷) =
1
2(𝑞 − 1)𝜑(𝑞+1𝑓 )

𝜌(𝑓)𝑞−1(𝐹) = −1
2𝜑(

𝑞+1
𝑓 )

𝜌(𝑓)𝑞−1([𝜗𝑖]) = 𝜌(𝑓)𝑞−1([𝛾𝑗]) = 𝜌(𝑓)𝑞−1([0]) = 0
𝜌(𝑓)𝑞−1([𝜋𝑘]) = −𝑆2(𝑓, 𝑓

′)
𝜌(𝑓)𝑞−1([𝜉𝑙]) = −𝑆2(𝑓, 𝑓

′)

𝜌(𝑓)𝑞−1([0]
′) = ቐ

−𝜑(𝑞+1𝑓 ) 𝑖𝑓 𝑓 𝑖𝑠 𝑒𝑣𝑒𝑛
𝜑(𝑞+1𝑓 ) 𝑖𝑓 𝑓 𝑖𝑠 𝑜𝑑𝑑

Proof. These follows from Lemmas 4.1, 4.3 , Notation 4.5 and Table(2) .

Now in the above notation we have :

Theorem 4.7. The character table of the irreducible rational representation of 𝑆𝑂(3, 𝑞) is as follow:

Table (3)
The irreducible rational characters of 𝑆𝑂(3, 𝑞)

𝜌1 𝜌𝑞 𝜌′1 𝜌′𝑞 𝜌(
𝑞−1
4 )

𝑞+1 𝜌(
𝑞+1
4 )

𝑞−1 𝜌(𝑒)𝑞+1 𝜌(𝑓)𝑞−1
𝐷 1 𝑞 1 𝑞 𝑞 + 1 𝑞 − 1 1

2(𝑞 + 1)𝜑(𝑞−1𝑒 ) 1
2(𝑞 − 1)𝜑(𝑞+1𝑓 )

𝐹 1 0 1 0 1 −1 1
2𝜑(

𝑞−1
𝑒 ) −1

2𝜑(
𝑞+1
𝑓 )

[𝜃𝑖] 1 1 1 1 2(−1)𝑖 0 𝑆1(𝑒, 𝑒
′) 0

[𝛾𝑗] 1 1 −1 −1 2(−1)𝑖 0 𝑆1(𝑒, 𝑒
′) 0

[0] 1 1 1 1 2(−1)
𝑞−1
4 0 (−1)𝑒𝜑(𝑞−1𝑒 ) 0

[𝜋𝑘] 1 −1 1 −1 0 −2(−1)𝑘 0 −𝑆2(𝑓, 𝑓
′)

[𝜉𝑙] 1 −1 −1 1 0 −2(−1)𝑙 0 −𝑆2(𝑓, 𝑓
′)

[0]′ 1 −1 −1 1 0 −2(−1)
𝑞+1
4 0 (−1)𝑓+1𝜑(𝑞+1𝑓 )

.
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5. Quasi-permutation representations

In this section we calculate 𝑟(𝐺), 𝑐(𝐺) and 𝑞(𝐺) for the group 𝑆𝑂(3, 𝑞) in two ways.

Theorem 5.1. Let 𝐺 = 𝑆𝑂(3, 𝑞), then

a) 𝑟(𝐺) = 𝑞 − 1

b)𝑐(𝐺) = 𝑞(𝐺) = 𝑞 + 1

c)𝐿𝑖𝑚𝑞⟶∞
𝑐(𝐺)
𝑟(𝐺) = 1.

Proof. By [7] and [8, Lemma 2.22] Schur index of each irreducible characters is 1 and so we have 𝑐(𝐺) = 𝑞(𝐺).
By Corollary 4.2 we know that the characters 𝜌(

𝑞+1
4 )

𝑞−1 and 𝜌(
𝑞−1
4 )

𝑞+1 are rational valued characters , now by definition
of 𝑑(𝜒) and 𝑐(𝜒) and Table (2) we have :
𝑑(𝜌(𝑚)

𝑞−1) = |Γ|𝜌(𝑚)
𝑞−1(1) ≥ 𝑞 − 1 where Γ = Γ(𝑄(𝜌(𝑚)

𝑞−1) ∶ 𝑄) and 𝑚(𝜌(𝑚)
𝑞−1) ≥ 2 and so 𝑐(𝜌(𝑚)

𝑞−1)(1) ≥ 𝑞 + 1
and equality hold if𝑚 = 𝑞+1

4 .
And 𝑑(𝜌(𝑛)𝑞+1) ≥ 𝑞 + 1 and 𝑚(𝜌(𝑛)𝑞+1) ≥ 2 and so 𝑐(𝜌(𝑚)

𝑞+1)(1) ≥ 𝑞 + 3 and equality hold if 𝑛 = 𝑞−1
4 .

For other characters we have 𝑑(𝜌𝑞) = 𝑑(𝜌′𝑞) = 𝑞 and 𝑚(𝜌𝑞) = 𝑚(𝜌′𝑞) = 1 and so 𝑐(𝜌𝑞)(1) = 𝑐(𝜌′𝑞)(1) =
𝑞 + 1.

Now we have the following table:

Table (4)
𝜒 𝑑(𝜒) 𝑐(𝜒)(1)
𝜌𝑞 𝑞 𝑞 + 1
𝜌′𝑞 𝑞 𝑞 + 1
𝜌(𝑛)𝑞+1 ≥ 𝑞 + 1 ≥ 𝑞 + 3
𝜌(𝑚)
𝑞−1 ≥ 𝑞 − 1 ≥ 𝑞 + 1

Now by Definition 2.1 and and Table (4) we have :

min {𝑑(𝜒) ∶ 𝑘𝑒𝑟𝜒 = 1} = 𝑞 − 1 and min {𝑐(𝜒)(1) ∶ 𝑘𝑒𝑟𝜒 = 1} = 𝑞 + 1.

We can prove the above statement with another way :
We know that 1

2𝜑(
𝑞−1
𝑒 ) , 1

2𝜑(
𝑞+1
𝑓 ) ≥ 1. Thus the degrees of faithful rational characters of 𝐺 are at least 𝑞 − 1 .

Also the degree of 𝜌(
𝑞+1
4 )

𝑞−1 is exactly 𝑞 − 1, therefore by definition of 𝑟(𝐺) and Table(4) we have 𝑟(𝐺) = 𝑞 − 1. As

𝑚𝑖𝑛{𝜌(
𝑞+1
4 )

𝑞−1 (𝑔) | 𝑔 ∈ 𝐺} = −2 and 𝑚𝑖𝑛{𝜌𝑞(𝑔) | 𝑔 ∈ 𝐺} = 𝑚𝑖𝑛{𝜌′𝑞(𝑔) | 𝑔 ∈ 𝐺} = −1 , so by definition of 𝑐(𝐺)
and Table (4) we have 𝑐(𝐺) = (𝑞 − 1) + 2 or 𝑐(𝐺) = 𝑞 + 1.
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Abstract

TheCauchy inequality is one of themost well-known properties of positive sesquilinear forms on
vector spaces. We present a Cauchy inequality for bilinear mappings of Hilbert space operators.

1. Introduction

Assume that ℬ(ℋ) is the 𝐶∗-algebra of all bounded linear operators on a Hilbert space ℋ. An operator 𝑇 is called
positive and is denoted by 𝑇 ≥ 0 if ⟨𝑇𝑥, 𝑥⟩ ≥ 0 for all vectors 𝑥 ∈ ℋ. This provides a partial order on the set of all
Hermitian operators as 𝑇 ≤ 𝑆, when 𝑆 − 𝑇 ≥ 0. The set of all positive operators onℋ is denoted by ℬ(ℋ)+.
A mapping Φ ∶ ℬ(ℋ) → ℬ(𝒦) is said to be positive if Φ(𝑇) ≥ 0 for every 𝑇 ≥ 0. If Φ(𝐼) = 𝐼, then Φ is called
unital, where we denote the identity operator on bothℋ and𝒦 by 𝐼.
Positive linear mappings are important objects in the study of operator algebras as well as in application of operator
theory in mathematical physics.
If 𝔄 is a 𝐶∗-algebra, then𝕄𝑛(𝔄) is the 𝐶∗-algebra including 𝑛 × 𝑛 matrices with entries in 𝔄.
Every linear map Φ induces the mappings Φ𝑛 ∶ 𝕄𝑛(ℬ(ℋ)) → 𝕄𝑛(ℬ(𝒦)) for every 𝑛 ∈ ℕ by

Φ𝑛([𝑇𝑖𝑗]) = [Φ(𝑇𝑖𝑗)].

IfΦ𝑛 is positive, thenΦ is said to be 𝑛-positive. Typical example of 𝑛-positive maps are maps of the form 𝑇 ↦ 𝑉∗𝑇𝑉.
To see more information and examples about 𝑛-positive maps see [1, 4].

We are interested in multilinear mappings here. A multilinear mapping Φ∶ ℬ(ℋ)𝑚 → ℬ(𝒦) is called positive if

𝑇𝑖 ∈ ℬ(ℋ)+, (𝑖 = 1,… ,𝑚) ⟹ Φ(𝑇1, … , 𝑇𝑚) ∈ ℬ(𝒦)+.
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Typical example of positive multilinear mappings are tensor products of operators:

(𝑇1, … , 𝑇𝑚) ↦ 𝑇1 ⊗⋯⊗𝑇𝑚 .

As another example consider Φ∶ ℬ(ℋ)2 → ℬ(ℋ) defined by Φ(𝑇, 𝑆) = ⟨𝑇𝑥, 𝑥⟩𝑆, where 𝑥 ∈ ℋ. To see more
information see [2].
Let𝒳 be a vector space. It is known that every positive sesquilinear form 𝜎 ∶ 𝒳×𝒳 → ℂ satisfies a Cauchy inequality
as

|𝜎(𝑥, 𝑦)|2 ≤ 𝜎(𝑥, 𝑥)𝜎(𝑦, 𝑦) (𝑥, 𝑦 ∈ 𝒳).
We intend to present a variant of this inequality for multilinear mappings.

2. Main result

We say that a multilinear mapping Φ∶ ℬ(ℋ)𝑚 → ℬ(𝒦) is 𝑛-positive if the induced map

Φ𝑛 ∶ 𝕄𝑛(ℬ(ℋ))𝑚 → 𝕄𝑛(ℬ(𝒦))

defined by Φ𝑛([𝑇𝑖𝑗]1, ⋯ , [𝑇𝑖𝑗]𝑚) = [Φ(𝑇1𝑖𝑗 , ⋯ , 𝑇𝑚𝑖𝑗 )] is positive.

We give some examples. Consider the bilinearmappingΦ ∶ 𝕄𝑚×𝕄𝑘 → 𝕄𝑚𝑘 defined byΦ(𝐴, 𝐵) = 𝐴⊗𝐵. We claim

thatΦ is 2-positive. To see this, assume that 𝐴 = ቈ𝐴11 𝐴12
𝐴21 𝐴22 and 𝐵 = ቈ𝐵11 𝐵12

𝐵21 𝐵22 are positive matrices in𝕄2(𝕄𝑚)

and𝕄2(𝕄𝑘), respectively. It is known that [1, 3] the block matrix operator ቈ
𝑇 𝑅
𝑅∗ 𝑆 is positive in𝕄2(ℬ(ℋ)) if and

only if 𝑇, 𝑆 ≥ 0 and 𝑇 ≥ 𝑅𝑆−1𝑅∗.
By this, we learn that 𝐴11 ≥ 𝐴12𝐴−122𝐴21 and 𝐵11 ≥ 𝐵12𝐵−122 𝐵21. Since Φ is a positive bilinear map, we obtain

𝐴11 ⊗𝐵11 = Φ(𝐴11, 𝐵11) ≥ Φ(𝐴12𝐴−122𝐴21, 𝐵12𝐵−122 𝐵21)
= (𝐴12𝐴−122𝐴21) ⊗ (𝐵12𝐵−122 𝐵21)
= (𝐴12 ⊗𝐵12)(𝐴22 ⊗𝐵22)−1(𝐴21 ⊗𝐵21)

and this is just the positivity of

Φ2([𝐴𝑖𝑗], [𝐵𝑖𝑗]) = ቈ𝐴11 ⊗𝐵11 𝐴12 ⊗𝐵12
𝐴21 ⊗𝐵21 𝐴22 ⊗𝐵22

as we claimed.

Now we present our main result. To this end, we need the following lemma.

Lemma 2.1. [3] Let 𝑇, 𝑆 ∈ ℬ(ℋ)+ and let𝑀 = ቈ 𝑇 𝑅
𝑅∗ 𝑆. Then𝑀 is positive if and only if

|⟨𝑥, 𝑅𝑦⟩|2 ≤ ⟨𝑥, 𝑇𝑥⟩⟨𝑦, 𝑆𝑦⟩

for all 𝑥, 𝑦 ∈ ℋ.

Our result gives a Cauchy inequality for positive bilinear maps.

Theorem 2.2. If Φ∶ ℬ(ℋ)2 → ℬ(𝒦) is a 2-positive bilinear map, then

ฮΦ(𝐴∗𝐵, 𝐶∗𝐷)ฮ ≤ ฮΦ(𝐴∗𝐴, 𝐶∗𝐶)ฮ1/2 ฮΦ(𝐵∗𝐵,𝐷∗𝐷)ฮ1/2

for all operators 𝐴, 𝐵, 𝐶, 𝐷 ∈ ℬ(ℋ). The equality holds if Φ(𝑇, 𝑆) = 𝑇 ⊗ 𝑆.
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Some special cases of Theorem 2.2 are of special interest. Assume that 𝜑 is a positive linear functional on ℬ(ℋ) so
that Φ(𝑇, 𝑆) = 𝜑(𝑇)𝑆 is a positive bilinear map. Applying Theorem 2.2 we conclude

|𝜑(𝐴∗𝐵)| ‖𝐶∗𝐷‖ ≤ 𝜑(𝐴∗𝐴)1/2𝜑(𝐵∗𝐵)1/2‖𝐶‖‖𝐷‖,

which by 𝐶 = 𝐷 = 𝐼 gives the well-known Cauchy inequality for positive linear functionals. On the other hand, if
Φ∶ ℬ(ℋ) → ℬ(𝒦) is a positive linear mapping, thenΨ(𝑇, 𝑆) = ⟨𝑇𝑥, 𝑥⟩Φ(𝑆) is a positive bilinear map, where 𝑥 ∈ ℋ
is a unit vector. Applying Theorem 2.2 gives

|⟨𝐵𝑥, 𝐴𝑥⟩|‖Φ(𝐶∗𝐷)‖ ≤ ‖𝐴𝑥‖‖𝐵𝑥‖‖Φ(𝐶∗𝐶)‖1/2‖Φ(𝐷∗𝐷)‖1/2

whence we derive a Cauchy inequality for positive linear mappings on ℬ(ℋ) with 𝐴 = 𝐵 = 𝐼.
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Abstract

The Heinz norm inequality gives a refinement of the arithmetic-geometric mean inequality in
the setting of matrices. We present a complementary inequality to a result of F. Kittaneh, which
employed the integrals to refine the Heinz norm inequality.

1. Introduction

Let𝕄𝑛 is the algebra of all 𝑛 × 𝑛 matrices with complex entries and 𝐼 denotes the identity matrix. A positive matrix
is a Hermitian matrix with non-negative eigenvalues. We denote by𝕄+

𝑛 the set of all positive matrices. A norm ||||̇||
on𝕄𝑛 is said to be unitarily invariant if it satisfies |||𝑈𝐴𝑉||| = |||𝐴||| for every 𝐴 ∈ 𝕄𝑛 and all unitary matrices 𝑈
and 𝑉. As an example, it is known that the class of Schatten 𝑝-norms defined by

‖𝐴‖𝑝 = ቌ
𝑛


𝑗=1

𝑠𝑗(𝐴)𝑝ቍ

1/𝑝

(1 ≤ 𝑝 < ∞),

are unitarily invariant norms, where 𝑠1(𝐴) ≥ … ≥ 𝑠𝑛(𝐴) are singular values of 𝐴, i.e., the eigenvalues of |𝐴| =
(𝐴∗𝐴)1/2.
As a matrix version of the arithmetic-geometric mean inequality, we know that

2|||𝐴1/2𝑋𝐵1/2||| ≤ |||𝐴𝑋 + 𝑋𝐵|||

holds for all 𝐴, 𝐵 ∈ 𝕄+
𝑛 and every 𝑋 ∈ 𝕄𝑛. However, the scalar arithmetic-geometric mean inequality has an

interpolation as √𝑎𝑏 ≤ 𝐻𝑡(𝑎, 𝑏) ≤
𝑎+𝑏
2 in which 𝐻𝑡(𝑎, 𝑏) =

1
2 ൫𝑎

𝑡𝑏1−𝑡 + 𝑎1−𝑡𝑏𝑡൯ is called the Heinz mean. The
famous matrix version reads as follows:

2|||𝐴1/2𝑋𝐵1/2||| ≤ |||𝐴𝑡𝑋𝐵1−𝑡 + 𝐴1−𝑡𝑋𝐵𝑡||| ≤ |||𝐴𝑋 + 𝑋𝐵|||.
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This is known as theHeinz norm inequality in the literature. Considering the function𝑓(𝑡) = |||𝐴𝑡𝑋𝐵1−𝑡+𝐴1−𝑡𝑋𝐵𝑡|||,
one can see that 𝑓 is a convex function on [0, 1] with minimum at 𝑡 = 1/2 and the Heinz norm inequality is just
𝑓(1/2) ≤ 𝑓(𝑡) ≤ 𝑓(0).
Another related inequality is

|||𝐴1/2𝑋𝐵1/2|||2 ≤ |||𝐴𝑡𝑋𝐵1−𝑡||| |||𝐴1−𝑡𝑋𝐵𝑡||| ≤ |||𝐴𝑋||| |||𝑋𝐵|||.

F. Kittaneh [2, Theorem 1] showed that

1
2 หหห𝐴

1/2𝑋𝐵1/2หหห ≤ 1
|1 − 2𝜇| ቤන

1−𝜇

𝜇
|||𝐴1−𝑡𝑋𝐵𝑡 + 𝐴𝑡𝑋𝐵1−𝑡||| 𝑑𝑡ቤ (1)

≤ |||𝐴1−𝜇𝑋𝐵𝜇 + 𝐴𝜇𝑋𝐵1−𝜇||| , (0 ≤ 𝜇 ≤ 1).

holds for every 𝜇 ∈ [0, 1/2].

2. Main Result

In this paper, we present some complementary inequalities to (1).

Theorem 2.1. Let 𝐴, 𝐵 ∈ 𝕄+
𝑛 . Then inequality

|||𝐴𝜇𝑋𝐵1−𝜇 + 𝐴1−𝜇𝑋𝐵𝜇|||2

≤ 2
3

1
1 − 𝜇 න

𝜇

2𝜇−1
‖𝐴𝑡𝑋𝐵1−𝑡 + 𝐴1−𝑡𝑋𝐵𝑡‖2 𝑑𝑡 + 1

3 ‖𝐴𝑋 + 𝑋𝐵‖2 (2)

≤ (8 − 8𝜇) ฮ𝐴1/2𝑋𝐵1/2ฮ2 + (2𝜇 − 1) ‖𝐴𝑋 + 𝑋𝐵‖2

holds for every 𝑋 ∈ 𝕄𝑛.
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Abstract

pseudo-analysis is a generalization of classical analysis with two pseudo-multiplication and
pseudo-addition operations on the real interval [𝑎, 𝑏] of [−∞,∞]. In recent years, the gener-
alization of inequalities from the framework of classical analysis to some integrals that include
classical analysis as special cases has been an interesting topic. One of the famous mathemat-
ical inequalities is Carlmann-Knopp’s inequality. In this paper, some new generalizations of
Carleman-Knopp’s type inequality via pseudo-integrals are studied.

1. Introduction

We know that the classical Carleman’s inequality [6] is as follows:

න
+∞

0
expቆ1𝑥 න

𝑥

0
ln(𝑓(𝑡))𝑑𝑡ቇ𝑑𝑥 ≤ 𝑒න

+∞

0
𝑓(𝑥)𝑑𝑥, (1)

where 𝑓 ∶ [0, +∞) → [0,+∞) is Riemann integrable function which ∫+∞0 𝑓(𝑥)𝑑𝑥 < ∞. We also know that if the
improper Riemann integral ∫+∞0 𝑓(𝑥)𝑑𝑥 converges, and 𝑓 ≥ 0 on [0, +∞), then 𝑓 is Lebesgue integrable on [0, +∞)
and the integrals are the same[3], i.e.

න
[0,+∞)

𝑓𝑑𝜇 = න
+∞

0
𝑓(𝑥)𝑑𝑥, (2)

where the integral applied on the left side is the standard Lebesgue integral.
The inequality (1) is often called Knopp’s inequality, referring to [13]. Also, inequality (1) has been used in several
mathematics and physics fields [4, 11]. Further related references, information and generalizations can be found in
[6, 10–12, 17, 21, 23].
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Theorem 1.1. [15] Let 𝑓, 𝐹 ∶ [0, +∞) → [0,+∞) be strictly increasing functions and ∫+∞0 𝑓(𝑥)𝑑𝑥 < ∞. Then we
have

−න
+∞

0
𝐹 ቆ1𝑥 න

𝑥

0
𝐹−1(𝑓(𝑡))𝑑𝑡ቇ 𝑑𝜇 ≤ −න

+∞

0
𝑓(𝑥)𝑑𝜇. (3)

We note that in inequality (3) the outer integrals are in the Sugeno sense [7, 8, 24], whereas the inner integral is a
Riemann integral. In 2013, Ma et al. proved the above extension of the inequality (1) in the fuzzy context. Also, in
2020 RomPán-Flores et al. proved the following extension of inequality (1) to the fuzzy context, where all integrals
involved in its formulation are in the Sugeno sense.

Theorem 1.2. [22] (Carleman-Knopp’s fuzzy integral inequality). Let 𝑓 ∶ [0, +∞) → [1,+∞) be a Sugeno-integrable
function with respect to the Lebesgue measure. Then

−න
+∞

0
expቆ1𝑥 −න

𝑥

0
ln(𝑓(𝑡))𝑑𝑡ቇ 𝑑𝑥 ≤ 𝑒 −න

+∞

0
𝑓(𝑥)𝑑𝑥.

2. Pseudo-integral

Let [𝑎, 𝑏] ⊆ [−∞,+∞] be a closed (in some cases semiclosed) interval and ⪯ be a total order on [𝑎, 𝑏]. Pseudo-
addition⊕ is defined as follows.

Definition 2.1. [5, 20] A binary operation⊕ on [𝑎, 𝑏] is pseudo-addition if for all 𝑥, 𝑦, 𝑧 ∈ [𝑎, 𝑏],
1. 𝑥 ⊕ 𝑦 = 𝑦⊕ 𝑥 (commutativity);
2. (𝑥 ⊕ 𝑦)⊕ 𝑧 = 𝑥 ⊕ (𝑦 ⊕ 𝑧) (associativity);
3. If 𝑥 ⪯ 𝑦, then 𝑥 ⊕ 𝑧 ⪯ 𝑦⊕ 𝑧 (monotonicity);
4. 0⊕ ⊕𝑥 = 𝑥, where 0⊕ ∈ [𝑎, 𝑏] is a neutral (zero) element (boundary condition).

A pseudo-addition ⊕ is said to be continuous if it is a continuous function in [𝑎, 𝑏]2 , i.e. if lim𝑛→+∞ 𝑥𝑛 and
lim𝑛→+∞ 𝑦𝑛 exist and are finite, then lim𝑛→+∞(𝑥𝑛 ⊕ 𝑦𝑛) = lim𝑛→+∞ 𝑥𝑛 ⊕ lim𝑛→∞ 𝑦𝑛. A pseudo-addition ⊕ is
called strict if⊕ is continuous and strictly monotone. Let [𝑎, 𝑏]+ = {𝑥 ∶ 𝑥 ∈ [𝑎, 𝑏], 0⊕ ⪯ 𝑥}. Pseudo-multiplication
⊗ associated with the pseudo-addition⊕ is defined as follows.

Definition 2.2. [5, 20] Let ⊕ be a given pseudo-addition on [𝑎, 𝑏]. A binary operation ⊗ on [𝑎, 𝑏] is pseudo-
multiplication if for all 𝑥, 𝑦, 𝑧 ∈ [𝑎, 𝑏] and 𝑤 ∈ [𝑎, 𝑏]+,

1. 𝑥 ⊗ 𝑦 = 𝑦⊗ 𝑥 (commutativity);
2. (𝑥 ⊗ 𝑦)⊗ 𝑧 = 𝑥 ⊗ (𝑦 ⊗ 𝑧) (associativity);
3. If 𝑥 ⪯ 𝑦, then 𝑥 ⊗𝑤 ⪯ 𝑦⊗𝑤 (monotonicity);
4. (𝑥 ⊕ 𝑦)⊗ 𝑧 = (𝑥 ⊗ 𝑧)⊕ (𝑦 ⊗ 𝑧) (left distributivity);
5. 1⊗ ⊗𝑥 = 𝑥, where 1⊗ ∈ [𝑎, 𝑏] is a neutral (unit) element (boundary condition).

A pseudo-multiplication ⊗ is said to be continuous if it is a continuous function in [𝑎, 𝑏]2. A binary operation ∗
on [𝑎, 𝑏] is said to be pseudo-operation if it is commutative, associative, nondecreasing and has a neutral element.
The pseudo-addition ⊕ and the pseudo-multiplication ⊗ are pseudo-operations on the interval [𝑎, 𝑏]. The pseudo-
operation ∗ ∶ [𝑎, 𝑏]2 → [𝑎, 𝑏] is idempotent if for any 𝑥 ∈ [𝑎, 𝑏], 𝑥 ∗ 𝑥 = 𝑥 holds. It is easy to see that the structure
([𝑎, 𝑏],⊕,⊗) is a semiring, see [14].
In this paper, we will consider only special semiring with the following continuous operations: Both operations⊕ and
⊗ are not idempotent. The pseudo-operations are generated by a strictly monotone and continuous function 𝑔 [18].
In this case, we will consider only strict pseudo-addition⊕.
ByAczel’s representation theorem [2] for each strict pseudo-addition⊕ there exists a strictlymonotone and continuous
surjective function 𝑔 (generator for⊕), 𝑔 ∶ [𝑎, 𝑏] → [0, +∞] such that 𝑔(0⊕) = 0 and

𝑥 ⊕ 𝑦 ∶= 𝑔−1(𝑔(𝑥) + 𝑔(𝑦)).
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Using a generator 𝑔 of a strict pseudo-addition⊕ we can define a pseudo-multiplication⊗ by

𝑥 ⊗ 𝑦 ∶= 𝑔−1(𝑔(𝑥)𝑔(𝑦)).

with the convention 0 × (+∞) ∶= 0. This is the only way to define a pseudo-multiplication⊗, which is distributive
with respect to a given pseudo-addition ⊕ generated 𝑔. If the zero element for the pseudo-addition is 𝑎, we will
consider increasing generators. Then 𝑔(𝑎) = 0 and 𝑔(𝑏) = +∞. If the zero element for the pseudo-addition is 𝑏, we
will consider decreasing generators. Then 𝑔(𝑏) = 0 and 𝑔(𝑎) = +∞.

Definition 2.3. [16, 19] Let 𝑋 be a non-empty set and ℰ be a 𝜎-algebra of the subsets of 𝑋. The set function𝑚 ∶ ℰ →
[𝑎, 𝑏]+ is a 𝜎-⊕-measure if

1. 𝑚(∅) = 0⊕;
2. For any sequence (𝐸𝑖)𝑖∈ℕ of pairwise disjoint sets from ℰ,

𝑚(
+∞
∪
𝑖=1

𝐸𝑖) =
+∞
⊕
𝑖=1

𝑚(𝐸𝑖) ∶= lim
𝑛→+∞

𝑛
⊕
𝑖=1

𝑚(𝐸𝑖)

If pseudo-addition⊕ is idempotent, then condition (1) and pairwise disjointedness of sets can be left out.

Definition 2.4. [16, 19] Suppose that 𝑋 is a non-empty set, ℰ is a 𝜎-algebra of the subsets of 𝑋 and𝑚 ∶ ℰ → [𝑎, 𝑏]+ is
a 𝜎-⊕-measure. The pseudo-integral of a bounded measurable function 𝑓 ∶ 𝑋 → [𝑎, 𝑏], where the pseudo-operations
are defined by a monotone and continuous function 𝑔 ∶ [𝑎, 𝑏] → [0,∞], is defined by

න
⊕

𝑋
𝑓(𝑥) ⊗ d𝑚 ∶= 𝑔−1 ቆන

𝑋
(𝑔 ∘ 𝑓) d(𝑔 ∘ 𝑚)ቇ .

If 𝑋 ⊆ [−∞,+∞] is a closed (semiclosed) interval, ℰ = ℬ𝑋 is 𝜎-algebra of Borel subsets of 𝑋 and𝑚 = 𝑔−1 ∘𝜇 where
𝜇 is the standard Lebesgue measure on 𝑋, then the pseudo-integral for the function 𝑓 has the form

න
⊕

𝑋
𝑓(𝑥) ⊗ d𝑚 = 𝑔−1 ቆන

𝑋
𝑔൫𝑓(𝑥)൯d𝜇ቇ , (4)

where the integral applied on the right side is the standard Lebesgue integral and is called the 𝑔-integral of the function
𝑓.
In order to present the pseudo-analytic exponential 𝐸𝑥𝑝(𝑥), it is necessary to introduce the pseudo-power. For 𝑥 ∈
[𝑎, 𝑏]+ and 𝑝 ∈ (0,∞), the pseudo-power 𝑥(𝑝)⊗ is defined in the following way in few steps.

• for 𝑛,𝑚 ∈ ℕ and 𝑟 = 𝑚
𝑛

𝑥(𝑛)⊗ ∶= 𝑥 ⊗ 𝑥 ⊗ ... ⊗ 𝑥ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
𝑛−𝑡𝑖𝑚𝑒𝑠

, 𝑥(0)⊗ ∶= 1⊗, 𝑥(
1
𝑛 )

⊗ ∶= sup ቄ𝑦 ∣ 𝑦(𝑛)⊗ ⩽ 𝑥ቅ, 𝑥(𝑟)⊗ = 𝑥(
𝑚
𝑛 )

⊗ = ቆ𝑥(
1
𝑛 )

⊗ ቇ
(𝑚)

.

Note that 𝑥𝑟 is well defined for all rational 𝑟 ∈ (0,∞), independently of the representation of 𝑟,
• if 𝑝 is not rational, then according to the continuity of⊗

𝑥(𝑝)⊗ ∶= sup ቄ𝑥𝑟⊗ ∣ 𝑟 ∈]0, 𝑝[, 𝑟 ∈ 𝑄ቅ .

Obviously, if 𝑥 ⊗ 𝑦 = 𝑔−1(𝑔(𝑥).𝑔(𝑦)), then

𝑥(𝑝)⊗ = 𝑔−1(𝑔𝑝(𝑥)).

On the other hand, if⊗ is idempotent, then 𝑥(𝑝)⊗ = 𝑥 for any 𝑥 ∈ [𝑎, 𝑏]+ and 𝑝 ∈ (0,∞).
In this paper, similar to Paper [9] we suppose that the generator function 𝑔 ∶ [0,∞] → [0,∞] is strictly monotone,
onto, 𝑔(0⊕) = 0, 𝑔′(𝑥) ≠ 0 for all 𝑥 , 𝑔 ∈ 𝐶2 and 𝑔−1 ∈ 𝐶2. By applying this function, we shall introduce some
new operations as follows: for all 𝑥, 𝑦 ∈ [𝑎, 𝑏], and 𝑛 ∈ ℝ
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• Pseudo-division:
𝑥 ⊗−1 𝑦 ∶= 𝑔−1 ቆ𝑔(𝑥)𝑔(𝑦)ቇ ,

provided 𝑦 ≠ 0⊕.

• Pseudo-analytic exponential:

𝐸𝑥𝑝⊕(𝑥) ∶=
+∞


𝑛=0

𝑔−1 ቆ 1𝑛!ቇ⊗ 𝑥(𝑛)⊗ ,

i.e.,
𝐸𝑥𝑝⊕(𝑥) = 𝑔−1(exp(𝑔(𝑥))),

where exp(𝑔(𝑥)) is the standard exponential function.

• Pseudo-logarithm:
𝐿𝑛⊕(𝑥) ∶= 𝑔−1(ln(𝑔(𝑥))),

where ln(𝑔(𝑥)) is the standard logarithm function.

3. Main results

In this section, we prove two Carleman type inequalities which are derived from (1) for pseudo-integral.

Theorem 3.1. (Pseudo Carleman-Knopp’s inequality, increasing case) Let ([0, +∞),⊕,⊗) be a semiring and the
generator 𝑔 ∶ [0, +∞) → [0,+∞) of the pseudo-addition⊕ and the pseudo-multiplication⊗ be a strictly increasing
and surjective function. Then, for any 𝜎-⊕-measure𝑚, the following inequality

න
⊕

[0,+∞)
𝐸𝑥𝑝⊕ ቆ൫𝑔−1(1)⊗−1𝑔−1(𝑥)൯ ⊗ 𝑔−1 ቆන

𝑥

0
ln(𝑓(𝑡))𝑑𝑡ቇቇ⊗ 𝑑𝑚 ≤ 𝑔−1(𝑒) ⊗ 𝑔−1(න

+∞

0
𝑓(𝑥)𝑑𝑥), (5)

holds true for any nonnegative Riemann integrable function 𝑓 on [0, +∞) which ∫+∞0 𝑓(𝑥)𝑑𝑥 < ∞.

Proof. By the definition of pseudo-division, using the equality 𝑥 ⊗ 𝑦 = 𝑔−1(𝑔(𝑥)𝑔(𝑦)), by applying the definition
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of pseudo-analytic exponential and using the equation (4) of Definition 2.4, respectively, we have

න
⊕

[0,+∞)
𝐸𝑥𝑝⊕ ቆ൫𝑔−1(1)⊗−1𝑔−1(𝑥)൯ ⊗ 𝑔−1 ቆන

𝑥

0
ln(𝑓(𝑡))𝑑𝑡ቇቇ⊗ 𝑑𝑚

= න
⊕

[0,+∞)
𝐸𝑥𝑝⊕ ቆ𝑔−1 ቆ𝑔(𝑔

−1(1))
𝑔(𝑔−1(𝑥))ቇ⊗ 𝑔−1 ቆන

𝑥

0
ln(𝑓(𝑡))𝑑𝑡ቇቇ⊗ 𝑑𝑚

= න
⊕

[0,+∞)
𝐸𝑥𝑝⊕ ቆ𝑔−1 ቆ1𝑥ቇ⊗ 𝑔−1 ቆන

𝑥

0
ln(𝑓(𝑡))𝑑𝑡ቇቇ⊗ 𝑑𝑚

= න
⊕

[0,+∞)
𝐸𝑥𝑝⊕ ቆ𝑔−1 ቆ𝑔(𝑔−1(1𝑥 )).𝑔(𝑔

−1(න
𝑥

0
ln(𝑓(𝑡))𝑑𝑡))ቇቇ⊗ 𝑑𝑚

= න
⊕

[0,+∞)
𝐸𝑥𝑝⊕ ቆ𝑔−1 ቆ1𝑥 න

𝑥

0
ln(𝑓(𝑡))𝑑𝑡ቇቇ⊗ 𝑑𝑚 (6)

= න
⊕

[0,+∞)
𝑔−1 ቆexpቆ𝑔 ቆ𝑔−1(1𝑥 න

𝑥

0
ln(𝑓(𝑡))𝑑𝑡)ቇቇቇ⊗ 𝑑𝑚

= න
⊕

[0,+∞)
𝑔−1 ቆexpቆ1𝑥 න

𝑥

0
ln(𝑓(𝑡))𝑑𝑡ቇቇ⊗ 𝑑𝑚

= 𝑔−1 ቆන
[0,+∞)

𝑔 ቆ𝑔−1 ቆexp(1𝑥 න
𝑥

0
ln(𝑓(𝑡))𝑑𝑡)ቇቇ𝑑𝜇ቇ

= 𝑔−1 ቆන
[0,+∞)

expቆ1𝑥 න
𝑥

0
ln(𝑓(𝑡))𝑑𝑡ቇ𝑑𝜇ቇ .

Now by the equation (2), using the fact that 𝑔−1 is increasing and applying the classical Carleman’s inequality (1), we
see that we will have the inequality

𝑔−1 ቆන
[0,+∞)

expቆ1𝑥 න
𝑥

0
ln(𝑓(𝑡))𝑑𝑡ቇ𝑑𝜇ቇ = 𝑔−1 ቆන

+∞

0
expቆ1𝑥 න

𝑥

0
ln(𝑓(𝑡))𝑑𝑡ቇ𝑑𝑥ቇ

≤ 𝑔−1 ቆ𝑒න
+∞

0
𝑓(𝑥)𝑑𝑥ቇ (7)

= 𝑔−1 ቆ𝑔 ൫𝑔−1(𝑒)൯ .𝑔 ቆ𝑔−1(න
+∞

0
𝑓(𝑥)𝑑𝑥)ቇቇ

= 𝑔−1(𝑒) ⊗ 𝑔−1(න
+∞

0
𝑓(𝑥)𝑑𝑥).

Hence, combining (6) and (7) yields inequality (5). The proof of Theorem 3.1 is completed.

Example 3.2. Let [𝑎, 𝑏) = [0, +∞],using Theorem 3.1 we get the Carleman’s type inequalities.

a For 𝑔(𝑥) = 𝑥. The corresponding pseudo-operations are 𝑥 ⊕ 𝑦 = 𝑥 + 𝑦 and 𝑥 ⊗ 𝑦 = 𝑥𝑦. The inequality (5)
obtains the following form

න
+∞

0
expቆ1𝑥 න

𝑥

0
ln(𝑓(𝑡))ቇ𝑑𝑡 ≤ 𝑒න

+∞

0
𝑓(𝑥)𝑑𝑥,

which is the same as classical Carleman’s inequality (1).

b For 𝑔(𝑥) = 𝑥𝛼, 𝛼 ∈ (1,+∞). The corresponding pseudo-operations are 𝑥 ⊕ 𝑦 = 𝛼ඥ𝑥𝛼 + 𝑦𝛼 and 𝑥 ⊗ 𝑦 = 𝑥𝑦.
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The inequality (5) obtains the following form

𝛼ඨන
+∞

0
expቆ1𝑥 න

𝑥

0
ln(𝑓(𝑡))ቇ𝑑𝑡 ≤ 𝛼ඨ𝑒න

+∞

0
𝑓(𝑥)𝑑𝑥.

c For 𝑔(𝑥) = ln(𝑥 + 1). The corresponding pseudo-operations are 𝑥 ⊕ 𝑦 = (𝑥 + 1)(𝑦 + 1) − 1 and 𝑥 ⊗ 𝑦 =
𝑒ln(𝑥+1) ln(𝑦+1)−1. The inequality (5) obtains the following form

𝑒∫
+∞
0 expቀ 1𝑥 ∫

𝑥
0 ln(𝑓(𝑡))ቁ𝑑𝑡 ≤ 𝑒𝑒 ∫

+∞
0 𝑓(𝑥)𝑑𝑥 .

Theorem 3.3. (Pseudo Carleman-Knopp’s inequality, decreasing case) Let ([0, +∞),⊕,⊗) be a semiring and the
generator 𝑔 ∶ [0, +∞) → [0,+∞) of the pseudo-addition⊕ and the pseudo-multiplication⊗ be a strictly decreasing
and surjective function. Then, for any 𝜎-⊕-measure𝑚, the following inequality

න
⊕

[0,+∞)
𝐸𝑥𝑝⊕ ቆ൫𝑔−1(1)⊗−1𝑔−1(𝑥)൯ ⊗ 𝑔−1 ቆන

𝑥

0
ln(𝑓(𝑡))𝑑𝑡ቇቇ⊗ 𝑑𝑚 ≥ 𝑔−1(𝑒) ⊗ 𝑔−1(න

+∞

0
𝑓(𝑥)𝑑𝑥),

holds true for any nonnegative Riemann integrable function 𝑓 on [0, +∞) which ∫+∞0 𝑓(𝑥)𝑑𝑥 < ∞.

Proof. It is similar to the proof of Theorem 3.1, with the difference that 𝑔 is a decreasing function and reverses the
direction of inequality (7).

Example 3.4. Let [𝑎, 𝑏) = [0, +∞) and 𝑔(𝑥) = 1
𝑒𝑥 . The corresponding pseudo-operations are 𝑥 ⊗ 𝑦 = 𝑥 + 𝑦 and

𝑥 ⊕ 𝑦 = ln( 𝑒𝑥+𝑦
𝑒𝑥+𝑒𝑦 ). Using Theorem 3.3 we get the following inequality

lnቌ 1
∫+∞0 exp ቀ 1𝑥 ∫

𝑥
0 ln(𝑓(𝑡))ቁ𝑑𝑡

ቍ ≥ ln൭ 1
𝑒 ∫+∞0 𝑓(𝑥)𝑑𝑥

൱ .

4. Conclusion

In this paper, we have proved two Karlmann-Knopp type inequalitie’s for quasi-integrals. For further investigation,
we consider other integral inequalities for quasi-integrals similar to [1].
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Abstract

We study some properties of the classes of Banach spaces constructed byAzimi andHagler. First
we show that these spaces contain subspaces which are weakly sequentially complete with an
unconditional basis (𝑢𝑖) such that 𝑢𝑖 → 0 weakly but not in norm. For bounded linear operators
on the spaces we also investigate complemented subspace of the spaces.

1. Definitions and Preliminaries

We review the classes of Banach sequence spaces constructed by Azimi and Hagler as examples of hereditarily 𝓁1
Banach spaces failing the Schur property. In this paper we study some more geometric and topological properties of
the spaces. In particular, a further subspace structure of the spaces are investigated. Definitions and notations are
standard, but we give some of these here. we also refer to the book of Lindenstruss and Tzafriri [4] for further material
in Banach spaces.

Definition 1.1. An infinite dimensional Banach space 𝑋 is said to contains 𝓁1 hereditarily if every infinite dimensional
subspace of 𝑋 contains a subspace isomorphic to 𝓁1.

Definition 1.2. A subset Y of X is complemented in X if there is a bounded projection 𝑃 ∶ 𝑋 ⟶ 𝑌 such that 𝑃𝑋 = 𝑌.

Definition 1.3. A Banach space 𝑋 is said to have the Schur property if weak convergence of the sequences in 𝑋 imply
their norm convergence.

[𝑥𝑛] is closed linear span of (𝑥𝑛). If (𝑥𝑛) is a Schauder basis for X, then bi-orthogonal functionals on X, associated
to (𝑥𝑛), is denoted by (𝑥∗𝑛) and 𝑃𝑛 is the natural projections associated with the unit vector basis of 𝑋.
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Now we go through the construction of the 𝑋𝛼 spaces. These class of spaces were presented and studied by Azimi and
Hagler [2]. First, by a block we mean an interval (finite or infinite) of integers. For any block 𝐹 and 𝑥 = (𝑡1, 𝑡2, ...)
a finitely non-zero sequence of scalars, we let < 𝑥, 𝐹 >= ∑𝑗∈𝐹 𝑡𝑗 . A sequence of blocks 𝐹1, 𝐹2, … is admissible if
𝑚𝑎𝑥𝐹𝑖 < 𝑚𝑖𝑛𝐹𝑖+1 for each 𝑖. Finally, consider a nonnegative sequence (𝛼𝑖) of reals which satisfies the following
properties:

1) 𝛼1 = 1 and 𝛼𝑖+1 ≤ 𝛼𝑖 for 𝑖 = 1, 2, ...
2) lim𝑖→∞ 𝛼𝑖 = 0
3) ∑∞

𝑖=1 𝛼𝑖 = ∞.

We now define a norm which uses the 𝛼𝑖’s and admissible sequences of blocks in its definition. Let 𝑥 = (𝑡1, 𝑡2, …) be
a finitely non-zero sequence of reals, define

||𝑥|| = max
𝑛


𝑖=1

𝛼𝑖| < 𝑥, 𝐹𝑖 > |

where the max is taken over all 𝑛, and admissible sequences 𝐹1, 𝐹2, … 𝐹𝑛. The Banach space 𝑋𝛼 is the completion of the
finitely non-zero sequence of scalers in this norm. Here is the basic properties of the 𝑋𝛼 spaces. For more information
see [1], [2].

2. Results

Our first result is the following.

Theorem 2.1. Let 𝑢𝑖 = 𝑒2𝑖 − 𝑒2𝑖−1 and �̃�𝛼 = [𝑢𝑖]. Then

1) (𝑢𝑖) is an unconditional basis,

2) 𝑢𝑖 ⟶ 0 weakly if 𝑖 → ∞,

3) �̃�𝛼 is weakly sequentially complete.

Proof. 1) (𝑢𝑖) is an unconditional basic sequence. This follow from the fact that, for any sequence (𝑡𝑖) of scalars, and
any 𝑗, || ∑𝑖≠𝑗 𝑡𝑖𝑢𝑖|| ≤ || ∑𝑖 𝑡𝑖𝑢𝑖||. See [4] (Proposition 1.c.6, page 18)
2) By the theorem 1.4 (𝑒𝑖) is a weakly Cauchy sequence, so (𝑢𝑖) is weakly Cauchy. Now assume that (𝑢𝑖) does not
converge weakly to 0. Then, there exists an 𝑓 ∈ 𝑋∗, ||𝑓|| = 1, and a 𝛿 > 0 such that (passing to a subsequence of
(𝑢𝑖) and not renaming) 𝑓(𝑢𝑖) > 𝛿 for all 𝑖. On the other hand, since (𝑢𝑖) is unconditional and not equivalent to the
usual basis of 𝓁1, there are an 𝑁 and non-negative scalars 𝑡1, 𝑡2, ..., 𝑡𝑁 such that ∑𝑁

𝑖=1 𝑡𝑖 = 1 and || ∑𝑁
𝑖=1 𝑡𝑖𝑣𝑖|| <

𝛿
2 .

Thus,

𝛿 <
𝑁


𝑖=1

𝑡𝑖𝑓(𝑣𝑖) < 𝑓(
𝑁


𝑖=1

𝑡𝑖𝑣𝑖) <
𝛿
2

which contradicts the assumption that (𝑢𝑖) does not converge weakly to 0. This completes the proof. The definition
of the norm implies that ||𝑢𝑖|| = 1 + 𝛼2, so (𝑢𝑖) does not converge to 0 in norm.
3) Since (𝑢𝑖) is an unconditional basic sequence and since �̃�𝛼 contains no isomorphic copy of 𝑐0, it follows that �̃�𝛼 is
weakly sequentially complete. See [4] (Theorem 1.c.10, page 22)

For 𝑥 ∈ 𝑋, put 𝑠(𝑥) = max | < 𝑥, 𝐺 > | where the max is taken over all blocks 𝐺. We need the following lemma from
[2] in proof of the next theorem.

Lemma 2.2. Let (𝑢𝑖) be a sequence of norm one vector in 𝑋𝛼 and (𝐺𝑖) an admissible sequence of blocks such that
{𝑗 ∶ 𝑢𝑖(𝑗) ≠ 0} ⊂ 𝐺𝑖. For each i put 𝑠𝑖 = 𝑠(𝑢𝑖). If lim 𝑠𝑖 = 0 then a subsequence (𝑣𝑘) of (𝑢𝑘) is equivalent to usual
basis of 𝓁1.
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From the definition of the norm of 𝑋𝛼, we can see that the unit vector basis is spreading (equivalent to each of its
subsequence) and bi-monotone. That is for each 𝑥 ∈ 𝑋𝛼 and 𝑛 < 𝑚 , ||(𝑃𝑚 − 𝑃𝑛)𝑥|| ≤ ||𝑥||. Observe each block
𝐹 defines a functional which is bounded on 𝑋𝛼. In fact < 𝑥, 𝐹 >= ∑𝑖∈𝐹 𝑒∗𝑖 (𝑥). Further, if (𝑒𝑖𝑘) is a subsequence of
(𝑒𝑛), then [(𝑒𝑖𝑘)] is complemented. Indeed if {𝐹𝑖} is a sequence of blocks without gaps (𝑚𝑎𝑥𝐹𝑖+1 = 𝑚𝑖𝑛𝐹𝑖+1) such
that 𝑖𝑘 ∈ 𝐹𝑘, then [{𝑒𝑖𝑘}] is complemented by the projection

𝑃𝑥 =
∞


𝑖=1

< 𝑥, 𝐹𝑘 > .𝑒𝑖𝑘

Since (𝐹𝑖) has no gaps, any estimate of ||𝑃𝑥|| is also an estimate of ||𝑥||, so ||𝑃|| = 1.
The following lemma is extracted from the proof of theorem 1 of [2].

Lemma 2.3. 1) If (𝑥𝑖) ⊂ 𝑋𝛼 converges 𝑤𝑒𝑎𝑘∗ to 𝑥∗∗ ∈ 𝑋∗∗𝛼 , then 𝑥∗∗ = 𝑥+𝜃 where 𝑥 ∈ 𝑋𝛼 and 𝑒∗𝑖 (𝜃) = 0 for all 𝑖.
2) If (𝑥𝑖) ⊂ 𝑋𝛼 is weakly Cauchy, then (𝑥𝑖) converges𝑤𝑒𝑎𝑘∗ to 𝑥+𝛼𝜃0 where 𝑥 ∈ 𝑋𝛼 and𝛼 = 𝑙𝑖𝑚𝑖→∞ < 𝑥𝑖−𝑥,ℕ >,
and 𝜃0 is the 𝑤𝑒𝑎𝑘∗ limit of (𝑒𝑖).
Lemma 2.4. Let (𝑥𝑖) be a block basic sequence of (𝑒𝑖), let 𝐹 = {𝑀+1,𝑀+2, ...} ⊂ 𝑁 and suppose< 𝑥𝑖 , 𝐹 >= 𝛾 > 0
for all 𝑖. Then for any scalars sequence (𝑎𝑖),

𝛾||𝑎𝑖𝑒𝑖|| ≤ ||𝑎𝑖𝑥𝑖||

Proof. Let (𝑎𝑖) be a sequence of scalars and let 𝑥 = ∑𝑛
1 𝑎𝑖𝑒𝑖 , 𝑦 = ∑𝑛

𝑖 𝑎𝑖𝑥𝑖. Since < 𝑥𝑖 , 𝐹 >= 𝛾, there exist
an admissible sequence of blocks (𝐹𝑖) such that < 𝑥𝑖 , 𝐹𝑖 >= 𝛾 and 𝑠𝑢𝑝𝑝 𝑥𝑖 ⊂ 𝐹𝑖 for all 𝑖. Let 𝐹𝑖 = [𝑓𝑖 , 𝑔𝑖].
Let (𝐺𝑘) be a admissible sequence with ||𝑥|| = ∑𝑘 𝛼𝑘| < 𝑥, 𝐺𝑘 > |, and for each 𝑘, let 𝐺′

𝑘 = [𝑛𝑘 , 𝑚𝑘] where
𝑛𝑘 = min{𝑓𝑖 ∶ 𝑖 ∈ 𝐺𝑘}, 𝑚𝑘 = max{𝑔𝑖 ∶ 𝑖 ∈ 𝐺𝑘}. Then (𝐺𝑘) is admissible and

||𝑦|| ≥ 𝛼𝑘| < 𝑦, 𝐺′
𝑘 > |

= 𝛼𝑘𝛾| < 𝑥, 𝐺𝑘 > |
= 𝛾||𝑥||

We state the following corollary from theorem 1.4. which is important in our further studies.

Corollary 2.5. Let 𝑋𝛼 = 𝐴 ⊕ 𝐵. Then exactly one of 𝐴 or 𝐵 is weakly sequentially complete and the other is of
codimension one in its first Baire class.

Theorem 2.6. If 𝑇 ∶ 𝑋𝛼 ⟶ 𝑋𝛼 is bounded linear operator, then either 𝑇𝑋𝛼 or (𝐼 − 𝑇)𝑋𝛼 contains a complemented
isomorphic of 𝑋𝛼.
Proof. Let 𝑍 = (𝐼 − 𝑇)𝑋𝛼 . The sequences (𝑇𝑒𝑖) and ((𝐼 − 𝑇)𝑒𝑖) are weakly Cauchy. Since 𝑍 is weakly sequentially
complete, lemma2.3 implies that

(𝐼 − 𝑇)𝑒𝑖
𝑤∗
−−→ 𝑦 ∈ 𝑋𝛼 (1)

and
𝑇𝑒𝑖

𝑤∗
−−→ 𝑥 + 𝛼𝜃0 (2)

Now 𝑒𝑖
𝑤∗
−−→ 𝜃0 ∈ 𝑋∗∗𝛼 − 𝑋𝛼 and 𝑒𝑖 = (𝐼 − 𝑇)𝑒𝑖 + 𝑇𝑒𝑖, so (𝑇𝑒𝑖) and ((𝐼 − 𝑇)𝑒𝑖) cannot both have weak-star limit

in 𝑋𝛼 . Hence 𝛼 = lim < 𝑇𝑒𝑖 − 𝑥,𝑁 >≠ 0. In fact by standard perturbation argument we may assume there exist
𝑀 ∈ 𝑁 such that 𝑃𝑀𝑦 = 𝑦 and 𝑃𝑀𝑥 = 𝑥, where 𝑥, 𝑦 are as in (1), (2) and 𝑃𝑀 is the natural projection. Then with
𝐹 = {𝑀 + 1,𝑀 + 2, ...},

1 =< 𝑒𝑖 , 𝐹 >=< (𝐼 − 𝑇)𝑒𝑖 , 𝐹 > + < 𝑇𝑒𝑖 , 𝐹 >
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So lim < 𝑇𝑒𝑖 , 𝐹 >= 1. Applying lemma 2.3 part 1, passing to a subsequence (𝑒𝑖) and perturbing, we may assume
that 𝑇𝑒𝑖𝑘 = 𝑣𝑘 = 𝑥 + 𝑤𝑘 with (M and F as above)

𝑃𝑀𝑥 = 𝑥
< 𝑤𝑘 , 𝐹 >= 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘

and 𝑠𝑢𝑝𝑝 𝑤𝑘 ⊂ 𝐺𝑘 where (𝐺𝑘) is an admissible sequence without gaps. Then for any scalar sequence (𝑎𝑘)

||𝑎𝑘𝑣𝑘|| = ||(𝑎𝑘)𝑥 +𝑎𝑘𝑤𝑘||

≥ ||𝑎𝑘𝑤𝑘|| ((𝑒𝑖) 𝑖𝑠 𝑏𝑖 − 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑒)

≥ ||𝑎𝑘𝑒𝑘||

by lemma2.5. Since || ∑ 𝑎𝑘𝑣𝑘|| ≤ ||𝑇|||| ∑ 𝑎𝑘𝑒𝑘||, the sequence (𝑣𝑘) is equivalent to (𝑒𝑘), and hence 𝑇𝑋𝛼 contains
isomorphic of 𝑋𝛼. A projection onto [𝑣𝑘] is defined by

𝑄𝑧 =
∞


𝑘=1

< 𝑧, 𝐺𝑘 > 𝑣𝑘

𝑄 is bounded, since

||𝑄𝑧|| = || < 𝑧, 𝐺𝑘 > 𝑣𝑘||

≤ ||𝑇|||| < 𝑧, 𝐺𝑘 > 𝑒𝑘||
≤ ||𝑇||||𝑧||,

since (𝐺𝑘) has no gaps.

Definition 2.7. A Banach space 𝑋 is said to have the Dunford-Pettis property (DPP) if for every weakly null sequence
(𝑥𝑛) in 𝑋 and (𝑥∗𝑛) in 𝑋∗, then we have lim𝑛 𝑥∗𝑛(𝑥𝑛) = 0.
Theorem 2.8. The Banach spaces 𝑋𝛼 fail the DPP.
Proof. Let 𝑢𝑖 = 𝑒2𝑖 − 𝑒2𝑖−1 and 𝑓𝑖 ∶ 𝑋𝛼 → ℝ such that for any 𝑥 = (𝑡1, 𝑡2, ...) ∈ 𝑋𝛼, we have 𝑓𝑖(𝑥) = 𝑡𝑖 for integer
𝑖. Then for 𝑔𝑛 = 𝑓2𝑛 − 𝑓2𝑛−1, we have 𝑔𝑛(𝑢𝑛) = 2. To complete the proof we need to show that 𝑢𝑛 → 0 weakly,
and 𝑔𝑛 → 0 weakly. The first one follows from Lemma 2.2. We claim that 𝑔𝑛 → 0 weakly. If not there are 𝐹 ∈ 𝑋∗∗𝛼
with ||𝐹|| = 1, 𝛿 > 0 and a subsequence (𝑔𝑛𝑘) such that 𝐹(𝑔𝑛𝑘) > 𝛿 for all integer 𝑘. So for integer 𝑁, we have
∑𝑁
𝑘=1 𝐹(𝑔𝑛𝑘) > 𝑁𝛿 and hence

|| ∑𝑁
𝑘=1 𝑔𝑛𝑘 ||
𝑁 > 𝛿.

This implies that for any integer 𝑁, there exist 𝑥 = (𝑡1, 𝑡2, ...) ∈ 𝑋𝛼 such that

1
𝑁

𝑁


𝑘=1

𝑔𝑛𝑘(𝑥) > 𝛿.

Then lim𝑛 𝑡𝑛 = 0 for integer 𝑁 and corresponding 𝑥 = (𝑡1, 𝑡2, ...), since ∑
∞
𝑖=1 𝛼𝑖 = ∞. Therefore,

| 1𝑁

𝑁


𝑘=1

𝑔𝑛𝑘(𝑥)| = 1
𝑁 |

𝑁


𝑘=1

(𝑡2𝑛𝑘 − 𝑡2𝑛𝑘−1)|

≤ 1
𝑁

𝑁


𝑘=1

|𝑡2𝑛𝑘 | +
1
𝑁

𝑁


𝑘=1

|𝑡2𝑛𝑘−1| → 0
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as 𝑁 → ∞ which is a contradiction.
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Abstract

In this paper, we introduce second inverse sum indeg index. Extremal values of this index for
some special graph are determined. In the present paper, we consider the graph with 𝑝 pendent
vertices and we get attractive upper and lower bounds. All graphs considered in this report
are simple graph and connected and without loops. Topological indices are important tools in
prediction of chemical phenomena, that’s why several types of topological indices have been
defined.

1. Main result

The second inverse sum indeg (henceforth, 𝐼𝑆𝐼2) index of a graph 𝐺 defined as [1] 𝐼𝑆𝐼2 (𝐺) = ∑
𝑢𝑣∈𝐸(𝐺)

𝑛𝑢𝑛𝑣
𝑛𝑢+𝑛𝑣

, where
𝑛𝑢 is the number of vertices of graph 𝐺 lying closer to 𝑢 and 𝑛𝑣 is the number of vertices of graph 𝐺 lying closer to 𝑣.
For more study on this family of topological indices we can see [2, 3].

Theorem 1.1. Let 𝐺 be a connected graph of order 𝑛 with𝑚 edges and 𝑝 pendent vertices, then

𝐼𝑆𝐼2 (𝐺) ≤
𝑚𝑛2
8 + 𝑝(1 − 1

𝑛 − 𝑛2
8 ), (1)

with equality if and only if graph 𝐺 ≅ 𝐾2.
Theorem 1.2. Let 𝐺 be a connected graph of order 𝑛 with𝑚 edges and 𝑝 pendent vertices, then

𝐼𝑆𝐼2 (𝐺) ≥
𝑚
𝑛 + 𝑝(1 − 2

𝑛), (2)

with equality if and only if graph 𝐺 ≅ 𝐾2.
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Abstract

In this paper, An inverse heat equation with Caputo’s fractional derivative is studied to retrieve a
time-dependent heat coefficient. The Dirichlet boundary conditions along with nonlinear initial
condition are treated by applying the satisfier function and the governing equation is discretized
using a linear combination of Legendre’s basis functions. We employ the weighted residual ap-
proach and change the main problem to the solution of a linear system of algebraic equations.
Effectiveness of this method is shown by providing a numerical example.

1. Introduction

In the last few years, fractional calculations have had a good reflection in science and engineering, and considerable
work has been done in the field of numerical solution of fractional equations. With the expansion of human knowledge,
various applications of fractional-boundary initial value problems have been discovered by scientists. Unlike direct
fractional initial value problems that have been studied recently, inverse fractional initial value problems are still in
their infancy [1–4].
In this paper, we used Caputo’s fractional derivatives and integrals, which are formally described as follows:

𝜕𝛼𝑣(𝑦, 𝑡)
𝜕𝑡𝛼 = (𝐷𝛼

𝑡 𝑣)(𝑦, 𝑡) =
⎧⎪
⎨⎪⎩

1
Γ(𝑛−𝛼) ∫

𝑡
0 (𝑡 − 𝑠)𝑛−𝛼−1ቆ𝜕

𝑛𝑣(𝑦,𝑠)
𝜕𝑡𝑛 ቇ𝑑𝑠 𝛼 > 0, 𝑛 − 1 < 𝛼 < 𝑛,

𝜕𝑛𝑣(𝑦,𝑡)
𝜕𝑡𝑛 𝛼 = 𝑛 ∈ 𝑁.

(1)
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𝐼𝛼𝑦 𝑣(𝑦) =
1

Γ(𝑛 − 𝛼) න
𝑡

0
(𝑦 − 𝑠)𝑛−𝛼−1𝑣(𝑠)𝑑𝑠. (2)

According to definition (1) we solve the following system of equations

𝜕𝛼𝑣
𝜕𝑡𝛼 − 𝜕2𝑣

𝜕𝑦2 = 𝑝(𝑦)𝑞(𝑡) 0 < 𝑦 < 1, 0 < 𝑡 ≤ 𝑇, (3)

with boundary conditions
𝑣(0, 𝑡) = ℎ1(𝑡), 𝑣(1, 𝑡) = ℎ2(𝑡), 0 ≤ 𝑡 ≤ 𝑇, (4)

Nonlocal initial condition

𝑣(𝑦, 0) =
𝑁


𝑗=1

𝜆𝑗(𝑦)𝑣(𝑦, 𝑇𝑗) + 𝜓(𝑦), 0 ≤ 𝑦 ≤ 1, 0 < 𝑇1 < 𝑇2 < … < 𝑇𝑁 = 1, (5)

and additional condition
𝑣(𝑦, 𝑇∗) = 𝑣∗(𝑦), (6)

where 𝜓(𝑦), ℎ1(𝑡), ℎ2(𝑡), 𝑝(𝑦), 𝜆𝑗(𝑦) are given functions and the temperature distribution 𝑣(𝑦, 𝑡) and heat source q
are unknown.
Recently, articles have been presented regarding the solution of inverse parabolic differential equations. In [5], the
author investigated fractional-time parabolic inverse problems with non-local initial and boundary conditions along
with specified conditions at a specific point in the domain space, and with the help of the system of linear equations
resulting from the Euler approximation, which has a pseudo-trigonal coefficient matrix, presented an efficient method
for solving the linear system of the predictive-corrector method for calculating the solution and updating the unknown
coefficient of the problem. In [6], the authors considered the two-dimensional generalization of the analog parabolic
equation using the Fourier method and investigated the solvability of inverse problems with Dirichlet conditions. In
[7],the authors investigated the inverse heat equation problems with unknown heat source and non-local data. Their
approach shows that having only one data set at a point guarantees the existence of a weak solution to the inverse
problem. Moreover, if there is an additional data at the additional point, it leads to a special formula for the time-
dependent source coefficient. In [8], the authors solved inverse parabolic equations based on basic polynomials and
using the finite difference and least squares method, and by interpolating at each point T, they obtained an approximate
solution for this group of equations. In [9], the authors investigated two-dimensional fractional-time equations with
Dirichlet boundary conditions and using the Petrov-Galerkin method and applying an additional integral condition
presented an efficient calculation method to solve this class of problems.
In this paper, we use the Ritz technique to provide the approximate solution of the FDEs with nonlocal initial condition
given by equations (3)-(5) for the first time. As a great advantage of our method is the flexibility of satisfying all the
input data accurately.
In section(2) provides an explanation of the approximation method and finally in Section(3) evaluates the efficiency
and effectiveness of the method through the presentation of numerical examples.

2. Methodology

First, by integrating both sides of equation (3) and applying the Caputo’s integral operator, we have:

𝑣(𝑦, 𝑡) − 𝑣(𝑦, 0) = 1
Γ(𝛼) න

𝑡

0
(𝑡 − 𝑠)𝛼−1ቆ𝜕

2𝑣(𝑦, 𝑠)
𝜕𝑦2 ቇ𝑑𝑠 + 𝑞(𝑡)ቆ 1

Γ(𝛼) න
𝑡

0
(𝑡 − 𝑠)𝛼−1𝑝(𝑠)𝑑𝑠ቇ. (7)

Here we consider the unknown coefficient 𝑞(𝑡) as a linear combination of legendre functions, it’s mean:

𝑞(𝑡) =
𝑁


𝑗=0

𝑑𝑗𝜙𝑗(𝑡). (8)
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Therefore, by substituting the nonlocal initial condition and approximation 𝑞(𝑡) in equation (7), we have:

𝑣(𝑦, 𝑡) =
𝑁


𝑗=1

𝜆𝑗(𝑦)𝑣(𝑦, 𝑇𝑗) + 𝜓(𝑦) + 1
Γ(𝛼) න

𝑡

0
(𝑡 − 𝑠)𝛼−1ቆ𝜕

2𝑣(𝑦, 𝑠)
𝜕𝑦2 ቇ𝑑𝑠 (9)

+ቆ
𝑁


𝑗=0

𝑑𝑗𝜙𝑗(𝑡)ቇቆ
1

Γ(𝛼) න
𝑡

0
(𝑡 − 𝑠)𝛼−1𝑝(𝑠)𝑑𝑠ቇ.

And also, we consider the satisfier function with the help of boundary conditions (4) as follows:

𝑠(𝑦, 𝑡) = ℎ1(𝑡) + (ℎ2(𝑡) − ℎ1(𝑡))𝑦, (10)

We define the Ritz approximation of equations (9) and (4) as follows:

�̄�(𝑦, 𝑡) =
𝑀


𝑖=0

𝑁


𝑗=0

𝑦(𝑦 − 1)𝑐𝑖,𝑗𝜙𝑖(𝑦)𝜙𝑗(𝑡) + 𝑠(𝑦, 𝑡). (11)

Now, by deriving the equation (11) with respect to y twice, we have:

�̄�𝑦𝑦(𝑦, 𝑡) =
𝑀


𝑖=0

𝑁


𝑗=0

ቀ2𝜙𝑖(𝑦) + (4𝑦 − 2)𝜙′
𝑖(𝑦) + (𝑦2 − 𝑦)𝜙″

𝑖 (𝑦)ቁ 𝑐𝑖,𝑗𝜙𝑗(𝑡). (12)

And then we define the residual functions as follows:

𝑅𝑒𝑠1(𝑦, 𝑡) = 𝑣(𝑦, 𝑡) −
𝑁


𝑗=1

𝜆𝑗(𝑦)𝑣(𝑦, 𝑇𝑗) + 𝜓(𝑦) − 1
Γ(𝛼) න

𝑡

0
(𝑡 − 𝑠)𝛼−1ቆ𝜕

2𝑣
𝜕𝑦2 + 𝑝(𝑥)𝑞(𝑠)ቇ𝑑𝑠, (13)

𝑅𝑒𝑠2(𝑦) = 𝑣(𝑦, 𝑇∗) − 𝑣∗(𝑦), (14)
Therefore, by substituting the approximations �̄�𝑦𝑦(𝑦, 𝑡), 𝑣(𝑦, 𝑡) and 𝑞(𝑡) in 𝑅𝑒𝑠1(𝑦, 𝑡), we have:

𝑅𝑒𝑠1(𝑦, 𝑡) ≃ �̄�(𝑦, 𝑡) −
𝑁


𝑗=1

𝜆𝑗(𝑦)�̄�(𝑦, 𝑇𝑗) + 𝜓(𝑦) (15)

− 1
Γ(𝛼)

𝑀


𝑖=0

𝑁


𝑗=0

𝑐𝑖,𝑗 ቀ2𝜙𝑖(𝑦) + (4𝑦 − 2)𝜙′
𝑖(𝑦) + (𝑦2 − 𝑦)𝜙″

𝑖 (𝑦)ቁ

න
𝑡

0
(𝑡 − 𝑠)𝛼−1ቆ𝜙𝑗(𝑠) + ቆ

𝑁


𝑗=0

𝑑𝑗𝜙𝑗(𝑡)ቇ𝑝(𝑠)ቇ𝑑𝑠.

Then, we collocating the residual function (15) at points

𝑦𝑖 =
𝑖

𝑀 + 2, 𝑡𝑗 =
𝑗𝑇

𝑁 + 2, 𝑖 = 0, ..., 𝑀, 𝑗 = 0, ..., 𝑁, (16)

and the residual function (14) at t points

𝑦𝑖 =
𝑖

𝑀 + 2, 𝑖 = 1, ..., 𝑀 + 1, (17)

And we solve the following system of algebraic equations:

𝑅𝑒𝑠1(𝑦𝑖 , 𝑡𝑗) = 0, 𝑖 = 0, ..., 𝑀, 𝑗 = 0, ..., 𝑁, (18)

𝑅𝑒𝑠2(𝑦) = 0, 𝑖 = 1, ..., 𝑀 + 1. (19)
That the system of linear equations (18) and (19) for the elements 𝑐𝑖,𝑗 and 𝑑𝑗 are solved using Newton’s method and
finally we get an approximate solution for the 𝑞(𝑡) and 𝑣(𝑦, 𝑡) functions.
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3. Numerical example

To show the efficiency and effectiveness of this method, we examine the following example.

Example 3.1. We consider (3)-(5) with N=7 and let

𝑣(𝑦, 0) = 𝑣(𝑦, 1) + 𝑐𝑜𝑠(𝑦)(1 − 𝑒2),
ℎ1(𝑡) = 𝑒2𝑡 , ℎ2(𝑡) = (𝑐𝑜𝑠(1))𝑒2𝑡 ,

𝑣∗(𝑦) = (𝑐𝑜𝑠(0.25))𝑒2𝑡 ,
𝑝(𝑦) = 𝑐𝑜𝑠(𝑦),

The exact solution of the coefficient 𝑞(𝑡) of this problem is:

𝑞(𝑡) = 3𝑒2𝑡 . (20)

To solve this example, we consider the unknown coefficient 𝑞(𝑡) as

𝑞(𝑡) =
𝑁


𝑗=0

𝑑𝑗𝜙𝑗(𝑡), (21)

where 𝜙𝑗(𝑡) are Legendre polynomials in [0,1], and then we solve the problem with the help of the Ritz technique.
In table (1) shows the approximate solutions of 𝑞(𝑡) for 𝑁 = 7 with 𝛼 = 0.75, 0.85, 0.95, 1 and different 𝑦, and we
show the convergence of this method in figure (1).

Table 1. Approximate values   of function 𝑣(𝑦, 𝑡) and 𝑅𝑒𝑠𝐿2𝑛𝑜𝑟𝑚 function with different values of 𝑎𝑙𝑝ℎ𝑎.
y=t 𝛼 = 0.75 𝛼 = 0.85 𝛼 = 0.95 𝛼 = 1
0 1 1 1 1
0.1 1.2153 1.2153 1.2153 1.2153
0.2 1.4620 1.46209 1.46209 1.46209
0.3 1.74074 1.74074 1.74074 1.74074
0.4 2.04986 2.04986 2.04986 2.04986
0.5 2.38552 2.38552 2.38552 2.38552
0.6 2.74021 2.74021 2.74021 2.74021
0.7 3.10159 3.10159 3.10159 3.10159
0.8 3.45081 3.45081 3.45081 3.45081
0.9 3.76052 3.76052 3.76052 3.76052
1 3.99232 3.99232 3.99232 3.99232

𝑅𝑒𝑠𝐿2𝑛𝑜𝑟𝑚 0.0503032 0.0468953 0.0130527 1.04161 × 10−9

4. Conclusion

In this article, we used an efficient method to solve the inverse heat equation of fractional order with the Caputo’s
fractional derivative numerically. To discretize the problem, we first considered the approximation of 𝑞(𝑡) as a linear
combination of the Legendre basis functions such that the initial and boundary conditions are satisfied. By solving a
numerical example, we showed that the approximate solutions are in good agreement with exact solutions.
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Table 2. Approximate values   of the function 𝑞(𝑡) with different values  of 𝑎𝑙𝑝ℎ𝑎.
t 𝛼 = 0.75 𝛼 = 0.85 𝛼 = 0.95 𝛼 = 1
0 1.5083 1.88457 2.52619 3.00006
0.1 2.69888 3.05056 3.45037 3.66421
0.2 3.53104 3.87983 4.26676 4.47548
0.3 4.49407 4.86537 5.26138 5.46636
0.4 5.62307 6.02761 6.45495 6.67662
0.5 6.97783 7.43147 7.90847 8.15485
0.6 8.62603 9.14435 9.68431 9.96035
0.7 10.5914 11.1837 11.8206 12.1656
0.8 13.2266 14.0023 14.6762 14.859
0.9 18.472 20.0604 20.0046 18.1482
1 32.4595 37.032 33.1135 22.1634
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Fig. 1. This figure presents the approximate solutions and exact solution (blue curve) of the problem described in Example with𝑁 = 7 and different
values of parameter α.
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Abstract

The study of algebraic structures, using the properties of graph theory, has an exciting research
topic in the last decade. This helps us to study some properties of algebraic structures by asso-
ciated graphs. The purpose of this note is the study of Cayley graph associated with a lattice. In
this note first, we associate a Cayley graph to every lattice and then we study the properties of
this graph.

1. Introduction

The first time, the definition of the Cayley graph was introduced by Arthur Cayley in 1878 to explain the concept
of abstract groups being described by a set of generators. In the last 50 years, the theory of Cayley graphs has been
growing into a substantial branch in algebraic theory [9]. Let 𝐺 be an abelian additive group, 𝐶 be a subset of 𝐺.
Whenever 0 ∉ 𝐶 and −𝐶 = {−𝑐 ∶ 𝑐 ∈ 𝐶} ⊆ 𝐶, then the Cayley graph 𝐶𝑎𝑦(𝐺, 𝐶) is the graph with vertex set 𝐺 and
edge set {{𝑎, 𝑏} ∶ 𝑎 − 𝑏 ∈ 𝐶}. We refer the reader to [7] for general properties of Cayley graphs.
In recent years, for a ring𝑅, the Cayley graph of the abelian group (𝑅,+)with respect to subsets of𝑅 has receivedmuch
attention in the literature (see [2, 10, 12]). Ramin and Abbasi in [11], introduced the torsion-unitary Cayley graph of
an 𝑅-module𝑀, denoted by Γ𝑅(𝑀). It is a simple graph with vertex set𝑀×𝑅 and two elements (𝑚, 𝑟), (𝑛, 𝑠) ∈ 𝑀×𝑅
are adjacent if (𝑚, 𝑟) − (𝑛, 𝑠) ∈ Γ(𝑀) × 𝑈(𝑅), where Γ(𝑀) = {𝑚 ∈ 𝑀 ∶ 𝑟𝑚 = 0𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 0 ≠ 𝑟 ∈ 𝑅} is the set of
torsion elements of 𝑀 and 𝑈(𝑅) is the set of unit elements of 𝑅. They obtained some properties of this graph. Barati
[3] associated a simple graph Γ𝑆(𝑅) to a multiplicatively closed subset 𝑆 of a commutative ring 𝑅 with all elements of
𝑅 as vertices and two distinct vertices 𝑥, 𝑦 are adjacent if 𝑥 + 𝑦 ∈ 𝑆. Afkhami [1] introduce the same graph structure
on a lattice. They considered a lattice 𝐿 and defined a graph Γ𝑆(𝐿) with all elements of 𝐿 as vertices and two distinct
𝑥, 𝑦 ∈ 𝐿 are adjacent if 𝑥 ∨ 𝑦 ∈ 𝑆 where 𝑆 is a subset of 𝐿 which is closed under the operation ∧.
In this paper, we introduce the Cayley graph of a lattice and investigate some properties of this graph.
Let us recall notions of lattices, defined in [5].
Let 𝑃 be a set. An order (or partial order) on 𝑃 is a binary relation ≤ on 𝑃 such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑃, we have
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(i) 𝑥 ≤ 𝑥;
(ii) 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 implies 𝑥 = 𝑦;
(iii) 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 implies 𝑥 ≤ 𝑧.
These conditions are referred to, respectively, as reflexivity, antisymmetry, and transitivity. A set 𝑃 equipped with an
order relation ≤ is said to be an order set. The ordered set 𝑝 is a chain if, for all 𝑥, 𝑦 ∈ 𝑃, either 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥.
An algebra 𝐿 = (𝐿, ∨, ∧) is called a lattice if for all 𝑎, 𝑏, 𝑐 ∈ 𝐿, we have

(i) 𝑎 ∧ 𝑎 = 𝑎, 𝑎 ∨ 𝑎 = 𝑎;
(ii) 𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎, 𝑎 ∨ 𝑏 = 𝑏 ∨ 𝑎;
(iii) (𝑎 ∧ 𝑏) ∧ 𝑐 = 𝑎 ∧ (𝑏 ∧ 𝑐), (𝑎 ∨ 𝑏) ∨ 𝑐 = 𝑎 ∨ (𝑏 ∨ 𝑐);
(iv) 𝑎 ∨ (𝑎 ∧ 𝑏) = 𝑎 ∧ (𝑎 ∨ 𝑏) = 𝑎.

There is an equivalent definition for a lattice (see for example [6]). To do this, for a lattice 𝐿, one can define an
order ≤ on 𝐿 as follows: For any 𝑎, 𝑏 ∈ 𝐿, we say 𝑎 ≤ 𝑏 if 𝑎 ∧ 𝑏 = 𝑎. Then (𝐿 ≤) is an ordered set in which
every pair of elements has a greatest lower bound (g.l.b.) and a least upper bound (l.u.b.). Conversely, let 𝑃 be an
ordered set such that, for every pair 𝑎, 𝑏 ∈ 𝑃, 𝑔.𝑙.𝑏.(𝑎, 𝑏) ∈ 𝑃 and 𝑙.𝑢.𝑏.(𝑎, 𝑏) ∈ 𝑃. For each 𝑎 and 𝑏 in 𝑃, we define
𝑎 ∧ 𝑏 ∶= 𝑔.𝑙.𝑏.(𝑎, 𝑏) and 𝑎 ∨ 𝑏 ∶= 𝑙.𝑢.𝑏(𝑎, 𝑏). Clearly (𝑃, ∨, ∧) is a lattice.
The lattice 𝐿 is said to be bounded if there are elements 0 and 1 such that,

𝑎 ∧ 1 = 𝑎 and 𝑎 ∨ 0 = 𝑎,

for all 𝑎 ∈ 𝐿. A nonempty subset 𝑆 of 𝐿 is called a multiplicatively closed subset of 𝐿 if 𝑥 ∧ 𝑦 ∈ 𝑆, for all 𝑥, 𝑦 ∈ 𝑆.
Also, we say that 𝑆 is a sublattice of 𝐿 if 𝑎, 𝑏 ∈ 𝑆 implies 𝑎 ∨ 𝑏 ∈ 𝑆 and 𝑎 ∧ 𝑏 ∈ 𝑆.
Throughout this paper, 𝐿 is a bounded lattice.
Let 𝐿 and 𝑆 be two lattices. A map 𝑓 ∶ 𝐿 → 𝑆 is called a homomorphism if for all 𝑥, 𝑦 ∈ 𝐿, the following conditions
hold:

𝑓(𝑥 ∨ 𝑦) = 𝑓(𝑥) ∨ 𝑓(𝑦) and 𝑓(𝑥 ∧ 𝑦) = 𝑓(𝑥) ∧ 𝑓(𝑦).

A homomorphism 𝑓 is an isomorphism if 𝑓 is both injective and surjective. We write 𝐿 ≅ 𝑆 if 𝐿 is isomorphic to 𝑆.

Definition 1.1. (i) Let 𝑃 be an ordered set and 𝑥, 𝑦 ∈ 𝑃. We say that 𝑥 is covered by 𝑦 (or 𝑦 covers 𝑥) and write
𝑥− < 𝑦 or 𝑦 > −𝑥, if 𝑥 < 𝑦 and 𝑥 ≤ 𝑧 < 𝑦 implies 𝑧 = 𝑥.

(ii) An element 𝑥 in 𝐿 is called an atom if 0− < 𝑥. We denote the set of all atoms in a lattice 𝐿 by 𝐴𝑡𝑜𝑚(𝐿).

Definition 1.2. Let 𝑃 and 𝑄 be (disjoint) ordered sets. The linear sum 𝑃⊕𝑄 is defined by taking the following order
relation on 𝑃 ∪ 𝑄: 𝑥 ≤ 𝑦 if and only if

𝑥, 𝑦 ∈ 𝑃 𝑎𝑛𝑑 𝑥 ≤ 𝑦 𝑖𝑛 𝑃,
𝑜𝑟 𝑥, 𝑦 ∈ 𝑄 𝑎𝑛𝑑 𝑥 ≤ 𝑦 𝑖𝑛 𝑄,
𝑜𝑟 𝑥 ∈ 𝑃 𝑎𝑛𝑑 𝑦 ∈ 𝑄.

Lemma 1.3. Let 𝐿 be a lattice. Then for all 𝑎, 𝑏, 𝑐 ∈ 𝐿, we have

𝑎 ≤ 𝑏 implies 𝑎 ∨ 𝑐 ≤ 𝑏 ∨ 𝑐 and 𝑎 ∧ 𝑐 ≤ 𝑏 ∧ 𝑐.

Definition 1.4. Let 𝐿 and 𝑆 be two lattices. Define product 𝐿 × 𝑆 to be the lattice whose ∨ and ∧ cordinatewise on
𝐿 × 𝑆 for (𝑙1, 𝑠1), (𝑙2, 𝑠2) ∈ 𝐿 × 𝑆, as follows

(𝑙1, 𝑠1) ∨ (𝑙2, 𝑠2) = (𝑙1 ∨ 𝑙2, 𝑠1 ∨ 𝑠2), (𝑙1, 𝑠1) ∧ (𝑙2, 𝑠2) = (𝑙1 ∧ 𝑙2, 𝑠1 ∧ 𝑠2).

We now recall the definition of congruence on lattices. We say that an equivalence relation 𝜃 on a lattice 𝐿 is compatible
with ∨ and ∧ if for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐿, we have

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝜃) and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝜃)
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imply

𝑎 ∨ 𝑐 ≡ 𝑏 ∨ 𝑑(𝑚𝑜𝑑 𝜃) and 𝑎 ∧ 𝑐 ≡ 𝑏 ∧ 𝑑(𝑚𝑜𝑑 𝜃).

Lemma 1.5. Let 𝐿 and 𝑆 be two lattices and 𝑓 ∶ 𝐿 → 𝑆 be a homomorphism. Then the equivalence relation 𝜃 defined
on 𝐿, for 𝑎, 𝑏 ∈ 𝐿, by

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝜃) ⟺ 𝑓(𝑎) = 𝑓(𝑏).

is compatible with ∨ and ∧.

Definition 1.6. An equivalence relation on a lattice 𝐿 which is compatible with both ∨ and ∧ is called a congruence
on 𝐿.

If 𝐿 and 𝑆 are two lattices and 𝑓 ∶ 𝐿 → 𝑆 is a homomorphism, then the associated congruence 𝜃 on 𝐿, defined in
Lemma 1.5, is known as the Kernel of 𝑓 and is denoted by 𝐾𝑒𝑟 𝑓.
Given a congruence 𝜃 on a lattice 𝐿. Let 𝑎 ∈ 𝐿 and 𝜃[𝑎] be the equivalence class of 𝑎 and

𝐿
𝜃 = {𝜃[𝑎] ∶ 𝑎 ∈ 𝐿} the set

of all equivalence classes of elements of 𝐿. Define the operations ∨ and ∧ as follows:

𝜃[𝑎] ∨ 𝜃[𝑏] = 𝜃[𝑎 ∨ 𝑏], 𝜃[𝑎] ∧ 𝜃[𝑏] = 𝜃[𝑎 ∧ 𝑏].

Lemma 1.7. Let 𝜃 be a congruence on the lattice 𝐿. Then (𝐿𝜃 , ∨, ∧) is a lattice.

Now, we recall some key definitions of graph theory which are needed in this note.
Let 𝑋 be a graph with the vertex set 𝑉(𝑋). For a graph 𝑋, the degree of a vertex 𝑣 in 𝑋 is the number of vertices
adjacent to 𝑣 and denoted by 𝑑𝑒𝑔(𝑣). A graph 𝑋 is said to be connected if, for each pair of distinct vertices 𝑣 and 𝑤,
there is a finite sequence 𝑣 = 𝑣1, ⋯ 𝑣𝑛 = 𝑤 of distinct vertices where each pair {𝑣𝑖 , 𝑣𝑖+1} is an edge. Otherwise, 𝑋 is
called disconnected. Such a sequence is said to be a path. If 𝑣 = 𝑤, then a path is called a cycle. A graph in which
each pair of distinct vertices is joined by an edge is called a complete graph and the notation 𝐾𝑛 is used for complete
graphs with 𝑛 vertices. A connected graph is called a tree if contains no cycle. A tree of order 𝑛 is called a star if it
has a vertex of degree 𝑛 − 1 and the rest of the vertices are of degree 1. The complement of 𝑋 is a graph denoted
by �̄� with the same vertex set as 𝑋 and two vertices in �̄� are adjacent if and only if they are not adjacent in 𝑋. The
complement of the complete graph 𝐾𝑛 is called the null graph on 𝑛 vertices (see [4] for more details)
Recall that a subgraph 𝑌 of a graph 𝑋 is a graph whose set of vertices and the set of edges are both subsets of 𝑋. A
clique of a graph is a complete subgraph of 𝑋 and the number of vertices in the largest clique of graph 𝑋, denoted by
𝜔(𝑋), is called the clique number of 𝑋. We now recall some graph operations [8]. Suppose 𝑋 and 𝑌 are graphs with
disjoint vertex sets. The disjoint union 𝑋+𝑌 is a graph with 𝑉(𝑋+𝑌) = 𝑉(𝑋)∪𝑉(𝑌) and 𝐸(𝑋+𝑌) = 𝐸(𝑋)∪𝐸(𝑌).
The tensor product (or direct product) 𝑋 × 𝑌 of graphs 𝑋 and 𝑌 is the graph whose vertex set is 𝑉(𝑋) × 𝑉(𝑌) in such
a way that vertices (𝑥, 𝑦) and (𝑥′, 𝑦′) are adjacent if 𝑥, 𝑥′ ∈ 𝐸(𝑋) and 𝑦, 𝑦′ ∈ 𝐸(𝑌).

2. Main Results

First, we introduce the notion torsion element and after using it, we associate a Cayley graph with a lattice.
Let 𝐿 be a lattice. Suppose that Γ(𝐿) = {𝑥 ∈ 𝐿 ∶ 𝑥 ∧ 𝑦 = 0𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦 ≠ 0} be the set of torsion elements.

Definition 2.1. We introduce the Cayley graph of 𝐿, denoted by ΓΓ(𝐿), as a graph with vertex set 𝐿 and two elements
𝑥, 𝑦 are adjacent if {𝑥, 𝑦} ⊆ Γ(𝐿) and is denoted by 𝑥𝐸𝑦.

Since for all 𝑦 ∈ 𝐿, 1 ∧ 𝑦 = 𝑦, so 1 ∉ Γ(𝐿).
If we do not consider vertex 1, we have the following Theorem.

Theorem 2.2. ΓΓ(𝐿) is complete if and only if Γ(𝐿) = 𝐿 − {1}.

Lemma 2.3. If Γ(𝐿) = 𝐿 − {1}, then 𝑑𝑒𝑔(𝑥) = |𝐿| − 1.
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Proposition 2.4. Let |𝐿| ≥ 3. Then
(i) If |Γ(𝐿)| ≥ 3, then there exists a cycle with length 3.
(ii) If |Γ(𝐿)| = 1, then ΓΓ(𝐿) is disconnected.

In the following Proposition, we present a lower bound for the clique number of ΓΓ(𝐿).

Proposition 2.5. 𝜔(ΓΓ(𝐿)) ≥ 𝑚𝑎𝑥{|𝐴| ∶ 𝐴 𝑖𝑠 𝑎 𝑐ℎ𝑎𝑖𝑛 𝑖𝑛 Γ(𝐿)}.

Lemma 2.6. If |Γ(𝐿)| ≥ 2, then |Γ(𝐿) ∩ 𝐴𝑡𝑜𝑚(𝐿)| ≥ 1.

Example 2.7. Let 𝑋 = {0, 1}. Then by [5], (𝑃(𝑋), ∪, ∩) is a lattice. It is routine to check Γ(𝑃(𝑋)) = {{0}, {1}, ∅}
and graph ΓΓ(𝑃(𝑋)) is as in follows:

Moreover, If we do not consider vertex {0, 1}, then we have ΓΓ(𝑃(𝑋)) is a complete and we saw that Γ(𝑃(𝑋)) =
𝑃(𝑋) − {0, 1}. Also, we have a cycle with length 3 and finally Γ(𝑃(𝑋)) ∩ 𝐴𝑡𝑜𝑚(𝑃(𝑋)) = {{0}, {1}}.

We remark that the properties of Cayley graph a lattice is completely different to graph defined in [1], for example in
Example 2.7, in Cayley graph ΓΓ(𝑃(𝑋)), {0}𝐸{1} but in graph ΓΓ(𝑃(𝑋))(𝑃(𝑋)), there is no edge between {0} and {1}
because {0} ∪ {1} = {0, 1} ∉ Γ(𝑃(𝑋)).

Lemma 2.8. Let 𝑆 be a sublattice of 𝐿. Then Γ(𝑆) ⊆ Γ(𝐿).

Corollary 2.9. Let 𝑆 be a sublattice of 𝐿. Then ΓΓ(𝑆) is a subgraph of ΓΓ(𝐿).

In the graph ΓΓ(𝐿), since vertices that in the set Γ(𝐿) are adjacent and the vertices that are not in Γ(𝐿) are not adjacent,
the set of vertices can be considered as a disjoint union of two sets of Γ(𝐿) and 𝐿 − {Γ(𝐿)},we have the following
Theorem.

Theorem 2.10. Let 𝐿 be a lattice. Then ΓΓ(𝐿) = 𝐾|Γ(𝐿)| + �̄�|𝐿−{Γ(𝐿)}|.

Lemma 2.11. Let 𝑓 ∶ 𝐿 → 𝑆 be a homomorphism and 𝛼 is a corresponding congruence relation with it. Then there

exists a homomorphism from ΓΓ( 𝐿𝛼 ) to ΓΓ(𝑆).

Theorem 2.12. Let 𝐿 and 𝑆 be two lattices and 𝐿 ≅ 𝑆. Then ΓΓ(𝐿) ≅ ΓΓ(𝑆).

Theorem 2.13. Let 𝐿 and 𝑆 be two lattices. Then ΓΓ(𝐿 × 𝑆) ≅ ΓΓ(𝐿) × ΓΓ(𝑆).

Theorem 2.14. Let 𝐿 and 𝑆 be two lattices and 𝐿 ∩ 𝑆 = {0}. Then there exists a homomorphism from ΓΓ(𝐿) + ΓΓ(𝑆)
to ΓΓ(𝐿 ⊕ 𝑆).

3. Conclusion

In this note, by considering the notion of algebraic properties of lattice, a graph associated with a lattice was introduced
and some related results were obtained.
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Abstract

In this paper, a Black-Scholes model with a fractional derivative of the Caputo-Hadamard type is
solved numerically. An L1-type approximation is obtained for the Caputo-Hadamard derivative
approximation. The collocation method with cubic B-spline bases is also used to approximate
the spatial derivatives. The numerical results indicate the accuracy of the method. The execution
speed of the implemented algorithm is also relatively high, which indicates the efficiency of the
presented method.

1. Introduction

The Caputo-Hadamard derivative is a fractional derivative that combines the concepts of the Caputo and Hadamard
derivatives. It has gained significant attention in recent years due to its ability to model complex systems with memory
and non-local properties. The Caputo-Hadamard derivative is particularly useful in fields such as control theory, signal
processing, and viscoelastic materials.
The concept of fractional calculus, which includes the Caputo-Hadamard derivative, has been extensively studied over
the past few decades. The Caputo derivative, introduced by Michele Caputo in 1967, is known for its applicability in
solving differential equations with initial conditions. On the other hand, the Hadamard derivative, proposed by Jacques
Hadamard in 1892, is used in problems involving boundary conditions. The combination of these two derivatives
results in the Caputo-Hadamard derivative, which offers a more comprehensive approach to modeling real-world
phenomena.
Recent studies have focused on the theoretical aspects of the Caputo-Hadamard derivative, exploring its properties
and potential applications. For instance, a study by Diethelm and Ford [1] investigated the stability and convergence
of numerical methods for the Caputo-Hadamard derivative. Another study by Liu et. al. [2] explored the application
of the Caputo-Hadamard derivative in viscoelastic material modeling, demonstrating its effectiveness in capturing the
material’s behavior over time.
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The Caputo-Hadamard derivative has found applications in various fields due to its ability to model systems with
memory and non-local effects. In control theory, it is used to design controllers for systems with fractional-order
dynamics. In signal processing, it helps in the analysis and synthesis of signals with fractional characteristics. Addi-
tionally, in viscoelastic material modeling, the Caputo-Hadamard derivative provides a more accurate representation
of the material’s response to stress and strain over time.
Recent research has also highlighted the potential of the Caputo-Hadamard derivative in biomedical engineering,
particularly in modeling the behavior of biological tissues and systems. A study by Karami et. al. [3] demonstrated
the use of the Caputo-Hadamard derivative in optimal control problems.
Fractional derivatives in theHadamard type are often defined from the generalization of the derivative operator ቀ𝑡 𝑑

𝑑𝑡ቁ
𝑛
,

𝑛 ∈ ℕ through logarithmic kernel functions.

Definition 1.1. The Caputo-type Hadamard fractional derivative of order 0 < 𝛼 < 1 of the function 𝑓(𝑡) on [0, 𝑇] is
defined as

𝐶𝐻
𝑎 𝐷𝛼

𝑡 𝑓(𝑡) =
1

Γ(1 − 𝛼) න
𝑡

𝑎
൬ln ൬ 𝑡𝑠൰൰

−𝛼
𝑓′(𝑠)𝑑𝑠. (1)

The Black-Scholes model, introduced by Fischer Black and Myron Scholes in 1973 [4], has been a cornerstone in
financial mathematics for option pricing. The model assumes that the price of the underlying asset follows a geometric
Brownian motion with constant volatility. However, empirical evidence has shown that financial markets exhibit
features such as long memory and heavy tails, which are not captured by the standard Black-Scholes model.
To address these limitations, researchers have extended the Black-Scholes model by incorporating fractional deriva-
tives, which can better capture thememory and anomalous diffusion observed in financial markets. Fractional calculus,
a generalization of ordinary differentiation and integration to non-integer orders, has been applied to various fields,
including finance, to model complex systems with memory effects.
Recent studies have shown that the Black-Scholes model with fractional derivatives provides a more accurate descrip-
tion of market behavior. For instance, a study by Bian et al. [5], demonstrated that incorporating fractional Brownian
motion into the Black-Scholes framework significantly improves the pricing of options with long memory. Another
research [6] explored the impact of fractional derivatives on hedging strategies and found that fractional models offer
better risk management compared to the classical Black-Scholes model.
Moreover, advancements in numerical methods have facilitated the implementation of fractional derivatives in option
pricing models. A recent paper by Zhang et al. [7], proposed a novel algorithm for efficiently computing the prices of
options under the fractional Black-Scholes model, which has been validated through extensive simulations.
In this work, our objective is to investigate the approximate solution of the fractional Black-Scholes model derived by
[8]

𝐶𝐻
0 𝐷𝛼

𝑡 𝑉(𝑆, 𝑡) +
𝜎2
2 𝑆2 𝜕

2𝑉(𝑆, 𝑡)
𝜕𝑆2 + 𝑟𝑆𝜕𝑉(𝑆, 𝑡)𝜕𝑆 − 𝑟𝑉(𝑆, 𝑡) = 0, 0 < 𝛼 < 1, (𝑆, 𝑡) ∈ (0, +∞) × (0, 𝑇), (2)

with the following terminal and boundary conditions

𝑉(𝑆, 𝑇) = 𝜂(𝑆), (3)

and

𝑉(0, 𝑡) = 𝛾(𝑡), 𝑉(∞, 𝑡) = 𝜁(𝑡), (4)

respectively. By substituting 𝜏 = 𝑇 − 𝑡, 𝑥 = ln(𝑆) and assuming 𝑉(𝑆, 𝑡) = 𝑢(𝑥, 𝜏) the relations (2)–(4) convert to

𝐶𝐻
0 𝐷𝛼

𝑡 𝑢(𝑥, 𝜏) =
𝜎2
2 𝑢𝑥𝑥(𝑥, 𝜏) + (𝑟 − 𝜎2

2 )𝑢𝑥(𝑥, 𝜏) − 𝑟𝑢(𝑥, 𝜏) + 𝑓(𝑥, 𝜏), (𝑥, 𝜏) ∈ (𝑎, 𝑏) × (0, 𝑇), (5)

with the following initial and boundary conditions

𝑢(𝑥, 0) = 𝑢0(𝑥), (6)
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and

𝑢(𝑎, 𝜏) = 𝛾(𝜏), 𝑢(𝑏, 𝜏) = 𝜁(𝜏). (7)

In order to use the numerical solution, the previously infinite domain in (5) is restricted to a finite domain. A source
term 𝑓(𝑥, 𝜏) is also added to obtain an exact solution for testing the numerical method.

2. Numerical Method

Let 𝑡𝑛 = 𝑛Δ𝑡, 𝑛 = 0, 1, … ,𝑁, be a uniform partition of [0, 𝑇] where Δ𝑡 = 𝑇
𝑁 denotes the temporal step size. To

determine a semi-discrete formulation for (1), the fractional derivative can be estimated using the L1method as follows:

𝐶𝐻
𝑎 𝐷𝛼

𝑡 𝑓(𝑡) =
1

Γ(1 − 𝛼)

𝑛−1


𝑖=0

න
𝑡𝑖+1

𝑡𝑖
(ln 𝑡𝑛 − ln 𝑠)−𝛼𝑓′(𝑠)𝑑𝑠

= 1
Δ𝑡Γ(1 − 𝛼)

𝑛−1


𝑖=0

(𝑓(𝑡𝑖+1) − 𝑓(𝑡𝑖)) 𝐽𝑖,𝑛 + 𝑂(Δ𝑡)

≈ 1
Δ𝑡Γ(1 − 𝛼)

𝑛−2


𝑖=0

(𝑓(𝑡𝑖+1) − 𝑓(𝑡𝑖)) 𝐽𝑖,𝑛 +
1

Δ𝑡Γ(1 − 𝛼) (𝑓(𝑡𝑛) − 𝑓(𝑡𝑛−1)) 𝐽𝑛−1,𝑛 , (8)

where

𝐽𝑖,𝑛 = න
𝑡𝑖+1

𝑡𝑖
(ln 𝑡𝑛 − ln 𝑠)−𝛼𝑑𝑠 = 𝑡𝑛 ൬Γ(1 − 𝛼, ln( 𝑛

𝑖 + 1)) − Γ(1 − 𝛼, ln(𝑛𝑖 ))൰ ,

and Γ(𝑎, 𝑥) denotes the incomplete Gamma function Γ(𝑎, 𝑥) = 1
Γ(𝑎) ∫

∞
𝑥 𝑡𝑎−1𝑒−𝑡𝑑𝑡 available numerically in MAT-

LAB. It is worth noting that Γ(𝑎, 0) = 1 and Γ(𝑎,∞) = 0.
By applying the Crank-Nicholson parametric method to equation (5), we have

1
Δ𝑡Γ(1 − 𝛼)

𝑛−1


𝑖=0

(𝑢(𝑥, 𝜏𝑖+1) − 𝑢(𝑥, 𝜏𝑖)) 𝐽𝑖,𝑛+1 +
1

Δ𝑡Γ(1 − 𝛼) (𝑢(𝑥, 𝜏𝑛+1) − 𝑢(𝑥, 𝜏𝑛)) 𝐽𝑛,𝑛+1

= 𝜃 ቆ𝜎
2

2 𝑢𝑥𝑥(𝑥, 𝜏𝑛+1) + (𝑟 − 𝜎2
2 )𝑢𝑥(𝑥, 𝜏𝑛+1) − 𝑟𝑢(𝑥, 𝜏𝑛+1)ቇ

+ (1 − 𝜃) ቆ𝜎
2

2 𝑢𝑥𝑥(𝑥, 𝜏𝑛) + (𝑟 − 𝜎2
2 )𝑢𝑥(𝑥, 𝜏𝑛) − 𝑟𝑢(𝑥, 𝜏𝑛)ቇ

+ 𝜃𝑓(𝑥, 𝜏𝑛+1) + (1 − 𝜃)𝑓(𝑥, 𝜏𝑛) + 𝑂(Δ𝑡), (9)

From relation (9), the following semi-discrete scheme is obtained

𝐴𝑛𝑢(𝑥, 𝜏𝑛+1) − 𝐵𝑢𝑥𝑥(𝑥, 𝜏𝑛+1) − 𝐶𝑢𝑥(𝑥, 𝜏𝑛+1)

= −
𝑛−1


𝑖=0

(𝑢(𝑥, 𝜏𝑖+1) − 𝑢(𝑥, 𝜏𝑖)) 𝐽𝑖,𝑛+1 + 𝐷𝑛𝑢(𝑥, 𝜏𝑛) + 𝐸𝑢𝑥𝑥(𝑥, 𝜏𝑛) + 𝐹𝑢𝑥(𝑥, 𝜏𝑛) + ℎ𝑛(𝑥), (10)

where

𝐴𝑛 = Δ𝑡Γ(1 − 𝛼)𝜃𝑟 + 𝐽𝑛,𝑛+1, 𝐵 = Δ𝑡Γ(1 − 𝛼)𝜃𝜎
2

2 , 𝐶 = Δ𝑡Γ(1 − 𝛼)𝜃(𝑟 − 𝜎2
2 ),

𝐷𝑛 = 𝐽𝑛,𝑛+1 − Δ𝑡Γ(1 − 𝛼)(1 − 𝜃)𝑟, 𝐸 = Δ𝑡Γ(1 − 𝛼)(1 − 𝜃)𝜎
2

2 , 𝐹 = Δ𝑡Γ(1 − 𝛼)(1 − 𝜃)(𝑟 − 𝜎2
2 ),

ℎ𝑛(𝑥) = Δ𝑡Γ(1 − 𝛼) (𝜃𝑓(𝑥, 𝜏𝑛+1) + (1 − 𝜃)𝑓(𝑥, 𝜏𝑛)) .



Roya Montazeri / The 5th National Congress on Mathematics and Statistics 389

In this approach, the space derivatives are approximated by using cubic B-spline method. A mesh Ω which is equally
divided by knots 𝑥𝑖 into 𝑀 subintervals [𝑥𝑖 , 𝑥𝑖+1], 𝑖 = 0, 1, … ,𝑀 − 1 such that Ω ∶ 𝑎 = 𝑥0 < 𝑥1 < … < 𝑥𝑀 = 𝑏 is
used. Also, let 𝑆4(Ω) be the space of cubic splines onΩ. The corresponding set of cubic B-splines {𝐵−1, 𝐵0, … , 𝐵𝑀+1},
where is a basis for 𝑆4(Ω), are defined as follows [9]

𝐵𝑗(𝑥) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(𝑥−𝑥𝑗)3

(𝑥𝑗+1−𝑥𝑗)(𝑥𝑗+2−𝑥𝑗)(𝑥𝑗+3−𝑥𝑗)
, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1),

(𝑥−𝑥𝑗)2(𝑥𝑗+2−𝑥)
(𝑥𝑗+2−𝑥𝑗)(𝑥𝑗+2−𝑥𝑗+1)(𝑥𝑗+3−𝑥𝑗)

+ (𝑥−𝑥𝑗)(𝑥𝑗+3−𝑥)(𝑥−𝑥𝑗+1)
(𝑥𝑗+3−𝑥𝑗)(𝑥𝑗+3−𝑥𝑗+1)(𝑥𝑗+2−𝑥𝑗+1)

+ (𝑥𝑗+4−𝑥)(𝑥−𝑥𝑗+1)2

(𝑥𝑗+2−𝑥𝑗+1)(𝑥𝑗+3−𝑥𝑗+1)(𝑥𝑗+4−𝑥𝑗+1)
, 𝑥 ∈ [𝑥𝑗+1, 𝑥𝑗+2),

(𝑥−𝑥𝑗)(𝑥𝑗+3−𝑥)2

(𝑥𝑗+3−𝑥𝑗)(𝑥𝑗+3−𝑥𝑗+1)(𝑥𝑗+3−𝑥𝑗+2)

+ (𝑥−𝑥𝑗+1)(𝑥𝑗+3−𝑥)(𝑥𝑗+4−𝑥)
(𝑥𝑗+3−𝑥𝑗+1)(𝑥𝑗+3−𝑥𝑗+2)(𝑥𝑗+4−𝑥𝑗+1)

+ (𝑥𝑗+4−𝑥)2(𝑥−𝑥𝑗+2)
(𝑥𝑗+4−𝑥𝑗+1)(𝑥𝑗+4−𝑥𝑗+2)(𝑥𝑗+3−𝑥𝑗+2)

, 𝑥 ∈ [𝑥𝑗+2, 𝑥𝑗+3),
(𝑥𝑗+4−𝑥)3

(𝑥𝑗+4−𝑥𝑗+1)(𝑥𝑗+4−𝑥𝑗+2)(𝑥𝑗+4−𝑥𝑗+3)
, 𝑥 ∈ [𝑥𝑗+3, 𝑥𝑗+4),

0, 𝑜.𝑤.,

for 𝑗 = −3,−2,… ,𝑀 − 1. Now, we consider a linear combination of B-splines as an approximation of 𝑢(𝑥, 𝜏𝑛),
𝑢𝑥(𝑥, 𝜏𝑛) and 𝑢𝑥𝑥(𝑥, 𝜏𝑛), as follows

𝑢(𝑥, 𝜏𝑛) =
𝑀+1


𝑘=−1

𝑐𝑛𝑘𝐵𝑘(𝑥), (11)

𝑢(𝑥, 𝜏𝑛) =
𝑀+1


𝑘=−1

𝑐𝑛𝑘𝐵′𝑘(𝑥), (12)

𝑢(𝑥, 𝜏𝑛) =
𝑀+1


𝑘=−1

𝑐𝑛𝑘𝐵′′𝑘 (𝑥). (13)

By substituting (11)–(13) into (10), we have

𝑀−1


𝑗=−3

𝑐𝑛+1𝑗 𝑃𝑛𝑗 (𝑥) = 𝑅𝑛(𝑥), (14)

where

𝑅𝑛(𝑥) = 𝐽0,𝑛+1𝑢(𝑥, 𝜏0) −
𝑛−1


𝑖=1

(𝐽𝑖−1,𝑛+1 − 𝐽𝑖,𝑛+1)𝑢(𝑥, 𝜏𝑖)

− 𝐷𝑛𝑢(𝑥, 𝜏𝑛) + 𝐸𝑢𝑥𝑥(𝑥, 𝜏𝑛) + 𝐹𝑢𝑥(𝑥, 𝜏𝑛) + ℎ𝑛(𝑥),
𝑃𝑛𝑗 (𝑥) = 𝐴𝑛𝐵𝑗(𝑥) − 𝐵𝐵″𝑗(𝑥) − 𝐶𝐵′𝑗(𝑥).
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By placing the node points 𝑥𝑘, 𝑘 = 0, 1, … ,𝑀 in relations (14) and using (7), we have:
𝑀−1


𝑗=−3

𝑐𝑛+1𝑗 𝑃𝑛𝑗 (𝑥𝑘) = 𝑅𝑛(𝑥𝑘), 𝑘 = 0, 1, … ,𝑀,

𝑀−1


𝑗=−3

𝑐𝑛+1𝑗 𝐵𝑗(𝑥0) = 𝛾(𝜏𝑛+1) (15)

𝑀−1


𝑗=−3

𝑐𝑛+1𝑗 𝐵𝑗(𝑥𝑀) = 𝜁(𝜏𝑛+1).

Using relations (15), the following system is obtained for calculating the coefficients 𝑐𝑛+1𝑗 ’s:

M𝑛𝐶𝑛+1 = R𝑛 , (16)

where

𝐶𝑛+1 = ൫𝑐𝑛+10 , 𝑐𝑛+11 , … , 𝑐𝑛+1𝑀 ൯𝑇 , R𝑛 = (𝛾(𝜏𝑛+1), 𝑅𝑛(𝑥0), 𝑅𝑛(𝑥1), … , 𝑅𝑛(𝑥𝑀), 𝜁(𝜏𝑛+1))
𝑇 .

M𝑛 =
⎛
⎜
⎜

⎝

𝐵−3(𝑥0) 𝐵−2(𝑥0) 𝐵−1(𝑥0) ⋯ 𝐵𝑀−2(𝑥0) 𝐵𝑀−1(𝑥0)
𝑃−3(𝑥0) 𝑃−2(𝑥0) 𝑃−1(𝑥0) ⋯ 𝑃𝑀−2(𝑥0) 𝑃𝑀−1(𝑥0)
𝑃−3(𝑥1) 𝑃−2(𝑥1) 𝑃−1(𝑥1) ⋯ 𝑃𝑀−2(𝑥1) 𝑃𝑀−1(𝑥1)

⋮ ⋮ ⋮ ⋮ ⋮
𝑃−3(𝑥𝑀) 𝑃−2(𝑥𝑀) 𝑃−1(𝑥𝑀) ⋯ 𝑃𝑀−2(𝑥𝑀) 𝑃𝑀−1(𝑥𝑀)
𝐵−3(𝑥𝑀) 𝐵−2(𝑥𝑀) 𝐵−1(𝑥𝑀) ⋯ 𝐵𝑀−2(𝑥𝑀) 𝐵𝑀−1(𝑥𝑀)

⎞
⎟
⎟

⎠

.

It is worth noting that the values of 𝑢𝑥 and 𝑢𝑥𝑥 at 𝑡0 are obtained using the initial condition (6).

3. Numerical results

Example 3.1. Let us consider 𝜎 = 0.25, 𝜃 = 1, 𝑟 = 0.05, 𝑇 = 1, 𝑎 = 0, 𝑏 = 1, 𝛾(𝜏) = 𝜁(𝜏) = 0 with

𝑓(𝑥, 𝑡) = (𝑡 + 1)2ቀ − 𝜎2
2 (2 − 6𝑥) − (𝑟 − 𝜎2

2 )(2𝑥 − 3𝑥2) + 𝑟𝑥2(1 − 𝑥)ቁ

+ 2𝑥2(1 − 𝑥)
Γ(1 − 𝛼) (𝑡22𝛼−1 + 𝑡).

𝑢0(𝑥) = 𝑥2(1 − 𝑥),
From this assumptions the exact solution can be calculated by 𝑢(𝑥, 𝑡) = 𝑥2(1 − 𝑥)(1 + 𝑡)2 [9].
The figure of the approximate solution and the absolute error at all node points with 𝑁 = 1000 and 𝑀 = 100 are
shown in Fig. 1. The versatility and the accuracy of the method is measured using the maximum absolute error norm
𝐿∞, defined by

𝐿∞(𝑀,𝑁) = max
0≤𝑖≤𝑀

ห𝑈(𝑥𝑖 , 𝑡𝑁) − 𝑈𝑒𝑥𝑎𝑐𝑡(𝑥𝑖 , 𝑡𝑁)ห ,

where 𝑈(𝑥𝑖 , 𝑡𝑁) and 𝑈𝑒𝑥𝑎𝑐𝑡(𝑥𝑖 , 𝑡𝑁) are numerical and exact solutions at (𝑥𝑖 , 𝑡𝑁) point. The time convergence orders
are defined as follows

Rate𝑡 = log (𝐿∞(𝑀,𝑁1)) − log (𝐿∞(𝑀,𝑁2))
log (𝑁2) − log (𝑁1)

.

Table 1 shows the method error along with the temporal order error and the algorithm execution time in seconds.

According to Table 1, it can be seen that the temporal order of the method is about 1.5.



Roya Montazeri / The 5th National Congress on Mathematics and Statistics 391

Fig. 1. The graph of the approximate solution (left) and the absolute error at all node points (right) for example 3.1 with 𝑁 = 1000 and𝑀 = 100.

Table 1. The maximum-norm errors and temporal convergence orders with𝑀 = 100 for Example 3.1.

𝑁 𝐿∞(𝑀,𝑁) Rate𝑡 CPU time(S)

4 5.215266𝑒 − 03 − 0.15
8 1.925455𝑒 − 03 1.4375 0.24
16 6.986236𝑒 − 04 1.4626 0.49
32 2.509957𝑒 − 04 1.4769 1.14
64 8.965026𝑒 − 05 1.4853 3.25
128 3.190647𝑒 − 05 1.4905 12.55
256 1.132981𝑒 − 05 1.4937 20.73
512 4.017290𝑒 − 06 1.4958 64.96
1024 1.423080𝑒 − 06 1.4972 243.57
2048 5.037922𝑒 − 07 1.4981 944.37

4. Conclusion

This paper presents a novel approach to solving the Black-Scholes model using fractional derivatives of the Caputo-
Hadamard type. Using the L1-type approximation for the Caputo-Hadamard derivative and the collocation method
with cubic B-spline bases has proven to be effective in approximating the spatial derivatives. The numerical results
demonstrate the accuracy of the proposed method, with the implemented algorithm exhibiting high execution speed.
These findings indicate that the presented method is not only accurate but also efficient, making it a promising tool for
option pricing and other financial applications. Future research could explore further enhancements to the algorithm
and its applicability to more complex financial models.
It is notable that, we perform all of the computations byMATLAB®R2019a software (V9.6.0.1072779, 64-bit (win64),
License Number: 968398, MathWorks Inc., Natick, MA) running on a Sony VAIO Laptop (Intel® Core™ i5-2410M
Processor 2.30 GHz with Turbo Boost up to 2.90 GHz, 8 GB of RAM, 64-bit) PC.
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Abstract

This study examines the intrinsic connections between covering spaces and Heyting algebras,
presenting significant theoretical and practical advancements. A notable finding reveals that
covering maps serve as a fundamental model for constructive operations in intuitionistic logic.
Additionally, intuitive negation in topology operates through the interaction between the base
space and its universal cover, effectively demonstrated in covering structures, emphasizing the
interplay between local and global perspectives. This paper highlights the importance of the deck
group as a pivotal tool for assessing the preservation of topological properties during continu-
ous transformations, thereby showcasing the broader applicability of the covering space theory.
Ultimately, this research establishes a vital link between algebraic topology and intuitionistic
logic, paving the way for future explorations in mathematics and interdisciplinary fields.

1. Introduction

Algebraic topology, particularly through the use of groups, is a branch of mathematics that studies topological spaces
and their properties under continuous transformations. It seeks to understand the properties of spaces that remain
invariant under such transformations [5].

Definitions and Properties of Covering Maps
Definition 1.1. A covering map 𝑝 ∶ �̃� → 𝑋 is a continuous function that satisfies the following two conditions:

1. Uniform Covering: Every point 𝑥 ∈ 𝑋 has an open neighborhood 𝑈 such that 𝑝−1(𝑈) = ⨆𝑖∈𝐼 𝑉𝑖, where each
𝑉𝑖 is an open subset of 𝑋 and 𝑝|𝑉𝑖 ∶ 𝑉𝑖 → 𝑈 is a homeomorphism.

2. Discrete Fibers: For every 𝑥 ∈ 𝑋, the fiber 𝑝−1(𝑥) is a discrete set in 𝑋 (i.e., each point in the fiber has a
distinct open neighborhood).

∗Speaker
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Key Properties
1. Path Lifting: For any path 𝛾 ∶ [0, 1] → 𝑋 and any point �̃�0 ∈ 𝑝−1(𝛾(0)), there exists a unique path �̃� ∶ [0, 1] →

𝑋 such that �̃�(0) = �̃�0 and 𝑝 ∘ �̃� = 𝛾.
2. Deck TransformationGroup: The group of automorphisms of𝑋 that commute with 𝑝 is called the deck group,

denoted Deck(�̃�/𝑋). This group is isomorphic to the fundamental group 𝜋1(𝑋).
3. Universal Cover: If 𝑋 is simply connected (i.e., 𝜋1(𝑋) = 0), then 𝑋 is called the universal cover. This cover

is unique and can be used to derive all other covers (up to homeomorphism).

Classic Example
The map 𝑝 ∶ ℝ → 𝑆1 defined by 𝑝(𝑡) = 𝑒2𝜋𝑖𝑡 is a universal cover of the unit circle 𝑆1. Every point in 𝑆1 has a
neighborhood 𝑈 such that 𝑝−1(𝑈) is a disjoint union of open intervals in ℝ.(See [6].)

The Role of Covering Maps in Algebraic Topology
Covering maps are essential tools for studying homotopy groups and their global structures.

1. Connection with the Fundamental Group: If 𝑝 ∶ �̃� → 𝑋 is a universal cover, then the deck group Deck(�̃�/𝑋)
is isomorphic to 𝜋1(𝑋).

2. Lifting of Homotopies: Any homotopy in 𝑋 can be uniquely lifted to �̃�. This property is useful for proving
theorems such as the homotopy lifting theorem and is also relevant in the context of category theory.

3. Computation ofHigherHomotopyGroups: For covering spaces, the higher homotopy groups𝜋𝑛(𝑋) coincide
with 𝜋𝑛(�̃�).

Historical Connection with Mathematical Logic through duality (e.g., Stone and Esakia)
Intuitionistic logic, which emphasizes constructive proofs, can be traced back to classical duality. These duality often
contrast classical logic principles, such as the law of the excluded middle, with intuitionistic views that reject such
principles [1]. This historical context is essential for understanding the evolution of logical frameworks.
The work of philosophers like Brouwer, Heyting, and Kolmogorov laid the groundwork for intuitionistic logic, which
fundamentally differs from classical logic. Their interpretations highlight the importance of constructive methods in
proving the existence of mathematical objects, marking a significant shift in logical thought [1].
The duality of Stone and Esakia illustrate the tension between classical and intuitionistic approaches, emphasizing
how different perspectives on truth and proof have shaped mathematical logic. Their contributions have influenced
the development of various logical systems [1].

Heyting Algebra and Intuitionistic Logic
HeatingAlgebra act as algebraic structures that encapsulate the principles of intuitionistic logic, providing a framework
for constructive reasoning. This aligns with the fundamental ideas of intuitionism, which prioritize constructive proofs
over non-constructive methods in classical logic [3].
These Algebra can be viewed as models that reflect the behavior of logical connectives in intuitionistic logic, offering
a structured system for exploring how these connectives interact. This interaction is crucial for a deeper understanding
of the logical implications and their constructive nature [3].
The concept of Heyting Algebra emphasizes continuity and transformation in logical reasoning, paralleling the intu-
itionistic approach to truth. This perspective highlights the dynamic nature of logical operations, in contrast to the
static interpretations often found in classical logic [3].
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Problem and Objectives
Topological coverings as tools for analyzing and transferring information in Heyting algebra models.
Topological coverings can serve as a framework for understanding the relationships between different Heyting al-
gebra models and facilitate the transfer of information between them. This is particularly relevant in the context of
intuitionistic logic, where the structure of the models can significantly influence the interpretation of logical statements
[4].
The use of coverings allows for the exploration of how the local properties of Heyting Algebra can impact global
structures, providing insights into the behavior of logical operations within these models. This can enhance our un-
derstanding of how information is preserved or transformed during logical inference [4].
Analyzing coverings in Heyting algebra models can reveal the underlying topological properties that govern interac-
tions between different logical structures, offering a more nuanced perspective on the semantics of intuitionistic logic
. This approach may lead to new methods for reasoning about logical consequences and their representations.

Connection between Covering Theory and Intuitionistic Logic
Coverings in topology, such as Ã©tale coverings, can be understood through intuitionistic logic, which emphasizes
constructive proofs and the existence of mathematical objects. This perspective aligns with the need for explicit
structures in covering spaces, where one must demonstrate the existence of local entities [2].
The law of the excluded middle, often used in classical logic, contrasts with intuitionistic logic, which requires a more
constructive approach. In the context of coverings, this means that one must provide examples with explicit structures
rather than relying on non-constructive existence proofs. This is particularly important in the study of Galois coverings,
where the relationships between field extensions must be explicitly defined [2].

Heyting Algebra and Intuitionistic Logic
AHeyting algebra is an algebraic structure that serves as a mathematical model for intuitionistic logic. In intuitionistic
logic, unlike classical logic, the law of the excluded middle (𝐴 ∨ ¬𝐴 = 𝑇) does not necessarily hold. In other words,
there are propositions that cannot be proven or disproven. This idea is reflected in the definition of logical operations in
Heyting algebras, where conjunction (∧), disjunction (∨), and negation (¬) are defined structurally without necessarily
satisfying ¬¬𝐴 = 𝐴.

Difference from Boolean Algebras
In Boolean algebras, every element 𝐴 has a unique complement¬𝐴 such that 𝐴∨¬𝐴 = 𝑇 and 𝐴∧¬𝐴 = 𝐹. However,
in Heyting algebras, the complement¬𝐴 is defined as the largest element that does not intersect with𝐴. This definition
means that ¬¬𝐴 does not necessarily equal 𝐴.

Example 1.2. The set of open sets Open(𝑋) of a topological space 𝑋 forms a Heyting algebra. Here:

• Disjunction (∨) corresponds to the union of open sets.

• Conjunction (∧) corresponds to the intersection of the open sets.

• Intuitionistic negation (¬) corresponds to the interior of the complement, i.e., ¬𝑈 = Int(𝑋 ∖ 𝑈).

For example, if 𝑈 is an open set, ¬𝑈 consists of points that have no neighborhood entirely contained in 𝑈.

Connection between Covering Maps and Heyting Algebras
This continuous map covers 𝑋 locally and uniformly through sheets (�̃�). The Heyting algebra associated with �̃�,
Open(�̃�), can provide richer information than Open(𝑋).
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Inverse Map 𝑝−1: Extending Structures
The inverse map 𝑝−1 ∶ Open(𝑋) → Open(�̃�) is a homomorphism that preserves the following operations:

1. 𝑝−1(𝑈 ∨ 𝑉) = 𝑝−1(𝑈) ∨ 𝑝−1(𝑉)
2. 𝑝−1(𝑈 ∧ 𝑉) = 𝑝−1(𝑈) ∧ 𝑝−1(𝑉)
3. 𝑝−1(¬𝑈) = ¬𝑝−1(𝑈)

However, 𝑝−1 is not a complete homomorphism on negation because 𝑝−1(¬𝑈) may be larger than ¬𝑝−1(𝑈). This
difference reflects the fact that �̃� may have a more complex topological structure than 𝑋.

Representation of Logical Formulas in the Universal Cover
If 𝑋 is simply connected (i.e., it has no non-trivial covers), then the universal cover �̃� allows the representation of all
logical formulas expressible in Open(𝑋). This is due to two key properties:

1. Absence of Loops: The universal cover ”unfolds” all loops in 𝑋, converting them into paths in �̃�.
2. Localness: Any logical statement in 𝑋 can be locally represented in �̃�, as �̃� is locally homeomorphic to 𝑋.

Classic Example: 𝑋 = 𝑆1 and �̃� = ℝ
Consider a statement like ”the point is in the upper half of the circle” for 𝑆1. In ℝ, 𝑝−1(𝑈) is the union of intervals
(𝑘 − 1

4 , 𝑘 +
1
4) for all 𝑘 ∈ ℤ. While this statement is global in 𝑆1 (since the circle is compact), it is locally defined in

ℝ for each interval.
The intuitionistic negation ¬𝑈 in 𝑆1 corresponds to the interior of the complement, i.e., ¬𝑈 = Int(𝑆1 ∖ 𝑈), which is
a smaller interval in the lower half of the circle. In ℝ, 𝑝−1(¬𝑈) consists of points that have no neighborhood entirely
contained in 𝑝−1(𝑈). This set is more complex than ¬𝑝−1(𝑈), reflecting the linear structure of ℝ.

2. Role of the Universal Cover in Complete Logical Representation

The universal cover �̃� resolves all the topological ambiguities in 𝑋, allowing the Heyting algebra Open(�̃�) to:

• Represent all possible paths in 𝑋 as unique paths in �̃�.

• Encode all possible states of open sets in 𝑋 across different sheets of �̃�.

• Define intuitionistic negation more precisely, as there are no unexpected connections in �̃�.

Complex Example
If 𝑋 is a hyperbolic space (e.g., the upper half-plane ℍ2), then the universal cover �̃� depends on the hyperbolic
geometry of 𝑋, allowing for a simpler representation of the geometric structures.

Summary: Topology, Logic, and the Transfer of Structures
Covering maps act as a bridge between topology and logic. The Heyting algebra Open(𝑋) provides a local model for
reasoning in 𝑋, while Open(�̃�) enables global inferences. The universal cover maximizes the topological information,
reflecting all logical operations in 𝑋.
This deep connection unifies seemingly disparate areas of mathematics, such as algebraic topology and logic, high-
lighting the profound interplay between abstract structures and practical applications.

2.1. Impact of Coverings on the Logical Properties
2.1.1. Enhancing Consistency and Completeness in Intuitive Systems
Local systems can utilize homomorphisms to adapt to environmental changes, making intuitive systems more respon-
sive and dynamic. This adaptability is crucial for maintaining functionality across various contexts [4].
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2.1.2. Improving Model Accuracy and Reliability
The consistency of Boolean models enhances the accuracy of complex propositions, ensuring reliability in various
applications [3].

2.1.3. Integration of Components
The use of homomorphisms in the system structures facilitates the integration of different components, creating a more
cohesive system. This integration addresses new challenges and requirements, leading to more robust solutions [2].

2.2. Conclusion
This research highlights the key role of covering maps and Heyting Algebra in analyzing topological structures and
modeling intuitionistic logic. The findings demonstrate how covering maps facilitate the transfer of information be-
tween local and global spaces, providing an efficient framework for modeling constructive operations in intuitionistic
logic. The connection between the deck group and the fundamental group of spaces offers a better understanding
of how topological properties are preserved under continuous transformations. Furthermore, the representation of
Heyting algebras in universal covers (e.g., ℝ → 𝑆1) strengthens the interplay between local and global concepts in
intuitionistic logic, showing how intuitive negation is reflected in topological structures.

2.3. Implications of the Results
These results have broad implications for mathematics, logic, and computer science. In intuitionistic logic, the use of
covering aids in developing more constructive reasoning systems, where mathematical objects are explicitly defined
based on local structures. In computer science, this approach can improve the design of formal verification algo-
rithms and enhance uncertainty management in machine learning through topological modeling. The unification of
the algebraic topology and Heyting Algebra opens new horizons for studying the interaction between geometry and
logic.

2.4. Future Research Directions
1. Generalization to Multi-valued and Fuzzy Logic Systems: Exploring how topological coverings can be gen-

eralized to model more complex logical systems with multi-valued and fuzzy truth values.
2. Applications in Artificial Intelligence: Using topological concepts to improve the interpretability of deep

learning models and manage sparse data.
3. Connecting Coverings with Topos Theory: Investigating the relationship between coverings and topos theory

to develop more comprehensive frameworks for intuitionistic logic.
4. Studying Non-Euclidean Coverings: Analyzing coverings with non-Euclidean deck groups and their impact

on the structure of Heyting Algebra in non-Euclidean spaces.

This research not only bridges algebraic topology and intuitionistic logic but also provides a theoretical foundation for
future innovations in mathematics, emphasizing the enduring importance of the interaction between abstract structures
and practical applications in advanced technologies for solving real-world problems.
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Abstract

Among the various families of Burr distributions introduced by Burr (1942), the Burr X and
Burr XII distributions have received the most attention for modeling data across multiple fields.
The Burr X distribution, also known as the generalized Rayleigh distribution, has been widely
used for modeling lifetime data under both complete and censored conditions.
In recent life-testing experiments, progressive Type-II censoring has been extensively applied
to various statistical problems. However, a major drawback of this method is the potentially
long duration of the experiment. To address this issue, researchers have introduced progressive
Type-II hybrid censoring and, more recently, adaptive progressive Type-II censoring.
This study aims to evaluate the advantages and disadvantages of these censoring methods under
the Burr X distribution. To achieve this, we will derive the Maximum Likelihood and Bayesian
estimators for the unknown parameters using progressively Type-II, progressive Type-II hybrid,
and adaptive progressive Type-II censored data. The efficiency of these estimators will be as-
sessed through a comprehensive simulation study. Additionally, we will construct asymptotic,
percentile bootstrap, and highest posterior density (HPD) intervals for the unknown parameters
and evaluate their effectiveness through another simulation study.
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Abstract

In this article, we introduce two goodness-of-fit test statistics for the Rayleigh distribution,
specifically designed for data obtained from a life testing plan known as the progressive first-
failure censoring scheme, as proposed by Wu and Kuş (2009). In this censoring scheme, the
experimenter organizes the test units into several sets and conducts tests on all units simulta-
neously. The life test concludes after observing 𝑚 failures among all the units involved in the
test.
When the first failure occurs, 𝑅1 groups, chosen randomly, along with the group that experiences
the first failure, are withdrawn from the test. When the second failure occurs, 𝑅2 groups, chosen
randomly, along with the group that experiences the second failure, are withdrawn from the test,
and so on. Finally, after the 𝑚-th failure is recorded, all remaining groups are eliminated from
the test, concluding the life test. Note that the values of𝑚 and (𝑅1, … , 𝑅𝑚) are pre-determined.
The first proposed goodness-of-fit test statistic is based on the sample correlation coefficient
between the observed lifetime data and the logarithm of their Kaplan-Meier estimator of the
survival function. The second test statistic is derived from the sample correlation between the
observed lifetime data and their Nelson-Aalen estimator of the cumulative hazard function.
The performance of these test statistics will be assessed against various alternative distributions
through a Monte Carlo simulation study. The results demonstrate that both test statistics exhibit
good performance in detecting deviations from the Rayleigh distribution under the alternative
hypotheses.
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Abstract

The stress-strength parameter 𝜉 = 𝑃(𝑋 < 𝑌), first proposed by Birnbaum (1956), where the
random variables 𝑋 and 𝑌 represent stress and strength, respectively, is widely recognized in
statistical research as an indicator of system efficiency. The estimation of 𝜉 for various families
of probability distributions has been extensively studied in the literature. While existing meth-
ods for estimating 𝜉 offer practical advantages, they often lack stability and robustness in the
presence of outliers and extreme values.
Practical studies in reliability and stress-strength contexts reveal that outliers can contaminate
the variables 𝑋 and 𝑌, particularly due to noise in life testing processes. In this work, we address
the challenge of estimating 𝜉 when the random variables 𝑋 and 𝑌 are independent and subject
to outliers. Recent advancements have introduced several methods and statistical models for
outlier detection and robust inference. We will focus on the well-known Dixit model (Dixit,
1987) as a powerful approach for modelling outliers.
Moreover, because of the lack of the estimation of 𝜉 under the Burr Type Xmodel, the estimation
of 𝜉 under this model is the other main motivation of the present work. We assume that𝑋 follows
a contaminated Burr Type X distribution with one outlier, while 𝑌 adheres to an uncontaminated
Burr Type X distribution. In other words, 𝑌 has the Burr type X distribution with parameter 𝛼
and 𝑋 has the Burr type X distribution with presence of one outlier with parameters 𝛽 and 𝛾.
We will discuss the maximum likelihood estimator for 𝜉 using conventional techniques and pro-
pose a Bayesian estimator with independent gamma priors. Bayesian estimators will be derived
using both symmetric and asymmetric loss functions. Finally, a Monte Carlo simulation study
will be conducted to evaluate the performance of the proposed estimators.
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Abstract

This paper explores and develops concepts of coverings and semicoverings in algebraic topol-
ogy. A key issue in this field is understanding the structure of topological fundamental groups
of topological spaces and their relationship with generalized classical coverings. The paper fo-
cuses on semicoverings and the properties of topological fundamental groups (𝜋𝑞𝑡𝑜𝑝1 and 𝜋𝑠𝑐1 ),
introducing tools for analyzing non-homotopically Hausdorff spaces. The methods used in-
clude generalizing classical coverings to semicoverings and studying fundamental groups with
appropriate topologies applied to them. Concepts such as wep spaces and small loop transfer
properties are utilized to analyze subgroups and their relationshipswith the existence of semicov-
erings. The main results include identifying necessary and sufficient conditions for the existence
of semicoverings on various spaces and extending covering theory to non-homotopically Haus-
dorff spaces. This research innovates by generalizing classical covering concepts to a broader
class of topological spaces. Applications of these results are seen in solving problems related
to shape groups and generalized universal coverings. Additionally, this study can provide prac-
tical applications in the analysis of complex topological spaces and their fundamental group
properties.

1. Introduction

Algebraic topology studies topological properties using algebraic methods, and covering maps play a crucial role
in understanding spaces and fundamental groups. Covering maps, defined as local homeomorphisms, facilitate the
exploration of fundamental groups through their relationship with universal covering spaces and the interplay between
topology and algebra. However, the conditions for the existence of covering maps may sometimes not be met, leading
to the introduction of semicoverings as a generalization. Semicoverings, introduced by Brazas et al., help explore
fundamental groups in unusual spaces due to their flexible base space requirements, aiding in solving problems in
algebraic topology and fostering a deeper understanding of spatial topological relationships.
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1.1. Definition of Covering Maps and Their Importance in Algebraic Topology
Covering maps and their importance in algebraic topology are defined, with semicoverings serving as generalizations
applicable to non-locally connected spaces. A semicovering 𝑝 ∶ �̃� → 𝑋 allows for local estimations of paths in 𝑋
under weaker separation conditions than traditional covering maps. This property aids in understanding local topo-
logical behavior [2]. Covering maps significantly contribute to the study of fundamental groups (𝜋1(𝑋)), facilitating
the lifting of paths and homotopies for analyzing algebraic structures in topological contexts [2]. The concept of local
homeomorphism in covering maps enhances the decomposition of topological spaces and structural analysis [2]. Cov-
ering maps find applications in group theory, differential geometry, and physics, illuminating interactions between
groups and spatial actions and modeling complex systems [2].

1.2. Introduction to Semicoverings (Semicoverings)
Semicoverings offer a novel approach in algebraic topology for studying complex topological spaces. Unlike classical
covering maps restricted to locally connected spaces, semicoverings include non-connected spaces, exemplified by
the ”Hawaiian earring” space, emphasizing the necessity of semicoverings [3]. Furthermore, semicoverings advance
the study of generalized fundamental groups, with the semicovering fundamental group (𝜋𝑠𝑐1 (𝑋)) extending classi-
cal groups to include ”semicovering paths,” potentially generating non-abelian groups even in simpler spaces [5].
Semicoverings have broad implications in group theory and geometry, aiding in the analysis of fundamental groups
of complex spaces, especially in cases where traditional methods are insufficient for infinite-loop spaces [7, 8]. In
differential geometry, semicoverings are relevant for studying non-smoothly connected manifolds [7].

1.3. Objective of the Paper
The primary objective of this paper is to examine the structure of semicovering fundamental groups and investigate
the necessary and sufficient conditions for their existence. This exploration is critical for understanding the algebraic
properties of topological spaces [2]. The focus will be on the applications of semicoverings in group theory and
geometry, providing insights into how these concepts can be utilized across various mathematical fields [4]. The paper
aims to present new findings regarding semicoverings and compare these results with previous research to highlight
advancements in covering theory [6].

2. Theoretical Foundations

A covering map is formally defined as a surjective continuous function 𝑝 ∶ �̃� → 𝑋 such that for every point 𝑥 ∈ 𝑋,
there exists an open neighborhood 𝑈 where the preimage 𝑝−1(𝑈) consists of disjoint sets in �̃�, each homeomorphic
to 𝑈 [2]. Key features of covering maps include:

• Local Isomorphisms: Every point in the base space has a neighborhood evenly covered by the covering map,
facilitating local homeomorphisms [1, 10].

• Discrete Fibers: The preimage of any point in the base space is discrete, indicating that fibers are both countable
and separable [6].

• Connections to Fundamental Groups: Covering maps allow for the lifting of paths and homotopies, essential
for analyzing the fundamental group 𝜋1(𝑋, 𝑥0) [6, 8].

Examples include:

• The covering map from ℝ to 𝑆1, where the real line wraps around the circle [6].

• The covering map from 𝑆𝑛 to ℝℙ𝑛, showing how spheres can cover projective spaces [6].
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Fundamental Groups and Their Relationship to Covering Maps
The fundamental group 𝜋1(𝑋, 𝑥0) is defined as the set of equivalence classes of loops based at 𝑥0 under concatenation
and possesses properties such as being a topologically unimodular group [6]. Fundamental groups play a central role
in classifying covering maps, providing insights into the structural properties of a space through its loops and paths
[6]. A classical theorem asserts that every covering map corresponds to a normal subgroup of the fundamental group,
establishing a direct correlation between the algebraic structure of the group and the topological properties of the space
[2, 9].
Studying covering maps has long been a cornerstone of algebraic topology, bridging local and global topological
features. Classical covering maps impose strict conditions on the base space, such as local path-connectedness and
semi-local simple connectivity. These conditions limit their applicability in more complex spaces like the Hawaiian
earring or spaces lacking local path-connectedness. Semicoverings, introduced by J. Brazas [6][1], generalize covering
maps by reducing the requirement for uniformly covered neighborhoods while preserving key lifting properties. This
report combines recent advances in semicovering theory, focusing on their relationship with fundamental groups,
classification via subgroups, and applications in non-classical spaces.

Formal Definition of Semicoverings
A semicovering 𝑝 ∶ 𝑌 → 𝑋 is defined as a local homeomorphism admitting unique lifts of paths and homotopies
relative to the basepoint [2, 8]. Formally:

• Local Homeomorphism: For every 𝑦 ∈ 𝑌, there exists an open neighborhood 𝑈 ⊆ 𝑌 of 𝑦 such that 𝑝|𝑈 ∶ 𝑈 →
𝑝(𝑈) is a homeomorphism.

• Unique Path Lifting: For every path 𝛼 ∶ 𝐼 → 𝑋 starting at 𝑝(𝑦), there exists a unique lift 𝛼 ∶ 𝐼 → 𝑌 starting at
𝑦.

• Unique Homotopy Lifting: For every homotopy 𝐻 ∶ 𝐼 × 𝐼 → 𝑋 with 𝐻(0, 𝑡) = 𝑝(𝑦), there exists a unique lift
𝐻 ∶ 𝐼 × 𝐼 → 𝑌 starting at 𝑦.

Unlike classical covering maps, semicoverings do not require uniformly covered neighborhoods, allowing them to
apply in spaces where classical coverings fail. For example, the Hawaiian earringℍ𝔼, a compact, path-connected but
not semi-locally simply connected space, admits semicoverings that are not coverings [1][3].

Relationship to Covering Maps
Every covering map is a semicovering, but the converse holds only under additional conditions. If 𝑋 is locally path-
connected and semi-locally simply connected, semicoverings coincide with coverings [6][1]. Compositions of semi-
coverings remain semicoverings, unlike coverings, which may lose covering properties under composition [1]. This
closure under composition highlights the flexibility of semicoverings in managing complex mappings.

Fundamental Groups and Classification of Semicoverings
Quasi-Topological Fundamental Group: The quasi-topological fundamental group 𝜋𝑞𝑡𝑜𝑝1 (𝑋, 𝑥0), equipped with the
quotient topology inherited from the space of loops, plays a central role in classifying semicoverings. A subgroup𝐻 ⊆
𝜋𝑞𝑡𝑜𝑝1 (𝑋, 𝑥0) is open if it corresponds to a semicovering 𝑝 ∶ 𝑌 → 𝑋 via an isomorphism 𝑝∗ ∶ 𝜋1(𝑌, 𝑦0) → 𝜋1(𝑋, 𝑥0)
[6][4]. This classification mirrors classical covering theory but extends to spaces lacking local path-connectedness.
Spanier Groups and Open Subgroups: For spaces lacking local path-connectedness, Spanier groups generalize
classical Spanier groups by considering open covers of the path space (𝑃𝑋)𝑥0 . Given an open cover𝒰 of (𝑃𝑋)𝑥0 , the
Spanier group 𝜋𝑝𝑠(𝒰, 𝑥0) is generated by classes [𝛼 ⋅𝛽−1]where 𝛼, 𝛽 ∈ 𝑈 for some 𝑈 ∈ 𝒰 [6]. These groups identify
open subgroups of 𝜋𝑞𝑡𝑜𝑝1 (𝑋, 𝑥0), enabling classification of semicoverings in non-standard settings.
Theorem ([6]): Suppose 𝑋 is locally wep-connected (locally ”weakly eventually path-connected”). A subgroup 𝐻 ⊆
𝜋1(𝑋, 𝑥0) is a semicovering subgroup if and only if 𝐻 is open in 𝜋𝑞𝑡𝑜𝑝1 (𝑋, 𝑥0).
This theorem emphasizes the duality between semicoverings and open subgroups, akin to the Galois correspondence
for coverings.
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Structure of Semicovering Fundamental Groups
The semicovering fundamental group, denoted 𝜋𝑠𝑐1 (𝑋), acts as an extension of the classical fundamental group, incor-
porating paths associated with semicoverings and facilitating comprehensive exploration of loop structures in topo-
logical spaces [6]. A notable feature of 𝜋𝑠𝑐1 (𝑋) is its potential stability even in elementary spaces, indicating that the
configuration of the fundamental group can exhibit flexibility under specific conditions [3]. A deep connection exists
between 𝜋𝑠𝑐1 (𝑋) and divisible groups, revealing valuable insights into the algebraic properties of these groups [3].

3. Applications of Semicoverings

Applications in Group Theory
Semicoverings play a pivotal role in group theory, particularly in analyzing fundamental groups of complex topo-
logical spaces, facilitating a deeper understanding of behaviors exhibited by these groups under various topological
conditions. This is especially useful when dealing with spaces that evade representation through simpler structures
[6]. For instance, analyzing fundamental groups related to spaces with infinitely many loops, such as the Hawaiian
earring, exemplifies this application. The inherent complexity of such spaces necessitates the use of semicoverings to
skillfully investigate their fundamental group configurations [6].

Applications in Geometry
In differential geometry and manifold analysis, semicoverings can illuminate local properties of spaces that may not
conform to manifold characteristics. This is particularly useful in scenarios where standard covering maps may be
insufficient due to the intrinsic complexity of the space [6]. A representative example involves studying semicoverings
within non-manifold spaces that exhibit local connections. Such spaces may display behaviors challenging established
geometric paradigms, and semicoverings provide a suitable framework for evaluating their properties [6].

4. Conclusion

This paper examines and develops concepts of coverings and semicoverings in the context of algebraic topology. Key
findings include identifying necessary and sufficient conditions for the existence of semicoverings on various topo-
logical spaces, extending covering theory to non-homotopically Hausdorff spaces, and investigating the relationship
between topological fundamental groups (𝜋𝑞𝑡𝑜𝑝1 and 𝜋𝑠𝑐1 ) and semicovering structures. Additionally, the paper ex-
plores the role of wep spaces in generalizing classical covering theory to a broader class of topological spaces. The
results demonstrate that semicoverings can serve as powerful tools for analyzing the fundamental group structures of
complex spaces.
Limitations and Future Directions: While this research advances covering theory significantly for non-homotopically
Hausdorff spaces, further investigation is needed. For example, a more detailed examination of semicovering behavior
in specific spaces or extending this theory to higher-dimensional contexts remains open. Exploring practical applica-
tions of semicoverings in knot theory or topological space classification could lead to new discoveries. By developing
semicovering concepts and analyzing fundamental group structures in topological spaces, this paper contributes mean-
ingfully to the advancement of covering theory and its applications in algebraic topology, paving the way for further
research in this field.
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Abstract

Let 𝑆𝑛 be the symmetric group of degree 𝑛. We classify non-isomorphic Cayley graphs of 𝑆4 of
valency 3. We verify that there are only 10 non-isomorphic valency 3 Cayley graphs of 𝑆4.

1. Introduction

The Cayley graph of the symmetric group 𝑆𝑛 and alternating group 𝐴𝑛 have been studied in several papers. In [3] the
authors have shown that there are exactly 22 non-isomorphic Cayley graphs of 𝐴4. The number of undirected Cayley
graphs of 𝑆𝑛 and 𝐴𝑛 have determined by Adiga and Ariamanesh in [1]. They also have shown that there are only 8
Cayley graphs of 𝑆3 and 4 Cayley graphs of 𝑆4 of valency 2, up to isomorphism.
We investigate the Cayley graphs of symmetric group and specially the valency 3 Cayley graphs of 𝑆4. Moreover, we
study the CI-graphs of the Cayley graphs of 𝑆4 of valency 3. Also, we find a relation between the Cayley graph of
𝑆𝑛+1 and the Cayley graph of 𝑆𝑛 for a fixed subset 𝑆.
Suppose that 𝐺 is a finite group with the identity 1𝐺 . Also, suppose that 𝑆 is a subset of the group 𝐺, such that 1𝐺 ∉ 𝑆
and 𝑆 is an inverse-closed subset, i.e. 𝑆 = 𝑆−1, where 𝑆−1 ∶= {𝑠−1|𝑠 ∈ 𝑆}. Then, the associated Cayley graph,
denoted by 𝐶𝑎𝑦(𝐺, 𝑆), is a graph such that its vertices are the members of 𝐺 and two distinct vertices 𝑔, ℎ ∈ 𝐺 are
adjacent if and only if𝑔ℎ−1 ∈ 𝑆. The number |𝑆| is called the valency of the Cayley graph. Since 𝑆 is an inverse-closed
subset of G, so 𝐶𝑎𝑦(𝐺, 𝑆) is an undirected graph.

Proposition 1.1. [2] Suppose that 𝑆 is a subset of the group 𝐺, such that 1𝐺 ∈ 𝑆 and 𝑆 = 𝑆−1 and |𝑆| = 𝑚. Then
𝐶𝑎𝑦(𝐺, 𝑆) is an𝑚−regular graph.

It is easy to see that a Cayley graph 𝐶𝑎𝑦(𝐺, 𝑆) is connected if and only if 𝐺 =< 𝑆 >, i.e. 𝑆 is a generating set of the
group 𝐺. So, if 𝐺 ≠< 𝑆 >, then 𝐶𝑎𝑦(𝐺, 𝑆) is disconnected.
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Proposition 1.2. [2] Suppose that 𝑆 is a subset of the group 𝐺, such that 1𝐺 ∉ 𝑆 and 𝑆 = 𝑆−1. Then all components
of 𝐶𝑎𝑦(𝐺, 𝑆) are isomorphic to 𝐶𝑎𝑦(< 𝑆 >, 𝑆).

The elements of 𝑆4 with the cycle type are:

{(1); (12); (13); (14); (23); (24); (34); (123); (132); (124); (142); (134); (143); (234);
(1234); (1432); (1243); (1342); (1324); (1423); (12)(34); (13)(24); (14)(23)}

2. Main Results

Lemma 2.1. All possible subsets 𝑆 of 𝑆4, such that |𝑆| = 3, (1) ∈ 𝑆 and 𝑆 = 𝑆−1, up to isomorphism, are as
following:

Fig. 1. possible subsets 𝑆 for 𝑆4.

Proposition 2.2. Let 𝑆 be a subset of 𝑆4, such that 𝑆 = {(𝑖𝑗), (𝑖𝑙), (𝑗𝑙)}, where i, j and l are distinct elements in
{1, 2, 3, 4}. Then 𝐶𝑎𝑦(𝑆4, 𝑆) is isomorphic to ∪4

1𝐾3,3.

Fig. 2. The Graph 𝐶𝑎𝑦(< 𝑆 >, 𝑆) ≅ 𝐾3,3.
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Abstract

In this note, we investigate the existence of weak solutions for a nonlocal elliptic problem in-
volving a control parameter. Using variational method, we establish the existence of at least
three distinct weak solutions under appropriate assumptions on the nonlinearity and the param-
eter. Our approach relies on critical point theory, particularly the three-critical-points theorem,
to derive the sufficient conditions for the existence of multiple solutions.

1. Introduction

Consider the operator

𝐿(𝑦) ∶= −(𝜃(𝑥)𝑦′(𝑥))′ + 𝜏𝜂(𝑥)න
𝛽

𝛼
𝜂(𝑥)𝑦(𝑥) 𝑑𝑥

where 0 ≤ 𝛼 < 𝛽, 𝜃 ∈ 𝐶1([𝛼, 𝛽]) with 𝜃− ∶= ess inf𝑥∈[𝛼,𝛽] 𝜃(𝑥) > 0, 𝜂 ∈ 𝐿2([𝛼, 𝛽]) with 𝜂 ≢ 0, and 𝜏 ∈ ℝ satisfies

𝜏 > − 𝜋2𝜃−
4(𝛽 − 𝛼)2‖𝜂‖2𝐿2[𝛼,𝛽]

. (1)

This operator arises in a variety of mathematical models describing physical and biological phenomena. Notable
applications include the analysis of microsensor thermistors in gas environments, superconductivity, plasma reactions,
thermal processes, and population dynamics, among others (see [1, 6] for further details).
In this note, we study three weak solutions for the following non-local elliptic problem

ቊ 𝐿(𝑦) = 𝜆𝜓(𝑥, 𝑦(𝑥)) in (𝛼, 𝛽),
𝑦(𝛼) = 𝑦′(𝛽) = 0, (2)

where 𝜆 > 0 is a parameter and 𝜓 ∶ [𝛼, 𝛽] × ℝ → ℝ is an 𝐿1-Carathéodory function.

1Email address: sd.shokooh@gmail.com
∗Talker



410 S. Shokooh / The 5th National Congress on Mathematics and Statistics

The study of equations such as (2), which arise naturally from the mathematical modeling of diverse physical and
biological phenomena, has long been a subject of significant interest in the research community, as evidenced by
works such as [4, 5, 7].
The function space required to analyze this problem is defined as:

𝐸 = ቊ𝑦 ∈ 𝑊1,2([𝛼, 𝛽]) ∶ 𝑦(𝛼) = 0ቋ.

It is easy to show that the following three norms on this space are equivalent:

‖𝑦‖ = ൭න
𝛽

𝛼
|𝑦′(𝑥)|2 𝑑𝑥൱

1/2

+ ൭න
𝛽

𝛼
|𝑦(𝑥)|2 𝑑𝑥൱

1/2

,

‖𝑦‖0 = ‖𝑦′‖𝐿2 = ൭න
𝛽

𝛼
|𝑦′(𝑥)|2 𝑑𝑥൱

1/2

and

‖𝑦‖𝐸 = ඩන
𝛽

𝛼
𝜃(𝑥)|𝑦′(𝑥)|2𝑑𝑥 + 𝜏 ൭න

𝛽

𝛼
𝜂(𝑥)𝑦(𝑥) 𝑑𝑥൱

2

.

Indeed, for every 𝑦 ∈ 𝐸 the following inequalities hold:

‖𝑦‖0 ≤ ‖𝑦‖ ≤ (1 + 𝛽 − 𝛼)‖𝑦‖0

and
𝑐1‖𝑦‖0 ≤ ‖𝑦‖𝐸 ≤ 𝑐2‖𝑦‖0, (3)

where 𝑐1, 𝑐2 with 0 < 𝑐1 ≤ 𝑐2, are defined as

𝑐1 = ቆ𝜃− +min ቊ0,
4𝜏(𝛽 − 𝛼)2‖𝜂‖2𝐿2

𝜋2 ቋቇ
1/2

,

𝑐2 = ቆ𝜃+ +max ቊ0,
4𝜏(𝛽 − 𝛼)2‖𝜂‖2𝐿2

𝜋2 ቋቇ
1/2

.

Remark 1.1. In light of Proposition 2.1 from [2] and inequality (3), it follows that

max
𝑥∈[𝛼,𝛽]

|𝑦(𝑥)| ≤ ඥ𝛽 − 𝛼
𝑐1

‖𝑦‖𝐸

for every 𝑦 ∈ 𝐸.

The following lemma from [3] serves as our primary tool in demonstrating our main result.

Lemma 1.2. Let the functionals 𝐽 and 𝐼 be defined on 𝐸, both belonging to the class 𝐶1 on 𝐸, with 𝐽 being coercive.
Also, following conditions hold:

(i) J(0)=I(0)=0=inf𝐸 𝐽 and 𝐽 is convex;

(ii) for each 𝜆 > 0 and local minima𝑦1, 𝑦2 ∈ 𝐸 of 𝐽−𝜆𝐼with 𝐼 (𝑦1) ≥ 0 and 𝐼 (𝑦2) ≥ 0, one has inf0≤𝜉≤1 𝐼 (𝜉𝑦1 + (1 − 𝜉)𝑦2) ≥
0.
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Moreover, suppose there exist 𝑟1, 𝑟2 > 0 and �̄� ∈ 𝐸 with 𝑟1 < 𝐽(�̄�) < 𝑟2
2 , such that

(iii)
sup𝑦∈𝐽−1(−∞,𝑟1) 𝐼(𝑦)

𝑟1
< 1
2
𝐼(�̄�)
𝐽(�̄�) ;

(iv)
sup𝑦∈𝐽−1(−∞,𝑟2) 𝐼(𝑦)

𝑟2
< 1
4
𝐼(�̄�)
𝐽(�̄�) .

Then, for all 𝜆 ∈ ቆ2𝐽(�̄�)
𝐼(�̄�) ,min ቊ 𝑟1

sup𝑦∈𝐽−1(−∞,𝑟1) 𝐼(𝑦)
, 𝑟2/2
sup𝑦∈𝐽−1൫−∞,𝑟2൯ 𝐼(𝑦)

ቋቇ, the functional 𝐽 − 𝜆𝐼 has at least three distinct

critical points 𝑦1, 𝑦2, 𝑦3 such that 𝑦1 ∈ 𝐽−1 (−∞, 𝑟1), 𝑦2 ∈ 𝐽−1 ቀ𝑟1,
𝑟2
2 ቁ and 𝑦3 ∈ 𝐽−1 (−∞, 𝑟2) .

A function 𝑦 ∈ 𝐸 is said to be a weak solution of problem (2) if the following identity holds for all test functions 𝜐 ∈ 𝐸

න
𝛽

𝛼
𝜃(𝑥)𝑦′(𝑥)𝜐′(𝑥) 𝑑𝑥 + 𝜏න

𝛽

𝛼
𝜂(𝑥)𝑦(𝑥)𝑑𝑥න

𝛽

𝛼
𝜂(𝑥)𝜐(𝑥)𝑑𝑥 − 𝜆න

𝛽

𝛼
𝜓(𝑥, 𝑦(𝑥))𝜐(𝑥) 𝑑𝑥 = 0.

2. Main result

In this section, the principal results are stated and established. By imposing two algebraic sign conditions on the
nonlinear term, we prove the existence of at least three non-negative weak solutions to Problem (2).

Theorem 2.1. Suppose that 𝜓 ∶ [𝛼, 𝛽] × ℝ → ℝ be an 𝐿1−Caratheodory function such that

Ψ(𝑥, 𝜉) ∶= න
𝜉

0
𝜓(𝑥, 𝑠) 𝑑𝑠 ≥ 0

for all (𝑥, 𝜉) ∈ [𝛼, 𝛽] × ℝ. Additionally, assume that condition (1) is true and that there exist three positive constants
𝜈1, 𝜈2 and 𝑑, with 𝜈1 < √2𝑑 and 4𝑐2 𝑑 < 𝑐1 𝜈2 such that

(i1)

∫𝛽𝛼 max|𝜉|≤𝜈1 Ψ(𝑥, 𝜉)𝑑𝑥
𝜈21

< 𝑐21
16𝑐22

∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥

𝑑2 ;

(i2)

∫𝛽𝛼 max|𝜉|≤𝜈2 Ψ(𝑥, 𝜉)𝑑𝑥
𝜈22

< 𝑐21
32𝑐22

∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥

𝑑2 .

Then, for each 𝜆 ∈ Ω, where

Ω ∶=
⎤
⎥
⎥
⎥
⎦

8𝑐22
𝛽 − 𝛼

𝑑2

∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥
, 𝑐21
2(𝛽 − 𝛼) minቐ 2𝜈21

∫𝛽𝛼 max|𝜉|≤𝜈1 Ψ(𝑥, 𝜉)𝑑𝑥
, 𝜈22
∫𝛽𝛼 max|𝜉|≤𝜈2 Ψ(𝑥, 𝜉)𝑑𝑥

ቑ
⎡
⎢
⎢
⎢
⎣

,

problem (2) admits at least three distinct non-negative weak solutions 𝑦1, 𝑦2, 𝑦3 such that |𝑦𝑖(𝑥)| < 𝜈2 for 𝑥 ∈ [𝛼, 𝛽]
and 𝑖 = 1, 2, 3.
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Proof. To apply Lemma 1.2, we introduce the functionals 𝐽, 𝐼 ∶ 𝐸 → ℝ for every 𝑦 ∈ 𝐸 as

𝐽(𝑦) ∶= 1
2‖𝑦‖

2
𝐸 , 𝐼(𝑦) ∶= න

𝛽

𝛼
Ψ(𝑥, 𝑦(𝑥)) 𝑑𝑥.

Additionally, let 𝑟1 =
𝑐21𝜈21

2(𝛽−𝛼) and 𝑟2 =
𝑐21𝜈22

2(𝛽−𝛼) . Now, define the function 𝜙 ∈ 𝐸 as

𝜙(𝑥) =
⎧⎪
⎨⎪⎩

4𝑑 𝑥−𝛼
𝛽−𝛼 , 𝑥 ∈ ቂ𝛼, 𝛼 + 𝛽−𝛼

4 ቂ ,
𝑑, 𝑥 ∈ ቂ𝛼 + 𝛽−𝛼

4 , 𝛽 − 𝛽−𝛼
4 ቃ ,

4𝑑 𝛽−𝑥
𝛽−𝛼 , 𝑥 ∈ ቃ𝛽 − 𝛽−𝛼

4 , 𝛽ቃ .

It can be easily confirmed that
4𝑐21𝑑2
𝛽 − 𝛼 ≤ 𝐽(𝜙) ≤ 4𝑐22𝑑2

𝛽 − 𝛼 . (4)

Given the conditions 𝜈1 < √2𝑑 and 4𝑐2𝑑 < 𝑐1𝜈2, we derive the inequality 𝑟1 < 𝐽(𝜙) < 𝑟2
2 . From Remark 1.1 for

every 𝑦 ∈ 𝐸 satisfying 𝐽(𝑦) ≤ 𝑟1, it follows that

max
𝑥∈[𝛼,𝛽]

|𝑦(𝑥)| ≤ 𝜈1,

and for all 𝑦 ∈ 𝐸 with 𝐽(𝑦) ≤ 𝑟2, one has
max

𝑥∈[𝛼,𝛽]
|𝑦(𝑥)| ≤ 𝜈2.

So, we obtain

sup𝑦∈𝐽−1(]−∞,𝑟1[) 𝐼(𝑦)
𝑟1

=
sup𝑦∈𝐽−1(]−∞,𝑟1[) ∫

𝛽
𝛼 Ψ(𝑥, 𝑦(𝑥))𝑑𝑥

𝑟1

≤ ∫𝛽𝛼 max|𝜉|≤𝜈1 Ψ(𝑥, 𝜉)𝑑𝑥
𝑟1

,

as well as

sup𝑦∈𝐽−1(]−∞,𝑟1[) 𝐼(𝑦)
𝑟2

=
sup𝑦∈𝐽−1(]−∞,𝑟2[) ∫

𝛽
𝛼 Ψ(𝑥, 𝑦(𝑥))𝑑𝑥

𝑟2

≤ ∫𝛽𝛼 max|𝜉|≤𝜈2 Ψ(𝑥, 𝜉)𝑑𝑥
𝑟2

.

On the other hand, we have

1
2
𝐼(�̄�)
𝐽(�̄�) ≥

1
2

∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥
4𝑐22𝑑2
𝛽−𝛼

= 𝛽 − 𝛼
8𝑐22

∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥

𝑑2

> 2(𝛽 − 𝛼)
𝑐21

∫𝛽𝛼 max|𝜉|≤𝜈2 Ψ(𝑥, 𝜉)𝑑𝑥
𝜈21

≥
sup𝑦∈𝐽−1(]−∞,𝑟1[) 𝐼(𝑦)

𝑟1
,
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and also,

1
4
𝐼(�̄�)
𝐽(�̄�) ≥

1
4

∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥
4𝑐22𝑑2
𝛽−𝛼

= 𝛽 − 𝛼
16𝑐22

∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥

𝑑2

> 2(𝛽 − 𝛼)
𝑐21

∫𝛽𝛼 max|𝜉|≤𝜈2 Ψ(𝑥, 𝜉)𝑑𝑥
𝜈22

≥
sup𝑦∈𝐽−1(]−∞,𝑟1[) 𝐼(𝑦)

𝑟2
.

Therefore, according to Lemma 1.2, we arrive at the desired result.

Remark 2.2. In the Theorem 2.1, it was proven that there are three weak solutions to the (2), the range all of which
lie within the interval [0, 𝜈2]. Therefore, the function Ψ can be non-negative on the [𝛼, 𝛽] × [0, 𝜈2]. If we also apply
condition 𝜓(𝑥, 0) ≠ 0 for all 𝑥 ∈ [𝛼, 𝛽], the existence of three positive solutions to the problem is guaranteed.
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Abstract

In this paper, we study the existence of weak solutions for a second-order differential equation
using critical point theory. By applying a critical point theorem, we identify specific intervals for
the control parameter 𝜆 such that the problem admits at least three weak solutions in a suitable
function space.

1. Introduction

In this study, we rigorously analyze and demonstrate the existence of at least three distinct weak solutions for a class of
second-order differential equations. By employing advanced variational methods and critical point theory, we derive
our results for the following boundary value problem:

ቊ −(𝜃(𝑥)𝑦′(𝑥))′ + 𝜏𝜂(𝑥) ∫𝛽𝛼 𝜂(𝑥)𝑦(𝑥) 𝑑𝑥 = 𝜆𝜓(𝑥, 𝑦(𝑥)) + ℎ(𝑦(𝑥)) in (𝛼, 𝛽),
𝑦(𝛼) = 𝑦′(𝛽) = 0, (1)

where 𝜆 > 0 is a parameter and 𝜓 ∶ [𝛼, 𝛽]×ℝ → ℝ is an 𝐿1-Carathéodory function. Also, 0 ≤ 𝛼 < 𝛽, 𝜃 ∈ 𝐶1([𝛼, 𝛽])
with 𝜃− ∶= ess inf𝑥∈[𝛼,𝛽] 𝜃(𝑥) > 0, 𝜂 ∈ 𝐿2([𝛼, 𝛽]) with 𝜂 ≢ 0, and 𝜏 ∈ ℝ satisfies

𝜏 > − 𝜋2𝜃−
4(𝛽 − 𝛼)2‖𝜂‖2𝐿2[𝛼,𝛽]

. (2)

Moreover, ℎ ∶ ℝ → ℝ is a Lipschitz continuous function with Lipschitz constant 𝐿 > 0, meaning

|ℎ(𝑠1) − ℎ(𝑠2)| ≤ 𝐿|𝑠1 − 𝑠2|

1Email address: sd.shokooh@gmail.com
∗Talker
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for all 𝑠1, 𝑠2 ∈ ℝ, with ℎ(0) = 0.
These types of problems arise in a wide range of physical and biological phenomena, making them a subject of sig-
nificant interest in various research fields. Notable applications include:
• The analysis of microsensor thermistors operating in gas environments,
•Modeling superconductivity and phase transitions in materials,
• Describing plasma reactions and their dynamics,
• Studying thermal processes and heat transfer mechanisms,
• Analyzing population dynamics and ecological systems.
Due to their relevance in these and other areas, such problems have been extensively studied in numerous scientific
works, highlighting their importance in both theoretical and applied contexts. For further insights, see [1, 4–6, 8]. The
lemma below, taken from [3] acts as the primary tool in establishing our main result.

Lemma 1.1. Let 𝐸 be a reflexive real Banach space; 𝐽 ∶ 𝐸 → ℝ be a convex, coercive and continuously Gâteaux
differentiable functional whose Gâteaux derivative admits a continuous inverse on 𝐸∗, 𝐼 ∶ 𝐸 → ℝ be a continuously
Gâteaux differentiable functional whose Gâteaux derivative is compact, such that

inf
𝐸
𝐽 = 𝐽(0) = 𝐼(0) = 0 .

Assume that there exist two positive constants 𝑟1, 𝑟2 > 0 and �̄� ∈ 𝑋 with 2𝑟1 < 𝐽(�̄�) < 𝑟2
2 such that

(j)
sup𝐽(𝑥)≤𝑟1 𝐼(𝑥)

𝑟1
< 2

3
𝐼(�̄�)
𝐽(�̄�) ,

(jj)
sup𝐽(𝑥)≤𝑟2 𝐼(𝑥)

𝑟2
< 1

3
𝐼(�̄�)
𝐽(�̄�) ,

(jjj) for each 𝜆 in

Λ∗𝑟1 ,𝑟2 ∶= ቃ32
𝐽(�̄�)
𝐼(�̄�) ,min ൛ 𝑟1

sup𝐽(𝑥)≤𝑟1 𝐼(𝑥)
, 𝑟2
2 sup𝐽(𝑥)≤𝑟2 𝐼(𝑥)

ൟቂ

and for every 𝑥1, 𝑥2 ∈ 𝐸, which are local minima for the functional 𝐽 − 𝜆𝐼, and such that 𝐼(𝑥1) ≥ 0 and
𝐼(𝑥2) ≥ 0, one has inf𝑡∈[0,1] 𝐼(𝑡𝑥1 + (1 − 𝑡)𝑥2) ≥ 0.

Then for each 𝜆 ∈ Λ∗𝑟1 ,𝑟2 the functional 𝐽 − 𝜆𝐼 has at least three distinct critical points which lie in 𝐽−1(] − ∞, 𝑟2[).
We now consider the space

𝐸 = ቊ𝑦 ∈ 𝑊1,2([𝛼, 𝛽]) ∶ 𝑦(𝛼) = 0ቋ,

on which we define the following equivalent norms:

‖𝑦‖0 = ‖𝑦′‖𝐿2 = ൭න
𝛽

𝛼
|𝑦′(𝑥)|2 𝑑𝑥൱

1/2

and

‖𝑦‖𝐸 = ඩන
𝛽

𝛼
𝜃(𝑥)|𝑦′(𝑥)|2𝑑𝑥 + 𝜏 ൭න

𝛽

𝛼
𝜂(𝑥)𝑦(𝑥) 𝑑𝑥൱

2

.

It can be shown that for every 𝑦 ∈ 𝐸 the following inequalities hold:

𝑐1‖𝑦‖0 ≤ ‖𝑦‖𝐸 ≤ 𝑐2‖𝑦‖0, (3)

where 𝑐1, 𝑐2 are defined as

𝑐1 = ቆ𝜃− +min ቊ0,
4𝜏(𝛽 − 𝛼)2‖𝜂‖2𝐿2

𝜋2 ቋቇ
1/2

,
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𝑐2 = ቆ𝜃+ +max ቊ0,
4𝜏(𝛽 − 𝛼)2‖𝜂‖2𝐿2

𝜋2 ቋቇ
1/2

.

Proposition 1.2. Let the operator 𝑇 ∶ 𝐸 → 𝐸∗ is defined as follows:

𝑇(𝑦)(𝜙) = න
𝛽

𝛼
𝜃(𝑥)𝑦′ 𝜙′ 𝑑𝑥 + 𝜏න

𝛽

𝛼
𝜂(𝑥)𝑦 𝑑𝑥න

𝛽

𝛼
𝜂(𝑥)𝜙 𝑑𝑥 − න

𝛽

𝛼
ℎ(𝑦)𝜙𝑑𝑥

for all 𝑦, 𝜙 ∈ 𝑋. If 𝐿(𝛽 − 𝛼)2 < 𝜋2𝑐21 , then, 𝑇 is invertible, and both 𝑇 and 𝑇−1 are continuous on 𝐸 and 𝐸∗,
respectively.

Proof. For any 𝑦, 𝜙 ∈ 𝐸, one has

sup
𝑤∈𝐸, ‖𝑤‖≤1

|𝑇(𝑦)(𝑤) − 𝑇(𝜙)(𝑤)| ≤ 1
𝑐21

ቆ𝜃+ + |𝜏|‖𝜂‖2𝐿2
(𝛽 − 𝛼)2

𝜋2 + 𝐿(𝛽 − 𝛼)2
𝜋2 ቇ ‖𝑦 − 𝜙‖𝐸 ,

via following Poincaré type inequality (see, for instance, [7, Lemma 2.3]):

‖𝑦‖2𝐿2([𝛼,𝛽]) ≤
(𝛽 − 𝛼)2

𝜋2 ‖𝑦‖20, (4)

for all 𝑦 ∈ 𝐸. Hence, the operator 𝑇 on the space 𝐸 is continuous.
Also, since for each 𝑦 ∈ 𝐸 ∖ {0} the inequality

𝑇(𝑦)𝑦 ≥ ቆ1 − 𝐿(𝛽 − 𝛼)2
𝜋2𝑐21

ቇ ‖𝑦‖2𝐸 ,

holds, one has 𝑇 is coercive. Furthermore, for 𝑦, 𝜙 ∈ 𝐸, we have

⟨𝑇(𝑦) − 𝑇(𝜙), 𝑦 − 𝜙⟩ ≥ ቆ1 − 𝐿(𝛽 − 𝛼)2
𝜋2𝑐21

ቇ ‖𝑦 − 𝜙‖2𝐸 , (5)

which shows that the operator 𝑇 is uniformly monotonic. By invoking Theorem 26.A(d) from [9], we can conclude
that 𝑇 is invertible.

Remark 1.3. By Proposition 2.1 of [2], one has

max
𝑥∈[𝛼,𝛽]

|𝑦(𝑥)| ≤ ඥ𝛽 − 𝛼‖𝑦‖0

for any 𝑦 ∈ 𝐸.

A weak solution to problem (1) is a function 𝑦 ∈ 𝐸 that satisfies the following identity for all test functions 𝜐 ∈ 𝐸:

න
𝛽

𝛼
𝜃(𝑥)𝑦′(𝑥)𝜐′(𝑥) 𝑑𝑥 + 𝜏න

𝛽

𝛼
𝜂(𝑥)𝑦(𝑥)𝑑𝑥න

𝛽

𝛼
𝜂(𝑥)𝜐(𝑥)𝑑𝑥

− න
𝛽

𝛼
ℎ(𝑢(𝑥))𝜐(𝑥)𝑑𝑥 − 𝜆න

𝛽

𝛼
𝜓(𝑥, 𝑦(𝑥))𝜐(𝑥) 𝑑𝑥 = 0.

2. Main result

Here, the main result is presented and proven. By introducing two algebraic sign conditions on the nonlinear term, we
demonstrate the existence of at least three non-negative weak solutions to Problem (1).
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Theorem 2.1. Assume that 𝜓 ∶ [𝛼, 𝛽] × ℝ → ℝ be an 𝐿1−Caratheodory function satisfying

Ψ(𝑥, 𝜉) ∶= න
𝜉

0
𝜓(𝑥, 𝑠) 𝑑𝑠 ≥ 0

for all (𝑥, 𝜉) ∈ [𝛼, 𝛽] × ℝ. Moreover, let the condition (2) holds and that there exist three positive constants 𝜈1, 𝜈2
and 𝑑, with 𝜈1 < √2𝑑 and 4𝑑 < ට𝜋2𝑐21−𝐿(𝛽−𝛼)2

𝜋2𝑐22+𝐿(𝛽−𝛼)2
𝜈2 such that the following inequalities are satisfied:

(i1)

∫𝛽𝛼 max|𝜉|≤𝜈1 Ψ(𝑥, 𝜉)𝑑𝑥
𝜈21

< 𝜋2𝑐21 − 𝐿(𝛽 − 𝛼)2
12(𝜋2𝑐22 + 𝐿(𝛽 − 𝛼)2)

∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥

𝑑2 ;

(i2)

∫𝛽𝛼 max|𝜉|≤𝜈2 Ψ(𝑥, 𝜉)𝑑𝑥
𝜈22

< 𝜋2𝑐21 − 𝐿(𝛽 − 𝛼)2
24(𝜋2𝑐22 + 𝐿(𝛽 − 𝛼)2)

∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥

𝑑2 .

Then, for any 𝜆 ∈]𝜆1, 𝜆2[, where

𝜆1 ∶=
12(𝜋2𝑐22 + 𝐿(𝛽 − 𝛼)2)𝑑2

𝜋2(𝛽 − 𝛼) ∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥
,

𝜆2 ∶=
𝜋2𝑐21 − 𝐿(𝛽 − 𝛼)2

2𝜋2(𝛽 − 𝛼) minቐ 2𝜈21
∫𝛽𝛼 max|𝜉|≤𝜈1 Ψ(𝑥, 𝜉)𝑑𝑥

, 𝜈22
∫𝛽𝛼 max|𝜉|≤𝜈2 Ψ(𝑥, 𝜉)𝑑𝑥

ቑ ,

problem (1) possesses at least three distinct non-negative weak solutions 𝑦1, 𝑦2, 𝑦3 such that |𝑦𝑖(𝑥)| < 𝜈2 for 𝑥 ∈
[𝛼, 𝛽] and 𝑖 = 1, 2, 3.
Proof. In order to apply Lemma 1.1, we define the functionals 𝐽, 𝐼 ∶ 𝐸 → ℝ for every 𝑦 ∈ 𝐸 as

𝐽(𝑦) ∶= 1
2‖𝑦‖

2
𝐸 −න

𝛽

𝛼
𝐻(𝑦(𝑥))𝑑𝑥, 𝐼(𝑦) ∶= න

𝛽

𝛼
Ψ(𝑥, 𝑦(𝑥)) 𝑑𝑥.

In addition, suppose 𝑟1 =
𝜋2𝑐21−𝐿(𝛽−𝛼)2

2𝜋2(𝛽−𝛼) 𝜈21 and 𝑟2 =
𝜋2𝑐21−𝐿(𝛽−𝛼)2

2𝜋2(𝛽−𝛼) 𝜈22 . Now, consider the function 𝜙 ∈ 𝐸 as

𝜙(𝑥) =
⎧⎪
⎨⎪⎩

4𝑑 𝑥−𝛼
𝛽−𝛼 , 𝑥 ∈ ቂ𝛼, 𝛼 + 𝛽−𝛼

4 ቂ ,
𝑑, 𝑥 ∈ ቂ𝛼 + 𝛽−𝛼

4 , 𝛽 − 𝛽−𝛼
4 ቃ ,

4𝑑 𝛽−𝑥
𝛽−𝛼 , 𝑥 ∈ ቃ𝛽 − 𝛽−𝛼

4 , 𝛽ቃ .

A simple computations shows that

4𝑑2(𝜋2𝑐21 − 𝐿(𝛽 − 𝛼)2)
𝜋2(𝛽 − 𝛼) ≤ 𝐽(𝜙) ≤ 4𝑑2(𝜋2𝑐22 + 𝐿(𝛽 − 𝛼)2)

𝜋2(𝛽 − 𝛼) . (6)

Taking into account the conditions 𝜈1 < √2𝑑 and 4𝑑 < ට𝜋2𝑐21−𝐿(𝛽−𝛼)2
𝜋2𝑐22+𝐿(𝛽−𝛼)2

𝜈2, one has 2𝑟1 < 𝐽(𝜙) < 𝑟2
2 . According to

Remark 1.3 if 𝑦 ∈ 𝐸 satisfies 𝐽(𝑦) ≤ 𝑟1, then

max
𝑥∈[𝛼,𝛽]

|𝑦(𝑥)| ≤ 𝜈1.
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Similarly, for any 𝑦 ∈ 𝐸 with 𝐽(𝑦) ≤ 𝑟2, we have

max
𝑥∈[𝛼,𝛽]

|𝑦(𝑥)| ≤ 𝜈2.

Thus, we deduce the following inequalities:

sup𝑦∈𝐽−1(]−∞,𝑟1[) 𝐼(𝑦)
𝑟1

=
sup𝑦∈𝐽−1(]−∞,𝑟1[) ∫

𝛽
𝛼 Ψ(𝑥, 𝑦(𝑥))𝑑𝑥

𝑟1

≤ ∫𝛽𝛼 max|𝜉|≤𝜈1 Ψ(𝑥, 𝜉)𝑑𝑥
𝑟1

,

and similarly,

sup𝑦∈𝐽−1(]−∞,𝑟1[) 𝐼(𝑦)
𝑟2

=
sup𝑦∈𝐽−1(]−∞,𝑟2[) ∫

𝛽
𝛼 Ψ(𝑥, 𝑦(𝑥))𝑑𝑥

𝑟2

≤ ∫𝛽𝛼 max|𝜉|≤𝜈2 Ψ(𝑥, 𝜉)𝑑𝑥
𝑟2

.

At the same time, we observe that

2
3
𝐼(�̄�)
𝐽(�̄�) ≥

2
3

∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥
4𝑑2(𝜋2𝑐22+𝐿(𝛽−𝛼)2)

𝜋2(𝛽−𝛼)

= 𝜋2(𝛽 − 𝛼)
6(𝜋2𝑐22 + 𝐿(𝛽 − 𝛼)2)

∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥

𝑑2

> 2𝜋2(𝛽 − 𝛼)
𝜋2𝑐21 − 𝐿(𝛽 − 𝛼)2

∫𝛽𝛼 max|𝜉|≤𝜈1 Ψ(𝑥, 𝜉)𝑑𝑥
𝜈21

≥
sup𝑦∈𝐽−1(]−∞,𝑟1[) 𝐼(𝑦)

𝑟1
,

and also,

1
3
𝐼(�̄�)
𝐽(�̄�) ≥

1
3

∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥
4𝑑2(𝜋2𝑐22+𝐿(𝛽−𝛼)2)

𝜋2(𝛽−𝛼)

= 𝜋2(𝛽 − 𝛼)
12(𝜋2𝑐22 + 𝐿(𝛽 − 𝛼)2)

∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥

𝑑2

> 2𝜋2(𝛽 − 𝛼)
𝜋2𝑐21 − 𝐿(𝛽 − 𝛼)2

∫𝛽𝛼 max|𝜉|≤𝜈2 Ψ(𝑥, 𝜉)𝑑𝑥
𝜈22

≥
sup𝑦∈𝐽−1(]−∞,𝑟1[) 𝐼(𝑦)

𝑟2
,

so, by applying Lemma 1.1, we achieve the desired conclusion.

In problem (1) if ℎ = 0, Theorem 2.1 can be expressed in the following form:

Theorem 2.2. Suppose that 𝜓 ∶ [𝛼, 𝛽] × ℝ → ℝ be an 𝐿1−Caratheodory function such that

Ψ(𝑥, 𝜉) ∶= න
𝜉

0
𝜓(𝑥, 𝑠) 𝑑𝑠 ≥ 0

for all (𝑥, 𝜉) ∈ [𝛼, 𝛽] × ℝ. Additionally, assume that condition (2) is true and that there exist three positive constants
𝜈1, 𝜈2 and 𝑑, with 𝜈1 < √2𝑑 and 4𝑑 < 𝑐1

𝑐2
𝜈2 such that

(i1)

∫𝛽𝛼 max|𝜉|≤𝜈1 Ψ(𝑥, 𝜉)𝑑𝑥
𝜈21

< 𝑐21
12𝑐22

∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥

𝑑2 ;
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(i2)

∫𝛽𝛼 max|𝜉|≤𝜈2 Ψ(𝑥, 𝜉)𝑑𝑥
𝜈22

< 𝑐21
24𝑐22

∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥

𝑑2 .

Then, for each

𝜆 ∈
⎤
⎥
⎥
⎥
⎦

12𝑐22𝑑2

(𝛽 − 𝛼) ∫
𝛼+3𝛽
4

3𝛼+𝛽
4

Ψ(𝑥, 𝑑)𝑑𝑥
, 𝑐21
2(𝛽 − 𝛼) minቐ 2𝜈21

∫𝛽𝛼 max|𝜉|≤𝜈1 Ψ(𝑥, 𝜉)𝑑𝑥
, 𝜈22
∫𝛽𝛼 max|𝜉|≤𝜈2 Ψ(𝑥, 𝜉)𝑑𝑥

ቑ
⎡
⎢
⎢
⎢
⎣

,

the following problem

ቊ −(𝜃(𝑥)𝑦′(𝑥))′ + 𝜏𝜂(𝑥) ∫𝛽𝛼 𝜂(𝑥)𝑦(𝑥) 𝑑𝑥 = 𝜆𝜓(𝑥, 𝑦(𝑥)) in (𝛼, 𝛽),
𝑦(𝛼) = 𝑦′(𝛽) = 0,

admits at least three distinct non-negative weak solutions 𝑦1, 𝑦2, 𝑦3 such that |𝑦𝑖(𝑥)| < 𝜈2 for 𝑥 ∈ [𝛼, 𝛽] and
𝑖 = 1, 2, 3.

References

[1] W. Allegretto, A. Barabanova, Positivity of solutions of elliptic equations with nonlocal terms, Proc. R. Soc. Edinb., 126A (1996), 643-663.
[2] E. Amoroso, G. Bonanno, G. D’Aguì, S.D. Caro, S. Foti, D. O’regan, A. Testa, Second-order differential equations for the power converters

dynamical performance analysis, Math Meth Appl Sci., 49 (2022), 5573–5591.
[3] G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differ-

ential Equations, 244 (2008), 3031–3059.
[4] F.J.S.A. Corrêa, N. de Assis Lima, R.N. de Lima, Existence of solutions of integro-differential semilinear elliptic equations, Appl. Anal., 102

(2023), 1821-1839, doi.org/10.1080/00036811.2021.2005786.
[5] G.C.G. dos Santos, N. de Assis Lima and R.N. de Lima, Existence of solution for a class of integro-differential sublinear problems with strong

singularity, Z. Angew. Math. Phys., 74 (2023), 196, Doi.org/10.1007/s00033-023-02085-8.
[6] J. Furter and M. Grinfeld, Local vs. non-local interactions in population dynamics, J. Math Biol., 27 (1989), 65-80.
[7] L.A. Peletier, W.C. Troy and R. C. A.M. Van der Vorst; Stationary solutions of a fourth order nonlinear diffusion equation, (Russian) Translated

from the English by V. V. Kurt.Differentsialnye Uravneniya 31 (1995), 327-337. English translation inDifferential Equations 31 (1995), 301-
314.

[8] S. Shokooh, Study an integro-differential equation by variational method, Journal of Elliptic and Parabolic Equations, (2025), in press.
[9] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. II/B and III, Berlin-Heidelberg-New York, 1990 and 1985.



Gonbad Kavous University

The 5th National Congress on Mathematics and StatisticsThe 5th National Congress on Mathematics and Statistics

https://conf.gonbad.ac.ir/msc1403

The 5th National Congress on Mathematics and Statistics, AL–229, pp. 420–422

Hypergraphs in role of studying some modules

Ali Reza Moniri Hamzekolaeea,∗, Samira Asgarib
aDepartment of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran
bDepartment of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran

Article Info

Keywords:
hypergraph
hyperedge
intersection hypergraph

2020 MSC:
16D10
05C20
05C65

Abstract

Let 𝑀 be a module over a ring 𝑅. The intersection hypergraph assigned to 𝑀 which is denoted
by ℐℋ𝑅(𝑀) will be studied. Vertices of this hypergraph are all nontrivial submodules of𝑀 and
a set of vertives 𝐸 forms a hyperedge in case each two elements of 𝐸 has zero intersection and
𝐸 is maximal with respect to this property.

1. Introduction

In Berge [4, 5], the author introduced hypergraphs as a means to generalize the graph approach. As given in Berge
[4, 5], a hypergraph ℋ = (𝑉; 𝐸) on a finite set of vertices (or nodes) 𝑉 = {𝑣1, … , 𝑣𝑛} is defined as a family of
hyperedges 𝐸 = {𝑒𝑗 ∣ 1 ≤ 𝑗 ≤ 𝑚} where each hyperedge is a non-empty subset of 𝑉 and such that ∪𝑚𝑗=1𝑒𝑗 = 𝑉. It
means that in a hypergraph, a hyperedge links one or more vertices.
Hypergraphs can be viewed as incidence structures. In particular, there is a bipartite ”incidence graph” or ”Levi graph”
corresponding to every hypergraph, and conversely, most, but not all, bipartite graphs can be regarded as incidence
graphs of hypergraphs.
Finding the complete subgraphs of a graph can be viewed as a an important issue in graph theory. Intersection and co-
intersection graphs on modules were studied in [1] and [2]. To find the complete subgraphs of Γ(𝑀) (co-intersection
graph on submodules defined on a module𝑀), we shall define a hypergraph on𝑀. In this paper, motivated by [2] and
works done about hypergraphs, we introduce a new hypergraph assigned to a right 𝑅-module𝑀. We define ℐℋ𝑅(𝑀)
as a hypergraph where the vertices are all nontrivial submodules of𝐾 and a 𝑛-subset (𝑛 ≥ 2) 𝐸𝑖 of the set all nontrivial
submodules of 𝐾 is a hyperedge of ℐℋ𝑅(𝑀) provided for each two 𝑁, 𝐿 ∈ 𝐸𝑖, 𝑁 ∩ 𝐿 = 0 and 𝐸𝑖 is maximal to this
property. Connecting to Γ(𝑀), we can say 𝐸𝑖 is a hyperedge in ℐℋ𝑅(𝑀) if and only if 𝐸𝑖 is a maximal subset of 𝑉
with respect to the property that the elements of 𝐸𝑖 form a complete subgraph of Γ(𝑀).
It should be noted that a submodule𝑁 of a module𝑀 is called essential, provided𝑁∩𝐿 ≠ 0 for all nonzero submodules
𝐿 of 𝑀. Also, 𝑀 is said to be uniform in case every nonzero submodule of 𝑀 is essential in 𝑀. The submodule

∗Talker
Email addresses: a.monirih@umz.ac.ir (Ali Reza Moniri Hamzekolaee), s.asgari03@umail.umz.ac.ir (Samira Asgari)



Moniri Hamzekolaee & Asgari / The 5th National Congress on Mathematics and Statistics 421

𝑆𝑜𝑐(𝑀) is defined to be the intersection of all essential submodules of 𝑀, equivalently 𝑆𝑜𝑐(𝑀) is the sum of all
simple submodules of𝑀. The radical of𝑀, denoted by 𝑅𝑎𝑑(𝑀) is the intersection of all maximal submodules of𝑀.
Any unexplained terminologies related to modules and rings can be found in [8] and we refer the readers to [7] for
more information about graphs and related concepts.

2. Properties of intersection hypergraph of submodules of a module

Let 𝑆 be a set. By a 𝑛-subset of 𝑆, we mean a subset of 𝑆 with 𝑛 elements.
We start with the definition.

Definition 2.1. Let𝑀 be an 𝑅-module. The intersection hypergraph ℐℋ𝑅(𝑀) on𝑀 is a hypergraph where the vertices
are all nontrivial submodules of𝑀 and a 𝑛-subset (𝑛 ≥ 2) 𝐸𝑖 of the set all nontrivial submodules of𝑀 is a hyperedge
of ℐℋ𝑅(𝑀) provided for each two 𝑁, 𝐿 ∈ 𝐸𝑖, 𝑁 ∩ 𝐿 = 0 and 𝐸𝑖 is maximal with respect to this property.
We shall deal with some properties of the intersection hypergraph of amodule. We prove that amodule𝑀 is semisimple
if and only if for every vertex 𝑁 in ℐℋ𝑅(𝑀) we have 𝑑𝑒𝑔ℐℋ𝑅(𝑀)(𝑁) ≠ 0.
Proposition 2.2. For a right 𝑅-module 𝑀, if 𝛿(ℐℋ𝑅(𝑀)) ≥ 1, then the intersection hypergraph is connected and its
diameter is at last three.

Lemma 2.3. A nontrivial submodule 𝑁 of𝑀 is essential if and only if 𝑑𝑒𝑔ℐℋ𝑅(𝑀)(𝑁) = 0.
Proposition 2.4. The intersection hypergraph of an 𝑅-module𝑀 is null if and only if𝑀 is uniform.

As a consequence of Proposition 2.4, the intersection hypergraph of the ℤ-module ℤ𝑝𝑛 is null.
The following is a characterization for a module such that its intersection hypergraph has just one hyperedge containing
all nontrivial submodules of that module.

Theorem2.5. Let𝑀 be a finite𝑅-modulewith at least two nontrivial submodules. Then ℐℋ𝑅(𝑀) has only a hyperedge
containing all nontrivial submodules of 𝑀 if and only if 𝑀 can be written as a direct sum of each two nontrivial
submodules.

As examples of modules satisfying in the condition of Theorem 2.5, we can consider the ℤ-modules ℤ2⊕ℤ2, ℤ3⊕ℤ3
and in general ℤ𝑝 ⊕ℤ𝑝 for a prime number 𝑝.
Proposition 2.6. Suppose that𝑀 is a finite module. Then𝑀 is semisimple if and only if every nontrivial submodule
of 𝑁 of𝑀, we have 𝑑𝑒𝑔ℐℋ𝑅(𝑀)(𝑁) ≠ 0.
Corollary 2.7. Suppose that 𝑀 is a finite 𝑅-module with exactly three nontrivial submodules 𝐻1, 𝐻2 and 𝐻3. Then
ℐℋ𝑅(𝑀) either has just one hyperedge of the form {𝐻1, 𝐻2, 𝐻3} or {𝐻1, 𝐻2}, or ℐℋ𝑅(𝑀) is a null hypergraph.
The following includes examples of modules satisfying conditions in Theorem ??.

Example 2.8. (1) Let 𝐹 be a field. Consider the ring 𝑅 = {ቆ𝑎 𝑏
0 𝑐ቇ ∣ 𝑎, 𝑏, 𝑐 ∈ 𝐹}. Then the bimodule 𝑅𝑅𝑅 = 𝑀 has

exactly three nontrivial submodules 𝐻 = {ቆ𝑎 𝑏
0 0ቇ ∣ 𝑎, 𝑏 ∈ 𝐹}, 𝐿 = {ቆ0 𝑏

0 𝑐ቇ ∣ 𝑏, 𝑐 ∈ 𝐹} and 𝑁 = {ቆ0 𝑏
0 0ቇ ∣ 𝑏 ∈ 𝐹}.

Then𝐻 and 𝐿 are maximal submodules of𝑀 and𝑁 = 𝐻∩𝐿 = 𝑅𝑎𝑑(𝑀) = 𝑆𝑜𝑐(𝑀). Also,𝑀 is uniform and ℐℋ𝑅(𝑀)
is null.
(2) Let 𝑅 = {ቆ𝑎 𝑏

0 𝑐ቇ ∣ 𝑎 ∈ ℤ4, 𝑏, 𝑐 ∈ ℤ2}. Consider the 𝑅-module 𝑀 = {ቆ𝑎 𝑏
0 0ቇ ∣ 𝑎 ∈ ℤ4, 𝑏 ∈ ℤ2}. Then 𝑀 has

just three nontrivial submodules 𝑁 = {ቆ𝑎 0
0 0ቇ ∣ 𝑎 = 0, 2}, 𝐿 = {ቆ0 𝑏

0 0ቇ ∣ 𝑏 = 0, 1} and 𝐻 = {ቆ𝑎 𝑏
0 0ቇ ∣ 𝑎 =

0, 2, 𝑏 = 0, 1}. Then 𝑁 ∩ 𝐿 = 0, 𝑁, 𝐿 ⊆ 𝐻, 𝑁⊕ 𝐿 = 𝐻 = 𝑅𝑎𝑑(𝑀) = 𝑆𝑜𝑐(𝑀).
We next show that there does not exist a finite module 𝐾 with submodules 𝑁, 𝑇, 𝐿, 𝐻 such that 𝑁 ∩ 𝑇 = 0, 𝐿 ∩ 𝐻 = 0
and 𝑁 ∩ 𝐿(𝑜𝑟𝐻) ≠ 0 and 𝑇 ∩ 𝐿(𝑜𝑟𝐻) ≠ 0.
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Proposition 2.9. Let𝑀 be an𝑅-modulewith four nontrivial submodules𝑇1,..., 𝑇4. Then𝐸(ℐℋ𝑅(𝑀)) ≠ {{𝑇𝑖 , 𝑇𝑗}, {𝑇𝑠 , 𝑇𝑡}},
for 𝑖 ≠ 𝑗 ≠ 𝑠 ≠ 𝑡 ∈ {1,… , 4}.

Proposition 2.10. Suppose that𝑀 is a finite𝑅-module with exactly four nontrivial submodules. Then𝑀 is semisimple
if and only if 𝑀 can be written as a direct sum of each two nontrivial distinct submodules. In this case, ℐℋ𝑅(𝑀) has
just one hyperedge {𝐻1, … , 𝐻4}, for nontrivial distinct submodules 𝐻1, 𝐻2, 𝐻3 and 𝐻4 of𝑀.
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Abstract

F-contraction has been a widely investigated problem in the Fixed Point Theory during the last
decade. In this paper, we analyze, generalize and correct some recent results on F-contractions
within b-metric spaces. There are different results regarding generalizations and modifications
of F-contraction in various settings, along with the results concerning application of those con-
cepts, mostly in the area of differential and difference equations, fractional calculus, etc. In this
way, the wider class of F-contraction is formed and, for this new type of contraction, called sim-
ple F-contraction or sF-contraction, we prove the existence and uniqueness of the fixed point on
a b-metric space.

1. Introduction and preliminaries

In 2012, Wardowski [15] introduced a new type of contraction called F-contraction (also calledWardowski contraction
[4]) and proved a fixed point theorem concerning F-contractions. Since then much work has been done on the fixed
point theory of F-contraction mappings and their extensions (refer to [4, 5, 13]).

Definition 1.1. ([15]) Let 𝐹 ∶ (0,∞) → ℝ be a map satisfying the following conditions:

• (F1) F is strictly increasing.

• (F2) For each sequence {𝑎𝑛}𝑛∈ℕ of positive numbers lim𝑛→∞ 𝑎𝑛 = 0 if and only if lim𝑛→∞ 𝐹(𝑎𝑛) = −∞.

• (F3) There exists 𝑘 ∈ (0, 1) such that lim𝑎→0+ 𝑎𝑘𝐹(𝑎) = 0.

For a metric space (𝑋, 𝑑), a mapping 𝑇 ∶ 𝑋 → 𝑋 is said to be a Wardowski F-contraction if there exists 𝜏 > 0 such
that 𝑑(𝑇𝑥, 𝑇𝑦) > 0 implies

𝜏 + 𝐹(𝑑(𝑇𝑥, 𝑇𝑦)) ≤ 𝐹(𝑑(𝑥, 𝑦))
for all 𝑥, 𝑦 ∈ 𝑋.

Theorem 1.2. [15] Let (𝑋, 𝑑) be a complete metric space and let 𝑇 ∶ 𝑋 → 𝑋 be a Wardowski F-contraction. Then 𝑇
has a unique fixed point 𝑥∗ ∈ 𝑋. On the other hand, the sequence {𝑇𝑛𝑥}𝑛∈ℕ converges to 𝑥∗ for every 𝑥 ∈ 𝑋.
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In 1989, Bakhtin [1] introduced the notion of b-metric spaces, which was formally defined by Czerwik [3] in 1993 with
a view of generalizing Banach contraction principle. There are many authors who have worked on the generalization
of fixed point theorems in b-metric spaces (refer to [6, 7, 10, 14] and the references therein). However, unlike the
normal metric the b-metric 𝑑 is not continuous in the topology generated by it (for instance, refer to Example 2.6
of [12]). In this paper, we present some results on fixed point theory in b-metric spaces considering a new type of
mapping which is a combination of F-contraction byWardowski [15] as well as Kannan contraction [9] mappings. We
also try to develop a fixed point existence results for such type of expanding mappings on b-metric spaces. We start
by defining some of the terms used in this paper.

Definition 1.3. ([1, 3]) Let 𝑋 be a non-empty set and 𝑠 ≥ 1 be a given real number. A function 𝑑 ∶ 𝑋 × 𝑋 → [0,∞)
is called b-metric if it satisfies the following properties:

1. 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥); and
3. 𝑑(𝑥, 𝑧) ≤ 𝑠[𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)], for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

The triplet (𝑋, 𝑑, 𝑠) is called a b-metric space with coefficient 𝑠.
The problems that arise in proving fixed point results due to the possible discontinuity of the b-metric can be fortunately
managed with the following lemma.

Lemma 1.4. Let (𝑋, 𝑑, 𝑠) be a b-metric space and {𝑥𝑛} be a convergent sequence in 𝑋 with lim𝑛→∞ 𝑥𝑛 = 𝑥. Then for
all 𝑦 ∈ 𝑋

𝑠−1𝑑(𝑥, 𝑦) ≤ lim
𝑛→∞

inf𝑑(𝑥𝑛 , 𝑦) ≤ lim
𝑛→∞

sup𝑑(𝑥𝑛 , 𝑦) ≤ 𝑠𝑑(𝑥, 𝑦).

Further, in ([13], Definition 2.7.) authors introduced the following condition.

(F4): If inf𝐹 = −∞ and 𝑥, 𝑦, 𝑧 ∈ (0, +∞) and 𝑠 ≥ 1 are such that 𝜏 +𝐹(𝑠 · 𝑥) ≤ 𝐹(𝑦) and 𝜏 +𝐹(𝑠 · 𝑦) ≤ 𝐹(𝑧), then
𝜏 + 𝐹(𝑠2 · 𝑥) ≤ 𝐹(𝑠 · 𝑦). Authors in [13] denote by F𝑠𝜏 the family of all functions 𝐹 ∶ (0, +∞) → (−∞,+∞) which
satisfy (F1), (F3), and (F4).

We make two important remarks. First, if inf𝐹 ≠ −∞ then (Fs𝜏) is satisfied, for all 𝑠 ≥ 1 and 𝜏 > 0. Second, when
𝑠 = 1 and 𝜏 > 0 is arbitrary, condition (Fs𝜏) is a tautology, hence in this case the family Fs𝜏 is F.

In [2] the authors introduce the following condition (F4):
(F’s𝜏) if (𝛼𝑛)𝑛 ∈ ℕ ⊆ (0,∞) is a sequence such that 𝜏 + 𝐹(𝑠𝛼𝑛) ≤ 𝐹(𝛼𝑛−�1), for all 𝑛 ∈ ℕ and for some 𝜏 > 0,
then 𝜏 + 𝐹(𝑠𝑛𝛼𝑛) ≤ 𝐹(𝑠𝑛�−1𝛼𝑛�−1), for all 𝑛 ∈ ℕ.
The equivalence of these two conditions is proven in proposition of 2.8. in [13].

For the functions from F𝑠𝜏 authors in ([13], Definition 3.1., Theorem 3.2.) introduced and proved the following:

Definition 1.5. Let (𝑋, 𝑑, 𝑠 ≥ 1) be a b-metric space and 𝑇 ∶ 𝑋 → 𝑋 be an operator. If there exist 𝜏 > 0 and 𝐹 ∈ 𝐹𝑠𝜏
such that for all 𝑥, 𝑦 ∈ 𝑋 the inequality 𝑑(𝑇𝑥, 𝑇𝑦) > 0 implies

𝜏 + 𝐹(𝑠.𝑑(𝑇𝑥, 𝑇𝑦)) ≤ 𝐹(𝑑(𝑥, 𝑦)), (1)

then 𝑇 is called an F-contraction.

Theorem 1.6. Let (𝑋, 𝑑, 𝑠 ≥ 1) be a complete b-metric space and 𝑇 ∶ 𝑋 → 𝑋 be an F−contraction, then 𝑇 has a
unique fixed point 𝑥∗. Furthermore, for any 𝑥0 ∈ 𝑋, the sequence 𝑥𝑛+1 = 𝑇𝑥𝑛 is convergent and lim𝑛→+∞ 𝑥𝑛 = 𝑥∗.
Also, for the functions from Fs𝜏 authors in ([13], Definition 4.1., Theorem 4.2.) introduced and proved the next:

Definition 1.7. (𝑋, 𝑑, 𝑠 ≥ 1) be a b-metric space and 𝑇 ∶ 𝑋 → 𝑋 be an operator. If there exists 𝜏 > 0 and 𝐹 ∈ 𝐹𝑠𝜏
such that for all 𝑥, 𝑦 ∈ 𝑋 the inequality 𝑑(𝑇𝑥, 𝑇𝑦) > 0 implies

𝜏 + 𝐹(𝑠.𝑑(𝑇𝑥, 𝑇𝑦)) ≤ 𝐹൫max ൛𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), 𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)
2𝑠 ൟ൯

then 𝑇 is called an F-weak contraction.
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Theorem 1.8. Let (𝑋, 𝑑, 𝑠 ≥ 1) be a complete b-metric space and 𝑇 ∶ 𝑋 → 𝑋 be an F−weak contraction, then 𝑇 has
a unique fixed point and for any 𝑥0 ∈ 𝑋 the sequence 𝑥𝑛+1 = 𝑇𝑥𝑛 is convergent in 𝑋. Furthermore, if either 𝑇 or 𝐹
is continuous then 𝑇 has a unique fixed point 𝑥∗ and for all 𝑥0 ∈ 𝑋 the sequence 𝑥𝑛+1 = 𝑇𝑥𝑛 converges to 𝑥∗.
As mentioned, this result was modified in several different manners. We will discuss only on the characterization of
the family F and we will prove that it is possible to omit some conditions in the definition of class F without losing
any of the already obtained results regarding existence and uniqueness of a fixed point.

2. Main Results

In this part of the paper we shall use only the condition (F1) for the proof of all Theorems from Section 1, Introduction
and preliminaries.
Definition 2.1. A set F♮ is the set of all strictly increasing functions 𝐹 ∶ (0,∞) → ℝ.
Therefore, F♮ the set of all functions 𝐹 ∶ (0,∞) → ℝ satisfying (F1) and F, F𝑠𝜏 ⊆ F♮. In accordance with newly
defined class of functions, we define a simple F-contraction or sF-contraction.
Definition 2.2. Let (𝑋, 𝑑, 𝑠) be a b-metric space and 𝑇 ∶ 𝑋 → 𝑋 a mapping. If there exist 𝐹 ∈ 𝐹♮ and 𝜏 > 0 such that,
for all 𝑥, 𝑦 ∈ 𝑋,

𝑑(𝑇𝑥, 𝑇𝑦) > 0 ⇒ 𝜏 + 𝐹(𝑠.𝑑(𝑇𝑥, 𝑇𝑦)) ≤ 𝐹(𝑑(𝑥, 𝑦)), (2)
then a mapping 𝑇 is called a simple F-contraction (sF-contraction).
Lemma 2.3. Any F-contraction is a sF -contraction.

Lemma 2.4. Any Fs𝜏-contraction is a sF-contraction.
The main result is dedicated to the existence and uniqueness of a fixed point for a simple F-contraction.
Theorem 2.5. Let (𝑋, 𝑑, 𝑠) be a complete b-metric space and 𝑇 ∶ 𝑋 → 𝑋 a simple F-contraction. Then 𝑇 has a unique
fixed point 𝑥∗ ∈ 𝑋 and, for every 𝑥 ∈ 𝑋, a sequence (𝑇𝑛𝑥) converges to 𝑥∗.
Proof. Since the function F is strictly increasing 2 yields

𝑑(𝑇𝑥, 𝑇𝑦) < 1
𝑠 .𝑑(𝑥, 𝑦), (3)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦. Now condition 3 directly implies that the mapping 𝑇 is continuous and that its possible
fixed point is unique. We did not use the function F as in [13] to prove uniqueness. The proof further goes on as in [8]
and [11]

Our next result is a generalization and correction of Theorem 1.8 from Section 1, Introduction and preliminaries of
this paper.
Definition 2.6. (𝑋, 𝑑, 𝑠 ≥ 1) be a b-metric space and 𝑇 ∶ 𝑋 → 𝑋 be an operator. If there exists 𝜏 > 0 and 𝐹 ∈ 𝐹♮ such
that for all 𝑥, 𝑦 ∈ 𝑋 the inequality 𝑑(𝑇𝑥, 𝑇𝑦) > 0 implies

𝜏 + 𝐹(𝑠.𝑑(𝑇𝑥, 𝑇𝑦)) ≤ 𝐹൫max ൛𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), 𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)
2𝑠 ൟ൯

then 𝑇 is called a simple F-weak contraction.
Theorem 2.7. Let (𝑋, 𝑑, 𝑠 ≥ 1) be a complete b-metric space and 𝑇 ∶ 𝑋 → 𝑋 be a simple F−weak contraction, then
𝑇 has a unique fixed point and for any 𝑥0 ∈ 𝑋 the sequence 𝑥𝑛+1 = 𝑇𝑥𝑛 is convergent in 𝑋. Furthermore, if either 𝑇
or 𝐹 is continuous then 𝑇 has a unique fixed point 𝑥∗ and for all 𝑥0 ∈ 𝑋 the sequence 𝑥𝑛+1 = 𝑇𝑥𝑛 converges to 𝑥∗.
Remark 2.8. Mapping 𝑇 ∶ 𝑋 → 𝑋 on a b-metric space (𝑋, 𝑑, 𝑠) is called contractive mapping if

𝑠.𝑑(𝑇𝑥, 𝑇𝑦) < 𝑑(𝑥, 𝑦).
If 𝑇 is a sF-contraction, then

𝐹(𝑠.𝑑(𝑇𝑥, 𝑇𝑦)) ≤ 𝐹(𝑑(𝑥, 𝑦)) − 𝜏 < 𝐹(𝑑(𝑥, 𝑦))
along with the fact that F is strictly increasing leads to the conclusion that 𝑇 is a contractive mapping.
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Abstract

In this paper, we introduce and study the properties of (1, 𝑟)-submodules and (2, 𝑟)-submodules,
which generalize the concepts of 𝑟-submodules, 𝑠𝑟-submodules and prime submodules [1–3].
We extend several key results related to (1, 𝑟)-submodules, (2, 𝑟)-submodules, and prime sub-
modules to a more general framework. Finally, we present some of the results concerning these
concepts and investigate their behavior in the context of fractional modules and Cartesian prod-
ucts.

1. Introduction

Throughout this paper, 𝑅 is a non-trivial commutative ring with an identity element, and 𝑀 is a unitary 𝑅-module.
The main purpose of this paper is to introduce and investigate some properties of the concept of (1, 𝑟)-submodules
and (2, 𝑟)-submodules, which generalize 𝑟-submodules, 𝑠𝑟-submodules and prime submodules. One of the methods
used to generalize prime and primary submodules is the use of 𝑍(𝑀), which is defined as the set of zero divisors of
𝑀. It is denoted as follows.

𝑍𝑅(𝑀) = {𝑟 ∈ 𝑅 ∣ ∃ 0 ≠ 𝑚 ∈ 𝑀, 𝑟𝑚 = 0𝑀} = {𝑟 ∈ 𝑅 ∣ ann𝑀(𝑟) ≠ 0}

In 2015, Mohammadian introduced the concept of 𝑟-ideals in commutative rings [2]. A proper ideal 𝐼 is called an
𝑟-ideal if, for 𝑎𝑏 ∈ 𝐼 with ann(𝑎) = 0, it follows that 𝑏 ∈ 𝐼. Note that ann(𝑎) = 0 if and only if 𝑎 ∉ 𝑍(𝑅). Thus,
if 𝑎𝑏 ∈ 𝐼 with 𝑎 ∉ 𝑍(𝑅), then 𝑏 ∈ 𝐼. In 2018, Koç defined the concept of 𝑟-submodules [1]. A proper submodule
𝑁 of 𝑀 is called an 𝑟-submodule if, for 𝑎 ∈ 𝑅 and 𝑚 ∈ 𝑀, 𝑎𝑚 ∈ 𝑁 with ann𝑀(𝑎) = 0𝑀 implies 𝑚 ∈ 𝑁. In this
work, we present a different generalization of 𝑟-submodules and 𝑠𝑟-submodules, focusing on the choice of elements.
We say that a proper submodule 𝑁 of 𝑀 is a (1, 𝑟)-submodule of 𝑀, whenever 𝑎𝑏𝑚 ∈ 𝑁 for two non-unit elements
𝑎, 𝑏 ∈ 𝑅 and 𝑚 ∈ 𝑀, then 𝑎 ∈ 𝑍(𝑀) or 𝑏𝑚 ∈ 𝑁. Also, we say a proper submodule 𝑁 of 𝑀 is a (2, 𝑟)-submodule
of 𝑀, if 𝑎𝑏𝑚 ∈ 𝑁 for elements 𝑎, 𝑏 ∈ 𝑅 and 𝑚 ∈ 𝑀, then 𝑎𝑚 ∈ 𝑁 or 𝑏𝑚 ∈ 𝑁 or 𝑎𝑏 ∈ 𝑍𝑅(𝑀). In the first part,
we provide some necessary definitions, and in the second part, we establish basic properties of these submodules.
Through examples, we demonstrate that (1, 𝑟)-submodules generalize 𝑟-submodules and (2, 𝑟)-submodules, while
(2, 𝑟)-submodules generalize prime submodules.

∗Talker
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In the section 2.1, we investigate the (1, 𝑟)-submodules in the direct product of modules and fraction modules. Also,
we explore how (1, 𝑟)-submodules and (2,r)-submodules are preserved under isomorphism. To this end, we present
some results concerning (1, 𝑟)- submodules in the direct product of modules. It is noteworthy that if 𝑁𝑖 is (1, 𝑟)-
submodule of𝑀𝑖, for i = 1, 2, then 𝑁1 ×𝑁2 is not necessarily a (1, 𝑟)-submodule. See Example 2.14 for more details.
Similarly, in the final section, we introduce the concept of (2, 𝑟)-submodules, and we explore some of its properties,
such as its behavior under intersection, isomorphism, direct product.

2. (1,r)-submodules

First we introduce the concept (1, 𝑟)-submodule and then we examine some of its basic properties.

Definition 2.1. Let 𝑁 be a proper submodule of 𝑀. Then 𝑁 is called a (1, 𝑟)-submodule of 𝑀, whenever 𝑎𝑏𝑚 ∈ 𝑁
for two non-unit elements 𝑎, 𝑏 ∈ 𝑅 and𝑚 ∈ 𝑀, then 𝑎 ∈ 𝑍(𝑀) or 𝑏𝑚 ∈ 𝑁.

Example 2.2. The following statements hold:
(1)𝑁 = (0) is a (1, 𝑟)-submodule.
(2) Every 𝑟-submodule is a (1, 𝑟)-submodule.

In the following, we give an example of (1, 𝑟)-submodules, that is not 𝑟-submodule.

Example 2.3. Let 𝑀 = ℤ be as a ℤ-module and 𝑁 = 3ℤ be a submodule of 𝑀. It is obvious that the set of nonunit
elements of ℤ is equal to ℤ− {1}. Let 𝑎, 𝑏 ∈ ℤ − {1} and𝑚 ∈ 𝑀 such that 𝑎𝑏𝑚 ∈ 3ℤ, hence 3 ∣ 𝑎 ∨ 3 ∣ 𝑏 ∨ 3 ∣ 𝑚. If
𝑎 = 0 or 𝑏 = 0, we have 𝑎 ∈ 𝑍(𝑀) or 𝑏 ∈ 𝑍(𝑀). Now suppose that 𝑎, 𝑏 ≠ 0, hence 𝑎, 𝑏 ∉ 𝑍(𝑀) = 0. If 3 ∣ 𝑎, then
𝑎𝑚 ∈ 𝑁 and if 3 ∣ 𝑏, then 𝑏𝑚 ∈ 𝑁. Also if 3 ∣ 𝑚, then 𝑎𝑚 ∈ 𝑁 and 𝑏𝑚 ∈ 𝑁. Therefore 𝑁 is a (1, 𝑟)-submodule of
𝑀. Later we show that 𝑁 is not a 𝑟-submodule. Suppose that 𝑎 ≠ 0 and 𝑎𝑚 ∈ 𝑁 such that 3 ∣ 𝑎 and 3 ∤ 𝑚. Hence
nither 𝑎 ∈ 𝑍(𝑀) nor𝑚 ∈ 𝑁, so 𝑁 is not a 𝑟-submodule.

2.1. Some Properties of (1,r)-Submodules

Proposition 2.4. (1) Let 𝑀 be a finitely generated 𝑅-module and {𝑁𝑖 ∶ 𝑖 ∈ 𝐼} be a directed set of (1, 𝑟)-submodules
of𝑀. Then the submodule 𝑁 = ∪𝑖∈𝐼𝑁𝑖 is a (1, 𝑟)-submodule of𝑀.
(2) Let {𝑁𝑖 ∶ 𝑖 ∈ 𝐼} be a set of (1, 𝑟)-submodules of𝑀. Then the submodule 𝑁 = ∩𝑖∈𝐼𝑁𝑖 is a (1, 𝑟)-submodule of𝑀.

Proof. (1) Since𝑀 is a finitely generated 𝑅-module, so 𝑁 is a proper submodule of𝑀. Suppose that for two non-unit
𝑎, 𝑏 ∈ 𝑅 and 𝑚 ∈ 𝑀 we have 𝑎𝑏𝑚 ∈ 𝑁 = ∪𝑖∈𝐼𝑁𝑖 and 𝑎 ∉ 𝑍(𝑀). Then there exists 𝑖 ∈ 𝐼 such that 𝑎𝑏𝑚 ∉ 𝑁𝑖. Since
𝑎 ∉ 𝑍(𝑀), by assumption, 𝑏𝑚 ∈ 𝑁𝑖 ⊆ ∪𝑖∈𝐼𝑁𝑖 = 𝑁.
(2) Let two non-unit elements 𝑎, 𝑏 ∈ 𝑅 and 𝑚 ∈ 𝑀 such that 𝑎𝑏𝑚 ∈ ∩𝑖∈𝐼𝑁𝑖 and 𝑎 ∉ 𝑍(𝑀). Then for each 𝑖 ∈ 𝐼,
𝑎𝑏𝑚 ∈ 𝑁𝑖. Since for each 𝑖 ∈ 𝐼, 𝑁𝑖 is (1, 𝑟)-submodule and 𝑎 ∉ 𝑍(𝑀), so 𝑏𝑚 ∈ ∩𝑖∈𝐼𝑁𝑖.

Proposition 2.5. Let 𝑁 be a proper submodule of 𝑀. Then for every two non-unit elements 𝑎, 𝑏 ∈ 𝑅, the following
statements are equivalent:
(1) 𝑁 is a (1, 𝑟)-submodule of𝑀.
(2) (𝑁 ∶𝑀 𝑎𝑏) = (𝑁 ∶𝑀 𝑏) for every 𝑎 ∉ 𝑍(𝑀).
(3) 𝑁 ∩ 𝑎𝑏𝑀 ⊆ 𝑎𝑁 for every 𝑎 ∉ 𝑍(𝑀).

Proof. (1)⇒(2) Let 𝑚 ∈ (𝑁 ∶𝑀 𝑎𝑏), so 𝑎𝑏𝑚 ∈ 𝑁. Then by (1), 𝑏𝑚 ∈ 𝑁, hence 𝑚 ∈ (𝑁 ∶𝑀 𝑏). Also we know
(𝑁 ∶𝑀 𝑏) ⊆ (𝑁 ∶𝑀 𝑎𝑏). Then (2) is true.
(2)⇒(3) Let 𝑥 ∈ 𝑁∩𝑎𝑏𝑀, then 𝑥 = 𝑎𝑏𝑚 for some𝑚 ∈ 𝑀 and 𝑥 = 𝑎𝑏𝑚 ∈ 𝑁. Since 𝑎 ∉ 𝑍(𝑀) and𝑚 ∈ (𝑁 ∶𝑀 𝑎𝑏),
so𝑚 ∈ (𝑁 ∶𝑀 𝑏). Therefore 𝑥 = 𝑎𝑏𝑚 ∈ 𝑎𝑁.
(3)⇒(1) Let 𝑎𝑏𝑚 ∈ 𝑁 for two non-unit elements 𝑎, 𝑏 ∈ 𝑅 and 𝑚 ∈ 𝑀 such that 𝑎 ∉ 𝑍(𝑀). Then 𝑎𝑏𝑚 ∈ 𝑁 ∩ 𝑎𝑏𝑀,
so by (3), 𝑎𝑏𝑚 ∈ 𝑎𝑁. Hence 𝑏𝑚 ∈ 𝑁 and 𝑁 is a (1, 𝑟)-submodule of𝑀.
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Proposition 2.6. Suppose that𝑀 is an R-module such that every proper submodule of𝑀 is a (1, 𝑟)-submodule. Then
for every submodule 𝑁 of𝑀 and two non-unit elements 𝑎, 𝑏 ∈ 𝑅 such that 𝑎 ∉ 𝑍(𝑀), 𝑎𝑏𝑁 = 𝑏𝑁.

Proof. Let𝑁 be a submodule of𝑀 and 𝑎 ∉ 𝑍(𝑀). We show that 𝑎𝑏𝑁 = 𝑏𝑁. Case1: If𝑁 = 𝑀 and 𝑎𝑏𝑀 ≠ 𝑏𝑀, then
there exists a 𝑚 ∈ 𝑀 such that 𝑏𝑚 ∉ 𝑎𝑏𝑀. Hence by assumption, 𝑎𝑏𝑀 is a (1, 𝑟)-submodule. Since 𝑎𝑏𝑚 ∈ 𝑎𝑏𝑀
and 𝑎 ∉ 𝑍(𝑀), so 𝑏𝑚 ∈ 𝑎𝑏𝑀, which is a contradiction. Therefore 𝑎𝑏𝑀 = 𝑏𝑀. Case2: If 𝑁 be a proper submodule
of 𝑀, then 𝑎𝑏𝑁 ⊆ 𝑁 ⊊ 𝑀 and 𝑎𝑏𝑁 is a (1, 𝑟)-submodule. Since for every 𝑛 ∈ 𝑁, 𝑎𝑏𝑛 ∈ 𝑎𝑏𝑁 and 𝑎 ∉ 𝑍(𝑀).
Therefore 𝑏𝑛 ∈ 𝑎𝑏𝑁 for every 𝑛 ∈ 𝑁 and 𝑏𝑁 ⊆ 𝑎𝑏𝑁, so 𝑎𝑏𝑁 = 𝑏𝑁.

In the next, we present an alternative definition of (1, 𝑟)-submodules based on ideals of 𝑅 and submodules of𝑀.

Theorem 2.7. Let𝑀 be an 𝑅-module and 𝑁 be a proper submodule of𝑀. The following statements are equivalent:
(1) 𝑁 is a (1, 𝑟)-submodule of𝑀.
(2) For every proper ideal 𝐼 and 𝐽 of 𝑅 and every submodule 𝐾 of 𝑀 we have 𝐼𝐽𝐾 ⊆ 𝑁 such that 𝐼 ⊈ 𝑍(𝑀) then
𝐽𝐾 ⊆ 𝑁.

Proof. (1)⇒(2) Let 𝐼𝐽𝐾 ⊆ 𝑁 such that 𝐼 ⊈ 𝑍(𝑀). Hence there is 𝑎 ∈ 𝐼 such that 𝑎 ∉ 𝑍(𝑀). Also, for every 𝑗 ∈ 𝐽 and
𝑘 ∈ 𝐾 we have 𝑎𝑗𝑘 ∈ 𝑁. Since 𝑎 ∉ 𝑍(𝑀), so by (1), 𝑗𝑘 ∈ 𝑁 for every 𝑗 ∈ 𝐽 and 𝑘 ∈ 𝐾. Therefore 𝐽𝐾 ⊆ 𝑁.
(2)⇒(1) Suppose that 𝑎𝑏𝑚 ∈ 𝑁 for two non-unit elements 𝑎, 𝑏 ∈ 𝑅 and 𝑚 ∈ 𝑀, such that 𝑎 ∉ 𝑍(𝑀). Let 𝐼 = (𝑎),
𝐽 = (𝑏) and 𝐾 = (𝑚). Hence 𝐼𝐽𝐾 ⊆ 𝑁 and 𝐼 ⊈ 𝑍(𝑀), so by assumption, 𝐽𝐾 ⊆ 𝑁. Hence 𝑏𝑚 ∈ 𝑁.

Proposition 2.8. Let 𝑁 be a proper submodule of𝑀. If 𝑁 is a (1, 𝑟)-submodule, then (𝑁 ∶𝑀 𝑡) is a (1, 𝑟)-submodule
for every 𝑡 ∉ 𝑍(𝑀) .

Proof. Let 𝑎𝑏𝑚 ∈ (𝑁 ∶𝑀 𝑡) for non-unit elements 𝑎, 𝑏 ∈ 𝑅 and 𝑚 ∈ 𝑀 such that 𝑎 ∉ 𝑍(𝑀). We show that
𝑏𝑚 ∈ (𝑁 ∶𝑀 𝑡). Let 𝑡 be non-unit, then 𝑎𝑏𝑚𝑡 ∈ 𝑁, 𝑡 ∉ 𝑍(𝑀). Since 𝑁 is (1, 𝑟)-submodule hence 𝑎𝑏𝑚 ∈ 𝑁. Since
𝑎 ∉ 𝑍(𝑀), so 𝑏𝑚 ∈ 𝑁. Hence 𝑏𝑚𝑡 ∈ 𝑁 and 𝑏𝑚 ∈ (𝑁 ∶𝑀 𝑡). If 𝑡 be unit, then 𝑎𝑏𝑚 ∈ 𝑁. So 𝑏𝑚 ∈ 𝑁 and 𝑏𝑚𝑡 ∈ 𝑁.

Proposition 2.9. Let 𝑁 be a (1, 𝑟)-submodule of 𝑀 and 𝑆 be a non-empty subset of 𝑅 such that 𝑆 ⊈ (𝑁 ∶ 𝑀), then
(𝑁 ∶𝑀 𝑆) is a (1, 𝑟)-submodule of𝑀. In general if 𝑆 ⊈ (𝑁 ∶𝑅 𝑀), then 𝐴𝑛𝑛𝑀(𝑆) is a (1, 𝑟)-submodule of𝑀.

Proof. Let 𝑎𝑏𝑚 ∈ (𝑁 ∶𝑀 𝑆) for non-unit elements 𝑎, 𝑏 ∈ 𝑅 and 𝑚 ∈ 𝑀. Then 𝑎𝑏𝑚𝑆 ⊆ 𝑁, so 𝑎 ∈ 𝑍(𝑀) or
𝑏𝑚𝑆 ⊆ 𝑁. Hence 𝑎 ∈ 𝑍(𝑀) or 𝑏𝑚 ∈ (𝑁 ∶𝑀 𝑆).

Lemma 2.10. Let𝑀 be an 𝑅-module and 𝑆 be a multiplicatively closed subset of 𝑅. Then:
1. 𝑍𝑅(𝑀) is a ideal of 𝑅 if and only if 𝑍𝑅(𝑀) is closed under summation.
2. Suppose that 𝑍(𝑀) is a subring of 𝑅 with 𝑍𝑅(𝑀) ∩ 𝑆 = ∅, then 𝑆−1𝑍𝑅(𝑀) = 𝑍𝑆−1𝑅(𝑆−1𝑀).
3. 𝑍𝑅1×𝑅2(𝑀1 ×𝑀2) = ൫𝑍𝑅1(𝑀1) × 𝑅2൯ ∪ ൫𝑅1 × 𝑍𝑅2(𝑀2)൯

Theorem 2.11. Let 𝑁 be a (1, 𝑟)-submodule of 𝑀 and 𝑆 be a multiplicatively closed subset. Then 𝑆−1𝑁 is a (1, 𝑟)-
submodule of 𝑆−1𝑅-module 𝑆−1𝑀.

Proof. Suppose that 𝑎
𝑡 ,

𝑏
𝑠 are two non-unit elements of 𝑆

−1𝑅 and 𝑚
𝑟 ∈ 𝑆−1𝑀 such that 𝑎

𝑡
𝑏
𝑠
𝑚
𝑟 ∈ 𝑆−1𝑀 for 𝑡, 𝑠, 𝑟 ∈ 𝑆.

Since 𝑎
𝑡 is non-unit, so 𝑎 ∈ 𝑅 is non-unit. by asumption, there is 𝑢 ∈ 𝑆 such that 𝑢𝑎𝑏𝑚 ∈ 𝑁. Since 𝑁 is a (1, 𝑟)-

submodule, so 𝑎 ∈ 𝑍(𝑀) or 𝑢𝑏𝑚 ∈ 𝑁. If 𝑎 ∈ 𝑍(𝑀), then there is a 0 ≠ 𝑚′ such that 𝑎𝑚′ = 0. Hence 𝑎
𝑡
𝑚′

1 = 0
1 and

𝑎
𝑡 ∈ 𝑍(𝑆−1𝑀). Also if 𝑢𝑏𝑚 ∈ 𝑁, then 𝑏

𝑠
𝑚
𝑟 = 𝑢𝑏𝑚

𝑢𝑠𝑟 ∈ 𝑆−1𝑁. Thenfore 𝑆−1𝑁 is a (1, 𝑟)-submodule of 𝑆−1𝑀.

Theorem 2.12. Let 𝑓 ∶ 𝑀 → 𝑀′ be a 𝑅-homomorphism.
(1) Let 𝑓 be a epimorphism and 𝑁′ be a (1, 𝑟)-submodule of 𝑀′ such that 𝑓−1(𝑁′) ≠ 𝑀, then 𝑓−1(𝑁′) is a (1, 𝑟)-
submodule of𝑀.
(2) Let 𝑓 be a isomorphism and𝑁 be a (1, 𝑟)-submodule of𝑀 such that𝐾𝑒𝑟(𝑓) ⊆ 𝑁, then 𝑓(𝑁) is a (1, 𝑟)-submodule
of𝑀′.
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Proof. Let 𝑎𝑏𝑚 ∈ 𝑓−1(𝑁′), for two non-unit elemets 𝑎, 𝑏 ∈ 𝑅 and 𝑚 ∈ 𝑀. Hence 𝑎𝑏𝑓(𝑚) = 𝑓(𝑎𝑏𝑚) ∈ 𝑁′. Since
𝑁′ is a (1, 𝑟)-submodule, so 𝑎 ∈ 𝑍(𝑀′) or 𝑏𝑓(𝑚) ∈ 𝑁′. If 𝑎 ∈ 𝑍(𝑀′), then there is 0 ≠ 𝑚′ ∈ 𝑀′ such that 𝑎𝑚′ = 0.
Let 𝑚′ = 𝑓(𝑚), then 𝑎𝑚 ∈ 𝐾𝑒𝑟(𝑓). Thus 𝑎 ∈ 𝑍(𝑀). If 𝑏𝑓(𝑚) ∈ 𝑁′, then 𝑏𝑚 ∈ 𝑓−1(𝑁′). (2) The proof proceeds
similarly.

Suppose that 𝑅 = 𝑅1 × 𝑅2 is a direct product of commutative rings. Let 𝑀𝑖 be an 𝑅𝑖-module for 𝑖 = 1, 2. Then
𝑀 = 𝑀1 ×𝑀2 can be viewed as an 𝑅-module using scalar multiplication (𝑟1, 𝑟2)(𝑚1, 𝑚2) = (𝑟1𝑚1, 𝑟2𝑚2).

Theorem 2.13. Let the situation be as described. Let 𝑀 = 𝑀1 × 𝑀2 and 𝑁1 be a proper submodule of 𝑀1. The
following statements are equivalent:
(1) 𝑁1 is a (1, 𝑟)-submodule of𝑀1.
(2) 𝑁1 ×𝑀2 is a (1, 𝑟)-submodule of𝑀.

Proof. (1)⇒(2) Suppose that (𝑎1, 𝑎2)(𝑏1, 𝑏2)(𝑚1, 𝑚2) ∈ 𝑁1×𝑀2 such that (𝑎1, 𝑎2), (𝑏1, 𝑏2) are non-unit and (𝑚1, 𝑚2) ∈
𝑀1 × 𝑀2. We note that at most two members can be the unit. Also we know that 𝑎1𝑏1𝑚1 ∈ 𝑁1 and 𝑎2𝑏2𝑚2 ∈ 𝑀2.
Case i If 𝑎1 and 𝑏1 be unit, then 𝑎2 and 𝑏2 are non-unit. Hence 𝑏1𝑚1 ∈ 𝑁1 and 𝑏2𝑚2 ∈ 𝑀2, so in this case
(𝑏1𝑚1, 𝑏2𝑚2) ∈ 𝑁1 × 𝑀2. Case ii If only 𝑏1 be a unit, then (𝑎1𝑚1, 𝑎2𝑚2) ∈ 𝑁1 × 𝑀2. Case iii If 𝑎1 and 𝑏2 be
unit, then (𝑏1𝑚1, 𝑏2𝑚2) ∈ 𝑁1 ×𝑀2. Case iv If all of elemens be non-unit, then by lemma 2.10, the statemet is true.
(2)⇒(1) Suppose that𝑎1, 𝑏1 be two non-unit elemens of𝑅1 and𝑚1 ∈ 𝑀1 such that𝑎1𝑏1𝑚1 ∈ 𝑁1. Then (𝑎1, 1)(𝑏1, 1)(𝑚1, 0) ∈
𝑁1×𝑀2, so by (2), either (𝑎1, 1) ∈ 𝑍(𝑀1×𝑀2) or (𝑏1𝑚1, 0) ∈ 𝑁1×𝑀2. Casei There is (0, 0) ≠ (𝑚′

1, 𝑚′
2) ∈ 𝑀1×𝑀2

such that (𝑎1, 1)(𝑚′
1, 𝑚′

2) = (0, 0). Thus 𝑎1𝑚′
1 = 0 and 𝑚′

2 = 0. Hence 𝑚′
1 ≠ 0 and 𝑎1 ∈ 𝑍(𝑀1). So 𝑁 is a (1, 𝑟)-

submodule. Case ii If (𝑏1𝑚1, 0) ∈ 𝑁1 ×𝑀2, then 𝑏1𝑚1 ∈ 𝑁1. Hence 𝑁1 is a (1, 𝑟)-submodule.

We note that in the above theorem it is not possible to replace𝑀2 with a proper submodule of it.

Example 2.14. Let 𝑀 = ℚ be as a ℤ-module. Then 𝑁1 = 𝑁2 = 3ℤ are (1, 𝑟)-submodules of 𝑀. We know
(1, 3).(3, 1).(2, 2) ∈ 3ℤ × 3ℤ for (1, 3), (3, 1) ∈ ℤ × ℤ and (2, 2) ∈ ℚ × ℚ but neither (1, 3), (3, 1) ∈ 𝑍(𝑀)
nor (1, 3)(2, 2), (3, 1)(2, 2) ∈ 𝑁1 × 𝑁2. So 𝑁1 × 𝑁2 is not a (1, 𝑟)-submodule of𝑀1 ×𝑀1.

Next, we will introduce and study the concept of (2, 𝑟)-submodules as another generalization of 𝑟-submodules.

3. (2,r)-submodules

Definition 3.1. Let 𝑁 be a proper submodule of 𝑀. Then 𝑁 is called a (2, 𝑟)-submodule of 𝑀, whenever 𝑎𝑏𝑚 ∈ 𝑁
for elements 𝑎, 𝑏 ∈ 𝑅 and𝑚 ∈ 𝑀, then 𝑎𝑚 ∈ 𝑁 or 𝑏𝑚 ∈ 𝑁 or 𝑎𝑏 ∈ 𝑍𝑅(𝑀).

Example 3.2. The following statements hold:
(1) Every prime submodule is a (2, 𝑟)-submodule.
(2) Every (2, 𝑟)-submodule is a (1, 𝑟)-submodule.

Proof. (1) Let 𝑎𝑏𝑚 ∈ 𝑁 for 𝑎, 𝑏 ∈ 𝑅 and 𝑚 ∈ 𝑀. Then (𝑏𝑚) ∈ 𝑁 or 𝑎 ∈ (𝑁 ∶ 𝑀), so 𝑏𝑚 ∈ 𝑁 or 𝑎𝑚 ∈ 𝑁. Hence
𝑁 is a (2, 𝑟)-submodule.
(2) Let 𝑎𝑏𝑚 ∈ 𝑁 for two non-unit elements 𝑎, 𝑏 ∈ 𝑅 and𝑚 ∈ 𝑀, so by assumption, 𝑎𝑚 ∈ 𝑁 or 𝑏𝑚 ∈ 𝑁, that implies
the statement is true or 𝑎𝑏 ∈ 𝑍(𝑀). In this case there is 0 ≠ 𝑚 ∈ 𝑀 such that 𝑎𝑏𝑚 = 0. If 𝑏𝑚 = 0, then 𝑏 ∈ 𝑍(𝑀)
which implies 𝑁 is a (1, 𝑟)-submodule. If 𝑏𝑚 ≠ 0, then 𝑎 ∈ 𝑍(𝑀), that we conclude 𝑁 is a (1, 𝑟)-submodule.

3.1. Some Properties of (2, 𝑟)-submodules

Proposition 3.3. Let 𝑁 be a proper submodule of 𝑀. Then 𝑁 is (2, 𝑟)-submodule if and only if for every 𝑎, 𝑏 ∈ 𝑅,
(𝑁 ∶ 𝑎𝑏) = (𝑁 ∶ 𝑎) or (𝑁 ∶ 𝑎𝑏) = (𝑁 ∶ 𝑏) or (𝑁 ∶ 𝑎𝑏) ∩ 𝐴𝑛𝑛𝑀(𝑎𝑏) ≠ 0.
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Proof. (⇒) Let 𝑚 ∈ (𝑁 ∶ 𝑎𝑏), then 𝑎𝑏𝑚 ∈ 𝑁. So 𝑎𝑚 ∈ 𝑁 or 𝑏𝑚 ∈ 𝑁 or 𝑎𝑏 ∈ 𝑍(𝑀). Casei 𝑚 ∈ (𝑁 ∶ 𝑎) or
𝑚 ∈ (𝑁 ∶ 𝑏), which implies (𝑁 ∶ 𝑎𝑏) ⊆ (𝑁 ∶ 𝑎) or (𝑁 ∶ 𝑎𝑏) ⊆ (𝑁 ∶ 𝑏). We know that (𝑁 ∶ 𝑎) ⊆ (𝑁 ∶ 𝑎𝑏) and
(𝑁 ∶ 𝑏) ⊆ (𝑁 ∶ 𝑎𝑏). Therefore, the above two equalities hold. Caseii There is 0 ≠ 𝑚′ ∈ 𝑀 such that 𝑎𝑏𝑚′ = 0 ∈ 𝑁.
Hence 0 ≠ 𝑚′ ∈ (𝑁 ∶ 𝑎𝑏) ∩ 𝐴𝑛𝑛𝑀(𝑎𝑏).
(⇐) Let 𝑎𝑏𝑚 ∈ 𝑁 for 𝑎, 𝑏 ∈ 𝑅 and 𝑚 ∈ 𝑀, then 𝑚 ∈ (𝑁 ∶ 𝑎𝑏). So by assumption, 𝑚 ∈ (𝑁 ∶ 𝑎) or 𝑚 ∈ (𝑁 ∶ 𝑏),
which implies 𝑎𝑚 ∈ 𝑁 or 𝑏𝑚 ∈ 𝑁. Since (𝑁 ∶ 𝑎𝑏) ∩ 𝐴𝑛𝑛𝑀(𝑎𝑏) ≠ 0, then there is a 0 ≠ 𝑚′ ∈ 𝑀 such that
𝑎𝑏𝑚′ = 0. Hence 𝑎𝑏 ∈ 𝑍(𝑀).

Proposition 3.4. Let 𝑀 be a finitely generated 𝑅-module and {𝑁𝑖 ∶ 𝑖 ∈ 𝐼} be a directed set of (2, 𝑟)-submodules of
𝑀. Then the submodule 𝑁 = ∪𝑖∈𝐼𝑁𝑖 is a (2, 𝑟)-submodule of𝑀.

Proof. Since 𝑀 is a finitely generated 𝑅-module, so 𝑁 is a proper submodule of 𝑀. Suppose that for 𝑎, 𝑏 ∈ 𝑅 and
𝑚 ∈ 𝑀 we have 𝑎𝑏𝑚 ∈ 𝑁 = ∪𝑖∈𝐼𝑁𝑖 and 𝑎𝑏 ∉ 𝑍(𝑀). Then there exist 𝑖 ∈ 𝐼 such that 𝑎𝑏𝑚 ∈ 𝑁𝑖. Since 𝑎𝑏 ∉ 𝑍(𝑀),
so by assumption, 𝑎𝑚 ∈ 𝑁𝑖 ⊆ ∪𝑖∈𝐼𝑁𝑖 = 𝑁 or 𝑏𝑚 ∈ 𝑁𝑖 ⊆ ∪𝑖∈𝐼𝑁𝑖 = 𝑁.

Theorem 3.5. Let 𝑁 be a (2, 𝑟)-submodule of 𝑀 and 𝑆 be a multiplicatively closed subset. Then 𝑆−1𝑁 is a (2, 𝑟)-
submodule of 𝑆−1𝑅-module 𝑆−1𝑀.

Proof. Suppose that 𝑎𝑡 ,
𝑏
𝑠 ∈ 𝑆−1𝑅 and 𝑚

𝑟 ∈ 𝑆−1𝑀 such that 𝑎𝑡
𝑏
𝑠
𝑚
𝑟 ∈ 𝑆−1𝑀 for 𝑡, 𝑠, 𝑟 ∈ 𝑆. So there is 𝑢 ∈ 𝑆 such that

𝑎𝑏(𝑢𝑚) ∈ 𝑁. Since 𝑁 is a (2, 𝑟)-submodule, so 𝑎𝑏 ∈ 𝑍(𝑀) or 𝑎(𝑢𝑚) ∈ 𝑁 or 𝑏(𝑢𝑚) ∈ 𝑁. If 𝑎𝑏 ∈ 𝑍(𝑀), then there
is a 0 ≠ 𝑚′ such that 𝑎𝑏𝑚′ = 0. Hence 𝑎

𝑡
𝑏
𝑠
𝑚′

1 = 0
1 and 𝑎

𝑡
𝑏
𝑠 ∈ 𝑍(𝑆−1𝑀). Also if 𝑎(𝑢𝑚) ∈ 𝑁 or 𝑏(𝑢𝑚) ∈ 𝑁, then

𝑎
𝑡
𝑚
𝑟 = 𝑢𝑎𝑚

𝑢𝑡𝑟 ∈ 𝑆−1𝑁 or 𝑏
𝑠
𝑚
𝑟 = 𝑢𝑏𝑚

𝑢𝑠𝑟 ∈ 𝑆−1𝑁. Thenfore 𝑆−1𝑁 is a (2, 𝑟)-submodule of 𝑆−1𝑀.

Theorem 3.6. Let𝑀 = 𝑀1 ×𝑀2 and 𝑁1 be a proper submodule of𝑀1. The following statements are equivalent:
(1) 𝑁1 is a (2, 𝑟)-submodule of𝑀1 with 𝑅2 ≠ 𝑍(𝑀2).
(2) 𝑁1 ×𝑀2 is a (2, 𝑟)-submodule of𝑀.

Proof. (1)⇒(2) Suppose that (𝑎1, 𝑎2)(𝑏1, 𝑏2)(𝑚1, 𝑚2) ∈ 𝑁1 × 𝑀2 and (𝑚1, 𝑚2) ∈ 𝑀1 × 𝑀2, so 𝑎1𝑏1𝑚1 ∈ 𝑁1
and 𝑎2𝑏2𝑚2 ∈ 𝑀2. Hence 𝑎1𝑚1 ∈ 𝑁1 or 𝑏1𝑚1 ∈ 𝑁1 or 𝑎1𝑏1 ∈ 𝑍(𝑀1). Hence (𝑎1𝑚1, 𝑎2𝑚2) ∈ 𝑁1 × 𝑀2 or
(𝑏1𝑚1, 𝑏2𝑚2) ∈ 𝑁1 ×𝑀2 or (𝑎1𝑏1, 𝑎2𝑏2) ∈ 𝑍(𝑀1) × 𝑅2 ⊆ 𝑍(𝑀1 ×𝑀2).
(2)⇒(1) Suppose that 𝑎1, 𝑏1 ∈ 𝑅1 and 𝑚1 ∈ 𝑀1 such that 𝑎1𝑏1𝑚1 ∈ 𝑁1. Then (𝑎1, 1)(𝑏1, 1)(𝑚1, 0) ∈ 𝑁1 × 𝑀2, so
by (2), either (𝑎1, 1)(𝑚1, 0) ∈ 𝑁1 ×𝑀2 or (𝑏1𝑚1, 0) ∈ 𝑁1 ×𝑀2 or (𝑎1𝑏1, 1) ∈ 𝑍(𝑀1 ×𝑀2). Hence 𝑎1𝑚1 ∈ 𝑁1 or
𝑏1𝑚1 ∈ 𝑁1 which implies𝑁1 is a (2, 𝑟)-submodule. Also in last cases (𝑎1𝑏1, 1) ∈ 𝑍(𝑀1)×𝑅2, which implies 𝑎1𝑏1 ∈
𝑍(𝑀1) ( hence 𝑁1 is a (2, 𝑟)-submodule) or (𝑎1𝑏1, 1) ∈ 𝑅1 × 𝑍(𝑀2) which is a contradiction with 1 ∈ 𝑍(𝑀2) ≠ 𝑅2.

In the future, we want to investigate more theorems about this submodule. For example, we also examine them in
multiplicative modules, fraction modules and amalgamation modules. It is also possible to use 𝑇(𝑀) instead of 𝑍(𝑀),
and provide another different generalization of 𝑟-submodules and prime submodules.
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Abstract

It is well known that every unit regular ring is clean. At first in one example, we will inspect
how to write an element of a unit regular ring as unit regularity and cleanness form. Moreover,
we provided an example to show that uniquely clean element maybe not strongly clean. Also,
we obtain necessary and sufficient condition for strongly cleanness of uniquely clean elements.

1. Introduction

Nicholson and Zhou [4] proved that each idempotent in any uniquely clean ring is central so uniquely clean rings are
strongly clean but we show that if ring R isn’t uniquely clean then uniquely clean element maybe not strongly clean.
In the following, we have several definitions.

Definition 1.1. [4] An element 𝑎 ∈ 𝑅 is clean if we can write 𝑎 = 𝑢 + 𝑒, where 𝑢 ∈ 𝑈(𝑅) is a unit and 𝑒 ∈ 𝑅 is an
idempotent of 𝑅. If 𝑒𝑢 = 𝑢𝑒 we say 𝑎 is strongly clean.

The ring 𝑅 is called clean ring (strongly clean) if every element of 𝑅 is clean (strongly clean).

Definition 1.2. [4] An element is uniquely clean if it has exactly one representation as the sum of an idempotent and
a unit. A ring 𝑅 is called a uniquely clean ring if every element is uniquely clean.

Definition 1.3. [2] An element in a ring 𝑅 is called unit-regular if it can be expressed as a product of a unit and an
idempotent. The ring 𝑅 is called a unit regular ring if every element is unit-regular.

In [1], Camillo and Khurana proved that every unit-regular ring is clean. We show𝑀2(ℝ) is unit regular and so clean
ring and we will how represent its construction elements in the form unit regularity and cleanity, and we will see that
this ring is not uniquely and strongly clean ring. As [4], we know that uniquely clean rings are always strongly clean.
We will search when this result holds element-wise.
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Email address: a.taheri@pnu.ac.ir (Asghar Taheri)



Asghar Taheri / The 5th National Congress on Mathematics and Statistics 433

Lemma 1.4. In any ring every idempotent is clean element.

Proof. If 𝑒 is an idempotent then 𝑒 = (1− 𝑒) + (2𝑒 − 1) in which (1 − 𝑒) is an idempotent and 2𝑒 − 1 is a unit with
inverse 2𝑒 − 1.
Example 1.5. Let 𝐴 ∈ 𝑀2(ℝ). If 𝐴 is a unit then 𝐴 = 𝐴𝐼 and 𝐴 = 𝐴 + 0 is respectively unit regular and clean
presentations of 𝐴.
If 𝐴 is not a unit of 𝑀2(ℝ) then 𝐴 = ቈ 𝑎 𝑏

𝑐 𝑑  such that 𝑎𝑑 = 𝑏𝑐. If 𝑎 and 𝑏 is not zero, let 𝑟 = 𝑐
𝑎 = 𝑑

𝑏 , then

𝐴 = ቈ 1 0
𝑟 0  ቈ 𝑎 𝑏

𝑥 𝑦 , we see ቈ 1 0
𝑟 0  is idempotent and we can choose 𝑥 and 𝑦 such a way ቈ 𝑎 𝑏

𝑥 𝑦  become a
unit element.
Now, we show 𝐴 is clean element. Since 𝐴 is not unit then we have 𝑎𝑑 = 𝑏𝑐. Now, if 𝑎 ≠ 1 and 𝑑 ≠ 0 then we obtain

ቈ 𝑎 𝑏
𝑐 𝑑  = ቈ 1 0

𝑐 0  + ቈ 𝑎 − 1 𝑏
0 𝑑  ,

where ቈ 1 0
𝑐 0  is an idempotent and ቈ 𝑎 − 1 𝑏

0 𝑑  is a unit element.
If 𝑎 ≠ 1 and 𝑑 = 0 then yields

ቈ 𝑎 𝑏
𝑐 0  = ቈ 1 0

0 1  + ቈ 𝑎 − 1 𝑏
𝑐 −1 

is a clean decomposition.
If 𝑎 = 1 and 𝑑 ≠ 0 then we have

ቈ 1 𝑏
𝑐 𝑑  = ቈ 1 0

0 1  + ቈ 0 𝑏
𝑐 𝑑 − 1 

is a clean decomposition. Finally if 𝑎 = 1 and 𝑑 = 0 then ቈ 1 0
𝑐 0  or ቈ 1 𝑏

0 0  but in each case 𝐴 is an idempotent.

Hence, by using Lemma 1.4, we conclude that 𝐴 is clean.

In the following, we show there exist a ring 𝑅 and an element 𝑎 in 𝑅 such that 𝑎 is uniquely clean but 𝑎 isn’t strongly
clean, then we will show in any ring, a uniquely clean element under certain condition will be strongly clean.

Example 1.6. Let 𝑅 = 𝑀2(ℤ), and ቈ
14 5
0 0  = ቈ 𝑎 𝑏

𝑐 𝑑  + 𝑈 such that ቈ 𝑎 𝑏
𝑐 𝑑  ∈ 𝐼𝑑𝑚(𝑅), 𝑈 ∈ 𝑈(𝑅). In view

of [3], we have

det ቈ 14 − 𝑎 5 − 𝑏
−𝑐 −𝑑  = ±1

and 𝑎𝑑 − 𝑏𝑐 = 0 and also 𝑑 − 1 ∈ 𝑐ℤ. So we obtain 5𝑐 − 14𝑑 = ±1. First, we will solve 5𝑐 − 14𝑑 = 1. This
diophantine’s equation answers in the form 𝑐 = 14𝑟 + 3, 𝑑 = 5𝑟 + 1, now because 𝑑 − 1 ∈ 𝑐ℤ, there exist 𝑠 ∈ ℤ
such that 5𝑟 = 𝑠(14𝑟 + 3) so 5𝑟 divisible by 𝑠 and 3𝑠 divisible by 𝑟. so there exists 𝑛 and𝑚 in ℤ such that 𝑠𝑛 = 5𝑟,
𝑟𝑚 = 3𝑠, therefore 𝑟𝑠𝑛𝑚 = 15𝑟𝑠 and this implied 𝑟 = 0 or 𝑛𝑚 = 15. lf 𝑟 = 0 then 𝑐 = 3, 𝑑 = 1. If 𝑛𝑚 = 15 then
𝑛 = ±1;±15;±3;±5. But by inspection, in these cases has no integer solution except 𝑐 = 3; 𝑑 = 1.
Now, if

5𝑐 − 14𝑑 = −1 (1)

then 𝑐 = 14𝑟 + 11, 𝑑 = 5𝑟 + 4 and by [3] 𝑑 − 1 ∈ 𝑐ℤ therefore there exist 𝑠 ∈ ℤ such that 5𝑟 + 3 = 𝑠(14𝑟 + 11),
if 𝑟 > 0, 14𝑟 + 11 > 5𝑟 + 3 therefore the Eq. (1) has no solution. If 𝑟 ≤ −1 then 14𝑟 + 11 < 5𝑟 + 3 so
𝑠(14𝑟 + 11) ≤ 5𝑟 + 3 and therefore the Eq. (1) has no solution. Hence, it is evident that

ቈ 14 5
0 0  = ቈ 𝑎 𝑏

3 1  + 𝑈.
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Since ቈ 𝑎 𝑏
3 1  ∈ 𝐼𝑑𝑚(𝑅) then we obtain that 𝑎 = 𝑏 = 0. So, we conclude that

ቈ 14 5
0 0  = ቈ 0 0

3 1  + ቈ 14 5
−3 −1 

therefore ቈ 14 5
0 0  is a uniquely clean and not strongly clean.

Lemma 1.7. Let 𝑅 be a noncommutative ring with identity and 𝑒 ∈ 𝑅 is an idempotent then for any 𝑟 ∈ 𝑅, (𝑒 + 𝑒𝑟 −
𝑒𝑟𝑒), (𝑒 − 𝑒𝑟 + 𝑒𝑟𝑒), (𝑒 + 𝑟𝑒 − 𝑒𝑟𝑒) and (𝑒 − 𝑟𝑒 + 𝑒𝑟𝑒) are idempotents in 𝑅 and (1 + 𝑒𝑟 − 𝑒𝑟𝑒) is a unit whit
inverse (1 − 𝑒𝑟 + 𝑒𝑟𝑒), and (1 + 𝑟𝑒 − 𝑒𝑟𝑒) is a unit whit inverse (1 − 𝑟𝑒 + 𝑒𝑟𝑒).

Proof. The result is easily obtained by multiplying.

In [4] Nicholson and Zhou proved in any uniquely clean ring each idempotent is central, therefore any uniquely clean
ring is strongly clean. Example 1.6 provided that each uniquely clean element maybe not strongly clean. In the
following theorem, we provide a necessary and sufficient condition for it.

Theorem 1.8. Let 𝑅 be a arbitrary ring and 𝑎 ∈ 𝑅 is a uniquely clean element such that 𝑎 = 𝑒 + 𝑢, 𝑒 ∈ 𝐼𝑑𝑚(𝑅),
𝑢 ∈ 𝑈(𝑅), then 𝑎 is strongly clean if and only if 𝑒 ∈ 𝑍(𝑅).

Proof. If 𝑎 ∈ 𝑅 is uniquely and strongly clean then there exist uniquely 𝑒 ∈ 𝐼𝑑𝑚(𝑅), 𝑢 ∈ 𝑈(𝑅) such that 𝑎 = 𝑒 + 𝑢
and 𝑒𝑢 = 𝑢𝑒, now by using Lemma 1.7 for any 𝑟 ∈ 𝑅, (1+𝑒𝑟−𝑒𝑟𝑒) is a unit, let 𝑟 = 𝑢−1𝑥 so 1+𝑒𝑢−1𝑥−𝑒𝑢−1𝑥𝑒
is a unit of 𝑅, since 𝑒𝑢 = 𝑢𝑒 then 𝑒𝑢−1 = 𝑢−1𝑒. Therefore, the assertion

1 + 𝑒𝑢−1𝑥 − 𝑒𝑢−1𝑥𝑒 = 1 + 𝑢−1𝑒𝑥 − 𝑢−1𝑒𝑥𝑒 = 𝑢−1(𝑢 + 𝑒𝑥 − 𝑒𝑥𝑒)

is a unit. Thus, (𝑢+𝑒𝑥−𝑒𝑥𝑒) is a unit of 𝑅. Also by applying Lemma 1.7, we have (𝑒−𝑒𝑥+𝑒𝑥𝑒) is an idempotent
of 𝑅. Hence, we have

𝑎 = 𝑒 + 𝑢 = (𝑒 − 𝑒𝑥 + 𝑒𝑥𝑒) + (𝑢 + 𝑒𝑥 − 𝑒𝑥𝑒).

But 𝑎 is uniquely clean so 𝑒 = (𝑒 − 𝑒𝑥 + 𝑒𝑥𝑒). Thus, 𝑒𝑥 = 𝑒𝑥𝑒. Similar the pervious method, we have 𝑥𝑒 = 𝑒𝑥𝑒,
thus 𝑒𝑥 = 𝑥𝑒. Hence 𝑒 ∈ 𝑍(𝑅). The sufficient condition of Theorem 1.8 is obvious. This complete the proof of
Theorem 1.8.
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Abstract

In this paper, we study a spectral Sturm-Liouville boundary value problem with the conformable
derivative. We prove the uniqueness solution of the inverse problem for this operator by two
spectra.

1. Introduction

Inverse spectral problems for various types of Sturm-Liouville operators are a part of research in mathematical physics
that arise in various fields of physics, quantum and mechanics [4]. Inverse problems for Sturm-Liouville equations
with the ordinary derivation have been studied in [1]. The conformable fractional derivation instead of the ordinary
derivation has attracted much attention for investigating of these problems. Therefore inverse problems for Sturm-
Liouville equations with the conformable derivative have been investigated by researchers recently [3]. In this paper,
we study the inverse spectral problem for the conformable Sturm-Liouville equation with the spectral boundary condi-
tions. We prove the uniqueness of the solution of the inverse problem for the conformable fractional Sturm-Liouville
operators by two spectra.
Consider the conformable fractional Sturm-Liouville equation

−𝐶𝛼𝑥 𝐶𝛼𝑥 𝑦(𝑥, 𝑘) + 𝑝(𝑥)𝑦(𝑥, 𝑘) = 𝜆𝑦(𝑥, 𝑘), 𝑥 ∈ (0, 𝜋), (1)

with the spectral boundary condition at 𝑥 = 0,

𝐶𝛼𝑥 𝑦(0, 𝑘) − ℎ𝑘𝑦(0, 𝑘) = 0, (2)
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and with the boundary condition at 𝑥 = 𝜋,

𝑦(𝜋, 𝑘) = 0. (3)

Here 𝐶𝛼𝑥 is the conformable fractional derivative of order 𝛼 ∈ (0, 1]. The coefficient ℎ is complex numbers and 𝜆 = 𝑘2
is a spectral parameter. The complex-valued function 𝑝(𝑥) is continuous on [0, 𝜋].
We denote the boundary value problem (1)-(3) by 𝐿𝛼 ∶= 𝐿𝛼(𝑝, ℎ).We also remark that some definitions and properties
of the conformable fractional calculus can be found in [5].

2. Preliminaries

Let 𝐴(𝑥, 𝑘) be the solution of Eq. (1) under the initial conditions

𝐴(0, 𝑘) = 1, 𝐶𝛼𝑥 𝐴(0, 𝑘) = ℎ𝑘.

For each fixed 𝑥, this function and its derivative with respect to 𝑥 are entire in 𝑘. From [3], we have the following
asymptotic formulae for sufficiently large |𝑘| and 𝑥 ∈ [0, 𝜋],

𝐴(𝑥, 𝑘) = ඥ1 + ℎ2 cosቆ𝑘𝛼𝑥
𝛼 − 𝜎ቇ + 𝑂 ቆ1𝑘 expቆ|ℑ𝑘|𝛼 𝑥𝛼ቇቇ , (4)

𝐶𝛼𝑥 𝐴(𝑥, 𝑘) = −𝑘ඥ1 + ℎ2 sinቆ𝑘𝛼𝑥
𝛼 − 𝜎ቇ + 𝑂 ቆexpቆ|ℑ𝑘|𝛼 𝑥𝛼ቇቇ , (5)

where 𝜎 = 1
2𝑖 𝑙𝑛

𝑖−ℎ
𝑖+ℎ .

Denote the entire function Δ𝛼(𝑘) (entire in 𝑘),

Δ𝛼(𝑘) = 𝐴(𝜋, 𝑘),

as the characteristic function of 𝐿𝛼. Therefore by using (4) and (5), we can give for sufficiently large |𝑘|,

Δ𝛼(𝑘) = ඥ1 + ℎ2 cosቆ𝑘𝛼𝜋
𝛼 − 𝜎ቇ + 𝑂 ቆ1𝑘 expቆ|ℑ𝑘|𝛼 𝜋𝛼ቇቇ . (6)

Let 𝛿 > 0 be fixed and 𝐶𝛿 > 0 be a constant. Put 𝐺𝛿 ∶= {𝑘; ∣ 𝑘 − 𝑘𝑛 ∣≥ 𝛿, ∀𝑛}. Taking (6) and the known technique
[6], one gets

|Δ𝛼(𝑘)| ≥ 𝐶𝛿 expቆ
|ℑ𝑘|
𝛼 𝜋𝛼ቇ , 𝑘 ∈ 𝐺𝛿 .

By the Rouche’s theorem [2] and the known technique [6], one can give that the roots of the characteristic function
Δ𝛼(𝑘) have the asymptotics

𝑘𝑛 =
𝛼
𝜋𝛼 ൬𝑛𝜋 + 𝜋

2 + 𝜎൰ + 𝑜 (1) ,

for large enough 𝑛.
We consider the boundary value problem 𝐿1𝛼 with the boundary condition 𝑦(0, 𝑘) = 0 instead of (2) in 𝐿𝛼. We assume
that 𝜇𝑛 be the eigenvalues of the boundary value problem 𝐿1𝛼 which are roots of the characteristic function

Δ1𝛼(𝑘) ∶= 𝐵(0, 𝑘). (7)

Let 𝐵(𝑥, 𝑘) and B(𝑥, 𝑘) be the solution of Eq. (1) under the initial conditions

𝐵(𝜋, 𝑘) = 0, 𝐶𝛼𝑥 𝐵(𝜋, 𝑘) = 1,
B(0, 𝑘) = 0, 𝐶𝛼𝑥 B(0, 𝑘) = 1.
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Define the meromorphic function

𝜙(𝑥, 𝑘) = −𝐵(𝑥, 𝑘)
Δ𝛼(𝑘)

, (8)

which is called the Weyl solution of the boundary value problem 𝐿𝛼. Considering the initial conditions at 𝑥 = 0, we
can also give

𝜙(𝑥, 𝑘) = B(𝑥, 𝑘) + 𝑀(𝑘)𝐴(𝑥, 𝑘),
in which

𝑀(𝑘) ∶= 𝜙(0, 𝑘), (9)

and is called the Weyl function of the boundary value problem 𝐿𝛼.
By virtue of the results of Ref. [3], we have the following theorem that is necessary for us to prove the main result.

Theorem 2.1. Let𝑀(𝑘) = 𝑀(𝑘). Then 𝑝(𝑥) = 𝑝(𝑥), a.e. on (0, 𝜋) and ℎ = ℎ.

3. Result

Here we study the inverse problem for the boundary value problem 𝐿𝛼. The inverse problem is formulated as follows:
Given two spectra {𝜆𝑛 , 𝜇𝑛}, find the coefficients of the boundary value problem 𝐿𝛼 .
To show the uniqueness theorem in this section, alongside 𝐿𝛼 ∶= 𝐿𝛼(𝑝, ℎ), a boundary value problem 𝐿𝛼 ∶= 𝐿𝛼(𝑝, , ℎ)
of the similar form (1)-(3) is considered. We suppose that if 𝛼 signifies an object relevant to 𝐿, then 𝛼 will signify the
similar object relevant to 𝐿.

Theorem 3.1. Let 𝜆𝑛 = 𝜆𝑛 and 𝜇𝑛 = 𝜇𝑛. Then 𝑝(𝑥) = 𝑝(𝑥) a.e. on (0, 𝜋) and ℎ = ℎ.

Proof. The equality 𝜆𝑛 = 𝜆𝑛 gives that ℎ = ℎ. On the other hand, the entire functions Δ𝛼(𝜆) and Δ1𝛼(𝜇) can be
determined by their zeros on the base of the Hadamard’s factorization theorem as

Δ𝛼(𝜆) =
𝜋2𝛼−2
𝛼2

∞

ෑ
𝑛=0

𝜆𝑛 − 𝜆
(𝑛 + 1

2 + 𝜎)2
, Δ1𝛼(𝜇) =

𝜋2𝛼−2
𝛼2

∞

ෑ
𝑛=0

𝜇𝑛 − 𝜇
𝑛2 .

Thus, by the hypothesis of the theorem Δ𝛼(𝜆) = Δ𝛼(𝜆) and Δ1𝛼(𝜇) = Δ1𝛼(𝜇). Together with (7), (8) and (9), this
yields that𝑀(𝑘) = 𝑀(𝑘) and so Theorem 2.1 completes the proof. □
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Abstract

In this paper, we apply an algebraic method to study the exact solutions of nonlinear partial
differential equations. This approach is characterized by its simplicity and it can be applied to
many nonlinear differential equations.

1. Introduction

Many nature phenomena can be modeled by nonlinear partial differential equations(PDEs) such as signal processing,
fluid mechanics, engineering, hydrodynamics, chemistry, optics, control theory, biology, etc.[1, 3, 4]. Finding exact
solutions of most of PDEs is not easy, but studying exact solutions for these equations is a continuing investigation.
Many powerful methods for obtaining exact solutions of PDEs have been presented such as Lie group method[5], a
numerical method using Bernstein polynomials[2], exp-function method[1] and so on.
In this paper, we study the Maccari equation:

𝜓″ − 1
𝜔2(2𝜅 − 𝜌)𝜓

3 − (𝜅2 + 𝜆)
𝜔2 𝜓 = 0, (1)

2. Description of method

In this section, we consider the following ODE

�̃�(Ψ,Ψ′, Ψ″, Ψ‴, ...) = 0. (2)

Here Ψ(𝑛) = 𝑑𝑛Ψ
𝑑𝜉𝑛 . Suppose the solution of Eq. (2) be:

Ψ(𝜉) =
𝑛


𝑗=0

𝐴𝑗𝑠𝑗 Λ(𝜉), (3)
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where the positive integer 𝑛 can be calculated by considering the homogeneous balance between the highest order
derivatives and the highest nonlinear terms of Φ(𝜉) in equation (2), and 𝐴𝑗 (𝐴𝑛 ≠ 0) are constants to be determined
later. Here Λ = Λ(𝜉) satisfies the following ODE

(𝑠Λ(𝜉))′ = 𝑚 + 𝑛 𝑠Λ(𝜉) + 𝑟 𝑠2Λ(𝜉) (4)

or
Λ′(𝜉) = 1

ln(𝑠)(𝑚 𝑠−Λ(𝜉) + 𝑛 + 𝑟 𝑠Λ(𝜉)), (5)

where𝑚, 𝑛 and 𝑟 are constants and which has the following special solutions.

Case1: For 𝑛2 −𝑚𝑟 < 0 and 𝑟 ≠ 0,

𝑠Λ(𝜉) = [−𝑛𝑟 + ඥ−(𝑛2 −𝑚𝑟)
𝑟 tan(ඥ−(𝑛

2 −𝑚𝑟)
2 𝜉)],

(6)

𝑠Λ(𝜉) = [−𝑛𝑟 + ඥ−(𝑛2 −𝑚𝑟)
𝑟 cot(ඥ−(𝑛

2 −𝑚𝑟)
2 𝜉)].

(7)

Case2: For 𝑛2 −𝑚𝑟 > 0 and 𝑟 ≠ 0,

𝑠Λ(𝜉) = [−𝑛𝑟 − √𝑛2 −𝑚𝑟
𝑟 tanh(√𝑛

2 −𝑚𝑟
2 𝜉)],

(8)

𝑠Λ(𝜉) = [−𝑛𝑟 − √𝑛2 −𝑚𝑟
𝑟 coth(√𝑛

2 −𝑚𝑟
2 𝜉)].

(9)

Case3: For 𝑛2 +𝑚2 > 0, 𝑟 ≠ 0, and 𝑟 = −𝑚,

𝑠Λ(𝜉) = [ 𝑛𝑚 + √𝑛2 +𝑚2

𝑚 tanh(√𝑛
2 +𝑚2

2 𝜉)],
(10)

𝑠Λ(𝜉) = [ 𝑛𝑚 + √𝑛2 +𝑚2

𝑚 coth(√𝑛
2 +𝑚2

2 𝜉)].
(11)

Case4: For 𝑛2 +𝑚2 < 0, 𝑟 ≠ 0 and 𝑟 = −𝑚,

𝑠Λ(𝜉) = [ 𝑛𝑚 + ඥ−(𝑛2 +𝑚2)
𝑚 tan(ඥ−(𝑛

2 +𝑚2)
2 𝜉)],

(12)

𝑠Λ(𝜉) = [ 𝑛𝑚 + ඥ−(𝑛2 +𝑚2)
𝑚 cot(ඥ−(𝑛

2 +𝑚2)
2 𝜉)].

(13)

Case5: For 𝑛2 −𝑚2 < 0 and 𝑟 = 𝑚,

𝑠Λ(𝜉) = [− 𝑛
𝑚 + ඥ−(𝑛2 −𝑚2)

𝑚 tan(ඥ−(𝑛
2 −𝑚2)
2 𝜉)],

(14)

𝑠Λ(𝜉) = [− 𝑛
𝑚 + ඥ−(𝑛2 −𝑚2)

𝑚 cot(ඥ−(𝑛
2 −𝑚2)
2 𝜉)].

(15)
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Case6: For 𝑛2 −𝑚2 > 0 and 𝑟 = 𝑚,

𝑠Λ(𝜉) = [− 𝑛
𝑚 + √𝑛2 −𝑚2

𝑚 tanh(√𝑛
2 −𝑚2

2 𝜉)],
(16)

𝑠Λ(𝜉) = [− 𝑛
𝑚 + √𝑛2 −𝑚2

𝑚 coth(√𝑛
2 −𝑚2

2 𝜉)].
(17)

Case7: For𝑚𝑟 < 0, 𝑟 ≠ 0 and 𝑛 = 0,

𝑠Λ(𝜉) = [ට−𝑚𝑟 tanh(√−𝑚 𝑟
2 𝜉)], (18)

𝑠Λ(𝜉) = [ට−𝑚𝑟 coth(√−𝑚 𝑟
2 𝜉)]. (19)

Case8: For 𝑛 = 0 and𝑚 = −𝑟.

𝑠Λ(𝜉) = [−(1 + 𝑒2𝑚𝜉) ± ඥ2(𝑒4𝑚𝜉 + 1)
𝑒2𝑚𝜉 − 1 ], (20)

𝑠Λ(𝜉) = [−(1 + 𝑒2𝑚𝜉) ± ඥ𝑒4𝑚𝜉 + 6𝑒2𝑚𝜉 + 1
2𝑒2𝑚𝜉 ].

(21)

Case9: For𝑚 = 𝑟 = 0,

𝑠Λ(𝜉) = [−(1 + 𝑒2𝑛 𝜉) ± ඥ2(𝑒4𝑛 𝜉 + 1)
𝑒2𝑛 𝜉 − 1 ], (22)

𝑠Λ(𝜉) = [−(1 + 𝑒2𝑛 𝜉) ± ඥ𝑒4𝑛 𝜉 + 6𝑒2𝑛 𝜉 + 1
2𝑒2𝑛 𝜉 ].

(23)

Case10: For 𝑛2 = 𝑚𝑟,

𝑠Λ(𝜉) = [−𝑚(𝑛 𝜉 + 2)
𝑛2 𝜉 ]. (24)

Case11: For 𝑛 = 𝑘, 𝑚 = 2𝑘 and 𝑟 = 0,

𝑠Λ(𝜉) = [𝑒𝑘 𝜉 − 1]. (25)

Case12: For 𝑛 = 𝑘, 𝑟 = 2𝑘 and𝑚 = 0,

𝑠Λ(𝜉) = [ 𝑒𝑘 𝜉
1 − 𝑒𝑘 𝜉 ]. (26)

Case13: For 2𝑛 = 𝑚 + 𝑟,

𝑠Λ(𝜉) = [1 −𝑚𝑒
1
2 (𝑚−𝑟) 𝜉

1 − 𝑟𝑒
1
2 (𝑚−𝑟) 𝜉

], (27)

𝑠Λ(𝜉) = [ 𝑚𝑒
1
2 (𝑚−𝑟) 𝜉 + 1

−𝑟𝑒
1
2 (𝑚−𝑟) 𝜉 − 1

]. (28)
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Case14: For −2𝑛 = 𝑚 + 𝑟,

𝑠Λ(𝜉) = [𝑒
1
2 (𝑚−𝑟) 𝜉 +𝑚
𝑒
1
2 (𝑚−𝑟) 𝜉 + 𝑟

]. (29)

Case15: For𝑚 = 0,

𝑠Λ(𝜉) = [ 𝑛𝑒𝑛 𝜉

1 + 𝑟
2𝑒

𝑛 𝜉 ]. (30)

Case16: For 𝑛 = 𝑚 = 𝑟 ≠ 0,

𝑠Λ(𝜉) = [−(𝑚 𝜉 + 2)
𝑚 𝜉 ]. (31)

Case17: For 𝑛 = 𝑟 = 0,

𝑠Λ(𝜉) = [𝑚2 𝜉]. (32)

Case18: For 𝑛 = 𝑚 = 0,

𝑠Λ(𝜉) = [−2𝑟 𝜉 ]. (33)

Case19: For 𝑛 = 0 and𝑚 = 𝑟,

𝑠Λ(𝜉) = [tan(𝑚 𝜉 + 𝑐1
2 )]. (34)

Case20: For 𝑟 = 0,

𝑠Λ(𝜉) = [𝑒𝑛 𝜉 − 𝑚
2𝑛]. (35)

where 𝑐1 is an arbitrary constant. Now, the exact solutions of FPDEs can be derived as follows. In equation (2), we
replace (3) with Eq.(5). Upon performing this substitution, we derive a polynomial in terms of 𝑠Λ(𝜉). Within this
polynomial, we group together the terms with identical powers of 𝑠Λ(𝜉) and proceed to equate all coefficients to zero.
This procedure results in a set of algebraic equations involving 𝐴𝑗 for 𝑗 = 0, 1, 2, ..., 𝑛, 𝜛, and 𝑝. By solving this
system of algebraic equations and subsequently substituting the obtained results along with the general solutions of
equations (6)-(35) into (3), the solutions for (2) are determined.

3. Application of the method

In this section, we study the Maccari equation:

𝜓″ − 1
𝜔2(2𝜅 − 𝜌)𝜓

3 − (𝜅2 + 𝜆)
𝜔2 𝜓 = 0, (36)

Balancing 𝜓″ with 𝜓3 in (36) gives n=1. Therefore, the exact solution of Eq. (36) can be expressed in the form:

𝜓(𝜉) = 𝐴0 + 𝐴1 𝑠Λ(𝜉), 𝐴1 ≠ 0, (37)

where Λ is the solution of equation (5). Substituting Eq. (37) along Eq. (5) into Eq. (36) and collecting all the terms of
the same power 𝑠Λ(𝜉) and equating them to zero, we obtain a system of algebraic equations for 𝐴0, 𝐴1, 𝜔, 𝜅, 𝜌, 𝜆,𝑚, 𝑛
and 𝑟. Solving obtained system usingMathematica, we obtain
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•𝐴0 = 0, 𝐴1 =
ඥ𝑟(2𝜅 − 𝜌)(𝜅2 + 𝜆)

√𝑚
, 𝑛 = 0, 𝑚 ≠ 0, 𝑟 ≠ 0. (38)

By using of the (37), (38) and cases (6)-(17) and (20)-(21) respectively, we get

𝜓1(𝑥, 𝑦, 𝑡) = ඥ(2𝜅 − 𝜌)(𝜅2 + 𝜆) 𝑒𝑖𝜃+𝜎𝛽(𝑡)−
𝜎2
2 𝑡

tan ቀ√𝑚𝑟2 (𝜔(𝑥
𝛾

𝛾 + 𝜌𝑦 − 2𝜅𝑡))ቁ,

𝜓2(𝑥, 𝑦, 𝑡) = ඥ(2𝜅 − 𝜌)(𝜅2 + 𝜆) 𝑒𝑖𝜃+𝜎𝛽(𝑡)−
𝜎2
2 𝑡

cot ቀ√𝑚𝑟2 (𝜔(𝑥
𝛾

𝛾 + 𝜌𝑦 − 2𝜅𝑡))ቁ,

𝜓3(𝑥, 𝑦, 𝑡) = −ඥ(2𝜅 − 𝜌)(𝜅2 + 𝜆) 𝑒𝑖𝜃+𝜎𝛽(𝑡)−
𝜎2
2 𝑡

tanh ቀ√−𝑚𝑟2 (𝜔(𝑥
𝛾

𝛾 + 𝜌𝑦 − 2𝜅𝑡))ቁ,

𝜓4(𝑥, 𝑦, 𝑡) = −ඥ(2𝜅 − 𝜌)(𝜅2 + 𝜆) 𝑒𝑖𝜃+𝜎𝛽(𝑡)−
𝜎2
2 𝑡

coth ቀ√−𝑚𝑟2 (𝜔(𝑥
𝛾

𝛾 + 𝜌𝑦 − 2𝜅𝑡))ቁ,

𝜓5(𝑥, 𝑦, 𝑡) = ඥ(𝜌 − 2𝜅)(𝜅2 + 𝜆) 𝑒𝑖𝜃+𝜎𝛽(𝑡)−
𝜎2
2 𝑡

tanh ቀ𝑚2 (𝜔(
𝑥𝛾
𝛾 + 𝜌𝑦 − 2𝜅𝑡))ቁ,

𝜓6(𝑥, 𝑦, 𝑡) = ඥ(𝜌 − 2𝜅)(𝜅2 + 𝜆) 𝑒𝑖𝜃+𝜎𝛽(𝑡)−
𝜎2
2 𝑡

coth ቀ𝑚2 (𝜔(
𝑥𝛾
𝛾 + 𝜌𝑦 − 2𝜅𝑡))ቁ,

𝜓7(𝑥, 𝑦, 𝑡) = −ඥ(2𝜅 − 𝜌)(𝜅2 + 𝜆) 𝑒𝑖𝜃+𝜎𝛽(𝑡)−
𝜎2
2 𝑡

tan ቀ𝑖 𝑚2 (𝜔(𝑥
𝛾

𝛾 + 𝜌𝑦 − 2𝜅𝑡))ቁ,

𝜓8(𝑥, 𝑦, 𝑡) = −ඥ(2𝜅 − 𝜌)(𝜅2 + 𝜆) 𝑒𝑖𝜃+𝜎𝛽(𝑡)−
𝜎2
2 𝑡

cot ቀ𝑖 𝑚2 (𝜔(𝑥
𝛾

𝛾 + 𝜌𝑦 − 2𝜅𝑡))ቁ,

𝜓9(𝑥, 𝑦, 𝑡) = ඥ(𝜌 − 2𝜅)(𝜅2 + 𝜆) 𝑒𝑖𝜃+𝜎𝛽(𝑡)−
𝜎2
2 𝑡

tan ቀ𝑚2 (𝜔(
𝑥𝛾
𝛾 + 𝜌𝑦 − 2𝜅𝑡))ቁ,

𝜓10(𝑥, 𝑦, 𝑡) = ඥ(𝜌 − 2𝜅)(𝜅2 + 𝜆) 𝑒𝑖𝜃+𝜎𝛽(𝑡)−
𝜎2
2 𝑡

cot ቀ𝑚2 (𝜔(
𝑥𝛾
𝛾 + 𝜌𝑦 − 2𝜅𝑡))ቁ,
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𝜓11(𝑥, 𝑦, 𝑡) = −ඥ(𝜌 − 2𝜅)(𝜅2 + 𝜆) 𝑒𝑖𝜃+𝜎𝛽(𝑡)−
𝜎2
2 𝑡

tanh ቀ𝑖 𝑚2 (𝜔(𝑥
𝛾

𝛾 + 𝜌𝑦 − 2𝜅𝑡))ቁ,

𝜓12(𝑥, 𝑦, 𝑡) = −ඥ(𝜌 − 2𝜅)(𝜅2 + 𝜆) 𝑒𝑖𝜃+𝜎𝛽(𝑡)−
𝜎2
2 𝑡

coth ቀ𝑖 𝑚2 (𝜔(𝑥
𝛾

𝛾 + 𝜌𝑦 − 2𝜅𝑡))ቁ,

𝜓13(𝑥, 𝑦, 𝑡) = ඥ(𝜌 − 2𝜅)(𝜅2 + 𝜆) 𝑒𝑖𝜃+𝜎𝛽(𝑡)−
𝜎2
2 𝑡

ቂ−(1 + 𝑒2𝑚 (𝜔( 𝑥
𝛾
𝛾 +𝜌𝑦−2𝜅𝑡)))

𝑒2𝑚 (𝜔( 𝑥
𝛾
𝛾 +𝜌𝑦−2𝜅𝑡)) − 1

±
ට2(𝑒4𝑚 (𝜔( 𝑥

𝛾
𝛾 +𝜌𝑦−2𝜅𝑡)) + 1)

𝑒2𝑚 (𝜔( 𝑥
𝛾
𝛾 +𝜌𝑦−2𝜅𝑡)) − 1

ቃ,

𝜓14(𝑥, 𝑦, 𝑡) = ඥ(𝜌 − 2𝜅)(𝜅2 + 𝜆) 𝑒𝑖𝜃+𝜎𝛽(𝑡)−
𝜎2
2 𝑡

ቂ−(1 + 𝑒2𝑚 (𝜔( 𝑥
𝛾
𝛾 +𝜌𝑦−2𝜅𝑡)))

2𝑒2𝑚 (𝜔( 𝑥
𝛾
𝛾 +𝜌𝑦−2𝜅𝑡))

±
ට𝑒4𝑚 (𝜔( 𝑥

𝛾
𝛾 +𝜌𝑦−2𝜅𝑡)) + 6𝑒2𝑚 (𝜔( 𝑥

𝛾
𝛾 +𝜌𝑦−2𝜅𝑡)) + 1

2𝑒2𝑚 (𝜔( 𝑥
𝛾
𝛾 +𝜌𝑦−2𝜅𝑡))

ቃ,

Conclusion

In this study, an algebraic method has been used to obtain the analytical solutions of Maccari equation. Our study
demonstrates that this method is highly versatile and can be used to study a wide range of nonlinear fractional differ-
ential equations.
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Abstract

Using a game theory concept - Bayesian Nash Equilibrium (BNE) - we can frame the interactions
between taxi drivers and passengers into a daily occurrence. to train the model on the uncertainty
and hidden implicated in these interactions. Consider how you’d feel: As a customer hopping
into a taxi, you want to have faith that the driver will find the shortest path or that you will pay
a fair fare. Similarly, the driver has no sense whether you’re going to be a nice passenger who
tips well or a complication of a ride. These types of unknowns put both sides in a position where
they are making decisions based on who they think the other side is.
We did so by building a model of this dynamic, in which passengers want to get a good deal
- a fair price, a speedy trip to where they want to go, and safe transport – and drivers want
to make a good living while preserving their reputation. We also considered things like trust,
transparency and how people signal their intentions. A driver might, for example, use GPS
to show that they’re choosing the best route, and a passenger might post a positive review to
indicate that they’re happy with the service. What we found out is that when there’s anywhere
you can add more transparency - whether it’s transparent pricing or real-time tracking or rating
systems -both drivers and passengers feel more powerful in the transaction. This minimizes
misunderstandings and mistrust and makes rides smoother and outcomes happier all round.” It
illustrates how practical these concepts are, with parts of the ride-sharing experience, like Uber
and Lyft, already implementing similar concepts to create trust and improve experiences.
From here, we explore whether trust evolves over time via the repeated rides, considering if
different kinds of drivers and passengers treat one another better or worse, and how the context
of traffic or the local scene contributes to whether people trust or not. This study is an example
of how game theory can be used in a practical context to generate insights that can lead to better
policies and systems for everyone involved with these real world issues.
In short, this paper illustrates how an understanding of the “hidden rules” that dictate the dy-
namic between drivers and passengers can be very important for building trust, strengthening
passengers and drivers, and developing a more equitable and effective ride-sharing system.
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Abstract

This paper demonstrates how game theory can be applied to one of the most common social
dilemmas faced by almost every couple in the early stages of their relationship – making mutu-
ally agreeable decisions during a situation in which both parties have something to gain or lose.
We frame the problem as a dynamic game and determine the strategies for both individuals -
derived from the idea of Bayesian Nash equilibrium- that maximize satisfaction and minimize
conflicts. The analysis takes into account, among other factors, one partner’s uncertainty about
the other’s preferences - whether he/she will strongly favor his/her preference over theirs or is
more likely to give in -and attaches probabilities to this based on prior assumptions. Results of
the equilibrium illustrate how strategic proposals can serve the interests of both partners, and
lead to mutual desirable outcomes.
Based on their theoretical findings, the study proposes concrete recommendations for practi-
tioners, including randomized methods of decision making, attention to logistical factors when
assigning a schedule, planning lists that promote collaboration, and scheduling with a priority
on generating balance. The following are practical tips and insights into how young couples can
navigate decision-making stumbles out of the gate. Additionally, this cross-disciplinary method
also shows the practical applications of math in solving real life dilemma, thereby stressing the
importance of math in day-to-day life. This not only highlights the practical relevance of math-
ematics but also opens up new paths for engaging with mathematical concepts, thus providing
valuable insights on how to improve interest and literacy in declining math fields in academia
and society at large. This is an example of how the aesthetic and accessible presentations of
game theory can be used to tackle a variety of challenges, and how mathematical thinking can
be friendly and meaningful.
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Abstract

The article explores the problem of husbands preventing wives from pursuing further studies and
analyzes it from psychological, legal, and game theory perspectives. The psychological causes
of this are economic factors, cultural values, and patriarchal ideology that lead to increased illit-
eracy and psychological problems among women. Law-wise, education of women is welcomed
according to Iranian law, but the husband can oppose his wife’s working or continuing studies
if he feels that it is against the interests of the family. Dynamically, using game theory, the
battle is simulated in the research and there exist two Nash equilibria: the wife capitulates to
her husband’s opposition or she proceeds and continues studies despite. The study recommends
publicity campaigns, financial aid, professional counseling services for schools and legal aid
to mitigate this issue. It recommends measures such as lessening the economic burden on the
students and creating educational and family counseling centers so that students will not drop
out and there would be better mutual understanding between wives and husbands.
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Abstract

A path in an edge-colored graph 𝐺 is a rainbow path if no two edges of the path are colored
the same. The rainbow connection number 𝑟𝑐(𝐺) of 𝐺 is the smallest integer 𝑘 for which there
exists a (not necessarily proper) 𝑘-edge-coloring of 𝐺 such that every pair of distinct vertices of
𝐺 is connected by a rainbow path. In this paper, we study the rainbow connection number of
Cartesian products of paths, cycles, complete graphs, and stars.

1. Introduction

Edge coloring of a graph is a function from its edge set to the set of natural numbers (called colors). A path in an
edge-colored graph with no two edges sharing the same color is called a rainbow path. An edge-colored graph is said
to be rainbow connected if every pair of vertices is connected by at least one rainbow path. Such a coloring is called a
rainbow coloring of the graph. The minimum number of colors required to rainbow color a connected graph is called
its rainbow connection number, denoted by 𝑟𝑐(𝐺). For example, the rainbow connection number of a complete graph
is 1, that of a path is its length, and that of a star is its number of leaves. For a basic introduction to the topic, see
Chapter 11 in [4] and for a comprehensive treatment of the area see the recent monograph by Li and Sun [6]. The
concept of rainbow coloring was introduced in [3].
Rainbow coloring is used in the modeling of the problem of message transmission with complete security. Suppose
that the graph 𝐺 represents a network. We wish to send messages between any two vertices in a network and we need
that each link on the path between the vertices (each edge on the path) be assigned a distinct channel (e.g., a distinct
frequency). The color of each edge indicates the frequency used to transmit the message. Clearly, we want to minimize
the number of different channels we use in our network. In this paper, we study the rainbow connection number of
Cartesian products of some classes of graphs.
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2. Preliminary definitions and theorems

In this section, we collect the definitions and the concepts which are used in this paper. In this paper, all graphs are
finite, simple, connected, and undirected. The distance between two vertices 𝑢 and 𝑣 in 𝐺 is the length of the shortest
path between them and is denoted by 𝑑𝐺(𝑢, 𝑣).
Eccentricity of a vertex 𝑣 of graph 𝐺 is the maximum distance between a vertex 𝑣 to all other vertices of 𝐺, denoted
by 𝑒𝑐𝑐𝐺(𝑣). The diameter of a connected graph 𝐺, denoted by 𝑑𝑖𝑎𝑚(𝐺), is the maximum eccentricity of its vertices.
The radius of 𝐺, denoted by 𝑟𝑎𝑑(𝐺), is the smallest eccentricity of its vertices.
Definition 2.1. [4] Given two graphs 𝐺 and 𝐻, the Cartesian product of 𝐺 and 𝐻, denoted by 𝐺□𝐻, is a graph defined
as follows: 𝑉(𝐺□𝐻) = 𝑉(𝐺) × 𝑉(𝐻). Two distinct vertices (𝑔1, ℎ1) and (𝑔2, ℎ2) of 𝐺□𝐻 are adjacent if and only if
either 𝑔1 = 𝑔2 and {ℎ1, ℎ2} ∈ 𝐸(𝐻) or ℎ1 = ℎ2 and {𝑔1, 𝑔2} ∈ 𝐸(𝐺).
Definition 2.2. [4] The 𝑛-dimensional hypercube is a graph whose vertex set is {1, 0}𝑛 (i.e., there are exactly 2𝑛
vertices, each labeled with a distinct 𝑛-bit string), and with an edge between two vertices if and only if they differ
in exactly one bit position, and denoted by 𝑄𝑛. By the definition of Cartesian product of graphs, we have 𝑄𝑛 =
𝑄𝑛−1□𝐾2 = □𝑛

𝑖=1𝐾2.
Definition 2.3. [4] The star graph of order 𝑛 is denoted by 𝑆𝑛, is a tree on 𝑛 nodes with one node having vertex degree
𝑛 − 1 and the other 𝑛 − 1 having vertex degree 1.
Proposition 2.4. [9] Let 𝐺 and 𝐻 be two graphs, then the Cartesian product 𝐺□𝐻 is connected if and only if both 𝐺
and 𝐻 are connected, also 𝑑𝑖𝑎𝑚(𝐺□𝐻) = 𝑑𝑖𝑎𝑚(𝐺) + 𝑑𝑖𝑎𝑚(𝐻).
Lemma 2.5. Let 𝐺 and 𝐻 be connected graphs, then 𝑟𝑐(𝐺□𝐻) ≤ 𝑟𝑐(𝐺) + 𝑟𝑐(𝐻)
Proof. Suppose that 𝑐𝐺 and 𝑐𝐻 are rainbow colorings of graphs 𝐺 and 𝐻, respectively, with distinct color sets 𝐴 and
𝐵. We define an edge coloring 𝑐𝐺□𝐻 of 𝐺□𝐻 as follows:

𝑐𝐺□𝐻{(𝑔, ℎ), (𝑔′, ℎ′)} = ൝𝑐𝐺{𝑔, 𝑔
′} if 𝑔𝑔′ ∈ 𝐸(𝐺) and ℎ = ℎ′,

𝑐𝐻{ℎ, ℎ′} if ℎℎ′ ∈ 𝐸(𝐻) and 𝑔 = 𝑔′.

For every two vertices (𝑥, 𝑦) and (𝑥′, 𝑦′) of 𝐺□𝐻 there are two cases:
(1) If (𝑥, 𝑦) and (𝑥′, 𝑦′) are in same copy of 𝐺 or 𝐻. Then, according to the rainbow coloring of the graphs 𝐺 and 𝐻,
this copy has a rainbow path between those two vertices.
(2) If (𝑥, 𝑦) and (𝑥′, 𝑦′) are not in the same copy of 𝐺 or 𝐻. Then, We consider the path

𝑃 ∶ (𝑥, 𝑦)⋯ (𝑥′, 𝑦)⋯ (𝑥′, 𝑦′).

such that the first part of the path 𝑃 from (𝑥, 𝑦) to (𝑥′, 𝑦) is in a copy of 𝐺 and the second part of the path from (𝑥′, 𝑦)
to (𝑥′, 𝑦′) is in a copy of 𝐻. Therefore, according to the rainbow coloring of graph 𝐺, there is a rainbow colored path
between (𝑥, 𝑦) and (𝑥′, 𝑦) with colors from 𝐴. Similarly, by a rainbow coloring of the graph 𝐻 between (𝑥′, 𝑦) and
(𝑥′, 𝑦′), there is a rainbow path with colors from 𝐵. Then, there is a rainbow path between (𝑥, 𝑦) and (𝑥′, 𝑦′). As a
result, 𝑐𝐺□𝐻 is a rainbow coloring of 𝐺□𝐻. Then, 𝑟𝑐(𝐺□𝐻) ≤ 𝑟𝑐(𝐺) + 𝑟𝑐(𝐻).

Remark 2.6. For example, suppose that 𝐺 = 𝐻 = 𝑃2. We have 𝑟𝑐(𝐺) = 𝑟𝑐(𝐻) = 1. Clearly, 𝐺□𝐻 = 𝐶4 and
𝑟𝑐(𝐺□𝐻) = 𝑟𝑐(𝐺) + 𝑟𝑐(𝐻) = 2.
The last example shows that the upper bound in Lemma 2.5 can be reached.
Note that, for any connected graph 𝐺 by definition of rainbow coloring, we have, 𝑟𝑐(𝐺) ≥ 𝑑𝑖𝑎𝑚(𝐺).
Corollary 2.7. Let 𝐺 and 𝐻 be connected graphs. Then

𝑑𝑖𝑎𝑚(𝐺□𝐻) ≤ 𝑟𝑐(𝐺□𝐻) ≤ 𝑟𝑐(𝐺) + 𝑟𝑐(𝐻).

Proposition 2.8. Let𝐺 and𝐻 be graphs, 𝑟𝑐(𝐺) = 𝑑𝑖𝑎𝑚(𝐺) and 𝑟𝑐(𝐻) = 𝑑𝑖𝑎𝑚(𝐻). Then 𝑟𝑐(𝐺□𝐻) = 𝑑𝑖𝑎𝑚(𝐺□𝐻) =
𝑟𝑐(𝐺) + 𝑟𝑐(𝐻)
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Proof. By 2.4 and 2.7, we have

𝑑𝑖𝑎𝑚(𝐺) + 𝑑𝑖𝑎𝑚(𝐻) = 𝑑𝑖𝑎𝑚(𝐺□𝐻)
≤ 𝑟𝑐(𝐺□𝐻)
≤ 𝑟𝑐(𝐺) + 𝑟𝑐(𝐻)
= 𝑑𝑖𝑎𝑚(𝐺) + 𝑑𝑖𝑎𝑚(𝐻).

Then 𝑟𝑐(𝐺□𝐻) = 𝑟𝑐(𝐺) + 𝑟𝑐(𝐻).

In the next section, we study the rainbow connection number of the Cartesian product of some classes of graphs and
find their upper and lower bounds.

3. Main results

Let 𝑃𝑛, 𝐶𝑛, 𝑆𝑛, and 𝐾𝑛 be the path, cycle, star (𝑆𝑛 = 𝐾1,𝑛−1), and complete graph of order 𝑛, respectively. In addition,
let 𝒫, 𝒞, 𝒮 and 𝒦 be the class of paths, cycles, stars and complete graphs consequently. A trivial graph is a graph of
order 1.
Since 𝑟𝑐(𝐾𝑛) = 𝑑𝑖𝑎𝑚(𝐾𝑛) = 1 , 𝑟𝑐(𝑃𝑛) = 𝑑𝑖𝑎𝑚(𝑃𝑛) = 𝑛 − 1, and 𝑟𝑐(𝐶2𝑛) = 𝑑𝑖𝑎𝑚(𝐶2𝑛) = 𝑛, and according to
Proposition 2.8, we have the following corollaries.

Corollary 3.1. 𝑟𝑐(𝐺□𝐻) = 𝑑𝑖𝑎𝑚(𝐺□𝐻) for any two graphs 𝐺 and 𝐻 from𝒦 ∪𝒫.

Corollary 3.2. Let 𝑛,𝑚 ∈ ℕ. Then
1. 𝑟𝑐(𝑃𝑛□𝐶2𝑚) = 𝑑𝑖𝑎𝑚(𝑃𝑛□𝐶2𝑚) = 𝑛 − 1 +𝑚,
2. 𝑟𝑐(𝐾𝑛□𝐶2𝑚) = 𝑑𝑖𝑎𝑚(𝐾𝑛□𝐶2𝑚) = 𝑚 + 1,
3. 𝑟𝑐(𝐶2𝑛□𝐶2𝑚) = 𝑑𝑖𝑎𝑚(𝐶2𝑛□𝐶2𝑚) = 𝑛 +𝑚

Corollary 3.3. Let 𝑄𝑛 be a 𝑛-hypercube graph. Then

𝑟𝑐(𝑄𝑛) = 𝑑𝑖𝑎𝑚(𝑄𝑛) = 𝑛.

In [2] the authors proved that, for any two connected graphs 𝐺 and 𝐻, 𝑟𝑐(𝐺□𝐻) ≤ 2𝑟𝑎𝑑(𝐺□𝐻).

Theorem 3.4. Let 𝑛,𝑚 ∈ ℕ, 𝑛 is odd and 𝐺 = 𝐾𝑚□𝐶𝑛. Then

𝑟𝑐(𝐺) = 𝑑𝑖𝑎𝑚(𝐾𝑚□𝐶𝑛) = ⌊𝑛2 ⌋ + 1.

Proof. We know that 𝑟𝑐(𝐾𝑚□𝐶𝑛) ≥ 𝑑𝑖𝑎𝑚(𝐾𝑚□𝐶𝑛) = ⌊𝑛2 ⌋ + 1.
Conversely, suppose that 𝑉(𝐶𝑛) = {𝑣1, ..., 𝑣𝑛} and 𝑉(𝐾𝑚) = {𝑢1, ..., 𝑢𝑚}. Then,

𝑉(𝐶𝑛□𝐾𝑚) = {(𝑣𝑖 , 𝑢𝑗)|1 ≤ 𝑖 ≤ 𝑛; 1 ≤ 𝑗 ≤ 𝑚}

is a vertex set of 𝐺. So there are 𝑚 copies of 𝐶𝑛 and 𝑛 copies of 𝐾𝑚 in 𝐺 that denoted by 𝐾𝑖
𝑚 for (1 ≤ 𝑖 ≤ 𝑛). We

consider the edge partitioning of the graph 𝐺 as follows

𝐸𝑖 = {(𝑣𝑖 , 𝑢𝑗)(𝑣𝑖 , 𝑢𝑗′)|1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗, 𝑗′ ≤ 𝑚},

𝐸′𝑖 = {(𝑣𝑖 , 𝑢𝑗)(𝑣𝑖+1, 𝑢𝑗)|1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, 𝑣𝑛+1 = 𝑣1}.
Let 𝐸𝑖 be every edge in a complete graph 𝐾𝑖

𝑚 for (1 ≤ 𝑖 ≤ 𝑛) and 𝐸′𝑖 be any edge between 𝐾𝑖
𝑚 and 𝐾𝑖+1

𝑚 (1 ≤ 𝑖 ≤ 𝑛)
such that 𝐾𝑛+1

𝑚 = 𝐾1
𝑚.
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Suppose that 𝑘 = 𝑑𝑖𝑎𝑚(𝐾𝑚□𝐶𝑛) = ⌊𝑛2 ⌋ + 1.
Now, we define the coloring 𝑐 of the graph 𝐺 as follows:

𝑐(𝐸′𝑖 ) = ൝𝑖 1 ≤ 𝑖 ≤ 𝑘 − 1,
𝑖 − 𝑘 + 1 𝑘 ≤ 𝑖 ≤ 𝑛.

𝑐(𝐸𝑖) = ൞
𝑖 + 1 1 ≤ 𝑖 ≤ 𝑘 − 1,
𝑖 − 𝑘 + 2 𝑘 ≤ 𝑖 < 𝑛,
1 𝑖 = 𝑛.

We show that there is a rainbow path between any two vertices in the graph 𝐺. Let (𝑥, 𝑦) and (𝑥′, 𝑦′) be arbitrary
vertices in 𝐺.
(i) If 𝑥 = 𝑥′ or (𝑦 = 𝑦′), then (𝑥, 𝑦) and (𝑥′, 𝑦′) are in the same copy of 𝐾𝑚 or 𝐶𝑛 so by the coloring 𝑐, there is a
rainbow path between (𝑥, 𝑦) and (𝑥′, 𝑦′) of length at most of 𝑘 − 1.
(ii) If 𝑥 ≠ 𝑥′ and 𝑦 ≠ 𝑦′ then (𝑥, 𝑦) and (𝑥′, 𝑦′) are not in the same copy of 𝐾𝑚 or 𝐶𝑛. So there is a path between
those two vertices of length at most 𝑘. Therefore, there is a rainbow path between (𝑥, 𝑦) and (𝑥′, 𝑦) like as 𝑃 of length
at most 𝑘 − 1 in a copy of 𝐶𝑛. Then, 𝑃 passes through 𝑘 copies of 𝐾𝑚.
According to the coloring 𝑐, at least the color of the edges in one copy among 𝑘 copies of 𝐾𝑚 differs from the colors
of the edges of the path 𝑃. Let edge {(𝑥″, 𝑦), (𝑥″, 𝑦′)} has different color from the colors of path 𝑃. Therefore, by
using the path (𝑥, 𝑦), ..., (𝑥″, 𝑦), (𝑥″, 𝑦′), ..., (𝑥′, 𝑦′)} between (𝑥, 𝑦) and (𝑥′, 𝑦′). So the rainbow path of length 𝑘 is
obtained. Then, (𝑥, 𝑦) and (𝑥′, 𝑦′) are rainbow connected.
As a result, every two vertices of 𝐺 are connected by a rainbow path of maximum length 𝑘. Therefore, 𝑐 is a rainbow
coloring of 𝐺 with 𝑘 colors and so 𝑟𝑐(𝐶𝑛□𝐾𝑚) = 𝑑𝑖𝑎𝑚(𝐶𝑛□𝐾𝑚) = ⌊𝑛2 ⌋ + 1.

Theorem 3.5. Let 𝑛,𝑚 ∈ ℕ, 𝑛 is odd and 𝐺 = 𝑃𝑚□𝐶𝑛. Then 𝑟𝑐(𝐺) = 𝑑𝑖𝑎𝑚(𝐺) = ⌊𝑛2 ⌋ + 𝑚 − 1.

Proof. Suppose that 𝑉(𝐺) = {𝑣𝑗,𝑖|1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛} is the vertex set of 𝐺 and partition the edges of graph G as
follows.

𝐸𝑗,𝑖 = {𝑣𝑗,𝑖𝑣𝑗,𝑖+1|1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, 𝑣𝑗,𝑛+1 = 𝑣𝑗,1}
𝐸′𝑗,𝑖 = {𝑣𝑗,𝑖𝑣𝑗+1,𝑖|1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 − 1}

Such that 𝐸𝑗,𝑖 is the set of edges of a cycle 𝑗th 𝐶𝑗𝑛 and 𝐸′𝑗,𝑖 is the set of edges between vertices of cycle 𝐶
𝑗
𝑛 and vertices

of cycle 𝐶𝑗+1𝑛 . Since 𝑛 is odd, there exists 𝑘 = ⌊𝑛2 ⌋ such that 𝑛 = 2𝑘 + 1.
We know that 𝑟𝑐(𝐺) ≥ 𝑑𝑖𝑎𝑚(𝐺) = ⌊𝑛2 ⌋ + 𝑚 − 1.
Now, we define an edge coloring of 𝐺, 𝑐 ∶ 𝐸(𝐺) → {1, 2, … , 𝑘 + 𝑚 − 1} of the edges of 𝐺 as follows

𝑐(𝑒𝑗,𝑖) = ൝𝑖 1 ≤ 𝑖 ≤ 𝑘,
𝑖 − 𝑘 𝑘 + 1 ≤ 𝑖 ≤ 𝑛.

𝑐(𝑒′𝑗,𝑖) = ൞
𝑖 1 ≤ 𝑖 ≤ 𝑘 and 𝑗 = 1,
𝑘 + 1 𝑘 < 𝑖 ≤ 𝑛 and 𝑗 = 1,
𝑘 + 𝑗 1 < 𝑗 ≤ 𝑚 − 1.

We will show that 𝑐 is a rainbow connected coloring for 𝐺. We must show that every two vertices of 𝐺 are connected
by a rainbow path.
Suppose that 𝑥 = 𝑣𝑗,𝑖 , 𝑦 = 𝑣𝑗′ ,𝑖′ are two arbitrary vertices of 𝐺; there are two cases.
(1) If 𝑖 = 𝑖′ or 𝑗 = 𝑗′ so 𝑥 and 𝑦 are in same copy of 𝑃𝑚 or 𝐶𝑛 then 𝑥 and 𝑦 are connected by rainbow path of length
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at most𝑚 − 1 or 𝑘.
(2) If 𝑖 ≠ 𝑖′ and 𝑗 ≠ 𝑗′ (𝑗 < 𝑗′), We consider two cases.
a) Suppose that 𝑗 = 1 then there is at least two paths between the vertices 𝑥 and 𝑦 of length 𝑑(𝑥, 𝑦) ≤ 𝑑𝑖𝑎𝑚(𝐺) =
𝑘 +𝑚 − 1 like as

𝑃 ∶ 𝑣1,𝑖 , 𝑣2,𝑖 , … , 𝑣𝑗′ ,𝑖 , … , 𝑣𝑗′ ,𝑖′
𝑄 ∶ 𝑣1,𝑖 , … , 𝑣1,𝑖′ , 𝑣2,𝑖′ , … , 𝑣𝑗,𝑖′

According to the coloring 𝑐, at least one of the paths 𝑃 and 𝑄 is the rainbow path.
b) Suppose that 2 ≤ 𝑗 ≤ 𝑗′, in this case there is a rainbow path between 𝑥 and 𝑦 as follows

𝑃 ∶ 𝑣𝑗,𝑖 , … , 𝑣𝑗′ ,𝑖 , … , 𝑣𝑗′ ,𝑖′

Thus, 𝑐 is a rainbow coloring of 𝐺 and 𝑟𝑐(𝐺) ≤ 𝑘 +𝑚 − 1 and so 𝑟𝑐(𝐺) = 𝑘 +𝑚 − 1.

Lemma 3.6. Let 𝑇𝑚 (𝑚 ≥ 4) be a tree that has at least three pendant vertices. then,

𝑟𝑐(𝐾𝑛□𝑇𝑚) ≤ 𝑟𝑐(𝑇𝑚) = 𝑚 − 1

Proof. We have 𝑟𝑐(𝑇𝑚) = 𝑚 − 1. Assign 𝑚 − 1 distinct colors to all edges of 𝑇𝑚. Define the coloring of the edges
of 𝐾𝑛□𝑇𝑚 as follows. For every two adjacent vertices 𝑥 and 𝑦 from 𝑇𝑚, in 𝐾𝑛□𝑇𝑚 there exist two adjacent copies of
𝐾𝑛 that are opposite of 𝑥 and 𝑦, so assign the color of edge 𝑥𝑦 to all edges between these two copies of 𝐾𝑛.
In tree 𝑇𝑚, we consider 𝑃 the path of length 𝑑𝑖𝑎𝑚(𝑇𝑚) < 𝑚 − 1 and suppose that 𝑢, 𝑣 ∈ 𝑃 and 𝑑(𝑢) = 𝑑(𝑣) = 1 (𝑢
and 𝑣 are end-vertices of the path 𝑃) in graph 𝐾𝑛□𝑇𝑚, since 𝑑(𝑢, 𝑣) ≤ 𝑚 − 2. Then, there is a color among 𝑚 − 1
colors such as 𝑎, which is different from colors on the edges of path 𝑃. So, by assigning color (𝑎) to all edges in two
copies of 𝐾𝑛 opposite of 𝑢 and 𝑣, and assigning every color among 𝑚 − 1 color without color (𝑎) arbitrarily assigns
to the all edges in every copy of 𝐾𝑛. Since every two vertices of 𝐾𝑛□𝑇𝑚 are connected by a rainbow path. Therefore,
𝑟𝑐(𝐾𝑛□𝑇𝑚) ≤ 𝑚 − 1.

Example 3.7. Consider a complete graph𝐾𝑛 and tree 𝑇7 with three pendant vertices. Let𝐾𝑛□𝑇7 the Cartesian product
of 𝐾𝑛 and 𝑇7.
By coloring the edges of 𝐾𝑛□𝑇7 with colors 1,… , 6 (as you see in Figure 1), there is a rainbow path between every
two vertices in 𝑟𝑐(𝐾𝑛□𝑇7), then 𝑟𝑐(𝐾𝑛□𝑇7) ≤ 6.
On the other hand 𝑟𝑐(𝐾𝑛□𝑇7) ≥ 𝑑𝑖𝑎𝑚(𝐾𝑛□𝑇7) = 6. Therefore, 𝑟𝑐(𝐾𝑛□𝑇7) = 6.
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Fig. 1. rainbow coloring of (𝐾𝑛□𝑇7)

Let 𝑆𝑚 = 𝐾1,𝑚−1 be a star graph from order 𝑚, with vertex set 𝑉(𝑆𝑚) = {𝑣1, 𝑣2, … , 𝑣𝑚} such that the vertex 𝑣1 of
degree𝑚 − 1 and the other vertices of degree 1. Since 𝑆𝑚 is a tree, so 𝑟𝑐(𝑆𝑚) = 𝑚 − 1.

Theorem 3.8. Let 𝑛,𝑚 ∈ ℕ and 𝑛 > 1. Then, 𝑟𝑐(𝐾𝑛□𝑆𝑚) = 4 when𝑚 ≥ 5 and 𝑟𝑐(𝐾𝑛□𝑆4) = 3.
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Proof. We have 𝑑𝑖𝑎𝑚(𝐾𝑛□𝑆𝑚) = 3 when 𝑚 ≥ 5. Assume, to the contrary, that there exists a rainbow connected
coloring 𝑐 of 𝐾𝑛□𝑆𝑚, using at most three colors.
In every copy of 𝑆𝑚, between any two vertices (without center vertex) there is one path of length two and many paths
of length 4. Since coloring 𝑐 has at most three colors and 𝑚 ≥ 5, there exists at least two vertices in 𝐾𝑛□𝑆𝑚 which
are not connected by a rainbow path. So that 𝑟𝑐(𝐾𝑛□𝑆𝑚) ≥ 4.
On the other hand, let 𝑉(𝑆𝑚) = {𝑢1, 𝑢2, … , 𝑢𝑚} and 𝑉(𝐾𝑛){𝑣1, 𝑣2, … , 𝑣𝑛} be the vertex-sets of 𝑆𝑚 and 𝐾𝑛. Then the
vertex set of 𝐾𝑛□𝑆𝑚 is

𝑉(𝐾𝑛□𝑆𝑚) = {(𝑣𝑖 , 𝑢𝑗)|1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚}
Partition the edges of 𝐾𝑛□𝑆𝑚 into two sets 𝐸1 and 𝐸2 as follows

𝐸1 = {(𝑣𝑖 , 𝑢𝑗)(𝑣𝑖′ , 𝑢𝑗)| 1 ≤ 𝑖, 𝑖′ ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚}
𝐸2 = {(𝑣𝑖 , 𝑢1)(𝑣𝑖 , 𝑢𝑗)| 1 ≤ 𝑖 ≤ 𝑛, 2 ≤ 𝑗 ≤ 𝑚}

Now, we define an edge coloring with 4 colors for graph 𝐾𝑛□𝑆𝑚 as follows

𝑐(𝐸1) = ൝1 𝑗 = 1,
2 𝑗 ≥ 2.

𝑐(𝐸2) = ൝3 𝑖 = 1,
4 𝑖 ≠ 1.

For every two non-adjacent vertices 𝑥 = (𝑣𝑖 , 𝑢𝑗) and 𝑦 = (𝑣𝑖′ , 𝑢𝑗′) of 𝐾𝑛□𝑆𝑚, if one of 𝑗 or 𝑗′ equal to 1, then there
is a rainbow path of length 2 from 𝑥 to 𝑦.
Otherwise, we have the following cases.
If 𝑖 = 𝑖′ = 1, so there exists the rainbow path 𝑃 = (𝑣1, 𝑢𝑗), (𝑣1, 𝑢1), (𝑣2, 𝑢1), (𝑣2, 𝑢𝑗′), (𝑣1, 𝑢𝑗′) between 𝑥 and 𝑦 of
length 4.
We now consider the case, if at least one of 𝑖 and 𝑖′ is not equal to 1, then the path

𝑃′ = (𝑣𝑖 , 𝑢𝑗), (𝑣𝑖 , 𝑢1), (𝑣1, 𝑢1), (𝑣1, 𝑢𝑗′), (𝑣𝑖′ , 𝑢𝑗′)

is a rainbow path of length at most 4 from 𝑥 to 𝑦.
Then, there exists rainbow coloring of 𝐾𝑛□𝑆𝑚 uses four colors. Therefore, 𝑟𝑐(𝐾𝑛□𝑆𝑚) = 4.
Clearly, by 3.6, we have 𝑟𝑐(𝐾𝑛□𝑆4) = 3.

Theorem 3.9. Let 𝑛,𝑚 ∈ ℕ such that 𝑛,𝑚 ≥ 3. Then 𝑟𝑐(𝑆𝑛□𝑆𝑚) = 4.
Proof. Suppose that 𝑉(𝑆𝑛) = {𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑛−1} such that 𝑑(𝑣0) = 𝑛 − 1 and the vertices 𝑣𝑖, (1 ≤ 𝑖 ≤ 𝑛 − 1) are
pendant vertices and 𝑉(𝑆𝑚) = {𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑚−1} such that 𝑑(𝑢0) = 𝑚 − 1 and the vertices 𝑢𝑗 , (1 ≤ 𝑗 ≤ 𝑚 − 1)
are pendant vertices. Now define the edge-coloring 𝑐 of the graph 𝑆𝑛□𝑆𝑚 by

𝑐(𝑒) =
⎧⎪
⎨⎪⎩

1 𝑒 = (𝑣0, 𝑢0)(𝑣0, 𝑢𝑗), 1 ≤ 𝑗 ≤ 𝑚 − 1,
2 𝑒 = (𝑣0, 𝑢0)(𝑣𝑖 , 𝑢0), 1 ≤ 𝑖 ≤ 𝑛 − 1,
3 𝑒 = (𝑣0, 𝑢𝑗)(𝑣𝑖 , 𝑢𝑗), 1 ≤ 𝑖 ≤ 𝑛 − 1, 1 ≤ 𝑗 ≤ 𝑚 − 1,
4 𝑒 = (𝑣𝑖 , 𝑢0)(𝑣𝑖 , 𝑢𝑗), 1 ≤ 𝑖 ≤ 𝑛 − 1, 1 ≤ 𝑗 ≤ 𝑚 − 1.

Clearly, in the coloring 𝑐, between any two non-adjacent vertices 𝑥 = (𝑣𝑖 , 𝑢𝑗) and 𝑦 = (𝑣𝑖′ , 𝑢𝑗′) of 𝑆𝑛□𝑆𝑚, we
have the path 𝑃 = (𝑣𝑖 , 𝑢𝑗), (𝑣𝑖 , 𝑢0), (𝑣0, 𝑢0), (𝑣0, 𝑢𝑗′), (𝑣𝑖′ , 𝑢𝑗′) which is a rainbow path of length at most 4. Thus
𝑟𝑐(𝑆𝑛□𝑆𝑚) ≤ 4. Since 𝑑𝑖𝑎𝑚(𝑆𝑛□𝑆𝑚) = 4. Then, 𝑟𝑐(𝑆𝑛□𝑆𝑚) = 4.

Let 𝑆∞ be an infinite complete bipartite graph with vertex set 𝑉(𝑆∞) = ℕ∪{0} and edge set 𝐸(𝑆∞) = {{0, 𝑖} | 𝑖 ∈ ℕ}.
We call this graph an infinite star. We know that 𝑆∞ does not have a finite rainbow connection number.

Theorem 3.10. Let 𝑛,𝑚 ∈ ℕ and 𝑛 > 1. Then 𝑟𝑐(𝑃𝑛□𝑆𝑚) = 𝑛 + 1 when 𝑛,𝑚 ≥ 3 (We remove the other cases
because 𝐾2 = 𝑆2 = 𝑃2).
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Proof. Graph 𝑃𝑛□𝑆𝑚 contains 𝑛 copies of 𝑆𝑚, (𝑆1𝑚 , 𝑆2𝑚 , … , 𝑆𝑛𝑚). Now, let {𝑣𝑖0, 𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑚−1} be the vertices of
𝑆𝑖𝑚 for (1 ≤ 𝑖 ≤ 𝑛) such that 𝑣𝑖0 is the center of 𝑆𝑖𝑚 and 𝑑(𝑣𝑖0) = 𝑚 − 1. Since 𝑑𝑖𝑎𝑚(𝑃𝑛□𝑆𝑚) = 𝑑𝑖𝑎𝑚(𝑃𝑛) +
𝑑𝑖𝑎𝑚(𝑆𝑚) = 𝑛 + 1 then 𝑟𝑐(𝑃𝑛□𝑆𝑚) ≥ 𝑛 + 1.
Now, we define an edge-coloring 𝑐 of 𝑃𝑛□𝑆𝑚 as follows. for 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚 − 1

𝑐(𝑒) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

1 ; 𝑒 = 𝑣𝑖0𝑣𝑖𝑗 and 𝑖 ≡ 1(𝑚𝑜𝑑 2), 𝑓𝑜𝑟1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚 − 1,
2 ; 𝑒 = 𝑣𝑖0𝑣𝑖𝑗 and 𝑖 ≡ 0(𝑚𝑜𝑑 2), 𝑓𝑜𝑟1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚 − 1,
𝑖 + 2 ; 𝑒 = 𝑣𝑖0𝑣𝑖+10 for 1 ≤ 𝑖 ≤ 𝑛 − 2,
𝑛 + 2 − 𝑖 ; 𝑒 = 𝑣𝑖𝑗𝑣𝑖+1𝑗 for 1 ≤ 𝑖 ≤ 𝑛 − 2 and 1 ≤ 𝑗 ≤ 𝑚 − 1,
3 ; 𝑒 = 𝑣𝑛−10 𝑣𝑛0 ,
𝑛 + 1 ; 𝑒 = 𝑣𝑛−1𝑗 𝑣𝑛𝑗 for1 ≤ 𝑗 ≤ 𝑚 − 1.

For any two non-adjacent vertices 𝑥 = 𝑣𝑖𝑗 and 𝑦 = 𝑣𝑖′𝑗′ of the graph 𝑃𝑛□𝑆𝑚, we have
(i) If 𝑥 and 𝑦 on same copy of 𝑆𝑚 then 𝑖 = 𝑖′ and so the path 𝑃 ∶ 𝑥 = 𝑣𝑖𝑗 , 𝑣𝑖0, 𝑣𝑖+10 , 𝑣𝑖+1𝑗′ , 𝑣𝑖𝑗 = 𝑦 is a rainbow path
between 𝑥 and 𝑦 in 𝑃𝑛□𝑆𝑚.
(ii) If 𝑥 and 𝑦 on distinct copies of 𝑆𝑚, suppose that 𝑖 < 𝑖′ then there is the path

𝑃′ ∶ 𝑥 = 𝑣𝑖𝑗 , 𝑣𝑖0, 𝑣𝑖+10 , 𝑣𝑖+1𝑗′ , 𝑣𝑖+2𝑗′ , … , 𝑣𝑖′𝑗′ = 𝑦

is a rainbow path between 𝑥 and 𝑦 in 𝑃𝑛□𝑆𝑚.
Indeed, every two vertices of 𝑃𝑛□𝑆𝑚 are connected by a rainbow path of length at most 𝑛 + 1. It follows that the
coloring 𝑐 is rainbow coloring for 𝑃𝑛□𝑆𝑚. So 𝑟𝑐(𝑃𝑛□𝑆𝑚) ≤ 𝑛 + 1.
Therefore, 𝑟𝑐(𝑃𝑛□𝑆𝑚) = 𝑛 + 1.

By Theorem 3.10, we have the following proposition.

Proposition 3.11. For any 4 ≤ 𝑟 ∈ ℕ. There is a graph 𝐺 with rainbow connection number 𝑟.
In the following, we show that there exists an infinite graph 𝐺 with finite diameter such that 𝑟𝑐(𝐺) = ∞ but 𝑟𝑐(𝐺□𝐺)
is finite.

Definition 3.12. Let 𝑆∞ (infinite star) be a connected graph with vertex set 𝑉(𝑆∞) = ℕ and edge set 𝐸(𝑆∞) =
{{1, 𝑗}|1 ≤ 𝑗 ∈ ℕ}. . Clearly, 𝑑𝑖𝑎𝑚(𝑆∞) = 2 and 𝑟𝑐(𝑆∞) = ∞.

Similar to the proof of Theorem 3.9, we can conclude the following proposition.

Proposition 3.13. 𝑟𝑐(𝑆∞□𝑆∞) = 4 = 𝑑𝑖𝑎𝑚(𝑆∞□𝑆∞).
By the definition of 𝑆∞ and the Proposition 3.11 we have the following corollary.

Corollary 3.14. Let 4 ≤ 𝑟 ∈ ℕ. Then an infinite graph 𝐺 with rainbow connection number 𝑟 exists.
We consider the graph 𝑃𝑟−1□𝑆∞ for 4 ≤ 𝑟 ∈ ℕ. Then, 𝑟𝑐(𝑃𝑟−1□𝑆∞) = 𝑟.
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Abstract

The problem of estimating a probability density function (PDF) 𝑓 from 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 , given
by 𝑡 = 𝑓 ∗ 𝑢 , is analyzed. We develop both linear and non-linear wavelet estimators utiliz-
ing Mayer-type wavelets. These estimators are demonstrated to be asymptotically optimal and
adaptive when 𝑓 belongs to the Sobolev space𝐻𝛼 . Additionally, a comparison is made between
the block thresholding method applied to supersmooth and non-supersmooth density functions

1. Introduction

Consider 𝛾 ∼ 𝑓 and 𝜖 ∼ 𝑢 are independent random variables , where 𝑓 is the unknown density function and 𝑢 is the
known density function. We observe a n sample of 𝑋𝑖 as follows:

𝑋𝑖 = 𝛾𝑖 + 𝜖𝑖 (1)

In this article, the aim is to estimate the density function of 𝑓. 𝑋𝑖 ∼ 𝑡 is the convolution of u and f:

𝑡(𝑥) = න
∞

−∞
𝑢(𝑥 − 𝛾)𝑓(𝛾)𝑑𝛾 (2)

So the issue of f function estimation in this context is known as deconvolution. This issue appears in very application
for example Desouza[4], and over the past decade, extensive research has been conducted on this topic. The prevalent
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method involves estimating 𝑡(𝑋) using a kernel estimator, followed by solving equation 1 through the application of a
Fourier transform. For example Carroll and Hall [3] and others. Fan [12] demonstrated that the estimators of 𝑓(𝛾)are
asymptotically optimal both locally and globally , provided the kernel has a limited bandwidth,meaning the Fourier
transform of the kernel has bounded support. These estimators and similar methods have been examined in various
contexts. For example Fan[13] and others.
This paper addresses the estimation of a deconvolution density through wavelet method . The core concept involves
representing 𝑓(𝛾)using a wavelet expansion and then to estimate the coefficients using a deconvolution algorithm.
This approach builds on orthogonal series methods for estimating prior densities [see Walter [33],Penkaya[28] and
recent advancements in wavelet techniques for curve estimation [ see Antoniadis, Gregoire , and McKeague[2]and
others].
The density estimation of 𝑓(𝛾) is performed within Sobolev space 𝐻𝛼. The estimation of the density function is
investigated in two parts: when the error distribution 𝜀 is supersmooth (i.e., the Fourier transform �̃� of f shows ex-
ponential decay) and when �̃� has polynomial decay. In the supersmooth part, even without knowing 𝛼, the proposed
linear wavelet estimator adjusts its parameter choices to achieve the best possible convergence rate. For polynomial
decay, where the linear wavelet estimator falls short if 𝛼 is unknown, a non-linear adaptive wavelet estimator is devel-
oped, achieving the best possible rate of convergence. The estimators utilize Meyer-type wavelets instead of wavelets
with bounded support. Meyer-type wavelets belong to the subset of band-limited wavelets, which allow for prompt
deconvolution. Notably, the non-linear wavelet estimator uses ”global thresholding,” different from the ”block thresh-
olding” method by Hall et al. [17], where ”global thresholding” involves simultaneous thresholding of all coefficients
at the same level, whereas ”block thresholding” solely aggregates a limited set of coefficients. Estimators that employ
Meyer-type wavelets are asymptotically optimal. This means that for 𝑓 ∈ 𝐻𝛼, the rates of convergence for the mean
squared error (MSE) cannot be further enhanced [see Fan [14]]. Additionally, the estimators developed in this article
automatically adjust when 𝑓(𝛾) is supersmooth. In such cases, both the linear and non-linear wavelet estimators attain
enhanced convergence rates without altering any parameters. Specifically, if both 𝑓(𝛾) and u(X) are supersmooth, the
linear wavelet estimator attains a polynomial rate of convergence, which is superior to the logarithmic rate of conver-
gence for 𝑓 ∈ 𝐻𝛼. If 𝑓(𝛾) is supersmooth and �̃� has polynomial decay, the MSE of the non-linear wavelet estimator
is 𝑂(𝑛−1𝑙𝑛𝜈𝑛) with 𝜈 > 0 as 𝑛 → ∞.

2. Mayer Wavelets

We use an orthonormal wavelet, which is produced by dilation and transmission of a ”father” wavelet of Mayer-type
𝜑 and a ”mother” wavelet of Mayer-type 𝜁. The principal characteristic of such wavelets are:

• 1- Wavelets are smooth and frequency band-limited, i.e. The Fourier transforms 𝜑 and 𝜁 have compact supports
with

𝑠𝑢𝑝𝑝(𝐹(𝜑)) ⊂ [−4𝜋3−1, 4𝜋3−1]
and

𝑠𝑢𝑝𝑝(𝐹(𝜁)) ⊂ [−8𝜋3−1, −2𝜋3−1] ∪ [2𝜋3−1, 8𝜋3−1]
. where supp denotes the support.

• 2- If the Fourier transforms of 𝜋 and 𝜁 are also in 𝐶𝑚 for a chosen 𝑚 ∈ 𝑁 , then it can be easily shown that 𝜑
and 𝜁 obey

|𝜋(𝑡)| = 𝑂((1 + |𝑡|)−𝑚−1), |𝜁(𝑡)| = 𝑂((1 + |𝑡|)−𝑚−1)
for every 𝑡 ∈ 𝑅.

• 3- The function (𝜑, 𝜁) is differentiable for all degree of differentiation. because their Fourier transform has a
compact support, and 𝜁 has an infinite number of vanishing moments . that is, for each 𝑣 ∈ 𝑁 , ∫∞−∞ 𝑥𝑣𝑑𝑥 = 0
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In this paper, we employ the Meyer wavelet. For each 𝑥, any integer 𝑗, and any ℎ ∈ {0, ..., 2𝑗 − 1}, ,allow

𝜑𝑗,ℎ = 2𝑗/2𝜑(2𝑗𝑥 − ℎ), 𝜁𝑗,ℎ = 2𝑗/2𝜁(2𝑗𝑥 − ℎ) (3)

are the elements of the wavelet basis.
Consider 𝑗𝑐 ∈ 𝑍, which that 𝑗𝑐 > 𝑗∗ . A function 𝑓 ∈ 𝐻𝛼 it would be developed into a series as

𝑓(𝛾) =
2𝑗𝑐−1


ℎ=0

𝛼𝑗𝑐 ,ℎ𝜑𝑗𝑐 ,ℎ(𝛾) +
∞


𝑗=𝑗𝑐

2𝑗−1


ℎ=0

𝛽𝑗,ℎ𝜁𝑗,ℎ(𝛾) (4)

where

𝛼𝑗,ℎ = න
1

0
𝑓(𝛾)𝜙𝑗,ℎ𝑑𝛾, 𝛽𝑗,ℎ = න

1

0
𝑓(𝛾)𝜁𝑗,ℎ𝑑𝛾 (5)

The coefficients 𝛼𝑗𝑐 ,ℎ and 𝛽𝑗,ℎ may be interpreted like the expected values of functions 𝜏𝑗𝑐 ,ℎ and 𝜈𝑗,ℎ

𝛼𝑗𝑐 ,ℎ = න
∞

−∞
𝜏𝑗𝑐 ,ℎ𝑡(𝑥)𝑑𝑥 𝛽𝑗,ℎ = න

∞

−∞
𝜈𝑗,ℎ𝑡(𝑥)𝑑𝑥 (6)

This condition is met if 𝜏𝑗𝑐 ,ℎ and 𝜈𝑗,ℎ satisfy the following equations:

න
∞

−∞
𝑢(𝑥 − 𝛾)𝜏𝑗𝑐 ,ℎ(𝑥)𝑑𝑥 = 𝜙𝑗𝑐 ,ℎ(𝛾), න

∞

−∞
𝑢(𝑥 − 𝛾)𝜈𝑗,ℎ(𝑥)𝑑𝑥 = 𝜁𝑗,ℎ(𝛾)

Applying the Fourier transform to both sides, we derive 𝜏𝑗𝑐 ,ℎ(𝑥) = 2𝑗𝑐/2Υ𝑗𝑐(2𝑗𝑐𝑥 − ℎ), 𝜈𝑗,ℎ(𝑥) = 2𝑗/2𝑉𝑗(2𝑗𝑥 − ℎ),
where Υ𝑗𝑐(.) and 𝑉𝑗(.) are the inverse Fourier transform of the functions

Υ̃𝑗𝑐(𝜔) = �̃�(𝜔)/�̃�(−2𝑗𝑐𝜔) �̃�𝑗(𝜔) = ̃𝜁(𝜔)/�̃�(−2𝑗𝑐𝜔) (7)

respectively. Therefore, estimating 𝛼𝑗𝑐 ,ℎ and 𝛽𝑗,ℎ by:

�̂�𝑗𝑐 ,ℎ = 𝑛−1
𝑛


𝑖=1

2𝑗𝑐/2Υ𝑗𝑐(2𝑗𝑐𝑋𝑖 − ℎ) �̂�𝑗,ℎ = 𝑛−1
𝑛


𝑖=1

2𝑗/2𝑉𝑗(2𝑗𝑐𝑋𝑖 − ℎ) (8)

and truncating the relation 4, we derive a linear wavelet estimator

̂𝑓(𝐿)𝑛 (𝛾) =
2𝑗𝑐−1


ℎ=0

�̂�𝑗𝑐 ,ℎ𝜑𝑗𝑐 ,ℎ(𝛾) (9)

and a non-linear wavelet estimator of 𝑓(𝛾),

̂𝑓(𝑁)𝑛 (𝛾) =
2𝑗𝑐−1


ℎ=0

�̂�𝑗𝑐 ,ℎ𝜑𝑗𝑐 ,ℎ(𝛾) +
𝑚+𝑟


𝑗=𝑗𝑐

[
2𝑗𝑐−1


ℎ=0

�̂�𝑗,ℎ𝜁𝑗,ℎ(𝛾)]𝐼(
2𝑗𝑐−1


ℎ=0

)�̂�2𝑗,ℎ > 𝛿2𝑗,𝑛 (10)

It’s important to note that the block thresholding method used in estimator 10 differs from the approach taken by Hall,
Penev, Kerkyacharian, and Picard [17] and Hall, Kerkyacharian, and Picard [15]. Those studies focused on estimating
a pdf from direct observations using wavelets with bounded support, and they partitioned the coefficients 𝛽𝑗,ℎ into
blocks 𝐴 = {𝛽𝑗,ℎ ∶ (𝑗 − 1)𝑙 < ℎ < 𝑗𝑙} of length l, thresholding all coefficients in a block simultaneously. In contrast,
in this article, all coefficients 𝛽𝑗,ℎ for ℎ ∈ 𝑍 are thresholded together. Initially, the estimators 9 and 10 may appear
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computationally daunting due to their reliance on infinite series calculations. However, under rather lenient conditions,
these infinite series estimators can be substituted with finite series estimators.

̂𝑓(𝐿𝐹)𝑛 (𝛾) = 
|ℎ|≤𝐾𝑛

�̂�𝑗𝑐 ,ℎ𝜑𝑗𝑐 ,ℎ(𝛾) (11)

̂𝑓(𝑁𝐹)𝑛 (𝛾) = 
|ℎ|≤𝑀𝑛

�̂�𝑗𝑐 ,ℎ𝜑𝑗𝑐 ,ℎ(𝛾) +
𝑚+𝑟


𝑗=𝑗𝑐

[ 
|ℎ|≤𝐿𝑛

�̂�𝑗,ℎ𝜁𝑗,𝑠(𝛾)]𝐼( 
|ℎ|≤𝐿𝑛

�̂�2𝑗,ℎ > 𝛿2𝑗,𝑛) (12)

without compromising the convergence rate.

3. Asymptotic properties of the wavelet estimator

To explore the asymptotic characteristics of the estimators 9 and (2.8), we assume that the 𝑝𝑑𝑓 is a member of the
following class:

𝐹𝛼(𝐶𝛼) = {𝑓 ∈ 𝐻𝛼 ∶ ||𝑓||𝛼 ≤ 𝐶𝛼 , 𝛼 > 0} (13)

where ||𝑓||𝛼 is the norm in 𝐻𝛼,

||𝑓||𝛼 = ቄන
∞

−∞
|�̃�(𝜔)|2(𝜔2 + 1𝛼)𝑑𝜔ቅ

1/2
< ∞

We assess the effectiveness of an estimator 𝑓𝑛(𝛾) through the Mean Squared Error (MSE):

𝑀𝑆𝐸(𝑓𝑛) = 𝐸ቀ𝑓𝑛(𝛾) − 𝑓(𝛾)ቁ
2

(14)

Define:

Γ1(𝑗𝑐) = න
∞

−∞
|�̃�(𝜔)|2|�̃�(2𝑗𝑐𝜔)|−2𝑑𝜔 (15)

Γ𝑘(𝑗) = න
∞

−∞
| ̃𝜁(𝜔)|𝑘|�̃�(2𝑗𝜔)|−𝑘𝑑𝜔 𝑘 = 2, 4

The theorem below determines the upper bound for the MSE of the linear wavelet estimator 9 uniformly over the
specified class 𝐹𝛼(𝐶𝛼) defined in 13.
Theorem 3.1.

𝑠𝑢𝑝𝐹𝛼𝑀𝑆𝐸( ̂𝑓𝐿𝑛 ) ≤ 2𝜋−1(2𝜋/3)−2𝛼||𝜁||2𝐶2𝛼2−2𝑗𝑐𝛼 + 𝑛−12𝑗𝑐+1Γ1(𝑗𝑐) (16)

CorolLary1. If |�̃�(𝜔)| ≥ 𝐶0(𝜔2 + 1)−𝑠/2𝑒𝑥𝑝{−𝐵|𝜔|𝜃} and 𝑗𝑐 is such that

2𝑗𝑐 = ൝
𝑛1/(2𝛼+2𝑠+1) 𝐵 = 0

ቂ൫2𝐵(4𝜋/3)𝜃 + Δ൯−1𝑙𝑛(𝑛)ቃ
1/𝜃

𝐵 > 0
(17)

for Δ > 0. then

𝑠𝑢𝑝𝑓∈𝐹𝛼𝑀𝑆𝐸(�̃�
(𝐿)
𝑛 ) = ቊ 𝑂(𝑛−2𝛼/(2𝛼+2𝑠+1)) 𝐵 = 0

𝑂((𝑙𝑛𝑛)−2𝛼/𝜃) 𝐵 > 0 (18)

Notice that the convergence rates in 18 match The best possible rate of convergence [as indicated by Fan [14]]. In the
context of exponential decay of �̃�(𝜔), the linear wavelet estimator demonstrates adaptability., meaning The parameter
𝑗𝑐 does not rely on the unknown smoothness 𝛼 of the pdf 𝑓(𝛾). Nevertheless, when dealing with polynomial descent,
the estimator 9 does not achieve The best possible rate of convergence if α is not known. This issue may be resolved
with employing the non-linear estimator 10.
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Theorem 3.2. Consider |�̃�(𝜔)| ≥ 𝐶0(𝜔2 + 1)−𝑠/2.Let ̂𝑓𝑁𝑏 be the estimator 10 with 𝑗𝑐 = (2 + 𝜖)𝑙𝑜𝑔2(𝑙𝑛𝑛) where
𝜖 > 0, 𝑗𝑐 + 𝑟 = (2𝑠 + 1)−1𝑙𝑜𝑔2𝑛 and 𝛿𝑗,𝑛 = 2𝑗(𝑠+0.5)𝛿𝑛.If 𝛿𝑛 = 𝛿0𝑛−1/2 with 𝛿0 ≥ 2√2𝐾2 and Γ4(𝑗)/Γ22 (𝑗) ≤ 𝐷0
for any 𝑗, then

𝑠𝑢𝑝𝑓∈𝐹𝛼𝑀𝑆𝐸(�̃�
(𝑁)
𝑛 ) = 𝑂(𝑛−2𝛼/(2𝛼+2𝑠+1)) (19)

where 𝐾2 is a fixed constant.
The logic behind Theorem 3.2 goes like this: If 𝛼’s value were determined, the optimal selection for 𝑗𝑐 in the linear
estimator 9 Could be approximately 𝑗𝑜𝑝𝑡 ∼ (2𝛼+2𝑠+1)−1 log2 𝑛. Given that𝛼 is not known, wemerely ascertain such
that for all 𝜆, the best value of m falls among 𝜆𝑙𝑜𝑔2(𝑙𝑛𝑛) and (2𝑠+1)−1𝑙𝑜𝑔2𝑛. Consequently, we construct the non-
linear estimator 10with 𝑗𝑐 = (2+𝜖)𝑙𝑜𝑔2(𝑙𝑛𝑛), which is less than the optimal value 𝑗𝑜𝑝𝑡, and 𝑗𝑐+𝑟 = (2𝑠+1)−1𝑙𝑜𝑔2𝑛.
This approach includes all terms with 𝑗 ≤ (2+𝜖)𝑙𝑜𝑔2(𝑙𝑛𝑛) and excludes terms with 𝑗 > (2𝑠+1)−1𝑙𝑜𝑔2𝑛. The terms
with (2+𝜖)𝑙𝑜𝑔2(𝑙𝑛𝑛) < 𝑗 ≤ (2𝑠+1)−1𝑙𝑜𝑔2𝑛 are only included if∑𝑘∈𝑍 �̂�2𝑗,ℎ ≥ 𝛿2𝑗,ℎ, where 𝛿2𝑗,ℎ ∼ 𝑛−1 ∑ℎ∈𝑍 𝑉𝑎𝑟�̂�𝑗,ℎ.
This ensures that only terms with a variance not exceeding 𝑂(𝑛−2𝛼/(2𝛼+2𝑠+1)) are included, thereby guaranteeing the
most efficient rate of convergence. Note that to ensure 𝑗𝑐 < 𝑗𝑜𝑝𝑡 for finite values of 𝑛, 𝜖 should remain small; ideally,𝜖
should be less than a predefined 𝜖0. To substitute the estimators 9 and 10 with In comparison to their finite series
equivalents, we assume that 𝑓 exhibits a specific rate of decline as |𝛾| → ∞. Specifically, let’s consider...

𝐹∗𝛼 (𝐶𝛼 , 𝐶𝑓) = {𝑓 ∶ 𝑓 ∈ 𝐹𝛼(𝐶𝛼), 𝑠𝑢𝑝[|𝛾|𝑓(𝛾)] ≤ 𝐶𝑓} (20)

where 𝐹𝐶𝛼 is defined in 13, and let’s assume that 𝑓 ∈ 𝐹∗𝛼 (𝐶𝛼 , 𝐶𝑓). It’s important to keep in mind that the condition
𝑠𝑢𝑝[|𝛾|𝑓(𝛾)] < ∞is quite unconstrained and is valid for each known probability density function (p.d.f.). The next
theorem demonstrates that the convergence rate of 11 and 12 uniformly over 𝐹∗𝛼 (𝐶𝛼 , 𝐶𝑓) is equivalent to the conver-
gence rate of 9 and 10) uniformly over 𝐹𝛼(𝐶𝛼).

Theorem 3.3. Let that the assumption of corollary 3 and Theorem3.2 are hold and 𝐾𝑛 ,𝑀𝑛 and 𝐿𝑛 are such that

𝑙𝑖𝑚𝑛→∞𝑛𝐾−1
𝑛 = 0, 𝑙𝑖𝑚𝑛→∞𝑛𝑀−1

𝑛 = 0, 𝑙𝑖𝑚𝑛→∞𝑛(2𝑠+2)/(2𝑠+1)𝐿−1𝑛 = 0

Consequently, the estimator 11) and 12 with the same chose of parameters 𝑗𝑐 , 𝑟 and 𝛿𝑗,𝑛 as in Corollary 1 and Theorem
2 , exhibit the following rates of convergence uniformly over 𝐹∗𝛼 (𝐶𝛼 , 𝐶𝑓):

𝑠𝑢𝑝𝑓∈𝐹∗𝛼𝑀𝑆𝐸( ̂𝑓𝐿𝐹𝑛 ) = 𝑂((𝑙𝑛𝑛)−2𝛼/𝜃) 𝑖𝑓𝐵 > 0 (21)

𝑠𝑢𝑝𝑓∈𝐹∗𝛼𝑀𝑆𝐸( ̂𝑓𝐿𝐹𝑛 ) ∼ 𝑠𝑢𝑝𝑓∈𝐹∗𝛼𝑀𝑆𝐸( ̂𝑓𝑁𝐹𝑛 ) = 𝑂((𝑙𝑛𝑛)−2𝛼/(2𝛼+2𝑠+1)) 𝑖𝑓𝐵 = 0 (22)

4. Estimation in the context of supersmooth conditions 𝑓(𝛾)

The asymptotic results presented with Theorems 3.1-3.3 are rather discouraging: if 𝑢(𝑥) is supersmooth, the estimator
exhibits a logarithmic convergence rate. However, this is the best possible outcome if 𝑓 belongs to 𝐻𝛼. However
is the situation always this bleak? It may be intuitively guessed which is an improvement convergence rate may be
accomplished if 𝑓 ∈ 𝐻𝛼 ; for instance, if 𝑓 is supersmooth on its own. Let’s consider...

𝐺𝛼,𝜂,𝜌(𝐶𝛼) = {𝑓 ∶ න
∞

−∞
|�̃�(𝜔)|2(𝜔2 + 1)𝛼𝑒𝑥𝑝{2𝜌|𝜔|𝜂}𝑑𝜔 ≤ 𝐶𝛼} (23)

𝐺∗𝛼,𝜂,𝜌(𝐶𝛼 , 𝐶𝑓) = {𝑓 ∶ 𝑓 ∈ 𝐺𝛼,𝜂,𝜌(𝐶𝛼), 𝑠𝑢𝑝𝛾[|𝛾|𝑓(𝛾)] ≤ 𝐶𝛼} (24)

and consider 𝑓 ∈ 𝐺∗𝛼,𝜂,𝜌(𝐶𝛼 , 𝐶𝑓) with positive 𝜌 and 𝜂. Observe that 𝐺𝛼,𝜂,𝜌(𝐶𝛼) ⊆ 𝐹𝛼(𝐶𝛼) , 𝐺∗𝛼,𝜂,𝜌(𝐶𝛼 , 𝐶𝑓) ⊆ 𝐹∗(𝐶𝛼 ,𝐶𝑓)
and 𝜌 = 0 the sets coincide:𝐺𝛼,𝜂,𝜌(𝐶𝛼) = 𝐹𝛼(𝐶𝛼) , 𝐺∗𝛼,𝜂,𝜌(𝐶𝛼 , 𝐶𝑓) = 𝐹∗(𝐶𝛼 ,𝐶𝑓).
The benefit of Meyer-type wavelet estimators lies in their ability to automatically adapt to the smoothness of 𝑓(𝛾).
This implies that the estimators11 and 12, using the same parameter choices for 𝑗𝑐,𝑟 and 𝛿𝑗 as previously, can achieve
improved convergence rates when 𝑓(𝛾) is supersmooth.
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Theorem 4.1. If the corollary 3 are vaild , consequently, the estimator 11 with 𝑗𝑐 as specified in 17 achieves the
following convergence rate:

𝑠𝑢𝑝𝑓∈𝐺∗𝛼,𝜂,𝜌𝑀𝑆𝐸( ̂𝑓𝐿𝐹𝑛 ) = ቐ
𝑂(𝑛−1(𝑙𝑛𝑛)(2𝑠+1)/𝜂) 𝑖𝑓 𝐵 = 0

𝑂(𝑛−𝜇(𝑙𝑛𝑛)𝜉) 𝑖𝑓 𝐵 > 0 𝑎𝑛𝑑 𝜂 ≥ 𝛽
𝑂((𝑙𝑛𝑛)−2𝛼/𝛽𝑒𝑥𝑝{−𝜆(𝑙𝑛𝑛)𝜂/𝛽}) 𝑖𝑓 𝐵 > 0 𝑎𝑛𝑑 𝜂 < 𝛽

(25)

provided 𝑙𝑖𝑚𝑛→∞𝐾−1
𝑛 𝑛𝜎 = 0. Here 𝜂 > 0 and 𝑟ℎ𝑜 > 0 , 𝜎 = 1 if 𝐵 is positive and 𝜎 = 2𝑠+2

2𝑠+1 if 𝐵 = 0 ; 𝜆 =
[2𝐵(4𝜋/3)𝛽 + Δ]−12𝜌(2𝜋/3)𝜂.If 𝛽 = 𝜂, consequently 𝜉 = 2𝑠+1

𝛽 𝐼(Λ ≥ 2𝜌(2𝜋/3)𝛽) − 2𝛼𝛽−1𝐼(Λ < 2𝜌(2𝜋/3)𝛽)
and 𝜉 = [2𝛽(4𝜋/3)𝛽 +Λ]−1 min (Λ, 2𝜌((2𝜋/3)𝛽)). If 𝛽 < 𝜂, consequently 𝜉 = 2𝑠+1

𝛽 and 𝜇 = [2𝛽(4𝜋/3)𝛽 +Λ]Λ.

Theorem 4.2. Assuming the conditions of Theorem 3.2 are satisfied, let 𝐿𝑛 and𝑀𝑛 be defined as follows:

𝑙𝑖𝑚𝑛→∞𝑛𝑀−1
𝑛 = 0 𝑙𝑖𝑚𝑛→∞𝑛(2𝑠+2)/(2𝑠+1)𝐿−1𝑛 = 0

Then

𝑠𝑢𝑝𝑓∈𝐺𝛼,𝜂,𝜌𝑀𝑆𝐸( ̂𝑓𝑁𝐹𝑛 ) = 𝑂((𝑙𝑛𝑛)𝑚(2𝑠+1)𝑛−1) (26)

with𝑚 = 𝜂−1 if 𝜂 < 0.5 and𝑚 = 2 + 𝑎 if 𝜂 ≥ 0.5. Here 𝑎 ia an arbitrary constant.

5. Conclusian

In this paper, we developed both linear and non-linear estimators for a deconvolution density 𝑓(𝛾) using Meyer type
wavelets. We demonstrated that these estimators are asymptotically optimal for 𝑓 ∈ 𝐻𝛼 . Furthermore, we showed
that the linear wavelet estimator is globally adaptive when 𝐵 > 0 , and the non-linear wavelet estimator is globally
adaptive when 𝐵 = 0 . Also, according to the table ?? , it can be observed that for the non-linear wavelet estimator
in the block method, the MSE is less compared to the linear estimator.In the second case, the non-linear wavelet
estimator using the block method also has a lower MSE compared to the linear estimator. Therefore, in both cases,
the non-linear estimator has a optimal convergence rate compared to the linear estimator. However, when comparing
estimators for the two types of statistical distributions, Normal(supersmooth) and Laplace, the Laplace estimator has
a better convergence rate.
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Abstract

Data engineering is a critical discipline within the realm of data science and analytics, focusing
on the design, construction, and management of robust data systems. It encompasses a wide
range of activities, including data acquisition, transformation, storage, and accessibility, ensur-
ing that high-quality data is readily available for analysis and decision-making. As organizations
increasingly rely on data-driven insights to drive strategic initiatives, the role of data engineers
has become pivotal in building scalable data pipelines, optimizing data architectures, and im-
plementing best practices for data governance. This paper explores the fundamental principles
of data engineering, a brief history of the field and a case in of the the big tech companies.

1. History of Data Engineering

In this section we will see a brief history and timeline of data engineering field.

1. Early Beginnings (1960s - 1980s) Mainframe Era: The roots of data engineering can be traced back to the
1960s with the advent of mainframe computers. Data management primarily revolved around batch processing
and hierarchical databases. Database Management Systems (DBMS): The development of relational databases
in the 1970s, particularly with the introduction of SQL (Structured Query Language) and systems like IBM’s
DB2, laid the groundwork for structured data management. The focus was on how to store, retrieve, and manage
data efficiently.

2. Rise of Data Warehousing (1980s - 1990s) Data Warehousing Concepts: By the late 1980s and early 1990s,
the concept of data warehousing emerged, popularized by figures like Bill Inmon and Ralph Kimball. Data
engineers began to specialize in extracting, transforming, and loading (ETL) data into warehouses, enabling
organizations to analyze historical data for decision-making. Business Intelligence (BI): This period saw the
rise of BI tools that relied on data warehouses, emphasizing the need for data engineering to ensure data quality
and accessibility.

3. The Big Data Revolution (2000s) Explosion of Data: The 2000s marked a significant shift with the explosion
of unstructured data from sources like social media, IoT devices, and web applications. This necessitated new
approaches to data storage and processing. Introduction of NoSQL: Technologies such as NoSQL databases
(e.g., MongoDB, Cassandra) emerged to handle large volumes of unstructured data, allowing data engineers to
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manage diverse data types more effectively. Hadoop Ecosystem: The introduction of Apache Hadoop in 2006
revolutionized data processing. It provided a framework for distributed storage and processing of large datasets,
enabling data engineers to build scalable data pipelines.

4. CloudComputing andModernData Engineering (2010s - Present)Cloud-Based Solutions: The rise of cloud
computing platforms (e.g., AWS, Google Cloud, Azure) transformed data engineering by providing scalable
resources for storage and processing. Data engineers began leveraging cloud services for building data lakes,
stream processing, and serverless architectures. DataOps and Automation: The concept of DataOps emerged,
focusing on automating data workflows and enhancing collaboration between data engineering and data science
teams. This led to the development of tools for continuous integration and deployment in data pipelines. Real-
Time Data Processing: Technologies like Apache Kafka and Apache Spark enabled real-time data processing,
allowing organizations to make timely decisions based on streaming data.

5. Current Trends and Future Directions Focus on Data Governance and Ethics: As data privacy concerns
grow, data engineering emphasizes data governance, compliance with regulations (like GDPR), and ethical data
usage. Integration of AI and Machine Learning: Data engineers increasingly work alongside data scientists to
build infrastructure that supports machine learning models, focusing on data quality and availability. Emergence
of Data Mesh and Data Fabric: New paradigms like data mesh and data fabric are gaining traction, promoting
decentralized data management and integration across different business units.

2. Case Study: Data Engineering at Netflix

Netflix, a leading streaming service with millions of subscribers globally, relies heavily on data engineering to manage
and utilize the vast amounts of data generated by its users. The company leverages data engineering to enhance user
experience, personalize content recommendations, and optimize streaming quality.

2.1. Challenge
As Netflix’s user base grew, so did the volume and complexity of the data it collected. The company faced challenges
in:

• Scalability: Handling petabytes of data generated daily from user interactions, viewing habits, and content
metadata.

• Real-time Processing: Delivering personalized recommendations in real-time based on user behavior.

• Data Quality: Ensuring the accuracy and consistency of data collected from various sources.

2.2. Data Engineering Solutions
And now we can see the solution that Data Engineering brought to the scientists attention at Netflix:

1. Data Pipeline Development: Netflix built robust data pipelines using Apache Kafka for real-time data stream-
ing and Apache Spark for batch processing. This allowed them to ingest data from various sources, including
user activity, system logs, and content metadata, efficiently and at scale.

2. Data Warehousing: The company utilizes a data lake architecture on Amazon S3, which allows for the storage
of both structured and unstructured data. They employ data warehousing solutions like Amazon Redshift to
perform analytics and reporting, facilitating complex queries and insights generation.

3. Machine Learning Integration: Data engineers at Netflix collaborate with data scientists to build and deploy
machine learning models that analyze user behavior and predict content preferences. These models provide
personalized recommendations, significantly enhancing user engagement and satisfaction.

4. Monitoring and Governance: Netflix implemented data governance practices to ensure data integrity and
security. They developed monitoring tools to track data quality and pipeline performance, allowing them to
identify and resolve issues proactively.
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3. Final Thoughts

Data engineering has emerged as a foundational pillar in the landscape of data science and analytics, playing a crucial
role in the effective management and utilization of data. As organizations increasingly rely on data-driven insights to
inform their strategies and operations, the importance of skilled data engineers continues to grow. They are tasked with
building robust data architectures, developing efficient data pipelines, and ensuring data quality and accessibility—all
of which are essential for supporting advanced analytics and machine learning initiatives.
The evolution of data engineering, from its early beginnings to the current focus on real-time processing and cloud-
based solutions, highlights its adaptability in the face of changing technological landscapes. Furthermore, the integra-
tion of automation, governance, and ethical considerations into data engineering practices underscores the discipline’s
commitment to not only efficiency but also responsible data usage.
As we look to the future, data engineering will remain critical in helping organizations navigate the complexities of big
data, enabling them to harness the power of information to drive innovation, enhance customer experiences, and ulti-
mately achieve their business objectives. Investing in data engineering capabilities will be essential for organizations
aiming to thrive in an increasingly data-centric world.
If you are interested in Data Engineering, you can consult one the these references: [1–3]
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Abstract

As machine learning (ML) technologies become integral to various industries, the need for ef-
fective management and deployment of ML models has grown. This paper introduces Machine
Learning Operations (MLOps), a framework that facilitates the seamless integration of ML de-
velopment and operations. We examine key MLOps components, including version control,
CI/CD pipelines, and performance monitoring, and present case studies demonstrating MLOps’
impact on collaboration, model reliability, and deployment speed.

1. Introduction

The advent of artificial intelligence (AI) and machine learning (ML) has revolutionized numerous sectors, from health-
care and finance to retail and transportation. As organizations increasingly leverage ML models to drive decision-
making and improve operational efficiency, the complexity of deploying and maintaining these models in production
environments has become a pressing challenge. Traditional software development practices often fall short in address-
ing the unique requirements of ML, such as handling vast amounts of data, ensuring model accuracy, and adapting to
evolving business needs.
Machine Learning Operations (MLOps) has emerged as a vital discipline that bridges the gap between data science
and IT operations. By adopting MLOps practices, organizations can enhance collaboration between data scientists and
operations teams, automate workflows, and ensure the reliability and scalability of ML systems. This paper aims to
provide a comprehensive overview of MLOps, exploring its core components and their significance in managing the
ML lifecycle effectively.

2. History of MLOps

In this section we will see a brief history and timeline of MLOps field.
The roots of MLOps can be traced back to the broader DevOps movement, which sought to improve collaboration
between software development and IT operations. As organizations began to recognize the potential of machine
learning, it became evident that similar methodologies were needed to address the unique challenges associated with
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MLworkflows. The term “MLOps” was popularized in the late 2010s, as practitioners and researchers began to define
processes and best practices specifically tailored for ML projects.
Early MLOps efforts focused on standardizing workflows, establishing version control for datasets and models, and
implementing continuous integration and continuous deployment (CI/CD) pipelines. As the field matured, practition-
ers began to incorporate automation, monitoring, and governance into MLOps frameworks, allowing organizations to
effectively manage the lifecycle of ML models from development through deployment and beyond.
Today, MLOps encompasses a wide range of practices and tools that facilitate the efficient management ofML systems,
enabling organizations to harness the full potential of their data-driven initiatives. As businesses continue to invest
in AI technologies, the adoption of MLOps frameworks will be crucial for ensuring the successful deployment and
sustainability of machine learning solutions.

3. One case study of MLOps

A leading healthcare organization aimed to enhance patient outcomes by leveragingmachine learningmodels to predict
patient readmissions. The organization had a team of data scientists working on various predictive models, but they
faced significant challenges in deploying these models into production and ensuring their reliability over time. The
absence of a structured MLOps framework led to inefficiencies, including lengthy deployment cycles, difficulties in
monitoring model performance, and challenges in collaboration between data scientists and IT operations teams.
The primary objective was to establish an MLOps framework that would streamline the deployment and management
of predictive models, improve collaboration among stakeholders, and ensure the models’ continuous performance
monitoring and retraining based on new data.

3.1. MLOps implementation Steps
1. Assessment and Planning: The organization conducted an assessment of its existing ML processes and iden-

tified bottlenecks in the model development lifecycle, including manual deployment processes and lack of per-
formance monitoring.

2. Establishing Version Control: The team implemented version control systems (e.g., Git) for both code and
model artifacts. This allowed them to track changes in datasets, feature engineering scripts, and model param-
eters, facilitating collaboration among data scientists.

3. Building CI/CD Pipelines: Continuous Integration and Continuous Deployment (CI/CD) pipelines were cre-
ated using tools like Jenkins and Docker. These pipelines automated the testing and deployment of ML models,
significantly reducing deployment time from weeks to days.

4. Monitoring and Performance Evaluation: The organization integrated monitoring tools (e.g., Prometheus
and Grafana) to track model performance in real-time. Key metrics such as accuracy, precision, and recall were
continuously monitored, allowing the team to detect model drift and performance degradation quickly.

5. Automated Retraining: An automated retraining pipeline was established, where models would be retrained
periodically using the latest data. This ensured that the models remained accurate and relevant as patient data
evolved over time.

6. Collaboration and Governance: Regular communication was established between data scientists, operations
teams, and healthcare professionals. They held bi-weekly meetings to discuss model performance, gather feed-
back, and make necessary adjustments.

Conclusion

In conclusion, MLOps is not merely a set of tools or practices; it is a transformative approach that can significantly
enhance the effectiveness of machine learning initiatives. By embracing MLOps, organizations can harness the full
potential of their data, drive better business outcomes, and create a sustainable framework for future AI developments.
As the field continues to mature, the lessons learned from MLOps implementations will serve as valuable guidance
for organizations striving to navigate the complexities of machine learning at scale.
If you are interested in this fascinating topic you can see references [1–4].
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Abstract

Let (𝑆,𝔪) be a commutative noetherian local ring and 𝜔 ∈ 𝔪 be a non-zero divisor element of
𝑆. Let 𝑓 ∶ 𝑃 → 𝑄 and 𝑔 ∶ 𝑄 → 𝑃 be two morphisms of finitely generated projective 𝑆-modules
such that the compositions 𝑓𝑔 and 𝑔𝑓 are multiplications by𝜔. The aim of this paper is to show
that the cokernels of 𝑓 and 𝑔 are Gorenstein projective over the factor ring 𝑆/(𝜔).

1. Introduction

A (finitely generated) module 𝑀 is said to be Gorenstein projective, if it is a syzygy of a totally acyclic complex
of projective modules. Gorenstein projective modules, which are a refinement of projective modules, was defined
by Enochs and Jenda in [2]. The corresponding classes of Gorenstein injective and Gorenstein flat modules were
defined in [2] and [3]. The origin of Gorenstein projective modules even goes back to Auslander and Bridger [1],
who introduced the G-dimension of a finitely generated module over a commutative noetherian ring to characterize
Gorenstein local rings: a commutative noetherian local ring is Gorenstein if and only if its residue field has finite G-
dimension. Since then, Gorenstein homological algebra has developed rapidly during the past several years. The theory
of modules of finite Gorenstein dimensions has found some interesting applications in representation theory; these
include the structure of the stable category of Cohen-Macaulay modules, the Auslander-Reiten theory, the existence
of Serre duality at the level of perfect complexes and the theory of singularities
Assume that (𝑆,𝔪) is a commutative noetherian local ring and 𝜔 ∈ 𝔪 is a non-zero divisor element of 𝑆. Assume that
𝑓 ∶ 𝑃 → 𝑄 and 𝑔 ∶ 𝑄 → 𝑃 are two morphisms of finitely generated projective 𝑆-modules such that 𝑓𝑔 = 𝜔. id𝑄 and
𝑔𝑓 = 𝜔. id𝑃. In this paper we show that coker𝑓 as well as coker𝑔 are Gorenstein projective 𝑆/(𝜔)-modules.

2. Results

Let us begin this section by recalling the definition of Gorenstein projective modules. Throughout the paper, 𝑆 is a
commutative noetherian local ring with the maximal ideal 𝔪 and 𝑅 is the factor ring 𝑆/(𝜔).
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GORENSTEIN PROJECTIVE MODULES. An acyclic complex of projective 𝑆-modules;

P• ∶ ⋯ ⟶ 𝑃𝑛+1
𝑑𝑛+1⟶ 𝑃𝑛

𝑑𝑛⟶ 𝑃𝑛−1
𝑑𝑛−1⟶ ⋯ is called totally acyclic, if the acyclicity is preserved by Hom𝑆(−, 𝑃) for

every projective 𝑆-module 𝑃. An 𝑆-module𝑀 is said to be Gorenstein projective, if it is a syzygy of a totally acyclic
complex of projective modules. Clearly, every projective module is Gorenstein projective.
It is known that over a Gorenstein ring 𝑆, every acyclic complex is totally acyclic, and also 𝑑-th syzygy of any 𝑆-
module is Gorenstein projective, where 𝑑 = dim 𝑆; see [2, Theorem 10.2.14]. Finitely generated Gorenstein projective
modules are equal to the maximal Cohen-Macaulay modules. In what follows, 𝑓 ∶ 𝑃 → 𝑄 and 𝑔 ∶ 𝑄 → 𝑃 are two
morphisms of finitely generated projective 𝑆-modules such that 𝑓𝑔 = 𝜔. id𝑄 and 𝑔𝑓 = 𝜔. id𝑃.

Remark 2.1. Take an object 𝑥 ∈ 𝑃 such that 𝑓(𝑥) = 0. So 𝑔𝑓(𝑥) = 𝜔.𝑥 = 0. Now since 𝜔 is non-zero divisor,
we have 𝑥 = 0, meaning that 𝑓 is a monomorphism. Similarly, 𝑔 is a monomorphism. Next take an arbitrary object
𝛼 ∈ coker𝑓. So there exists an object 𝑦 ∈ 𝑄 such that 𝛼 = Im𝑓+𝑥, and then, 𝜔.𝛼 = Im𝑓+𝜔.𝑦 = Im𝑓+𝑓𝑔(𝑦) = 0.
Consequently, 𝜔coker𝑓 = 0, and in particular, coker𝑓 is an 𝑅-module.

Proposition 2.2. 0 → coker𝑓 → 𝑃/𝜔𝑃 �̄�→ 𝑄/𝜔𝑄 → coker𝑓 → 0 is an exact sequence of 𝑅-modules, where
̄𝑓 = 𝑓 ⊗𝑆 𝑅.

Proof. Since 𝑓 ∶ 𝑃 → 𝑄 is a morphism of 𝑆-modules, ̄𝑓 ∶ 𝑃/𝜔𝑃 → 𝑄/𝜔𝑄 is a morphism of 𝑅-modules. This

gives us the exact sequence of 𝑅-modules 0 → ker ̄𝑓 → 𝑃/𝜔𝑃 �̄�→ 𝑄/𝜔𝑄 → coker ̄𝑓 → 0 . So it remains to show
the validity of the equalities ker ̄𝑓 = coker𝑓 = coker ̄𝑓. Asthe functor −⊗𝑆 𝑅 is right exact, coker ̄𝑓 = coker𝑓 ⊗𝑆
𝑅 = coker𝑓 ⊗𝑆 𝑆/𝜔 = coker𝑓/𝜔coker𝑓 ≅ coker𝑓, because by Remark 2.1, 𝜔coker𝑓 = 0. Next, we show the
equality ker ̄𝑓 = coker𝑓. To see this, one may apply the functor − ⊗𝑆 𝑅 to the short exact sequence of 𝑆-modules

0 → 𝑃 𝑓→ 𝑄 → coker𝑓 → 0, and get the exact sequence of 𝑅-modules

0 → Tor𝑆1(coker𝑓, 𝑅) → 𝑃/𝜔𝑃 �̄�→ 𝑄/𝜔𝑄 → coker𝑓 → 0.

Thus it is enough to show that Tor𝑆1(coker𝑓, 𝑅) ≅ coker𝑓. Tothis ends, we apply the functor coker𝑓⊗𝑆− to the short
exact sequence of 𝑆-modules; 0 → 𝑆 𝜔→ 𝑆 → 𝑅 → 0 and obtain the exact sequence of 𝑅-modules

0 → Tor𝑆1(coker𝑓, 𝑅) → coker𝑓 𝜔→ coker𝑓 → coker𝑓 ⊗𝑆 𝑅 → 0.

Now since coker𝑓 is annihilated by 𝜔, Tor𝑆1(coker𝑓, 𝑅) ≅ coker𝑓. So the proof is finished.

Theorem 2.3. coker𝑓 and coker𝑔 are Gorenstein projective 𝑅-modules.

Proof. By the similarity, we only deal with coker𝑓. According to Proposition 2.2, there exists exact sequence of 𝑅-
modules 0 → coker𝑓 → 𝑃/𝜔𝑃 �̄�→ 𝑄/𝜔𝑄 → coker𝑓 → 0. Also, in the same way, 0 → coker𝑔 → 𝑄/𝜔𝑄 �̄�→ 𝑃/𝜔𝑃 →
coker𝑔 → 0 will be an exact sequence of 𝑅-modules. Since 𝑆 is a local ring, 𝑃, 𝑄 are free 𝑆-modules, implying that
𝑃/𝜔𝑃 and 𝑄/𝜔𝑄 are free 𝑅-modules, as well. All of these yield that �𝑅(coker𝑓) = coker𝑔 and �𝑅(coker𝑔) = coker𝑓.
In particular, we get the following acyclic complex of projective 𝑅-modules

⋯ → 𝑃/𝜔𝑃 �̄�→ 𝑄/𝜔𝑄 �̄�→ 𝑃/𝜔𝑃 �̄�→ 𝑄/𝜔𝑄 �̄�→ ⋯ .

Since the projective dimensions of coker𝑓 and coker𝑓 over 𝑆 are at most one, one has the equalities Ext𝑖𝑆(coker𝑓, 𝑆) =
0 = Ext𝑖𝑆(coker𝑔, 𝑆) for all 𝑖 ≥ 2. Moreover, as 𝜔coker𝑓 = 0, applying [4, Lemma 2(i), page 140] gives us
the isomorphism Ext𝑖+1𝑆 (coker𝑓, 𝑆) ≅ Ext𝑖𝑅(coker𝑓, 𝑅) for each 𝑖 ≥ 1. Similarly, one will have the isomorphism
Ext𝑖+1𝑆 (coker𝑓, 𝑆) ≅ Ext𝑖𝑅(coker𝑓, 𝑅) for each 𝑖 ≥ 1. Consequently, Ext𝑖𝑅(coker𝑓, 𝑅) = 0 = Ext𝑖𝑅(coker𝑔, 𝑅) for
all 𝑖 ≥ 1. Hence, the latter acyclic complex is totally acyclic, and so, coker𝑓 and coker𝑔 are Gorenstein projective
𝑅-modules. So the proof is completed.
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Abstract

The concept of system signature provides a powerful tool for the analysis and reliability assess-
ment of engineering systems. In this paper, we derive bounds for the survival function of co-
herent systems under the assumption that component lifetimes are independent and identically
distributed. These bounds are established by leveraging the system signature framework and
properties of order statistics associated with component lifetimes. The results offer valuable
insights into the reliability behavior of coherent systems and provide a foundation for further
theoretical and practical applications in reliability engineering.

1. Introduction

Coherent systems have been widely used in engineering reliability, particularly in electronic and electrotechnical de-
signs (see e.g., Billinton and Allan [1]). A system is considered coherent if every component is relevant (meaning that
the failure of any component affects the system’s failure) and the system’s structure function is monotone in each com-
ponent (i.e., replacing a failed component with a working one does not degrade the system’s performance). For further
details, refer to Barlow and Proschan [2]. Recently, the concept of system signature, introduced by Samaniego [3],
has been extensively utilized to analyze the stochastic and aging properties of coherent systems. For instance, Kochar
et al. [4] employed system signatures to compare coherent systems with independent and identically distributed (iid)
component lifetimes. Extending this work, Navarro et al. [5] applied signatures to compare coherent systems with
exchangeable component lifetimes. More specifically, let 𝑇 represent the lifetime of a coherent system composed of
𝑛 iid component lifetimes 𝑋1, ⋯ , 𝑋𝑛 , each with the common cumulative distribution function (cdf) 𝐹. Assuming that
𝑃(𝑇 ∈ {𝑋1∶𝑛 , ⋯ , 𝑋𝑛∶𝑛}) = 1, Samaniego [6] demonstrated that the system’s reliability can be expressed in terms of its
signature as follwos:

�̄�𝑇(𝑡) ∶= 𝑃(𝑇 > 𝑡) =
𝑛


𝑖=1

𝑝𝑖�̄�𝑖∶𝑛(𝑡), ∀ 𝑡 > 0, (1)
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where 𝑋𝑖∶𝑛 (𝑖 = 1,⋯ , 𝑛) stands for the 𝑖-th order statistics among 𝑋1, ⋯ , 𝑋𝑛 with the survival function (SF)

�̄�𝑖∶𝑛(𝑡) =
𝑖−1


𝑗=0

ቀ𝑛𝑗ቁ[𝐹(𝑡)]
𝑗[�̄�(𝑡)]𝑛−𝑗 , 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛, (2)

which �̄�(𝑡) = 1 − 𝐹(𝑡). The vector p = (𝑝1, ⋯ , 𝑝𝑛) is called signature of system where 𝑝𝑖 = 𝑃(𝑇 = 𝑋𝑖∶𝑛) is the
probability that the lifetime coincides with the 𝑖-th order statistic of the component lifetime (𝑖 = 1,⋯ , 𝑛). Note that
∑𝑛
𝑖=1 𝑝𝑖 = 1. A comprehensive discussion about the applications of the system signature can be found in Samaniego

[6].
Due to the complexity of system configurations, computing the reliability structure function of engineering systems
is often challenging and, in some cases, impossible. In such scenarios, deriving bounds for system reliability can be
highly beneficial. The literature has explored various bounds for the reliability function of coherent systems. In this
paper, we provide bounds for the SF of the coherent system. The results are further extended to coherent systems with
exchangeable component lifetimes.

2. Reliability Bounds

Hereafter, we present themain results of this paper, which focus on deriving bounds for the reliability function of coher-
ent systems using the concept of system signatures. These bounds not only simplify the analysis but also provide critical
insights into the performance and failure characteristics of coherent systems. Hereafter, we give the main results of this
paper. If 𝑇 is the lifetime of a coherent system with 𝑛 iid components and signature p = (0,⋯ , 0, 𝑝𝑟 , ⋯ , 𝑝𝑘 , 0,⋯ , 0)
where 1 ≤ 𝑟 ≤ 𝑘 ≤ 𝑛, and 𝑝𝑟 > 0, 𝑝𝑘 > 0, then from (1), we get

�̄�𝑟∶𝑛(𝑡) ≤ �̄�𝑇(𝑡) ≤ �̄�𝑘∶𝑛(𝑡), 𝑡 > 0. (3)

Navarro and Rychlik [7] showed that the representation (1) also holds for the lifetime of coherent systems with ex-
changeable component lifetimes. Notice that in this case,

�̄�𝑖∶𝑛(𝑡) = 𝑃(𝑋𝑖∶𝑛 > 𝑡) =
𝑖−1


𝑗=0

ቀ𝑛𝑗ቁ𝑃(𝑋1 < 𝑡,⋯ , 𝑋𝑗 < 𝑡, 𝑋𝑗+1 ≥ 𝑡,⋯ , 𝑋𝑛 ≥ 𝑡). (4)

They also provided bounds for the SF of the coherent system. Suppose 𝐺P, 𝑆P ∶ [0, 1] → 𝑅 denote the greatest convex
and smallest concave functions, respectively, satisfying 𝐺P(0) = 𝑆P(0) = 0, and

𝐺p(𝑗/𝑛) ≤
𝑗


𝑖=1

𝑝𝑖 ≤ 𝑆p(𝑗/𝑛), 𝑗 = 1,⋯ , 𝑛.

Navarro and Rychlik [7] proved that the system reliability with exchangeable component lifetimes satisfy

1 − 𝑆p(1 − �̄�(𝑡)) ≤ �̄�𝑇(𝑡) ≤ 1 − 𝐺p(1 − �̄�(𝑡)). (5)

From (3) and (5), the reliability bounds for the system lifetime can be improved as:

�̄�𝐿(𝑡) ≤ �̄�𝑇(𝑡) ≤ �̄�𝑈(𝑡), ∀𝑡 > 0. (6)

where
�̄�𝐿(𝑡) = max ቀ�̄�𝑟∶𝑛(𝑡), 1 − 𝑆p(1 − �̄�(𝑡))ቁ,

and
�̄�𝑈(𝑡) = min ቀ�̄�𝑘∶𝑛(𝑡), 1 − 𝐺p(1 − �̄�(𝑡))ቁ.
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Fig. 1. Reliability bounds for the bridge system with exchangeable (left) and iid (right) component lifetimes.

Remark 2.1. The improved expectation bounds for the lifetime of a given coherent system can be obtained from (3)
and the expectation bounds in Corollary 1 duo to Navarro and Rychlik [7] as follows:

max ቊ𝜇𝑟∶𝑛 , න
1

0
𝐹−1(𝑥)𝑆′p(𝑥)𝑑𝑥ቋ ≤ 𝜇𝑇 ≤ min ቊ𝜇𝑘∶𝑛 , න

1

0
𝐹−1(𝑥)𝐺′

p(𝑥)𝑑𝑥ቋ , (7)

where 𝐹−1 is the quantile function of 𝐹 and 𝑆′p(𝑥) and 𝐺′
p(𝑥) are the derivative of functions 𝑆p and 𝐺p, respectively.

To illustrate the above results, consider the following example.

Example 2.2. Let p = (0, 15 ,
3
5 ,

1
5 , 0) be the signature of the well-known Bridge system consisting 𝑛 = 5 components

with the common cdf 𝐹. From (3), �̄�2∶5(𝑡) ≤ �̄�𝑇(𝑡) ≤ �̄�4∶5(𝑡) for 𝑡 > 0, and after some algebraic calculations, we
have

�̄�𝐿(𝑡) = max ቊ4�̄�(𝑡) − 1
3 , 5�̄�(𝑡) − 1

5 , �̄�2∶5(𝑡)ቋ , (8)

�̄�𝑈(𝑡) = min ቊ5�̄�(𝑡) + 1
5 , 43�̄�(𝑡), �̄�4∶5(𝑡)ቋ . (9)

From (8) and (9), the SF of the system satisfies

max ቊ4�̄�(𝑡) − 1
3 , 5�̄�(𝑡) − 1

5 , �̄�2∶5(𝑡)ቋ ≤ �̄�𝑇(𝑡) ≤ min ቊ5�̄�(𝑡) + 1
5 , 43�̄�(𝑡), �̄�4∶5(𝑡)ቋ .

(i) In iid case, assuming the standard exponential distribution for lifetimes of components. The proposed bounds as
well as the exact value of reliability are depicted in Figure 1 (right diagram). It is easy to see that

0.555 = max (0.450, 0.555) ≤ 𝜇𝑇 ≤ min (1.283, 1.280) = 1.280.

Notice that 𝜇𝑇 = 0.816. Here we see that the proposed expectation bounds coincide with the bounds obtained by
Navarro and Rychlik [7].

(ii) In exchangeable case, assume that

�̄�(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑃(𝑋1 > 𝑥1, 𝑋2 > 𝑥2, 𝑋3 > 𝑥3, 𝑋4 > 𝑥4, 𝑋5 > 𝑥5)

= expቌ−
5


𝑖=1

𝑥𝑖 − 0.5 max
1≤𝑖≤5

(𝑥𝑖)ቍ , ∀ 𝑥𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 5, (10)
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which is known as the Marshall and Olkin’s multivariate exponential distribution; see, e.g., Kotz et al. [? ], p. 391.
From (4) and (10), we have

�̄�2∶5(𝑡) = 5𝑒−4.5𝑡 − 4𝑒−5.5𝑡 , (11)
�̄�4∶5(𝑡) = 10𝑒−2.5𝑡 − 20𝑒−3.5𝑡 + 15𝑒−4.5𝑡 − 4𝑒−5.5𝑡 . (12)

Also component lifetimes have the common marginal survival function �̄�(𝑡) = 𝑒−1.5𝑡. The proposed bounds as well
as the exact value of reliability are depicted in Figure 1 (left diagram). We see that bounds in two cases are work
similar. Also, we have

0.383 = max (0.383, 0.370) ≤ 𝜇𝑇 ≤ min (0.891, 0.853) = 0.853.

Notice that 𝜇𝑇 = 0.623. In this case we see that the proposed expectation bounds is better than the bounds obtained
by Navarro and Rychlik [7].

3. Conclusions

In this paper, we have modified and extended the bounds for the reliability of coherent systems originally derived by
Navarro and Rychlik [7]. By refining these bounds, we have provided a more versatile framework for analyzing the
reliability of coherent systems, particularly those with exchangeable component lifetimes. This extension broadens the
applicability of the results to a wider range of system configurations, offering valuable tools for reliability assessment
in complex engineering scenarios. To demonstrate the practical utility of our findings, we have included an illustrative
example that highlight the effectiveness of the proposed bounds in predicting system behavior and reliability.
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Abstract

This research focuses on deriving bounds for the survival function of coherent systems with
component lifetimes following sequential order statistics. Utilizing the system signature, par-
ticularly its dynamic extension to handle partial failure information, we provide a more refined
approach to reliability analysis. An illustrative example demonstrates the practical value of our
bounds in assessing system dependability.

1. Introduction

Engineering reliability analyses, particularly in electronic and electrotechnical designs, extensively utilize coherent
systems. A system is defined as coherent if all its components are essential, meaning component failure does not
directly lead to system success, and its structure function exhibits monotonicity, implying that replacing a failed com-
ponent with a functional one never degrades system performance. For a comprehensive treatment, refer to Barlow and
Proschan [1]. The system signature, introduced by Samaniego [2], has become a prevalent tool for investigating the
stochastic and aging characteristics of coherent systems. Notably, Kochar et al. [3] employed the system signature
to facilitate comparisons between coherent systems with independent and identically distributed (iid) component life-
times. Building upon this, Navarro et al. [4]-[6] extended the application of the signature to compare coherent systems
featuring exchangeable component lifetimes. Specifically, given a coherent system with lifetime T and n iid compo-
nent lifetimes 𝑋1, ⋯ , 𝑋𝑛 each with a common cumulative distribution function (CDF) F, Samaniego [2] demonstrated
that the system reliability can be determined, provided 𝑃(𝑇 ∈ {𝑋1∶𝑛 , ⋯ , 𝑋𝑛∶𝑛}) = 1, as follows:

�̄�𝑇(𝑡) ∶= 𝑃(𝑇 > 𝑡) =
𝑛


𝑖=1

𝑝𝑖�̄�𝑖∶𝑛(𝑡), ∀ 𝑡 > 0, (1)
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where 𝑋𝑖∶𝑛 (𝑖 = 1,⋯ , 𝑛) stands for the 𝑖-th order statistics among 𝑋1, ⋯ , 𝑋𝑛 with the survival function (SF)

�̄�𝑖∶𝑛(𝑡) =
𝑖−1


𝑗=0

ቀ𝑛𝑗ቁ[𝐹(𝑡)]
𝑗[�̄�(𝑡)]𝑛−𝑗 , 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛, (2)

which �̄�(𝑡) = 1 − 𝐹(𝑡). The vector p = (𝑝1, ⋯ , 𝑝𝑛) is defined as the system signature, where 𝑝𝑖 = 𝑃(𝑇 = 𝑋𝑖∶𝑛)
represents the probability that the system lifetime T coincides with the i-th order statistic 𝑋𝑖∶𝑛 of the component life-
times, for 𝑖 = 1,⋯ , 𝑛. It is important to note that ∑𝑛

𝑖=1 𝑝𝑖 = 1. A detailed exploration of the applications of the system
signature is available in Samaniego [7].
The intricate nature of system configurations often makes calculating the structure function of engineering systems
challenging or, in some instances, infeasible. In such scenarios, determining bounds for system reliability proves
advantageous. This study presents bounds for the SF of coherent systems, which are employed to forecast the system
lifetime behavior. These findings are further applied to coherent systems with components exhibiting exchangeable
lifetimes.

2. Reliability Bounds for Coherent systems with SOS components

Here we extend the proposed bounds in preceding sections when lifetimes of components follow sequential order
statistics (SOS) introduced by Kamps [8]. Specifically, if a component in working system fails, then the remaining
components might be affected by the failure. Let 𝐹𝑖 , (𝑖 = 1,⋯ , 𝑛) denote the common cdf of independent component
lifetimes 𝑋(𝑖)

1 , ⋯ , 𝑋(𝑖)
𝑛−𝑖+1 when 𝑛− 𝑖 + 1 components work in the system. Then the 𝑖th failure time of a component is

given by

𝑋⋆
𝑖∶𝑛 = min{𝑋(𝑖)

1 , ⋯ , 𝑋(𝑖)
𝑛−𝑖+1}.

The resulting ordered lifetimes 𝑋⋆
1∶𝑛 ≤ ⋯ ≤ 𝑋⋆

𝑛∶𝑛 are called sequential order statistics (SOS) based on 𝐹1, ⋯ , 𝐹𝑛; see
e.g., Kamps [8] and Navarro and Burkschat [9] for more details. Recently, the idea underlying SOS model has been
extended to coherent systems. In order to describe component lifetimes in a system, where failures might change
the lifetimes of remaining components, a particular dependence model for components is assumed. The vector of
component lifetimes 𝑋⋆

1 , ⋯ , 𝑋⋆
𝑛 is chosen to be an exchangeable coincides with the 𝑋⋆

1∶𝑛 ≤ ⋯ ≤ 𝑋⋆
𝑛∶𝑛 based on

𝐹1, ⋯ , 𝐹𝑛. Let 𝑇⋆ be the lifetime of a coherent system with exchangeable component lifetimes 𝑋⋆
1 , ⋯ , 𝑋⋆

𝑛. Navarro
and Burkschat [9] showed that

�̄�⋆
𝑇(𝑡) = 𝑃(𝑇⋆ > 𝑡) =

𝑛


𝑖=1

𝑠𝑖𝑃(𝑋⋆
𝑖∶𝑛 > 𝑡), (3)

where 𝑋⋆
1∶𝑛 ≤ ⋯ ≤ 𝑋⋆

𝑛∶𝑛 are SOS coming from 𝐹1, ⋯ , 𝐹𝑛 . If 𝑇⋆ is the lifetime of a coherent system with 𝑛 iid
components and signature p = (0,⋯ , 0, 𝑝𝑟 , ⋯ , 𝑝𝑘 , 0,⋯ , 0) where 1 ≤ 𝑟 ≤ 𝑘 ≤ 𝑛, and 𝑝𝑟 > 0, 𝑝𝑘 > 0, then from
(3), we have

𝑃(𝑋⋆
𝑟∶𝑛 > 𝑡) ≤ �̄�⋆

𝑇(𝑡) ≤ 𝑃(𝑋⋆
𝑘∶𝑛 > 𝑡), (4)

for all 𝑡 > 0.Moreover, we have the following another bound.

Proposition 2.1. Let 𝑇⋆ be the lifetime of a coherent system with signature p and 𝑛 exchangeable component lifetimes
𝑋⋆ = (𝑋⋆

1 , ⋯ , 𝑋⋆
𝑛) constructed based on a permutation of a 𝑆𝑂𝑆 coming from 𝐹1, ⋯ , 𝐹𝑛 and a given marginal distri-

bution function 𝐹⋆. If 𝐺P, 𝑆P ∶ [0, 1] → 𝑅 denote the greatest convex and smallest concave functions, respectively,
satisfying 𝐺P(0) = 𝑆P(0) = 0 and

𝐺p(𝑗/𝑛) ≤
𝑗


𝑖=1

𝑝𝑖 ≤ 𝑆p(𝑗/𝑛), 𝑗 = 1,⋯ , 𝑛.

Then
𝐺p(𝐹⋆(𝑡)) ≤ �̄�⋆

𝑇(𝑡) ≤ 𝑆p(𝐹⋆(𝑡)), 𝑡 ∈ 𝑅, (5)

where �̄�⋆(𝑡) = 1
𝑛 ∑

𝑛
𝑖=1 �̄�⋆

𝑖∶𝑛(𝑡).
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Fig. 1. Reliability bounds for the coherent system with SOS components

Proof. From Definition 2.2 of Navarro and Burkschat [9], there exists an exchangeable random vector 𝑋⋆
1 , ⋯ , 𝑋⋆

𝑛 with
common marginal distribution function 𝐹⋆ such that 𝑇⋆ = 𝜙(𝑋⋆

1 , ⋯ , 𝑋⋆
𝑛) where 𝜙 is the structure function of the

system. Hence Theorem 1 due to Navarro and Rychlik [5] completes the proof. □

Thus, relations (4) and (5), the proposed bounds can be obtained as follows:

max ൫�̄�⋆
𝑟∶𝑛(𝑡), 1 − 𝑆p(1 − �̄�⋆(𝑡))൯ ≤ �̄�⋆

𝑇(𝑡) ≤ min ൫�̄�⋆
𝑘∶𝑛(𝑡), 1 − 𝐺p(1 − �̄�⋆(𝑡))൯ . (6)

Example 2.2. The proposed expectation bounds for the lifetime of a coherent system with SOS component lifetimes
can as follows:

max ቊ𝜇⋆𝑟∶𝑛 , න
1

0
𝐹⋆−1(𝑥)𝑆′p(𝑥)𝑑𝑥ቋ ≤ 𝜇𝑇 ≤ min ቊ𝜇⋆𝑘∶𝑛 , න

1

0
𝐹⋆−1(𝑥)𝐺′

p(𝑥)𝑑𝑥ቋ , (7)

where 𝐹⋆−1 is the quantile function of 𝐹⋆. Notice that the explicit computation of 𝐹⋆ is not easy. In general, numerical
methods must be employed to compute the expectation bounds.

Example 3. (Burkschat and Navarro [10]) Consider a coherent system with lifetime 𝑇⋆ and signature p = (0, 23 ,
1
3).

They showed that

𝑃(𝑋⋆
1∶3 > 𝑡) = 𝑒−3𝑡 , (8)

𝑃(𝑋⋆
2∶3 > 𝑡) = 16𝑒−3𝑡 − 15𝑒−3.2𝑡 , (9)

and

𝑃(𝑋⋆
3∶3 > 𝑡) = 136𝑒−3𝑡 − 255𝑒−3.2𝑡 + 120𝑒−3.4𝑡 . (10)

Therefore we have

�̄�⋆(𝑡) = 1
3

3


𝑖=1

�̄�⋆
𝑖∶𝑛(𝑡) = 51𝑒−3𝑡 − 90𝑒−3.2𝑡 + 40𝑒−3.4𝑡 .

After some calculation, bounds for the SF of the coherent system is

max ൛�̄�⋆(𝑡), �̄�⋆
2∶3(𝑡)ൟ ≤ �̄�⋆

𝑇(𝑡) ≤ min ቊ32�̄�
⋆(𝑡), �̄�⋆

3∶3(𝑡)ቋ .

In Figure 3, bounds are depicted for reliability of the system lifetime with SOS components.
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3. Conclusions

In this paper, we have successfully derived novel bounds for the reliability of coherent systems, leveraging the power
of system signature analysis, specifically when component lifetimes exhibit sequential order statistics. This approach
provides a valuable tool for accurately assessing system dependability in complex engineering scenarios where com-
ponent failures are not independent. The illustrative examples presented not only validate the theoretical framework
but also demonstrate the practical utility of our bounds in providing tighter estimates of system reliability. This work
contributes to the growing body of literature on system reliability analysis, particularly in the context of dependent
component lifetimes.
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Abstract

One of the most important issues in human life is the knowledge and enjoyment of health and
hygiene in nutrition, particularly regarding water. In this regard, researchers and related organi-
zations were trying to determine a criterion for achieving different ranges of water quality and
presenting it as a default model based on effective variables such as minerals and salts in water.
However, since the variables affecting water quality are different in different water resource
beds, the models presented will be different. On the other hand, the ambiguous nature of quality
forces us to use fuzzy structures. In this article, based on a fuzzy regression model, using differ-
ent data from different beds and based on ten variables present in water and affecting its quality
(which have been measured in all these beds), we will determine the effectiveness coefficients
of each variable to determine different levels of water quality.
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